Science.gov

Sample records for cerebral metabolic features

  1. Chronic ketosis and cerebral metabolism.

    PubMed

    DeVivo, D C; Leckie, M P; Ferrendelli, J S; McDougal, D B

    1978-04-01

    The effects of chronic ketosis on cerebral metabolism were determined in adult rats maintained on a high-fat diet for approximately three weeks and compared to a control group of animals. The fat-fed rats had statistically significantly lower blood glucose concentrations and higher blood beta-hydroxybutyrate and acetoacetate concentrations; higher brain concentrations of bound glucose, glucose 6-phosphate, pyruvate, lactate, beta-hydroxybutyrate, citrate, alpha-ketoglutarate, alanine, and adenosine triphosphate (ATP); lower brain concentrations of fructose 1,6-diphosphate, aspartate, adenosine diphosphate (ADP), creatine, cyclic nucleotides, succinyl coenzyme A (CoA), acid-insoluble CoA, and total CoA; and similar brain concentrations of glucose, malate, calculated oxaloacetate, glutamate, glutamine, adenosine monophosphate, phosphocreatine, reduced CoA, acetyl CoA, sodium, potassium, chloride, and water content. The metabolite data in the chronically ketotic rats demonstrate an increase in the cerebral energy reserve and energy charge. These data also suggest negative modification of the enzymes phosphofructokinase, pyruvic dehydrogenase, and alpha-ketoglutaric dehydrogenase; positive modification of glycogen synthase; and possible augmentation of the hexose transport system. There was no demonstrable difference in brain pH, water content, or electrolytes in the two groups of animals. We speculate that the increased brain ATP/ADP ratio is central to most, if not all, the observed metabolic perturbations and may account for the increased neuronal stability that accompanies chronic ketosis. PMID:666275

  2. Cerebral Lactate Metabolism After Traumatic Brain Injury.

    PubMed

    Patet, Camille; Suys, Tamarah; Carteron, Laurent; Oddo, Mauro

    2016-04-01

    Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome. PMID:26898683

  3. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  4. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  5. Hemodynamic and metabolic effects of cerebral revascularization.

    PubMed

    Leblanc, R; Tyler, J L; Mohr, G; Meyer, E; Diksic, M; Yamamoto, L; Taylor, L; Gauthier, S; Hakim, A

    1987-04-01

    Pre- and postoperative positron emission tomography (PET) was performed in six patients undergoing extracranial to intracranial bypass procedures for the treatment of symptomatic extracranial carotid occlusion. The six patients were all men, aged 52 to 68 years. Their symptoms included transient ischemic attacks (five cases), amaurosis fugax (two cases), and completed stroke with good recovery (one case). Positron emission tomography was performed within 4 weeks prior to surgery and between 3 to 6 months postoperatively, using oxygen-15-labeled CO, O2, and CO2 and fluorine-18-labeled fluorodeoxyglucose. Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rates for oxygen and glucose (CMRO2 and CMRGlu), and the oxygen extraction fraction (OEF) were measured in both hemispheres. Preoperatively, compared to five elderly control subjects, patients had increased CBV, a decreased CBF/CBV ratio, and decreased CMRO2, indicating reduced cerebral perfusion pressure and depressed oxygen metabolism. The CBF was decreased in only one patient who had bilateral carotid occlusions; the OEF, CMRGlu, and CMRO2/CMRGlu and CMRGlu/CBF ratios were not significantly different from control measurements. All bypasses were patent and all patients were asymptomatic following surgery. Postoperative PET revealed decreased CBV and an increased CBF/CBV ratio, indicating improved hemodynamic function and oxygen hypometabolism. This was associated with increased CMRO2 in two patients in whom the postoperative OEF was also increased. The CMRGlu and CMRGlu/CBF ratio were increased in five patients. Changes in CBF and the CMRO2/CMRGlu ratio were variable. One patient with preoperative progressive mental deterioration, documented by serial neuropsychological testing and decreasing CBF and CMRO2, had improved postoperative CBF and CMRO2 concomitant with improved neuropsychological functioning. It is concluded that symptomatic carotid occlusion is associated with altered

  6. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  7. Mapping of cerebral oxidative metabolism with MRI

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Elliott, Mark A.; Reddy, Ravinder

