Science.gov

Sample records for cerebellar granule cell

  1. Synaptic representation of locomotion in single cerebellar granule cells

    PubMed Central

    Powell, Kate; Mathy, Alexandre; Duguid, Ian; Häusser, Michael

    2015-01-01

    The cerebellum plays a crucial role in the regulation of locomotion, but how movement is represented at the synaptic level is not known. Here, we use in vivo patch-clamp recordings to show that locomotion can be directly read out from mossy fiber synaptic input and spike output in single granule cells. The increase in granule cell spiking during locomotion is enhanced by glutamate spillover currents recruited during movement. Surprisingly, the entire step sequence can be predicted from input EPSCs and output spikes of a single granule cell, suggesting that a robust gait code is present already at the cerebellar input layer and transmitted via the granule cell pathway to downstream Purkinje cells. Thus, synaptic input delivers remarkably rich information to single neurons during locomotion. DOI: http://dx.doi.org/10.7554/eLife.07290.001 PMID:26083712

  2. Multimodal sensory integration in single cerebellar granule cells in vivo

    PubMed Central

    Ishikawa, Taro; Shimuta, Misa; Häusser, Michael

    2015-01-01

    The mammalian cerebellum is a highly multimodal structure, receiving inputs from multiple sensory modalities and integrating them during complex sensorimotor coordination tasks. Previously, using cell-type-specific anatomical projection mapping, it was shown that multimodal pathways converge onto individual cerebellar granule cells (Huang et al., 2013). Here we directly measure synaptic currents using in vivo patch-clamp recordings and confirm that a subset of single granule cells receive convergent functional multimodal (somatosensory, auditory, and visual) inputs via separate mossy fibers. Furthermore, we show that the integration of multimodal signals by granule cells can enhance action potential output. These recordings directly demonstrate functional convergence of multimodal signals onto single granule cells. DOI: http://dx.doi.org/10.7554/eLife.12916.001 PMID:26714108

  3. Inhibition of Cerebellar Granule Cell Turning by Alcohol

    PubMed Central

    Kumada, Tatsuro; Komuro, Yutaro; Li, Ying; Hu, Taofang; Wang, Zhe; Littner, Yoav; Komuro, Hitoshi

    2010-01-01

    Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single i.p. injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca2+ and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca2+ and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol. PMID:20691765

  4. Extracellular potassium concentration regulates proliferation of immature cerebellar granule cells.

    PubMed

    Borodinsky, L N; Fiszman, M L

    1998-04-17

    The present study examines the effect of depolarizing potassium concentrations on the proliferation of immature rat cerebellar neurons. Cells inoculated in serum free medium and 5 mM KCl (5 K) showed a high degree of 3H-thymidine incorporation that decreased 24-48 h after plating as differentiation began. During the first 24 h after inoculation, cells grown in high potassium (25 K), showed a 34 +/- 3% increase (mean +/- S.E.M., n = 12) in 3H-thymidine incorporation as compared with the values observed in 5 K. After 24 h in vitro, cells grown in 25 K showed 23 +/- 3% (mean +/- S.E.M., n = 3) less DNA synthesis than those inoculated in 5 K. The increase in DNA synthesis due to 25 K was blocked by MgCl2 and nifedipine, but not by omega-conotoxin GVIA, suggesting that it is mediated by a Ca2+ influx via voltage-gated calcium channels (VGCC) of the L-subtype. High potassium-induced cell proliferation was blocked by the mitogen-activated protein kinase kinase (MEK1) inhibitor (PD98059, 75 microM). The number of neurons counted after 48 h in vitro in 25 K was 35-100% above of the number obtained with 5 K and this increase also was blocked by MgCl2 and nifedipine. These data support the hypothesis that depolarizing activity during neurogenesis plays a role in the modulation of cerebellar granule cells proliferation. PMID:9602050

  5. AMPA receptors in cerebellar granule cells during development in culture.

    PubMed

    Hack, N J; Sluiter, A A; Balázs, R

    1995-06-27

    The survival and maturation of differentiating cerebellar granule cells in culture are known to be promoted by excitatory amino acids (EAAs) which, however, compromise the survival of mature cells. In contrast to the trophic effect, the toxic effect of alpha-amino-3-hydroxy-5-methyl-4-isoxasolepropiate (AMPA) could only be elicited when the desensitisation of AMPA receptors was blocked, cyclothiazide being used in this study. Nevertheless, even under these conditions, toxicity induced by AMPA in contrast to kainate was, at 9 DIV, only half of the maximal toxicity attained by 13-16 DIV. Since cellular responses to AMPA depend so dramatically on the maturational stage of granule cells, we examined here whether this characteristic is related to developmental changes in AMPA receptor properties, which may result from changes in the subunit composition of the receptor. In contrast to toxicity, AMPA-induced 45Ca2+ influx (determined in the presence of cyclothiazide and the NMDA receptor blocker MK-801) reached a maximum already at 9 DIV. This also applied to a fraction of the 45Ca2+ uptake which persisted either after Cd2+ application or under Na(+)-free conditions and therefore presumably was mediated directly through AMPA receptor channels. Quantitative analysis of Western blots showed that the amounts of GluR4 and to a lesser extent GluR2/3/4c are substantial already at 2 DIV, remaining fairly constant until 9 DIV, followed by an increase by 16 DIV. However GluR1, which is hardly detectable in granule cells in vivo and is also low early in vitro, increased almost linearly with cultivation time.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7554232

  6. Calcium transients in cerebellar granule cell presynaptic terminals.

    PubMed Central

    Regehr, W G; Atluri, P P

    1995-01-01

    Calcium ions act presynaptically to modulate synaptic strength and to trigger neurotransmitter release. Here we detect stimulus-evoked changes in residual free calcium ([Ca2+]i) in rat cerebellar granule cell presynaptic terminals. Granule cell axons, known as parallel fibers, and their associated boutons, were labeled with several calcium indicators. When parallel fibers were extracellularly activated with stimulus trains, calcium accumulated in the terminals, producing changes in the fluorescence of the indicators. During the stimulus train, the fluorescence change per pulse became progressively smaller with the high affinity indicators Fura-2 and calcium green-2 but remained constant with the low affinity dyes BTC and furaptra. In addition, fluorescence transients of high affinity dyes were slower than those of low affinity indicators, which appear to accurately report the time course of calcium transients. Simulations show that differences in the observed transients can be explained by the different affinities and off rates of the fluorophores. The return of [Ca2+]i to resting levels can be approximated by an exponential decay with a time constant of 150 ms. On the basis of the degree of saturation in the response of high affinity dyes observed during trains, we estimate that each action potential increases [Ca2+]i in the terminal by several hundred nanomolar. These findings indicate that in these terminals [Ca2+]i transients are much larger and faster than those observed in larger boutons, such as those at the neuromuscular junction. Such rapid [Ca2+]i dynamics may be found in many of the terminals in the mammalian brain that are similar in size to parallel fiber boutons. Images FIGURE 1 PMID:7612860

  7. Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells.

    PubMed

    Fu, Zhanyan; Vicini, Stefano

    2009-09-01

    Neuroligins (NLGs) are postsynaptic cell adhesion molecules that are thought to function in synaptogenesis. To investigate the role of NLGs on synaptic transmission once the synapse is formed, we transfected neuroligin-2 (NLG-2) in cultured mouse cerebellar granule cells (CGCs), and recorded GABA(A) (gamma-aminobutyric acid) receptor mediated miniature postsynaptic currents (mIPSCs). NLG-2 transfected cells had mIPSCs with faster decay than matching GFP expressing controls at young culture ages (days in vitro, DIV7-8). Down-regulation of NLG-2 by the isoform specific shRNA-NLG-2 resulted in an opposite effect. We and others have shown that the switch of alpha subunits of GABA(A)Rs from alpha2/3 to alpha1 underlies developmental speeding of the IPSC decay in various CNS regions, including the cerebellum. To assess whether the reduced decay time of mIPSCs by NLG-2 is due to the recruitment of more alpha1 containing GABA(A)Rs at the synapses, we examined the prolongation of current decay by the Zolpidem, which has been shown to preferentially enhance the activity of alpha1 subunit-containing GABA channel. The application of Zolpidem resulted in a significantly greater prolongation kinetics of synaptic currents in NLG-2 over-expressing cells than control cells, suggesting that NLG-2 over-expression accelerates synapse maturation by promoting incorporation of the alpha1 subunit-containing GABA(A)Rs at postsynaptic sites in immature cells. In addition, the effect of NLG-2 on the speeding of decay time course of synaptic currents was abolished when we used CGC cultures from alpha1-/- mice. Lastly, to exclude the possibility that the fast decay of mIPSCs induced by NLG-2 could be also due to the impacts of NLG-2 on the GABA transient in synaptic cleft, we measured the sensitivity of mIPSCs to the fast-off competitive antagonists TPMPA. We found that TPMPA similarly inhibits mIPSCs in control and NLG-2 over-expressing CGCs both at young age (DIV8) and old age (DIV14) of

  8. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability.

    PubMed

    Carta, Mario; Mameli, Manuel; Valenzuela, C Fernando

    2004-04-14

    Alcohol intoxication alters coordination and motor skills, and this is responsible for a significant number of traffic accident-related deaths around the world. Although the precise mechanism of action of ethanol (EtOH) is presently unknown, studies suggest that it acts, in part, by interfering with normal cerebellar functioning. An important component of cerebellar circuits is the granule cell. The excitability of these abundantly expressed neurons is controlled by the Golgi cell, a subtype of GABAergic interneuron. Granule cells receive GABAergic input in the form of phasic and tonic currents that are mediated by synaptic and extrasynaptic receptors, respectively. Using the acute cerebellar slice preparation and patch-clamp electrophysiological techniques, we found that ethanol induces a parallel increase in both the frequency of spontaneous IPSCs and the magnitude of the tonic current. EtOH (50 mm) did not produce this effect when spontaneous action potentials were blocked with tetrodotoxin. Recordings in the loose-patch cell-attached configuration demonstrated that ethanol increases the frequency of spontaneous action potentials in Golgi cells. Taken together, these findings indicate that ethanol enhances GABAergic inhibition of granule cells via a presynaptic mechanism that involves an increase in action potential-dependent GABA release from Golgi cells. This effect is likely to have an impact on the flow of information through the cerebellar cortex and may contribute to the mechanism by which acute ingestion of alcoholic beverages induces motor impairment. PMID:15084654

  9. Ex Vivo Imaging of Postnatal Cerebellar Granule Cell Migration Using Confocal Macroscopy

    PubMed Central

    Bénard, Magalie; Lebon, Alexis; Komuro, Hitoshi; Vaudry, David; Galas, Ludovic

    2015-01-01

    During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration. PMID:25992599

  10. Ex vivo imaging of postnatal cerebellar granule cell migration using confocal macroscopy.

    PubMed

    Bénard, Magalie; Lebon, Alexis; Komuro, Hitoshi; Vaudry, David; Galas, Ludovic

    2015-01-01

    During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration. PMID:25992599

  11. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    SciTech Connect

    Schousboe, A.; Frandsen, A.; Drejer, J. )

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  12. Synaptic action of ethanol on cerebellar auditory granule cells reveals acute tolerance

    SciTech Connect

    Huang, C.M.; Liu, G.; Huang, R.H. )

    1991-03-11

    The cerebellum is very sensitive to acute intoxication by ethanol. The authors have recorded electrophysiological responses of granule cells to auditory stimulation from the posterior cerebellar vermis of cats before and after a relatively low dose of ethanol. Auditory responses of granule cells were severely inhibited by ethanol at a transient, peak ethanol concentration of 15-18 mM in the cerebrospinal fluid (CSF). Thereafter, the clearance of ethanol from CSF followed an exponential time course, with 50% of the CSF ethanol being cleared with every passing hour. Auditory responses of granule cells returned to control levels within 60-90 minutes, despite the presence of a DSF ethanol concentration at 8-10mM, indicating acute tolerance. Moreover, a second, identical dose of ethanol, delivered two hours after the first dose produced an attenuated inhibition in the auditory response of cerebellar granule cells. The inhibition took a longer time to be evident but a shorter time to recover than that followed by the first dose of ethanol.

  13. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    PubMed Central

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding either 2 cells in the same layer to increase surface area (β-events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α-events). As the cerebellum grows, therefore, β-events lie upstream of α-events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify inter-mitotic times for β-events on a per-cell basis in post-natal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereological studies. PMID:25668568

  14. Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells.

    PubMed

    Atlante, A; Gagliardi, S; Minervini, G M; Marra, E; Passarella, S; Calissano, P

    1996-11-01

    A 100 microM glutamate pulse administered to rat cerebellar granule cells causes a very rapid and progressive decrease in both cell and mitochondrial oxygen consumption caused by glucose and succinate addition, respectively. The respiratory control ratio, which reflects the ability of mitochondria to produce ATP, is reduced by 50% within the first 30 min after glutamate addition. Subsequent to glutamate exposure, a progressive decrease of respiratory control ratio to almost 1 was found within the following 3-5 h. The addition of extra calcium had no effect per se on oxygen consumption by cell homogenate. PMID:8981415

  15. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  16. A Reinforcing Circuit Action of Extrasynaptic GABAA Receptor Modulators on Cerebellar Granule Cell Inhibition

    PubMed Central

    Santhakumar, Vijayalakshmi; Otis, Thomas S.

    2013-01-01

    GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants. PMID:23977374

  17. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition.

    PubMed

    Santhakumar, Vijayalakshmi; Meera, Pratap; Karakossian, Movses H; Otis, Thomas S

    2013-01-01

    GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants. PMID:23977374

  18. Glutamate-induced protein phosphorylation in cerebellar granule cells: role of protein kinase C.

    PubMed

    Eboli, M L; Mercanti, D; Ciotti, M T; Aquino, A; Castellani, L

    1994-10-01

    Protein phosphorylation in response to toxic doses of glutamate has been investigated in cerebellar granule cells. 32P-labelled cells have been stimulated with 100 microM glutamate for up to 20 min and analysed by one and two dimensional gel electrophoresis. A progressive incorporation of label is observed in two molecular species of about 80 and 43 kDa (PP80 and PP43) and acidic isoelectric point. Glutamate-stimulated phosphorylation is greatly reduced by antagonists of NMDA and non-NMDA glutamate receptors. The effect of glutamate is mimicked by phorbol esters and is markedly reduced by inhibitors of protein kinase C (PKC) such as staurosporine and calphostin C. PP80 has been identified by Western blot analysis as the PKC substrate MARCKS (myristoylated alanine-rich C kinase substrate), while antibody to GAP-43 (growth associated protein-43), the nervous tissue-specific substrate of PKC, failed to recognize PP43. Our results suggest that PKC is responsible for the early phosphorylative events induced by toxic doses of glutamate in cerebellar granule cells. PMID:7891841

  19. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    PubMed Central

    Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John

    2014-01-01

    A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777

  20. Characterization of metabotropic glutamate receptor-stimulated phosphoinositide hydrolysis in rat cultured cerebellar granule cells.

    PubMed Central

    Toms, N. J.; Jane, D. E.; Tse, H. W.; Roberts, P. J.

    1995-01-01

    1. The pharmacology of excitatory amino acid (EAA)-stimulated phosphoinositide (PI) hydrolysis, monitored via [3H]-inositol monophosphate accumulation, was investigated in primary cultures of rat cerebellar granule cells. 2. EAA-stimulated PI hydrolysis peaked after 4-5 days in vitro and subsequently declined. 3. The agonist order of potency was found to be (EC50): L-quisqualic acid (Quis) (2 microM) >> L-glutamate (50 microM) > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) (102 microM). L-Glutamate (Emax = 873% of basal activity) elicited the largest stimulation of PI hydrolysis, whereas Quis (Emax = 603%) and (1S,3R)-ACPD (Emax = 306%) produced somewhat lower stimulations. 4. Several phenylglycine derivatives were found to be active in inhibiting 2 microM Quis-stimulated PI hydrolysis, in order of potency (IC50): (S)-4-carboxy-3-hydroxyphenylglycine (41 microM) > or = (S)-4-carboxyphenylglycine (51 microM) >> (+)-alpha-methyl-4-carboxyphenylglycine (243 microM). 5. Cultured cerebellar granule cells of the rat appear to have Group I mGluR pharmacology similar to that reported for cloned mGluR1 and provide an ideal system for investigating novel mGluR1 ligands in a native environment. PMID:8680712

  1. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell–granule cell loops

    PubMed Central

    Holtzman, Tahl; Sivam, Vanessa; Zhao, Tian; Frey, Oivier; van der Wal, Peter Dow; de Rooij, Nico F; Dalley, Jeffrey W; Edgley, Steve A

    2011-01-01

    Abstract Despite a wealth of in vitro and modelling studies it remains unclear how neuronal populations in the cerebellum interact in vivo. We address the issue of how the cerebellar input layer processes sensory information, with particular focus on the granule cells (input relays) and their counterpart inhibitory interneurones, Golgi cells. Based on the textbook view, granule cells excite Golgi cells via glutamate forming a negative feedback loop. However, Golgi cells express inhibitory mGluR2 receptors suggesting an inhibitory role for glutamate. We set out to test this glutamatergic paradox in Golgi cells. Here we show that granule cells and Golgi cells interact through extra-synaptic signalling mechanisms during sensory information processing, as well as synaptic mechanisms. We demonstrate that such interactions depend on granule cell-derived glutamate acting via inhibitory mGluR2 receptors leading causally to the suppression of Golgi cell activity for several hundreds of milliseconds. We further show that granule cell-derived inhibition of Golgi cell activity is regulated by GABA-dependent extra-synaptic Golgi cell inhibition of granule cells, identifying a regulatory loop in which glutamate and GABA may be critical regulators of Golgi cell–granule cell functional activity. Thus, granule cells may promote their own prolonged activity via paradoxical feed-forward inhibition of Golgi cells, thereby enabling information processing over long timescales. PMID:21669981

  2. Antiphospholipid antibodies bind to rat cerebellar granule cells: the role of N-methyl-D-aspartate receptors.

    PubMed

    Riccio, A; Andreassi, C; Eboli, M L

    1998-11-27

    IgGs from sera containing antiphospholipid antibodies (aPL), detected as antibodies to cardiolipin, or control sera were incubated with rat cerebellar granule cells in primary culture. Using a mitochondrial dehydrogenase activity assay (MTT test), aPL IgGs were shown to decrease MTT metabolism after 24 h incubation with the cells, and to cause non-toxic amounts of glutamate to become neurotoxic when added to the cells for 45 min. Acute and chronic aPL toxicity were prevented by MK-801. Sera containing aPL bound to intact cerebellar neurons, as revealed by an immunofluorescent technique. These results suggest that antiphospholipid antibodies interfere with excitatory pathways in glutamatergic cerebellar granule cells by a mechanism involving overactivation of the NMDA glutamate receptor. PMID:9865941

  3. GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells.

    PubMed

    Meier, E; Drejer, J; Schousboe, A

    1984-12-01

    The effect of gamma-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 microM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 +/- 117 nM) in addition to the high-affinity receptors (KD 7 +/- 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 +/- 3 microM) only when the cells had been cultured in the presence of 50 microM GABA, 50 microM muscimol, or 150 microM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 microM bicuculline and mimicked by 50 microM muscimol or 150 microM THIP whereas 150 microM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors. PMID:6149269

  4. Simulating Spinal Border Cells and Cerebellar Granule Cells under Locomotion – A Case Study of Spinocerebellar Information Processing

    PubMed Central

    Spanne, Anton; Geborek, Pontus; Bengtsson, Fredrik; Jörntell, Henrik

    2014-01-01

    The spinocerebellar systems are essential for the brain in the performance of coordinated movements, but our knowledge about the spinocerebellar interactions is very limited. Recently, several crucial pieces of information have been acquired for the spinal border cell (SBC) component of the ventral spinocerebellar tract (VSCT), as well as the effects of SBC mossy fiber activation in granule cells of the cerebellar cortex. SBCs receive monosynaptic input from the reticulospinal tract (RST), which is an important driving system under locomotion, and disynaptic inhibition from Ib muscle afferents. The patterns of activity of RST neurons and Ib afferents under locomotion are known. The activity of VSCT neurons under fictive locomotion, i.e. without sensory feedback, is also known, but there is little information on how these neurons behave under actual locomotion and for cerebellar granule cells receiving SBC input this is completely unknown. But the available information makes it possible to simulate the interactions between the spinal and cerebellar neuronal circuitries with a relatively large set of biological constraints. Using a model of the various neuronal elements and the network they compose, we simulated the modulation of the SBCs and their target granule cells under locomotion and hence generated testable predictions of their general pattern of modulation under this condition. This particular system offers a unique opportunity to simulate these interactions with a limited number of assumptions, which helps making the model biologically plausible. Similar principles of information processing may be expected to apply to all spinocerebellar systems. PMID:25226298

  5. Early release and subsequent caspase-mediated degradation of cytochrome c in apoptotic cerebellar granule cells.

    PubMed

    Bobba, A; Atlante, A; Giannattasio, S; Sgaramella, G; Calissano, P; Marra, E

    1999-08-20

    Cytochrome c (cyt c) release was investigated in cerebellar granule cells used as an in vitro neuronal model of apoptosis. We have found that cyt c is released into the cytoplasm as an intact, functionally active protein, that this event occurs early, in the commitment phase of the apoptotic process, and that after accumulation, this protein is progressively degraded. Degradation, but not release, is fully blocked by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylchetone (z-VAD-fmk). On the basis of previous findings obtained in the same neuronal population undergoing excitotoxic death, it is hypothesized that release of cyt c may be part of a cellular attempt to maintain production of ATP via cytochrome oxidase, which is reduced by cytosolic NADH in a cytochrome b5-soluble cyt c-mediated fashion. PMID:10486578

  6. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    PubMed Central

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  7. Dendritic patch-clamp recordings from cerebellar granule cells demonstrate electrotonic compactness

    PubMed Central

    Delvendahl, Igor; Straub, Isabelle; Hallermann, Stefan

    2015-01-01

    Cerebellar granule cells (GCs), the smallest neurons in the brain, have on average four short dendrites that receive high-frequency mossy fiber inputs conveying sensory information. The short length of the dendrites suggests that GCs are electrotonically compact allowing unfiltered integration of dendritic inputs. The small average diameter of the dendrites (~0.7 µm), however, argues for dendritic filtering. Previous studies based on somatic recordings and modeling indicated that GCs are electrotonically extremely compact. Here, we performed patch-clamp recordings from GC dendrites in acute brain slices of mice to directly analyze the electrotonic properties of GCs. Strikingly, the input resistance did not differ significantly between dendrites and somata of GCs. Furthermore, spontaneous excitatory postsynaptic potentials (EPSP) were similar in amplitude at dendritic and somatic recording sites. From the dendritic and somatic input resistances we determined parameters characterizing the electrotonic compactness of GCs. These data directly demonstrate that cerebellar GCs are electrotonically compact and thus ideally suited for efficient high-frequency information transfer. PMID:25852483

  8. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration.

    PubMed

    Mogensen, H S; Hack, N; Balázs, R; Jørgensen, O S

    1994-08-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from degenerated cells was removed by prior DNAase treatment. These DNA estimates of cell numbers were comparable with values obtained by direct counting of fluorescein diacetate-stained viable cells. In agreement with previous studies, the survival of rat granule cells was promoted by increasing the concentration of K+ in the medium from 5 to 25 mM throughout a 7-day culture period. In contrast, mouse granule cells survived in culture containing 'low' K+ (5 or 10 mM), as well as in the presence of 'high' K+ (25 mM). On the other hand, several biochemical parameters in mouse granule cells were markedly increased by cultivation in 'high' as compared with 'low' K(+)-containing media, demonstrated by increased fluorescein diacetate esterase activity, enhanced rate of NADPH-dependent tetrazolium reduction, augmented 2-deoxy-D-glucose accumulation and increased N-methyl-D-aspartate-evoked 45Ca2+ influx. It was concluded that although cultivation in 'high' K+ promotes biochemical differentiation in mouse cerebellar granule cells, these cells differ from their rat counterparts in that they do not develop a survival requirement for K(+)-induced membrane depolarization. PMID:7529458

  9. Generation and Characterization of an Nse-CreERT2 Transgenic Line Suitable for Inducible Gene Manipulation in Cerebellar Granule Cells

    PubMed Central

    Pohlkamp, Theresa; Steller, Laura; May, Petra; Günther, Thomas; Schüle, Roland; Frotscher, Michael

    2014-01-01

    We created an Nse-CreERT2 mouse line expressing the tamoxifen-inducible CreERT2 recombinase under the control of the neuron-specific enolase (Nse) promoter. By using Cre reporter lines we could show that this Nse-CreERT2 line has recombination activity in the granule cells of all cerebellar lobules as well as in postmitotic granule cell precursors in the external granular layer of the developing cerebellum. A few hippocampal dentate gyrus granule cells showed Cre-mediated recombination as well. Cre activity could be induced in both the developing and adult mouse brain. The established mouse line constitutes a valuable tool to study the function of genes expressed by cerebellar granule cells in the developing and adult brain. In combination with reporter lines it is a useful model to analyze the development and maintenance of the cerebellar architecture including granule cell distribution, migration, and the extension of granule cell fibers in vivo. PMID:24950299

  10. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  11. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone.

    PubMed

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-09-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects. PMID:27369072

  12. A sensitive method to assay the xanthine oxidase activity in primary cultures of cerebellar granule cells.

    PubMed

    Atlante, A; Valenti, D; Gagliardi, S; Passarella, S

    2000-11-01

    Since xanthine oxidase (XO, Xanthine:oxidoreductase, E.C.1.2.3.22) is a key enzyme in reactive oxygen specie formation which plays a major role in cell oxidative stress, the availability of a sensitive and simple assay useful to detect its activity in monolayer cell cultures is worthwhile. In order to achieve this, we developed a method in which the conversion of pterine into isoxanthopterin is monitored fluorimetrically. Temperature assay was 50 degrees C. The activity of XO was detected in cerebellar granule cells exposed to glutamate. Since XO is formed from protease-dependent xanthine dehydrogenase processing, its activity appearance was found to be prevented by the protease inhibitor, leupeptin, as well as the glutamate NMDA-receptor inhibitor, MK-801, and the Ca(++) complexing agent, EGTA. The reported novel protocol, at variance with a conventional method, is shown to be a simple, fast, sensitive and relatively cheap method to assay XO activity. In addition, the reported assay can be applied to any cell type in culture. PMID:11086257

  13. Raising cytosolic Cl− in cerebellar granule cells affects their excitability and vestibulo-ocular learning

    PubMed Central

    Seja, Patricia; Schonewille, Martijn; Spitzmaul, Guillermo; Badura, Aleksandra; Klein, Ilse; Rudhard, York; Wisden, William; Hübner, Christian A; De Zeeuw, Chris I; Jentsch, Thomas J

    2012-01-01

    Cerebellar cortical throughput involved in motor control comprises granule cells (GCs) and Purkinje cells (PCs), both of which receive inhibitory GABAergic input from interneurons. The GABAergic input to PCs is essential for learning and consolidation of the vestibulo-ocular reflex, but the role of GC excitability remains unclear. We now disrupted the Kcc2 K-Cl cotransporter specifically in either cell type to manipulate their excitability and inhibition by GABAA-receptor Cl− channels. Although Kcc2 may have a morphogenic role in synapse development, Kcc2 disruption neither changed synapse density nor spine morphology. In both GCs and PCs, disruption of Kcc2, but not Kcc3, increased [Cl−]i roughly two-fold. The reduced Cl− gradient nearly abolished GABA-induced hyperpolarization in PCs, but in GCs it merely affected excitability by membrane depolarization. Ablation of Kcc2 from GCs impaired consolidation of long-term phase learning of the vestibulo-ocular reflex, whereas baseline performance, short-term gain-decrease learning and gain consolidation remained intact. These functions, however, were affected by disruption of Kcc2 in PCs. GC excitability plays a previously unknown, but specific role in consolidation of phase learning. PMID:22252133

  14. Thioredoxin/thioredoxin reductase system involvement in cerebellar granule cell apoptosis.

    PubMed

    Bobba, A; Casalino, E; Petragallo, V A; Atlante, A

    2014-10-01

    The involvement of thioredoxin/thioredoxin reductase system has been investigated in cerebellar granule cells (CGCs), a cellular system in which neurons are induced in apoptosis by the physiological stimulus of lowering extracellular potassium. Clarifying the sequence of events that occur during apoptosis is a critical issue as it can lead to the identification of those key events that, if blocked, can slow down or reverse the death process. The results reported in this work show that TrxR is involved in the early phase of CGC apoptosis with an increase in activity that coincides with the increased expression of the TrxR1 isoform and guarantees the maintenance of adequate level of Trx in its reduced, active form. However, in late apoptosis, when about 50 % of cells are dead, partial proteolysis of TrxR1 by calpain occurs and the reduction of TrxR1 mRNA, together with the overall decrease in TrxR activity, contribute to increase the levels of the oxidized form of Trx. When the reduced form of Trx is externally added to apoptotic cultures, a significant reduction in cell death is achieved confirming that a well-functioning thioredoxin/thioredoxin reductase system is required for survival of CGCs. PMID:25055978

  15. Protective effect of fangchinoline on cyanide-induced neurotoxicity in cultured rat cerebellar granule cells.

    PubMed

    Cho, Soon Ok; Seong, Yeon Hee

    2002-06-01

    The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a Ca2+ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type Ca2+ channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 microM significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of [Ca2+]i and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with [Ca2+]i influx, due to its function as a Ca2+ channel blocker, and then by inhibiting glutamate release and oxidants generation. PMID:12135109

  16. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    PubMed

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma. PMID:23213239

  17. Detection of reactive oxygen species in primary cultures of cerebellar granule cells.

    PubMed

    Atlante, A; Passarella, S

    1999-12-01

    The aim of this work was to develop a novel procedure useful to detect the formation of two reactive oxygen species, i.e. superoxide and singlet oxygen, in neuron monolayer primary cultures, thus, making possible the investigation of the effect of certain compounds on reactive oxygen species formation. Thus, use was made of two reactive oxygen species detecting systems consisting of ferricytochrome c (Fe-cyt c) and imidazole-RNO (N, N-dimethyl-4-nitrosoaniline) which allow for the photometric detection of superoxide anion and singlet oxygen, respectively. Both of them were used to assess the formation of reactive oxygen species in cerebellar granule cells exposed to glutamate: both superoxide anion and singlet oxygen proved to be generated in glutamate neurotoxicity in a way sensitive to glutamate NMDA-receptor inhibitor, MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a, d)cyclohepten-5,10-imine hydrogen maleate), to Ca(2+) complexing agent, EGTA, and to certain antioxidants. In principle, the reported protocol can be applied to any cell type in culture. PMID:10592334

  18. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Bower, J. M.

