Science.gov

Sample records for cerebral glucose consumption

  1. A genetic perspective on glucose consumption in the cerebral cortex during human development.

    PubMed

    Caravas, J; Wildman, D E

    2014-09-01

    As the major glucose-consuming organ in the human body, the dynamics of glucose metabolism in the brain deserve special attention. It has been shown that the brain's energy allocation as a percentage of the total energy budget of the individual peaks during childhood and declines through adolescence until reaching the stable allocation level seen in the adult. This pattern of glucose consumption has not been observed in other species, including our close primate relatives, and is therefore potentially either a driver or a consequence of human cognition. Furthermore, the allocation of glucose usage in the brain changes as the individual ages, with a surprising amount dedicated to glycolysis rather than oxidative phosphorylation pathway. This suggests that, at certain developmental stages, glucose-fuelled anabolic pathways, in addition to ATP generation, are the driving forces behind the brain's high energy requirement. In this study, we explore the most recent work pertaining to the dynamic glucose uptake and allocation of the developing human brain and investigate several genes that may play a role in regulating these processes. PMID:25200292

  2. Age and sex differences in cerebral glucose consumption measured by pet using (18-F) fluorodeoxyglucose (FDG)

    SciTech Connect

    Duara, R.; Barker, W.; Chang, J.; Apicella, A.; Finn, R.; Gilson, A.

    1985-05-01

    Resting cerebral glucose metabolic rates (CMRglc) were measured in 23 subjects by PET using FDG. Subjects were divided into several groups (mean age +- S.D.) 5 young males (YM) (27 +- 6); 6 young females (YF)(33 +9); 5 elderly males (EM)(73 +- 5); 7 elderly females (EF)(69 +- 7). Additionally, from these groups 4 YM, 3YF, 5EM and 4EF were studied again within 6 weeks under identical conditions. CMRglc in the YF group again was significantly hider than YM (p 0.05). No obvious relationships of CMRglc to the phase of the menstrual cycle was found in this small group. There was a trend (p=0.06) toward a higher CMRglc in YF than EF. These results support the findings of higher CBF in YF versus YM. The differences between the results of Kuhl et al (J. Cereb. and a reduction of CMRglc with age was found in a mixed group of males and females (58and female), and where no age effect was found the males, are also resolved by these findings. The authors suggest that the apparent age effect, in females in this study, is principally a hormonal one.

  3. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    SciTech Connect

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  4. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  5. Impaired fasting glucose is associated with increased regional cerebral amyloid.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Wilkins, Heather M; Archer, Ashley E; Burns, Nicole C; Karcher, Rainer T; Graves, Rasinio S; Swerdlow, Russell H; Thyfault, John P; Burns, Jeffrey M

    2016-08-01

    The Alzheimer's disease risk gene apolipoprotein E epsilon 4 (APOE ε4) is associated with increased cerebral amyloid. Although impaired glucose metabolism is linked to Alzheimer's disease risk, the relationship between impaired glycemia and cerebral amyloid is unclear. To investigate the independent effects of APOE ε4 and impaired glycemia on cerebral amyloid, we stratified nondemented subjects (n = 73) into 4 groups: normal glucose, APOE ε4 noncarrier (control [CNT]; n = 31), normal glucose, APOE ε4 carrier (E4 only; n = 14) impaired glycemia, APOE ε4 noncarrier (IG only; n = 18), and impaired glycemia, APOE ε4 carrier (IG+E4; n = 10). Cerebral amyloid differed both globally (p = 0.023) and regionally; precuneus (p = 0.007), posterior cingulate (PCC; p = 0.020), superior parietal cortex (SPC; p = 0.029), anterior cingulate (p = 0.027), and frontal cortex (p = 0.018). Post hoc analyses revealed that E4 only subjects had increased cerebral amyloid versus CNT globally and regionally in the precuneus, PCC, SPC, anterior cingulate, and frontal cortex. In IG only subjects, increased cerebral amyloid compared with CNT was restricted to precuneus, PCC, and SPC. IG+E4 subjects exhibited higher cerebral amyloid only in the precuneus relative to CNT. These results indicate that impaired glycemia and APOE ε4 genotype are independent risk factors for regional cerebral amyloid deposition. However, APOE ε4 and impaired glycemia did not have an additive effect on cerebral amyloid. PMID:27318141

  6. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia.

    PubMed

    Yamazaki, Yui; Harada, Shinichi; Tokuyama, Shogo

    2015-09-14

    Post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. To elucidate this exacerbation mechanism, we focused on sodium-glucose transporter (SGLT) as a mediator that lead hyperglycemia to cerebral ischemia. SGLT transport glucose into the cell, together with sodium ion, using the sodium concentration gradient. We have previously reported that suppression of cerebral SGLT ameliorates cerebral ischemic neuronal damage. However, detail relationship cerebral between SGLT and post-ischemic hyperglycemia remain incompletely defined. Therefore, we examined the involvement of cerebral SGLT on cerebral ischemic neuronal damage with or without hyperglycemic condition. Cell survival rate of primary cultured neurons was assessed by biochemical assay. A mouse model of focal ischemia was generated using a middle cerebral artery occlusion (MCAO). Neuronal damage was assessed with histological and behavioral analyses. Concomitant hydrogen peroxide/glucose treatment exacerbated hydrogen peroxide alone-induced cell death. Although a SGLT family-specific inhibitor, phlorizin had no effect on developed hydrogen peroxide alone-induced cell death, it suppressed cell death induced by concomitant hydrogen peroxide/glucose treatment. α-MG induced a concentration-dependent and significant decrease in neuronal survival. PHZ administered on immediately after reperfusion had no effect, but PHZ given at 6h after reperfusion had an effect. Our in vitro study indicates that SGLT is not involved in neuronal cell death in non-hyperglycemic condition. We have already reported that post-ischemic hyperglycemia begins to develop at 6h after MCAO. Therefore, current our in vivo study show post-ischemic hyperglycemic condition may be necessary for the SGLT-mediated exacerbation of cerebral ischemic neuronal damage. PMID:26254165

  7. Local cerebral glucose utilization during status epilepticus in newborn primates

    SciTech Connect

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-06-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-(/sup 14/C)-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined.

  8. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  9. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    PubMed

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  10. Cerebral glucose utilization is reduced in second test session.

    PubMed

    Stapleton, J M; Morgan, M J; Liu, X; Yung, B C; Phillips, R L; Wong, D F; Shaya, E K; Dannals, R F; London, E D

    1997-06-01

    Cerebral glucose utilization was higher during the first positron emission tomography (PET) session than during the second session, as assayed using the PET [18F]fluorodeoxyglucose method in male human volunteers. This difference was due largely to data from subjects with low-trait anxiety, since subjects with high anxiety showed similar metabolism in both PET sessions. High-anxiety subjects showed greater right/ left ratios of cerebral metabolism than low-anxiety subjects, particularly during the second PET session. These findings suggest that the level of anxiety may be an important variable to consider in PET studies using multiple sessions. PMID:9236727

  11. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  12. Regional cerebral glucose utilization during morphine withdrawal in the rat.

    PubMed Central

    Wooten, G F; DiStefano, P; Collins, R C

    1982-01-01

    Regional cerebral glucose utilization was studied by 2-deoxy[14C]glucose autoradiography in morphine-dependent rats and during naloxone-induced morphine withdrawal. In morphine-dependent rats, glucose utilization was increased compared with naive controls uniformly (23-54%) in hippocampus, dentate gyrus, and subiculum and reduced in frontal cortex, striatum, anterior ventral thalamus, and medial habenular nucleus. On precipitation of morphine withdrawal by subcutaneous administration of naloxone at 0.5 mg/kg to morphine-dependent rats, glucose utilization was increased in the central nucleus of amygdala (51%), lateral mammillary nucleus (40%), lateral habenular nucleus (39%), medial mammillary nucleus (35%), and medial septal nucleus (35%) (all, P less than 0.01). Significant increases also occurred in several other limbic structures including interpeduncular nucleus, anterior medial and ventral thalamic nuclei, and lateral septal nucleus. Knowledge of the functional cerebral anatomy of the morphine-withdrawal syndrome should facilitate studies directed toward understanding the molecular mechanisms of opiate withdrawal. Images PMID:6954484

  13. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    PubMed Central

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  14. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion. PMID:26742793

  15. Association of curry consumption with blood lipids and glucose levels

    PubMed Central

    2016-01-01

    BACKGROUND/OBJECTIVES Curcumin, an active ingredient in turmeric, is highly consumed in South Asia. However, curry that contains turmeric as its main spice might be the major source of curcumin in most other countries. Although curcumin consumption is not as high in these countries as South Asia, the regular consumption of curcumin may provide a significant health-beneficial effect. This study evaluated whether the moderate consumption of curry can affect blood glucose and lipid levels that become dysregulated with age. SUBJECTS/METHODS This study used data obtained from the Korea National Health and Nutrition Examination Survey, conducted from 2012 to 2013, to assess curry consumption frequency as well as blood glucose and blood lipid levels. The levels of blood glucose and lipids were subdivided by age, sex, and body mass index, and compared according to the curry consumption level. The estimates in each subgroup were further adjusted for potential confounding factors, including the diagnosis of diseases, physical activity, and smoking. RESULTS After adjusting for the above confounding factors, the blood glucose and triglyceride levels were significantly lower in the moderate curry consumption group compared to the low curry consumption group, both in older (> 45) male and younger (30 to 44) female overweight individuals who have high blood glucose and triglyceride levels. CONCLUSIONS These results suggest that curcumin consumption, in an ordinary diet, can have health-beneficial effects, including being helpful in maintaining blood glucose and triglyceride levels that become dysregulated with age. The results should be further confirmed in future studies. PMID:27087906

  16. Cerebral glucose utilization after vasopressin barrel rotation or bicuculline seizures

    SciTech Connect

    Wurpel, J.; Dundore, R.; Bryan, R.; Keil, L.; Severs, W.B.

    1986-03-05

    Intraventricular (ivt) arginine vasopressin (AVP) causes a violent motor behavior termed barrel rotation (BR). AVP-BR is affected by visual/vestibular sensory input and may be related to other CNS motor disorders (seizures). Local cerebral glucose utilization (LCGU) was compared in SD rats during AVP-BR and bicuculline (BIC) seizures. Three groups were used: saline-ivt; AVP-ivt 0.5 ..mu..g; BIC-5.5 mg/kg,sc. /sup 14/C-glucose (40 ..mu..CI iv) was injected 15 sec. after ivt-saline or AVP or onset of BIC seizures. Rats were decapitated 10 min. after /sup 14/C-glucose. Brains were removed and dissected into 19 regions which were digested and glucose uptake quantified by liquid scintillation counting. LCGU was significantly increased in all CNS areas during BIC seizures vs controls (21-92%; p < 0.05 ANOVA). LCGU exhibits variable (upward arrow, downward arrow) changes in discrete areas during AVP-BR (p < .05). Glucose uptake increased in: cortex-olfactory (21%), sensory (9%), motor (8%) cerebellum-rt (13%) and 1t (17%) hemispheres, vermis (6%); pyramidal tract (6%); mesencephalon (5%); and pons (8%). Two areas decreased LCGU during AVP-BR: auditory cortex (-8%) and hippocampus (-11%). AVP-BR exhibits distinct changes in LCGU vs BIC seizures.

  17. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  18. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  19. Cerebral glucose metabolic abnormality in patients with congenital scoliosis.

    PubMed

    Park, Weon Wook; Suh, Kuen Tak; Kim, Jeung Il; Ku, Ja Gyung; Lee, Hong Seok; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Lee, Jung Sub

    2008-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography. PMID:18446384

  20. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    SciTech Connect

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  1. Reproducibility of cerebral glucose metabolic measurements in resting human subjects.

    PubMed

    Bartlett, E J; Brodie, J D; Wolf, A P; Christman, D R; Laska, E; Meissner, M

    1988-08-01

    Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no more than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at run 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low intrasubject variability and high stability over a 24-h period. PMID:3260593

  2. Serotonin modulation of cerebral glucose metabolism: sex and age effects.

    PubMed

    Munro, Cynthia A; Workman, Clifford I; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S

    2012-11-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. PMID:22836227

  3. Alteration of the regional cerebral glucose metabolism in healthy subjects by glucose loading.

    PubMed

    Ishibashi, Kenji; Wagatsuma, Kei; Ishiwata, Kiichi; Ishii, Kenji

    2016-08-01

    High plasma glucose (PG) levels can reduce fluorine-18-labeled fluorodeoxyglucose ((18) F-FDG) uptake, especially in the Alzheimer's disease (AD)-related regions. This fact is supported by studies showing that the resting-state activity in diabetes can be altered in the default mode network (DMN)-related regions, which considerably overlap with the AD-related regions. In order to expand the current knowledge, we aimed to investigate the relationship between increasing PG levels and the regional cerebral metabolic rates for glucose (CMRglc ) as a direct index of brain activity. We performed dynamic (18) F-FDG positron emission tomography with arterial blood sampling once each in the fasting and glucose-loading conditions on 12 young, healthy volunteers without cognitive impairment or insulin resistance. The absolute CMRglc values were calculated for the volume-of-interest (VOI) analysis, and normalized CMRglc maps were generated for the voxelwise analysis. The normalized measurement is known to have smaller intersubject variability than the absolute measurement, and may, thus, lead to greater statistical power. In VOI analysis, no regional difference in the CMRglc was found between the two conditions. In exploratory voxelwise analysis, however, significant clusters were identified in the precuneus, posterior cingulate, lateral parietotemporal, and medial prefrontal regions where the CMRglc decreased upon glucose loading (P < 0.05, corrected). These regions include the representative components of both the DMN and AD pathology. Taken together with the previous knowledge on the relationships between the DMN, AD, and diabetes, it may be inferred that glucose loading induces hypometabolism in the AD-related and DMN-related regions. Hum Brain Mapp 37:2823-2832, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061859

  4. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    SciTech Connect

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B. )

    1991-05-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-(1-14C) glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection.

  5. EFFECTS OF 2-DEOXY-D-GLUCOSE ON FOCAL CEREBRAL ISCHEMIA IN HYPERGLYCEMIC RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effects of pretreatment with 2-deoxy-D-glucose (2DG) on the middle cerebral artery occlusion/reperfusion (MCAO/R) model in hyperglycemic rats. Proton magnetic resonance imaging and spectroscopy (MRI/MRS) were used to measure the lesion size, the level of cerebral perfusion deficit, a...

  6. Effect of hypocapnia on local cerebral glucose utilization in rats

    SciTech Connect

    Samra, S.K.; Turk, P.; Arens, J.F.

    1989-03-01

    The effect of hypocapnia on regional cerebral glucose utilization (L-CMRg) was studied in 14 Sprague Dawley rats. After cannulation of femoral vessels, halothane was discontinued and anesthesia was maintained with 70% N/sub 2/O in oxygen. The animals' lungs were mechanically ventilated to achieve normocapnia (PaCO/sub 2/ = 40 +/- 2 mmHg) in group A or hypocapnia (PaCO/sub 2/ = 25 +/- 2 mmHg) in group B. L-CMRg was measured by the /sup 14/C-2-deoxyglucose autoradiographic method. Twenty-six anatomically discrete structures representing cortical, subcortical, limbic, and brainstem areas were studied. In hypocapnic animals, mean values for L-CMRg were higher in 25 out of 26 structures studied. The increase in L-CMRg was heterogenous. The structures that had higher L-CMRg during normocapnia showed the greatest increase in L-CMRg. When the two groups were compared using a profile analysis, in six regions (lateral and ventral thalamus, inferior colliculus, lateral habenulla, medial geniculate body, and auditory cortex), a value of P less than 0.05 was obtained.

  7. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  8. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  9. Dietary glucose regulates yeast consumption in adult Drosophila males.

    PubMed

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  10. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  11. Cerebral glucose utilization and blood flow in Huntington's Disease (HD)

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.; Wapenski, J.; Riege, W.; Baxter, L.R.

    1985-05-01

    Previous studies in the authors' Laboratory have been carried out on 13 patients symptomatic of HD (SHD) and 15 asymptomatic at-risk for HD (ARHD) with a ECAT II and identification of changes in caudate metabolism using an index technique. The authors report now studies of additional 28 subjects (11 SHD, 17 ARHD) studied drug free and compared to age/sex matched controls using the higher resolution NeuroECAT, FDG for glucose utilization (LCMRGlc) and 0-15 water for cerebral blood flow (CBF). Patients had neurological, psychiatric-tests, x-ray CT and were video taped to determine type, timing and amount of choreathetic movements during study. In SHD (disease duration 4.9 +- 2.7 yrs), significant decreases (30%) in LCMRGlc were found in striatum (SHD=19.3 +- 7.7, controls = 29.9 +- 5.8 ..mu.. moles/min/100g) despite no to moderate caudate atrophy on x-ray CT. Hemisphere and cortical CMRGlc were not significantly decreased. There was a significant correlation between disease duration and ratio of caudate to putamen (Cd/Put). Pattern of LCMRGlc and CBF matched in SHD. The caudate to hemisphere LCMRGlc ratio was not different between ARHD and controls except variance was about 4 times greater for ARHD (ARHD=1.21 +- 0.15, controls = 1.28 +- 0.04) indicating presence of subpopulations in ARHD group. Four ARHD subjects had a ratio of 1 Std. Dev. from mean of SHD (no normals had values in this range). The 2 ARHD subjects with lowest caudate LCMRGlc had Cd/Put ratios > 2 Std. Dev. from controls. Results show 1) LCMRGlc abnormalities in all SHD patients and subpopulations in ARHD, 2) metabolic alterations appear to begin in caudate and spread to putamen and that a Cd/Put value of 0.7 should be found at start of symptoms, and 3) cortex and thalamus are relatively spared in ARHD and early SHD.

  12. Effects of cochlear ablation on local cerebral glucose utilization in fetal sheep

    SciTech Connect

    Abrams, R.M.; Hutchison, A.A.; McTiernan, M.J.; Merwin, G.E.

    1987-12-01

    Local cerebral glucose utilization was measured by the (/sup 14/C)-deoxyglucose method in five near-term fetal sheep in whom bilateral ablation of the cochleae had been accomplished aseptically 5 to 8 days earlier. The tympanic membrane and ossicles were removed and all turns of each cochlea were unroofed with destruction carried to the modiolus. Mean local cerebral glucose utilization of 33 of 34 gray matter structures and four of four white matter structures in operated animals were significantly lower (p less than 0.05) than that in unoperated control fetuses. The depression in local cerebral glucose utilization was greatest (p less than 0.002) in brain stem auditory nuclei, in which the mean rate of glucose utilization was approximately 25% of the levels in unoperated fetuses. The pattern of glucose utilization in these structures was clearly altered, with a reversal of the normal distribution in density of the inferior colliculus. Tonotopic bands of high local cerebral glucose utilization frequently seen in autoradiographs of inferior colliculus in unoperated fetuses were not observed in operated fetuses. These results show that the glucose utilization of the brain, and by implication the normal growth and maturation of the brain, depends on an intact auditory system during prenatal life.

  13. Glucose oxidation and oxygen consumption of isolated guinea pig and muskrat hearts.

    PubMed

    McKean, T A

    1987-01-01

    Glucose in Krebs-Henseleit buffer was presented to isolated Langendorff perfused muskrat and guinea pig hearts that were paced at 240 beats/min. Glucose uptake (amount removed from the perfusion fluid) was 3 times greater in the muskrat hearts than in the guinea pig heart. Glucose oxidation (amount converted to CO2) and oxygen consumption did not differ in the hearts of the two species. When glucose is the only exogenous substrate, isolated muskrat hearts extract more glucose than guinea pig hearts but oxidize similar amounts of glucose and have a similar myocardial oxygen consumption. PMID:2881679

  14. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  15. Local cerebral glucose utilisation in chronic alcoholics: a positron tomographic study.

    PubMed Central

    Samson, Y; Baron, J C; Feline, A; Bories, J; Crouzel, C

    1986-01-01

    Using positron tomography, a study of regional cerebral glucose utilisation was performed prospectively in a highly selected group of six neurologically unaffected primary chronic alcoholics. In this group, neuropsychological, behavioural and CT scan anomalies were comparable with those previously reported in more extensive studies. With respect to age-matched control values, cerebral metabolic rate was not significantly modified in the selected cortical, subcortical and cerebellar regions of interest. However, the metabolic regional distribution index, which reflects the distribution pattern of glucose utilisation, was selectively and significantly decreased in the medio-frontal area, pointing to a limbic metabolic dysfunction apparently linked to chronic alcoholism. Images PMID:3491181

  16. Increase of glucose consumption in basal ganglia, thalamus and frontal cortex of patients with spasmodic torticollis

    SciTech Connect

    Grassi, F.; Bressi, S.; Antoni, M.

    1994-05-01

    The pathophysiology of spasmodic torticollis, a focal dystonia involving neck muscles, is still unclear. Positron emission tomography (PET) studies showed either an increase as well as a decrease of regional cerebral metabolic rate of glucose (rCMRglu) in basal ganglia. In the present study, [18F]FDG and PET was used to measure rCMRglu in 10 patients with spasmodic torticollis (mean age 50.37 {plus_minus} 11.47) and 10 age matched controls. All cases with a short disease duration, were untreated. A factorial analysis of variance revealed a significant bilateral increase of glucose consumption in caudate nucleus and pallidum/putamen complex (p>0.004) and in the cerebellum (p>0.001). The rCMRglu increase in the motor/premotor cortex and in the thalamus reached a trend towards significance (p<0.05). These preliminary data show enhanced metabolism in basal ganglia and cerebellum as the functional correlate of focal dystonia. A recently proposed model suggests that dystonia would be the consequence of a putaminal hyperactivity, leading to the breakdown of the pallidal inhibitory control on thalamus and thalamo-cortical projections.