    2010-01-01

    Using a T1ρ MRI based indirect detection method, we demonstrate the detection of cerebral oxidative metabolism and its modulation by administration of the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) in a large animal model with minimum utilization of gas. The study was performed by inhalation in swine during imaging on clinical MRI scanners. Metabolic changes in swine were determined by two methods. First, in a series of animals, increased metabolism caused by DNP injection was measured by exhaled gas analysis. The average whole-body metabolic increase in seven swine was 11.9%+/-2.5% per mg/kg, stable over three hours. Secondly, hemispheric brain measurements of oxygen consumption stimulated by DNP injection were made in five swine using T1ρ MRI following administration of gas. Metabolism was calculated from the change in the T1ρ weighted MRI signal due to H217O generated from inhalation before and after doubling of metabolism by DNP. These results were confirmed by direct oxygen-17 MR spectroscopy, a gold standard for in vivo H217O measurement. Overall, this work underscores the ability of indirect oxygen-17 imaging to detect oxygen metabolism in an animal model with a lung capacity comparable to the human with minimal utilization of expensive gas. Given the demonstrated high efficiency in use of and the proven feasibility of performing such measurements on standard clinical MRI scanners, this work enables the adaption of this technique for human studies dealing with a broad array of metabolic derangements. PMID:20547874

  8. PET Quantification of Cerebral Oxygen Metabolism in Small Animals

    PubMed Central

    Temma, Takashi; Koshino, Kazuhiro; Moriguchi, Tetsuaki; Enmi, Jun-ichiro; Iida, Hidehiro

    2014-01-01

    Understanding cerebral oxygen metabolism is of great importance in both clinical diagnosis and animal experiments because oxygen is a fundamental source of brain energy and supports brain functional activities. Since small animals such as rats are widely used to study various diseases including cerebral ischemia, cerebrovascular diseases, and neurodegenerative diseases, the development of a noninvasive in vivo measurement method of cerebral oxygen metabolic parameters such as oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) as well as cerebral blood flow (CBF) and cerebral blood volume (CBV) has been a priority. Although positron emission tomography (PET) with 15O labeled gas tracers has been recognized as a powerful way to evaluate cerebral oxygen metabolism in humans, this method could not be applied to rats due to technical problems and there were no reports of PET measurement of cerebral oxygen metabolism in rats until an 15O-O2 injection method was developed a decade ago. Herein, we introduce an intravenous administration method using two types of injectable 15O-O2 and an 15O-O2 gas inhalation method through an airway placed in the trachea, which enables oxygen metabolism measurements in rats. PMID:25202714

  9. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Benson, D.F.; Ashford, J.W.; Riege, W.H.; Fujikawa, D.G.; Markham, C.H.; Maltese, A.

    1985-05-01

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia.

  10. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    SciTech Connect

    Busija, D.W.; Leffler, C.W. )

    1987-10-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-{mu}m radioactive microspheres. Regional CBF ranged from 44 to 66 ml{center dot}min{sup {minus}1}{center dot}100 g{sup {minus}1}, and cerebral metabolic rate was 1.94 {plus minus} 0.23 ml O{sub 2}{center dot}100 g{sup {minus}1}{center dot}min{sup {minus}1} during normothermia (39{degree}C). Reduction of rectal temperature to 34-35{degree}C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced.

  11. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  12. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism.

    PubMed

    Yaseen, Mohammad A; Srinivasan, Vivek J; Gorczynska, Iwona; Fujimoto, James G; Boas, David A; Sakadžić, Sava

    2015-12-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system's design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  13. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  14. Clinical Features of Liver Cancer with Cerebral Hemorrhage

    PubMed Central

    Lu, Qiuhong; Chen, Li; Zeng, Jinsheng; Huang, Gelun; Qin, Chao; Cheng, Daobin; Yu, Lixia; Liang, Zhijian