    2001-01-01

    We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000-4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000-4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures.

  19. Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons.

    PubMed

    Selimi, F; Vogel, M W; Mariani, J

    2000-07-15

    Lurcher is a gain-of-function mutation in the delta2 glutamate receptor gene (Grid2) that turns the receptor into a leaky ion channel. The expression of the Lurcher gene in heterozygous (Grid2(Lc/+)) mutants induces the death of almost all Purkinje cells starting from the second postnatal week. Ninety percent of the granule cells and 60-75% of the inferior olivary neurons die because of the loss of their target neurons, the Purkinje cells. The apoptotic nature of the neurodegeneration has been demonstrated previously by the presence of activated caspase-3 and DNA fragmentation. Bax, a pro-apoptotic gene of the Bcl-2 family, has been shown to be involved in developmental neuronal death. To study the role of Bax in Grid2(Lc/+) neurodegeneration, double mutants with Grid2(Lc/)+ mice and Bax knock-out mice (Bax-/-) were generated. Bax deletion had no effect on the death of Purkinje cells and inferior olivary neurons, although a temporary rescue of some Purkinje cells could be detected in P15 Grid2(Lc/)+;Bax-/- animals. From postnatal day 15 (P15) to P60, the number of granule cells in Grid2(Lc/)+;Bax-/-mice did not significantly change and was significantly increased compared with the number found in Grid2(Lc/)+;Bax+/+ mice. Granule cell number in P60 Grid2(Lc/)+;Bax-/- mice corresponded to 70% of the number found in wild-type mice. Our results show that Bax inactivation in Grid2(Lc/+) mice does not rescue intrinsic Purkinje cell death or the target-related cell death of olivary neurons, but Bax inactivation does inhibit persistently target-related cell death in cerebellar granule cells. PMID:10884318

  20. Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism

    PubMed Central

    Hathaway, Hannah A.; Pshenichkin, Sergey; Grajkowska, Ewa; Gelb, Tara; Emery, Andrew C.; Wolfe, Barry B.; Wroblewski, Jarda T.

    2015-01-01

    The majority of existing research on the function of metabotropic glutamate (mGlu) receptor 1 focuses on G protein-mediated outcomes. However, similar to other G protein-coupled receptors (GPCR), it is becoming apparent that mGlu1 receptor signaling is multi-dimensional and does not always involve G protein activation. Previously, in transfected CHO cells, we showed that mGlu1 receptors activate a G protein-independent, β-arrestin-dependent signal transduction mechanism and that some mGlu1 receptor ligands were incapable of stimulating this response. Here we set out to investigate the physiological relevance of these findings in a native system using primary cultures of cerebellar granule cells. We tested the ability of a panel of compounds to stimulate two mGlu1 receptor-mediated outcomes: (1) protection from decreased cell viability after withdrawal of trophic support and (2) G protein-mediated phosphoinositide (PI) hydrolysis. We report that the commonly used mGlu1 receptor ligands quisqualate, DHPG, and ACPD are completely biased towards PI hydrolysis and do not induce mGlu1 receptor-stimulated neuroprotection. On the other hand, endogenous compounds including glutamate, aspartate, cysteic acid, cysteine sulfinic acid, and homocysteic acid stimulate both responses. These results show that some commonly used mGlu1 receptor ligands are biased agonists, stimulating only a fraction of mGlu1 receptor-mediated responses in neurons. This emphasizes the importance of utilizing multiple agonists and assays when studying GPCR function. PMID:25700650

  1. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain.

    PubMed

    Yamamoto, Mutsuya; Wada, Norio; Kitabatake, Yasuji; Watanabe, Dai; Anzai, Masayuki; Yokoyama, Minesuke; Teranishi, Yutaka; Nakanishi, Shigetada

    2003-07-30

    We developed a novel technique that allowed reversible suppression of glutamatergic neurotransmission in the cerebellar network. We generated two lines of transgenic mice termed Tet and TeNT mice and crossed the two transgenic lines to produce the Tet/TeNT double transgenic mice. In the Tet mice, the tetracycline-controlled reverse activator (rtTA) was expressed selectively in cerebellar granule cells by the promoter function of the GABA(A) receptor alpha6 subunit gene. In the TeNT mice, the fusion gene of tetanus neurotoxin light chain (TeNT) and enhanced green fluorescent protein (EGFP) was designed to be induced by the interaction of doxycycline (DOX)-activated rtTA with the tetracycline-responsive promoter. The Tet/TeNT mice grew normally even after DOX treatment and exhibited a restricted DOX-dependent expression of TeNT in cerebellar granule cells. Along with this expression, TeNT proteolytically cleaved the synaptic vesicle protein VAMP2 (also termed synaptobrevin2) and reduced glutamate release from granule cells. Both cleavage of VAMP2/synaptobrevin2 and reduction of glutamate release were reversed by removal of DOX. Among the four genotypes generated by heterozygous crossing of Tet and TeNT mice, only Tet/TeNT mice showed DOX-dependent reversible motor impairments as analyzed with fixed bar and rota-rod tests. Reversible suppression of glutamatergic neurotransmission thus can be manipulated with spatiotemporal accuracy by DOX treatment and removal. These transgenic mice will serve as an animal model to study the cerebellar function in motor coordination and learning. PMID:12890769

  2. Methylmercury differentially affects GABAA receptor-mediated spontaneous IPSCs in Purkinje and granule cells of rat cerebellar slices

    PubMed Central

    Yuan, Yukun; Atchison, William D

    2003-01-01

    Using whole-cell recording techniques we compared effects of the environmental cerebellar neurotoxicant methylmercury (MeHg) on spontaneous IPSCs (sIPSCs) of both Purkinje and granule cells in cerebellar slices of the rat. In Purkinje cells, bath application of 10, 20 or 100 μM MeHg initially increased then suppressed the frequency of sIPSCs to zero. In granule cells, the initial increase in frequency was not observed in ≈50 % of cells examined, but suppression of sIPSCs by MeHg occurred in every cell tested. For both cells, time to onset of effects of MeHg was inversely related to the concentration; moreover, the pattern of changes in mIPSCs induced by MeHg in the presence of tetrodotoxin was similar to that in sIPSCs. For each concentration of MeHg, it took 2–3 times longer to block sIPSCs in Purkinje cells than it did in granule cells. MeHg also initially increased then decreased amplitudes of sIPSCs to block in both cells; again the response was more variable in granule cells. In most Purkinje and some granule cells, MeHg induced a giant, slow inward current during the late stages of exposure. Appearance of this current appeared to be MeHg concentration dependent, and the direction of current flow was reversed by changing the holding potentials. Reduction of the [Cl−] in the internal solution caused inwardly directed, but not outwardly directed giant currents to disappear, suggesting that this current is a Cl−-mediated response. However, bicuculline and picrotoxin failed to block it. MeHg apparently acts at both presynaptic and postsynaptic sites to alter GABAA receptor-mediated inhibitory synaptic transmission. GABAA receptors in granule cells appear to be more sensitive to block by MeHg than are those in Purkinje cells, although the general patterns of effects on the two cells are similar. PMID:12879869

  3. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor

    PubMed Central

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-01-01

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75NTR) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75NTR in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75NTR, GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits. DOI: http://dx.doi.org/10.7554/eLife.16654.001 PMID:27434667

  4. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    PubMed Central

    Yang, Rong; Wang, Minglei; Wang, Jia; Huang, Xingxu; Yang, Ru; Gao, Wei-Qiang

    2015-01-01

    Summary Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patched+/− mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP;Dcx-DsRed;Patched+/− mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling. PMID:26527387

  5. The effects of neurotrophin-3 and brain-derived neurotrophic factor on cerebellar granule cell movement and neurite extension in vitro.

    PubMed

    Tanaka, S; Sekino, Y; Shirao, T

    2000-01-01

    Migration of the granule cells is a major stage of cerebellar maturation. Granule cells express neurotrophins and their receptors; however, their role in cell migration has not been defined. In this study we investigated the effects of exogenous neurotrophins on the movement and neurite extension of granule cells from glial-free cerebellar cell reaggregates in vitro. Our results provide direct evidence that neurotrophin-3 and brain-derived neurotrophic factor differentially affect the granule cells. Neurotrophin-3 significantly affected granule cell movements by decreasing the migration index (the ratio of the number of cells that moved further than half the neurite length) and the speed of cell soma movement, but did not affect neurite length or growth cone migration. In contrast, brain-derived neurotrophic factor and neurotrophin-4 acted on growing neurites and growth cones by significantly increasing neurite length and the speed of growth cone migration, but had no effect either on the migration index or on the speed of the cell soma movement. The results suggest that neurotrophins differentially affect neurite extension and the movements of cerebellar granule cells. PMID:10842017

  6. Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation.

    PubMed

    Atlante, A; Gagliardi, S; Minervini, G M; Ciotti, M T; Marra, E; Calissano, P

    1997-05-01

    To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 microM glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2.-) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death. PMID:9109530

  7. Distinct expression patterns of inwardly rectifying potassium currents in developing cerebellar granule cells of the hemispheres and the vermis.

    PubMed

    Brandalise, Federico; Lujan, Rafael; Leone, Roberta; Lodola, Francesco; Cesaroni, Valentina; Romano, Chiara; Gerber, Urs; Rossi, Paola

    2016-06-01

    G-protein-coupled inwardly rectifying potassium (GIRK) channels play a crucial role during the migration and maturation of cerebellar granule cells (GCs) in the vermis. In the cerebellar hemispheres, however, only minor effects on the development of GCs are observed in mice with GIRK channel impairment. This regional difference may reflect distinct ontogenetic expression patterns of GIRK channels. Therefore, inwardly rectifying responses in mice were characterized at different stages of development in the vermis and the hemispheres. In the vermis, GCs in the premigratory zone (PMZ) at P7-P15 exhibit GIRK current but not constitutive inwardly rectifying potassium (CIRK) current, and are relatively depolarized at rest. In contrast, premigratory GCs in the hemispheres express only CIRK channels, which accounts for their more hyperpolarized resting membrane potential. Furthermore, the pattern of voltage-dependent inward currents in the PMZ GCs of cerebellar hemispheres is consistent with a more mature stage of development than the corresponding GCs in the vermis, resulting in robust firing properties mediated by sodium channels. Later in development (P21-P22), CIRK current is then observed in the majority of vermis GCs. This developmental pattern, revealed by electrophysiological recordings, was confirmed by immunohistological experiments that showed greater reactivity for GIRK2 in the PMZ of the vermis than in the hemispheres during development (P7-P15). These findings suggest that regional differences in development are responsible for the differential expression of inwardly rectifying potassium channels in the vermis and in the hemispheres. PMID:26921581

  8. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells

    PubMed Central

    Osorio, Nancy; Cathala, Laurence; Meisler, Miriam H; Crest, Marcel; Magistretti, Jacopo; Delmas, Patrick

    2010-01-01

    Cerebellar granule (CG) cells generate high-frequency action potentials that have been proposed to depend on the unique properties of their voltage-gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule-specific Scn8a KO mice. Nav1.2 accumulated rapidly at early-formed axon initial segments (AISs). In contrast, Nav1.6 was absent at early postnatal stages but accumulated at AISs of CG cells from P21 to P40. By P40–P65, both Nav1.6 and Nav1.2 co-localized at CG cell AISs. By comparing Na+ currents in mature CG cells (P66–P74) from wild-type and CG-specific Scn8a KO mice, we found that transient and resurgent Na+ currents were not modified in the absence of Nav1.6 whereas persistent Na+ current was strongly reduced. Action potentials in conditional Scn8a KO CG cells showed no alteration in threshold and overshoot, but had a faster repolarization phase and larger post-spike hyperpolarization. In addition, although Scn8a KO CG cells kept their ability to fire action potentials at very high frequency, they displayed increased interspike-interval variability and firing irregularity in response to sustained depolarization. We conclude that Nav1.6 channels at axon initial segments contribute to persistent Na+ current and ensure a high degree of temporal precision in repetitive firing of CG cells. PMID:20173079

  9. Modulation by protein kinase C of nitric oxide and cyclic GMP poffation in cultured cerebellar granule cells.

    PubMed

    Riccio, A; Esposito, E; Eboli, M L

    1996-04-29

    The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells. PMID:8773779

  10. Balanced effect of PACAP and FasL on granule cell death during cerebellar development: a morphological, functional and behavioural characterization.

    PubMed

    Allais, Aurélie; Burel, Delphine; Roy, Vincent; Arthaud, Sébastien; Galas, Ludovic; Isaac, Emma Rachel; Desfeux, Arnaud; Parent, Bénédicte; Fournier, Alain; Chapillon, Pierre; Sherwood, Nancy McKeown; Vaudry, Hubert; Gonzalez, Bruno José

    2010-04-01

    It is now established that the development of the CNS requires equilibrium between cell survival and apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts a powerful protective effect on cerebellar granule cells by inhibiting the caspase 3. In contrast, Fas ligand (FasL) plays an essential role during ontogenesis in eliminating supernumerary neurons by apoptosis. To determine if PACAP and FasL interact during cerebellar development, we characterized the effects of these factors on cerebellar morphogenesis and caspase 3 activity in PACAP+/+ and PACAP-/- mice. First, we demonstrated in vivo that PACAP is able to reverse the diminution of internal granule cell layer thickness induced by FasL in PACAP+/+ and PACAP-/- mice. Second, ex vivo and immunohistochemical studies revealed that interaction between FasL and PACAP occurs through the caspase 3 activity. Third, behavioural study showed a significant difference for the PACAP + FasL group in the righting reflex test at P8 which does not persist at P60. Finally, a time course study revealed that the pro-apoptotic effect of FasL characterized at P8 was followed by a progressive compensatory mechanism in caspase 3 activity and bromodeoxyuridine incorporation. These data suggest that PACAP and FasL interact during cerebellar development to control apoptosis of granule cells and may affect some motor cerebellar functions. PMID:20050979

  11. Endothelin-1 stimulates the release of preloaded ( sup 3 H)D-aspartate from cultured cerebellar granule cells

    SciTech Connect

    Lin, W.W.; Lee, C.Y.; Chuang, D.M. )

    1990-03-16

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded ({sup 3}H)D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca{sup 2+}, but was unaffected by 1 mM Co{sup 2+} or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system.

  12. NMDA receptors amplify mossy fiber synaptic inputs at frequencies up to at least 750 Hz in cerebellar granule cells.

    PubMed

    Baade, Carolin; Byczkowicz, Niklas; Hallermann, Stefan

    2016-07-01

    Neuronal integration of high-frequency signals is important for rapid information processing. Cerebellar mossy fiber axons (MFs) can fire action potentials (APs) at frequencies of more than one kilohertz. However, it is unclear whether and how the postsynaptic cerebellar granule cells (GCs) are able to process these high-frequency MF inputs. Here, we measured AP firing in GCs during high-frequency MF stimulation and show that GC firing frequency increased non-linearly when MF stimulation frequency was increased from 100 to 750 Hz. To investigate the mechanisms enabling such high-frequency signaling, we analyzed the role of N-methyl-d-aspartate receptors (NMDARs), which have been implicated in synaptic signaling at lower frequencies. Application of D-2-amino-5-phosphonopentanoic acid (APV), a potent inhibitor of NMDARs, strongly impaired the GC firing frequency during high-frequency MF stimulation. APV had no significant effect on single excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) evoked at 1 Hz at resting membrane potentials. However, the time course of EPSCs evoked at 1 Hz at depolarized potentials or following high-frequency MF stimulation was accelerated by APV. Thus, our results show that NMDAR-mediated currents amplify high-frequency MF inputs by prolonging the time courses of synaptic inputs, thereby causing greater synaptic summation of inputs. Hence, NMDARs support the integration of MF synaptic input at frequencies up to at least 750 Hz. Synapse 70:269-276, 2016. © 2016 Wiley Periodicals, Inc. PMID:26887562

  13. Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells

    SciTech Connect

    Dreiem, Anne Rykken, Sidsel; Lehmler, Hans-Joachim; Robertson, Larry W.; Fonnum, Frode

    2009-10-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that bioaccumulate in the body, however, they can be metabolized to more water-soluble products. Although they are more readily excreted than the parent compounds, some of the metabolites are still hydrophobic and may be more available to target tissues, such as the brain. They can also cross the placenta and reach a developing foetus. Much less is known about the toxicity of PCB metabolites than about the parent compounds. In the present study, we have investigated the effects of eight hydroxylated (OH) PCB congeners (2'-OH PCB 3, 4-OH PCB 14, 4-OH PCB 34, 4'-OH PCB 35, 4-OH PCB 36, 4'-OH PCB 36, 4-OH PCB 39, and 4'-OH PCB 68) on reactive oxygen species (ROS) formation and cell viability in rat cerebellar granule cells. We found that, similar to their parent compounds, OH-PCBs are potent ROS inducers with potency 4-OH PCB 14 < 4-OH PCB 36 < 4-OH PCB 34 < 4'-OH PCB 36 < 4'-OH PCB 68 < 4-OH PCB 39 < 4'-OH PCB 35. 4-OH PCB 36 was the most potent cell death inducer, and caused apoptotic or necrotic morphology depending on concentration. Inhibition of ERK1/2 kinase with U0126 reduced both cell death and ROS formation, suggesting that ERK1/2 activation is involved in OH-PCB toxicity. The results indicate that the hydroxylation of PCBs may not constitute a detoxification reaction. Since OH-PCBs like their parent compounds are retained in the body and may be more widely distributed to sensitive tissues, it is important that not only the levels of the parent compounds but also the levels of their metabolites are taken into account during risk assessment of PCBs and related compounds.

  14. Bestrophin1 Channels are Insensitive to Ethanol and Do not Mediate Tonic GABAergic Currents in Cerebellar Granule Cells

    PubMed Central

    Diaz, Marvin R.; Wadleigh, Aya; Hughes, Benjamin A.; Woodward, John J.; Valenzuela, C. Fernando

    2012-01-01

    The granule cell layer of the cerebellum functions in spatio-temporal encoding of information. Granule cells (GCs) are tonically inhibited by spillover of GABA released from Golgi cells and this tonic inhibition is facilitated by acute ethanol. Recently, it was demonstrated that a specialized Ca2+-activated anion-channel, bestrophin1 (Best1), found on glial cells, can release GABA that contributes up to 50–75% of the tonic GABAergic current. However, it is unknown if ethanol has any actions on Best1 function. Using whole-cell electrophysiology, we found that recombinant Best1 channels expressed in HEK-293 cells were insensitive to 40 and 80 mM ethanol. We attempted to measure the Best1-mediated component of the tonic current in slices using 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We confirmed that this agent blocks recombinant Best1 channels. Unexpectedly, we found that NPPB significantly potentiated the tonic current and the area and decay of GABAA-mediated spontaneous inhibitory post-synaptic currents (IPSCs) in GCs in rodent slices under two different recording conditions. To better isolate the Best1-dependent tonic current component, we blocked the Golgi cell component of the tonic current with tetrodotoxin and found that NPPB similarly and significantly potentiated the tonic current amplitude and decay time of miniature IPSCs. Two other Cl−-channel blockers were also tested: 4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS) showed no effect on GABAergic transmission, while niflumic acid (NFA) significantly suppressed the tonic current noise, as well as the mIPSC frequency, amplitude, and area. These data suggest that acute ethanol exposure does not modulate Best1 channels and these findings serve to challenge recent data indicating that these channels participate in the generation of tonic GABAergic currents in cerebellar GCs. PMID:22275879

  15. Expression and traffic of cellular prolyl oligopeptidase are regulated during cerebellar granule cell differentiation, maturation, and aging.

    PubMed

    Moreno-Baylach, M J; Felipo, V; Männistö, P T; García-Horsman, J A

    2008-10-15

    Prolyl oligopeptidase (POP) is an endopeptidase which cleaves short proline-containing neuropeptides, and it is involved in memory and learning. POP also has an intercellular function mediated through the inositol pathway, and has been involved in cell death. POP has been early considered as a housekeeping enzyme, but the recent research indicates that POP expression is regulated across tissues and intracellularly. In the brain, POP is exclusively expressed in neurons and most abundantly in pyramidal neurons of cerebral cortex, in the CA1 field neurons of hippocampus and in cerebellar Purkinje's cells. Intracellularly, POP is mainly present in the cytoplasm and some in intracellular membranes, like rough endoplasmic reticulum and Golgi apparatus. In this paper, we systematically studied the levels of expression of POP along the life of cerebellar granule cells (CGC) in culture and the distribution of POP within different intracellular compartments. We used the tight-binding inhibitor JTP-4819 covalently coupled with fluorescein (FJTP) as a tool to study the changes on expression and localization of POP protein. Our results indicate that POP activity levels are regulated during the life of the neurons. POP was found mainly in cytoplasm and neuronal projections, but at an early developmental phase significant amounts were found also in nuclei. Along the life of the neurons, POP activity fluctuated in 7-day cycles. In young neurons, the cytosolic POP activity was low but increased by maturation so that the activity peak coincided with full differentiation. Over aging, cytoplasmic POP was concentrated around nucleus, but the activity decreased with time. POP was also present in vesicles across the neuron. No major changes were seen in the nuclear or membrane bound POP over aging until activity disappeared upon neuronal death. This is the first time when POP was found in the nuclei of human neuronal cells. PMID:18718510

  16. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    PubMed

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-10-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets. PMID:26451951

  17. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish

    PubMed Central

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets. PMID:26451951

  18. Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment.

    PubMed

    Atlante, A; Gagliardi, S; Marra, E; Calissano, P; Passarella, S

    1999-07-01

    To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell. PMID:10386976

  19. Relationship between lipophilicity of C6-10 hydrocarbon solvents and their ROS-inducing potency in rat cerebellar granule cells.

    PubMed

    Dreiem, A; Myhre, O; Fonnum, F

    2002-12-01

    We have studied the effects of aliphatic, alicyclic, and aromatic C6-10 solvents on the formation of reactive oxygen species (ROS) in rat cerebellar granule cell cultures. ROS formation was assessed by monitoring oxidation of 2',7'-dichlorofluorescin (DCFH) to the fluorescent compound 2',7'-dichlorofluorescein (DCF). We found that aromatic solvents with C > 7, and aliphatic and alicyclic solvents with C > or = 7 induce ROS formation in rat cerebellar granule cells in vitro. The response increased with increasing solvent concentration. The potency of the compounds within each homologous group seemed to be correlated to their octanol water partition-coefficients. The aromatic solvents were generally less efficient in inducing ROS formation than the aliphatic and the alicyclic compounds. PMID:12520760

  20. AMPA receptors serum-dependently mediate GABAA receptor alpha1 and alpha6 subunit down-regulation in cultured mouse cerebellar granule cells.

    PubMed

    Uusi-Oukari, Mikko; Kontturi, Leena-Stiina; Kallinen, Sampsa A; Salonen, Virpi

    2010-04-01

    Depolarization of cultured mouse cerebellar granule cells with potassium or kainate results in developmentally arrested state that includes down-regulation of GABA(A) receptor alpha1, alpha6 and beta2 subunit expression. These subunits are normally strongly expressed in cerebellar granule cells from second postnatal week throughout the adulthood. In the present study we demonstrate that selective activation of AMPA subtype of glutamate receptors down-regulates alpha1 and alpha6 subunit mRNA expression. Removal of AMPA agonist from culture medium restores expression of these subunits indicating reversibility of the down-regulation. In serum-free culture medium AMPA receptor activation did not down-regulate alpha1 or alpha6 subunit expression. Furthermore, the down-regulation was strongly attenuated when the cells were cultured in the presence of dialysed fetal calf serum. The results indicate that down-regulation of GABA(A) receptor alpha1 and alpha6 subunits by AMPA receptor activation is dependent on the presence of low molecular weight compounds present in fetal calf serum. In order to study mouse cerebellar granule cell maturation and/or regulation of GABA(A) receptor subunit expression in culture, the experiments should be performed in the absence of fetal calf serum. PMID:20170697

  1. Excitatory amino acid stimulation of the survival of rat cerebellar granule cells in culture is associated with an increase in SMN, the spinal muscular atrophy disease gene product.

    PubMed

    Andreassi, C; Patrizi, A L; Brahe, C; Eboli, M L

    2000-01-01

    Excitatory amino acids which promote the survival of cerebellar granule cells in culture, also promote the expression of the survival of motor neuron (SMN) protein. Immunolocalization studies using SMN monoclonal antibody showed that SMN is decreased in cultures grown in low K+ or chemically defined medium with respect to cultures grown in high K+ medium and that an increase of SMN can be induced by treatment of low K+ cultures with glutamate or N-methyl-D-aspartate. PMID:10901626

  2. The Etv1 transcription factor activity-dependently downregulates a set of genes controlling cell growth and differentiation in maturing cerebellar granule cells.

    PubMed

    Okazawa, Makoto; Abe, Haruka; Nakanishi, Shigetada

    2016-05-13

    In the early postnatal period, cerebellar granule cells exhibit an activity-dependent downregulation of a set of immaturation genes involved in cell growth and migration and are shifted to establishment of a mature network formation. Through the use of a granule cell culture and both pharmacological and RNA interference (siRNA) analyses, the present investigation revealed that the downregulation of these immaturation genes is controlled by strikingly unified signaling mechanisms that operate sequentially through the stimulation of AMPA and NMDA receptors, tetrodotoxin-sensitive Na(+) channels and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This signaling cascade induces the Etv1 transcription factor, and knockdown of Etv1 by a siRNA technique prevented this activity-dependent downregulation of immaturation genes. Thus, taken into consideration the mechanism that controls the upregulation of maturation genes involved in synaptic formation, these results indicate that Etv1 orchestrates the activity-dependent regulation of both maturation and immaturation genes in developing granule cells and plays a key role in specifying the identity of mature granule cells in the cerebellum. PMID:27059140

  3. Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells.