  17. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  18. Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis.

    PubMed

    Juh, Rahyeong; Pae, Chi-Un; Kim, Tae-Suk; Lee, Chang-Uk; Choe, Boyoung; Suh, Taesuk

    This study measured the cerebral glucose metabolism in patients suffering from corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The aim was to determine if there is a different metabolic pattern using (18)F-labeled 2-deoxyglucose ((18)F-FDG) positron emission tomography (PET). The regional cerebral glucose metabolism was examined in 8 patients diagnosed clinically with CBD (mean age 69.6 +/- 7.8 years; male/female: 5/3), 8 patients with probable PSP (mean age 67.8 +/- 4.5 years; male/female: 4/4) and 22 healthy controls. The regional cerebral glucose metabolism between the three groups was compared using statistical parametric mapping (SPM) with a voxel-by-voxel approach (p < 0.001, 200-voxel level). Compared with the normal controls, asymmetry in the regional glucose metabolism was observed in the parietal, frontal and cingulate in the CBD patients. In the PSP patients, the glucose metabolism was lower in the orbitofrontal, middle frontal, cingulate, thalamus and mid-brain than their age matched normal controls. A comparison of the two patient groups demonstrated relative hypometabolism in the thalamus, the mid-brain in the PSP patients and the parietal lobe in CBD patients. These results suggest that when making a differential diagnosis of CBD and PSP, voxel-based analysis of the (18)F-FDG PET images using a SPM might be a useful tool in clinical examinations. PMID:15936506

  19. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  20. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men

    PubMed Central

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-01-01

    ABSTRACT Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35–69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (Ptrend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (Ptrend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (Ptrend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  1. Impaired cerebral development in fetuses with congenital cardiovascular malformations: Is it the result of inadequate glucose supply?

    PubMed

    Rudolph, Abraham M

    2016-08-01

    Cerebral development may be impaired in fetuses with congenital cardiovascular malformations, particularly hypoplastic left heart syndrome (HLHS) and aortopulmonary transposition (APT). The decreased cerebral arterial pusatility index observed in some of these fetuses led to the belief that cerebral vascular resistance was reduced as a result of arterial hypoxemia and cerebral hypoxia is thought to be responsible for impaired cerebral growth. However, other hemodynamic factors could affect pulsatility index. I propose that cerebral blood flow is reduced in fetuses with HLHS and that reduced glucose, rather than oxygen, delivery interferes with cerebral development. This is based on the fact that most of these fetuses do not have lactate accumulation in the brain.In fetuses with APT, umbilical venous blood, containing oxygen and glucose derived across the placenta, is distributed to the lungs and lower body; venous blood, with low oxygen and glucose content, is delivered to the ascending aorta and brain. Oxygen and glucose delivery may further be reduced by decreased cerebral blood flow resulting from run-off of aortic blood through the ductus arteriosus to the pulmonary circulation during diastole. In APT fetuses, lack of lactate in the brain also supports my proposal that glucose deficiency interferes with cerebral development. PMID:27055190

  2. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  3. Effects of Treatment for Tobacco Dependence on Resting Cerebral Glucose Metabolism

    PubMed Central

    Costello, Matthew R; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L; Xia, Catherine; London, Edythe D; Brody, Arthur L

    2010-01-01

    While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting 18F-fluorodeoxyglucose–positron emission tomography (FDG–PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism from before to after treatment were compared between treatment groups and correlations were determined between amount of daily cigarette usage and cerebral glucose metabolism. Compared with placebo, the two active treatments (bupropion HCl and PGC) had reductions in glucose metabolism in the posterior cingulate gyrus. Further analysis suggested that PGC had a greater effect than bupropion HCl on glucose metabolism in this region. We also found positive correlations between daily cigarette use and glucose metabolism in the left occipital gyrus and parietal–temporal junction. There were no significant negative correlations between daily cigarette use and glucose metabolism. Our findings suggest that bupropion HCl and PGC reduce neural activity much as the performance of a goal-oriented task does in the default mode network of the brain, including the posterior cingulate gyrus. Thus, this study supports the theory that active treatments for tobacco dependence move the brain into a more goal-oriented state. PMID:19865076

  4. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    PubMed

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  5. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  6. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Tsuge, Yota; Uematsu, Kimio; Yamamoto, Shogo; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki

    2015-07-01

    Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation. PMID:25808520

  7. Local cerebral glucose utilization in the beagle puppy model of intraventricular hemorrhage

    SciTech Connect

    Ment, L.R.; Stewart, W.B.; Duncan, C.C.

    1982-09-01

    Local cerebral glucose utilization has been measured by means of carbon-14(/sup 14/C)-autoradiography with 2-deoxyglucose in the newborn beagle puppy model of intraventricular hemorrhage. Our studies demonstrate gray matter/white matter differentiation of uptake of /sup 14/C-2-deoxyglucose in the control pups, as would be expected from adult animal studies. However, there is a marked homogeneity of /sup 14/C-2-deoxyglucose uptake in all brain regions in the puppies with intraventricular hemorrhage, possibly indicating a loss of the known coupling between cerebral blood flow and metabolism in this neuropathological condition.

  8. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Benson, D.F.; Ashford, J.W.; Riege, W.H.; Fujikawa, D.G.; Markham, C.H.; Maltese, A.

    1985-05-01

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia.

  9. Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia.

    PubMed

    Yamazaki, Y; Ogihara, S; Harada, S; Tokuyama, S

    2015-12-01

    The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post

  10. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  11. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  12. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Demain, A. L.

    2001-01-01

    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  13. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men.

    PubMed

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-05-01

    Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35-69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (P trend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (P trend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (P trend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  14. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  15. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  16. Effects of blockade of NMDA receptors on cerebral oxygen consumption during hyperosmolar BBB disruption in rats.

    PubMed

    Chi, Oak Z; Barsoum, Sylviana; Grayson, Jeremy; Hunter, Christine; Liu, Xia; Weiss, Harvey R

    2013-03-15

    Hyperosmolar blood-brain barrier (BBB) disruption has been reported to increase cerebral O2 consumption. This study was performed to test whether blockade of N-methyl-d-aspartate (NMDA) receptor would affect cerebral O2 consumption during hyperosmolar BBB disruption. A competitive NMDA receptor antagonist CGS-19755 10mg/kg was injected iv 15min before intracarotid infusion of 25% mannitol. Twelve min after BBB disruption, the BBB transfer coefficient (Ki) of (14)C-α-aminoisobutyric acid ((14)C-AIB) was measured. Regional cerebral blood flow (rCBF), regional arteriolar and venular O2 saturation (SaO2 and SvO2 respectively), and O2 consumption were determined using (14)C-iodoantipyrine autoradiography and cryomicrospectrophotometry in alternate slices of the brain tissue. The Ki of (14)C-AIB was markedly increased with hyperosmolar mannitol in both the control (5.8×) and the CGS treated rats (5.2×). With BBB disruption, the O2 consumption was significantly increased (+39%) only in the control but not in the CGS treated rats and was significantly lower (-29%) in the CGS treated than the control rats. The distribution of SvO2 was significantly shifted to the higher concentrations with CGS treatment. Our data demonstrated an increase of O2 consumption by hyperosmolar BBB disruption and attenuation of the increase with NMDA blockade without affecting the degree of BBB disruption. PMID:23357315

  17. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes.

    PubMed

    Fang, Deyu; Gao, Guanyue; Yu, Yuan; Shen, Jie; Zhi, Jinfang

    2016-05-10

    In this study, a new method for acute biotoxicity assessment was proposed by measuring the glucose consumption of microbes with a personal glucose meter (PGM). To obtain an ideal biotoxicity assessment performance, an appropriate microbe was selected first, and then the relevant parameters, such as temperature and microbial concentration were optimized. Under the optimized parameters, the acute biotoxicity of four environmental pollutants (As(3+), Ni(2+), 4-chlorophenol, and 2,4-dichlorophenol), three wastewater samples and three soil samples were evaluated. This technology breakthrough will help us develop a low cost, easy to use water-environmental early-warning kit. PMID:27055358

  18. Sugarcoated isolation: evidence that social avoidance is linked to higher basal glucose levels and higher consumption of glucose

    PubMed Central

    Ein-Dor, Tsachi; Coan, James A.; Reizer, Abira; Gross, Elizabeth B.; Dahan, Dana; Wegener, Meredyth A.; Carel, Rafael; Cloninger, Claude R.; Zohar, Ada H.

    2015-01-01

    Objective: The human brain adjusts its level of effort in coping with various life stressors as a partial function of perceived access to social resources. We examined whether people who avoid social ties maintain a higher fasting basal level of glucose in their bloodstream and consume more sugar-rich food, reflecting strategies to draw more on personal resources when threatened. Methods: In Study 1 (N = 60), we obtained fasting blood glucose and adult attachment orientations data. In Study 2 (N = 285), we collected measures of fasting blood glucose and adult attachment orientations from older adults of mixed gender, using a measure of attachment style different from Study 1. In Study 3 (N = 108), we examined the link between trait-like attachment avoidance, manipulation of an asocial state, and consumption of sugar-rich food. In Study 4 (N = 115), we examined whether manipulating the social network will moderate the effect of attachment avoidance on consumption of sugar-rich food. Results: In Study 1, fasting blood glucose levels corresponded with higher attachment avoidance scores after statistically adjusting for time of assessment and interpersonal anxiety. For Study 2, fasting blood glucose continued to correspond with higher adult attachment avoidance even after statistically adjusting for interpersonal anxiety, stress indices, age, gender, social support and body mass. In Study 3, people high in attachment avoidance consume more sugar-rich food, especially when reminded of asocial tendencies. Study 4 indicated that after facing a stressful task in the presence of others, avoidant people gather more sugar-rich food than more socially oriented people. Conclusion: Results are consistent with the suggestion that socially avoidant individuals upwardly adjust their basal glucose levels and consume more glucose-rich food with the expectation of increased personal effort because of limited access to social resources. Further investigation of this link is warranted

  19. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  20. Evidence for the absence of cerebral glucose-6-phosphatase activity in glycogen storage disease type I (Von Gierke's disease)

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.; Philippart, M.

    1981-01-01

    Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylation rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.

  1. Patterns of cerebral glucose utilization in depression, multiple infarct dementia, and Alzheimer's disease

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Riege, W.H.

    1983-01-01

    Patterns of local cerebral glucose utilization were determined in moderately to severely disabled patients with depression (n=7), multiple infarct dementia (n=6), and Alzheimer's disease (n=6), and in normal controls (n=6), using positron emission tomography with the /sup 18/F-fluorodeoxyglucose method. Average global metabolic rate was decreased 30% in patients with Alzheimer's disease, but overlap among the other groups reduced the discriminant value of this measure. In depressed patients, the cerebral metabolic pattern was normal, except for evidence of hypometabolic zone in the posterior-inferior frontal cortex which was of marginal statistical significance. In multiple infarct dementia, focal metabolic defects were scattered throughout the brain and exceeded the extent of infarction. In Alzheimer's disease, metabolism was markedly reduced in cortex, especially parietal cortex, but relatively preserved in caudate, thalamus, anterior cingulate gyrus, pre and post central gyrus, and calcarine occipital cortex, a pattern duplicating the degree and location of pathological and neurochemical alterations characteristic of this disorder.

  2. Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography

    SciTech Connect

    Lear, J.L.; Ackermann, R.F.

    1988-08-01

    We compared local cerebral glucose metabolic rates (LCMRglu) that were determined with (/sup 18/F)fluorodeoxyglucose (FDG) and (/sup 14/C)glucose labeled in the 1, 2, 3-4, and 6 positions. Double label digital autoradiography was used with published kinetic models to determine LCMRglu for FDG and glucose in the same animals. Glucose showed metabolic rate dependent underestimation of LCMRglu compared to FDG, which worsened with increasing experimental times. The least underestimation occurred with glucose labeled in the 6 position at 6 min, reaching 10% in areas of high metabolism. Labeling in the 1 position, the 2 position and the 3-4 position caused progressively worse underestimation at all times. In addition, some structures showed differences not directly related to metabolic rate, indicating regional variations in relationships between individual kinetic constants of FDG and glucose.

  3. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  4. Effects of electroacupuncture preconditioning on jugular vein glucose level and cerebral edema in rats undergoing cerebral ischemia reperfusion that induced injury

    PubMed Central

    Wan, Qiuxia; Pan, Peng; Xu, Changqing; Li, Wenzhi

    2014-01-01

    Objective: To determine the effects of electroacupuncture (EA) preconditioning on the blood glucose level in jugular vein and water content in brain tissues in rats undergoing cerebral ischemia reperfusion that induced injury. Methods: 90 healthy male Wister rats were randomly assigned to 3 groups: sham-operation (SH) group, cerebral ischemia reperfusion (IR) group and electroacupuncture (EA) preconditioning plus IR group. EA group was pretreated with EA delivered to acupoints of “Baihui” (Du 20) and “Shuigou” (Du 26) 30 min before cerebral ischemia. Results: No marked difference was observed in brain water content 2 h after procedure in IR group, SH group and EA group. Compared with SH group, the brain water contents in IR group and EA group were significantly higher 6 h after reperfusion and peaked at 48 h (P < 0.01). The blood glucose levels in EA and IR groups were significantly higher than that of SH group 2 h after reperfusion, which peaked at 6 h and tended to decline up to 24 h after reperfusion (P < 0.01). 2 h, 6 h, and 24 h after reperfusion, EA group had significantly lower blood glucose levels than IR group (P < 0.01). Conclusion: Electroacupuncture preconditioning can significantly inhibit the augmentation of the blood glucose level and attenuate cerebral edema induced by reperfusion, which leads to alleviation of injury caused by ischemia reperfusion. PMID:25550958

  5. Controlled glucose consumption in yeast using a transistor-like device

    NASA Astrophysics Data System (ADS)

    Song, Yang; Wang, Jiapeng; Yau, Siu-Tung

    2014-06-01

    From the point of view of systems biology, insight into controlling the functioning of biological systems is conducive to the understanding of their complexness. The development of novel devices, instrumentation and approaches facilitates this endeavor. Here, we show a transistor-like device that can be used to control the kinetics of the consumption of glucose at a yeast-immobilised electrode. The gating voltage of the device applied at an insulated gating electrode was used to control both the rate of glucose consumption and the rate of the production of ATP and ethanol, the end-products of normal glucose metabolism. Further, a correlation between the glucose consumption and the production of ethanol controlled by the gating voltage was observed using two different forms of the device. The results suggest the relevance of glucose metabolism in our work and demonstrate the electrostatic nature of the device. An attempt to explain the effect of the gating voltage on the kinetics is made in terms of transfer of electrons from NADH to enzymes in the electron transport chain. This novel technique is applicable to general cells and the reported results show a possible role for electrostatic means in controlling processes in cells.

  6. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    SciTech Connect

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  7. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex

    SciTech Connect

    Dam, M.; Wamsley, J.K.; Rapoport, S.I.; London, E.D.

    1982-08-01

    The (/sup 14/C)2-deoxy-D-glucose technique was used to examine the effects of central muscarinic stimulation on local cerebral glucose utilization (LCGU) in the cerebral cortex of the unanesthetized rat. Systemic administration of the muscarinic agonist oxotremorine (OXO, 0.1 to 1.0 mg/kg, i.p.) increased LCGU in the neocortex, mesocortex, and paleocortex. In the neocortex, OXO was more potent in elevating LCGU of the auditory, frontal, and sensorimotor regions compared with the visual cortex. Within these neocortical regions, OXO effects were greatest in cortical layers IV and V. OXO effects were more dramatic in the neocortex than in the meso- or paleocortex, and no significant effect occurred in the perirhinal and pyriform cortices. OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex. The distribution and magnitude of the cortical LCGU response to OXO apparently were related to the distributions of cholinergic neurochemical markers, especially high affinity muscarinic binding sites.

  8. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2016-04-01

    In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation. PMID:26844378

  9. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization

    SciTech Connect

    Engber, T.M.; Susel, Z.; Kuo, S.; Chase, T.N. )

    1990-12-01

    The effect of chronic levodopa administration on the functional activity of the basal ganglia and its output regions was evaluated by means of the 2-deoxyglucose (2-DG) autoradiographic technique in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway. The rates of local cerebral glucose utilization were studied under basal conditions as well as in response to challenge with a selective D1 or D2 dopamine-receptor agonist. Levodopa (100 mg/kg/d, i.p.) was administered for 19 d either continuously via infusion with an osmotic pump or intermittently by twice-daily injections. Following a 3-d washout, glucose utilization was found to be decreased by both levodopa regimens in the nucleus accumbens; intermittent levodopa also decreased glucose utilization in the entopeduncular nucleus, subthalamic nucleus, ventrolateral thalamus, ventromedial thalamus, ventroposterolateral thalamus, and lateral habenula. In control (lesioned and treated chronically with saline) rats, the D1 agonist SKF 38393 (5 mg/kg, i.v.) increased 2-DG uptake in the substantia nigra pars reticulata and entopeduncular nucleus ipsilateral to the lesion by 84% and 56%, respectively. Both continuous and intermittent levodopa blunted the SKF 38393-induced elevation in glucose metabolism in the substantia nigra pars reticulata, while intermittent levodopa also attenuated the increase in the entopeduncular nucleus. The D2 agonist quinpirole (0.4 mg/kg, i.v.) did not increase glucose utilization in any brain region in control animals; following intermittent levodopa treatment, however, quinpirole increased 2-DG uptake by 64% in the subthalamic nucleus and by 39% in the deep layers of the superior colliculus on the ipsilateral side.

  10. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  11. Local cerebral glucose utilization in monkeys with hemiparkinsonism induced by intracarotid infusion of the neurotoxin MPTP.

    PubMed

    Palombo, E; Porrino, L J; Bankiewicz, K S; Crane, A M; Sokoloff, L; Kopin, I J

    1990-03-01

    Quantitative 2-[14C]deoxyglucose autoradiography was used to map the pattern of alterations in local cerebral glucose utilization associated with unilateral lesions of the substantia nigra pars compacta produced by the infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into one internal carotid artery of rhesus monkeys. These monkeys become hemiparkinsonian, displaying rigidity, bradykinesia, and tremor of the limbs contralateral to the side of MPTP infusion; during spontaneous activity they turn toward the side of the lesion. Eighty-two brain areas were examined, and statistically significant metabolic changes were confined mainly to basal ganglia structures ipsilateral to the side of the lesion. Glucose utilization was reduced in the substantia nigra pars compacta and ventral tegmental area, i.e., in the areas of cell loss. Increases in glucose utilization in regions normally innervated by the lesioned area were observed in the post-commissural portions of the putamen and dorsolateral caudate. Other structures showing statistically significant metabolic changes were the external segment of the globus pallidus (+40%), subthalamic nucleus (-17%), and pedunculopontine nucleus (+15%). There were also smaller changes in portions of the thalamus (ventral anterior nucleus, parafascicular nucleus) and premotor cortex. All significant metabolic changes were confined to the side of the substantia nigra lesion and were essentially restricted to regions involved in the production of movement or maintenance of posture. PMID:2319306

  12. Effect of moderate level x-radiation to brain on cerebral glucose utilization

    SciTech Connect

    Ito, M.; Patronas, N.J.; Di Chiro, G.; Mansi, L.; Kennedy, C.

    1986-07-01

    The effect of x-radiation in doses used in treatment of brain malignancies has previously been established largely by histologic examination of the tissue or by observation of a deficit in function. At moderate dose levels such effects are usually delayed and are vascular in origin. We have used the 2-(/sup 14/C)deoxyglucose method for the quantitative measurement of local cerebral glucose utilization to learn whether x-radiation administered to rat brain in a dose below that which is known to result in any histologic change may nevertheless affect the brain's local rates of glucose utilization. Measurements were made 4 days and 4 weeks after exposure of groups of rats to 1500 rad. Rates of glucose utilization in 54 gray and eight white matter structures in both groups were compared with rates in sham-irradiated controls. Statistically significantly lower rates were found in 16 structures in rats 4 days after radiation and in 25 structures 4 weeks after radiation exposure. A weighted average rate for the brain as a whole was approximately 15% below that of the controls for both radiated groups, but this difference was short of being of statistical significance. It is clear from this study that the metabolic rates of some brain structures are reduced following moderate doses of x-radiation.

  13. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    SciTech Connect

    Kurumaji, A.; McCulloch, J. )

    1989-12-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic (14C)-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus.

  14. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  15. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  16. Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography

    SciTech Connect

    Tyler, J.L.; Strother, S.C.; Zatorre, R.J.; Alivisatos, B.; Worsley, K.J.; Diksic, M.; Yamamoto, Y.L.

    1988-05-01

    Cerebral glucose utilization (LCMRGI) was measured using the (/sup 18/F)fluorodeoxyglucose method with PET in two groups of ten healthy young volunteers, each scanned in a resting state under different methodological conditions. In addition, five subjects had a second scan within 48 hr. Mean hemispheric values averaged 45.8 +/- 3.3 mumol/100 g/min in the right cerebral hemisphere and 47.0 +/- 3.7 mumol/100 g/min in the left hemisphere. A four-way analysis of variance (group, sex, region, hemisphere) was carried out on the results using three different methods of data manipulation: (a) the raw values of glucose utilization, (b) LCMRGI values normalized by the mean hemispheric gray matter LCMRGI value, and (c) log transformed LCMRGI values. For all analysis techniques, significantly higher LCMRGI values were consistently seen in the left mid and posterior temporal area and caudate nucleus relative to the right, and in the right occipital region relative to the left. The coefficient of variation of intrasubject regional differences (9.9%) was significantly smaller than the coefficient of variation for regions between subjects (16.5%). No differences were noted between the sexes and no effect of repeat procedures was seen in subjects having multiple scans. In addition, inter-regional LCMRGI correlations were examined both in values from the 20 normal subjects, as well as in a set of hypothetical abnormal values. Results were compared with those reported from other PET centers; despite certain methodological differences, the intersubject and inter-regional variation of LCMRGI is fairly constant.