    2016-01-01

    Background Cerebral hemorrhage is common in patients with cancer, but the clinical features and pathogenesis of liver cancer patients with cerebral hemorrhage are not well known. Material/Methods Liver cancer patients who developed cerebral hemorrhage were recruited from the First Affiliated Hospital of Guangxi Medical University between January 2003 and December 2014. We retrospectively analyzed clinical presentations, results of laboratory tests, and imaging examinations. The clinical features and pathogenesis were summarized. Results Among 11133 patients with liver cancer, 9 patients (0.08%), including 3 females and 6 males met the inclusion criteria. The age range was 48–73 years and the average age was 61.67±8.97 years. Five patients did not have traditional hemorrhage risk factors and 4s had the risk factors; however, all had developed hepatocellular carcinoma, and 3 had developed metastasis. All 9 patients showed elevated tumor markers: an increased AFP level was detected in 6 patients, coagulation dysfunctions in 8 patients, and abnormal liver functions in 6 patients. Five patients had developed cerebral hemorrhagic lesions in the lobes of their brains, while hemorrhagic lesions in the basal ganglia occurred in 3 patients and in the brainstem in only 1 patient. Four patients had clear consciousness, while 5 patients were in coma and showed poor prognosis. Conclusions Patients who have liver cancer complicated with cerebral hemorrhage usually lack traditional risk factors of cerebral hemorrhage. The site of cerebral hemorrhage is often detected in the lobes of the brain. Coagulation dysfunctions might be the main pathogenesis of liver cancer complicated with cerebral hemorrhage. PMID:27209058

  15. Clinical Features of Liver Cancer with Cerebral Hemorrhage.

    PubMed

    Lu, Qiuhong; Chen, Li; Zeng, Jinsheng; Huang, Gelun; Qin, Chao; Cheng, Daobin; Yu, Lixia; Liang, Zhijian

    2016-01-01

    BACKGROUND Cerebral hemorrhage is common in patients with cancer, but the clinical features and pathogenesis of liver cancer patients with cerebral hemorrhage are not well known. MATERIAL AND METHODS Liver cancer patients who developed cerebral hemorrhage were recruited from the First Affiliated Hospital of Guangxi Medical University between January 2003 and December 2014. We retrospectively analyzed clinical presentations, results of laboratory tests, and imaging examinations. The clinical features and pathogenesis were summarized. RESULTS Among 11133 patients with liver cancer, 9 patients (0.08%), including 3 females and 6 males met the inclusion criteria. The age range was 48-73 years and the average age was 61.67±8.97 years. Five patients did not have traditional hemorrhage risk factors and 4s had the risk factors; however, all had developed hepatocellular carcinoma, and 3 had developed metastasis. All 9 patients showed elevated tumor markers: an increased AFP level was detected in 6 patients, coagulation dysfunctions in 8 patients, and abnormal liver functions in 6 patients. Five patients had developed cerebral hemorrhagic lesions in the lobes of their brains, while hemorrhagic lesions in the basal ganglia occurred in 3 patients and in the brainstem in only 1 patient. Four patients had clear consciousness, while 5 patients were in coma and showed poor prognosis. CONCLUSIONS Patients who have liver cancer complicated with cerebral hemorrhage usually lack traditional risk factors of cerebral hemorrhage. The site of cerebral hemorrhage is often detected in the lobes of the brain. Coagulation dysfunctions might be the main pathogenesis of liver cancer complicated with cerebral hemorrhage. PMID:27209058

  16. Sleep slow-wave activity regulates cerebral glycolytic metabolism.

    PubMed

    Wisor, Jonathan P; Rempe, Michael J; Schmidt, Michelle A; Moore, Michele E; Clegern, William C

    2013-08-01

    Non-rapid eye movement sleep (NREMS) onset is characterized by a reduction in cerebral metabolism and an increase in slow waves, 1-4-Hz oscillations between relatively depolarized and hyperpolarized states in the cerebral cortex. The metabolic consequences of slow-wave activity (SWA) at the cellular level remain uncertain. We sought to determine whether SWA modulates the rate of glycolysis within the cerebral cortex. The real-time measurement of lactate concentration in the mouse cerebral cortex demonstrates that it increases during enforced wakefulness. In spontaneous sleep/wake cycles, lactate concentration builds during wakefulness and rapid eye movement sleep and declines during NREMS. The rate at which lactate concentration declines during NREMS is proportional to the magnitude of electroencephalographic (EEG) activity at frequencies of <10 Hz. The induction of 1-Hz oscillations, but not 10-Hz oscillations, in the electroencephalogram by optogenetic stimulation of cortical pyramidal cells during wakefulness triggers a decline in lactate concentration. We conclude that cerebral SWA promotes a decline in the rate of glycolysis in the cerebral cortex. These results demonstrate a cellular energetic function for sleep SWA, which may contribute to its restorative effects on brain function. PMID:22767634