    PubMed

    Kim, S D; Oh, S K; Kim, H S; Seong, Y H

    2001-04-01

    Glutamate receptors-mediated excitotoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fangchinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a Ca2+ channel blocker, on excitatory amino acids (EAAs)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5 microM) inhibited glutamate (1 mM), N-methyl-D-aspartate (NMDA; 1 mM) and kainate (100 microM)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5 microM) inhibited glutamate release into medium induced by NMDA (1 mM) and kainate (100 microM), which was measured by HPLC. And fangchinoline (5 microM) inhibited glutamate (1 mM)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of Ca2+ influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions. PMID:11339637

  4. Cell Signaling and Neurotoxicity: 3H-Arachidonic acid release (Phospholipase A2) in cerebellar granule neurons

    EPA Science Inventory

    Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...

  5. Activation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels

    PubMed Central

    Basille-Dugay, Magali; Vaudry, Hubert; Fournier, Alain; Gonzalez, Bruno; Vaudry, David

    2013-01-01

    High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) and a high density of PACAP binding sites have been detected in the developing rat cerebellum. In particular, PACAP receptors are actively expressed in immature granule cells, where they activate both adenylyl cyclase and phospholipase C. The aim of the present study was to investigate the ability of PACAP to induce calcium mobilization in cerebellar granule neurons. Administration of PACAP-induced a transient, rapid, and monophasic rise of the cytosolic calcium concentration ([Ca2+]i), while vasoactive intestinal peptide was devoid of effect, indicating the involvement of the PAC1 receptor in the Ca2+ response. Preincubation of granule cells with the Ca2+ ATPase inhibitor, thapsigargin, or the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor antagonist, 2-aminoethoxydiphenyl borate, markedly reduced the stimulatory effect of PACAP on [Ca2+]i. Furthermore, addition of the calcium chelator, EGTA, or exposure of cells to the non-selective Ca2+ channel blocker, NiCl2, significantly attenuated the PACAP-evoked [Ca2+]i increase. Preincubation of granule neurons with the N-type Ca2+ channel blocker, ω-conotoxin GVIA, decreased the PACAP-induced [Ca2+]i response, whereas the L-type Ca2+ channel blocker, nifedipine, and the P- and Q-type Ca2+ channel blocker, ω-conotoxin MVIIC, had no effect. Altogether, these findings indicate that PACAP, acting through PAC1 receptors, provokes an increase in [Ca2+]i in granule neurons, which is mediated by both mobilization of calcium from IP3-sensitive intracellular stores and activation of N-type Ca2+ channel. Some of the activities of PACAP on proliferation, survival, migration, and differentiation of cerebellar granule cells could thus be mediated, at least in part, through these intracellular and/or extracellular calcium fluxes. PMID:23675369

  6. Activation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels.

    PubMed

    Basille-Dugay, Magali; Vaudry, Hubert; Fournier, Alain; Gonzalez, Bruno; Vaudry, David

    2013-01-01

    High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) and a high density of PACAP binding sites have been detected in the developing rat cerebellum. In particular, PACAP receptors are actively expressed in immature granule cells, where they activate both adenylyl cyclase and phospholipase C. The aim of the present study was to investigate the ability of PACAP to induce calcium mobilization in cerebellar granule neurons. Administration of PACAP-induced a transient, rapid, and monophasic rise of the cytosolic calcium concentration ([Ca(2+)]i), while vasoactive intestinal peptide was devoid of effect, indicating the involvement of the PAC1 receptor in the Ca(2+) response. Preincubation of granule cells with the Ca(2+) ATPase inhibitor, thapsigargin, or the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor antagonist, 2-aminoethoxydiphenyl borate, markedly reduced the stimulatory effect of PACAP on [Ca(2+)]i. Furthermore, addition of the calcium chelator, EGTA, or exposure of cells to the non-selective Ca(2+) channel blocker, NiCl2, significantly attenuated the PACAP-evoked [Ca(2+)]i increase. Preincubation of granule neurons with the N-type Ca(2+) channel blocker, ω-conotoxin GVIA, decreased the PACAP-induced [Ca(2+)]i response, whereas the L-type Ca(2+) channel blocker, nifedipine, and the P- and Q-type Ca(2+) channel blocker, ω-conotoxin MVIIC, had no effect. Altogether, these findings indicate that PACAP, acting through PAC1 receptors, provokes an increase in [Ca(2+)]i in granule neurons, which is mediated by both mobilization of calcium from IP3-sensitive intracellular stores and activation of N-type Ca(2+) channel. Some of the activities of PACAP on proliferation, survival, migration, and differentiation of cerebellar granule cells could thus be mediated, at least in part, through these intracellular and/or extracellular calcium fluxes. PMID:23675369

  7. Mefenamic acid bi-directionally modulates the transient outward K{sup +} current in rat cerebellar granule cells

    SciTech Connect

    Zhang Man; Shi Wenjie; Fei Xiaowei; Liu Yarong; Zeng Ximin; Mei Yanai

    2008-02-01

    The effect of non-steroidal anti-inflammatory drugs (NSAIDs) on ion channels has been widely studied in several cell models, but less is known about their modulatory mechanisms. In this report, the effect of mefenamic acid on voltage-activated transient outward K{sup +} current (I{sub A}) in cultured rat cerebellar granule cells was investigated. At a concentration of 5 {mu}M to 100 {mu}M, mefenamic acid reversibly inhibited I{sub A} in a dose-dependent manner. However, mefenamic acid at a concentration of 1 {mu}M significantly increased the amplitude of I{sub A} to 113 {+-} 1.5% of the control. At more than 10 {mu}M, mefenamic acid inhibited the amplitude of I{sub A} without any effect on activation or inactivation. In addition, a higher concentration of mefenamic acid induced a significant acceleration of recovery from inactivation with an increase of the peak amplitude elicited by the second test pulse. Intracellular application of mefenamic acid could significantly increase the amplitude of I{sub A}, but had no effect on the inhibition induced by extracellular mefenamic acid, implying that mefenamic acid may exert its effect from both inside and outside the ion channel. Furthermore, the activation of current induced by intracellular application of mefenamic acid was mimicked by other cyclooxygenase inhibitors and arachidonic acid. Our data demonstrate that mefenamic acid is able to bi-directionally modulate I{sub A} channels in neurons at different concentrations and by different methods of application, and two different mechanisms may be involved.

  8. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    PubMed

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. PMID:26598793

  9. Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca2+-dependent interactions via its EF-hand 5 domain

    PubMed Central

    Arendt, Oliver; Schwaller, Beat; Brown, Edward B; Eilers, Jens; Schmidt, Hartmut

    2013-01-01

    Ca2+-binding proteins (CaBPs) are important regulators of neuronal Ca2+ signalling, acting either as buffers that shape Ca2+ transients and Ca2+ diffusion and/or as Ca2+ sensors. The diffusional mobility represents a crucial functional parameter of CaBPs, describing their range-of-action and possible interactions with binding partners. Calretinin (CR) is a CaBP widely expressed in the nervous system with strong expression in cerebellar granule cells. It is involved in regulating excitability and synaptic transmission of granule cells, and its absence leads to impaired motor control. We quantified the diffusional mobility of dye-labelled CR in mouse granule cells using two-photon fluorescence recovery after photobleaching. We found that movement of macromolecules in granule cell dendrites was not well described by free Brownian diffusion and that CR diffused unexpectedly slow compared to fluorescein dextrans of comparable size. During bursts of action potentials, which were associated with dendritic Ca2+ transients, the mobility of CR was further reduced. Diffusion was significantly accelerated by a peptide embracing EF-hand 5 of CR. Our results suggest long-lasting, Ca2+-dependent interactions of CR with large and/or immobile binding partners. These interactions render CR a poorly mobile Ca2+ buffer and point towards a Ca2+ sensor function of CR. PMID:23732647

  10. ONTOGENY OF PROTEINS ASSOCIATED WITH NEURITE GROWTH AND SYNAPTOGENESIS IN CEREBELLAR GRANULE CELLS IN VITRO.

    EPA Science Inventory

    In vitro techniques may be useful in screening for effects of developmental neurotoxicants. Previously, we characterized changes in biochemical markers associated with neuronal development in a PC12 cell model of differentiation and growth. The current research extended these stu...

  11. COMPARATIVE EFFECTS OF TWO POLYCHLORINATED BIPHENYL CONGENERS ON CALCIUM HOMEOSTASIS IN RAT CEREBELLAR GRANULE CELLS

    EPA Science Inventory

    Some polychlorinated biphenyls (PCBs) have been reported to alter locomotor activity and decrease brain dopamine function in laboratory animals. CBs with orth- and/or para-chlorine substitutions are reportedly most potent in decreasing cell dopamine content in vitro and were dete...

  12. Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells A proteomic study

    SciTech Connect

    Vendrell, Iolanda; Carrascal, Montserrat; Abian, Joaquin

    2010-01-01

    Methylmercury is an environmental contaminant that is particularly toxic to the developing central nervous system; cerebellar granule neurons are especially vulnerable. Here, primary cultures of cerebellar granule cells (CGCs) were continuously exposed to methylmercury for up to 16 days in vitro (div). LC50 values were 508 +- 199, 345 +- 47, and 243 +- 45 nM after exposure for 6, 11, and 16 div, respectively. Proteins from cultured mouse CGCs were separated by 2DE. Seventy-one protein spots were identified by MALDI-TOF PMF and MALDI-TOF/TOF sequencing. Prolonged exposure to a subcytotoxic concentration of methylmercury significantly increased non-phosphorylated cofilin both in cell protein extracts (1.4-fold; p < 0.01) and in mitochondrial-enriched fractions (1.7-fold; p < 0.01). The decrease in P-cofilin induced by methylmercury was concentration-dependent and occurred after different exposure times. The percentage of P-cofilin relative to total cofilin significantly decreased to 49 +- 13% vs. control cells after exposure to 300 nM methylmercury for 5 div. The balance between the phosphorylated and non-phosphorylated form of cofilin regulates actin dynamics and facilitates actin filament turnover. Filamentous actin dynamics and reorganization are responsible of neuron shape change, migration, polarity formation, regulation of synaptic structures and function, and cell apoptosis. An alteration of the complex regulation of the cofilin phosphorylation/dephosphorylation pathway could be envisaged as an underlying mechanism compatible with reported signs of methylmercury-induced neurotoxicity.

  13. Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells.

    PubMed Central

    Calissano, P; Ciotti, M T; Battistini, L; Zona, C; Angelini, A; Merlo, D; Mercanti, D

    1993-01-01

    Cerebellar granule cells grown in the presence of a serum complex differentiate but are resistant to the lethal action of excitatory amino acids. When these cells are grown also in the presence of insulin-like growth factor I (IGF-I) they become fully susceptible to the toxic, lethal action of glutamate. The glutamate-sensitizing action of IGF-I is dependent on concentration (half-maximal effect at 2-4 ng/ml) and time (half-maximal effect at 2-4 days in vitro) and is paralleled by the appearance of functionally active, glutamate-activated, Ca2+ channels and of voltage-gated Na+ and late K+ channels. IGF-I-induced glutamate sensitivity is rapidly reversible (t1/2 = 30-60 min) after removal of this somatomedin. The action of IGF-I is not mimicked by IGF-II, nerve growth factor, basic or acidic fibroblast growth factor, platelet-derived growth factor, or tumor necrosis factor alpha. We postulate that the constitutive phenotype of cerebellar granule cells is glutamate-resistant and becomes responsive to excitatory amino acids under the action of epigenetic cues among which IGF-I may be one of those operative in vivo. Images Fig. 1 PMID:8104340

  14. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells.

    PubMed

    Dey, A; Robitaille, M; Remke, M; Maier, C; Malhotra, A; Gregorieff, A; Wrana, J L; Taylor, M D; Angers, S; Kenney, A M

    2016-08-11

    Postnatal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells of origin for the SHH-associated subgroup of medulloblastoma, is driven by Sonic hedgehog (Shh) and insulin-like growth factor (IGF) in the developing cerebellum. Shh induces the oncogene Yes-associated protein (YAP), which drives IGF2 expression in CGNPs and mouse Shh-associated medulloblastomas. To determine how IGF2 expression is regulated downstream of YAP, we carried out an unbiased screen for transcriptional regulators bound to IGF2 promoters. We report that Y-box binding protein-1 (YB-1), an onco-protein regulating transcription and translation, binds to IGF2 promoter P3. We observed that YB-1 is upregulated across human medulloblastoma subclasses as well as in other varieties of pediatric brain tumors. Utilizing the cerebellar progenitor model for the Shh subgroup of medulloblastoma in mice, we show for the first time that YB-1 is induced by Shh in CGNPs. Its expression is YAP-dependent and it is required for IGF2 expression in CGNPs. Finally, both gain-of function and loss-of-function experiments reveal that YB-1 activity is required for sustaining CGNP and medulloblastoma cell (MBC) proliferation. Collectively, our findings describe a novel role for YB-1 in driving proliferation in the developing cerebellum and MBCs and they identify the SHH:YAP:YB1:IGF2 axis as a powerful target for therapeutic intervention in medulloblastomas. PMID:26725322

  15. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development

    PubMed Central

    Zhang, Peter; Ha, Thomas; Larouche, Matt; Swanson, Douglas; Goldowitz, Dan

    2015-01-01

    Kruppel-like factor 4 (Klf4) is a transcription factor that regulates many important cellular processes in stem cell biology, cancer, and development. We used histological and molecular methods to study the expression of Klf4 in embryonic development of the normal and Klf4 knockout cerebellum. We find that Klf4 is expressed strongly in early granule cell progenitor development but tails-off considerably by the end of embryonic development. Klf4 is also co-expressed with Pax6 in these cells. In the Klf4-null mouse, which is perinatal lethal, Klf4 positively regulates Pax6 expression and regulates the proliferation of neuronal progenitors in the rhombic lip, external granular layer and the neuroepithelium. This paper is the first to describe a role for Klf4 in the cerebellum and provides insight into this gene’s function in neuronal development. PMID:26226504

  16. Mice deficient in carbonic anhydrase type 8 exhibit motor dysfunctions and abnormal calcium dynamics in the somatic region of cerebellar granule cells.

    PubMed

    Lamont, Matthew G; Weber, John T

    2015-06-01

    The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. PMID:25721739

  17. Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase.

    PubMed

    Heneka, M T; Feinstein, D L; Galea, E; Gleichmann, M; Wüllner, U; Klockgether, T

    1999-12-01

    Cerebellar granule cells (CGCs) can express the inducible isoform of nitric oxide synthase (iNOS) in response to inflammatory stimuli. We demonstrate that induction of iNOS in CGCs by bacterial lipopolysaccharide and pro-inflammatory cytokines results in cell death that was potentiated by excess L-arginine and inhibited by the selective iNOS inhibitor, 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine. The NO-mediated cell death was accompanied by increased caspase-3-like activity, DNA fragmentation and positive terminal transferase dUTP nick end labeling (TUNEL), suggesting that apoptosis mediates CGC cell death. Incubation of CGCs with the non-steroidal anti-inflammatory drugs (NSAIDs), ibuprofen or indomethacin, or with 15-deoxy-delta12,14 prostaglandin J2 (PGJ2) downregulates iNOS expression and reduces subsequent cell death. Since in other cell types, both NSAIDs and PGJ2 can activate the peroxisome proliferator-activated receptor-gamma (PPARgamma) and downregulate cytokine levels and iNOS expression, and since CGCs express PPARgamma in vivo and in vitro, our data suggest that activation of CGC PPARgamma mediates iNOS suppression and reduced cell death. Because PPARgamma is expressed in brains of Alzheimer's Disease (AD) patients, in which neuronal iNOS expression and apoptotic cell death have been described, these results may help explain the basis for the beneficial effects of NSAIDs in AD. PMID:10695726

  18. Methylmercury-Dependent Increases in Fluo4 Fluorescence in Neonatal Rat Cerebellar Slices Depend on Granule Cell Migrational Stage and GABAA Receptor Modulation.

    PubMed

    Bradford, Aaron B; Mancini, Jayme D; Atchison, William D

    2016-01-01

    Methylmercury (MeHg) disrupts cerebellar function, especially during development. Cerebellar granule cells (CGC), which are particularly susceptible to MeHg by unknown mechanisms, migrate during this process. Transient changes in intracellular Ca(2+) (Ca(2+) i) are crucial to proper migration, and MeHg is well known to disrupt CGC Ca(2+) i regulation. Acutely prepared slices of neonatal rat cerebellum in conjunction with confocal microscopy and fluo4 epifluorescence were used to track changes induced by MeHg in CGC Ca(2+) i regulation in the external (EGL) and internal granule cell layers (IGL) as well as the molecular layer (ML). MeHg caused no cytotoxicity but did cause a time-dependent increase in fluo4 fluorescence that depended on the stage of CGC development. CGCs in the EGL were most susceptible to MeHg-induced increases in fluo4 fluorescence. MeHg increased fluorescence in CGC processes but only diffusely; Purkinje cells rarely fluoresced in these slices. Neither muscimol nor bicuculline alone altered baseline fluo4 fluorescence in any CGC layer, but each delayed the onset and reduced the magnitude of effect of MeHg on fluo4 fluorescence in the EGL and ML. In the IGL, both muscimol and bicuculline delayed the onset of MeHg-induced increases in fluo4 fluorescence but did not affect fluorescence magnitude. Thus, acute exposure to MeHg causes developmental stage-dependent increases in Ca(2+) i in CGCs. Effects are most prominent in CGCs during development or early stages of migration. GABAA receptors participate in an as yet unclear manner to MeHg-induced Ca(2+) i dysregulation of CGCs. PMID:26514794

  19. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development.

    PubMed

    Cunningham, David; DeBarber, Andrea E; Bir, Natalie; Binkley, Laura; Merkens, Louise S; Steiner, Robert D; Herman, Gail E

    2015-05-15

    NSDHL is a 3β-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism. PMID:25652406

  20. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development

    PubMed Central

    Cunningham, David; DeBarber, Andrea E.; Bir, Natalie; Binkley, Laura; Merkens, Louise S.; Steiner, Robert D.; Herman, Gail E.

    2015-01-01

    NSDHL is a 3β-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhltm1.1Hrm) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8–10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism. PMID:25652406

  1. Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study

    PubMed Central

    Magistretti, Jacopo; Castelli, Loretta; Forti, Lia; D'Angelo, Egidio

    2006-01-01

    Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half-maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially

  2. Progressive multifocal leukoencephalopathy with bilateral middle cerebellar peduncle lesions confirmed by repeated CSF-JC virus tests and coexistence of JC virus granule cell neuronopathy. Report of a case.

    PubMed

    Ito, Daisuke; Yasui, Keizo; Hasegawa, Yasuhiro; Nakamichi, Kazuo; Katsuno, Masahisa; Takahashi, Akira

    2016-07-28

    A 65 year-old woman with small lymphocytic leukemia presented with subacute cerebellar ataxia. Six months after rituximab chemotherapy, a cranial MRI revealed lesions in the bilateral middle cerebellar peduncles. Both cerebrospinal fluid (CSF) JC virus (JCV)-DNA PCR test on three occasions and brain biopsy were negative. CSF tests were repeated. The fourth test performed 6 months after the onset showed positive JCV-DNA, and a definite diagnosis of progressive multifocal leukoencephalopathy (PML) was made. Neuroimaging of cerebellar atrophy was considered to be coexistence of granule cell neuronopathy. Medication with mirtazapine and mefloquine was temporarily effective for several months. Little are known solitary bilateral MRI lesions of the middle cerebellar peduncle in PML. JCV-PCR test of CSF may be negative at an earlier stage of PML. Repeated CSF tests should be essential to confirming the diagnosis in such cases. PMID:27356732

  3. Simultaneous determination of purine nucleotides, their metabolites and beta-nicotinamide adenine dinucleotide in cerebellar granule cells by ion-pair high performance liquid chromatography.

    PubMed

    Giannattasio, Sergio; Gagliardi, Sara; Samaja, Michele; Marra, Ersilia

    2003-02-01

    The method described here allows the quantitative simultaneous determination of adenosine 5'-triphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, adenosine, guanosine 5'-triphosphate, guanosine 5'-diphosphate, guanosine, inosine 5'-monophosphate, inosine, uric acid, xanthine, hypoxanthine and beta-nicotinamide adenine dinucleotide by ion-pair high performance liquid chromatography. The chromatographic analysis requires 26 min per sample and allows the separation of the mentioned metabolites in a time as short as 16 min. Primary cultures of rat cerebellar granule cells were incubated in serum-free medium containing 25 mM KCl for 1.5-48 h and their acid extracts were injected onto column. Uric acid, inosine 5'-monophosphate, inosine, beta-nicotinamide adenine dinucleotide, adenosine, adenosine 5'-monophosphate, guanosine 5'-diphosphate, adenosine 5'-diphosphate, guanosine 5'-triphosphate and adenosine 5'-triphosphate were identified and quantified, while hypoxanthine, xanthine and guanosine were below the detection limit. This method makes use of a single-step sample pre-treatment procedure which allows a greater than 91% recovery of the compounds of interest and provides the assay of the metabolites of interest in little amounts of cell extracts. Therefore, this method is suitable to evaluate the energetic state in a variety of cell types, both under normal and dismetabolic conditions, such as after the induction of apoptosis or necrosis. PMID:12565687

  4. Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells.

    PubMed

    Koh, Sang Bum; Ban, Ju Yeon; Lee, Bo Young; Seong, Yeon Hee

    2003-06-01

    The present study was performed to examine the neuroprotective effects of fangchinoline (FAN) and tetrandrine (TET), bis-benzylisoquinoline alkaloids, which exhibit the characteristics of Ca 2+ channel blockers, on H2O2 -induced neurotoxicity using cultured rat cerebellar granule neurons. H2O2 produced a concentration-dependent reduction of cell viability, which was blocked by (5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,10-imine (MK-801), an N-methyl- D-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca 2+ channel blocker, and NG-nitro- L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. Pretreatment with FAN and TET over a concentration range of 0.1 to 10 microM significantly decreased the H2O2 -induced neuronal cell death as assessed by a trypan blue exclusion test, a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei. In addition, FAN and TET inhibited the H2O2 -induced elevation of glutamate release into the medium, elevation of the cytosolic free Ca 2+ concentration ([Ca 2+] c ), and generation of reactive oxygen species (ROS). These results suggest that FAN and TET may mitigate the harmful effects of H2O2 -induced neuronal cell death by interfering with the increase of [Ca 2+] c, and then by inhibiting glutamate release and generation of ROS. Abbreviations. AP5:D(-)-2-amino-5-phosphonopentanoic acid DMSO:dimethyl sulfoxide FAN:fangchinoline H 2 DCF-DA:2',7'-dichlorodihydrofluorescin diacetate MK-801:(5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,20-imine MTT:3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide L-NAME: NG-Nitro- L-arginine methyl ester NMDA: N-methyl- D-aspartate TET:tetrandrine PMID:12865967

  5. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down’s syndrome

    PubMed Central

    2013-01-01

    Background Down’s syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input–output relationship, which is adjusted by tonically active GABAA receptor channels. Results We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABAA receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABAA receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABAA receptor β3 subunit but not genes coding for some of the other GABAA receptor subunits expressed in GCs (α1, α6, β2 and δ). Conclusions Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABAA receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS. PMID:23870245

  6. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism

    PubMed Central

    2012-01-01

    Background The discovery of the inherited disorders of creatine (Cr) synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr) and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. Methods Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a) D3-Creatine (D3Cr) and D3Cr plus β-guanidinopropionate (GPA, an inhibitor of Cr transporter), and b) labelled precursors of Guanidinoacetate (GAA) and Cr (Arginine, Arg; Glycine, Gly). Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1), L-arginine:glycine amidinotransferase (AGAT), and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT) gene expression was assessed in the same cells by real time PCR. Results D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes) and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes). In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells) and 21% (astrocytes) of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. Conclusions Our results

  7. Increased amyloidogenic secretion in cerebellar granule cells undergoing apoptosis

    PubMed Central

    Galli, Cinzia; Piccini, Alessandra; Ciotti, Maria Teresa; Castellani, Loriana; Calissano, Pietro; Zaccheo, Damiano; Tabaton, Massimo

    1998-01-01

    Some clues suggest that neuronal damage induces a secondary change of amyloid β protein (Aβ) metabolism. We investigated this possibility by analyzing the secretion of Aβ and processing of its precursor protein (amyloid precursor protein, APP) in an in vitro model of neuronal apoptosis. Primary cultures of rat cerebellar granule neurons were metabolically labeled with [35S]methionine. Apoptosis was induced by shifting extracellular KCl concentration from 25 mM to 5 mM for 6 h. Control and apoptotic neurons were then subjected to depolarization-stimulated secretion. Constitutive and stimulated secretion media and cell lysates were immunoprecipitated with antibodies recognizing regions of Aβ, full-length APP, α- and β-APP secreted forms. Immunoprecipitated proteins were separated by SDS/PAGE and quantitated with a PhosphorImager densitometer. Although intracellular full-length APP was not significantly changed after apoptosis, the monomeric and oligomeric forms of 4-kDa Aβ were 3-fold higher in depolarization-stimulated secretion compared with control neurons. Such increments were paralleled by a corresponding increase of the β-APPs/α-APPs ratio in apoptotic secretion. Immunofluorescence studies performed with an antibody recognizing an epitope located in the Aβ sequence showed that the Aβ signal observed in the cytoplasm and in the Golgi apparatus of control neurons is uniformly redistributed in the condensed cytoplasm of apoptotic cells. These studies indicate that neuronal apoptosis is associated with a significant increase of metabolic products derived from β-secretase cleavage and suggest that an overproduction of Aβ may be the consequence of neuronal damage from various causes. PMID:9448317

  8. Effects of depolarization and NMDA antagonists on the role survival of cerebellar granule cells: a pivotal role for protein kinase C isoforms.

    PubMed

    Lin, W W; Wang, C W; Chuang, D M

    1997-06-01

    Primary cultures of cerebellar granule cells (CGCs) grown in high-K+ (25 mM; K25) medium progressively differentiate in vitro. Differentiation is noticeable after 3-4 days in vitro (DIV) and reach a mature stage after 8 DIV. Longer cultivation of CGCs (>13 DIV) triggers the processes of spontaneous cell death. However, if cultured in normal physiological K concentration (5 mM; K5), a significant proportion of the cells dies by the end of the first week in culture. To address the role of protein kinase C (PKC) in the development of CGCs, we measured the kinase activity as well as the protein level of the kinase isoforms. As the K25 CGC culture proceeded, the PKC activity time-dependently increased by 3.2-fold, reaching a steady state at 8 DIV. Western blot analysis using PKC isoform-specific antibodies revealed an increase in levels of PKC alpha, gamma, mu, lambda, and iota from 2 to 8 DIV. A slight increase or decrease at 4 DIV was observed for PKC epsilon and betaII, respectively, whereas no significant change was observed for betaI. The isoforms of delta, theta, eta, and zeta were not detected. Comparing the 14 DIV cultures with the 10 DIV cultures, the immunoreactivities of PKC iota and epsilon were decreased, those of PKC alpha, betaI, betaII, gamma, and lambda were unchanged, whereas that of PKC mu was still increased. In K5 cultures, the immunoreactivity of each PKC isoform at 2-4 DIV was similar to that observed in K25 cells, although no remarkable differentiation features were observed. Coordinated with the appearance of cell death at 8 DIV in low-K+ cultures, levels of PKC alpha, mu, lambda, and iota, but not the others, were markedly decreased. The NMDA receptor antagonists MK-801 and 2-amino-5-phosphopentanoic acid markedly prevented the age-induced apoptosis of CGCs, and the cells survived >18 DIV under these conditions. The cytoprotective effect of MK-801 was concomitant with the increases in levels of PKC gamma, lambda, iota, and mu at 10 and 14 DIV

  9. COMPARISON OF NEUROSCREEN-1 AND CEREBELLAR GRANULE CELL CULTURES FOR EVALUATING NEURITE OUTGROWTH USING THE ARRAYSCAN HIGH CONTENT ANALYSIS SYSTEM

    EPA Science Inventory

    A major challenge facing the Environmental Protection Agency is the development of high-throughput screening assays amendable to resource-efficient developmental neurotoxicity for chemical screening and toxicity prioritization. One approach uses in vitro, cell-based assays which...