  17. Cerebral Blood Flow and Glucose Metabolism Measured With Positron Emission Tomography Are Decreased in Human Type 1 Diabetes

    PubMed Central

    van Golen, Larissa W.; Huisman, Marc C.; Ijzerman, Richard G.; Hoetjes, Nikie J.; Schwarte, Lothar A.; Lammertsma, Adriaan A.; Diamant, Michaela

    2013-01-01

    Subclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [15O]H2O and [18F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast. Regions of interest were automatically delineated on coregistered magnetic resonance images and full kinetic analysis was performed. Plasma glucose and insulin levels were higher in patients versus controls. Total gray matter CBF was 9%, whereas CMRglu was 21% lower in type 1 diabetic subjects versus control subjects. We conclude that at real-life fasting glucose and insulin levels, type 1 diabetes is associated with decreased resting cerebral glucose metabolism, which is only partially explained by the decreased CBF. These findings suggest that mechanisms other than generalized microangiopathy account for the altered CMRglu observed in well-controlled type 1 diabetes. PMID:23530004

  18. A venous outflow method for measurement of rapid changes of the cerebral blood flow and oxygen consumption in the rat.

    PubMed

    Nilsson, B; Siesjö, B K

    1983-01-01

    A technique for continuous measurement of cerebral venous outflow in the rat is described. The method involves cannulation of one retroglenoid vein close to its exit from the skull, and diversion of cerebral venous blood through a closed extracorporal circuit with a drop recording device, the blood being returned to the central venous circulation via a catheter in the external jugular vein. Occlusion of the contralateral retroglenoid vein increases measured flow and minimizes extracerebral contamination of the diverted cerebral venous blood. The venous outflow system is not further isolated from cerebral or potential extracerebral collaterals. Thus, the mass of tissue drained cannot be exactly defined anatomically. However, the experiments involving changes of PP, arterial CO2 tension, and induction of epileptic seizure activity, and simultaneous indirect measurements with radioactive tracer technique, indicate that significant extracerebral contamination does not occur and that in short term measurements the venous outflow represents cerebral blood flow (CBF) in a constant mass of (dorsal and central, mainly forebrain) cerebral tissue. Measurement of arterial blood pressure and pressure in the cisterna magna allows calculation of cerebral perfusion pressure (PP). By simultaneous measurement of arterial and cerebral venous oxygen content changes in cerebral oxygen consumption (CMRO2) can be calculated. The method has been applied to document several situations of transient CBF and CMRO2 changes. PMID:6658967

  19. Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats

    PubMed Central

    2011-01-01

    Background Environmental stress plays an important role in the development of glucose intolerance influencing lipid and glucose metabolism through sympathetic nervous system, cytokines and hormones such as glucocorticoids, catecholamines and glucagon. Otherwise, fish oil prevents glucose intolerance and insulin resistance. Although the mechanisms involved are not fully understood, it is known that sympathetic and HPA responses are blunted and catecholamines and glucocorticoids concentrations can be modulated by fish consumption. The aim of the present study was to evaluate whether fish oil, on a normal lipidic diet: 1) could prevent the effect of footshock-stress on the development of glucose intolerance; 2) modified adiponectin receptor and serum concentration; and 3) also modified TNF-α, IL-6 and interleukin-10 (IL-10) levels in adipose tissue and liver. The study was performed in thirty day-old male Wistar randomly assigned into four groups: no stressed (C) and stressed (CS) rats fed with control diet, and no stressed (F) and stressed (FS) rats fed with a fish oil rich diet. The stress was performed as a three daily footshock stress sessions. Results Body weight, carcass fat and protein content were not different among groups. FS presented a reduction on the relative weight of RET. Basal serum glucose levels were higher in CS and FS but 15 min after glucose load just CS remained with higher levels than other groups. Serum corticosterone concentration was increased in CS, this effect was inhibited in FS. However, 15 min after footshock-stress, corticosterone levels were similar among groups. IL-6 was increased in EPI of CS but fish oil consumption prevented IL-6 increase in FS. Similar levels of TNF-α and IL-10 in RET, EPI, and liver were observed among groups. Adipo R1 protein concentration was not different among groups. Footshock-stress did not modify AdipoR2 concentration, but fish oil diet increases AdipoR2 protein concentration. Conclusions Footshock

  20. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates

    PubMed Central

    Roche-Labarbe, Nadege; Fenoglio, Angela; Radakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A.; Dubb, Jay; Boas, David A.; Grant, P. Ellen; Franceschini, Maria Angela

    2013-01-01

    The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing

  1. Impacts of small arteriovenous malformations (AVM) on regional cerebral blood flow and glucose metabolism

    SciTech Connect

    Liu, R.S.; Yeh, S.H.; Chu, L.S.

    1994-05-01

    This study assessed the effects of small AVMs (<3 cm) on the regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT and on the glucose metabolism (rCGlcM) by [F-18]-FDG PET. Seven AVM patients (pts) were studied. All AVMs were confirmed by cerebral angiography and CT/MR scans. Tc-99m HMPAO SPECT and [F-18]-PDG PET images were interpreted visually to detect the changes of rCBF and rCGlcM. All pts except one brain stem AVM had defects in the regions of nidi on HMPAO and FDG images. FDG PET disclosed low rCGlcM in surrounding areas of AVMs in 6 pts, while HMPAO SPECT detected only 4 cases. One AVM had increased rCBF surrounding the nidus despite of decreased rCGlcM in the same region. Five pts had abnormal rCGlcM over ipsilateral remote cortex but only one had corresponding abnormal rCBF. Contralateral cortical hypofunction was noted in 3 pts by FDG PET but none by HMPAO SPECT. Cross cerebellar diaschisis was found in 2 AVMs by FDG PET and only one by HMPAO SPECT. All regions with abnormal HMPAO uptake did not look as discernibly as seen on the FDG PET scan. CT/MR scans detected the nidi of AVMs of all pts and old hemorrhage in one pt. In conclusion, either HMPAO SPECT or FDG PET is sensitive to detect the functional abnormalities in the region of nidus of small AVM and the surrounding brain tissue. FDG PET is better than HMPAO SPECT to detect functional changes in the remote cortex and diaschisis.

  2. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells

    PubMed Central

    KAEWSUWAN, SIREEWAN; PLUBRUKARN, ANUCHIT; UTSINTONG, MALEERUK; KIM, SEOK-HO; JEONG, JIN-HYUN; CHO, JIN GU; PARK, SANG GYU; SUNG, JONG-HYUK

    2016-01-01

    Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose-derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose-dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)-1 and cyclooxygenase (COX)-2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)-1 and GLUT-4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR-α and PPAR-γ (KD values of 5.32 and 0.10 µM, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR-α and PPAR-γ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes. PMID:26781331

  3. Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta).

    PubMed

    Parr, Lisa A; Boudreau, Matthew; Hecht, Erin; Winslow, James T; Nemeroff, Charles B; Sánchez, Mar M

    2012-01-01

    Early life stress (ELS) is a risk factor for anxiety, mood disorders and alterations in stress responses. Less is known about the long-term neurobiological impact of ELS. We used [(18)F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) to assess neural responses to a moderate stress test in adult monkeys that experienced ELS as infants. Both groups of monkeys showed hypothalamic-pituitary-adrenal (HPA) axis stress-induced activations and cardiac arousal in response to the stressor. A whole brain analysis detected significantly greater regional cerebral glucose metabolism (rCGM) in superior temporal sulcus, putamen, thalamus, and inferotemporal cortex of ELS animals compared to controls. Region of interest (ROI) analyses performed in areas identified as vulnerable to ELS showed greater activity in the orbitofrontal cortex of ELS compared to control monkeys, but greater hippocampal activity in the control compared to ELS monkeys. Together, these results suggest hyperactivity in emotional and sensory processing regions of adult monkeys with ELS, and greater activity in stress-regulatory areas in the controls. Despite these neural responses, no group differences were detected in neuroendocrine, autonomic or behavioral responses, except for a trend towards increased stillness in the ELS monkeys. Together, these data suggest hypervigilance in the ELS monkeys in the absence of immediate danger. PMID:22682736

  4. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  5. Cerebral metabolic rate of glucose computed by Bayes regression of deoxyglucose PET scans

    SciTech Connect

    Wilson, P.D.; Links, J.M.; Huang, S.C.; Douglass, K.H.; Wong, D.F.; Frost, J.J.; Wagner, H.N. Jr.

    1984-01-01

    Local cerebral metabolic rate of glucose (LCMRG) is currently measured using a PET scan of deoxyglucose at 40-60 min postinjection and computed using assumed mean normal rate constants. While the method is accurate in normal tissue, another study showed that for ischemic regions the use of mean normal rate constants underestimated LCMRG by 50%. The authors used computer simulation to study the use of Bayes Regression, a useful method for combining prior information with patient data to estimate the patient's LCMRG. Prior information (means and variances of rate constants in the population) is combined with the patient's data with weighting factors determined by the variances of the rate constants in the population and the noise in the data. The authors simulated noisy data from both a normal and an ischemic population. Each simulation was based on different randomly-selected rate constants from the parent population. They compared the current method with Bayes Regression in each of 100 simulated experiments in each of 3 cases: (1) normal patient, normal prior; (2) ischemic patient, ischemic prior; (3) ischemic patient, normal prior. In patients with ischemic, Bayes Regression appears to provide truer estimates of LCMRG.

  6. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    SciTech Connect

    Small, G.W.; Kuhl, D.E.; Riege, W.H.; Fujikawa, D.G.; Ashford, J.W.; Metter, E.J.; Mazziotta, J.C.

    1989-06-01

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect.

  7. Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression.

    PubMed

    Yan, Xiao-Jin; Chai, Yu-Shuang; Yuan, Zhi-Yi; Wang, Xin-Pei; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; DU, Li-Jun

    2016-05-01

    Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation. PMID:27478098

  8. High consumption of pulses is associated with lower risk of abnormal glucose metabolism in women in Mauritius

    PubMed Central

    Wennberg, M.; Söderberg, S.; Uusitalo, U.; Tuomilehto, J.; Shaw, J. E.; Zimmet, P. Z.; Kowlessur, S.; Pauvaday, V.; Magliano, D. J.

    2014-01-01

    Aims To investigate if consumption of pulses was associated with a reduced risk of developing abnormal glucose metabolism, increases in body weight and increases in waist circumference in a multi-ethnic cohort in Mauritius. Methods Population-based surveys were performed in Mauritius in 1992 and in 1998. Pulse consumption was estimated from a food frequency questionnaire in 1992 and outcomes were measured in 1998. At both time points, anthropometry was undertaken and an oral glucose tolerance test was performed. Results Mauritian women with the highest consumption of pulses (highest tertile) had a reduced risk of developing abnormal glucose metabolism [odds ratio 0.52; 95% CI 0.27, 0.99) compared with those with the lowest consumption, and also after multivariable adjustments. In women, a high consumption of pulses was associated with a smaller increase in BMI. Conclusions High consumption of pulses was associated with a reduced risk of abnormal glucose metabolism and a smaller increase in BMI in Mauritian women. Promotion of pulse consumption could be an important dietary intervention for the prevention of Type 2 diabetes and obesity in Mauritius and should be examined in other populations and in clinical trials. PMID:25346062

  9. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    PubMed

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition. PMID:26993529

  10. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with ( sup 18 F)fluorodeoxyglucose

    SciTech Connect

    Kuwabara, H.; Evans, A.C.; Gjedde, A. )

    1990-03-01

    In the three-compartment model of transfer of native glucose and (18F)fluorodeoxyglucose (FDG) into brain, both transport across the blood-brain barrier and phosphorylation by hexokinase can be described by the Michaelis-Menten equation. This permits the use of fixed transport (tau = K*1/K1) and phosphorylation (psi = k*3/k3) ratios and a common partition volume (Ve = K1/k2) for tracer and glucose. By substituting transfer constants of FDG for those of glucose, using tau and psi, the lumped constant was determined directly by positron tomography. The same constraints also eliminated k*2 and k*3 from the model, thus limiting the parameters to K* (equivalent to K*1k*3/(k*2 + k*3)), K*1, and the cerebral vascular volume (Vo). In six healthy elderly men (aged 61 +/- 5 years), time-activity records of cerebral cortical regions were analyzed with tau = 1.1 and psi = 0.3. The results were compared with those of the conventional FDG method. At 20 min, the goodness of fit by the new equation was as good as that of the conventional method at 45 min. The estimates obtained by the constrained method had stable coefficients of variation. After 20 min, regional differences between the estimates were independent of time, although we observed steady decreases of K* and (k*3). The decrease strongly suggested dephosphorylation of FDG-6-phosphate, particularly after 20 min. All estimates of variables with the constrained method were more accurate than those of the conventional method, including the cerebral glucose metabolic rate itself, as well as physiologically more meaningful, particularly with respect to k*2 and k*3.

  11. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson’s Disease

    PubMed Central

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-01-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson’s disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson’s correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients’ H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  12. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells.

    PubMed

    Kaewsuwan, Sireewan; Plubrukarn, Anuchit; Utsintong, Maleeruk; Kim, Seok-Ho; Jeong, Jin-Hyun; Cho, Jin Gu; Park, Sang Gyu; Sung, Jong-Hyuk

    2016-03-01

    Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose‑derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose‑dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator‑activated receptor (PPAR)‑α and PPAR‑γ. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)‑1 and cyclooxygenase (COX)‑2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)‑1 and GLUT‑4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR‑α and PPAR‑γ (KD values of 5.32 and 0.10 µm, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR‑α and PPAR‑γ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes. PMID:26781331

  13. Effects of chronic cocaine self-administration on cognition and cerebral glucose utilization in rhesus monkeys

    PubMed Central

    Gould, Robert W; Gage, H. Donald; Nader, Michael A

    2012-01-01

    Background Chronic cocaine use is associated with neurobiological and cognitive deficits that persist into abstinence, hindering success of behavioral treatment strategies and perhaps increasing likelihood of relapse. The effects of current cocaine use and abstinence on neurobiology and cognition are not well characterized. Methods Adult male rhesus monkeys with an extensive cocaine self-administration history (~ 5 years) and age-matched controls (n=4/group) performed cognitive tasks in morning sessions and self-administered cocaine or food in afternoon sessions. Positron emission tomography (PET) and [18F]-fluorodeoxyglucose (FDG) was employed to assess cerebral metabolic rates of glucose utilization (MRglu) during cognitive testing. Results Cocaine-experienced monkeys required significantly more trials and committed more errors on reversal learning and multi-dimensional discriminations, compared to controls. Cocaine-naive but not cocaine-experienced monkeys showed greater MRglu during a multi-dimensional discrimination task in the caudate nucleus, hippocampus, anterior and posterior cingulate, regions associated with attention, error-detection, memory, and reward. Using a delayed match-to-sample (DMS) task, there were no differences in baseline working memory performance between groups. High dose cocaine self-administration disrupted DMS performance, but tolerance developed. Acute abstinence from cocaine did not affect performance but by day 30 of abstinence, accuracy increased significantly while performance of cocaine-naive monkeys was unchanged. Conclusions These data document direct effects of cocaine self-administration on cognition and neurobiological sequelae underlying cognitive deficits. Improvements in working memory can occur in abstinence, albeit across an extended period critical for treatment-seekers, suggesting pharmacotherapies designed to enhance cognition may improve success of current behavioral modification strategies. PMID:22672928

  14. Use of 2-deoxy-D(1-/sup 11/C)glucose for the determination of local cerebral glucose metabolism in humans: variation within and between subjects

    SciTech Connect

    Reivich, M.; Alavi, A.; Wolf, A.; Greenberg, J.H.; Fowler, J.; Christman, D.; MacGregor, R.; Jones, S.C.; London, J.; Shiue, C.; Yonekura, Y.

    1982-09-01

    The deoxyglucose technique for the measurement of local cerebral glucose metabolism (LCMRgl) has been widely applied in animals utilizing /sup 14/C-deoxyglucose and in humans employing /sup 18/F-fluorodeoxyglucose. Repeat studies in humans over a relatively brief period of time have not been possible because of the 110-min half-life of /sup 18/F. With the synthesis of /sup 11/C-deoxyglucose it has now become possible to utilize this short-lived (20 min) tracer for the measurement of LCMRgl and to determine its variability within subjects over a 2-h period. The kinetic rate constants for /sup 11/C-deoxyglucose were determined for gray and white matter and found to be very similar to those for /sup 18/F-fluorodeoxyglucose, suggesting that these two analogues of glucose have similar affinities for the facilitated transport system and are similar substrates for hexokinase in the brain. The coefficient of variation of repeated measurements of LCMRgl in a series of six normal subjects was 5.5% to 8.7% for various gray matter structures and 9.7% and 14.0% for white matter structures. The pattern of cerebral metabolic rates is relatively constant in a given individual when the conditions of the study are unchanged. The ability to make repeat measurements in the same subject reduces the variance due to between-subject differences, allowing smaller changes in LCMRgl to be detected with confidence.

  15. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.

    PubMed

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R

    2015-09-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism. PMID:26048361

  16. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism–Tuberous Sclerosis

    PubMed Central

    Chi, Oak Z.; Wu, Chang-Chih; Liu, Xia; Rah, Kang H.; Jacinto, Estela

    2016-01-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long–Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long–Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism. PMID:26048361

  17. Mechanical work and energy consumption in children with cerebral palsy after single-event multilevel surgery.

    PubMed

    Marconi, Valeria; Hachez, Hélèn; Renders, Anne; Docquier, Pierre-Louis; Detrembleur, Chrisitine

    2014-09-01

    Multilevel surgery is commonly performed to improve walking in children with cerebral palsy (CP). Classical gait analysis (kinetics, kinematics) demonstrated positive outcomes after this intervention, however it doesn't give global indication about gait's features. The assessment of energy cost and mechanical work of locomotion can provide an overall description of walking functionality. Therefore, we propose to describe the effects of multilevel surgery in children with CP, considering energetics, mechanical work, kinetic and kinematic of walking. We measured external, internal, total work, energy cost, recovery, efficiency, kinetic and kinematic of walking in 10 children with CP (4 girls, 6 boys; 13 years ± 2) before and 1 year after multilevel surgery. Kinetic and kinematic results are partially comparable to previous findings, energy cost of walking is significantly reduced (p < 0.05); external, internal, total work, recovery, efficiency are not significantly different (p = 0.129; p = 0.147; p = 0.795; p = 0.119; p = 0.21). The improvement of the walking's energy consumption is not accompanied by a corresponding improvement of mechanical work. Therefore it is conceivable that the improvement of walking economy depend on a reduced effort of the muscle to maintain the posture, rather then to an improvement of the mechanism of energy recovery typical of human locomotion. PMID:25107323

  18. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    SciTech Connect

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-05-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression.

  19. Triheptanoin for glucose transporter type I deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate and cognitive indices by a food supplement

    PubMed Central

    Pascual, Juan M.; Liu, Peiying; Mao, Deng; Kelly, Dorothy; Hernandez, Ana; Sheng, Min; Good, Levi B.; Ma, Qian; Marin-Valencia, Isaac; Zhang, Xuchen; Park, Jason Y.; Hynan, Linda S.; Stavinoha, Peter; Roe, Charles R.; Lu, Hanzhang

    2015-01-01

    Objective G1D is commonly associated with electrographic spike-wave and - less-noticeably – with absence seizures. The G1D syndrome has long been attributed to energy (i.e., ATP-synthetic) failure, as have experimental, toxic-rodent epilepsies to impaired brain metabolism and tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, a (seldom-acknowledged) function of glucose and other substrates is the generation of brain TCAs via carbon-donor reactions collectively named anaplerosis. However, TCAs are preserved in murine G1D. This renders inferences about energy failure premature and suggests a different hypothesis, also grounded on our findings, that consumption of alternate TCA precursors is stimulated, potentially detracting from other functions. Second, common ketogenic diets can ameliorate G1D seizures, but lead to a therapeutically-counterintuitive reduction in blood glucose available to the brain, and they can prove ineffective in 1/3 of cases. While developing G1D treatments, all of this motivated us to: a) uphold (rather than attenuate) the residual brain glucose flux that all G1D patients possess; and b) stimulate the TCA cycle, including anaplerosis. Therefore, we tested the medium-chain triglyceride triheptanoin, a widely-used medical food supplement that can fulfill both of these metabolic roles. The rationale is that ketone bodies derived from ketogenic diets are not anaplerotic, in contrast with triheptanoin metabolites, as we have shown in the G1D mouse brain. Design We supplemented the regular diet of a case series of G1D patients with food-grade triheptanoin. First we confirmed that, despite their frequent electroencephalographic (EEG) presence as spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used EEG, quantitative neuropsychological, blood analytical, and MRI cerebral metabolic rate measurements as main outcomes. Setting Academic and

  20. Resting cerebral glucose metabolism and perfusion patterns in women with posttraumatic stress disorder related to sexual assault.