  17. Cerebral Metabolic Profiling of Hypothermic Circulatory Arrest with and Without Antegrade Selective Cerebral Perfusion: Evidence from Nontargeted Tissue Metabolomics in a Rabbit Model

    PubMed Central

    Zou, Li-Hua; Liu, Jin-Ping; Zhang, Hao; Wu, Shu-Bin; Ji, Bing-Yang

    2016-01-01

    Background: Antegrade selective cerebral perfusion (ASCP) is regarded to perform cerebral protection during the thoracic aorta surgery as an adjunctive technique to deep hypothermic circulatory arrest (DHCA). However, brain metabolism profile after ASCP has not been systematically investigated by metabolomics technology. Methods: To clarify the metabolomics profiling of ASCP, 12 New Zealand white rabbits were randomly assigned into 60 min DHCA with (DHCA+ASCP [DA] group, n = 6) and without (DHCA [D] group, n = 6) ASCP according to the random number table. ASCP was conducted by cannulation on the right subclavian artery and cross-clamping of the innominate artery. Rabbits were sacrificed 60 min after weaning off cardiopulmonary bypass. The metabolic features of the cerebral cortex were analyzed by a nontargeted metabolic profiling strategy based on gas chromatography-mass spectrometry. Variable importance projection values exceeding 1.0 were selected as potentially changed metabolites, and then Student's t-test was applied to test for statistical significance between the two groups. Results: Metabolic profiling of brain was distinctive significantly between the two groups (Q2Y = 0.88 for partial least squares-DA model). In comparing to group D, 62 definable metabolites were varied significantly after ASCP, which were mainly related to amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Kyoto Encyclopedia of Genes and Genomes analysis revealed that metabolic pathways after DHCA with ASCP were mainly involved in the activated glycolytic pathway, subdued anaerobic metabolism, and oxidative stress. In addition, L-kynurenine (P = 0.0019), 5-methoxyindole-3-acetic acid (P = 0.0499), and 5-hydroxyindole-3-acetic acid (P = 0.0495) in tryptophan metabolism pathways were decreased, and citrulline (P = 0.0158) in urea cycle was increased in group DA comparing to group D. Conclusions: The present study applied metabolomics analysis to identify the cerebral

  18. An Evidence-Based Review of Related Metabolites and Metabolic Network Research on Cerebral Ischemia

    PubMed Central

    Liu, Mengting; Tang, Liying; Liu, Xin; Fang, Jing; Zhan, Hao; Wu, Hongwei; Yang, Hongjun

    2016-01-01

    In recent years, metabolomics analyses have been widely applied to cerebral ischemia research. This paper introduces the latest proceedings of metabolomics research on cerebral ischemia. The main techniques, models, animals, and biomarkers of cerebral ischemia will be discussed. With analysis help from the MBRole website and the KEGG database, the altered metabolites in rat cerebral ischemia were used for metabolic pathway enrichment analyses. Our results identify the main metabolic pathways that are related to cerebral ischemia and further construct a metabolic network. These results will provide useful information for elucidating the pathogenesis of cerebral ischemia, as well as the discovery of cerebral ischemia biomarkers. PMID:27274780

  19. Cerebral venous sinus thrombosis as presenting feature of ulcerative colitis.

    PubMed

    Ennaifer, R; Moussa, A; Mouelhi, L; Salem, M; Bouzaidi, S; Debbeche, R; Trabelsi, S; Najjar, T

    2009-01-01

    Thrombosis is a well recognized complication of inflammatory bowel disease that occurs in 1.3 to 6.4% of patients, however, cerebral vascular involvement is unusual. We present the case of a 16-year-old female in whom cerebral venous thrombosis was the presenting symptom of an active ulcerative pancolitis. Thrombophilia screen (plasma levels of proteins C and S, antithrombin, antibeta2-glycoprotein, lupus anticoagulant and anticardiolipin antibodies, activated protein C resistance, homocystein level antinuclear antibodies) was negative. The patient was successfully treated with anticoagulant therapy, phenobarbital and sulfasalazine. Cerebral venous thrombosis is an exceptional presenting feature of ulcerative colitis. Disease activity may play a major role in the occurrence of thrombosis. PMID:19902870

  20. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction

    SciTech Connect

    Lenzi, G.L.; Frackowiak, R.S.; Jones, T.