  10. Comparison of PC12 and Cerebellar Granule Cell Cultures for Evaluating Neurite Outgrowth Using High Content Screening

    EPA Science Inventory

    Development of high-throughput assays for chemical screening and hazard identification is a pressing priority worldwide. One approach uses in vitro, cell-based assays which recapitulate biological events observed in vivo. Neurite outgrowth is one such critical cellular process un...

  11. Aryl hydrocarbon receptor deletion in cerebellar granule neuron precursors impairs neurogenesis.

    PubMed

    Dever, Daniel P; Adham, Zachariah O; Thompson, Bryan; Genestine, Matthieu; Cherry, Jonathan; Olschowka, John A; DiCicco-Bloom, Emanuel; Opanashuk, Lisa A

    2016-05-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated member of the basic-helix-loop-helix/PER-ARNT-SIM(PAS) transcription factor superfamily that also mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence suggests that AhR influences the development of many tissues, including the central nervous system. Our previous studies suggest that sustained AhR activation by TCDD and/or AhR deletion disrupts cerebellar granule neuron precursor (GNP) development. In the current study, to determine whether endogenous AhR controls GNP development in a cell-autonomous manner, we created a GNP-specific AhR deletion mouse, AhR(fx/fx) /Math1(CRE/+) (AhR CKO). Selective AhR deletion in GNPs produced abnormalities in proliferation and differentiation. Specifically, fewer GNPs were engaged in S-phase, as demonstrated by ∼25% reductions in thymidine (in vitro) and Bromodeoxyuridine (in vivo) incorporation. Furthermore, total granule neuron numbers in the internal granule layer at PND21 and PND60 were diminished in AhR conditional knockout (CKO) mice compared with controls. Conversely, differentiation was enhanced, including ∼40% increase in neurite outgrowth and 50% increase in GABARα6 receptor expression in deletion mutants. Our results suggest that AhR activity plays a role in regulating granule neuron number and differentiation, possibly by coordinating this GNP developmental transition. These studies provide novel insights for understanding the normal roles of AhR signaling during cerebellar granule cell neurogenesis and may have important implications for the effects of environmental factors in cerebellar dysgenesis. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 533-550, 2016. PMID:26243376

  12. The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro.

    PubMed

    González-Castillo, Celia; Ortuño-Sahagún, Daniel; Guzmán-Brambila, Carolina; Márquez-Aguirre, Ana Laura; Raisman-Vozari, Rita; Pallás, Mercé; Rojas-Mayorquín, Argelia E

    2016-09-01

    Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. PMID:27468976

  13. Interactive effects of environmentally relevant polychlorinated biphenyls and dioxins on [3H]phorbol ester binding in rat cerebellar granule cells.

    PubMed Central

    Kodavanti, P R; Ward, T R

    1998-01-01

    Polychlorinated biphenyls (PCBs) are persistent contaminants that exist as complex mixtures in the environment. One problem faced by risk assessors is that the possible interactive effects of specific PCB congeners and related chemicals found in environmental and biological samples have not been systematically investigated. Some PCBs perturb Ca2+ homeostasis and cause protein kinase C (PKC) translocation in neuronal cell cultures and in brain homogenate preparations at concentrations where no cytotoxicity is observed, and these systems are necessary for the growth and normal functioning of neurons. The changes in second messenger systems appear to be associated with the extent of noncoplanarity of the PCB molecule. We studied the interactive effects of selected PCB congeners, a PCB metabolite, and a dioxin on PKC translocation, as determined by [3H]phorbol ester binding in cerebellar granule cells. The binary combinations included coplanar and noncoplanar PCB congeners or PCB congeners with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)/PCB metabolite. In addition, we tested the interactive effects of several PCB congeners (three or more) found in environmental samples such as human milk and blood, contaminated fish, and brain samples from PCB-treated animals. The results indicated that 1) the coplanar congener [3,3',4, 4'-tetrachlorobiphenyl (TeCB)] did not alter the in vitro activity of the noncoplanar (2,2',5,5'-TeCB) or coplanar [4, 4'-dichlorobiphenyl (DCB)] congeners; 2) binary mixtures of active PCB congeners (2,2',4,4'-TeCB and 2,2'-DCB; 2,2'-DCB and 3,5-DCB; 2,2',3,5',6-PeCB and 2,2',4,4',5-PeCB) interact in a dose-additive manner; 3) TCDD did not alter the activity of either coplanar (3,3', 4,4'-TeCB) or noncoplanar (2,2',5,5'-TeCB) congeners; 4) the interaction between the parent PCB congener and hydroxy metabolite of PCB is additive; 5) PCB congener mixtures at the ratios found in environmental samples are biologically active; and 6) there was no indication

  14. PACT/RAX regulates the migration of cerebellar granule neurons in the developing cerebellum.

    PubMed

    Yong, Yue; Meng, Ya; Ding, Hanqing; Fan, Zhiqin; Tang, Yifen; Zhou, Chenghua; Luo, Jia; Ke, Zun-Ji

    2015-01-01

    PACT and its murine ortholog RAX were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase PKR. Recent studies indicated that RAX played a role in embryogenesis and neuronal development. In this study, we investigated the expression of RAX during the postnatal development of the mouse cerebellum and its role in the migration of cerebellar granule neurons (CGNs). High expression of RAX was observed in the cerebellum from postnatal day (PD) 4 to PD9, a period when the CGNs migrate from the external granule layer (EGL) to the internal granule layer (IGL). The migration of the EGL progenitor cells in vivo was inhibited by RAX knockdown on PD4. This finding was confirmed by in vitro studies showing that RAX knockdown impaired the migration of CGNs in cerebellar microexplants. PACT/RAX-regulated migration required its third motif and was independent of PKR. PACT/RAX interacted with focal adhesion kinase (FAK) and PACT/RAX knockdown disturbed the FAK phosphorylation in CGNs. These findings demonstrated a novel function of PACT/RAX in the regulation of neuronal migration. PMID:25609658

  15. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells

    PubMed Central

    Wang, Chang-Ying; Huang, An-Qi; Zhou, Meng-Hua; Mei, Yan-Ai

    2014-01-01

    GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling. PMID:24597762

  16. Proteasome inhibitors prevent cytochrome c release during apoptosis but not in excitotoxic death of cerebellar granule neurons.

    PubMed

    Bobba, Antonella; Canu, Nadia; Atlante, Anna; Petragallo, Vito; Calissano, Pietro; Marra, Ersilia

    2002-03-27

    In order to find out whether and how proteasomes participate in the processes leading cerebellar granule cells to death either in necrosis, due to glutamate neurotoxicity, or in apoptosis, due to K(+) shift, we measured the three proteasome activities by using specific fluorescent probes and investigated the effect of several proteasome inhibitors, including MG132, on the cytochrome c release taking place in the early phase of both apoptosis and necrosis. We show that differently from apoptosis, the early phase of necrosis does not require proteasome activation. Inhibition of proteasome activity can prevent cytochrome c release in cerebellar granule cells undergoing apoptosis, thus improving cell survival, but not necrosis. These findings show that proteasomes play an important role in the early phase of apoptosis but not that of necrosis, and that these two types of cell death differ from each other in their mechanism of cytochrome c release. PMID:11943185

  17. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    PubMed Central

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  18. The Immp2l mutation causes age-dependent degeneration of cerebellar granule neurons prevented by antioxidant treatment.

    PubMed

    Liu, Chunlian; Li, Xue; Lu, Baisong

    2016-02-01

    Reactive oxygen species are implicated in age-associated neurodegeneration, although direct in vivo evidence is lacking. We recently showed that mice with a mutation in the Inner Mitochondrial Membrane Peptidase 2-like (Immp2l) gene had elevated levels of mitochondrial superoxide, impaired fertility and age-associated phenotypes, including kyphosis and ataxia. Here we show that ataxia and cerebellar hypoplasia occur in old mutant mice (> 16 months). Cerebellar granule neurons (CGNs) are significantly underrepresented; Purkinje cells and cells in the molecular layer are not affected. Treating mutant mice with the mitochondria-targeted antioxidant SkQ1 from 6 weeks to 21 months protected cerebellar granule neurons. Apoptotic granule neurons were observed in mutant mice but not in age-matched normal control mice or SkQ1-treated mice. Old mutant mice showed increased serum protein carbonyl content, cerebellar 4-hydroxynonenal (HNE), and nitrotyrosine modification compared to old normal control mice. SOD2 expression was increased in Purkinje cells but decreased in granule neurons of old mutant mice. Mitochondrial marker protein VDAC1 also was decreased in CGNs of old mutant mice, suggesting decreased mitochondrial number. SkQ1 treatment decreased HNE and nitrotyrosine modification, and restored SOD2 and VDAC1 expression in CGNs of old mutant mice. Neuronal expression of nitric oxide synthase was increased in cerebella of young mutant mice but decreased in old mutant mice. Our work provides evidence for a causal role of oxidative stress in neurodegeneration of Immp2l mutant mice. The Immp2l mutant mouse model could be valuable in elucidating the role of oxidative stress in age-associated neurodegeneration. PMID:26616244

  19. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides

    SciTech Connect

    Hogberg, Helena T.; Kinsner-Ovaskainen, Agnieszka; Hartung, Thomas; Coecke, Sandra; Bal-Price, Anna K.

    2009-03-15

    The major advantage of primary neuronal cultures for developmental neurotoxicity (DNT) testing is their ability to replicate the crucial stages of neurodevelopment. In our studies using primary culture of cerebellar granule cells (CGCs) we have evaluated whether the gene expression relevant to the most critical developmental processes such as neuronal differentiation (NF-68 and NF-200) and functional maturation (NMDA and GABA{sub A} receptors), proliferation and differentiation of astrocytes (GFAP and S100{beta}) as well as the presence of neural precursor cells (nestin and Sox10) could be used as an endpoint for in vitro DNT. The expression of these genes was assessed after exposure to various pesticides (paraquat parathion, dichlorvos, pentachlorophenol and cycloheximide) that could induce developmental neurotoxicity through different mechanisms. All studied pesticides significantly modified the expression of selected genes, related to the different stages of neuronal and/or glial cell development and maturation. The most significant changes were observed after exposure to paraquat and parathion (i.e. down-regulation of mRNA expression of NF-68 and NF-200, NMDA and GABA{sub A} receptors). Similarly, dichlorvos affected mainly neurons (decreased mRNA expression of NF-68 and GABA{sub A} receptors) whereas cycloheximide had an effect on neurons and astrocytes, as significant decreases in the mRNA expression of both neurofilaments (NF-68 and NF-200) and the astrocyte marker (S100{beta}) were observed. Our results suggest that toxicity induced by pesticides that target multiple pathways of neurodevelopment can be identified by studying expression of genes that are involved in different stages of cell development and maturation, and that gene expression could be used as a sensitive endpoint for initial screening to identify the compounds with the potential to cause developmental neurotoxicity.

  20. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  1. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    “Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  2. Isoforms of alpha1E voltage-gated calcium channels in rat cerebellar granule cells--detection of major calcium channel alpha1-transcripts by reverse transcription-polymerase chain reaction.

    PubMed

    Schramm, M; Vajna, R; Pereverzev, A; Tottene, A; Klöckner, U; Pietrobon, D; Hescheler, J; Schneider, T

    1999-01-01

    In primary cultures of rat cerebellar granule cells, transcripts of voltage-gated Ca2+ channels have been amplified by reverse transcription-polymerase chain reaction and identified by sequencing of subcloned polymerase chain reaction products. In these neurons cultured for six to eight days in vitro, fragments of the three major transcripts alpha1C, alpha1A, and alpha1E are detected using degenerated oligonucleotide primer pairs under highly stringent conditions. Whole-cell Ca2+ current recordings from six to eight days in vitro granule cells show that most of the current is due to L-type (25%), P-type (33%) and R-type (30%) Ca2+ channels. These data support the correlation between alpha1A and P-type Ca2+ channels (G1) and between alpha1E and R-type channels (G2 and G3). By including specific primer pairs for alpha1E the complimentary DNA fragments of indicative regions of alpha1E isoforms are amplified corresponding to the three most variable regions of alpha1E, the 5'-end, the II/III-loop, and the central part of the 3'-end. Although the complementary DNA fragments of the 5'-end of rat alpha1E yield a uniform reverse transcription-polymerase chain reaction product, its structure is unusual in the sense that it is longer than in the cloned rat alpha1E complementary DNA. It corresponds to the alpha1E isoform reported for mouse and human brain and is also expressed in cerebellum and cerebrum of rat brain as the major or maybe even the only variant of alpha1E. While fragments of a new rat alpha1E isoform are amplified from the 5'-end, three known fragments of the II/III-loop and two known isoforms homologue to the 3'-coding region are detected, which in the last case are discriminated by a 129 base pair insertion. The shift of the alpha1E expression from a pattern seen in cerebellum (alpha1Ee) to a pattern identified in other regions of the brain (alpha1E-3) is discussed. These data show that: (i) alpha1E is expressed in rat brain as a structural homologue to the

  3. Assessment of GaN chips for culturing cerebellar granule neurons.

    PubMed

    Young, Tai-Horng; Chen, Chi-Ruei

    2006-06-01

    In this work, the behaviors of cerebellar granule neurons prepared from 7-day-old Wistar rats on gallium nitride (GaN) were investigated. We believe that this is the first time that the GaN has been used as a substrate for neuron cultures to examine its effect on cell response in vitro. The GaN surface structure and its relationship with cells were examined by atomic force microscopy (AFM), metallography microscopy, scanning electron microscopy (SEM), lactate dehydrogenase (LDH) release and Western blot analysis. GaN is a so-called III-V compound semiconductor material with a wide bandgap and a relatively high bandgap voltage. Compared with silicon used for most neural chips, neurons seeded on GaN were able to form an extensive neuritic network and expressed very high levels of GAP-43 coincident with the neurite outgrowth. Therefore, the GaN structure may spatially mediate cellular response that can promote neuronal cell attachment, differentiation and neuritic growth. The favorable biocompatibility characteristics of GaN can be used to measure electric signals from networks of neuronal cells in culture to make it a possible candidate for use in a microelectrode array. PMID:16516287

  4. Transcriptional Analysis of Apoptotic Cerebellar Granule Neurons Following Rescue by Gastric Inhibitory Polypeptide

    PubMed Central

    Maino, Barbara; Ciotti, Maria Teresa; Calissano, Pietro; Cavallaro, Sebastiano

    2014-01-01

    Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability. PMID:24694544

  5. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat

    PubMed Central

    Losi, Gabriele; Prybylowski, Kate; Fu, Zhanyan; Luo, Jianhong; Wenthold, Robert J; Vicini, Stefano

    2003-01-01

    We transfected a green fluorescent protein-tagged PSD-95 (PSD-95gfp) into cultured rat cerebellar granule cells (CGCs) to investigate the role of PSD-95 in excitatory synapse maturation. Cells were grown in low potassium to favour functional synapse formation in vitro. Transfected cells displayed clear clusters of PSD-95gfp, often at the extremities of the short dendritic trees. We recorded NMDA and AMPA miniature excitatory postsynaptic currents (NMDA- and AMPA-mESPCs) in the presence of TTX and bicuculline. At days in vitro (DIV) 7–8 PSD-95gfp-transfected cells had NMDA-mEPSCs with faster decay and smaller amplitudes than matching controls. In contrast, AMPA-mEPSC frequencies and amplitudes were increased. Whole-cell current density and ifenprodil sensitivity were reduced in PSD-95gfp cells, indicating a reduction of NR2B subunits containing NMDA receptors. No changes were observed compared to control when cells were transfected with cDNA for PSD-95gfp with palmitoylation site mutations that prevent targeting to the synapse. Overexpression of the NMDA receptor NR2A subunit, but not the NR2B subunit, prevented NMDA-mEPSC amplitude reduction when cotransfected with PSD-95gfp. PSD-95gfp overexpression produced faster NMDA-mEPSC decay when transfected alone or with either NR2 subunit. Surface staining of the epitope-tagged NR2 subunits revealed that colocalization with PSD-95gfp was higher for flag-tagged NR2A subunit clusters than for flag-tagged NR2B subunit clusters. These data suggest that PSD-95 overexpression in CGCs favours synaptic maturation by allowing synaptic insertion of NR2A and depressing expression of NR2B subunits. PMID:12576494

  6. Cytochrome c release precedes mitochondrial membrane potential loss in cerebellar granule neuron apoptosis: lack of mitochondrial swelling.

    PubMed

    Wigdal, Susan S; Kirkland, Rebecca A; Franklin, James L; Haak-Frendscho, Mary

    2002-09-01

    It has been suggested that release of cytochrome c (Cyt c) from mitochondria during apoptotic death is through opening of the mitochondrial permeability transition pore followed by swelling-induced rupture of the mitochondrial outer membrane. However, this remains controversial and may vary with cell type and model system. We determined that in mouse cerebellar granule neurons, Cyt c redistribution preceded the loss of mitochondrial membrane potential during the apoptotic process, suggesting that the pore did not open prior to release. Furthermore, when mitochondria were morphologically assessed by electron microscopy, they were not obviously swollen during the period of Cyt c release. This indicates that the pore mechanism of action, if any, is not through mitochondrial outer membrane rupture. While bongkrekic acid, an inhibitor of pore opening, modestly delayed apoptotic death, it also caused a significant (p < 0.05) suppression of protein synthesis. An equivalent suppression of protein synthesis by cycloheximide had a similar delaying effect, suggesting that bongkrekic acid was acting non-specifically. These findings suggest that mitochondrial permeability transition pore is not involved in Cyt c release from mitochondria during the apoptotic death of cerebellar granule neurons. PMID:12358750

  7. NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule neurons.

    PubMed

    Losi, G; Vicini, S; Neale, J

    2004-03-01

    The peptide transmitter N-acetylaspartylglutamate (NAAG) selectively activates the group II metabotropic glutamate receptors. Several reports also suggest that this peptide acts as a partial agonist at N-methyl-D-aspartate (NMDA) receptors but its putative antagonist effects have not been directly tested. To do this, we used whole cell recordings from cerebellar granule cells (CGC) in culture that allow the highest possible resolution of NMDA channel activation. When CGC were activated with equimolar concentrations of NMDA and NAAG, the peptide failed to alter the peak current elicited by NMDA. Very high concentrations of NAAG (100-200 microM) did not significantly reduce the current elicited by 10 microM NMDA or 0.1 microM glutamate, while 400 microM NAAG produced only a very small (less than 15%) reduction in these whole cell currents. Similarly, NAAG (400 microM) failed to significantly alter the average decay time constant or the peak amplitude of NMDA receptor-mediated miniature excitatory post-synaptic currents (mEPSCs). We conclude that high concentrations of the peptide do not exert physiologically relevant antagonist actions on synaptic NMDA receptor activation following vesicular release of glutamate. As an agonist, purified NAAG was found to be at least 10,000-fold less potent than glutamate in increasing "background" current via NMDA receptors on CGC. Inasmuch as it is difficult to confirm that NAAG preparations are completely free from contamination with glutamate at the 0.01% level, the peptide itself appears unlikely to have a direct agonist activity at the NMDA receptor subtypes found in CGC. Recent reports indicate that enhancing the activity of endogenous NAAG may be an important therapeutic approach to excitotoxicity and chronic pain perception. These effects are likely mediated by group II mGluRs, not NMDA receptors. PMID:14975672

  8. Afferent-target cell interactions in the cerebellum: negative effect of granule cells on Purkinje cell development in lurcher mice.

    PubMed

    Doughty, M L; Lohof, A; Selimi, F; Delhaye-Bouchaud, N; Mariani, J

    1999-05-01

    Lurcher (Lc) is a gain-of-function mutation in the delta2 glutamate receptor gene that results in a large, constitutive inward current in the cerebellar Purkinje cells of +/Lc mice. +/Lc Purkinje cells fail to differentiate fully and die during postnatal development. In normal mice, interactions with granule cells promote Purkinje cell dendritic differentiation. Partial destruction of the granule cell population in young +/Lc mice by x irradiation resulted in a significant increase in Purkinje cell dendritic growth and improved cytoplasmic structure but did not prevent Purkinje cell death. These results indicate two components to Purkinje cell abnormalities in +/Lc mice: a retardation/blockade of dendritic development that is mediated by interactions with granule cells and the death of the cell. Thus, the normal trophic effects of granule cell interaction on Purkinje cell development are absent in the +/Lc cerebellum, suggesting that granule cells are powerful regulators of Purkinje cell differentiation. PMID:10212305

  9. A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development.

    PubMed

    Leffler, Shoshana R; Legué, Emilie; Aristizábal, Orlando; Joyner, Alexandra L; Peskin, Charles S; Turnbull, Daniel H

    2016-05-01

    Determining the cellular basis of brain growth is an important problem in developmental neurobiology. In the mammalian brain, the cerebellum is particularly amenable to studies of growth because it contains only a few cell types, including the granule cells, which are the most numerous neuronal subtype. Furthermore, in the mouse cerebellum granule cells are generated from granule cell precursors (gcps) in the external granule layer (EGL), from 1 day before birth until about 2 weeks of age. The complexity of the underlying cellular processes (multiple cell behaviors, three spatial dimensions, time-dependent changes) requires a quantitative framework to be fully understood. In this paper, a differential equation-based model is presented, which can be used to estimate temporal changes in granule cell numbers in the EGL. The model includes the proliferation of gcps and their differentiation into granule cells, as well as the process by which granule cells leave the EGL. Parameters describing these biological processes were derived from fitting the model to histological data. This mathematical model should be useful for understanding altered gcp and granule cell behaviors in mouse mutants with abnormal cerebellar development and cerebellar cancers. PMID:27125657

  10. Effects on K+ currents in rat cerebellar granule neurones of a membrane-permeable analogue of the calcium chelator BAPTA.

    PubMed Central

    Watkins, C. S.; Mathie, A.

    1996-01-01

    1. Whole cell recordings of voltage-activated K+ currents were made with the amphotericin B perforated patch technique from cerebellar granule (CG) neurones of 6-8 days rats that had been in culture for 1 to 16 days. By use of appropriate voltage protocols, the effects of the membrane-permeant form of BAPTA, 1,2-bis-(2-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), on the transient A current (IKA), the delayed rectifier current (IKV) and a standing outward current (IKSO) were investigated. 2. Bath application of 25 microM BAPTA-AM inhibited both IKV and IKSO in cultured neurones, but did not seem to affect IKA. Neither 25 microM BAPTA (free acid) nor 25 microM ethylenediaminetetraacetic acid acetoxymethyl ester (EDTA-AM) had any significant effect on the magnitude of IKSO. Similarly in short-term (1-2 days) cultured CG neurones IKV, but not IKA, was inhibited by 25 microM BAPTA-AM. 3. BAPTA-AM (2.5 microM) reduced IKV in short-term culture CG neurones, with further inhibition being seen when the perfusate was changed to one containing 25 microM BAPTA-AM. 4. Tetraethylammonium ions (TEA) (10 mM) reversibly inhibited IKV in these cells with a similar rate of block of IKV to that induced by 25 microM BAPTA-AM. 5. The degree of inhibition of IKV by 25 microM BAPTA-AM was both time- and voltage-dependent, in contrast to the inhibition of this current by TEA. 6. These data indicate that BAPTA-AM reduces K+ currents in cerebellar granule neurones and that this inhibition cannot be explained in terms of intracellular Ca2+ chelation, but is a direct effect on the underlying channels. PMID:8842443

  11. Iron granules in plasma cells.

    PubMed Central

    Cook, M K; Madden, M

    1982-01-01

    The curious and unusual finding of coarse iron granules in marrow plasma cells is reported in 13 patients, in whom the finding was incidental. In 10 of these patients there was known alcohol abuse and serious medical complications of that abuse. Previous reports of the finding are reviewed. Haematological data of the 13 patients are presented. A hypothesis is outlined which may account for the finding. Images PMID:7068907

  12. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity

    PubMed Central

    Ankri, Lea; Husson, Zoé; Pietrajtis, Katarzyna; Proville, Rémi; Léna, Clément; Yarom, Yosef; Dieudonné, Stéphane; Uusisaari, Marylka Yoe

    2015-01-01

    The cerebellum, a crucial center for motor coordination, is composed of a cortex and several nuclei. The main mode of interaction between these two parts is considered to be formed by the inhibitory control of the nuclei by cortical Purkinje neurons. We now amend this view by showing that inhibitory GABA-glycinergic neurons of the cerebellar nuclei (CN) project profusely into the cerebellar cortex, where they make synaptic contacts on a GABAergic subpopulation of cerebellar Golgi cells. These spontaneously firing Golgi cells are inhibited by optogenetic activation of the inhibitory nucleo-cortical fibers both in vitro and in vivo. Our data suggest that the CN may contribute to the functional recruitment of the cerebellar cortex by decreasing Golgi cell inhibition onto granule cells. DOI: http://dx.doi.org/10.7554/eLife.06262.001 PMID:25965178

  13. NF1 regulation of RAS/ERK signaling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development.

    PubMed

    Sanchez-Ortiz, Efrain; Cho, Woosung; Nazarenko, Inga; Mo, Wei; Chen, Jian; Parada, Luis F

    2014-11-01

    Cerebellar development is regulated by a coordinated spatiotemporal interplay between granule neuron progenitors (GNPs), Purkinje neurons, and glia. Abnormal development can trigger motor deficits, and more recent data indicate important roles in aspects of memory, behavior, and autism spectrum disorders (ASDs). Germline mutation in the NF1 tumor suppressor gene underlies Neurofibromatosis type 1, a complex disease that enhances susceptibility to certain cancers and neurological disorders, including intellectual deficits and ASD. The NF1 gene encodes for neurofibromin, a RAS GTPase-activating protein, and thus negatively regulates the RAS signaling pathway. Here, using mouse models to direct conditional NF1 ablation in either embryonic cerebellar progenitors or neonatal GNPs, we show that neurofibromin is required for appropriate development of cerebellar folia layering and structure. Remarkably, neonatal administration of inhibitors of the ERK pathway reversed the morphological defects. Thus, our findings establish a critical cell-autonomous role for the NF1-RAS-ERK pathway in the appropriate regulation of cerebellar development and provide a basis for using neonatal ERK inhibitor-based therapies to treat NF1-induced cerebellar disorders. PMID:25367036

  14. Igf1 and Pacap rescue cerebellar granule neurons from apoptosis via a common transcriptional program

    PubMed Central

    Maino, Barbara; D'Agata, Velia; Severini, Cinzia; Ciotti, Maria T.; Calissano, Pietro; Copani, Agata; Chang, Yi-Chien; DeLisi, Charles; Cavallaro, Sebastiano

    2016-01-01

    A shift of the delicate balance between apoptosis and survival-inducing signals determines the fate of neurons during the development of the central nervous system and its homeostasis throughout adulthood. Both pathways, promoting or protecting from apoptosis, trigger a transcriptional program. We conducted whole-genome expression profiling to decipher the transcriptional regulatory elements controlling the apoptotic/survival switch in cerebellar granule neurons following the induction of apoptosis by serum and potassium deprivation or their rescue by either insulin-like growth factor-1 (Igf1) or pituitary adenylyl cyclase-activating polypeptide (Pacap). Although depending on different upstream signaling pathways, the survival effects of Igf1 and Pacap converged into common transcriptional cascades, thus suggesting the existence of a general transcriptional program underlying neuronal survival. PMID:26941962

  15. Interleukin-6 protects cerebellar granule neurons from NMDA-induced neurotoxicity.

    PubMed

    Wang, Xiao-Chun; Qiu, Yi-Hua; Peng, Yu-Ping

    2007-04-25

    Interleukin-6 (IL-6) is an important cytokine that participates in inflammation reaction and cell growth and differentiation in the immune and nervous systems. However, the neuroprotection of IL-6 against N-methyl-D-aspartate (NMDA)-induced neurotoxicity and the related underlying mechanisms are still not identified. In the present study, the cultured cerebellar granule neurons (CGNs) from postnatal (8-day) infant rats were chronically exposed to IL-6 for 8 d, and then NMDA (100 micromol/L) was applied to the cultured CGNs for 30 min. Methyl-thiazole-tetrazolium (MTT) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and confocal laser scanning microscope (CLSM) were used to detect neuronal vitality, apoptosis and dynamic changes of intracellular Ca(2+) levels in the neurons, respectively. Anti-gp130 monoclonal antibody (75 ng/mL) was employed to the cultured CGNs with IL-6 to inhibit IL-6 activity so as to evaluate the role of gp130 (a 130 kDa glucoprotein transducing IL-6 signal) in mediating IL-6 neuroprotection. Western blot was used to measure the expressions of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-extracellular signal regulated kinase 1/2 (ERK1/2) in the cultured CGNs. The NMDA stimulation of the cultured CGNs without IL-6 pretreatment resulted in a significant reduction of the neuronal vitality, notable enhancement of the neuronal apoptosis and intracellular Ca(2+) overload in the neurons. The NMDA stimulation of the CGNs chronically pretreated with IL-6 caused a remarkable increase in the neuronal vitality, marked suppression of neuronal apoptosis and intracellular Ca(2+) overload in the neurons, compared with that in the control neurons without IL-6 pretreatment. Furthermore, anti-gp130 antibody blocked the inhibitory effect of IL-6 on NMDA-induced intracellular Ca(2+) overload in the neurons. The levels of phospho-STAT3 and phospho-ERK1/2 were significantly higher in IL-6

  16. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis.