    PubMed

    Kim, Shin-Young; Chung, Young-Ki; Kim, Bom Sahn; Lee, Su Jin; Yoon, Joon-Kee; An, Young-Sil

    2012-03-31

    In the literature, numerous trials using neuroimaging techniques have investigated brain function in patients with post-traumatic stress disorder (PTSD). However, the contrasting results showed that improvements, including in the study design, were required to reach consistent and convincing conclusions. This study evaluated the functional neuroimaging pattern of resting cerebral blood flow and glucose metabolism in patients with PTSD related to sexual assault. Twelve patients were enrolled for both brain single photon emission computed tomography (SPECT) and (18)F-fluorodeoxyglucose positron emission tomography (PET) investigations. All data were analyzed with statistical parametric mapping 2 (SPM2). The PTSD patients showed significant relative decreases in perfusion in the left hippocampus and in the basal ganglia compared with the control group. The PTSD group also had significantly lower cerebral glucosemetabolic activity in the left hippocampus and the superior temporal and precentral gyri than in the control group. These specific patterns of perfusion and glucose metabolism may be closely related to various neurophysiologic symptoms of PTSD. PMID:22464826

  1. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism during the late phase of cerebral vasospasm

    SciTech Connect

    Delgado, T.J.; Arbab, M.A.; Diemer, N.H.; Svendgaard, N.A.

    1986-10-01

    A double-isotope technique for the simultaneous measurement of CBF and CMRglu was applied to a subarachnoid hemorrhage (SAH) model in the rat. Cisternal injection of 0.07 ml blood caused a rather uniform 20% reduction in CBF together with an increase in glucose utilization of 30% during the late phase of vasospasm. In one-third of the SAH animals, there were focal areas where the flow was lowered to 30% of the control values and the glucose uptake increased to approximately 250% of control. We suggest that blood in the subarachnoid space via a neural mechanism induces the global flow and metabolic changes, and that the foci are caused by vasospasm superimposed on the global flow and metabolic changes. In the double-isotope autoradiographic technique, (/sup 14/C)iodoantipyrine and (/sup 3/H)deoxyglucose were used for CBF and CMRglu measurements, respectively, in the same animal. In half of the sections, the (/sup 14/C)iodoantipyrine was extracted using 2,2-dimethoxypropane before the section was placed on a /sup 3/H- and /sup 14/C-sensitive film. The other sections were placed on x-ray film with an emulsion insensitive to /sup 3/H. The validity of the double-isotope method was tested by comparing the data with those obtained in animals receiving a single isotope. The CBF and metabolic values obtained in the two groups were similar.

  2. Multimodal Neuroprotection Induced by PACAP38 in Oxygen–Glucose Deprivation and Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood–brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen–glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor—tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 down-regulated the nerve growth factor receptor (p75NTR) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75NTR and Nogo receptor. PMID:22678884

  3. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    PubMed Central

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  4. Consumption of honey, sucrose, and high fructose corn syrup produce similar metabolic effects in glucose tolerant and glucose intolerant individuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Current public health recommendations call for reduction of added sugars; however, controversy exits over whether all nutritive sweeteners produce similar metabolic effects. Objective: To compare effects of chronic consumption of three nutritive sweeteners (honey, sucrose and high fructo...

  5. Anti-CD3 Antibody Treatment Induces Hypoglycemia and Super Tolerance to Glucose Challenge in Mice through Enhancing Glucose Consumption by Activated Lymphocytes

    PubMed Central

    Chernatynskaya, Anna V.; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J.

    2014-01-01

    Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes. PMID:24741590

  6. Anti-CD3 antibody treatment induces hypoglycemia and super tolerance to glucose challenge in mice through enhancing glucose consumption by activated lymphocytes.

    PubMed

    Xia, Chang-Qing; Chernatynskaya, Anna V; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J

    2014-01-01

    Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes. PMID:24741590

  7. Characterization of the interaction between local cerebral metabolic rate for glucose and acid-base index in ischemic rat brain employing a double-isotope methodology

    SciTech Connect

    Peek, K.E.H.

    1988-01-01

    The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH-the acid-base index (ABI)-concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ({sup 14}C)2-deoxyglucose and ({sup 14}C)dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices.

  8. Effects of physostigmine on local cerebral glucose utilization in the central components of the rat visual system.

    PubMed

    Grünwald, F; Crane, A; Mende, M; Suda, S; Kennedy, C; Pettigrew, K D; Biersack, H J; Sokoloff, L; Kuschinsky, W

    1993-11-26

    The effects of intravenous administration of physostigmine at doses of 0.03, 0.095, or 0.3 mg/kg on local cerebral glucose utilization (LCGU) were determined in 3 structures of the visual system of the rat brain by means of the quantitative 2-[14C]deoxyglucose method. LCGU was increased in the superior colliculus (superficial gray layer), but unchanged in the visual cortex and the lateral geniculate body. To determine whether the observed effect of physostigmine on the superior colliculus depended on input from the retina, the highest dose of physostigmine was administered to rats which had previously been enucleated bilaterally. Enucleation decreased LCGU in the superior colliculus of the animals not treated with physostigmine and blocked the effect of physostigmine on LCGU. The effect of physostigmine in the superior colliculus appears, therefore, to depend on input from the retina. PMID:8295735

  9. Decrease in cerebral metabolic rate of glucose after high-dose methotrexate in childhood acute lymphocytic leukemia

    SciTech Connect

    Komatsu, K.; Takada, G.; Uemura, K.; Shishido, F.; Kanno, I. )

    1990-09-01

    We measured changes in the regional cerebral metabolic rate of glucose (rCMRGlu) using {sup 18}F-fluorodeoxyglucose and positron emission tomography for the assessment of neurotoxicity in childhood acute lymphocytic leukemia treated with high-dose methotrexate (HD-MTX) therapy. We studied 8 children with acute lymphocytic leukemia (mean age: 9.6 years) treated with HD-MTX (200 mg/kg or 2,000 mg/M2) therapy. CMRGlu after HD-MTX therapy was most reduced (40%) in the patient who had central nervous system leukemia and was treated with the largest total doses of both intrathecal MTX (IT-MTX) and HD-MTX. CMRGlu in the whole brain after HD-MTX therapy was reduced by an average of 21% (P less than 0.05). The reductions of CMRGlu in 8 patients were correlated with total doses of both IT-MTX (r = 0.717; P less than 0.05) and systemic HD-MTX (r = 0.784; P less than 0.05). CMRGlu of the cerebral cortex, especially the frontal and occipital cortex, was reduced more noticeably than that of the basal ganglia and white matter. We suggest that the measurement of changes in rCMRGlu after HD-MTX therapy is useful for detecting accumulated MTX neurotoxicity.

  10. Statistical mapping of effects of middle cerebral artery occlusion (MCAO) on blood flow and oxygen consumption in porcine brain.

    PubMed

    Watanabe, Hideaki; Sakoh, Masaharu; Andersen, Flemming; Rodell, Anders; Sørensen, Jens Christian; Østergaard, Leif; Mouridsen, Kim; Cumming, Paul

    2007-02-15

    The volume of cerebral tissue perturbed in experimental models of middle cerebral artery occlusion (MCAO) can be highly variable. Thus, the territories of reduced cerebral blood flow (CBF) or oxygen consumption (CMRO(2)) following MCAO might properly be defined using statistical parametric mapping within a population. In order to establish such a method, we mapped CBF and CMRO(2) in 18 pigs with acute MCAO. Parametric maps were flipped about the axis of symmetry, and CBF and CMRO(2) in the infarcted hemisphere were calculated as percentages of the magnitudes in mirror-image pixels. There were log-linear relationships between the volumes of affected tissue and the percentages of normal CFB or CMRO(2). This graphical analysis showed that the volume of the core deficit was smaller for CBF that for CMRO(2), but expanded more rapidly with decreasing CBF deficit than did the corresponding volumes of reduced CMRO(2). Thus, acute changes in CBF and CMRO(2) following MCAO in the pig can be defined as probabilistic volumes. PMID:17129609

  11. Regional cerebral incorporation of plasma (/sup 14/C)palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats

    SciTech Connect

    Noronha, J.G.; Larson, D.M.; Rapoport, S.I.

    1989-03-01

    Regional rates of incorporation into brain of intravenously administered (/sup 14/C)palmitate and regional cerebral metabolic rates for glucose (rCMRglc) were measured in water-provided (WP) and water-deprived (WD) homozygous (DI) and heterozygous (HZ) Brattleboro rats, a mutant strain unable to synthesize vasopressin, and in the parent Long-Evans (LE) strain. Following 15 h or 4 days of water deprivation, rCMRglc was elevated threefold in the pituitary neural lobe of LE-WD and DI-WD as compared with LE-WP rats, and in the paraventricular nucleus of LE-WD, and the supraoptic nucleus of DI-WD rats. However, incorporation of (/sup 14/C)palmitate into these regions was not specifically altered. The results indicate that water deprivation for up to 4 days increases rCMRglc in some brain regions involved with vasopressin, but does not alter (/sup 14/C)palmitate incorporation into these regions. Incorporation of plasma (/sup 14/C)palmitate is independent of unlabeled plasma palmitate at brain regions which have an intact blood-brain barrier, but at nonbarrier regions falls according to saturation kinetics as cold plasma concentration rises, with a mean half-saturation constant (Km) equal to 0.136 mumol.ml-1.

  12. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    SciTech Connect

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O'Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with (/sup 14/C)-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor.

  13. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  14. Simultaneous double-isotope autoradiographic measurement of local cerebral glucose metabolic rate and acid-base status in rat brain.

    PubMed

    Lockwood, A H; Peek, K E; Berridge, M; Bogue, L; Yap, E

    1987-03-01

    We developed a double-isotope autoradiographic method for the simultaneous measurement of the local cerebral metabolic rate for glucose (1CMRG) and index of regional acid-base status (rABI) in single brain slices using [2-14C]deoxy-D-glucose (DG) and 5,5-dimethyl-[2-14C]oxazolidine-2,4,dione (DMO). After iv isotope administration, paper chromatography separates plasma DMO from DG activity using a methanol-methylene chloride solvent system. Initial tissue autoradiograms depict regional DMO plus DG and DG metabolite distribution. After 14 days in a well-ventilated hood, 97.5 +/- 0.5% of all DMO is lost from tissue sections by sublimation, and a second autoradiogram depicts DG plus DG metabolite distribution. Retention of brain lipids does not alter beta-particle self-absorption, avoiding problems associated with isotope extraction with solvents. Autoradiograms are digitized and converted to isotope-content images. The second autoradiogram is used for 1CMRG computation. After subtracting the second regional isotope-content value from the first, the DMO content is obtained and used to compute rABI. Application of this method to normal animals yields expected values for 1CMRG and rABI. This method is amenable to whole-slice digitization and creation of functional images of 1CMRG and ABI followed by pixel-by-pixel correlations of the two variables, making this a potentially valuable tool for the investigation of the relationships between glucose metabolism and brain acid-base balance. PMID:3505334

  15. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    PubMed Central

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722

  16. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722

  17. Sugar-Sweetened Beverage Consumption and Risk of General and Abdominal Obesity in Iranian Adults: Tehran Lipid and Glucose Study

    PubMed Central

    MIRMIRAN, Parvin; EJTAHED, Hanieh-Sadat; BAHADORAN, Zahra; BASTAN, Sara; AZIZI, Fereidoun

    2015-01-01

    Background: General and abdominal obesity are major global health problems. This cross-sectional study was conducted to evaluate the association between consumption of sugar-sweetened beverages (SSBs) and body mass index and waist circumference status in 5852 Iranian adults within the framework of the Tehran Lipid and Glucose Study (TLGS). Methods: Intakes of SSBs including carbonated drinks and synthetic fruit juices were measured using a validated food frequency questionnaire. The association between body mass index, waist circumference and body adiposity index in each quartile category of SSB consumption were determined using the multivariable linear regression models. The odds ratio (OR) of general and abdominal obesity in each quartile of SSB consumption was also determined using the multivariable logistic regression models. Results: Mean dietary intake of SSBs was 48.9 g/d or 0.25 servings/d. After adjustment for all potential confounding variables, significant associations were observed between SSB consumption and BMI (β: 0.49, 95% CI: 0.13–0.86), and waist circumference (β: 1.28, 95% CI: 0.40–2.16) in the fourth quartile. There was no significant association between SSB consumption and body adiposity index. Participants who consumed > 57.1 g/d of SSBs had 22% higher risk of general obesity (OR: 1.22, 95% CI: 1.00–1.48) and 35% higher risk of abdominal obesity (OR: 1.35, 95% CI: 1.12–1.61), compared with those in the lowest quartile of SSB consumption. Conclusion: Higher intakes of SSBs were associated with the higher risk of general and abdominal obesity in adults suggesting that limiting the consumption of SSBs may be a practical approach to prevent and manage obesity. PMID:26744712

  18. The change in cerebral glucose metabolism after electroacupuncture: a possible marker to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa

    PubMed Central

    Liu, Tao-Tao; Hong, Qing-Xiong; Xiang, Hong-Bing

    2015-01-01

    Some reports have demonstrated that deep brain stimulation (DBS) is a promising treatment for patients who suffer from intractable anorexia nervosa. However, the nature of DBS may not be viewed as a standard clinical treatment option for anorexia nervosa because of the unpredictable outcome before DBS. Just like DBS in the brain, electroacupuncture at acupoints is also efficient in treating refractory anorexia nervosa. Some neuroimaging studies using functional magnetic resonance imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) had revealed that both DBS and electroacupuncture at acupoints with electrical stimulation are related to the changes in cerebral glucose metabolism. Therefore, we hypothesize that the changes in cerebral glucose metabolism after electroacupuncture might be useful to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa. PMID:26770596

  19. The change in cerebral glucose metabolism after electroacupuncture: a possible marker to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa.

    PubMed

    Liu, Tao-Tao; Hong, Qing-Xiong; Xiang, Hong-Bing

    2015-01-01

    Some reports have demonstrated that deep brain stimulation (DBS) is a promising treatment for patients who suffer from intractable anorexia nervosa. However, the nature of DBS may not be viewed as a standard clinical treatment option for anorexia nervosa because of the unpredictable outcome before DBS. Just like DBS in the brain, electroacupuncture at acupoints is also efficient in treating refractory anorexia nervosa. Some neuroimaging studies using functional magnetic resonance imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) had revealed that both DBS and electroacupuncture at acupoints with electrical stimulation are related to the changes in cerebral glucose metabolism. Therefore, we hypothesize that the changes in cerebral glucose metabolism after electroacupuncture might be useful to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa. PMID:26770596

  20. Regional cerebral glucose metabolism is normal in young adults with Down syndrome

    SciTech Connect

    Schapiro, M.B.; Grady, C.L.; Kumar, A.; Herscovitch, P.; Haxby, J.V.; Moore, A.M.; White, B.; Friedland, R.P.; Rapoport, S.I. )

    1990-03-01

    Regional CMRglc (rCMRglc) values were measured with ({sup 18}F)2-fluoro-2-deoxy-D-glucose ({sup 18}FDG) and positron emission tomography (PET), using a Scanditronix PC-1024-7B scanner, in 14 healthy, noninstitutionalized subjects with trisomy 21 (Down syndrome; DS) (mean age 30.0 years, range 25-38 years) and in 13 sex-matched, healthy volunteers (mean age 29.5 years, range 22-38 years). In the DS group, mean mental age on the Peabody Picture Vocabulary Test was 7.8 years and dementia was not present. Resting rCMRglc was determined with eyes covered and ears occluded in a quiet, darkened room. Global gray CMRglc equaled 8.76 +/- 0.76 mg/100 g/min (mean +/- SD) in the DS group as compared with 8.74 +/- 1.19 mg/100 g/min in the control group (p greater than 0.05). Gray matter regional measurements also did not differ between groups. The ratio of rCMRglc to global CMRglc, calculated to reduce the variance associated with absolute rCMRglc, and right/left ratios did not show any consistent differences. These results show that healthy young DS adults do not have alterations in regional or global brain glucose metabolism, as measured with 18FDG and PET, prior to an age at which the neuropathological changes in Alzheimer disease are reported to occur.

  1. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations. PMID:25383490

  2. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy

    SciTech Connect

    Lockwood, A.H.; Yap, E.W.; Rhoades, H.M.; Wong, W.H. )

    1991-03-01

    We measured CBF and the CMRglc in normal controls and in patients with severe liver disease and evidence for minimal hepatic encephalopathy using positron emission tomography. Regions were defined in frontal, temporal, parietal, and visual cortex; the thalamus; the caudate; the cerebellum; and the white matter along with a whole-slice value obtained at the level of the thalamus. There was no difference in whole-slice CBF and CMRglc values. Individual regional values were normalized to the whole-slice value and subjected to a two-way repeated measures analysis of variance. When normalized CBF and CMRglc values for regions were compared between groups, significant differences were demonstrated (F = 5.650, p = 0.00014 and F = 4.58, p = 0.0073, respectively). These pattern differences were due to higher CBF and CMRglc in the cerebellum, thalamus, and caudate in patients and lower values in the cortex. Standardized coefficients extracted from a discriminant function analysis permitted correct group assignment for 95.5% of the CBF studies and for 92.9% of the CMRglc studies. The similarity of the altered pattern of cerebral metabolism and flow in our patients to that seen in rats subjected to portacaval shunts or ammonia infusions suggests that this toxin may alter flow and metabolism and that this, in turn, causes the clinical expression of encephalopathy.

  3. Noninvasive quantification of cerebral metabolic rate for glucose in rats using (18)F-FDG PET and standard input function.

    PubMed

    Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi

    2015-10-01

    Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed (18)F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIF(NS)) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF(1S)). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIF(NS)-, and EIF(1S)-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIF(NS) was highly correlated with those derived from AIF and EIF(1S). Preliminary comparison between AIF and EIF(NS) in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIF(NS) method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947

  4. Daily consumption of Reliv Glucaffect for 8 weeks significantly lowered blood glucose and body weight in 50 subjects.

    PubMed

    Belcaro, Gianni; Cesarone, Maria; Silvia, Errichi; Ledda, Andrea; Stuard, Stefano; G, Vinciguerra; Dougall, Mark; Cornelli, Umberto; Hastings, Carl; Schönlau, Frank

    2009-12-01

    A public change to healthier lifestyles with more physical activity and better nutrition, including caloric restriction, is required to address the obesity epidemic. Weight loss can be achieved by caloric restrictions; current research suggests that this may be achieved by consumption of slowly absorbed carbohydrates owing to the resulting prolonged satiety. Our rationale was to prolong the satiety of overweight volunteers by supplementation with a proprietary formulation Glucaffect which delays absorption of carbohydrates. Glucaffect provides potent alpha-glucosidase inhibitors of herbal source such Pycnogenol, Madeglucyl and various others which obstruct absorption of carbohydrates, such as starch. Fifty overweight subjects received either Glucaffect or an inactive control product for eight weeks. Consumption of Glucaffect was found to statistically significantly lower blood-fasting glucose from baseline 145.3 mg/dL to 101.1 mg/dL (-30.4%) and Hba1c from 7.59% to 6.33% as compared to the control group where values decreased only marginally. The weight and the body mass index (BMI) decreased significantly from an average of 88.5 kg (BMI 26.8 kg/m2) to 81.3 kg (BMI 24.5 kg/m2) as compared to the control group. In conclusion, Glucaffect enabled subjects with metabolic syndrome to achieve healthy BMI and blood glucose levels. Glucaffect was well tolerated and no subject dropped out. PMID:19405040

  5. High Glucose-Induced Mitochondrial Respiration and Reactive Oxygen Species in Mouse Cerebral Pericytes is Reversed by Pharmacological Inhibition of Mitochondrial Carbonic Anhydrases: Implications for Cerebral Microvascular Disease in Diabetes

    PubMed Central

    Shah, Gul N.; Morofuji, Yoichi; Banks, William A.; Price, Tulin O.

    2013-01-01

    Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood-brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration. PMID:24076121

  6. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from (13)C-glucose.

    PubMed

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Masoodi, Mojgan; Escrig, Stéphane; Meibom, Anders; Comment, Arnaud

    2015-11-01

    Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100 nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes. PMID:26409162

  7. Comparison of cerebral regional glucose metabolic relationships in resting and auditory stimulated states

    SciTech Connect

    Metter, E.J.; Riege, W.H.; Mazziotta, J.C.; Phelps, M.E.; Kuhl, D.E.

    1984-01-01

    FDG positron computed tomography has demonstrated strong correlations between high frontal and occipital glucose metabolism in normal resting subjects, which varied by age and were lost in Huntington's and Parkinson's Diseases. The studies raised the question whether the findings may be explained by anatomic and not metabolic factors. An approach to the issue was to examine subjects scanned under two states, where functional and not anatomic features would account for relationship differences. Seventeen subjects were identified who had scans under resting and auditory stimulated states. Measurements were taken from 12 brain regions and were expressed as percentage of mean metabolism. A principal components analysis of the resting state demonstrated 3 components (73% of variance), while the stimulated states showed 4 (79% of variance). The first resting factor related frontal, right posterior inferior frontal and superior temporal regions, while in the stimulated, the frontal associated with the occipital. The second resting factor related both angular gyri and posterior temporal, while the third related left posterior inferior frontal, superior temporal and right occipital. With stimulation both factors were replaced by three others. The change in the first factor and its presence in other subject groups points to a functional relationship between the regions. Comparison to previous studies suggest the frontal-occipital association may involve aspects of attention. The variability in other factors was similar to loose correlations noted in normal studies and may reflect the differential response to several tasks.