    1982-09-01

    Fifteen patients with acute cerebral hemispheric infarcts have been studied with positron emission tomography and the /sup 15/O steady-state inhalation technique. Thirteen follow-up studies were also performed. The values of cerebral oxygen metabolism (CMRO/sub 2/), cerebral blood flow (CBF), and oxygen extraction ration (OER) have been calculated for the infarcted regions, their borders, the symmetrical regions in contralateral cerebral hemispheres, and the cerebellar hemispheres. This study demonstrates that in the completed stroke there are thresholds for regional CMRO/sub 2/ and regional CBF below which the general clinical outcome of the patients is usually poor. The ischaemic lesions invariably produce an uncoupling between the greatly decreased metabolic demand and the less affected blood supply, with very frequent instances of relative hyperperfusion. Remote effects of the hemispheric infarcts have been demonstrated, such as crossed cerebellar diaschisis and contralateral transhemispheric depression. The level of consciousness correlates with oxygen uptake and blood flow both in the posterior fossa and in the contralateral cerebral hemispheres. The follow-up studies of individual patients underline the high variability of metabolism-to-flow balance during the acute phase of the illness, and stress the need for more studies focused on repeated assessments of homogeneous patient populations.

  1. Metabolic myopathies: clinical features and diagnostic approach.

    PubMed

    Smith, Edward C; El-Gharbawy, Areeg; Koeberl, Dwight D

    2011-05-01

    The rheumatologist is frequently called on to evaluate patients with complaints of myalgia, muscle cramps, and fatigue. The evaluation of these patients presents a diagnostic challenge given the nonspecific and intermittent nature of their complaints, often leading to inappropriate diagnostic testing. When these symptoms are associated with physical exertion, a metabolic myopathy should be suspected Although inflammatory myopathies may present with similar features, such a pattern should prompt a thorough evaluation for an underlying metabolic myopathy. This review discusses the most common causes of metabolic myopathies and reviews the current diagnostic options available to the clinician. PMID:21444020

  2. Local cerebral metabolism during partial seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.; Rausch, R.; Nuwer, M.

    1983-04-01

    Interictal and ictal fluorodeoxyglucose scans were obtained with positron CT from four patients with spontaneous recurrent partial seizures, one with epilepsia partialis continua, and one with a single partial seizure induced by electrical stimulation of the hippocampus. Ictal metabolic patterns were different for each patient studied. Focal and generalized increased and decreased metabolism were observed. Ictal hypermetabolism may exceed six times the interictal rate and could represent activation of excitatory or inhibitory synapses in the epileptogenic region and its projection fields. Hypometabolism seen on ictal scans most likely reflects postictal depression and may indicate projection fields of inhibited neurons. No quantitative relationship between alterations in metabolism and EEG or behavioral measurements of ictal events could be demonstrated.

  3. Computerized system for measuring cerebral metabolism

    SciTech Connect

    McGlone, J.S.; Hibbard, L.S.; Hawkins, R.A.; Kasturi, R.

    1987-09-01

    A computerized stereotactic measurement system for evaluating rat brain metabolism was developed to utilize the large amount of data generated by quantitative autoradiography. Conventional methods of measurement only analyze a small percent of these data because these methods are limited by instrument design and the subjectiveness of the investigator. However, a computerized system allows digital images to be analyzed by placing data at their appropriate three-dimensional stereotactic coordinates. The system automatically registers experimental data to a standard three-dimensional image using alignment, scaling, and matching operations. Metabolic activity in different neuronal structures is then measured by generating digital masks and superimposing them on to experimental data. Several experimental data sets were evaluated and it was noticed that the structures measured by the computerized system, had in general, lower metabolic activity than manual measurements had indicated. This was expected because the computerized system measured the structure over its volume while the manual readings were taken from the most active metabolic area of a particular structure.