    PubMed

    Schneider, D; Gerhardt, E; Bock, J; Müller, M M; Wolburg, H; Lang, F; Schulz, J B

    2004-07-01

    Potassium withdrawal is commonly used to induce caspase-mediated apoptosis in cerebellar granule neurons in vitro. However, the underlying and cell death-initiating mechanisms are unknown. We firstly investigated potassium efflux through the outward delayed rectifier K+ current (Ik) as a potential mediator. However, tetraethylammoniumchloride, an inhibitor of Ik, was ineffective to block apoptosis after potassium withdrawal. Since potassium withdrawal reduced intracellular pH (pHi) from 7.4 to 7.2, we secondly investigated the effects of intracellular acidosis. To study intracellular acidosis in cerebellar granule neurons, we inhibited the Na+/H+ exchanger (NHE) with 4-isopropyl-3-methylsulfonylbenzoyl-guanidine methanesulfonate (HOE 642) and 5-(N-ethyl-N-isopropyl)-amiloride. Both inhibitors concentration-dependently induced cell death and potentiated cell death after potassium withdrawal. Although inhibition of the NHE induced cell death with morphological criteria of apoptosis in light and electron microscopy including chromatin condensation, positive TUNEL staining and cell shrinkage, no internucleosomal DNA cleavage or activation of caspases was detected. In contrast to potassium withdrawal-induced apoptosis, cell death induced by intracellular acidification was not prevented by insulin-like growth factor-1, cyclo-adenosine-monophosphate, caspase inhibitors and transfection with an adenovirus expressing Bcl-XL. However, cycloheximide protected cerebellar granule neurons from death induced by potassium withdrawal as well as from death after treatment with HOE 642. Therefore, the molecular mechanisms leading to cell death after acidification appear to be different from the mechanisms after potassium withdrawal and resemble the biochemical but not the morphological characteristics of paraptosis. PMID:15017383

  17. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration

    PubMed Central

    Crowley, John J.; Fioravante, Diasynou; Regehr, Wade G.

    2011-01-01

    Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron type modifies activity in its targets. We find that GABAA-mediated transmission at unitary Golgi cellgranule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber → granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing. PMID:19778512

  18. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones.

    PubMed Central

    Traynelis, S F; Cull-Candy, S G

    1991-01-01

    1. N-Methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate receptor channels have been examined in rat cerebellar granule neurones with whole-cell and single-channel patch-clamp methods. The whole-cell peak and steady-state aspartate and NMDA currents were reversibly inhibited by extracellular protons; the IC50 (concentration producing half-maximal inhibition) for the full H+ inhibition curve for NMDA receptors corresponded to pH 7.3, near to physiological pH. (S)-AMPA and kainate whole-cell currents were inhibited by protons with IC50 values that corresponded to pH 6.3 and 5.7, respectively; these receptors were, however, insensitive to H+ concentrations that inhibited NMDA receptor responses. 2. Proton inhibition of the NMDA, AMPA and kainate receptor-mediated responses was voltage insensitive, and did not involve a shift in reversal potential. 3. The EC50 (concentration producing half-maximal effect) for aspartate calculated from the whole-cell dose-response curve was similar at pH 6.8 and 7.6 (mean 11.2 microM). Although the EC50 for glycine potentiation of the aspartate response was marginally increased from 273 nM at pH 7.6 to 373 nM at pH 6.8, H+ inhibition was not overcome by up to 1 mM-external glycine. Inhibiting concentrations of H+ appropriate for AMPA and kainate receptors did not markedly alter the EC50 values determined for (S)-AMPA (3.4 microM) and kainate (114 microM) at pH 7.2. 4. Treatment of neurones with N-ethylmaleimide, iodoacetic acid, dithiothretiol or diethyl pyrocarbonate did not influence proton inhibition of NMDA receptor responses. However, treatment with diethyl pyrocarbonate, which potentiated aspartate responses, appeared to reduce the effectiveness of Zn2+ inhibition of NMDA receptors. 5. Desensitization of whole-cell NMDA and (S)-AMPA currents was studied with ionophoretic application of agonist to the cell soma. Whole-cell aspartate currents desensitized rapidly, irrespective of the

  19. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons.

    PubMed Central

    Skaper, S D; Buriani, A; Dal Toso, R; Petrelli, L; Romanello, S; Facci, L; Leon, A

    1996-01-01

    The amino acid L-glutamate is a neurotransmitter that mediates fast neuronal excitation in a majority of synapses in the central nervous system. Glutamate stimulates both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. While activation of NMDA receptors has been implicated in a variety of neurophysiologic processes, excessive NMDA receptor stimulation (excitotoxicity) is thought to be primarily responsible for neuronal injury in a wide variety of acute neurological disorders including hypoxia-ischemia, seizures, and trauma. Very little is known about endogenous molecules and mechanisms capable of modulating excitotoxic neuronal death. Saturated N-acylethanolamides like palmitoylethanolamide accumulate in ischemic tissues and are synthesized by neurons upon excitatory amino acid receptor activation. Here we report that palmitoylethanolamide, but not the cognate N-acylamide anandamide (the ethanolamide of arachidonic acid), protects cultured mouse cerebellar granule cells against glutamate toxicity in a delayed postagonist paradigm. Palmitoylethanolamide reduced this injury in a concentration-dependent manner and was maximally effective when added 15-min postglutamate. Cannabinoids, which like palmitoylethanolamide are functionally active at the peripheral cannabinoid receptor CB2 on mast cells, also prevented neuron loss in this delayed postglutamate model. Furthermore, the neuroprotective effects of palmitoylethanolamide, as well as that of the active cannabinoids, were efficiently antagonized by the candidate central cannabinoid receptor (CB1) agonist anandamide. Analogous pharmacological behaviors have been observed for palmitoylethanolamide (ALI-Amides) in downmodulating mast cell activation. Cerebellar granule cells expressed mRNA for CB1 and CB2 by in situ hybridization, while two cannabinoid binding sites were detected in cerebellar membranes. The results suggest that (i) non-CB1 cannabinoid receptors control, upon agonist binding, the downstream

  20. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    PubMed

    Buchin, Anatoly; Rieubland, Sarah; Häusser, Michael; Gutkin, Boris S; Roth, Arnd

    2016-08-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  1. Inverse Stochastic Resonance in Cerebellar Purkinje Cells

    PubMed Central

    Häusser, Michael; Gutkin, Boris S.; Roth, Arnd

    2016-01-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  2. Mast cell secretory granules: armed for battle.

    PubMed

    Wernersson, Sara; Pejler, Gunnar

    2014-07-01

    Mast cells are important effector cells of the immune system and recent studies show that they have immunomodulatory roles in diverse processes in both health and disease. Mast cells are distinguished by their high content of electron-dense secretory granules, which are filled with large amounts of preformed and pre-activated immunomodulatory compounds. When appropriately activated, mast cells undergo degranulation, a process by which these preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on an immune response are closely associated with the biological actions of the granule compounds that they release, as exemplified by the recent studies showing that mast cell granule proteases account for many of the protective and detrimental effects of mast cells in various inflammatory settings. In this Review, we discuss the current knowledge of mast cell secretory granules. PMID:24903914

  3. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    SciTech Connect

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  4. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGESBeta

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  5. Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration

    PubMed Central

    Holubowska, Anna; Mukherjee, Chaitali; Vadhvani, Mayur; Stegmüller, Judith

    2014-01-01

    Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration. PMID:24686379

  6. Glucose deprivation stimulates Cu(2+) toxicity in cultured cerebellar granule neurons and Cu(2+)-dependent zinc release.

    PubMed

    Isaev, Nickolay K; Genrikhs, Elisaveta E; Aleksandrova, Olga P; Zelenova, Elena A; Stelmashook, Elena V

    2016-05-27

    Copper chloride (0.01mM, 2h) did not have significant influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution. However, CuCl2 caused severe neuronal damage by glucose deprivation (GD). The glutamate NMDA-receptors blocker MK-801 partially and antioxidant N-acetyl-l-cysteine (NAC) or Zn(2+) chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) almost entirely protected CGNs from this toxic effect. Measurements of intracellular calcium ions using Fluo-4 AM, or zinc ions with FluoZin-3 AM demonstrated that 1 h-exposure to GD induced intensive increase of Fluo-4 but not FluoZin-3 fluorescence in neurons. The supplementation of solution with CuCl2 caused an increase of FluoZin-3, Fluo-4 and CellROX Green (reactive oxygen species probe) fluorescence by GD. The stimulation of Fluo-4 but not FluoZin-3 fluorescence by copper could be prevented partially by MK-801 and as well as CellROX Green fluorescence by NAC at GD. This data imply that during GD copper ions induce intense displacement zinc ions from intracellular stores, in addition free radical production, glutamate release and Ca(2+) overload of CGNs, that causes death of neurons as a result. PMID:27063646

  7. Paired-pulse facilitation of multivesicular release and intersynaptic spillover of glutamate at rat cerebellar granule cell–interneurone synapses

    PubMed Central

    Satake, Shin’Ichiro; Inoue, Tsuyoshi; Imoto, Keiji

    2012-01-01

    A simple form of presynaptic plasticity, paired-pulse facilitation (PPF), has been explained as a transient increase in the probability of vesicular release. Using the whole-cell patch-clamp technique to record synaptic activity in rat cerebellar slices, we found different forms of presynaptically originated short-term plasticity during glutamatergic excitatory neurotransmission from granule cells (GCs) to molecular-layer interneurones (INs). Paired-pulse activation of GC axons at short intervals (30–100 ms) elicited not only a facilitation in the peak amplitude (PPFamp), but also a prolongation in the decay-time constant (PPPdecay) of the EPSCs recorded from INs. The results of pharmacological tests and kinetics analyses suggest that the mechanisms underlying the respective types of short-term plasticity were different. PPFamp was elicited by a transient increase in the number of released vesicles. On the other hand, PPPdecay was caused not only by delayed release as has been reported but also by extrasynaptic spillover of the GC transmitter and the subsequent intersynaptic pooling. Both PPFamp and PPPdecay closely rely on repetitive-activation-induced multivesicular release. Using a dynamic clamp technique, we further examined the physiological significance of different presynaptic plasticity, and found that PPFamp and PPPdecay can differentially encode and process neuronal information by influencing the total synaptic charge transferred to postsynaptic INs to reflect activation frequency of the presynaptic GCs. PMID:22930264

  8. Sigma-1 Receptor Enhances Neurite Elongation of Cerebellar Granule Neurons via TrkB Signaling

    PubMed Central

    Kimura, Yuriko; Fujita, Yuki; Shibata, Kumi; Mori, Megumi; Yamashita, Toshihide

    2013-01-01

    Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca2+ signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB. PMID:24116072

  9. Peroxynitrite is Involved in the Apoptotic Death of Cultured Cerebellar Granule Neurons Induced by Staurosporine, but not by Potassium Deprivation.

    PubMed

    Olguín-Albuerne, Mauricio; Ramos-Pittol, José Miguel; Coyoy, Angélica; Martínez-Briseño, Carlos Patricio; Domínguez, Guadalupe; Morán, Julio

    2016-02-01

    Nitric oxide (NO) regulates numerous physiological process and is the main source of reactive nitrogen species (RNS). NO promotes cell survival, but it also induces apoptotic death having been involved in the pathogenesis of several neurodegenerative diseases. NO and superoxide anion react to form peroxynitrite, which accounts for most of the deleterious effects of NO. The mechanisms by which these molecules regulate the apoptotic process are not well understood. In this study, we evaluated the role of NO and peroxynitrite in the apoptotic death of cultured cerebellar granule neurons (CGN), which are known to experience apoptosis by staurosporine (St) or potassium deprivation (K5). We found that CGN treated with the peroxynitrite catalyst, FeTTPs were completely rescued from St-induced death, but not from K5-induced death. On the other hand, the inhibition of the inducible nitric oxide synthase partially protected cell viability in CGN treated with K5, but not with St, while the inhibitor L-NAME further reduced the cell viability in St, but it did not affect K5. Finally, an inhibitor of the soluble guanylate cyclase (sGC) diminished the cell viability in K5, but not in St. Altogether, these results shows that NO promotes cell survival in K5 through sGC-cGMP and promotes cell death by other mechanisms, while in St NO promotes cell survival independently of cGMP and peroxynitrite results critical for St-induced death. Our results suggest that RNS are differentially handled by CGN during cell death depending on the death-inducing conditions. PMID:26700430

  10. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    PubMed Central

    D'Angelo, Egidio; Solinas, Sergio; Mapelli, Jonathan; Gandolfi, Daniela; Mapelli, Lisa; Prestori, Francesca

    2013-01-01

    The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research. PMID:23730271

  11. Relative quantification of membrane proteins in wild-type and prion protein (PrP)-knockout cerebellar granule neurons.

    PubMed

    Stella, Roberto; Cifani, Paolo; Peggion, Caterina; Hansson, Karin; Lazzari, Cristian; Bendz, Maria; Levander, Fredrik; Sorgato, Maria Catia; Bertoli, Alessandro; James, Peter

    2012-02-01

    Approximately 25% of eukaryotic proteins possessing homology to at least two transmembrane domains are predicted to be embedded in biological membranes. Nevertheless, this group of proteins is not usually well represented in proteome-wide experiments due to their refractory nature. Here we present a quantitative mass spectrometry-based comparison of membrane protein expression in cerebellar granule neurons grown in primary culture that were isolated from wild-type mice and mice lacking the cellular prion protein. This protein is a cell-surface glycoprotein that is mainly expressed in the central nervous system and is involved in several neurodegenerative disorders, though its physiological role is unclear. We used a low specificity enzyme α-chymotrypsin to digest membrane proteins preparations that had been separated by SDS-PAGE. The resulting peptides were labeled with tandem mass tags and analyzed by MS. The differentially expressed proteins identified using this approach were further analyzed by multiple reaction monitoring to confirm the expression level changes. PMID:22023170

  12. The Small GTPases RhoA and Rac1 Regulate Cerebellar Development by Controlling Cell Morphogenesis, Migration and Foliation

    PubMed Central

    Mulherkar, Shalaka; Uddin, Mohammad Danish; Couvillon, Anthony D.; Sillitoe, Roy V.; Tolias, Kimberley F.

    2014-01-01

    The small GTPases RhoA and Rac1 are key cytoskeletal regulators that function in a mutually antagonistic manner to control the migration and morphogenesis of a broad range of cell types. However, their role in shaping the cerebellum, a unique brain structure composed of an elaborate set of folia separated by fissures of different lengths, remains largely unexplored. Here we show that dysregulation of both RhoA and Rac1 signaling results in abnormal cerebellar ontogenesis. Ablation of RhoA from neuroprogenitor cells drastically alters the timing and placement of fissure formation, the migration and positioning of granule and Purkinje cells, the alignment of Bergmann glia, and the integrity of the basement membrane, primarily in the anterior lobules. Furthermore, in the absence of RhoA, granule cell precursors located at the base of fissures fail to undergo cell shape changes required for fissure initiation. Many of these abnormalities can be recapitulated by deleting RhoA specifically from granule cell precursors but not postnatal glia, indicating that RhoA functions in granule cell precursors to control cerebellar morphogenesis. Notably, mice with elevated Rac1 activity due to loss of the Rac1 inhibitors Bcr and Abr show similar anterior cerebellar deficits, including ectopic neurons and defects in fissure formation, Bergmann glia organization and basement membrane integrity. Together, our results suggest that RhoA and Rac1 play indispensable roles in patterning cerebellar morphology. PMID:25128586

  13. Murine cerebellar neurons express a novel gene encoding a protein related to cell cycle control and cell fate determination proteins.

    PubMed

    Taoka, M; Isobe, T; Okuyama, T; Watanabe, M; Kondo, H; Yamakawa, Y; Ozawa, F; Hishinuma, F; Kubota, M; Minegishi, A

    1994-04-01

    We cloned cDNAs of a novel protein (designated V-1) that has been identified from among the developmentally regulated proteins in the rat cerebellum. Protein sequencing analysis (Taoka, M., Yamakuni, T., Song, S.-Y., Yamakawa, Y., Seta, K., Okuyama, T., and Isobe, T. (1992) Eur. J. Biochem. 207, 615-620) and cDNA sequence analysis revealed that the V-1 protein consists of 117 amino acids and contains 2.5 contiguous repeats of the cdc10/SWI6 motif, which was originally found in the products of the cell cycle control genes of yeasts and the cell fate determination genes in Drosophila and Caenorhabditis elegans. In situ hybridization histochemistry revealed that the expression of the V-1 gene is transiently increased in postmigratory granule cells during postnatal rat cerebellar development and thereafter is markedly suppressed, whereas Purkinje cells constitutively express V-1 mRNA. In contrast, cerebellar granule cells of the staggerer mutant mouse continue to express the V-1 gene even when the granule cells of the normal mouse have ceased to express the V-1 gene, suggesting that the expression of the V-1 gene in granule cells is regulated through the interaction with Purkinje cells. On the basis of these results, we postulate that the V-1 protein has a potential role in the differentiation of granule cells. PMID:8144589

  14. DS-03SONIC HEDGEHOG ANTAGONISTS POTENTLY INDUCE APOPTOSIS IN THE CEREBELLAR EXTERNAL GRANULE LAYER: IMPLICATIONS FOR MEDULLOBLASTOMA TREATMENT

    PubMed Central

    Noguchi, Kevin; Cabrera, Omar; Swiney, Brant; Smith, Julie; Farber, Nuri

    2014-01-01

    There is a great interest in Hedgehog signaling both for its role in cerebellar development and medulloblastoma (MB) treatment. The cerebellum maintains its own proliferative layer called the external granule layer (EGL) that produces over 90% of its neurons. During development, the established dogma views Hedgehog signaling as a robust mitogenic stimulator of EGL proliferation. However, in other regions of the body, Hedgehog stimulation acts as a survival signal by potently inducing NPC apoptosis when signaling is lost. In this manner, the sonic hedgehog ligand's concentration gradient determines NPC survival or death thereby morphologically sculpting the developing nervous system. Therefore, we tested whether Hedgehog signaling also acts as a survival signal in the EGL by administering several Hedgehog antagonists (vismodegib, cyclopamine, and jervine). Remarkably, we found all Hedgehog antagonists (HAs) potently induced EGL apoptosis within a few hours of administration. This suggests a large portion of the HAs' anti-proliferative effects are due to the apoptotic loss of a large number of EGL NPCs. This research may also have important implications for MB formation and treatment. There is convincing evidence that EGL neural progenitor cells (NPCs) can be the tumor initiating cells for MBs (the most common malignant brain tumor in children). Therefore, we examined if HAs can also produce apoptosis in Patched mice which exhibit constitutive Hedgehog stimulation and are prone to MB formation. We found HA administration also potently increased apoptosis in both EGL NPCs and preneoplasms. This may have important implications for the treatment of MBs with HAs. For example, apoptosis involves signaling mechanisms distinct from proliferation that may need to be disabled for malignant transformation. In addition, the requirement for Hedgehog signaling may prevent metastasis by killing tumor cells as they spread to regions where such signaling is absent.

  15. Calpain plays a central role in 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in cerebellar granule neurons.

    PubMed

    Harbison, Richard A; Ryan, Kristen R; Wilkins, Heather M; Schroeder, Emily K; Loucks, F Alexandra; Bouchard, Ron J; Linseman, Daniel A

    2011-04-01

    1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress

  16. Apoptosis induced by domoic acid in mouse cerebellar granule neurons involves activation of p38 and JNK MAP kinases

    PubMed Central

    Giordano, G.; Klintworth, H.M.; Kavanagh, T.J.; Costa, L.G.

    2008-01-01

    In mouse cerebellar granule neurons (CGN) the marine neurotoxin domoic acid (DomA) induces neuronal cell death, either by apoptosis or by necrosis, depending on its concentration, with apoptotic damage predominating in response to low concentrations (100 nM). DomA-induced apoptosis is due to selective activation of AMPA/kainate receptors, and is mediated by DomA-induced oxidative stress, leading to mitochondrial dysfunction and activation of caspase-3. The p38 MAP kinase and the c-Jun NH2-terminal protein kinase (JNK) have been shown to be preferentially activated by oxidative stress. Here we report that DomA increases p38 MAP kinase and JNK phosphorylation, and that this effect is more pronounced in CGNs from Gclm (−/−) mice, which lack the modifier subunit of glutamate-cysteine ligase, have very low glutathione (GSH) levels, and are more sensitive to DomA-induced apoptosis than CGNs from wild-type mice. The increased phosphorylation of JNK and p38 kinase was paralleled by a decreased phosphorylation of Erk 1/2. The AMPA/kainate receptor antagonist NBQX, but not the NMDA receptor antagonist MK-801, prevents DomA-induced activation of p38 and JNK kinases. Several antioxidants (GSH ethyl ester, catalase, phenylbutylnitrone) also prevent DomA-induced phosphorylation of JNK and p38 MAP kinases. Inhibitors of p38 (SB203580) and of JNK (SP600125) antagonize DomA-induced apoptosis. These results indicate the importance of oxidative stress-activated JNK and p38 MAP kinase pathways in DomA-induced apoptosis in CGNs. PMID:18164102

  17. GDF-15 enhances intracellular Ca2+ by increasing Cav1.3 expression in rat cerebellar granule neurons

    PubMed Central

    Lu, Jun-Mei; Wang, Chang-Ying; Hu, Changlong; Fang, Yan-Jia; Mei, Yan-Ai

    2016-01-01

    GDF-15 (growth/differentiation factor 15) is a novel member of the TGF (transforming growth factor)-β superfamily that has critical roles in the central and peripheral nervous systems. We reported previously that GDF-15 increased delayed rectifier outward K+ currents and Kv2.1 α subunit expression through TβRII (TGF-β receptor II) to activate Src kinase and Akt/mTOR (mammalian target of rapamycin) signalling in rat CGNs (cerebellar granule neurons). In the present study, we found that treatment of CGNs with GDF-15 for 24 h increased the intracellular Ca2+ concentration ([Ca2+]i) in response to membrane depolarization, as determined by Ca2+ imaging. Whole-cell current recordings indicated that GDF-15 increased the inward Ca2+ current (ICa) without altering steady-state activation of Ca2+ channels. Treatment with nifedipine, an inhibitor of L-type Ca2+ channels, abrogated GDF-15-induced increases in [Ca2+]i and ICa. The GDF-15-induced increase in ICa was mediated via up-regulation of the Cav1.3 α subunit, which was attenuated by inhibiting Akt/mTOR and ERK (extracellular-signal-regulated kinase) pathways and by pharmacological inhibition of Src-mediated TβRII phosphorylation. Given that Cav1.3 is not only a channel for Ca2+ influx, but also a transcriptional regulator, our data confirm that GDF-15 induces protein expression via TβRII and activation of a non-Smad pathway, and provide novel insight into the mechanism of GDF-15 function in neurons. PMID:27114559

  18. Role of glutamate receptors in tetrabrominated diphenyl ether (BDE-47) neurotoxicity in mouse cerebellar granule neurons.

    PubMed

    Costa, Lucio G; Tagliaferri, Sara; Roqué, Pamela J; Pellacani, Claudia

    2016-01-22

    The polybrominated diphenyl ether (PBDE) flame retardants are developmental neurotoxicants, as evidenced by numerous in vitro, animal and human studies. PBDEs can alter the homeostasis of thyroid hormone and directly interact with brain cells. Induction of oxidative stress, leading to DNA damage and apoptotic cell death is a prominent mechanism of PBDE neurotoxicity, though other mechanisms have also been suggested. In the present study we investigated the potential role played by glutamate receptors in the in vitro neurotoxicity of the tetrabromodiphenyl ether BDE-47, one of the most abundant PBDE congeners. Toxicity of BDE-47 in mouse cerebellar neurons was diminished by antagonists of glutamate ionotropic receptors, but not by antagonists of glutamate metabotropic receptors. Antagonists of NMDA and AMPA/Kainate receptors also inhibited BDE-47-induced oxidative stress and increases in intracellular calcium. The calcium chelator BAPTA-AM also inhibited BDE-47 cytotoxicity and oxidative stress. BDE-47 caused a rapid increase of extracellular glutamate levels, which was not antagonized by any of the compounds tested. The results suggest that BDE-47, by still unknown mechanisms, increases extracellular glutamate which in turn activates ionotropic glutamate receptors leading to increased calcium levels, oxidative stress, and ultimately cell death. PMID:26640238

  19. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  20. Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells.