  8. The effect of moderate glycemic energy bar consumption on blood glucose and mood in dancers.

    PubMed

    Brown, Derrick; Wyon, Matthew

    2014-03-01

    Ingesting quality carbohydrates has been shown to be essential for dancers. Given that most dance classes take place in the morning, it has been recommended that dancers eat a well-balanced breakfast containing carbohydrates, fats, and protein as a means of fuelling this activity. The aim of this study was to determine the effect of a moderate glycemic index energy (MGI) bar or a fasting condition on dancers' blood glucose levels and perceived pleasure-displeasure response during the first dance class of the day. In a randomized counterbalanced design, 10 female preprofessional dance students took their regular scheduled contemporary dance class, on four separate occasions. On each occasion, they consumed either a commercially prepared carbohydrate (CHO)-dense energy bar (47.3 g CHO) or water (FAST). Plasma glucose responses and pleasure-displeasure affect were measured before and at two time points during the class. Dancers who consumed the MGI bar had significantly greater peak blood glucose levels at all time points than those who fasted (p<0.05). Regarding affective state measures, participants who had breakfast had significantly greater pleasure scores than those who only ingested water(p<0.05). In conclusion, results suggest that CHO with an MGI value positively impacts blood glucose concentrations during a dance class. Further, we conclude that skipping breakfast can have an unfavorable effect on the pleasure-displeasure state of dancers. These findings highlight the impact of breakfast on how one feels, as well as the physiological and metabolic benefits of CHO as an exogenous energy source in dancers. PMID:24647459

  9. Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men.

    PubMed

    Kameyama, Noriko; Maruyama, Chizuko; Matsui, Sadako; Araki, Risa; Yamada, Yuichiro; Maruyama, Taro

    2014-05-01

    The co-ingestion of protein, fat and fibre with carbohydrate reportedly affects postprandial glucose, insulin and incretin (glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)) responses. However, the effects of combination dishes with carbohydrate-rich foods at typically eaten amounts remain unclear. The objective of the present study was to evaluate the effects of consuming recommended amounts of side dishes with boiled white rice in the same meal on postprandial plasma glucose, insulin and incretin hormone responses. A total of nine healthy male volunteers consumed four different meals in a random order on separate days. The test meals were as follows: S, white rice; SM, addition of protein-rich main dishes to the S meal; SMF, addition of a fat-rich food item to the SM meal; SMFV, addition of vegetables to the SMF meal. Plasma glucose, GIP and GLP-1 and serum insulin concentrations were determined during a 3 h period after consumption of these meals. Postprandial glucose responses were lower after SMFV meal consumption than after consumption of the other meals. The incremental AUC for GIP (0-180 min) were largest after consumption of the SMF and SMFV meals, followed by that after SM meal consumption, and was smallest after S meal consumption (P< 0·05). Furthermore, we found GIP concentrations to be dose dependently increased by the fat content of meals of ordinary size, despite the amount of additional fat being small. In conclusion, the combination of recommended amounts of main and vegetable side dishes with boiled white rice is beneficial for lowering postprandial glucose concentrations, with an increased incretin response, when compared with white rice alone. PMID:24507870

  10. Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults.

    PubMed

    Gardener, Samantha L; Sohrabi, Hamid R; Shen, Kai-Kai; Rainey-Smith, Stephanie R; Weinborn, Michael; Bates, Kristyn A; Shah, Tejal; Foster, Jonathan K; Lenzo, Nat; Salvado, Olivier; Laske, Christoph; Laws, Simon M; Taddei, Kevin; Verdile, Giuseppe; Martins, Ralph N

    2016-03-31

    Increasing evidence suggests that Alzheimer's disease (AD) sufferers show region-specific reductions in cerebral glucose metabolism, as measured by [18F]-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET). We investigated preclinical disease stage by cross-sectionally examining the association between global cognition, verbal and visual memory, and 18F-FDG PET standardized uptake value ratio (SUVR) in 43 healthy control individuals, subsequently focusing on differences between subjective memory complainers and non-memory complainers. The 18F-FDG PET regions of interest investigated include the hippocampus, amygdala, posterior cingulate, superior parietal, entorhinal cortices, frontal cortex, temporal cortex, and inferior parietal region. In the cohort as a whole, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in both the left hippocampus and right amygdala. There were no associations observed between global cognition, delayed recall in logical memory, or visual reproduction and 18F-FDG PET SUVR. Following stratification of the cohort into subjective memory complainers and non-complainers, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in the right amygdala in those with subjective memory complaints. There were no significant associations observed in non-memory complainers between 18F-FDG PET SUVR in regions of interest and cognitive performance. We observed subjective memory complaint-specific associations between 18F-FDG PET SUVR and immediate verbal memory performance in our cohort, however found no associations between delayed recall of verbal memory performance or visual memory performance. It is here argued that the neural mechanisms underlying verbal and visual memory performance may in fact differ in their pathways, and the characteristic reduction of 18F-FDG PET SUVR observed in this and previous studies likely reflects the pathophysiological changes in specific

  11. Characterisation of a mouse cerebral microvascular endothelial cell line (bEnd.3) after oxygen glucose deprivation and reoxygenation.

    PubMed

    Ku, Jacqueline M; Taher, Mohammadali; Chin, Kai Yee; Grace, Megan; McIntyre, Peter; Miller, Alyson A

    2016-08-01

    Studies have utilised immortalised mouse cerebral endothelial cells (bEnd.3) exposed to oxygen glucose deprivation (OGD) to study blood-brain barrier (BBB) disruption after ischaemia. However, there is a paucity of literature describing the duration of OGD (and reoxygenation [RO]) required to best simulate BBB disruption in vivo. In this study we assessed BBB disruption in bEnd.3 cells after exposure to a range of OGD periods, and also after OGD + RO. Exposure of bEnd.3 monolayers to 4, 6, 16, or 24 hours of OGD resulted in a significant increase in permeability. The hyperpermeability after 16 or 24 hours was associated with decreased expression of tight junction proteins (occludin and claudin-5). Furthermore, there was a decrease in cell viability and increased expression of the pro-apoptotic protein, cleaved caspase-3. Exposure of bEnd.3 monolayers to 1 hour OGD+ 23 hours RO exacerbated hyperpermeability relative to 1 hour OGD, which was associated with decreased expression levels of occludin and ZO-1, but no change in cell viability or caspase-3. 4 hours OGD + 23 hours RO exacerbated hyperpermeability, decreased expression levels of tight junction proteins, decreased cell viability, and increased caspase-3 expression. Thus, bEnd.3 cells exhibit hyperpermeability, a loss of tight junction proteins, and undergo cell death, after exposure to prolonged periods of OGD. Moreover, they exhibit exacerbated hyperpermeability, a loss of tight junction proteins, and increased expression of caspase-3 after OGD + RO. These findings will facilitate the use of this cell line in studies of BBB disruption and for the testing of therapeutics. PMID:27128638

  12. Neuropilin 2 deficiency does not affect cortical neuronal viability in response to oxygen-glucose-deprivation and transient middle cerebral artery occlusion.

    PubMed

    Hou, Sheng T; Jiang, Susan X; Slinn, Jacqueline; O'Hare, Michael; Karchewski, Laurie

    2010-04-01

    Neuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains. In this study, we examined the contribution of NRP2 gene to cerebral ischemia-induced brain injury using NRP2 deficient mouse. To our surprise, the lack of NRP2 expression does not affect the outcome of brain injury induced by transient occlusion of the middle cerebral artery (MCAO) in mouse. The cerebral vasculature in terms of the middle cerebral artery anatomy and microvessel density in the cerebral cortex of NRP2 deficient homozygous (NRP2(-/-)) mice are normal and almost identical to those of the heterozygous (NRP2(+/-)) and wild type (NRP2(+/+)) littermates. MCAO (1h) and 24h reperfusion caused a brain infarction of 23% (compared to the contralateral side) in NRP2(-/-) mice, which is not different from those in NRP2(+/- and +/+) mice at 22 and 21%, respectively (n=19, p>0.05). Correspondingly, NRP2(-/-) mouse also showed a similar level of deterioration of neurological functions after stroke compared with their NRP2(+/- and +/+) littermates. Oxygen-glucose-deprivation (OGD) caused a significant neuronal death in NRP2(-/-) cortical neurons, at the level similar to that in NRP(+/+) cortical neurons (72% death in NRP(-/-) neurons vs. 75% death in NRP2(+/+) neurons; n=4; p>0.05). Together, these loss-of-function studies demonstrated that despite of its critical role in neuronal guidance and vascular formation during development, NRP2 expression dose not affect adult brain response to cerebral ischemia. PMID:20036291

  13. Bioassay-based isolation and identification of phenolics from sweet cherry that promote active glucose consumption by HepG2 cells.

    PubMed

    Cao, Jinping; Li, Xin; Liu, Yunxi; Leng, Feng; Li, Xian; Sun, Chongde; Chen, Kunsong

    2015-02-01

    A variety of phenolics had been found to be functional in promoting cellular glucose consumption that is important for blood glucose regulation. Sweet cherry (Prunus avium) is rich in such kinds of phenolics, including hydrocinnamic acids, anthocyanins, flavonols, and flavan-3-ols. Furthermore, a sweet cherry phenolics-rich extract (PRE) was found to be effective in promoting HepG2 glucose consumption. Seventeen components were preliminarily identified by HPLC-ESI-MS, including 9 hydrocinnamic acids, 4 anthocyanins, 3 flavonols, and 1 flavan-3-ol. To investigate the cellular glucose consumption-promotion activity of different phneolics subclasses, the phenolics were further fractionated into an anthocyanin-rich fraction (ARF), hydrocinnamic acid-rich fraction (HRF), and flavonol-rich fraction (FRF) through liquid-liquid extraction and mix-mode cation-exchange solid-phase extraction. The 3 fractions promoted HepG2 glucose consumption to different levels, with the promotion effects of HRF and FRF stronger than that of the ARF. The results provide guidance on the use of sweet cherry as a functional fruit. PMID:25559482

  14. 3-Fluoro-Deoxyglucose for the assessment of cerebral perfusion and glucose transport - Indications for extracranial-intracranial arterial bypass and followup studies

    SciTech Connect

    Mehdorn, H.M.; Vyska, K.; Machulla, H.J.; Knust, E.J.

    1985-05-01

    3-Fluor-Deoxyglucose (3FDG) is a glucose-analogue which is transported across the blood-brain-barrier by the same carrier as glucose but is only phoshorylated to a minor part. By a newly developed model, it became possible to estimate both cerebral perfusion and glucose transport in a single examination, determining the Michaelis-Menten-constant K/sub M/ and the maximal velocity v/sub m/. Normal values were determined as follows: gray matter perfusion 88+-8 ml/ 100g min; v/sub m/ was 2.46 ..mu..mol/g min; K/sub M/ was 6.42 ..mu..mol/g. This method was applied successfully in a series of 15 patients with cerebral ischemia to select suitable candidates for extacranial-intracranial (EC-IC) arterial bypass surgery and to follow them up to 15 months postop. In patients with minor strokes and transient ischemic attacks (TIA), areas which appeared normal in conventional CT presented with reduced perfusion values (down to 67 ml/ 100 g min) and either normal or reduced v/sub m/ (down to 0.8 ..mu..mol/g min). These patients were thought optimal candidates for EC-IC bypass in order to improve the misery perfusion rate.

  15. Compartmentalized Cerebral Metabolism of [1,6-13C]Glucose Determined by in vivo 13C NMR Spectroscopy at 14.1 T

    PubMed Central

    Duarte, João M. N.; Lanz, Bernard; Gruetter, Rolf

    2011-01-01

    Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by 13C nuclear magnetic resonance (NMR) spectroscopy upon infusion of 13C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-13C]glucose and 13C enrichment in the brain metabolites was measured by 13C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining 13C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (VTCA) and neurotransmission rate (VNT) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial VTCA was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (VPC) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism. PMID:21713114

  16. Sugar-Sweetened Beverage Consumption Is Associated with Metabolic Syndrome in Iranian Adults: Tehran Lipid and Glucose Study

    PubMed Central

    Ejtahed, Hanieh-Sadat; Bahadoran, Zahra; Azizi, Fereidoun

    2015-01-01

    Background Metabolic syndrome (MetS), a cluster of multiple metabolic abnormalities, is one of the major public health challenges worldwide. The current study was conducted to evaluate the association between sugar-sweetened beverage (SSB) consumption and MetS and its components in Iranian adults. Methods This cross-sectional study was conducted among 5,852 men and women, aged 19 to 70 years, who participated in the fourth phase (2009 to 2011) of the Tehran Lipid and Glucose Study. Demographics, anthropometrics, biochemical measurements, and blood pressure (BP) were assessed and MetS was defined by National Cholesterol Education Program Adult Treatment Panel III definition. Frequency and quantity of SSB intakes including carbonated drinks and synthetic fruit juices were collected using a validated semiquantitative food frequency questionnaire. Results Mean age of participants (43%, men) was 40.6±12.9 years. Significant positive associations between SSBs and waist circumference, triglyceride level, systolic and diastolic BP in the third and fourth quartile of SSBs were observed, after adjustment for all potential confounding variables. The odds of MetS in the third and fourth quartiles compared to the first quartile category of SSBs was 1.21 (95% confidence interval [CI], 1.01 to 1.45) and 1.30 (95% CI, 1.06 to 1.58), respectively (P for trend=0.03). The odds of MetS, abdominal obesity, low high density lipoprotein cholesterol and elevated BP had increasing trends across increasing of SSB consumption (P for trend <0.05). Conclusion Higher intake of SSBs was associated with the higher odds of MetS in adults. It is suggested that reducing consumption of SSBs could be a practical approach to prevent metabolic abnormalities. PMID:26435135

  17. Effect of Cucurbita ficifolia and Probiotic Yogurt Consumption on Blood Glucose, Lipid Profile, and Inflammatory Marker in Type 2 Diabetes

    PubMed Central

    Bayat, Azade; Azizi-Soleiman, Fatemeh; Heidari-Beni, Motahar; Feizi, Awat; Iraj, Bijan; Ghiasvand, Reza; Askari, Gholamreza

    2016-01-01

    Background: Control of blood sugar, hypertension, and dyslipidemia are key factors in diabetes management. Cucurbita ficifolia (pumpkin) is a vegetable which has been used traditionally as a remedy for diabetes in Iran. In addition, consumption of probiotics may have beneficial effects on people with Type 2 diabetes. The aim of this study was an investigation of the effects of C. ficifolia and probiotic yogurt consumption alone or at the same time on blood glucose and serum lipids in diabetic patients. Methods: Eighty eligible participants randomly were assigned to four groups: 1 - green C. ficifolia (100 g); 2 - probiotic yogurt (150 g); 3 - C. ficifolia plus probiotic yogurt (100 g C. ficifolia plus 150 g yogurt); and 4 -control (dietary advice) for 8 weeks. Blood pressure, glycemic response, lipid profile, and high-sensitive C-reactive protein (hsCRP) were measured before and after the intervention. Results: Total cholesterol (TC) decreased significantly in yogurt and yogurt plus C. ficifolia groups (within groups P = 0.010, and P < 0.001, respectively). C. ficifolia plus yogurt consumption resulted in a decrease in triglyceride (TG) and an increase in high-density lipoprotein cholesterol (HDL-C) (within groups P < 0.001 and P = 0.001, respectively). All interventions led to a significant decrease in blood sugar, hemoglobin A1c (HbA1c), hsCRP, and low-density lipoprotein cholesterol (LDL-C) level within groups. Blood pressure decreased significantly in Cucurbita group and yogurt group (within groups P < 0.001, and P = 0.001 for systolic blood pressure [SBP] and P < 0.001, and P = 0.004 for diastolic blood pressure [DBP], respectively). All variables changed between groups significantly except LDL-C level. Conclusions: Variables including TG, HDL-C, TC, fasting blood sugar, HbA1c, SBP, DBP, and hsCRP changed beneficially between groups. It seems that consumption of C. ficifolia and probiotic yogurt may help treatment of diabetic patients. PMID:26955460

  18. Whole and fractionated yellow pea flours modulate insulin, glucose, oxygen consumption, and the caecal microbiome in Golden Syrian hamsters.

    PubMed

    Marinangeli, Christopher P F; Krause, Denis; Harding, Scott V; Rideout, Todd C; Zhu, Fuqin; Jones, Peter J H

    2011-12-01

    The objective was to evaluate the effects of whole and fractionated yellow peas on circulating lipids, glucose and insulin levels, energy expenditure, and body composition, as well as to assess their prebiotic actions in Golden Syrian hamsters. Forty-five hamsters consumed a hypercholesterolemic diet for 28 days, then were randomly assigned to 1 of 3 groups: control (CON), whole pea flour (WPF), and fractionated pea flour (hulls only) (FPF). WPF and FPF were incorporated into the diets, replacing 10% of the cornstarch. WPF and FPF feeding produced negligible effects on circulating cholesterol and triglyceride levels. However, both WPF (56.76 ± 9.22 pmol·L⁻¹, p = 0.002) and FPF (89.27 ± 19.82 pmol·L⁻¹, p = 0.032) reduced circulating insulin levels compared with the CON group (131.70 ± 17.70 pmol·L⁻¹). Moreover, FPF decreased (p = 0.03) circulating glucose levels (6.26 ± 0.51 mmol·L⁻¹) compared with CON (8.27 ± 0.81 mmol·L⁻¹). Energy expenditure analysis revealed that hamsters consuming WPF demonstrated a higher (p = 0.036) oxygen consumption (2.00 ± 0.31 mL O₂·g⁻¹ lean body mass) vs. the CON group (1.56 ± 0.089 mL O₂·g⁻¹ lean body mass). Analysis of caecal digesta showed that WPF produced shifts in the abundance of microbial taxa with the most predominant changes occurring within the phylum Firmicutes. Yellow peas and their constituents should be investigated as future functional food ingredients that help prevent and manage lifestyle-related diseases such as diabetes and obesity. PMID:22026418

  19. Neuroprotective effects of erythromycin on cerebral ischemia reperfusion-injury and cell viability after oxygen-glucose deprivation in cultured neuronal cells.

    PubMed

    Katayama, Yasuo; Inaba, Toshiki; Nito, Chikako; Ueda, Masayuki; Katsura, Kenichiro

    2014-11-01

    This study aims to determine if erythromycin has neuroprotective effects against transient ischemia and oxygen-glucose deprivation (OGD) in cultured neuronal cells. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 90 min, followed by reperfusion. The animals received a subcutaneous single injection of erythromycin lactobionate (EM, 50mg/kg) or vehicle immediately after ischemia. Infarct volume, edema index, and neurological performance were evaluated at 24 and 72 h after reperfusion. Immunohistochemical analyses for oxidative stress (4-HNE, 8-OHdG) and inflammation (Iba-1, TNF-α) were conducted in the cortex at 24h. Primary cortical neuronal cell cultures were prepared from the cerebral cortices of the animals and then subjected to OGD for 3h. Ten or 100 μM EM was added before OGD to determine the effect of EM on cell viability after OGD. EM significantly reduced infarct volume (p<0.01) and edema volume (p<0.05) and improved neurological deficit scores (p<0.05) at 24 and 72 h. EM significantly suppressed the accumulation of 4-HNE (p<0.01) and 8-OHdG (p<0.01) and markedly reduced Iba-1 (p<0.01) and TNF-α expression (p<0.01). Treatment with 100 μM EM in vitro significantly reduced cell death after OGD. EM reduces neuronal damage following cerebral ischemia and OGD and may have antioxidant and anti-inflammatory effects. PMID:25264351

  20. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil)

    PubMed Central

    Yarmolinsky, James; Mueller, Noel T.; Duncan, Bruce B.; Bisi Molina, Maria del Carmen; Goulart, Alessandra C.; Schmidt, Maria Inês

    2015-01-01

    Introduction Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals. Methods We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil). Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and –2-hour postload insulin and measures of insulin sensitivity. Results We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2–3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02)]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p<0.0001] but not with fasting glucose concentrations (p = 0.07). Coffee was additionally associated with 2-hour postload insulin [Never/almost never: 287.2 pmol/L, ≤1 time/day: 280.1 pmol/L, 2–3 times/day: 275.3 pmol/L, >3 times/day: 262.2 pmol/L, p = 0.0005) but not with fasting insulin concentrations (p = .58). Conclusion Our present study provides

  1. Consumption of glucose drinks slows sensorimotor processing: double-blind placebo-controlled studies with the Eriksen flanker task

    PubMed Central

    Hope, Christopher; Seiss, Ellen; Dean, Philip J. A.; Williams, Katie E. M.; Sterr, Annette

    2013-01-01

    Modulations of blood glucose concentration (BGC) in the normal range are known to facilitate performance in memory and other cognitive tasks but few studies have investigated the effects of BGC variations on complex sensorimotor task so far. The present study aimed to examine glucose effects with the Eriksen flanker task. This task was chosen because it can dissociate between the effects of BGC on sensorimotor processing and cognitive control by assessing congruency effects. In two linked double-blind placebo-controlled experiments BGC was elevated within the normal BGC range (4–7 mmol/l) by approx. 1.5 mmol/l with glucose drinks and compared to a placebo drink condition while a flanker task with either strong or weak stimulus-response (SR) mapping was performed. Modulation of the performance in the flanker task by glucose was linked to the strength of the SR mapping but not congruency effects. Under weak SR mapping, reaction times (RTs) were slowed in the glucose condition compared to placebo while error rates remained unchanged, whereas cognitive control was not affected by glucose. When SR mapping was strong, no differences were found between glucose and placebo. Enhanced glucose levels differentially affect behavior. Whereas the literature mainly reports facilitating characteristics of enhanced glucose levels in the normal range, the present study shows that higher glucose levels can slow RTs. This suggests that glucose does not have a uniform effect on cognition and that it might be differential depending on the cognitive domain. PMID:24167479

  2. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats.