  4. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  5. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    SciTech Connect

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  6. Metabolic profiling reveals key metabolic features of renal cell carcinoma

    PubMed Central

    Catchpole, Gareth; Platzer, Alexander; Weikert, Cornelia; Kempkensteffen, Carsten; Johannsen, Manfred; Krause, Hans; Jung, Klaus; Miller, Kurt; Willmitzer, Lothar; Selbig, Joachim; Weikert, Steffen

    2011-01-01

    Abstract Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. α-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC. PMID:19845817

  7. PET measurements of cerebral metabolism corrected for CSF contributions

    SciTech Connect

    Chawluk, J.; Alavi, A.; Dann, R.; Kushner, M.J.; Hurtig, H.; Zimmerman, R.A.; Reivich, M.

    1984-01-01

    Thirty-three subjects have been studied with PET and anatomic imaging (proton-NMR and/or CT) in order to determine the effect of cerebral atrophy on calculations of metabolic rates. Subgroups of neurologic disease investigated include stroke, brain tumor, epilepsy, psychosis, and dementia. Anatomic images were digitized through a Vidicon camera and analyzed volumetrically. Relative areas for ventricles, sulci, and brain tissue were calculated. Preliminary analysis suggests that ventricular volumes as determined by NMR and CT are similar, while sulcal volumes are larger on NMR scans. Metabolic rates (18F-FDG) were calculated before and after correction for CSF spaces, with initial focus upon dementia and normal aging. Correction for atrophy led to a greater increase (%) in global metabolic rates in demented individuals (18.2 +- 5.3) compared to elderly controls (8.3 +- 3.0,p < .05). A trend towards significantly lower glucose metabolism in demented subjects before CSF correction was not seen following correction for atrophy. These data suggest that volumetric analysis of NMR images may more accurately reflect the degree of cerebral atrophy, since NMR does not suffer from beam hardening artifact due to bone-parenchyma juxtapositions. Furthermore, appropriate correction for CSF spaces should be employed if current resolution PET scanners are to accurately measure residual brain tissue metabolism in various pathological states.

  8. Frontiers in optical imaging of cerebral blood flow and metabolism

    PubMed Central

    Devor, Anna; Sakadžić, Sava; Srinivasan, Vivek J; Yaseen, Mohammad A; Nizar, Krystal; Saisan, Payam A; Tian, Peifang; Dale, Anders M; Vinogradov, Sergei A; Franceschini, Maria Angela; Boas, David A

    2012-01-01

    In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility. PMID:22252238

  9. Reproducibility of cerebral glucose metabolic measurements in resting human subjects.

    PubMed

    Bartlett, E J; Brodie, J D; Wolf, A P; Christman, D R; Laska, E; Meissner, M

    1988-08-01

    Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no more than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at run 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low intrasubject variability and high stability over a 24-h period. PMID:3260593

  10. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    SciTech Connect

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  11. CEREBRAL BLOOD FLOW AND METABOLISM IN ANXIETY AND ANXIETY DISORDERS

    PubMed Central

    Mathew, Roy J.

    1994-01-01

    Anxiety disorders are some of the commonest psychiatric disorders and anxiety commonly co-exists with other psychiatric conditions. Anxiety can also be a normal emotion. Thus, study of the neurobiological effects of anxiety is of considerable significance. In the normal brain, cerebral blood flow (CBF) and metabolism (CMR) serve as indices of brain function. CBF/CMR research is expected to provide new insight into alterations in brain function in anxiety disorders and other psychiatric disorders. Possible associations between stress I anxiety I panic and cerebral ischemia I stroke give additional significance to the effects of anxiety on CBF. With the advent of non-invasive techniques, study of CBF/CMR in anxiety disorders became easier. A large numbers of research reports are available on the effects of stress, anxiety and panic on CBF/CMR in normals and anxiety disorder patients. This article reviews the available human research on this topic. PMID:21743685

  12. Effect of anxiety on cortical cerebral blood flow and metabolism

    SciTech Connect

    Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.

    1987-04-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using /sup 18/Flurodeoxyglucose (/sup 18/FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance.

  13. Cerebral glucose metabolic abnormality in patients with congenital scoliosis.

    PubMed

    Park, Weon Wook; Suh, Kuen Tak; Kim, Jeung Il; Ku, Ja Gyung; Lee, Hong Seok; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Lee, Jung Sub

    2008-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography. PMID:18446384

  14. Serotonin modulation of cerebral glucose metabolism: sex and age effects.

    PubMed

    Munro, Cynthia A; Workman, Clifford I; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S

    2012-11-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. PMID:22836227

  15. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  16. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    SciTech Connect

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  17. Regional cerebral blood flow and metabolism in patients with transient global amnesia: a positron emission tomography study.