    PubMed

    Erceg, Slaven; Ronaghi, Mohammad; Zipancic, Ivan; Lainez, Sergio; Roselló, Mireia Gárcia; Xiong, Chen; Moreno-Manzano, Victoria; Rodríguez-Jiménez, Fernando Javier; Planells, Rosa; Alvarez-Dolado, Manuel; Bhattacharya, Shom Shanker; Stojkovic, Miodrag

    2010-11-01

    The cerebellum has critical roles in motor and sensory learning and motor coordination. Many cerebellum-related disorders indicate cell therapy as a possible treatment of neural loss. Here we show that application of inductive signals involved in early patterning of the cerebellar region followed by application of different factors directs human embryonic stem cell differentiation into cerebellar-like cells such as granule neurons, Purkinje cells, interneuron, and glial cells. Neurons derived using our protocol showed a T-shaped polarity phenotype and express similar markers to the developed human cerebellum. Electrophysiological measurements confirmed functional electrical properties compatible with these cells. In vivo implantation of differentiated human embryonic stem cells transfected with MATH1-GFP construct into neonatal mice resulted in cell migration across the molecular and the Purkinje cell layers and settlement in the internal molecular layers. Our findings demonstrate that the universal mechanisms involved in the development of cerebellum can be efficiently recapitulated in vitro, which enables the design of new strategies for cell replacement therapy, to study early human development and pathogenesis of neurodegenerative diseases. PMID:20521974

  1. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABAA receptor δ subunit in cerebellar granule neurons and delays motor development in rats

    PubMed Central

    Diaz, Marvin R.; Vollmer, Cyndel C.; Zamudio-Bulcock, Paula A.; Vollmer, William; Blomquist, Samantha; Morton, Russell A.; Everett, Julie C.; Zurek, Agnieszka A.; Yu, Jieying; Orser, Beverley A.; Valenzuela, C. Fernando

    2014-01-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ~60 mM (~0.28 g/dl) during the 4 hours of exposure. EtOH levels gradually decreased to baseline 8 hrs after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased the expression of δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABAA receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. PMID:24316160

  2. The compartmental restriction of cerebellar interneurons

    PubMed Central

    Consalez, G. Giacomo; Hawkes, Richard

    2013-01-01

    The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons. PMID:23346049

  3. Changes in mitogen-activated protein kinase in cerebellar granule neurons by polybrominated diphenyl ethers and polychlorinated biphenyls

    SciTech Connect

    Fan Chunyang; Besas, Jonathan

    2010-05-15

    Polybrominated diphenyl ethers (PBDEs) are used as additive flame retardants and have been detected in human blood, adipose tissue, and breast milk. Both in vitro and in vivo studies have shown that the effects of PBDEs are similar to the known human developmental neurotoxicants such as polychlorinated biphenyls (PCBs) on a molar basis. Previously, we reported that PBDE mixtures and congeners, perturbed calcium homeostasis which is critical for the development and function of the nervous system. In the present study, we tested whether environmentally relevant PBDE/PCB mixtures and congeners affected mitogen-activated protein kinase (MAPK) pathways, which are down-stream events of calcium signaling in cerebellar granule neuronal cultures. In this study, phosphorylated extracellular signal-regulated kinase (pERK)1/2, a widely studied MAPK cascade and known to be involved in learning and memory, levels were quantitated using western blot technique with phospho-specific antibodies. Glutamate (a positive control) increased pERK1/2 in a time- and concentration-dependent manner reaching maximum activation at 5-30 min of exposure and at doses >= 10 muM. Both Aroclor 1254 (a commercial penta PCB mixture) and DE-71 (a commercial penta PBDE mixture) elevated phospho-ERK1/2, producing maximum stimulation at 30 min and at concentrations >= 3 mug/ml; Aroclor 1254 was more efficacious than DE-71. DE-79 (an octabrominated diphenyl ether mixture) also elevated phospho-ERK1/2, but to a lesser extent than that of DE-71. PBDE congeners 47, 77, 99, and 153 also increased phospo-ERK1/2 in a concentration-dependent manner. The data indicated that PBDE congeners are more potent than the commercial mixtures. PCB 47 also increased phospho-ERK1/2 like its structural analog PBDE 47, but to a lesser extent, suggesting that these chemicals affect similar pathways. Cytotoxicity, measured as %LDH release, data showed that higher concentrations (> 30 muM) and longer exposures (> 30 min) are

  4. Alcohol Excites Cerebellar Golgi Cells by Inhibiting the Na+/K+ ATPase

    PubMed Central

    Botta, Paolo; de Souza, Fabio M Simões; Sangrey, Thomas; De Schutter, Erik; Valenzuela, C Fernando

    2010-01-01

    Alcohol-induced alterations of cerebellar function cause motor coordination impairments that are responsible for millions of injuries and deaths worldwide. Cognitive deficits associated with alcoholism are also a consequence of cerebellar dysfunction. The mechanisms responsible for these effects of ethanol are poorly understood. Recent studies have identified neurons in the input layer of the cerebellar cortex as important ethanol targets. In this layer, granule cells (GrCs) receive the majority of sensory inputs to the cerebellum through the mossy fibers. Information flow at these neurons is gated by a specialized pacemaker interneuron known as the Golgi cell, which provides divergent GABAergic input to thousands of GrCs. In vivo electrophysiological experiments have previously shown that acute ethanol exposure abolishes GrC responsiveness to sensory inputs carried by mossy fibers. Slice electrophysiological studies suggest that ethanol causes this effect by potentiating GABAergic transmission at Golgi cell-to-GrC synapses through an increase in Golgi cell excitability. Using patch-clamp electrophysiological techniques in cerebellar slices and computer modeling, we show here that ethanol excites Golgi cells by inhibiting the Na+/K+ ATPase. Voltage-clamp recordings of Na+/K+ ATPase currents indicated that ethanol partially inhibits this pump and this effect could be mimicked by low concentrations of ouabain. Partial inhibition of Na+/K+ ATPase function in a computer model of the Golgi cell reproduced these experimental findings. These results establish a novel mechanism of action of ethanol on neuronal excitability, which likely has a role in ethanol-induced cerebellar dysfunction and may also contribute to neuronal functional alterations in other brain regions. PMID:20520600

  5. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  6. Role of glycogen in processes of cerebellar glial cells under conditions of its damage with sodium nitrite.

    PubMed

    Samosudova, N V; Reutov, V P; Larionova, N P

    2010-12-01

    Ultrastructure of processes of glial cell, astrocytes of the molecular layer of cerebellar cortex in Rana temporaria frog, under conditions of damage to the cerebellum caused by NO-generating compound sodium nitrite was studied under an electron microscope. It was found that astrocytes have at least two types of processes: the first (fibrillar) primarily contained numerous fibrils and few glycogen granules and the second (granular) primarily containing glycogen granules. In the presence of NO-generating compound in toxic doses, fibrillar processes are damaged or completely degrade more rapidly than granular ones. The processes containing glycogen can protect both damaged synapses and individual synaptic buttons by forming a compact structure, wrapping, around them. We analyzed the possible role of glycogen of cerebellar glial cell processes in neuroglial interactions in the presence of sodium nitrite. PMID:21240384

  7. Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus.

    PubMed

    Yaeger, Daniel B; Trussell, Laurence O

    2015-03-18

    In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells. PMID:25788690

  8. Transplantation and Stem Cell Therapy for Cerebellar Degenerations.

    PubMed

    Cendelin, Jan

    2016-02-01

    Stem cell-based and regenerative therapy may become a hopeful treatment for neurodegenerative diseases including hereditary cerebellar degenerations. Neurotransplantation therapy mainly aims to substitute lost cells, but potential effects might include various mechanisms including nonspecific trophic effects and stimulation of endogenous regenerative processes and neural plasticity. Nevertheless, currently, there remain serious limitations. There is a wide spectrum of human hereditary cerebellar degenerations as well as numerous cerebellar mutant mouse strains that serve as models for the development of effective therapy. By now, transplantation has been shown to ameliorate cerebellar function, e.g. in Purkinje cell degeneration mice, Lurcher mutant mice and mouse models of spinocerebellar ataxia type 1 and type 2 and Niemann-Pick disease type C. Despite the lack of direct comparative studies, it appears that there might be differences in graft development and functioning between various types of cerebellar degeneration. Investigation of the relation of graft development to specific morphological, microvascular or biochemical features of the diseased host tissue in various cerebellar degenerations may help to identify factors determining the fate of grafted cells and potential of their functional integration. PMID:26155762

  9. Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice.

    PubMed

    Castagna, Claudia; Merighi, Adalberto; Lossi, Laura

    2016-09-01

    Programmed cell death (PCD) was demonstrated in neurons and glia in normal brain development, plasticity, and aging, but also in neurodegeneration. (Macro)autophagy, characterized by cytoplasmic vacuolization and activation of lysosomal hydrolases, and apoptosis, typically entailing cell shrinkage, chromatin and nuclear condensation, are the two more common forms of PCD. Their underlying intracellular pathways are partly shared and neurons can die following both modalities, according to the type of death-triggering stimulus. Reelin is an extracellular protein necessary for proper neuronal migration and brain lamination. In the mutant Reeler mouse, its absence causes neuronal mispositioning, with a notable degree of cerebellar hypoplasia that was tentatively related to an increase in PCD. We have carried out an ultrastructural analysis on the occurrence and type of postnatal PCD affecting the cerebellar neurons in normal and Reeler mice. In the forming cerebellar cortex, PCD took the form of apoptosis or autophagy and mainly affected the cerebellar granule cells (CGCs). Densities of apoptotic CGCs were comparable in both mouse strains at P0-P10, while, in mutants, they increased to become significantly higher at P15. In WT mice the density of autophagic neurons did not display statistically significant differences in the time interval examined in this study, whereas it was reduced in Reeler in the P0-P10 interval, but increased at P15. Besides CGCs, the Purkinje neurons also displayed autophagic features in both WT and Reeler mice. Therefore, cerebellar neurons undergo different types of PCD and a Reelin deficiency affects the type and degree of neuronal death during postnatal development of the cerebellum. PMID:26931496

  10. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau.

    PubMed

    Blot, Antonin; Barbour, Boris

    2014-02-01

    Excitatory synaptic activity in the brain is shaped and balanced by inhibition. Because inhibition cannot propagate, it is often recruited with a synaptic delay by incoming excitation. Cerebellar Purkinje cells are driven by long-range excitatory parallel fiber inputs, which also recruit local inhibitory basket cells. The axon initial segment of each Purkinje cell is ensheathed by basket cell axons in a structure called the pinceau, which is largely devoid of chemical synapses. In mice, we found at the single-cell level that the pinceau mediates ephaptic inhibition of Purkinje cell firing at the site of spike initiation. The reduction of firing rate was synchronous with the presynaptic action potential, eliminating a synaptic delay and allowing granule cells to inhibit Purkinje cells without a preceding phase of excitation. Axon-axon ephaptic intercellular signaling can therefore mediate near-instantaneous feedforward and lateral inhibition. PMID:24413696

  11. Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning.

    PubMed

    Wada, Norio; Funabiki, Kazuo; Nakanishi, Shigetada

    2014-04-01

    Adaptation of the optokinetic response (OKR) is an eye movement enhanced by repeated motion of a surrounding visual field and represents a prototype of cerebellum-dependent motor learning. Purkinje cells and vestibular nuclei (VN) receive optokinetic and retinal slip signals via the mossy fiber-granule cell pathway and climbing-fiber projections, respectively. To explore the neural circuits and mechanisms responsible for OKR adaptation, we adopted the reversible neurotransmission-blocking (RNB) technique, in which granule-cell transmission to Purkinje cells was selectively and reversibly blocked by doxycycline-dependent expression of transmission-blocking tetanus toxin in granule cells. Blockade of granule-cell inputs abolished both short-term and long-term OKR adaptation induced by repeated OKR training, but normal levels of both responses were immediately evoked in the pretrained RNB mice by OKR retraining once granule-cell transmission had recovered. Importantly, eye movement elicited by electrical stimulation of the cerebellar focculus was elevated by long-term but not by short-term OKR training in adaptive OKR-negative RNB mice. Furthermore, when the flocculus of adaptive OKR-negative RNB mice was electrically excited in-phase with OKR stimulation, these mice exhibited long-term adaptive OKR. These results indicate that convergent information to the VN was critical for acquisition and storage of long-term OKR adaptation with conjunctive action of Purkinje cells for OKR expression. Interestingly, in contrast to conditioned eyeblink memory, the expression of once acquired adaptive long-term OKR was not abrogated by blockade of granule-cell transmission, suggesting that distinct forms of neural plasticity would operate in different forms of cerebellum-dependent motor learning. PMID:24706878

  12. Rapid Signaling Actions of Environmental Estrogens in Developing Granule Cell Neurons Are Mediated by Estrogen Receptor β

    PubMed Central

    Le, Hoa H.; Belcher, Scott M.

    2010-01-01

    Estrogenic endocrine disrupting chemicals (EDCs) constitute a diverse group of man-made chemicals and natural compounds derived from plants and microbial metabolism. Estrogen-like actions are mediated via the nuclear hormone receptor activity of estrogen receptor (ER)α and ERβ and rapid regulation of intracellular signaling cascades. Previous study defined cerebellar granule cell neurons as estrogen responsive and that granule cell precursor viability was developmentally sensitive to estrogens. In this study experiments using Western blot analysis and pharmacological approaches have characterized the receptor and signaling modes of action of selective and nonselective estrogen ligands in developing cerebellar granule cells. Estrogen treatments were found to briefly increase ERK1/2-phosphorylation and then cause prolonged depression of ERK1/2 activity. The sensitivity of granule cell precursors to estrogen-induced cell death was found to require the integrated activation of membrane and intracellular ER signaling pathways. The sensitivity of granule cells to selective and nonselective ER agonists and a variety of estrogenic and nonestrogenic EDCs was also examined. The ERβ selective agonist DPN, but not the ERα selective agonist 4,4′,4′-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol or other ERα-specific ligands, stimulated cell death. Only EDCs with selective or nonselective ERβ activities like daidzein, equol, diethylstilbestrol, and bisphenol A were observed to induce E2-like neurotoxicity supporting the conclusion that estrogen sensitivity in granule cells is mediated via ERβ. The presented results also demonstrate the utility of estrogen sensitive developing granule cells as an in vitro assay for elucidating rapid estrogen-signaling mechanisms and to detect EDCs that act at ERβ to rapidly regulate intracellular signaling. PMID:20926581

  13. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

    PubMed Central

    2011-01-01

    Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240

  14. Cerebellar Zonal Patterning Relies on Purkinje Cell Neurotransmission

    PubMed Central

    White, Joshua J.; Arancillo, Marife; Stay, Trace L.; George-Jones, Nicholas A.; Levy, Sabrina L.; Heck, Detlef H.

    2014-01-01

    Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. The proper connectivity of zones is critical for motor coordination and motor learning, and in several neurological diseases cerebellar circuits degenerate in zonal patterns. Despite recent advances in understanding zone function, we still have a limited understanding of how zones are formed. Here, we focused our attention on Purkinje cells to gain a better understanding of their specific role in establishing zonal circuits. We used conditional mouse genetics to test the hypothesis that Purkinje cell neurotransmission is essential for refining prefunctional developmental zones into sharp functional zones. Our results show that inhibitory synaptic transmission in Purkinje cells is necessary for the precise patterning of Purkinje cell zones and the topographic targeting of mossy fiber afferents. As expected, blocking Purkinje cell neurotransmission caused ataxia. Using in vivo electrophysiology, we demonstrate that loss of Purkinje cell communication altered the firing rate and pattern of their target cerebellar nuclear neurons. Analysis of Purkinje cell complex spike firing revealed that feedback in the cerebellar nuclei to inferior olive to Purkinje cell loop is obstructed. Loss of Purkinje neurotransmission also caused ectopic zonal expression of tyrosine hydroxylase, which is only expressed in adult Purkinje cells when calcium is dysregulated and if excitability is altered. Our results suggest that Purkinje cell inhibitory neurotransmission establishes the functional circuitry of the cerebellum by patterning the molecular zones, fine-tuning afferent circuitry, and shaping neuronal activity. PMID:24920627

  15. Motor learning of mice lacking cerebellar Purkinje cells.

    PubMed

    Porras-García, M Elena; Ruiz, Rocío; Pérez-Villegas, Eva M; Armengol, José Á

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  16. Motor learning of mice lacking cerebellar Purkinje cells

    PubMed Central

    Porras-García, M. Elena; Ruiz, Rocío; Pérez-Villegas, Eva M.; Armengol, José Á.

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  17. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Hedgehog-induced medulloblastoma

    PubMed Central

    Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.

    2008-01-01

    Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547

  18. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    SciTech Connect

    Gallo, V.; Ciotti, M.T.; Aloisi, F.; Levi, G.

    1986-01-01

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue /sup 3/H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of /sup 3/H-D-aspartate previously observed in this type of culture. In contrast, /sup 3/H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: /sup 3/H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. /sup 3/H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity /sup 3/H-GABA uptake.

  19. Ectopic cerebellar cell migration causes maldevelopment of Purkinje cells and abnormal motor behaviour in Cxcr4 null mice.

    PubMed

    Huang, Guo-Jen; Edwards, Andrew; Tsai, Cheng-Yu; Lee, Yi-Shin; Peng, Lei; Era, Takumi; Hirabayashi, Yoshio; Tsai, Ching-Yen; Nishikawa, Shin-Ichi; Iwakura, Yoichiro; Chen, Shu-Jen; Flint, Jonathan

    2014-01-01

    SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice. PMID:24516532

  20. Ultrastructural similarity between bat and human mast cell secretory granules.

    PubMed

    Oliani, S M; Vugman, I; Jamur, M C

    1993-01-01

    Mast cells in the tongue of the bat (Artibeus lituratus) show a well-developed Golgi area and abundant mitochondria in the granule-free perinuclear cytoplasm. Rough endoplasmic reticulum profiles, free ribosomes, mitochondria, bundles of filaments and a great number of secretory granules are found throughout the remaining cytoplasm. The granules, of various shapes and sizes, are simple containing an electron-dense, homogeneous matrix, coarse particles or cylindrical scrolls, or combinations (cylindrical scrolls with either electron-dense, homogeneous matrix or coarse particle contents). Up to now, scroll-containing granules have been considered to be a unique feature of human mast cells. PMID:8453310

  1. Chlorpyrifos Toxicity in Mouse Cultured Cerebellar Granule Neurons at Different Stages of Development: Additive Effect on Glutamate-Induced Excitotoxicity

    PubMed Central

    Amani, Nahid; Soodi, Maliheh; Daraei, Bahram; Dashti, Abolfazl

    2016-01-01

    Objective Chlorpyrifos (CPF) is a neurotoxic organophosphorus (OP) insecticide. Its mechanism of action includes oxidative stress, excitotoxicity, and inhibition of the acetylcholinesterase enzyme (AChE). The aim of the present study is to investigate CPF toxicity in mature and immature cerebellar granule neurons (CGNs), as well as its effect on glutamate induced excitotoxicity. Materials and Methods This study was an in vitro experimental study performed on mice cultured CGNs. Immature and mature neurons were exposed to different concentrations of CPF (1-1000 µM) and glutamate (10-600 µM) for 48 hours after which we used the MTT assay to measure cytotoxicity. Immature neurons had exposure to CPF for 5 days in order to evaluate the cytotoxic effect on developing neurons. Mature neurons received sub-lethal concentrations of CPF (10, 100 µM) combined with different concentrations of glutamate. AChE activity and reactive oxygen species (ROS) generation were assessed after treatments. Results Immature CGNs had increased sensitivity to CPF toxicity compared to mature neurons. We observed significantly greater ROS production in immature compared to mature neurons, however AChE activity was more inhibited in mature neurons. Although CPF toxicity was not well correlated with AChE inhibition, it correlated well with ROS production. Glutamate toxicity was potentiated by sub-lethal concentration of CPF, however glutamate induced ROS production was not affected. The results suggested that CPF potentiated glutamate toxicity by mechanisms other than oxidative stress. Conclusion CPF toxicity differed in mature and immature neurons. Potentiated glutamate toxicity by CPF implied that CPF exposure might be a risk factor for neurodegenerative disease. PMID:27602329

  2. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress

    PubMed Central

    Gray, Josie J.; Zommer, Amelia E.; Bouchard, Ron J.; Duval, Nathan; Blackstone, Craig; Linseman, Daniel A.

    2013-01-01

    Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress. PMID:23220553

  3. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress.

    PubMed

    Gray, Josie J; Zommer, Amelia E; Bouchard, Ron J; Duval, Nathan; Blackstone, Craig; Linseman, Daniel A

    2013-02-01

    Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress. PMID:23220553

  4. Proteoglycans support proper granule formation in pancreatic acinar cells.

    PubMed

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas. PMID:26105026

  5. Mapping the development of cerebellar Purkinje cells in zebrafish.

    PubMed

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease. PMID:25655100

  6. Mitigation of cerebellar neuropathy in globoid cell leukodystrophy mice by AAV-mediated gene therapy.

    PubMed

    Lin, Dar-Shong; Hsiao, Chung-Der; Lee, Allan Yueh-Luen; Ho, Che-Sheng; Liu, Hsuan-Liang; Wang, Tuen-Jen; Jian, Yuan-Ren; Hsu, Jui-Cheng; Huang, Zon-Darr; Lee, Tsung-Han; Chiang, Ming-Fu

    2015-10-15

    Globoid cell leukodystrophy (GLD) is an autosomal recessive, lysosomal storage disease caused by deficiency of the enzyme galactocerebrosidase (GALC). The absence of GALC activity leads to the accumulation of the toxic substance psychosine and the preferential loss of myelinating cells in the central and peripheral nervous systems. Profound demyelination, astrogliosis and axonopathy are the hallmarks of the pathogenesis of GLD, and cerebellar ataxia is one of the dominant manifestations in adolescents and adults affected with GLD. To date, studies regarding cerebellar degeneration in GLD are limited. In this study, the efficacy of cerebellum-targeted gene therapy on the cerebellar neuropathology in twitcher mice (a murine model of GLD) has been validated. We observed degeneration of Purkinje cells, Bergmann glia, and granule cells in addition to astrocytosis and demyelination in the cerebellum of the twitcher mice. Ultrastructural analysis revealed dark cell degeneration and disintegration of the cellular composition of Purkinje cells in untreated twitcher mice. In addition, the expressions of neurotrophic factors CNTF, GDNF and IGF-I were up-regulated and the expression of BDNF was down-regulated. Intracerebellar-mediated gene therapy efficiently corrected enzymatic deficiency by direct transduction to Purkinje cells and cross-correction in other cell types in the cerebellum, leading to the amelioration of both neuroinflammation and demyelination. The population, dendritic territory, and axonal processes of Purkinje cells remained normal in the cerebellum of treated twitcher mice, where radial fibers of Bergmann glia spanned the molecular layer and collateral branches ensheathed the dendritic processes of Purkinje cells. Moreover, the aberrant expressions of neurotrophic factors were mitigated in the cerebellum of treated twitcher mice, indicating the preservation of cellular function in addition to maintaining the neuronal architecture. The life span of the

  7. Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons

    PubMed Central

    Reddy, C E; Albanito, L; De Marco, P; Aiello, D; Maggiolini, M; Napoli, A; Musti, A M

    2013-01-01

    Cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation is a model of election to study the interplay of pro-apoptotic and pro-survival signaling pathways in neuronal cell death. In this model, the c-Jun N-terminal kinase (JNK) induces pro-apoptotic genes through the c-Jun/activator protein 1 (AP-1) transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/AP-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. Here, we used this model system to study the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK sites in neuronal cell death. We found that TK-deprivation led to c-Jun multiphosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of CGCs. Conversely, lithium prevented T91T93 phosphorylation and cell death without affecting the S63 site, suggesting that T91T93 phosphorylation triggers c-Jun pro-apoptotic activity. Accordingly, a c-Jun mutant lacking the T95 priming site for T91/93 phosphorylation protected CGCs from apoptosis, whereas it was able to induce neurite outgrowth in PC12 cells. Vice versa, a c-Jun mutant bearing aspartate substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass spectrometry analysis confirmed multiphosphorylation of c-Jun at T91/T93/T95 in cells. Moreover, JNK phosphorylated recombinant c-Jun at T91/T93 in a T95-dependent manner. On the basis of our results, we propose that T91/T93/T95 multiphosphorylation of c-Jun functions as a

  8. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  9. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  10. Sonic hedgehog patterning during cerebellar development.

    PubMed

    De Luca, Annarita; Cerrato, Valentina; Fucà, Elisa; Parmigiani, Elena; Buffo, Annalisa; Leto, Ketty

    2016-01-01

    The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions. PMID:26499980

  11. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    PubMed Central

    González-Reyes, Susana; Guzmán-Beltrán, Silvia; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2013-01-01

    Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. PMID:24454990

  12. UNUSUAL EOSINOPHILIC GRANULE CELL PROLIFERATION IN COHO SALMON (ONCHORHYNCHUS KISUTCH)

    EPA Science Inventory

    Proliferative lesions comprised of eosinophilic granule cells (EGCs) extended throughout the gastrointestinal tract of several mature, spawning coho salmon Oncorhynchus kisutch (Walbaum). istological examination of the tumour showed extensive proliferation and infiltration of EGC...

  13. Human NK cell lytic granules and regulation of their exocytosis

    PubMed Central

    Krzewski, Konrad; Coligan, John E.

    2012-01-01

    Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis. PMID:23162553

  14. Regulation of Tlx3 by Pax6 is required for the restricted expression of Chrnα3 in Cerebellar Granule Neuron progenitors during development

    PubMed Central

    Divya, Thulasi Sheela; Lalitha, Soundararajan; Parvathy, Surendran; Subashini, Chandramohan; Sanalkumar, Rajendran; Dhanesh, Sivadasan Bindu; Rasheed, Vazhanthodi Abdul; Divya, Mundackal Sivaraman; Tole, Shubha; James, Jackson

    2016-01-01

    Homeobox gene Tlx3 is known to promote glutamatergic differentiation and is expressed in post-mitotic neurons of CNS. Contrary to this here, we discovered that Tlx3 is expressed in the proliferating progenitors of the external granule layer in the cerebellum, and examined factors that regulate this expression. Using Pax6−/−Sey mouse model and molecular interaction studies we demonstrate Pax6 is a key activator of Tlx3 specifically in cerebellum, and induces its expression starting at embryonic day (E)15. By Postnatal day (PN)7, Tlx3 is expressed in a highly restricted manner in the cerebellar granule neurons of the posterior cerebellar lobes, where it is required for the restricted expression of nicotinic cholinergic receptor-α3 subunit (Chrnα3) and other genes involved in formation of synaptic connections and neuronal migration. These results demonstrate a novel role for Tlx3 and indicate that Pax6-Tlx3 expression and interaction is part of a region specific regulatory network in cerebellum and its deregulation during development could possibly lead to Autistic spectral disorders (ASD). PMID:27452274

  15. Purkinje cell apoptosis in arabian horses with cerebellar abiotrophy.

    PubMed

    Blanco, A; Moyano, R; Vivo, J; Flores-Acuña, R; Molina, A; Blanco, C; Monterde, J G

    2006-08-01

    Purkinje cerebellar cells were studied in three Arabian horses aged between 6 and 8 months with clinical disorders in their movements, tremors and ataxia; the occurrence of apoptosis in this cell population was investigated by the (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labelling (TUNEL) method. Both optical and electron microscopical images showed a scant number of Purkinje cells, most of them with morphological features of apoptosis such as condensation of the nucleus and cytoplasm as well as segregation and fragmentation of the nucleus into apoptotic bodies. The TUNEL technique revealed a substantial number (65%) of positive immunoreactive Purkinje cells. PMID:16901270

  16. Young Dentate Granule Cells Mediate Pattern Separation whereas Old Granule Cells Contribute to Pattern Completion

    PubMed Central

    Nakashiba, Toshiaki; Cushman, Jesse D.; Pelkey, Kenneth A.; Renaudineau, Sophie; Buhl, Derek L.; McHugh, Thomas J.; Barrera, Vanessa Rodriguez; Chittajallu, Ramesh; Iwamoto, Keisuke S.; McBain, Chris J.; Fanselow, Michael S.; Tonegawa, Susumu

    2012-01-01

    Summary Adult-born granule cells (GCs), a minor population of cells in the hippocampal dentate gyrus, are highly active during the first few weeks following functional integration into the neuronal network (young GCs), distinguishing them from less active older adult-born GCs and the major population of dentate GCs generated developmentally (together, old GCs). We created a transgenic mouse in which output of old GCs was specifically inhibited while leaving a substantial portion of young GCs intact. These mice exhibited enhanced or normal pattern separation between similar contexts that was reduced following removal of young GCs by X-ray irradiation. Furthermore, mutant mice exhibited deficits in rapid pattern completion. Therefore, pattern separation of similar contexts requires adult-born young GCs while old GCs are unnecessary, whereas older GCs contribute to the rapid recall by pattern completion. Our data suggest that as adult-born GCs age, their function switches from pattern separation to rapid pattern completion. PMID:22365813

  17. 2', 3'-cyclic nucleotide 3'-phosphodiesterase is expressed in dissociated rat cerebellar cells and included in the postsynaptic density fraction.