    PubMed

    Musabayane, C T; Bwititi, P T; Ojewole, J A O

    2006-05-01

    Previous studies in our laboratories suggest that oral administration of some herbal extracts reduce blood glucose concentrations in rats, possibly by interfering with food consumption and/or gastrointestinal absorption of food. Accordingly, we monitored the amounts of food consumed and body weights in separate groups of nondiabetic and streptozotocin-treated diabetic rats, orally treated with some plant extracts (20 mg 100 g -1 body weight) daily for 5 weeks. Control animals were administered the vehicle, citrate buffer (0.1 ml 100 g -1 body weight). Separate groups of rats administered allopathic hypoglycemic drugs metformin (50 mg 100 g -1 body weight) or glibenclamide (5 microg 100 g -1 body weight) acted as positive control animals. After 5 weeks, blood glucose concentrations were reduced in all the groups. Tapinanthus nyasicus leaf, Ficus thoningii bark, Solanum incanum fruit, and Morus alba leaf extracts decreased weekly food consumption throughout the 5-week study period. Similar results were obtained for the groups treated with metformin or glibenclamide. However, food consumption was increased by S. incanum root, Aloe chabaudii leaf, or Allium sativum bulb extracts, and this was associated with high prevalence of diarrhea. The herbal extracts and metformin did not affect serum insulin concentration in nondiabetic rats, while glibenclamide increased serum insulin concentration. In conclusion, it may be inferred that the herbal extracts examined produced hypoglycemia, probably by interfering with either food intake or gastrointestinal glucose absorption (as reported for metformin). These findings merit long-term investigation. PMID:16801983

  3. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. Results Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and

  4. Effect of the consumption of β-lactoglobulin and epigallocatechin-3-gallate with or without calcium on glucose tolerance in C57BL/6 mice.

    PubMed

    Carnovale, Valérie; Pilon, Geneviève; Britten, Michel; Bazinet, Laurent; Couillard, Charles

    2016-05-01

    Interactions between β-lactoglobulin (β-lg) and epigallocatechin-3-gallate (EGCG) may modulate their health benefits. The objective of this study was therefore to investigate the synergistic effect of consuming β-lg and EGCG complexes on glucose tolerance of C57BL/6 male mice given an oral glucose tolerance test (OGTT) and randomized to one of the following treatments administered prior to the OGTT: 1) simulated milk ultrafiltrate (SMUF(-)), 2) SMUF(-) + EGCG, 3) SMUF(-) + β-lg, 4) SMUF(-) + EGCG + β-lg, 5) SMUF + calcium (SMUF(+)) and 6) SMUF(+) + EGCG + β-lg. We found no significant between-group difference in postprandial glucose response. However, when mice were separated in those who received β-lg from those who did not, we found that the latter displayed significantly higher postprandial glucose concentrations. Our results support the beneficial impact of β-lg on glycemic control and suggest that concomitant EGCG or calcium consumption does not improve this effect. PMID:26960683

  5. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (/sup 18/F)-2-fluoro-2-deoxy-D-glucose

    SciTech Connect

    Heiss, W.D.; Pawlik, G.; Herholz, K.; Wagner, R.; Goeldner, H.; Wienhard, K.

    1984-06-01

    Using dynamic (18F)fluorodeoxyglucose (FDG) positron emission tomography with a high-resolution, seven-slice positron camera, the kinetic constants of the original three-compartment model of Sokoloff and co-workers (1977) were determined in 43 distinct topographic brain regions of seven healthy male volunteers aged 28-38 years. Regional averages of the cerebral metabolic rate for glucose (CMRglu) were calculated both from individually fitted rate constants (CMRglukinetic) and from activity maps recorded 30-40 min after FDG injection, employing a four-parameter operational equation with standard rate constants from the literature (CMRgluautoradiographic). Metabolic rates and kinetic constants varied significantly among regions and subjects, but not between hemispheres. k1 ranged between 0.0485 +/- 0.00778 min-1 in the oval center and 0.0990 +/- 0.01347 min-1 in the primary visual cortex. k2 ranged from 0.1198 +/- 0.01533 min-1 in the temporal white matter to 0.1472 +/- 0.01817 min-1 in the cerebellar dentate nucleus. k3 was lowest (0.0386 +/- 0.01482 min-1) in temporal white matter and highest (0.0823 +/- 0.02552 min-1) in the caudate nucleus. Maximum likelihood cluster analysis revealed four homogeneous groups of brain regions according to their respective kinetic constants: (1) white matter and mixed brainstem structures; (2) cerebellar gray matter and hippocampal formations; (3) basal ganglia and frontolateral and primary visual cortex; and (4) other cerebral cortex and thalamus. Across the entire brain, k1 and k2 were positively correlated (r . 0.79); k1 and k3 showed some correlation (r . 0.59); but no significant linear association was found between k2 and k3. A strong correlation with CMRglu could be demonstrated for k1 (r . 0.88) and k3 (r . 0.90), but k2 was loosely correlated (r . 0.56).

  6. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. PMID:26635348

  7. Consumption of Cross-Linked Resistant Starch (RS4XL) on Glucose and Insulin Responses in Humans

    PubMed Central

    Al-Tamimi, Enas K.; Seib, Paul A.; Snyder, Brian S.; Haub, Mark D.

    2010-01-01

    Objective. The objective was to compare the postprandial glycemic and insulinemic responses to nutrition bars containing either cross-linked RS type 4 (RS4XL) or standard wheat starch in normoglycemic adults (n = 13; age = 27 ± 5 years; BMI = 25 ± 3 kg/m2). Methods. Volunteers completed three trials during which they consumed a glucose beverage (GLU), a puffed wheat control bar (PWB), and a bar containing cross-linked RS4 (RS4XL) matched for available carbohydrate content. Serial blood samples were collected over two hours and glucose and insulin concentrations were determined and the incremental area under the curve (iAUC) was calculated. Results. The RS4XL peak glucose and insulin concentrations were lower than the GLU and PWB (P < .05). The iAUC for glucose and insulin were lower following ingestion of RS4 compared with the GLU and PWB trials. Conclusions. These data illustrate, for the first time, that directly substituting standard starch with RS4XL, while matched for available carbohydrates, attenuated postprandial glucose and insulin levels in humans. It remains to be determined whether this response was due to the dietary fiber and/or resistant starch aspects of the RS4XL bar. PMID:20798767

  8. Multiple approaches to predicting oxygen and glucose consumptions by HepG2 cells on porous scaffolds in an axial-flow bioreactor.

    PubMed

    Podichetty, Jagdeep T; Bhaskar, Prasana R; Singarapu, Kumar; Madihally, Sundararajan V

    2015-02-01

    In this study, the distribution of oxygen and glucose was evaluated along with consumption by hepatocytes using three different approaches. The methods include (i) Computational Fluid Dynamics (CFD) simulation, (ii) residence time distribution (RTD) analysis using a step-input coupled with segregation model or dispersion model, and (iii) experimentally determined consumption by HepG2 cells in an open-loop. Chitosan-gelatin (CG) scaffolds prepared by freeze-drying and polycaprolactone (PCL) scaffolds prepared by salt leaching technique were utilized for RTD analyses. The scaffold characteristics were used in CFD simulations i.e. Brinkman's equation for flow through porous medium, structural mechanics for fluid induced scaffold deformation, and advection-diffusion equation coupled with Michaelis-Menten rate equations for nutrient consumption. With the assumption that each hepatocyte behaves like a micro-batch reactor within the scaffold, segregation model was combined with RTD to determine exit concentration. A flow rate of 1 mL/min was used in the bioreactor seeded with 0.6 × 10(6) HepG2 cells/cm(3) on CG scaffolds and oxygen consumption was measured using two flow-through electrodes located at the inlet and outlet. Glucose in the spent growth medium was also analyzed. RTD results showed distribution of nutrients to depend on the surface characteristics of scaffolds. Comparisons of outlet oxygen concentrations between the simulation results, and experimental results showed good agreement with the dispersion model. Outlet oxygen concentrations from segregation model predictions were lower. Doubling the cell density showed a need for increasing the flow rate in CFD simulations. This integrated approach provide a useful strategy in designing bioreactors and monitoring tissue regeneration. PMID:25116006

  9. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons.

    PubMed Central

    Harper, M A; MacKenzie, E T

    1977-01-01

    1. The cerebral circulatory effects of the intracarotid administration of 5-hydroxytryptamine were examined in anaesthetized baboons. Cerebral blood flow was measured by the intracarotid 133Xe technique, cerebral O2 consumption and glucose uptake were measured as indices of brain metabolism and electrocortical activity was continuously monitored. 2. Despite a marked reduction in the calibre of the internal carotid artery (assessed angiographically), the intracarotid infusion of 5-hydroxytryptamine 0-1 microgram/kg. min did not effect any significant changes in cerebral blood flow, O2 consumption or glucose uptake. 3. Following transient osmotic disruption of the blood-brain barrier with the intracarotid infusion of hypertonic urea, the same dose of 5-hydroxytryptamine effected a marked reduction in cerebral blood flow from 51 +/- 2 to 36 +/- 2 ml./100 g. min (mean +/- S.E.; P less than 0-01). Both indices of cerebral metabolism were reduced significantly and the e.e.g. showed a more pronounced suppression-burst pattern. 4. We postulate that the cerebral circulatory responses to 5-hydroxytryptamine are dependent upon the integrity of the blood-brain barrier and the predominant effect of the intravascular administration of 5-hydroxytryptamine is on cortical activity or metabolism, rather than on cerebrovascular smooth muscle. Images Plate 1 PMID:411921

  10. Associations of Sleep Apnea, NRG1 Polymorphisms, Alcohol Consumption, and Cerebral White Matter Hyperintensities: Analysis with Genome-Wide Association Data

    PubMed Central

    Baik, Inkyung; Seo, Hyung Suk; Yoon, Daewui; Kim, Seong Hwan; Shin, Chol

    2015-01-01

    Study Objective: There are few studies on gene-environment interactions with obstructive sleep apnea (OSA). Our study aimed to explore genetic polymorphisms associated with OSA using genome-wide association (GWA) data and evaluate the effects of relevant polymorphisms on the association between risk factors, including obesity and alcohol consumption, and OSA. We also investigated on these associations in relation to cerebral white matter hyperintensities (WMH) on magnetic resonance images. Design: A cross-sectional design. Setting: A polysomnography study embedded in a population-based cohort from the Korean Genome Epidemiology Study was conducted in 2011–2013. Participants: 1,763 participants aged 48–78 years. Results: 251 individuals were identified to have OSA with an apnea-hypopnea index ≥ 15. A common polymorphism of neuregulin-1 gene (NRG1), rs10097555, was selected as the most suggestive locus associated with OSA (P value < 10−5) based on the results of GWA analysis in a matched case-control subsample (n = 470). Among 1,763 participants, we found that the presence of the NRG1 polymorphism is inversely associated with OSA (P value < 0.01) even after taking into account potential risk factors; the multivariate odds ratio (95% confidence interval) for the mutant alleles was 0.57 (0.39–0.82) compared with the wild-type. We observed that this association is modified by alcohol consumption (P < 0.05), not by obesity. We also observed that WMH are positively associated with OSA independent of the NRG1 polymorphism and alcohol consumption (P < 0.05). Conclusions: These findings suggest that the neuregulin-1 gene (NRG1) may be involved in the etiological mechanisms of obstructive sleep apnea (OSA) and that carriers of a particular NRG1 mutation may be less likely to have OSA if they do not drink alcoholic beverages. Citation: Baik I, Seo HS, Yoon D, Kim SH, Shin C. Associations of sleep apnea, NRG1 polymorphisms, alcohol consumption, and cerebral white

  11. Purification and characterization of aporphine alkaloids from leaves of Nelumbo nucifera Gaertn and their effects on glucose consumption in 3T3-L1 adipocytes.

    PubMed

    Ma, Chengjun; Wang, Jinjun; Chu, Hongmei; Zhang, Xiaoxiao; Wang, Zhenhua; Wang, Honglun; Li, Gang

    2014-01-01

    Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV's activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v). In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity), 1.1 mg of pronuciferine (96.8% purity), 8.5 mg of nuciferine (98.9% purity), and 2.7 mg of roemerine (97.4%) respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS) and nuclear magnetic resonance (NMR) analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did. PMID:24577311

  12. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes

    PubMed Central

    Ma, Chengjun; Wang, Jinjun; Chu, Hongmei; Zhang, Xiaoxiao; Wang, Zhenhua; Wang, Honglun; Li, Gang

    2014-01-01

    Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v). In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity), 1.1 mg of pronuciferine (96.8% purity), 8.5 mg of nuciferine (98.9% purity), and 2.7 mg of roemerine (97.4%) respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS) and nuclear magnetic resonance (NMR) analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did. PMID:24577311

  13. Sensory-specific appetition: Postingestive detection of glucose rapidly promotes continued consumption of a recently encountered flavor.

    PubMed

    Myers, Kevin P; Taddeo, Marisa S; Richards, Emily K

    2013-09-10

    It is generally thought that macronutrients stimulate intake when sensed in the mouth (e.g., sweet taste) but as food enters the GI tract its effects become inhibitory, triggering satiation processes leading to meal termination. Here we report experiments extending recent work (see Zukerman et al., 2011 [1]) showing that under some circumstances nutrients sensed in the gut produce a positive feedback effect, immediately promoting continued intake. In one experiment, rats with intragastric (IG) catheters were accustomed to consuming novel flavors in saccharin daily while receiving water infused IG (5ml/15min). The very first time glucose (16% w/w) was infused IG instead of water, intake accelerated within 6min of infusion onset and total intake increased 29% over baseline. Experiment 2 replicated this stimulatory effect with glucose infusion but not fructose nor maltodextrin. Experiment 3 showed that the immediate intake stimulation is specific to the flavor accompanying the glucose infusion. Rats were accustomed to flavored saccharin being removed and replaced with the same or a different flavor. When glucose infusion accompanied the first bottle, intake from the second bottle was stimulated only when it contained the same flavor, not when the flavor switched. Thus we confirm not only that glucose sensed postingestively can have a rapid, positive feedback effect ('appetition' as opposed to 'satiation') but that it is sensory-specific, promoting continued intake of a recently encountered flavor. This sensory-specific motivation may represent an additional psychobiological influence on meal size, and further, has implications for the mechanisms of learned flavor-nutrient associations. PMID:23562868

  14. Effects of Acute Caffeinated Coffee Consumption on Energy Utilization Related to Glucose and Lipid Oxidation from Short Submaximal Treadmill Exercise in Sedentary Men

    PubMed Central

    Leelarungrayub, Donrawee; Sallepan, Maliwan; Charoenwattana, Sukanya

    2011-01-01

    Objective: Aim of this study was to evaluate the short term effect of coffee drinking on energy utilization in sedentary men. Methods: This study was performed in healthy sedentary men, who were randomized into three groups, control (n = 6), decaffeinated (n = 10), and caffeine (n = 10). The caffeine dose in coffee was rechecked and calculated for individual volunteers at 5 mg/kg. Baseline before drinking, complete blood count (CBC), glucose, antioxidant capacity, lipid peroxide, and caffeine in blood was evaluated. After drinking coffee for 1 hr, the submaximal exercise test with a modified Bruce protocol was carried out, and the VO2 and RER were analyzed individually at 80% maximal heart rate, then the blood was repeat evaluated. Results: Three groups showed a nonsignificant difference in CBC results and physical characteristics. The caffeine group showed significant changes in all parameters; higher VO2 levels, (P = 0.037) and lower RER (P = 0.047), when compared to the baseline. Furthermore, the glucose level after exercise test increased significantly (P = 0.033) as well as lipid peroxide levels (P = 0.005), whereas antioxidant capacity did not change significantly (P = 0.759), when compared to the before exercise testing. In addition, the blood caffeine level also increased only in the caffeine group (P = 0.008). Conclusion: Short consumption of caffeinated coffee (5 mg/kg of caffeine), improves energy utilization and relates to glucose derivation and lipid oxidation. PMID:23946663

  15. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.

    PubMed

    Yang, Lei; Lübeck, Mette; Souroullas, Konstantinos; Lübeck, Peter S

    2016-04-01

    Aspergillus carbonarius exhibits excellent abilities to utilize a wide range of carbon sources and to produce various organic acids. In this study, wheat straw hydrolysate containing high concentrations of glucose and xylose was used for organic acid production by A. carbonarius. The results indicated that A. carbonarius efficiently co-consumed glucose and xylose and produced various types of organic acids in hydrolysate adjusted to pH 7. The inhibitor tolerance of A. carbonarius to the hydrolysate at different pH values was investigated and compared using spores and recycled mycelia. This comparison showed a slight difference in the inhibitor tolerance of the spores and the recycled mycelia based on their growth patterns. Moreover, the wild-type and a glucose oxidase deficient (Δgox) mutant were compared for their abilities to produce organic acids using the hydrolysate and a defined medium. The two strains showed a different pattern of organic acid production in the hydrolysate where the Δgox mutant produced more oxalic acid but less citric acid than the wild-type, which was different from the results obtained in the defined medium This study demonstrates the feasibility of using lignocellulosic biomass for the organic acid production by A. carbonarius. PMID:26925619

  16. Intestinal Fluid and Glucose Transport in Wistar Rats following Chronic Consumption of Fresh or Oxidised Palm Oil Diet

    PubMed Central

    Obembe, Agona O.; Owu, Daniel U.; Okwari, Obem O.; Antai, Atim B.; Osim, Eme E.

    2011-01-01

    Chronic ingestion of thermoxidized palm oil causes functional derangement of various tissues. This study was therefore carried out to determine the effect of chronic ingestion of thermoxidized and fresh palm oil diets on intestinal fluid and glucose absorption in rats using the everted sac technique. Thirty Wistar rats were divided into three groups of 10 rats per group. The first group was the control and was fed on normal rat chow while the second (FPO) and third groups (TPO) were fed diet containing either fresh or thermoxidized palm oil (15% wt/wt) for 14 weeks. Villus height and crypt depth were measured. The gut fluid uptake and gut glucose uptake were significantly (P < .001) lower in the TPO group than those in the FPO and control groups, respectively. The villus height in the TPO was significantly (P < .01) lower than that in FPO and control. The villus depth in TPO was significantly (P < .05) higher than that in FPO and control groups, respectively. These results suggest that ingestion of thermoxidized palm oil and not fresh palm oil may lead to distortion in villus morphology with a concomitant malabsorption of fluid and glucose in rats due to its harmful free radicals. PMID:21991537

  17. Consumption of sugar-sweetened soft-drink and fruit juice beverages differentially associated with glucose-related measures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Observational studies have linked sugar-sweetened soft drink consumption to weight gain, metabolic syndrome and risk of type 2 DM. Impaired insulin sensitivity is a key metabolic abnormality associated with these conditions and high-fructose corn syrup, the main caloric sweetener in sodas, has bee...

  18. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors.

    PubMed

    Meuwly, F; Papp, F; Ruffieux, P-A; Bernard, A R; Kadouri, A; von Stockar, U

    2006-03-01

    For animal cell cultures growing in packed-bed bioreactors where cell number cannot be determined directly, there is a clear need to use indirect methods that are not based on cell counts in order to monitor and control the process. One option is to use the glucose consumption rate (GCR) of the culture as an indirect measure to monitor the process in bioreactors. This study was done on a packed-bed bioreactor process using recombinant CHO cells cultured on Fibra-Cel disk carriers in perfusion mode at high cell densities. A key step in the process is the switch of the process from the cell growth phase to the production phase triggered by a reduction of the temperature. In this system, we have used a GCR value of 300 g of glucose per kilogram of disks per day as a criterion for the switch. This paper will present results obtained in routine operations for the monitoring and control of an industrial process at pilot-scale. The process operated with this GCR-based strategy yielded consistent, reproducible process performance across numerous bioreactor runs performed on multiple production sites. PMID:16153735

  19. Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-GLUT4, GSK3β and mTOR-S6K1.

    PubMed

    Wu, Yuntang; Lu, Huizi; Yang, Huijun; Li, Chunlei; Sang, Qian; Liu, Xinyan; Liu, Yongzhe; Wang, Yongming; Sun, Zhong

    2016-08-01

    The present study was performed to evaluate the insulin-like effects of zinc in normal L6 myotubes as well as its ability to alleviate insulin resistance. Glucose consumption was measured in both normal and insulin-resistant L6 myotubes. Western blotting and immunofluorescence revealed that zinc exhibited insulin-like glucose transporting effects by activating key markers that are involved in the insulin signaling cascade (including Akt, GLUT4 and GSK3β), and downregulating members of the insulin signaling feedback cascade such as mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K1). In normal L6 myotubes, zinc enhanced glucose consumption via a mechanism that might involve the activation of Akt phosphorylation, glucose transporter 4 (GLUT4) translocation and GSK3β phosphorylation. In contrast, zinc exerted insulin-mimetic effects in insulin-resistant L6 myotubes by upregulating Akt phosphorylation, GLUT4 translocation and GSK3β phosphorylation, and downregulating the expression of mTOR and S6K1. In conclusion, zinc might enhance glucose consumption by modulating insulin signaling pathways including Akt-GLUT4, GSK3β, mTOR and S6K1. PMID:27295130

  20. Cerebral Palsy

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Cerebral Palsy KidsHealth > For Teens > Cerebral Palsy Print A A ... do just what everyone else does. What Is Cerebral Palsy? Cerebral palsy (CP) is a disorder of the ...