    PubMed Central

    Fujii, K; Sadoshima, S; Ishitsuka, T; Kusuda, K; Kuwabara, Y; Ichiya, Y; Fujishima, M

    1989-01-01

    In four patients who experienced transient global amnesia (TGA), clinical features and neuroradiological findings including positron emission tomography (PET) were studied within three months of the episodes, and compared with those in seven cases with cerebral transient ischaemic attacks (TIA). None of TGA patients had a previous history or significant risk factors for the cerebrovascular diseases. Their electroencephalogram, brain CT and angiogram for the head and neck were almost normal. PET study showed better preserved cerebral blood flow and oxygen metabolism in each area of the brain in patients with TGA compared with those with TIA in whom focal reductions of flow and metabolism were evident. These observations suggest that TGA is caused by reversible circulatory and/or metabolic disturbance, of which mechanism might be different from that in TIA. Images PMID:2786552

  18. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study.

    PubMed

    Vestergaard, Mark B; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik Bw

    2016-06-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  19. Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

    PubMed Central

    Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik BW

    2015-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (p<10-6), glutamate increased by 4.7% (p<10-4) and creatine and phosphocreatine decreased by 15.2% (p<10-3). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  20. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  1. Fourth case of cerebral, ocular, dental, auricular, skeletal syndrome (CODAS), description of new features and molecular analysis.

    PubMed

    Marlin, S; Ducou Le Pointe, H; Le Merrer, M; Portnoi, M F; Chantot, S; Jonard, L; Mantel-Guiochon, A; Siffroi, J P; Garabedian, E N; Denoyelle, F

    2010-06-01

    Cerebral, ocular, dental, auricular, skeletal syndrome (CODAS, OMIM 600373) is a very rare congenital malformation syndrome. This clinical entity is highly distinctive and associates mental retardation, cataract, enamel abnormalities, malformations of the helix, epiphyseal and vertebral malformations, and characteristic dysmorphic features. Since 1991, only three affected children have been reported. The etiology and pattern of inheritance of CODAS syndrome still remain unknown. We describe a new sporadic case presenting with all the characteristic features of CODAS syndrome associated with previously unreported malformations of the heart, larynx, and liver. All investigations such as karyotype, metabolic screening and array CGH were normal. PMID:20503327

  2. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia.

    PubMed

    Ainslie, Philip N; Shaw, Andrew D; Smith, Kurt J; Willie, Christopher K; Ikeda, Keita; Graham, Joseph; Macleod, David B

    2014-05-01

    Characterization of the influence of oxygen availability on brain metabolism is an essential step toward a better understanding of brain energy homoeostasis and has obvious clinical implications. However, how brain metabolism depends on oxygen availability has not been clearly examined in humans. We therefore assessed the influence of oxygen on CBF (cerebral blood flow) and CMRO2 (cerebral metabolic rates for oxygen) and carbohydrates. PaO2 (arterial partial pressure of oxygen) was decreased for 15 min to ~60, ~44 and ~35 mmHg [to target a SaO2 (arterial oxygen saturation) of 90, 80 and 70% respectively], and elevated to ~320 and ~430 mmHg. Isocapnia was maintained during each trial. At the end of each stage, arterial-jugular venous differences and volumetric CBF were measured to directly calculate cerebral metabolic rates. During progressive hypoxaemia, elevations in CBF were correlated with the reductions in both SaO2 (R2=0.54, P<0.05) and CaO2 (arterial oxygen content) (R2=0.57, P<0.05). Despite markedly reduced CaO2, cerebral oxygen delivery was maintained by increased CBF. Cerebral metabolic rates for oxygen, glucose and lactate remained unaltered during progressive hypoxia. Consequently, cerebral glucose delivery was in excess of that required, and net lactate efflux increased slightly in severe hypoxia, as reflected by a small increase in jugular venous lactate. Progressive hyperoxia did not alter CBF, CaO2, substrate delivery or cerebral metabolism. In conclusion, marked elevations in CBF with progressive hypoxaemia and related reductions in CaO2 resulted in a well-maintained cerebral oxygen delivery. As such, cerebral metabolism is still supported almost exclusively by carbohydrate oxidation during severe levels of hypoxaemia. PMID:24117382

  3. Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications.