    PubMed

    Cho, Sun-Jung; Jung, Jae Seob; Jin, IngNyol; Moon, Il Soo

    2003-08-31

    We have shown by protein sequencing that the phosphotyrosine-containing 48 kDa protein band of the rat cerebellar postsynaptic density fraction (CBL-PSD) is 2', 3'-cyclic nucleotide 3'-phosphodiesterase 2 (CNP2). Immunoblot analysis indicated that both CNP1 and CNP2 isoforms are present in the CBL-PSD fraction, whereas there is little CNP2 in the forebrain (FB)-PSD fraction. Both isoforms in the CBL-PSD fraction were tyrosine-phosphorylated to a basal extent. They were efficiently dissociated from the complexes in the PSD fraction by salt, but not by non-ionic detergents such as n-octyl glucoside (OG) and Triton X-100. Immunocytochemistry of dissociated cerebellar cultures revealed patchy CNP staining in oligodendrocytes (OLs), Purkinje cells (PCs), and unidentified PSD95-positive cells, but no staining in granule cells (GCs). Our results indicate that both CNP1 and CNP2 are expressed in cerian populations of cerebellar cells in addition to OL, and that they are associated with complexes that are co-isolated with the PSD. PMID:14503857

  18. Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons

    PubMed Central

    Amarillo, Yimy; De Santiago-Castillo, Jose A; Dougherty, Kevin; Maffie, Jonathon; Kwon, Elaine; Covarrubias, Manuel; Rudy, Bernardo

    2008-01-01

    Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current (ISA) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the ISA in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K+ currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native ISA-mediating channels. PMID:18276729

  19. Characterization of Mast Cell Secretory Granules and Their Cell Biology

    PubMed Central

    Azouz, Nurit Pereg; Hammel, Ilan

    2014-01-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition. PMID:24988214

  20. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    PubMed

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease. PMID:9341943

  1. Differential effects of polybrominated diphenyl ethers and polychlorinated biphenyls on [3H]arachidonic acid release in rat cerebellar granule neurons.

    PubMed

    Kodavanti, Prasada Rao S; Derr-Yellin, Ethel C

    2002-08-01

    Polybrominated diphenyl ethers (PBDEs), which are widely used as flame-retardants, have been increasing in environmental and human tissue samples during the past 20-30 years, while other structurally related, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (on a TEQ basis), have decreased. PBDEs have been detected in human blood, adipose tissue, and breast milk, and developmental and long-term exposure to these contaminants may pose a human health risk, especially to children. Previously, we demonstrated that PCBs, which cause neurotoxic effects, including changes in learning and memory, stimulated the release of [(3)H]arachidonic acid ([(3)H]AA) by a cPLA(2)/iPLA(2)-dependent mechanism. PLA(2)(phospholipase A(2)) activity has been associated with learning and memory, and AA has been identified as a second messenger involved in synaptic plasticity. The objective of the present study was to test whether PBDE mixtures (DE-71 and DE-79), like other organohalogen mixtures, have a similar action on [(3)H]AA release in an in vitro neuronal culture model. Cerebellar granule cells at 7 days in culture were labeled with [(3)H]AA for 16-20 h and then exposed in vitro to PBDEs. DE-71, a mostly pentabromodiphenyl ether mixture, significantly stimulated [(3)H]AA release at concentrations as low as 10 microg/ml, while DE-79, a mostly octabromodiphenyl ether mixture, did not stimulate [(3)H]AA release, even at 50 microg/ml. The release of [(3)H]AA by DE-71 is time-dependent, and a significant increase was seen after only 5-10 min of exposure. The removal and chelation of calcium from the exposure buffer, using 0.3 mM EGTA, significantly attenuated the DE-71-stimulated [(3)H]AA release; however, only an 18% inhibition of the release was demonstrated for the calcium replete conditions at 30 microg/ml DE-71. Methyl arachidonylfluorophosphonate (5 microM), an inhibitor of cPLA(2)/iPLA(2), completely attenuated the DE-71

  2. Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…

  3. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  4. Memory trace and timing mechanism localized to cerebellar Purkinje cells.

    PubMed

    Johansson, Fredrik; Jirenhed, Dan-Anders; Rasmussen, Anders; Zucca, Riccardo; Hesslow, Germund

    2014-10-14

    The standard view of the mechanisms underlying learning is that they involve strengthening or weakening synaptic connections. Learned response timing is thought to combine such plasticity with temporally patterned inputs to the neuron. We show here that a cerebellar Purkinje cell in a ferret can learn to respond to a specific input with a temporal pattern of activity consisting of temporally specific increases and decreases in firing over hundreds of milliseconds without a temporally patterned input. Training Purkinje cells with direct stimulation of immediate afferents, the parallel fibers, and pharmacological blocking of interneurons shows that the timing mechanism is intrinsic to the cell itself. Purkinje cells can learn to respond not only with increased or decreased firing but also with an adaptively timed activity pattern. PMID:25267641

  5. Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nuclear nucleus

    PubMed Central

    Diño, Maria. R.; Mugnaini, Enrico

    2009-01-01

    In most mammals the cochlear nuclear complex (CN) contains a distributed system of granule cells (GCS), whose parallel fiber axons innervate the dorsal cochlear nucleus (DCN). Like their counterpart in cerebellum, CN granules are innervated by mossy fibers of various origins. The GCS is complemented by unipolar brush (UBCs) and Golgi cells, and by stellate and cartwheel cells of the DCN. This cerebellum-like microcircuit modulates the activity of the DCN’s main projection neurons, the pyramidal, giant and tuberculoventral neurons, and is thought to improve auditory performance by integrating acoustic and proprioceptive information. In this paper, we focus on the UBCs, a chemically heterogeneous neuronal population, using antibodies to calretinin, mGluR1α epidermal growth factor substrate 8 (Eps8) and the transcription factor Tbr2. Eps8 and Tbr2 labeled most of the CN’s UBCs, if not the entire population, while calretinin and mGluR1α distinguished two largely separate subsets with overlapping distributions. By double labeling with antibodies to Tbr2 and the α6 GABAA-receptor subunit, we found that UBCs populate all regions of the GCS and occur at remarkably high densities in the DCN and subpeduncular corner, but rarely in the lamina. Although GCS subregions likely share the same microcircuitry, their dissimilar UBC densities suggest they may be functionally distinct. UBCs and granules are also present in regions previously not included in the GCS, namely the rostrodorsal magnocellular portions of VCN, vestibular nerve root, trapezoid body, spinal tract and sensory and principal nuclei of the trigeminal nerve, and cerebellar peduncles. The UBC’s dendritic brush receives AMPA- and NMDA-mediated input from an individual mossy fiber, favoring singularity of input, and its axon most likely forms several mossy fiber-like endings that target numerous granule cells and other UBCs, as in the cerebellum. The UBCs therefore, may amplify afferent signals temporally and

  6. Optogenetic Manipulation of Cerebellar Purkinje Cell Activity In Vivo

    PubMed Central

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita; Sato, Ayana; Miyashita, Yasushi

    2011-01-01

    Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum

  7. Implications on cerebellar function from information coding.

    PubMed

    Huang, Chiming

    2008-01-01

    One function of the cerebellar cortex is to process information. There are at least two types of information. Temporal information is encoded in the timing pattern of action and synaptic potentials, whereas structural information is encoded in the spatial pattern of the cerebellar synaptic circuitry. Intuitively, analysis of highly complex information in the time domain would require a cerebellar cortex with structural complexity to match. Information theory offers a way to estimate quantitatively both types of information and thereby helps to test hypotheses or advance theories of cerebellar neurobiology. These estimates suggest: (i) That the mossy-fiber-granule-cell system carries far more (temporal) information than the climbing fiber system, (ii) that Purkinje cells extract only a fraction of the (temporal) information from their afferents, and (iii) that the cerebellar cortex has a large (spatial) information coding capacity. Concerning information, one can argue that the cerebellar cortex analyzes temporal information in its afferents as a search engine, in search of coincidental mossy fiber events based on timing cues provided by climbing fiber events. Results of successive searches are continuously being converted into structural information encoded in the spatial distribution pattern of granule-cell-Purkinje-cell synapses along granule cell axons, thereby providing an adaptive and indeed self-correcting dimension to the structural information code. The search engine operation involves cellular mechanisms acting on temporal events and is part of an associative learning process. The conversion and generation of structural information involves neuroplasticity mechanisms acting at the synaptic level, with electrophysiological as well as structural consequences, and may be part of the short- and long-term memory process. These and other attributes qualify the cerebellar cortex as a dynamic information processing center, contributing to memory and learning while

  8. Unusual morphological damage of Purkinje cells following postnatal BrdU administration in the cerebellar cortex of mouse.

    PubMed

    Takács, T

    2012-01-01

    Postnatal development of the cerebellum lasts for weeks in rodents and can be disturbed by systemic 5-bromo-2'-deoxyuridine (BrdU) administration. This thymidine analogue incorporates into the DNA of proliferating cells, and result in more or less serious damage or death granule cells, the most actively dividing neuronal population in the developing cerebellar cortex. Further consequences of postnatal BrdU administration are the interrupted postnatal migration and integrations as well as partial loss of cerebellar Purkinje cells. In the present study, C57B16 mice were administered with 50 μg/g body weight BrdU, one sc. injection daily, between P0 and P11 postnatal days, respectively.Large "cavities" appeared in the cytoplasm of a subpopulation of Purkinje cells by P7 in about one-third of administered animals, their number are size of the cavities (and PCs exhibiting unusual morphology) decreased. EM studies revealed that the unusual Purkinje cells received numerous axonal inputs of unknown origin, first of all on their somatic and dendritic spines. The transitory appearance of a subpopulation of Purkinje cells possessing unusual morphology refers to the influence of other (neuronal, glial, or both) cells on their regular differentiation. PMID:22514871

  9. Encoding of whisker input by cerebellar Purkinje cells

    PubMed Central

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Joël; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-01-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells. We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres. PMID:20724365

  10. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    SciTech Connect

    Baconnais, S.; Delavoie, F. |; Zahm, J.M.; Milliot, M.; Castillon, N.; Terryn, C.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E. , E-Mail: edith.puchelle@univ-reims.fr; Balossier, G.

    2005-10-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.

  11. Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum

    PubMed Central

    Haldipur, Parthiv; Sivaprakasam, Iswariya; Periasamy, Vinod; Govindan, Subashika; Mani, Shyamala

    2015-01-01

    ABSTRACT The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of β-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of β-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of β-Catenin was shown to occur towards the source of a localized extracellular cue. PMID:25979710

  12. Signal transduction pathways in mast cell granule-mediated endothelial cell activation.

    PubMed Central

    Chi, Luqi; Stehno-Bittel, Lisa; Smirnova, Irina; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2003-01-01

    BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen

  13. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  14. Cerebellar Globular Cells Receive Monoaminergic Excitation and Monosynaptic Inhibition from Purkinje Cells

    PubMed Central

    Hirono, Moritoshi; Saitow, Fumihito; Kudo, Moeko; Suzuki, Hidenori; Yanagawa, Yuchio; Yamada, Masahisa; Nagao, Soichi; Konishi, Shiro; Obata, Kunihiko

    2012-01-01

    Inhibitory interneurons in the cerebellar granular layer are more heterogeneous than traditionally depicted. In contrast to Golgi cells, which are ubiquitously distributed in the granular layer, small fusiform Lugaro cells and globular cells are located underneath the Purkinje cell layer and small in number. Globular cells have not been characterized physiologically. Here, using cerebellar slices obtained from a strain of gene-manipulated mice expressing GFP specifically in GABAergic neurons, we morphologically identified globular cells, and compared their synaptic activity and monoaminergic influence of their electrical activity with those of small Golgi cells and small fusiform Lugaro cells. Globular cells were characterized by prominent IPSCs together with monosynaptic inputs from the axon collaterals of Purkinje cells, whereas small Golgi cells or small fusiform Lugaro cells displayed fewer and smaller spontaneous IPSCs. Globular cells were silent at rest and fired spike discharges in response to application of either serotonin (5-HT) or noradrenaline. The two monoamines also facilitated small Golgi cell firing, but only 5-HT elicited firing in small fusiform Lugaro cells. Furthermore, globular cells likely received excitatory monosynaptic inputs through mossy fibers. Because globular cells project their axons long in the transversal direction, the neuronal circuit that includes interplay between Purkinje cells and globular cells could regulate Purkinje cell activity in different microzones under the influence of monoamines and mossy fiber inputs, suggesting that globular cells likely play a unique modulatory role in cerebellar motor control. PMID:22235322

  15. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons.

    PubMed Central

    Schweitz, H; Heurteaux, C; Bois, P; Moinier, D; Romey, G; Lazdunski, M

    1994-01-01

    Calcicludine (CaC) is a 60-amino acid polypeptide from the venom of Dendroaspis angusticeps. It is structurally homologous to the Kunitz-type protease inhibitor, to dendrotoxins, which block K+ channels, and to the protease inhibitor domain of the amyloid beta protein that accumulates in Alzheimer disease. Voltage-clamp experiments on a variety of excitable cells have shown that CaC specifically blocks most of the high-threshold Ca2+ channels (L-, N-, or P-type) in the 10-100 nM range. Particularly high densities of specific 125I-labeled CaC binding sites were found in the olfactory bulb, in the molecular layer of the dentate gyrus and the stratum oriens of CA3 field in the hippocampal formation, and in the granular layer of the cerebellum. 125I-labeled CaC binds with a high affinity (Kd = 15 pM) to a single class of noninteracting sites in rat olfactory bulb microsomes. The distribution of CaC binding sites in cerebella of three mutant mice (Weaver, Reeler, and Purkinje cell degeneration) clearly shows that the specific high-affinity labeling is associated with granule cells. Electrophysiological experiments on rat cerebellar granule neurons in primary culture have shown that CaC potently blocks the L-type component of the Ca2+ current (K0.5 = 0.2 nM). Then CaC, in the nanomolar range, appears to be a highly potent blocker of an L-subtype of neuronal Ca2+ channels. Images PMID:8302860

  16. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    PubMed Central

    Huckleberry, Kylie A.; Kane, Gary A.; Mathis, Rita J.; Cook, Sarah G.; Clutton, Jonathan E.; Drew, Michael R.

    2015-01-01

    Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly

  17. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(-/-).

    PubMed

    Zanjani, S Hadi; Selimi, Fekrije; Vogel, Michael W; Haeberlé, Anne-Marie; Boeuf, Julien; Mariani, Jean; Bailly, Yannick J

    2006-08-01

    The Lurcher mutation in the Grid2 gene causes the cell autonomous death of virtually all cerebellar Purkinje cells and the target-related death of 90% of the granule cells and 60-75% of the olivary neurons. Inactivation of Bax, a pro-apoptotic gene of the Bcl-2 family, in heterozygous Lurcher mutants (Grid2Lc/+) rescues approximately 60% of the granule cells, but does not rescue Purkinje or olivary neurons. Given the larger size of the cerebellar molecular layer in Grid2Lc/+;Bax(-/-) double mutants compared to Grid2Lc/+ mutants, we analyzed the survival of the stellate and basket interneurons as well as the synaptic connectivity of parallel fibers originating from the surviving granule cells in the absence of their Purkinje cell targets in the Grid2Lc/+;Bax(-/-) cerebellum. Quantification showed a significantly higher density of interneurons ( approximately 60%) in the molecular layer of the Grid2Lc/+;Bax(-/-) mice compared to Grid2Lc/+, suggesting that interneurons are subject to a BAX-dependent target-related death in the Lurcher mutants. Furthermore, electron microscopy showed the normal ultrastructural aspect of a number of parallel fibers in the molecular layer of the Grid2Lc/+; Bax(-/-) double mutant mice and preserved their numerous synaptic contacts on interneurons, suggesting that interneurons could play a trophic role for axon terminals of surviving granule cells. Finally, parallel fibers varicosities in the double mutant established "pseudo-synapses" on glia as well as displayed autophagic profiles, suggesting that the connections established by the parallel fibers in the absence of their Purkinje cell targets were subject to a high turnover involving autophagy. PMID:16739195

  18. Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum

    PubMed Central

    Legué, Emilie; Riedel, Elyn; Joyner, Alexandra L.

    2015-01-01

    The mammalian cerebellum consists of folds of different sizes and shapes that house distinct neural circuits. A crucial factor underlying foliation is the generation of granule cells (gcs), the most numerous neuron type in the brain. We used clonal analysis to uncover global as well as folium size-specific cellular behaviors that underlie cerebellar morphogenesis. Unlike most neural precursors, gc precursors divide symmetrically, accounting for their massive expansion. We found that oriented cell divisions underlie an overall anteroposteriorly polarized growth of the cerebellum and gc clone geometry. Clone geometry is further refined by mediolateral oriented migration and passive dispersion of differentiating gcs. Most strikingly, the base of each fissure acts as a boundary for gc precursor dispersion, which we propose allows each folium to be regulated as a developmental unit. Indeed, the geometry and size of clones in long and short folia are distinct. Moreover, in engrailed 1/2 mutants with shorter folia, clone cell number and geometry are most similar to clones in short folia of wild-type mice. Thus, the cerebellum has a modular mode of development that allows the plane of cell division and number of divisions to be differentially regulated to ensure that the appropriate number of cells are partitioned into each folium. PMID:25834018

  19. FIB/SEM cell sectioning for intracellular metal granules characterization

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  20. Localization of human intestinal defensin 5 in Paneth cell granules.

    PubMed Central

    Porter, E M; Liu, L; Oren, A; Anton, P A; Ganz, T

    1997-01-01

    Antibiotic peptides of higher animals include the defensins, first discovered in phagocytic cells but recently also found to be produced by epithelial cells. We biosynthesized recombinant human intestinal defensin 5 (rHD-5) using the baculovirus-insect cell expression system. Since insect cells process defensin incompletely and secrete the precursor proHD-5, we substituted a methionine for an alanine at a likely processing site to allow selective chemical cleavage with cyanogen bromide, and rHD-5 was used to elicit polyclonal antibodies. By the immunoperoxidase-staining technique, the antibodies selectively stained Paneth cells of the normal adult small intestine. Immunogold electron microscopy further localized HD-5 to the Paneth cell secretory granules. Since some defensins exert activity cytotoxic to mammalian cells, we assayed the effect of rHD-5 on the human intestinal cell lines Caco2 and Int407. proHD-5 did not exert cytotoxic activity, and rHD-5 showed only minimal activity against Int407 and was inert against Caco2. Since Paneth cells release their granules adjacent to the mitotic cells of the intestinal crypts, HD could protect this cell population against invasion and parasitization by microbes. PMID:9169779

  1. Menin immunoreactivity in secretory granules of human pancreatic islet cells.

    PubMed

    Debelenko, Larisa V; Agarwal, Sunita; Du, Qiang; Yan, Wusheng; Erickson, Heidi S; Abu-Asab, Mones; Raffeld, Mark A; Libutti, Steven K; Marx, Stephen J; Emmert-Buck, Michael R

    2014-01-01

    The protein product of the Multiple Endocrine Neoplasia Type I (MEN1) gene is thought to be involved in predominantly nuclear functions; however, immunohistochemical (IHC) analysis data on cellular localization are conflicting. To further investigate menin expression, we analyzed human pancreas (an MEN1 target organ) using IHC analyses and 6 antibodies raised against full-length menin or its peptides. In 10 normal pancreas specimens, 2 independently raised antibodies showed unexpected cytoplasmic immunoreactivity in peripheral cells in each islet examined (over 100 total across all 10 patients). The staining exhibited a distinct punctate pattern and subsequent immunoelectron microscopy indicated the target antigen was in secretory granules. Exocrine pancreas and pancreatic stroma were not immunoreactive. In MEN1 patients, unaffected islets stained similar to those in normal samples but with a more peripheral location of positive cells, whereas hyperplastic islets and tumorlets showed increased and diffuse cytoplasmic staining, respectively. Endocrine tumors from MEN1 patients were negative for menin, consistent with a 2-hit loss of a tumor suppressor gene. Secretory granule localization of menin in a subset of islet cells suggests a function of the protein unique to a target organ of familial endocrine neoplasia, although the IHC data must be interpreted with some caution because of the possibility of antibody cross-reaction. The identity, cellular trafficking, and role of this putative secretory granule-form of menin warrant additional investigation. PMID:25153502

  2. Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge

    PubMed Central

    Chaumont, Joseph; Guyon, Nicolas; Valera, Antoine M.; Dugué, Guillaume P.; Popa, Daniela; Marcaggi, Paikan; Gautheron, Vanessa; Reibel-Foisset, Sophie; Dieudonné, Stéphane; Stephan, Aline; Barrot, Michel; Cassel, Jean-Christophe; Dupont, Jean-Luc; Doussau, Frédéric; Poulain, Bernard; Selimi, Fekrije; Léna, Clément; Isope, Philippe

    2013-01-01

    Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning. PMID:24046366

  3. Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge.

    PubMed

    Chaumont, Joseph; Guyon, Nicolas; Valera, Antoine M; Dugué, Guillaume P; Popa, Daniela; Marcaggi, Paikan; Gautheron, Vanessa; Reibel-Foisset, Sophie; Dieudonné, Stéphane; Stephan, Aline; Barrot, Michel; Cassel, Jean-Christophe; Dupont, Jean-Luc; Doussau, Frédéric; Poulain, Bernard; Selimi, Fekrije; Léna, Clément; Isope, Philippe

    2013-10-01

    Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning. PMID:24046366

  4. Reciprocal autoregulation by NFI occupancy and ETV1 promotes the developmental expression of dendrite-synapse genes in cerebellar granule neurons

    PubMed Central

    Ding, Baojin; Cave, John W.; Dobner, Paul R.; Mullikin-Kilpatrick, Debra; Bartzokis, Marina; Zhu, Hong; Chow, Chi-Wing; Gronostajski, Richard M.; Kilpatrick, Daniel L.

    2016-01-01

    Nuclear Factor One (NFI) transcription factors regulate temporal gene expression required for dendritogenesis and synaptogenesis via delayed occupancy of target promoters in developing cerebellar granule neurons (CGNs). Mechanisms that promote NFI temporal occupancy have not been previously defined. We show here that the transcription factor ETV1 directly binds to and is required for expression and NFI occupancy of a cohort of NFI-dependent genes in CGNs maturing in vivo. Expression of ETV1 is low in early postnatal cerebellum and increases with maturation, mirroring NFI temporal occupancy of coregulated target genes. Precocious expression of ETV1 in mouse CGNs accelerated onset of expression and NFI temporal occupancy of late target genes and enhanced Map2(+) neurite outgrowth. ETV1 also activated expression and NFI occupancy of the Etv1 gene itself, and this autoregulatory loop preceded ETV1 binding and activation of other coregulated target genes in vivo. These findings suggest a potential model in which ETV1 activates NFI temporal binding to a subset of late-expressed genes in a stepwise manner by initial positive feedback regulation of the Etv1 gene itself followed by activation of downstream coregulated targets as ETV1 expression increases. Sequential transcription factor autoregulation and subsequent binding to downstream promoters may provide an intrinsic developmental timer for dendrite/synapse gene expression. PMID:26941328

  5. Reciprocal autoregulation by NFI occupancy and ETV1 promotes the developmental expression of dendrite-synapse genes in cerebellar granule neurons.

    PubMed

    Ding, Baojin; Cave, John W; Dobner, Paul R; Mullikin-Kilpatrick, Debra; Bartzokis, Marina; Zhu, Hong; Chow, Chi-Wing; Gronostajski, Richard M; Kilpatrick, Daniel L

    2016-05-01

    Nuclear Factor One (NFI) transcription factors regulate temporal gene expression required for dendritogenesis and synaptogenesis via delayed occupancy of target promoters in developing cerebellar granule neurons (CGNs). Mechanisms that promote NFI temporal occupancy have not been previously defined. We show here that the transcription factor ETV1 directly binds to and is required for expression and NFI occupancy of a cohort of NFI-dependent genes in CGNs maturing in vivo. Expression of ETV1 is low in early postnatal cerebellum and increases with maturation, mirroring NFI temporal occupancy of coregulated target genes. Precocious expression of ETV1 in mouse CGNs accelerated onset of expression and NFI temporal occupancy of late target genes and enhanced Map2(+) neurite outgrowth. ETV1 also activated expression and NFI occupancy of the Etv1 gene itself, and this autoregulatory loop preceded ETV1 binding and activation of other coregulated target genes in vivo. These findings suggest a potential model in which ETV1 activates NFI temporal binding to a subset of late-expressed genes in a stepwise manner by initial positive feedback regulation of the Etv1 gene itself followed by activation of downstream coregulated targets as ETV1 expression increases. Sequential transcription factor autoregulation and subsequent binding to downstream promoters may provide an intrinsic developmental timer for dendrite/synapse gene expression. PMID:26941328

  6. Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid.

    PubMed

    Dashti, Abolfazl; Soodi, Maliheh; Amani, Nahid

    2016-03-01

    Chromium (Cr) is a widespread metal ion in the workplace, industrial effluent, and water. The toxicity of chromium (VI) on various organs including the liver, kidneys, and lung were studied, but little is known about neurotoxicity. In this study, neurotoxic effects of Cr (VI) have been investigated by cultured cerebellar granule neurons (CGNs). Immature and mature neurons were exposed to different concentrations of potassium dichromate for 24 h and cytotoxicity was measured by MTT assay. In addition, immature neurons were exposed for 5 days as regards cytotoxic effect in development stages. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the protective effect of Rosmarinic acid on mature and immature neurons exposed to potassium dichromate, were measured. Furthermore, lipid peroxidation, glutathione peroxidase (GPx), and acetylcholinesterase activity in mature neurons were assessed following exposure to potassium dichromate. The results indicate that toxicity of Cr (VI) dependent on maturation steps. Cr (VI) was less toxic for immature neurons. Also, Cr (VI) induced MMP reduction and ROS production in both immature and mature neurons. In Cr (VI) treated neurons, increased lipid peroxidation and GPx activity but not acetylcholinesterase activity was observed. Interestingly, Rosmarinic acid, as a natural antioxidant, could protect mature but not immature neurons against Cr (VI) induced toxicity. Our findings revealed vulnerability of mature neurons to Cr (VI) induced toxicity and oxidative stress. PMID:25213303

  7. Transplantation of human induced cerebellar granular-like cells improves motor functions in a novel mouse model of cerebellar ataxia

    PubMed Central

    Zhu, Tongming; Tang, Hailiang; Shen, Yiwen; Tang, Qisheng; Chen, Luping; Wang, Zhifu; Zhou, Ping; Xu, Feng; Zhu, Jianhong

    2016-01-01

    Stem cell-based reparative approaches have been applied to cerebellum-related disorders during the last two decades. Direct lineage reprogramming of human fibroblasts into functional granular neurons holds great promise for biomedical applications such as cerebellum regeneration and cellbased disease modeling. In the present study, we showed that a combination of Ascl1, Sox2 and OCT4, in a culture subsequently treated with secreted factors (BMP4, Wnt3a and FGF8b), was capable of converting human fibroblasts from the scalp tissue of patients with traumatic brain injury (TBI) into functional human induced cerebellar granular-like cells (hiCGCs). Morphological analysis, immunocytochemistry, gene expression and electrophysiological analysis were performed to identify the similarity of induced neuronal cells to human cerebellum granular cells. Our strategy improved the efficiency for hiCGCs induction, which gave the highest conversion efficiency 12.30±0.88%, and Ath1+/Tuj1+ double positive cells to 5.56±0.80%. We transplanted hiCGCs into the cerebellum of NmycTRE/TRE: tTS mice, a novel mouse model of cerebellar ataxia, and demonstrated that the hiCGCs were able to survive, migrate, proliferate and promote mild functional recovery after been grafted into cerebellum. PMID:27158363

  8. Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice

    PubMed Central

    Nunes, Daniel; Kuner, Thomas

    2015-01-01

    Granule cells are the dominant cell type of the olfactory bulb inhibiting mitral and tufted cells via dendrodendritic synapses; yet the factors regulating the strength of their inhibitory output, and, therefore, their impact on odour discrimination, remain unknown. Here we show that GABAAR β3-subunits are distributed in a somatodendritic pattern, mostly sparing the large granule cell spines also known as gemmules. Granule cell-selective deletion of β3-subunits nearly abolishes spontaneous and muscimol-induced currents mediated by GABAA receptors in granule cells, yet recurrent inhibition of mitral cells is strongly enhanced. Mice with disinhibited granule cells require less time to discriminate both dissimilar as well as highly similar odourants, while discrimination learning remains unaffected. Hence, granule cells are controlled by an inhibitory drive that in turn tunes mitral cell inhibition. As a consequence, the olfactory bulb inhibitory network adjusts the speed of early sensory processing. PMID:26592770

  9. Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice.