  1. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Baumgardner, James E.; Borthakur, Arijitt; Witschey, Walter R.; Reddy, Ravinder

    2009-01-01

    Despite the importance of metabolic disturbances in many diseases, there are currently no clinically used methods for the detection of oxidative metabolism in vivo. To address this deficiency, 17O MRI techniques are scaled from small animals to swine as a large animal model of human inhalation and circulation. The hemispheric cerebral metabolic rate of oxygen consumption (CMRO2) is estimated in swine by detection of metabolically produced H217O by rapid T1ρ-weighted proton magnetic resonance imaging on a 1.5 Tesla clinical scanner. The 17O is delivered as oxygen gas by a custom, minimal-loss, precision-delivery breathing circuit and converted to H217O by oxidative metabolism. A model for gas arterial input is presented for the deeply breathing large animal. The arterial input function for recirculation of metabolic water is measured by arterial blood sampling and high field 17O spectroscopy. It is found that minimal metabolic water “wash-in” occurs before 60 seconds. A high temporal resolution pulse sequence is employed to measure CMRO2 during those 60 seconds after delivery begins. Only about one tidal volume of 17O enriched oxygen gas is used per measurement. Proton measurements of signal change due to metabolically produced water are correlated with 17O in vivo spectroscopy. Using these techniques, the hemispheric CMRO2 in swine is estimated to be 1.23 ± 0.26 μmol/g/min, consistent with existing literature values. All of the technology used to perform these CMRO2 estimates can easily be adapted to clinical MR scanners, and it is hoped that this work will lead to future studies of human disease. PMID:19428508

  2. BID Mediates Oxygen-Glucose Deprivation-Induced Neuronal Injury in Organotypic Hippocampal Slice Cultures and Modulates Tissue Inflammation in a Transient Focal Cerebral Ischemia Model without Changing Lesion Volume

    PubMed Central

    Martin, Nellie Anne; Bonner, Helena; Elkjær, Maria Louise; D’Orsi, Beatrice; Chen, Gang; König, Hans Georg; Svensson, Martina; Deierborg, Tomas; Pfeiffer, Shona; Prehn, Jochen H.; Lambertsen, Kate Lykke

    2016-01-01

    The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation. In vivo, BID-knockout (KO) mice and wild type (WT) mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) to induce focal cerebral ischemia, and allowed to recover for 24 h. Infarct volumes and functional outcome were assessed and the inflammatory response was evaluated using immunofluorescence, Western blotting, quantitative PCR (qPCR) and Mesoscale multiplex analysis. We observed no difference in the infarct volume or neurological outcome between BID-KO and WT mice. The inflammatory response was reduced by BID deficiency as indicated by a change in microglial/leukocyte response. In conclusion, our data suggest that BID deficiency is neuroprotective in an in vitro model and modulates the inflammatory response to focal cerebral ischemia in vivo. However, this is not translated into a robust neuroprotection in vivo. PMID:26869884

  3. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  4. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  5. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. ...

  6. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells.

    PubMed

    López-Meza, Julián; Araíz-Hernández, Diana; Carrillo-Cocom, Leydi Maribel; López-Pacheco, Felipe; Rocha-Pizaña, María Del Refugio; Alvarez, Mario Moisés

    2016-08-01

    Despite their practical and commercial relevance, there are few reports on the kinetics of growth and production of Chinese hamster ovary (CHO) cells-the most frequently used host for the industrial production of therapeutic proteins. We characterize the kinetics of cell growth, substrate consumption, and product formation in naive and monoclonal antibody (mAb) producing recombinant CHO cells. Culture experiments were performed in 125 mL shake flasks on commercial culture medium (CD Opti CHO™ Invitrogen, Carlsbad, CA, USA) diluted to different glucose concentrations (1.2-4.8 g/L). The time evolution of cell, glucose, lactic acid concentration and monoclonal antibody concentrations was monitored on a daily basis for mAb-producing cultures and their naive counterparts. The time series were differentiated to calculate the corresponding kinetic rates (rx = d[X]/dt; rs = d[S]/dt; rp = d[mAb]/dt). Results showed that these cell lines could be modeled by Monod-like kinetics if a threshold substrate concentration value of [S]t = 0.58 g/L (for recombinant cells) and [S]t = 0.96 g/L (for naïve cells), below which growth is not observed, was considered. A set of values for μmax, and Ks was determined for naive and recombinant cell cultures cultured at 33 and 37 °C. The yield coefficient (Yx/s) was observed to be a function of substrate concentration, with values in the range of 0.27-1.08 × 10(7) cell/mL and 0.72-2.79 × 10(6) cells/mL for naive and recombinant cultures, respectively. The kinetics of mAb production can be described by a Luedeking-Piret model (d[mAb]/dt = αd[X]/dt + β[X]) with values of α = 7.65 × 10(-7) µg/cell and β = 7.68 × 10(-8) µg/cell/h for cultures conducted in batch-agitated flasks and batch and instrumented bioreactors operated in batch and fed-batch mode. PMID:26091615

  7. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women.

    PubMed

    Brown, Andrew W; Bohan Brown, Michelle M; Onken, Kristine L; Beitz, Donald C

    2011-12-01

    Nonnutritive sweeteners have been used to lower the energy density of foods with the intention of affecting weight loss or weight maintenance. However, some epidemiological and animal evidence indicates an association between weight gain or insulin resistance and artificial sweetener consumption. In the present study, we hypothesized that the nonnutritive sweetener sucralose, a trichlorinated sucrose molecule, would elicit responses similar to water but different from sucrose and sucrose combined with sucralose on subjective and hormonal indications of hunger and short-term glucose homeostasis. Eight female volunteers (body mass index, 22.16 ± 1.71 kg/m(2); age, 21.75 ± 2.25 years) consumed sucrose and/or sucralose in water in a factorial design. Blood samples were taken at fasting and 30 and 60 minutes after treatment followed by a standardized breakfast across treatments, and blood samples were taken 30, 60, 90, and 120 minutes after breakfast. Plasma was analyzed for glucose, insulin, glucagon, triacylglycerols (TAG), and acylated ghrelin. Perceptions of hunger and other subjective measurements were assessed before each blood sample. No differences were detected in subjective responses, circulating triacylglycerol, or glucagon concentrations among treatments over time. Significant differences were observed in insulin, glucose, and acylated ghrelin concentrations over time only between sucrose-containing treatments and non-sucrose-containing treatments regardless of sucralose consumption. Therefore, sucralose may be a relatively inert nonnutritive sweetener with regard to hunger signaling and short-term glucose homeostasis. PMID:22153513

  8. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. OBJECTIVE: We investigated the associations of mea...

  9. Cerebral Hypoxia

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  10. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    PubMed

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells. PMID:26774040

  11. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans

    PubMed Central

    Sands, Amanda L.; Leidy, Heather J.; Hamaker, Bruce R.; Maguire, Paul; Campbell, Wayne W.

    2015-01-01

    Limited research in humans suggests that slowly digestible starch may blunt the postprandial increase and subsequent decline of plasma glucose and insulin concentrations, leading to prolonged energy availability and satiety, compared to more rapidly digestible starch. This study examined the postprandial metabolic and appetitive responses of waxy maize starch (WM), a slow-digestible starch. It was hypothesized that the waxy maize treatment would result in a blunted and more sustained glucose and insulin response, as well as energy expenditure and appetitive responses. Twelve subjects (6 men and 6 women) (age, 23 ± 1 years; body mass index, 22.2 ± 0.7 kg/m2; insulin sensitivity [homeostatic model assessment], 16% ± 2%; physical activity, 556 ± 120 min/wk) consumed, on separate days, 50 g of available carbohydrate as WM, a maltodextrin-sucrose mixture (MS), or white bread (control). Postprandial plasma glucose and insulin, energy expenditure, and appetite (hunger, fullness, desire to eat) were measured over 4 hours. Compared to control, the 4-hour glucose response was not different for MS and WM, and the 4-hour insulin response was higher for MS (P < .005) and lower for WM (P < .05). Compared to MS, WM led to lower 4-hour glucose and insulin responses (P < .001). These differences were driven by blunted glucose and insulin responses during the first hour for WM. Postprandial energy expenditure and appetite were not different among treatments. These results support that WM provides sustained glucose availability in young, insulin-sensitive adults. PMID:19628104

  12. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans.

    PubMed

    Sands, Amanda L; Leidy, Heather J; Hamaker, Bruce R; Maguire, Paul; Campbell, Wayne W

    2009-06-01

    Limited research in humans suggests that slowly digestible starch may blunt the postprandial increase and subsequent decline of plasma glucose and insulin concentrations, leading to prolonged energy availability and satiety, compared to more rapidly digestible starch. This study examined the postprandial metabolic and appetitive responses of waxy maize starch (WM), a slow-digestible starch. It was hypothesized that the waxy maize treatment would result in a blunted and more sustained glucose and insulin response, as well as energy expenditure and appetitive responses. Twelve subjects (6 men and 6 women) (age, 23 +/- 1 years; body mass index, 22.2 +/- 0.7 kg/m(2); insulin sensitivity [homeostatic model assessment], 16% +/- 2%; physical activity, 556 +/- 120 min/wk) consumed, on separate days, 50 g of available carbohydrate as WM, a maltodextrin-sucrose mixture (MS), or white bread (control). Postprandial plasma glucose and insulin, energy expenditure, and appetite (hunger, fullness, desire to eat) were measured over 4 hours. Compared to control, the 4-hour glucose response was not different for MS and WM, and the 4-hour insulin response was higher for MS (P < .005) and lower for WM (P < .05). Compared to MS, WM led to lower 4-hour glucose and insulin responses (P < .001). These differences were driven by blunted glucose and insulin responses during the first hour for WM. Postprandial energy expenditure and appetite were not different among treatments. These results support that WM provides sustained glucose availability in young, insulin-sensitive adults. PMID:19628104

  13. Dynamics of Substrate Consumption and Enzyme Synthesis in Chelatobacter heintzii during Growth in Carbon-Limited Continuous Culture with Different Mixtures of Glucose and Nitrilotriacetate

    PubMed Central

    Bally, M.; Egli, T.

    1996-01-01

    Regulation of nitrilotriacetate (NTA) degradation and expression of NTA monooxygenase (NTA-MO) in the NTA-degrading strain Chelatobacter heintzii ATCC 29600 in continuous culture at a dilution rate of 0.06 h(sup-1) under transient growth conditions when the feed was switched between media containing NTA, glucose, or different mixtures thereof as the sole carbon and energy sources was investigated. A transition from NTA to glucose was accompanied by a rapid loss of NTA-MO. A transition from glucose to NTA resulted in a lag phase of some 25 h until NTA-MO expression started, and approximately 100 h was needed before a steady state for NTA-MO specific activity was reached. This transient lag phase was markedly shortened when mixtures of NTA plus glucose were supplied instead of NTA only; for example, when a mixture of 90% glucose and 10% NTA was used, induction of NTA-MO was detected after 30 min. This suggests a strong positive influence of alternative carbon substrates on the expression of other enzymes under natural environmental conditions. Regulation of NTA-MO expression and the fate of NTA-MO were also studied during starvation of both glucose-grown and NTA-grown cultures. Starvation of NTA-grown cells led to a loss of NTA-MO protein. No synthesis of NTA-MO (derepression) was observed when glucose-grown cells were starved. PMID:16535204

  14. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts.

    PubMed

    López-Romero, Patricia; Pichardo-Ontiveros, Edgar; Avila-Nava, Azalia; Vázquez-Manjarrez, Natalia; Tovar, Armando R; Pedraza-Chaverri, José; Torres, Nimbe

    2014-11-01

    Nopal is a plant used in traditional Mexican medicine to treat diabetes. However, there is insufficient scientific evidence to demonstrate whether nopal can regulate postprandial glucose. The purpose for conducting this study was to evaluate the glycemic index, insulinemic index, glucose-dependent insulinotropic peptide (GIP) index, and the glucagon-like peptide 1 (GLP-1) index, and the effect of nopal on patients with type 2 diabetes after consumption of a high-carbohydrate breakfast (HCB) or high-soy-protein breakfast (HSPB) on the postprandial response of glucose, insulin, GIP, GLP-1, and antioxidant activity. In study 1, the glycemic index, insulinemic index, GIP index, and GLP-1 index were calculated for seven healthy participants who consumed 50 g of available carbohydrates from glucose or dehydrated nopal. In study 2, 14 patients with type 2 diabetes consumed nopal in HCB or HSPB with or without 300 g steamed nopal. The glycemic index of nopal was 32.5±4, insulinemic index was 36.1±6, GIP index was 6.5±3.0, and GLP-1 index was 25.9±18. For those patients with type 2 diabetes who consumed the HCB+nopal, there was significantly lower area under the curve for glucose (287±30) than for those who consumed the HCB only (443±49), and lower incremental area under the curve for insulin (5,952±833 vs 7,313±1,090), and those patients with type 2 diabetes who consumed the HSPB avoided postprandial blood glucose peaks. Consumption of the HSPB+nopal significantly reduced the postprandial peaks of GIP concentration at 30 and 45 minutes and increased the antioxidant activity after 2 hours measured by the 2,2-diphenyl-1-picrilhidracyl method. These findings suggest that nopal could reduce postprandial blood glucose, serum insulin, and plasma GIP peaks, as well as increase antioxidant activity in healthy people and patients with type 2 diabetes. PMID:25132122

  15. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  16. Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception.

    PubMed

    Melanson, K J; Westerterp-Plantenga, M S; Campfield, L A; Saris, W H

    1999-12-01

    In a study of the impact of aspartame, fat, and carbohydrate on appetite, we monitored blood glucose continuously for 431 (SE 16) min. Ten healthy males (19-31 years) participated in three time-blinded visits. As blood glucose was monitored, appetite ratings were scored at randomized times. On the first meal initiation, volunteers consumed one of three isovolumetric drinks (aspartame, 1 MJ simple carbohydrate, and 1 MJ high-fat; randomized order). High-fat and high-carbohydrate foods were available ad libitum subsequently. Blood glucose patterns following the carbohydrate drink (+1.78 (SE 0.28) mmol/l in 38 (SE 3) min) and high-fat drink (+0.83 (SE 0.28) mmol/l in 49 (SE 6) min) were predictive of the next intermeal interval (R 0.64 and R 0.97 respectively). Aspartame ingestion was followed by blood glucose declines (40% of subjects), increases (20%), or stability (40%). These patterns were related to the volunteers' perception of sweetness of the drink (R 0.81, P = 0.014), and were predictive of subsequent intakes (R -0.71, P = 0.048). For all drinks combined, declines in blood glucose and meal initiation were significantly associated (chi 2 16.8, P < 0.001), the duration of blood glucose responses and intermeal intervals correlated significantly (R 0.715, P = 0.0001), and sweetness perception correlated negatively with hunger suppression (R -0.471, P = 0.015). Effects of fat, carbohydrate, and aspartame on meal initiation, meal size, and intermeal interval relate to blood glucose patterns. Varied blood glucose responses after aspartame support the controversy over its effects, and may relate to sweetness perception. PMID:10690159

  17. Serial PET studies of human cerebral malignancy with (1-/sup 11/C)putrescine and (1-/sup 11/C)2-deoxy-D-glucose

    SciTech Connect

    Hiesiger, E.; Fowler, J.S.; Wolf, A.P.; Logan, J.; Brodie, J.D.; McPherson, D.; MacGregor, R.R.; Christman, D.R.; Volkow, N.D.; Flamm, E.

    1987-08-01

    Serial PET measurements of (1-/sup 11/C)putrescine ((/sup 11/C)PUT) uptake and glucose metabolic rate (GMR) using (1-/sup 11/C)2-deoxy-D-glucose ((/sup 11/C)2DG) were made on eight human subjects with a radiological and, in most cases, pathological diagnosis of primary or metastatic brain tumor. Blood-to-brain influx constants (Ki) were calculated for (/sup 11/C)PUT. Tumor uptake of /sup 11/C after (/sup 11/C)PUT injection was unidirectional peaking at 15 min. The mean +/- s.d. Kis for (/sup 11/C)PUT for tumor and normal brain tissue were 0.78 +/- 0.045 and 0.024 +/- 0.007 ml cc-1 min-1, respectively (average of ratio, 3.11 whereas the ratio of GMR for tumor and normal brain tissue was 1.2 +/- 0.5. The mean Ki for four active, high grade astrocytomas was 0.098 +/- 0.030 in contrast to 0.027 +/- 0.008 ml cc-1 min-1 for two patients with low grade astrocytoma. Active high grade astrocytomas also showed marked CT contrast enhancement and regional glucose hypermetabolism. In one subject with brain metastases, both (/sup 11/C)PUT and GMR correlated with a declining clinical picture in repeated studies over a 4-mo period. PET studies with (/sup 11/C)PUT provide a better signal:noise ratio than GMR measurements, are useful for locating small glycolytically hypometabolic tumors and, when used in longitudinal studies in a single subject, appear to provide an index of degree of malignancy.

  18. Cerebral Palsy

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  19. Cerebral Palsy

    MedlinePlus

    ... Loss > Birth defects & other health conditions > Cerebral palsy Cerebral palsy E-mail to a friend Please fill in ... movement problems a child has. What is spastic CP? Spastic means tight or stiff muscles, or muscles ...

  20. Cerebral palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that can involve brain and nervous system functions, such as movement, ... and thinking. There are several different types of cerebral palsy, including spastic, dyskinetic, ataxic, hypotonic, and mixed.

  1. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  2. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem

    SciTech Connect

    Delgado, T.J.; Diemer, N.H.; Svendgaard, N.A.

    1986-10-01

    A double-isotope autoradiographic technique was used to evaluate CBF and glucose metabolism 2 days after a subarachnoid hemorrhage (SAH) in rats with lesions in the lower brainstem. Lesioning in the mesencephalon of the ascending catecholamine pathways from locus ceruleus and from the A1 and A2 nuclei, or lesioning in the medulla oblongata of the ascending fibers from A1 and A2, prevents the development of the global changes in flow and metabolism seen in normal animals post SAH. Also the focal low-flow areas with markedly elevated deoxyglucose uptake, which can develop in normal animals 2 days post SAH, were not seen in the lesioned animals after the SAH. The findings indicate that the A1 and A2 nuclei, which project to the hypothalamus-pituitary, are essential for the flow and metabolic changes after an SAH. The lesions per se did not change baseline flow and metabolism as compared with sham-lesioned animals.

  3. Cerebral Palsy

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Cerebral Palsy Information Page Clinical Trials Trial of Erythropoietin Neuroprotection ... en Español Additional resources from MedlinePlus What is Cerebral Palsy? The term cerebral palsy refers to a group ...

  4. Cerebral Aneurysms

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Aneurysms Information Page Synonym(s): Aneurysm, Brain Aneurysm Condensed from ... Español Additional resources from MedlinePlus What is Cerebral Aneurysms? A cerebral aneurysm is a weak or thin ...

  5. Consumption of Fructose- But not Glucose-Sweetened Beverages for 10 Weeks Increases Postprandial Triglyceride and Apolipoprotein B Concentrations in Overweight/Obese Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructose consumption in the U.S. has increased over the past three decades. During this time, obesity, insulin resistance and the metabolic syndrome have increased in prevalence. While fructose- rich diets promote insulin resistance and hypertriglyceridemia in animals, there are insufficient data re...

  6. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo.

    PubMed

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke; Mathiesen, Claus; Thomsen, Kirsten; Jensen, Kimmo; Lauritzen, Martin

    2015-09-01

    Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent cytosolic Ca(2+) transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca(2+) activities in neurons and astrocytes. Intermediate and high concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might selectively gate and amplify transient low-frequency somatosensory inputs, filter out high-frequency inputs, and enhance vascular and metabolic responses that are likely to be reflected in BOLD functional neuroimaging signals. PMID:24692513

  7. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  8. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets

    PubMed Central

    Larsson, Marie H.; Håkansson, Pernilla; Jansen, Frank P.; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  9. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    PubMed

    Larsson, Marie H; Håkansson, Pernilla; Jansen, Frank P; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  10. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes. PMID:24444521

  11. Cerebral palsy.

    PubMed

    Wimalasundera, Neil; Stevenson, Valerie L

    2016-06-01

    Cerebral palsy has always been known as a disorder of movement and posture resulting from a non-progressive injury to the developing brain; however, more recent definitions allow clinicians to appreciate more than just the movement disorder. Accurate classification of cerebral palsy into distribution, motor type and functional level has advanced research. It also facilitates appropriate targeting of interventions to functional level and more accurate prognosis prediction. The prevalence of cerebral palsy remains fairly static at 2-3 per 1000 live births but there have been some changes in trends for specific causal groups. Interventions for cerebral palsy have historically been medical and physically focused, often with limited evidence to support their efficacy. The use of more appropriate outcome measures encompassing quality of life and participation is helping to deliver treatments which are more meaningful for people with cerebral palsy and their carers. PMID:26837375

  12. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  13. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of...

  14. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of...

  15. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of...

  16. Cerebral palsy.

    PubMed

    Graham, H Kerr; Rosenbaum, Peter; Paneth, Nigel; Dan, Bernard; Lin, Jean-Pierre; Damiano, Diane L; Becher, Jules G; Gaebler-Spira, Deborah; Colver, Allan; Reddihough, Dinah S; Crompton, Kylie E; Lieber, Richard L

    2016-01-01

    Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging. PMID:27188686

  17. Cerebral angiography

    MedlinePlus

    ... Cerebral angiography is done in the hospital or radiology center. You lie on an x-ray table. ... be done in preparation for medical treatment (interventional radiology procedures) by way of certain blood vessels. What ...

  18. Cerebral Palsy

    MedlinePlus

    ... Español (Spanish) Recommend on Facebook Tweet Share Compartir Cerebral palsy (CP) is a group of disorders that affect a ... ability to move and maintain balance and posture. CP is the most common motor disability in childhood. ...

  19. Cerebral Arteriosclerosis

    MedlinePlus

    ... Cerebral arteriosclerosis is the result of thickening and hardening of the walls of the arteries in the ... cause an ischemic stroke. When the thickening and hardening is uneven, arterial walls can develop bulges (called ...

  20. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. PMID:25910439

  1. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  2. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy Print A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  3. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... HUMAN CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which...

  4. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... HUMAN CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which...

  5. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... HUMAN CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which...

  6. Chronic ketosis and cerebral metabolism.

    PubMed

    DeVivo, D C; Leckie, M P; Ferrendelli, J S; McDougal, D B

    1978-04-01

    The effects of chronic ketosis on cerebral metabolism were determined in adult rats maintained on a high-fat diet for approximately three weeks and compared to a control group of animals. The fat-fed rats had statistically significantly lower blood glucose concentrations and higher blood beta-hydroxybutyrate and acetoacetate concentrations; higher brain concentrations of bound glucose, glucose 6-phosphate, pyruvate, lactate, beta-hydroxybutyrate, citrate, alpha-ketoglutarate, alanine, and adenosine triphosphate (ATP); lower brain concentrations of fructose 1,6-diphosphate, aspartate, adenosine diphosphate (ADP), creatine, cyclic nucleotides, succinyl coenzyme A (CoA), acid-insoluble CoA, and total CoA; and similar brain concentrations of glucose, malate, calculated oxaloacetate, glutamate, glutamine, adenosine monophosphate, phosphocreatine, reduced CoA, acetyl CoA, sodium, potassium, chloride, and water content. The metabolite data in the chronically ketotic rats demonstrate an increase in the cerebral energy reserve and energy charge. These data also suggest negative modification of the enzymes phosphofructokinase, pyruvic dehydrogenase, and alpha-ketoglutaric dehydrogenase; positive modification of glycogen synthase; and possible augmentation of the hexose transport system. There was no demonstrable difference in brain pH, water content, or electrolytes in the two groups of animals. We speculate that the increased brain ATP/ADP ratio is central to most, if not all, the observed metabolic perturbations and may account for the increased neuronal stability that accompanies chronic ketosis. PMID:666275

  7. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    PubMed

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  8. Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants

    PubMed Central

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P. Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO2). Thus, measures of CMRO2 are reflective of neuronal viability and provide critical diagnostic information, making CMRO2 an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO2) as a surrogate for cerebral oxygen consumption. However, SO2 is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO2 are not sensitive enough to detect brain injury hours after the insult 1,2, because oxygen consumption and delivery reach equilibrium after acute transients3. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO2 (CMRO2i) 4,5. With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain development

  9. Cerebral oximetry and cardiac arrest.

    PubMed

    Skhirtladze-Dworschak, Keso; Dworschak, Martin

    2013-12-01

    Cerebral oximetry is a Food and Drug Administration-approved technology that allows monitoring of brain oxygen saturation in accessible superficial brain cortex regions, which are amongst the most vulnerable in regard to ischemic or hypoxic injury. Since most oxygen in the area of interest is located in the venous compartment, the determined regional brain oxygen saturation approximately reflects the local balance between oxygen delivery and oxygen consumption. Major systemic alterations in blood oxygen content and oxygen delivery will be accompanied by corresponding changes in regional brain saturation. This systematic review, which is based on a Medline search, focuses on the characteristic changes in regional cerebral oxygen saturation that occur, when global oxygen supply to the brain ceases. It further highlights the potential application of cerebral oximetry in the management of cardiac arrest victims, the predictability of clinical outcome after global cerebral ischemia, and it also indicates possible potentials for the management of cerebral reperfusion after having instituted return of spontaneous circulation. PMID:23782549

  10. Simultaneous measurement of glucose transport and utilization in the human brain

    PubMed Central

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  11. Breakfast, blood glucose, and cognition.

    PubMed

    Benton, D; Parker, P Y

    1998-04-01

    This article compares the findings of three studies that explored the role of increased blood glucose in improving memory function for subjects who ate breakfast. An initial improvement in memory function for these subjects was found to correlate with blood glucose concentrations. In subsequent studies, morning fasting was found to adversely affect the ability to recall a word list and a story read aloud, as well as recall items while counting backwards. Failure to eat breakfast did not affect performance on an intelligence test. It was concluded that breakfast consumption preferentially influences tasks requiring aspects of memory. In the case of both word list recall and memory while counting backwards, the decline in performance associated with not eating breakfast was reversed by the consumption of a glucose-supplemented drink. Although a morning fast also affected the ability to recall a story read aloud, the glucose drink did not reverse this decline. It appears that breakfast consumption influences cognition via several mechanisms, including an increase in blood glucose. PMID:9537627

  12. Employees with Cerebral Palsy

    MedlinePlus

    ... Resources Home | Accommodation and Compliance Series: Employees with Cerebral Palsy (CP) By Eddie Whidden, MA Preface Introduction Information About ... SOAR) at http://AskJAN.org/soar. Information about Cerebral Palsy (CP) What is CP? Cerebral palsy is a ...

  13. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS Cerebral Aneurysms Fact Sheet See a list of all NINDS ... I get more information? What is a cerebral aneurysm? A cerebral aneurysm (also known as an intracranial ...

  14. Effects of consuming fructose- or glucose-sweetened beverages for 10 weeks on lipids, insulin sensitivity and adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal studies have documented that, compared with glucose, dietary fructose promotes dyslipidemia and insulin resistance. Experimental evidence that fructose consumption in humans promotes dyslipidemia and insulin resistance compared with glucose consumption has been equivocal. We tested the hypoth...

  15. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  16. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing.

    PubMed

    Rossi, Liane M; Quach, Ashley D; Rosenzweig, Zeev

    2004-10-01

    Immobilization of bioactive molecules on the surface of magnetic nanoparticles is of great interest, because the magnetic properties of these bioconjugates promise to greatly improve the delivery and recovery of biomolecules in biomedical applications. Here we present the preparation and functionalization of magnetite (Fe3O4) nanoparticles 20 nm in diameter and the successful covalent conjugation of the enzyme glucose oxidase to the amino-modified nanoparticle surface. Functionalization of the magnetic nanoparticle surface with amino groups greatly increased the amount and activity of the immobilized enzyme compared with immobilization procedures involving physical adsorption. The enzymatic activity of the glucose oxidase-coated magnetic nanoparticles was investigated by monitoring oxygen consumption during the enzymatic oxidation of glucose using a ruthenium phenanthroline fluorescent complex for oxygen sensing. The glucose oxidase-coated magnetite nanoparticles could function as nanometric glucose sensors in glucose solutions of concentrations up to 20 mmol L(-1). Immobilization of glucose oxidase on the nanoparticles also increased the stability of the enzyme. When stored at 4 degrees C the nanoparticle suspensions maintained their bioactivity for up to 3 months. PMID:15448967

  17. Effects of cerebral ischemia on neuronal hemoglobin

    PubMed Central

    He, Yangdong; Hua, Ya; Liu, Wenquan; Hu, Haitao; Keep, Richard F.; Xi, Guohua

    2009-01-01

    Summary The present study examined whether or not neuronal hemoglobin (Hb) is present in rats. It then examined whether cerebral ischemia or ischemic preconditioning (IPC) affects neuronal Hb levels in vivo and in vitro. In vivo, male Sprague-Dawley rats were subjected to either 15 minutes of transient middle cerebral artery occlusion with 24 hours of reperfusion, an IPC stimulus, or 24 hours of permanent middle cerebral artery occlusion (pMCAO), or IPC followed three days later by 24 hours of pMCAO. In vitro, primary cultured neurons were exposed to 2 hours of oxygen-glucose deprivation with 22 hours of reoxygenation. Results showed that Hb is widely expressed in rat cerebral neurons but not astrocytes. Hb expression was significantly upregulated in the ipsilateral caudate and the cortical core of the middle cerebral artery territory after IPC. Hb levels also increased in more penumbral cortex and the contralateral hemisphere 24 hours after pMCAO, but expression in the ipsilateral caudate and cortical core area were decreased. Ischemic preconditioning modified pMCAO-induced brain Hb changes. Neuronal Hb levels in vitro were increased by 2 hours of oxygen-glucose deprivation and 22 hours of reoxygenation. These results indicate that Hb is synthesized in neurons and can be upregulated by ischemia. PMID:19066615

  18. Glucose Variability

    PubMed Central

    2013-01-01

    The proposed contribution of glucose variability to the development of the complications of diabetes beyond that of glycemic exposure is supported by reports that oxidative stress, the putative mediator of such complications, is greater for intermittent as opposed to sustained hyperglycemia. Variability of glycemia in ambulatory conditions defined as the deviation from steady state is a phenomenon of normal physiology. Comprehensive recording of glycemia is required for the generation of any measurement of glucose variability. To avoid distortion of variability to that of glycemic exposure, its calculation should be devoid of a time component. PMID:23613565

  19. Cerebral malaria.

    PubMed

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  20. [Cerebral palsy].

    PubMed

    Malagón Valdez, Jorge

    2007-01-01

    The term cerebral palsy (CP), is used for a great number of clinical neurological syndromes. The syndromes are characterized by having a common cause, motor defects. It is important, because they can cause a brain damage by presenting motor defects and some associated deficiencies, such as mental deficiency, epilepsy, language and visual defects and pseudobulbar paralysis, with the non-evolving fact. Some authors prefer using terms such as "non-evolving encephalopathies". In the treatment the utility of prevention programs of early stimulation and special rehabilitation methods, and treatment of associated deficiencies such as epilepsy, mental deficiency, language, audition and visual problems, and the attention deficit improve the prognosis in an important way. The prognosis depends on the severity of the disease and the associated manifestations. PMID:18422084

  1. Glucose transport in brain - effect of inflammation.

    PubMed

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  2. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment

    PubMed Central

    Brooks, George A.; Martin, Neil A.

    2015-01-01

    Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-2H2]glucose and [3-13C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and 13CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the 13C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia. PMID:25709562

  3. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    PubMed Central

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 μl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. Results Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. Conclusions Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury. PMID:20141631

  4. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  5. Glycogen: the forgotten cerebral energy store.

    PubMed

    Gruetter, Rolf

    2003-10-15

    The brain contains a significant amount of glycogen that is an order of magnitude smaller than that in muscle, but several-fold higher than the cerebral glucose content. Although the precise role of brain glycogen to date is unknown, it seems affected by focal activation, neurotransmitters, and overall electrical activity and hormones. Based on its relatively low concentration, the role of brain glycogen as a significant energy store has been discounted. This work reviews recent experimental evidence that brain glycogen is an important reserve of glucose equivalents: (1) glial glycogen can provide the majority of the glucose supply deficit during hypoglycemia for more than 100 min, consistent with the proposal that glial lactate is a fuel for neurons; (2) glycogen concentrations may be as high as 10 micromol/g, substantially higher than was thought previously; (3) glucose cycling in and out of glycogen amounts to approximately 1% of the cerebral metabolic rate of glucose (CMRglc) in human and rat brain, amounting to an effective stability of glycogen in the resting awake brain during euglycemia and hyperglycemia, (4) brain glycogen metabolism/concentrations are insulin/glucose sensitive; and (5) after a single episode of hypoglycemia, brain glycogen levels rebound to levels that exceed the pre-hypoglycemic concentrations (supercompensation). This experimental evidence supports the proposal that brain glycogen may be involved in the development of diabetes complications, specifically impaired glucose sensing (hypoglycemia unawareness) observed clinically in some diabetes patients under insulin treatment. It is proposed further that brain glycogen becomes important in any metabolic state where supply transiently cannot meet demand, such conditions that could occur during prolonged focal activation, sleep deprivation, seizures, and mild hypoxia. PMID:14515346

  6. Cerebral Contusions and Lacerations

    MedlinePlus

    ... Stretch Additional Content Medical News Cerebral Contusions and Lacerations By James E. Wilberger, MD, Derrick A. Dupre, ... a direct, strong blow to the head. Cerebral lacerations are tears in brain tissue, caused by a ...

  7. United Cerebral Palsy

    MedlinePlus

    ... of UCP blog for the latest updates. United Cerebral Palsy UCP educates, advocates and provides support services to ... Partners Merz Logo Sprint Relay Copyright © 2015 United Cerebral Palsy 1825 K Street NW Suite 600 Washington, DC ...

  8. Cerebral amyloid angiopathy

    MedlinePlus

    Cerebral amyloid angiopathy is a neurological condition in which proteins called amyloid build up on the walls of the arteries ... The cause of cerebral amyloid angiopathy is unknown. Sometimes, it ... Persons with this condition have deposits of amyloid protein ...

  9. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  10. A review of perioperative glucose control in the neurosurgical population.

    PubMed

    Atkins, Joshua H; Smith, David S

    2009-11-01

    Significant fluctuations in serum glucose levels accompany the stress response of surgery or acute injury and may be associated with vascular or neurologic morbidity. Maintenance of euglycemia with intensive insulin therapy (IIT) continues to be investigated as a therapeutic intervention to decrease morbidity associated with derangements in glucose metabolism. Hypoglycemia is a common side effect of IIT with potential for significant morbidity, especially in the neurologically injured patient. Differences in cerebral versus systemic glucose metabolism, the time course of cerebral response to injury, and heterogeneity of pathophysiology in neurosurgical patient populations are important to consider in evaluating the risks and benefits of IIT. While extremes of glucose levels are to be avoided, there are little data to support specific use of IIT for maintenance of euglycemia in the perioperative management of neurosurgical patients. Existing data are summarized and reviewed in this context. PMID:20144389

  11. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    PubMed

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these

  12. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  13. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  14. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  15. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    SciTech Connect

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  16. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    PubMed Central

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  17. [Etiology of cerebral palsy].

    PubMed

    Jaisle, F

    1996-01-01

    The "perinatal asphyxia" is regarded to be one of the causes of cerebral palsy, though in the very most of the children with cerebral palsy there is found no hypoxia during labour. It should be mentioned, that the definition of "perinatal" and "asphyxia" neither are unic nor concret. And also there is no correlation between nonreassuring fetal heart rate patterns and acidosis in fetal blood with the incidence of cerebral palsy. Numerous studies in pregnant animals failed in proving an acute intrapartal hypoxia to be the origin of the cerebral palsy. Myers (1975) describes four patterns of anatomic brain damage after different injuries. Only his so called oligo-acidotic hypoxia, which is protracted and lasts over a longer time is leading to brain injury, which can be regarded in analogy to the injury of children with cerebral palsy. Summarising the update publications about the causes of cerebral palsy and the studies in pregnant animals there is no evidence that hypoxia during labour may be the cause of cerebral palsy. There is a great probability of a pre(and post-)natal origin of brain injury (for instance a periventricular leucomalacia found after birth) which leads to cerebral palsy. Short after labour signs of a so called "asphyxia" may occur in addition to this preexisting injury and misrepresent the cause of cerebral palsy. Finally the prepartal injury may cause both: Cerebral palsy and hypoxia. PMID:9035826

  18. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind. PMID:15768676

  19. Consumption bomb.

    PubMed

    Harrison, P

    1999-01-01

    This article focuses on the issue of consumption in relation to the growing world population. Over the past 25 years, world population increased by 53%, while world consumption per person increased by only 39%. If consumption continues to grow at 1.4%, the world consumption per person will rise by 100% over the next 50 years with the population increasing by only half that amount. The burden of reducing the environmental impact brought about by this increase lies on technology. Technology needs to deliver major changes in improving resource productivity, and decreasing the amount of waste created. Productivity such as global food production has kept up with demand. Malnutrition persists due to poverty, and not because of the inability of the world to produce enough food. However, the prospects are much worse for resources that are not traded on markets or subject to sustainable management such as groundwater, state forests, ocean fish, and communal waste sinks like rivers, lakes, and the global atmosphere. These resources are not under the direct control of people affected by shortage. People who want to change the way these resources are used or managed have to pass through the legal or political system. Usually, political responses are slow and there has to be a very widespread environmental damage before action is taken. PMID:12295543

  20. Hemiparesis post cerebral malaria

    PubMed Central

    Taiaa, Oumkaltoum; Amil, Touriya; Darbi, Abdelatif

    2015-01-01

    Cerebral malaria is one of the most serious complications in the Plasmodium falciparum infection. In endemic areas, the cerebral malaria interested mainly children. The occurrence in adults is very rare and most interested adult traveling in tropical zones. This case report describes a motor deficit post cerebral malaria in a young adult traveling in malaria endemic area. This complication has been reported especially in children and seems very rare in adults. PMID:25995798

  1. Blood Test: Glucose

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  2. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    PubMed

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. PMID:27518562

  3. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  4. Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations.

    PubMed

    Verbeek, Marcel M; Leen, Wilhelmina G; Willemsen, Michèl A; Slats, Diane; Claassen, Jurgen A

    2016-05-01

    Cerebrospinal fluid analysis is important in the diagnostics of many neurological disorders. Since the influence of food intake on the cerebrospinal fluid glucose concentration and the cerebrospinal fluid/plasma glucose ratio is largely unknown, we studied fluctuations in these parameters in healthy adult volunteers during a period of 36 h. Our observations show large physiological fluctuations of cerebrospinal fluid glucose and the cerebrospinal fluid/plasma glucose ratio, and their relation to food intake. These findings provide novel insights into the physiology of cerebral processes dependent on glucose levels such as energy formation (e.g. glycolysis), enzymatic reactions (e.g. glycosylation), and non-enzymatic reactions (e.g. advanced endproduct glycation). PMID:26945018

  5. Effect of curcumin on diabetic rat model of cerebral ischemia.

    PubMed

    Miao, Mingsan; Cheng, Bolin; Li, Min

    2015-01-01

    To investigate the effect of curcumin on cerebral ischemia in diabetic rats the effects and features. intravenous injection alloxan diabetes model, to give alloxan first seven days the tail measured blood glucose value, the election successful model rats were fed with large, medium and small doses of curcumin suspension, Shenqijiangtang suspension and the same volume of saline, administered once daily. The first 10 days after administration 2h (fasting 12h) rat tail vein blood glucose values measured in the first 20 days after administration of 2h (fasting 12h), do cerebral ischemia surgery; rapid carotid artery blood after 30min rats were decapitated, blood serum, blood glucose and glycated serum protein levels; take part of the brain homogenates plus nine times the amount of normal saline, made 10 percent of brain homogenates. Another part of the brain tissue, in the light microscope observation of pathological tissue. Compared with model group, large, medium and small doses of curcumin can significantly lower blood sugar and glycated serum protein levels, significantly reduced brain homogenates lactic acid content and lactate dehydrogenase activity; large, medium-dose curcumin can significantly increase brain homogenates Na(+)-K(+)-ATP activity, dose curcumin can significantly improve brain homogenates Ca(+)-Mg(+)- ATP activity. Curcumin can reduce blood sugar in diabetic rat model of cerebral ischemia and improve brain energy metabolism, improve their brain tissue resistance to ischemia and hypoxia, cerebral ischemia in diabetic rats have a good drop the role of sugar and protect brain tissue. PMID:25631517

  6. Cerebral Palsy (CP) Quiz

    MedlinePlus

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  7. Cerebral Syndromes of Diabetes Mellitus

    PubMed Central

    Shavelle, Henry S.

    1969-01-01

    Three labile diabetic patients had recurring episodes of altered sensorium. Each had severe cerebrovascular disease with superimposed metabolic derangements, including ketoacidosis, hyperglycemia without ketosis, mild uremia, and possibly cerebral edema. Two of the patients were examined postmortem. Severe leptomeningeal scarring, basal ganglial calcification and destruction of small intracerebral vessels without evidence of large vessel atherosclerosis were found unexpectedly in one patient, a rare occurrence in this country although recently reported from Europe. The other patient had large vessel atherosclerosis only. The clinical expression of the vascular disease was modified by concurrent abnormalities and reflected the sum total of the complexities which coexisted. The pathophysiology of the unconscious state necessarily depends on the inciting factors. Ketoacidotic coma is associated with depressed cerebral oxygen consumption. Spinal fluid pH is usually maintained during ketosis but is sometimes lowered inadvertently during bicarbonate therapy, with resultant coma. Other variables influencing the clinical expression, with or without ketosis, would include, among others, blood viscosity alterations, rapid decrements in blood sugar, and existing degrees of lactic acidosis. The increasing life-span of the juvenile diabetics, favorably influenced by improved management and recently by hemodialysis, may uncover vascular complications heretofore rarely seen and create additional diagnostic and therapeutic enigmas. ImagesFigure 1.Figure 2.Figure 3. PMID:5798497

  8. Cerebral Palsy Gait, Clinical Importance

    PubMed Central

    TUGUI, Raluca Dana; ANTONESCU, Dinu

    2013-01-01

    ABSTRACT Cerebral palsy refers to a lesion on an immature brain, that determines permanent neurological disorders. Knowing the exact cause of the disease does not alter the treatment management. The etiology is 2-2.5/1000 births and the rate is constant in the last 40-50 years because advances in medical technologies have permitted the survival of smaller and premature new born children. Gait analysis has four directions: kinematics (represents body movements analysis without calculating the forces), kinetics (represents body moments and forces), energy consumption (measured by oximetry), and neuromuscular activity (measured by EMG). Gait analysis can observe specific deviations in a patient, allowing us to be more accurate in motor diagnoses and treatment solutions: surgery intervention, botulinum toxin injection, use of orthosis, physical kinetic therapy, oral medications, baclofen pump. PMID:24790675

  9. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  10. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    PubMed

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum. PMID:2584274