    PubMed

    Nunes, Daniel; Kuner, Thomas

    2015-01-01

    Granule cells are the dominant cell type of the olfactory bulb inhibiting mitral and tufted cells via dendrodendritic synapses; yet the factors regulating the strength of their inhibitory output, and, therefore, their impact on odour discrimination, remain unknown. Here we show that GABAAR β3-subunits are distributed in a somatodendritic pattern, mostly sparing the large granule cell spines also known as gemmules. Granule cell-selective deletion of β3-subunits nearly abolishes spontaneous and muscimol-induced currents mediated by GABAA receptors in granule cells, yet recurrent inhibition of mitral cells is strongly enhanced. Mice with disinhibited granule cells require less time to discriminate both dissimilar as well as highly similar odourants, while discrimination learning remains unaffected. Hence, granule cells are controlled by an inhibitory drive that in turn tunes mitral cell inhibition. As a consequence, the olfactory bulb inhibitory network adjusts the speed of early sensory processing. PMID:26592770

  10. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.

    PubMed

    Szoboszlay, Miklos; Lőrincz, Andrea; Lanore, Frederic; Vervaeke, Koen; Silver, R Angus; Nusser, Zoltan

    2016-06-01

    The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells. PMID:27133465

  11. Different Degrees of Iodine Deficiency Inhibit Differentiation of Cerebellar Granular Cells in Rat Offspring, via BMP-Smad1/5/8 Signaling.

    PubMed

    Dong, Jing; Lei, Xibing; Wang, Yi; Wang, Yuan; Song, Heling; Li, Min; Min, Hui; Yu, Ye; Xi, Qi; Teng, Weiping; Chen, Jie

    2016-09-01

    Iodine deficiency (ID) during development results in dysfunction of the central nervous system (CNS) and affects psychomotor and motor function. It is worth noting that maternal mild and marginal ID tends to be the most common reason of preventable neurodevelopmental impairment, via a mechanism that has not been elucidated. Therefore, our aim was to study the effects of developmental mild and marginal ID on the differentiation of cerebellar granule cells (GCs) and investigate the activation of BMP-Smad1/5/8 signaling, which is crucial for the development and differentiation of cerebellum. Three developmental rat models were created by feeding dam rats with a diet deficient in iodine and deionized water supplemented with potassium iodide. Our results showed that different degrees of ID inhibited and delayed the differentiation of cerebellar GCs on postnatal day (PN) 7, PN14, and PN21. Moreover, mild and severe ID reduced the expression of BMP2 and p-Smad1/5/8, and increased the levels of Id2 on PN7, PN14, and PN21. However, marginal ID rarely altered expression of these proteins in the offspring. Our study supports the hypothesis that mild and severe ID during development inhibits the differentiation of cerebellar GCs, which may be ascribed to the down-regulation of BMP-Smad1/5/8 signaling and the overexpression of Id2. Furthermore, it was speculated that maternal marginal ID rarely affected the differentiation of cerebellar GCs in the offspring. PMID:26307610

  12. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  13. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans.

    PubMed

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hammer, Monia; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-06-28

    A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans. PMID:27320912

  14. Defects in the CAPN1 gene result in alterations in cerebellar development and in cerebellar ataxia in mice and humans

    PubMed Central

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hamad, Monia Ben; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-01-01

    SUMMARY A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous CAPN1 null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knock-out (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1 mediated cleavage of PH domain and Leucine rich repeat Protein Phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis, and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans. PMID:27320912

  15. Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice

    PubMed Central

    Smith, Karen Müller; Williamson, Theresa L.; Schwartz, Michael L.

    2012-01-01

    Fibroblast growth factor receptor (FGFR) signaling determines the size of the cerebral cortex by regulating the amplification of radial glial stem cells, and participates in the formation of midline glial structures. We show that Fgfr1 and Fgfr2 double knockouts (FGFR DKO) generated by Cre mediated recombination driven by the human GFAP promoter (hGFAP) have reduced cerebellar size due to reduced proliferation of radial glia and other glial precursors in late embryonic and neonatal FGFR DKO mice. The proliferation of granule cell progenitors (GCPs) in the EGL was also reduced, leading to reduced granule cell numbers. Furthermore, both inward migration of granule cells into the inner granule cell layer (IGL) and outward migration of GABA interneurons into the molecular layer (ML) were arrested, disrupting layer and lobular morphology. Purkinje neurons and their dendrites, which were not targeted by Cre mediated recombination of Fgf receptors, were also misplaced in FGFR DKO mice, possibly as a consequence of altered Bergmann glia orientation or reduced granule cell number. Our findings indicate a dual role for FGFR signaling in cerebellar morphogenesis. The first role is to amplify the number of granule neuron precursors in the external granular layer and glial precursor cells throughout the cerebellum. The second is to establish the correct Bergmann glia morphology, which is crucial for granule cell migration. The disrupted cerebellar size and laminar architecture resulting from loss of FGFR signaling impairs motor learning and coordination in FGFR DKO mice. PMID:22578469

  16. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    PubMed

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications. PMID:25578036

  17. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.

    PubMed

    Hammel, Ilan; Anaby, Debbie

    2007-09-01

    The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules. PMID:17557275

  18. In vivo imaging of dendritic pruning in dentate granule cells.

    PubMed

    Gonçalves, J Tiago; Bloyd, Cooper W; Shtrahman, Matthew; Johnston, Stephen T; Schafer, Simon T; Parylak, Sarah L; Tran, Thanh; Chang, Tina; Gage, Fred H

    2016-06-01

    We longitudinally imaged the developing dendrites of adult-born mouse dentate granule cells (DGCs) in vivo and found that they underwent over-branching and pruning. Exposure to an enriched environment and constraint of dendritic growth by disrupting Wnt signaling led to increased branch addition and accelerated growth, which were, however, counteracted by earlier and more extensive pruning. Our results indicate that pruning is regulated in a homeostatic fashion to oppose excessive branching and promote a similar dendrite structure in DGCs. PMID:27135217

  19. Exposure to 50 Hz magnetic field modulates GABAA currents in cerebellar granule neurons through an EP receptor-mediated PKC pathway.

    PubMed

    Yang, Guang; Ren, Zhen; Mei, Yan-Ai

    2015-10-01

    Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABA(A) Rs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABA(A) Rs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABA(A) R currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABA(A) R currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABA(A) R currents. Together, these data obviously demonstrated for the first time that neuronal GABA(A) currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects. PMID:26176998

  20. Exposure to 50 Hz magnetic field modulates GABAA currents in cerebellar granule neurons through an EP receptor-mediated PKC pathway

    PubMed Central

    Yang, Guang; Ren, Zhen; Mei, Yan-Ai

    2015-01-01

    Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABAARs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABAARs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABAAR currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABAAR currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABAAR currents. Together, these data obviously demonstrated for the first time that neuronal GABAA currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects. PMID:26176998

  1. Sustained Arc expression in adult-generated granule cells.

    PubMed

    Meconi, Alicia; Lui, Erika; Marrone, Diano F

    2015-08-31

    The dentate gyrus (DG) plays a critical role in memory formation and maintenance. Fitting this specialized role, the DG has many unique characteristics. In addition to being one of the few places in which new neurons are continually added in adulthood, the region also shows a unique long-term sustained transcriptional response of the immediate-early gene Arc to sensory input. Although we know that adult-generated granule cells are reliably recruited into behaviorally-driven neuronal network, it remains unknown whether they display robust late-phase sustained transcription in response to activity like their developmentally-generated counterparts. Since this late-phase of transcription is required for enduring plasticity, knowing if sustained transcription appears as soon as these cells are incorporated provides information on their potential for plasticity. To address this question, adult F344 rats were injected with BrdU (50mg/kg/day for 5 days) and 4 weeks later explored a novel environment. Arc expression in both BrdU- and BrdU+ neurons was determined 0.5h, 1h, 2h, 6h, 8h, 12h, or 24h following this behavior. Recently-generated granule cells showed a robust sustained Arc expression following a discrete behavioral experience. These data provide information on a potential mechanism to sculpt the representations of events occurring within hours of each other to create uncorrelated representations of episodes despite a highly excitable population of neurons. PMID:26219984

  2. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  3. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.

    PubMed

    De Schutter, E; Bower, J M

    1994-01-01

    1. Both excitatory and inhibitory postsynaptic channels were added to a previously described complex compartmental model of a cerebellar Purkinje cell to examine model responses to synaptic inputs. All model parameters remained as described previously, leaving maximum synaptic conductance as the only parameter that was tuned in the studies described in this paper. Under these conditions the model was capable of reproducing physiological recorded responses to each of the major types of synaptic input. 2. When excitatory synapses were activated on the smooth dendrites of the model, the model generated a complex dendritic Ca2+ spike similar to that generated by climbing fiber inputs. Examination of the model showed that activation of P-type Ca2+ channels in both the smooth and spiny dendrites augmented the depolarization during the complex spike and that Ca(2+)-activated K+ channels in the same dendritic regions determined the duration of the spike. When these synapses were activated under simulated current-clamp conditions the model also generated the characteristic dual reversal potential of the complex spike. The shape of the dendritic complex spike could be altered by changing the maximum conductance of the climbing fiber synapse and thus the amount of Ca2+ entering the cell. 3. To explore the background simple spike firing properties of Purkinje cells in vivo we added excitatory "parallel fiber" synapses to the spiny dendritic branches of the model. Continuous asynchronous activation of these granule cell synapses resulted in the generation of spontaneous sodium spikes. However, very low asynchronous input frequencies produced a highly regular, very fast rhythm (80-120 Hz), whereas slightly higher input frequencies resulted in Purkinje cell bursting. Both types of activity are uncharacteristic of in vivo Purkinje cell recordings. 4. Inhibitory synapses of the sort presumably generated by stellate cells were also added to the dendritic tree. When asynchronous

  4. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  5. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    SciTech Connect

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana . E-mail: borrelli@uci.edu

    2007-08-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.

  6. Using human induced pluripotent stem cells to model cerebellar disease: Hope and hype

    PubMed Central

    Wiethoff, Sarah; Arber, Charles; Li, Abi; Wray, Selina; Houlden, Henry; Patani, Rickie

    2015-01-01

    The cerebellum forms a highly ordered and indispensible component of motor function within the adult neuraxis, consisting of several distinct cellular subtypes. Cerebellar disease, through a variety of genetic and acquired causes, results in the loss of function of defined subclasses of neurons, and remains a significant and untreatable health care burden. The scarcity of therapies in this arena can partially be explained by unresolved disease mechanisms due to inaccessibility of human cerebellar neurons in a relevant experimental context where initiating disease mechanisms could be functionally elucidated, or drug screens conducted. In this review we discuss the potential promise of human induced pluripotent stem cells (hiPSCs) for regenerative neurology, with a particular emphasis on in vitro modelling of cerebellar degeneration. We discuss progress made thus far using hiPSC-based models of neurodegeneration, noting the relatively slower pace of discovery made in modelling cerebellar dysfunction. We conclude by speculating how strategies attempting cerebellar differentiation from hiPSCs can be refined to allow the generation of accurate disease models. This in turn will permit a greater understanding of cerebellar pathophysiology to inform mechanistically rationalised therapies, which are desperately needed in this field. PMID:25985846

  7. Only a Minority of the Inhibitory Inputs to Cerebellar Golgi Cells Originates from Local GABAergic Cells123

    PubMed Central

    2016-01-01

    Abstract Cerebellar Golgi cells (GoCs) efficiently control the spiking activity of granule cells through GABAA receptor-mediated tonic and phasic inhibition. Recent experiments provided compelling evidence for the extensive interconnection of GoCs through electrical synapses, but their chemical inhibitory synaptic inputs are debated. Here, we investigated the GABAergic synaptic inputs of GoCs using in vitro electrophysiology and quantitative light microscopy (LM) and electron microscopy (EM). We characterized GABAA receptor-mediated IPSCs in GoCs and Lugaro cells (LuCs), and found that IPSCs in GoCs have lower frequencies, smaller amplitudes, and much slower decay kinetics. Pharmacological and LM immunolocalization experiments revealed that GoCs express α3, whereas LuCs express α1 subunit-containing GABAA receptors. The selective expression and clustered distribution of the α3 subunit in GoCs allowed the quantitative analysis of GABAergic synapses on their dendrites in the molecular layer (ML). EM and LM experiments in rats, and wild-type and GlyT2-GFP transgenic mice revealed that only one third of axon terminals establishing GABAergic synapses on GoC dendrites contain GlyT2, ruling out LuCs, globular cells, and any noncortical glycinergic inputs as major inhibitory sources. We also show that axon terminals of stellate/basket cells very rarely innervate GlyT2-GFP-expressing GoCs, indicating that only a minority of the inhibitory inputs to GoCs in the ML originates from local interneurons, and the majority of their inhibitory inputs exclusively releases GABA. PMID:27257627

  8. Neurotrophic effects of PACAP in the cerebellar cortex.

    PubMed

    Botia, Béatrice; Basille, Magali; Allais, Aurélie; Raoult, Emilie; Falluel-Morel, Anthony; Galas, Ludovic; Jolivel, Valérie; Wurtz, Olivier; Komuro, Hitoshi; Fournier, Alain; Vaudry, Hubert; Burel, Delphine; Gonzalez, Bruno J; Vaudry, David

    2007-09-01

    In the rodent cerebellum, PACAP is expressed by Purkinje neurons and PAC1 receptors are present on granule cells during both the development period and in adulthood. Treatment of granule neurons with PACAP inhibits proliferation, slows migration, promotes survival and induces differentiation. PACAP also protects cerebellar granule cells against the deleterious effects of neurotoxic agents. Most of the neurotrophic effects of PACAP are mediated through the cAMP/PKA signaling pathway and often involve the ERK MAPkinase. Caspase-3 is one of the key enzymes implicated in the neuroprotective action of PACAP but PACAP also inhibits caspase-9 activity and increases Bcl-2 expression. PACAP and functional PAC1 receptors are expressed in the monkey and human cerebellar cortex with a pattern of expression very similar to that described in rodents, suggesting that PACAP could also exert neurodevelopmental and neuroprotective functions in the cerebellum of primates including human. PMID:17544170

  9. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    SciTech Connect

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-03-01

    Incubation of (/sup 35/S)heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of /sup 35/S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of (/sup 35/S)heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular (/sup 35/S)heparin proteoglycan after 24 hours and the appearance of free (/sup 35/S)sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading (/sup 35/S)heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule.

  10. Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation

    PubMed Central

    Bender, R. A.; Lauterborn, J. C.; Gall, C. M.; Cariaga, W.; Baram, T. Z.

    2011-01-01

    Differentiation and maturation of dentate gyrus granule cells requires coordinated interactions of numerous processes. These must be regulated by protein factors capable of integrating signals mediated through diverse signalling pathways. Such integrators of inter and intracellular physiological stimuli include the cAMP-response element binding protein (CREB), a leucine-zipper class transcription factor that is activated through phosphorylation. Neuronal activity and neurotrophic factors, known to be involved in granule cell differentiation, are major physiologic regulators of CREB function. To examine whether CREB may play a role in governing coordinated gene transcription during granule cell differentiation, we determined the spatial and temporal profiles of phosphorylated (activated) CREB throughout postnatal development in immature rat hippocampus. We demonstrate that CREB activation is confined to discrete, early stages of granule cell differentiation. In addition, CREB phosphorylation occurs prior to expression of the neurotrophins BDNF and NT-3. These data indicate that in a signal transduction cascade connecting CREB and neurotrophins in the process of granule cell maturation, CREB is located upstream of neurotrophins. Importantly, CREB may be a critical component of the machinery regulating the coordinated transcription of genes contributing to the differentiation of granule cells and their integration into the dentate gyrus network. PMID:11207803

  11. Sequestration of Highly Expressed mRNAs in Cytoplasmic Granules, P-Bodies, and Stress Granules Enhances Cell Viability

    PubMed Central

    Lavut, Anna; Raveh, Dina

    2012-01-01

    Transcriptome analyses indicate that a core 10%–15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical population and enhance

  12. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development

    PubMed Central

    McNeill, Elizabeth M.; Klöckner-Bormann, Mariana; Roesler, Elizabeth C.; Talton, Lynn E.; Moechars, Dieder; Clagett-Dame, Margaret

    2011-01-01

    Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons. PMID:21419114

  13. Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.

    PubMed

    McNeill, Elizabeth M; Klöckner-Bormann, Mariana; Roesler, Elizabeth C; Talton, Lynn E; Moechars, Dieder; Clagett-Dame, Margaret

    2011-05-15

    Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests that the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons. PMID:21419114

  14. Innovative macroporous granules of nanostructured-hydroxyapatite agglomerates: bioactivity and osteoblast-like cell behaviour.

    PubMed

    Laranjeira, M S; Fernandes, M H; Monteiro, F J

    2010-12-01

    To modulate the biological response of implantable granules, two types of bioactive porous granules composed of nanostructured-hydroxyapatite (HA) agglomerates and microstructured-HA, respectively, were prepared using a polyurethane sponge impregnation and burnout method. The resulting granules presented a highly porous structure with interconnected porosity. Both types of granules were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry. Results showed that nanostructed-HA granules presented higher surface area and porosity than microstructured-HA granules. In vitro testing using MG63 human osteoblast-like cells showed that on both types of surfaces cells were able to adhere, proliferate, and migrate through the macropores, and a higher growth rate was achieved on nanostructured-HA granules than on microstructured-HA granules (76 and 40%, respectively). In addition, these cells maintained similar expression levels of osteoblastic-associated markers namely collagen type I, alkaline phosphatase, bone morphogenetic protein-2, macrophage colony-stimulating factor, and osteoprotegerin. These innovative nanostructured-HA granules may be considered as promising bioceramic alternative matrixes for bone regeneration and drug release application. PMID:20845490

  15. The stealthy nano-machine behind mast cell granule size distribution.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2015-01-01

    The classical model of mast cell secretory granule formation suggests that newly synthesized secretory mediators, transported from the rough endoplasmic reticulum to the Golgi complex, undergo post-transitional modification and are packaged for secretion by condensation within membrane-bound granules of unit size. These unit granules may fuse with other granules to form larger granules that reside in the cytoplasm until secreted. A novel stochastic model for mast cell granule growth and elimination (G&E) as well as inventory management is presented. Resorting to a statistical mechanics approach in which SNAP (Soluble NSF Attachment Protein) REceptor (SNARE) components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation that can perform granule growth and secretion. Granule stock is maintained as a buffer to meet uncertainty in demand by the extracellular environment and to serve as source of supply during the lead time to produce granules of adaptive content. Experimental work, mathematical calculations, statistical modeling and a rationale for the emergence of nearly last-in, first out inventory management, are discussed. PMID:24629227

  16. Characterization of the T-cell subpopulations in the granulation tissues of chronic suppurative otitis media

    PubMed Central

    WANG, BING; CHENG, YING; XU, MIN

    2016-01-01

    The present study aimed to investigate the potential involvement of specific T-cell subpopulations in granulation tissue formation in chronic suppurative otitis media (CSOM). Fifteen patients with CSOM were enrolled in this study. Granulation tissues were obtained from the middle ear cavity. Hematoxylin and eosin staining was performed for histopathological observation, and different T-cell subpopulations were characterized by immunohistochemistry. No evident association was identified between granulation tissue formation and disease course. The number of cluster of differentiation 8+ (CD8+) T cells, forkhead box P3+ (FOXP3+) regulatory T (Treg) cells and OX40+ T cells were significantly higher in granulation tissues from patients with ear discharge within the last 6 months compared to those without (P<0.05). Fresh granulation tissues had more CD8+ T cells and FOXP3+ Treg cells compared to the mature granulation tissues (P<0.05). There was a differential abundance of specific T-cell subpopulations in the granulation tissues in CSOM with different disease courses or with ear discharge, suggesting that T cell-mediated cellular immunity is involved in lesion formation of CSOM. PMID:27313854

  17. Clonal Analysis of Newborn Hippocampal Dentate Granule Cell Proliferation and Development in Temporal Lobe Epilepsy123

    PubMed Central

    LaSarge, Candi L.; McAuliffe, John J.

    2015-01-01

    Abstract Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented “basal” dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of “bad actor” progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with “basal” dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy. PMID:26756038

  18. Studies on the pH gradient and histamine uptake of isolated mast cell granules

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1986-05-01

    A purified preparation of mast cell granules with intact perigranular membranes was obtained using a method involving probe sonication of rat serosal mast cells followed by differential centrifugation and Percoll gradient separation of the granules. Purification was assessed with histamine and mast cell granule protease assays. Granule integrity was demonstrated by light and electron microscopy and quantitated with a ruthenium red binding assay. The low yield of granules (20 ..mu..g protein/4 rats) necessitated the development of two microanalytical techniques to demonstrate the existence of a pH gradient across the membrane: 9-aminoacridine fluorescence studies in a cuvet with 50 ..mu..l capacity and /sup 14/C-methylamine distribution studies on microgram quantities of granule protein. Quantitation of results from isotope studies were confounded by the presence of oil used for separating granules from the aqueous phase. Nonetheless, an extrapolation procedure calibrated by external pH yielded an internal pH value of 5.46 +/- .03 (n = 4), consistent with values observed in granules obtained from other secretory cells. Collapse of the pH gradient by NH/sub 4//sup +/ or nigericin/KCl was demonstrated using either technique. Addition of histamine depressed intragranular pH, suggesting that histamine transport may utilize the ..delta..pH as a driving force.

  19. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules

    PubMed Central

    Brunello, Cecilia A.; Yan, Xu; Huttunen, Henri J.

    2016-01-01

    Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer’s disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology. PMID:27460788

  20. Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules

    PubMed Central

    Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won

    2011-01-01

    Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958

  1. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    SciTech Connect

    Gianotti, A.J.; Clark, D.T.; Dash, J. )

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  2. Granulated peripolar epithelial cells in the renal corpuscle of marine elasmobranch fish.

    PubMed

    Lacy, E R; Reale, E

    1989-07-01

    Granulated epithelial cells at the vascular pole of the renal corpuscle, peripolar cells, have been found in the kidneys of five species of elasmobranchs, the little skate (Raja erinacea), the smooth dogfish shark (Mustelus canis), the Atlantic sharpnose shark (Rhizoprionodon terraenovae), the scalloped hammerhead shark (Sphyrna lewini), and the cow-nosed ray (Rhinoptera bonasus). In a sixth elasmobranch, the spiny dogfish shark (Squalus acanthias), the peripolar cells could not be identified among numerous other granulated epithelial cells. The peripolar cells are located at the transition between the parietal epithelium of Bowman's capsule and the visceral epithelium (podocytes) of the glomerulus, thus forming a cuff-like arrangement surrounding the hilar vessels of the renal corpuscle. These cells may have granules and/or vacuoles. Electron microscopy shows that the granules are membrane-bounded, and contain either a homogeneous material or a paracrystalline structure with a repeating period of about 18 nm. The vacuoles are electron lucent or may contain remnants of a granule. These epithelial cells lie close to the granulated cells of the glomerular afferent arteriole. They correspond to the granular peripolar cells of the mammalian, avian and amphibian kidney. The present study is the first reported occurrence of peripolar cells in a marine organism or in either bony or cartilagenous fish. PMID:2519933

  3. Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus

    PubMed Central

    Lopez-Rojas, Jeffrey; Heine, Martin; Kreutz, Michael R.

    2016-01-01

    The dentate gyrus is the main entry gate for cortical input to the hippocampus and one of the few brain areas where adult neurogenesis occurs. Several studies have shown that it is relatively difficult to induce synaptic plasticity in mature but not in newborn dentate granule cells. In the present work we have systematically addressed how classical protocols to induce synaptic plasticity affect action potential firing and intrinsic excitability in mature granule cells. We found that stimulation paradigms considered to be relevant for learning processes consistently modified the probability to generate action potentials in response to a given synaptic input in mature cells, in some paradigms even without any modification of synaptic strength. Collectively the results suggest that plasticity of intrinsic dendritic excitability has a lower induction-threshold than synaptic plasticity in mature granule cells and that this form of plasticity might be an important mechanism by which mature granule cells contribute to hippocampal function. PMID:26857841

  4. Formation of tRNA granules in the nucleus of heat-induced human cells

    SciTech Connect

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  5. BK Channels Control Cerebellar Purkinje and Golgi Cell Rhythmicity In Vivo

    PubMed Central

    Cheron, Guy; Sausbier, Matthias; Sausbier, Ulrike; Neuhuber, Winfried; Ruth, Peter; Dan, Bernard; Servais, Laurent

    2009-01-01

    Calcium signaling plays a central role in normal CNS functioning and dysfunction. As cerebellar Purkinje cells express the major regulatory elements of calcium control and represent the sole integrative output of the cerebellar cortex, changes in neural activity- and calcium-mediated membrane properties of these cells are expected to provide important insights into both intrinsic and network physiology of the cerebellum. We studied the electrophysiological behavior of Purkinje cells in genetically engineered alert mice that do not express BK calcium-activated potassium channels and in wild-type mice with pharmacological BK inactivation. We confirmed BK expression in Purkinje cells and also demonstrated it in Golgi cells. We demonstrated that either genetic or pharmacological BK inactivation leads to ataxia and to the emergence of a beta oscillatory field potential in the cerebellar cortex. This oscillation is correlated with enhanced rhythmicity and synchronicity of both Purkinje and Golgi cells. We hypothesize that the temporal coding modification of the spike firing of both Purkinje and Golgi cells leads to the pharmacologically or genetically induced ataxia. PMID:19956720

  6. Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias.

    PubMed

    Mitoma, Hiroshi; Adhikari, Keya; Aeschlimann, Daniel; Chattopadhyay, Partha; Hadjivassiliou, Marios; Hampe, Christiane S; Honnorat, Jérôme; Joubert, Bastien; Kakei, Shinji; Lee, Jongho; Manto, Mario; Matsunaga, Akiko; Mizusawa, Hidehiro; Nanri, Kazunori; Shanmugarajah, Priya; Yoneda, Makoto; Yuki, Nobuhiro

    2016-04-01

    In the last few years, a lot of publications suggested that disabling cerebellar ataxias may develop through immune-mediated mechanisms. In this consensus paper, we discuss the clinical features of the main described immune-mediated cerebellar ataxias and address their presumed pathogenesis. Immune-mediated cerebellar ataxias include cerebellar ataxia associated with anti-GAD antibodies, the cerebellar type of Hashimoto's encephalopathy, primary autoimmune cerebellar ataxia, gluten ataxia, Miller Fisher syndrome, ataxia associated with systemic lupus erythematosus, and paraneoplastic cerebellar degeneration. Humoral mechanisms, cell-mediated immunity, inflammation, and vascular injuries contribute to the cerebellar deficits in immune-mediated cerebellar ataxias. PMID:25823827

  7. Cerebellar cortical degeneration in three English bulldogs: clinical and neuropathological findings.

    PubMed

    Gandini, G; Botteron, C; Brini, E; Fatzer, R; Diana, A; Jaggy, A

    2005-06-01

    This case report describes the clinical and neuropathological findings in three young English bulldogs affected by cerebellar cortical degeneration. The dogs, born from the same parents, were presented with clinical signs indicating progressive cerebellar dysfunction: a wide-based stance, severe cerebellar ataxia characterised by marked hypermetria, spasticity, and intention tremors of the head and trunk with loss of balance. On histopathological examination, lesions were confined to the cerebellum and consisted of diffuse degenerative cortical lesions, and there was a loss of Purkinje and granule cells. The history, clinical signs and neuropathological findings confirmed the diagnosis of cerebellar cortical degeneration. To the authors' knowledge, this is the first report of cerebellar cortical degeneration in the English bulldog. PMID:15971900

  8. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice.

    PubMed

    Peter, Saša; Ten Brinke, Michiel M; Stedehouder, Jeffrey; Reinelt, Claudia M; Wu, Bin; Zhou, Haibo; Zhou, Kuikui; Boele, Henk-Jan; Kushner, Steven A; Lee, Min Goo; Schmeisser, Michael J; Boeckers, Tobias M; Schonewille, Martijn; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-01-01

    Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD. PMID:27581745

  9. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice

    PubMed Central

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  10. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice.

    PubMed

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024