    PubMed

    Boulouis, Gregoire; Charidimou, Andreas; Greenberg, Steven M

    2016-06-01

    Sporadic cerebral amyloid angiopathy is a small vessel disorder defined pathologically by progressive amyloid deposition in the walls of cortical and leptomeningeal vessels resulting from disruption of a complex balance between production, circulation, and clearance of amyloid-β peptide (Aβ) in the brain. Cerebral amyloid angiopathy is a major cause of lobar symptomatic intracerebral hemorrhage, transient focal neurologic episodes, and a key contributor to vascular cognitive impairment. The mechanisms and consequences of amyloid-β deposition at the pathological level and its neuroimaging manifestations, clinical consequences, and implications for patient care are addressed in this review. PMID:27214698

  4. Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology

    PubMed Central

    Dehaes, Mathieu; Cheng, Henry H.; Buckley, Erin M.; Lin, Pei-Yi; Ferradal, Silvina; Williams, Kathryn; Vyas, Rutvi; Hagan, Katherine; Wigmore, Daniel; McDavitt, Erica; Soul, Janet S.; Franceschini, Maria Angela; Newburger, Jane W.; Ellen Grant, P.

    2015-01-01

    Congenital heart disease (CHD) patients are at risk for neurodevelopmental delay. The etiology of these delays is unclear, but abnormal prenatal cerebral maturation and postoperative hemodynamic instability likely play a role. A better understanding of these factors is needed to improve neurodevelopmental outcome. In this study, we used bedside frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) to assess cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle (SV) CHD undergoing surgery and compared them to controls. Our goals were 1) to compare cerebral hemodynamics between unanesthetized SV and healthy neonates, and 2) to determine if FDNIRS-DCS could detect alterations in cerebral hemodynamics beyond cerebral hemoglobin oxygen saturation (SO2). Eleven SV neonates were recruited and compared to 13 controls. Preoperatively, SV patients showed decreased cerebral blood flow (CBFi), cerebral oxygen metabolism (CMRO2i) and SO2; and increased oxygen extraction fraction (OEF) compared to controls. Compared to preoperative values, unstable postoperative SV patients had decreased CMRO2i and CBFi, which returned to baseline when stable. However, SO2 showed no difference between unstable and stable states. Preoperative SV neonates are flow-limited and show signs of impaired cerebral development compared to controls. FDNIRS-DCS shows potential to improve assessment of cerebral development and postoperative hemodynamics compared to SO2 alone. PMID:26713191

  5. Metabolic Features of Cancer Treatment Resistance.

    PubMed

    Viale, Andrea; Draetta, Giulio F

    2016-01-01

    A major barrier to achieving durable remission and a definitive cure in oncology patients is the emergence of tumor resistance, a common outcome of different disease types, and independent from the therapeutic approach undertaken. In recent years, subpopulations of slow-cycling cells endowed with enhanced tumorigenic potential and multidrug resistance have been isolated in different tumors, and mounting experimental evidence suggests these resistant cells are responsible for tumor relapse. An in-depth metabolic characterization of resistant tumor stem cells revealed that they rely more on mitochondrial respiration and less on glycolysis than other tumor cells, a finding that challenges the assumption that tumors have a primarily glycolytic metabolism and defective mitochondria. The demonstration of a metabolic program in resistant tumorigenic cells that may be present in the majority of tumors has important therapeutic implications and is a critical consideration as we address the challenge of identifying new vulnerabilities that might be exploited therapeutically. PMID:27557537

  6. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons.

    PubMed Central

    Harper, M A; MacKenzie, E T

    1977-01-01

    1. The cerebral circulatory effects of the intracarotid administration of 5-hydroxytryptamine were examined in anaesthetized baboons. Cerebral blood flow was measured by the intracarotid 133Xe technique, cerebral O2 consumption and glucose uptake were measured as indices of brain metabolism and electrocortical activity was continuously monitored. 2. Despite a marked reduction in the calibre of the internal carotid artery (assessed angiographically), the intracarotid infusion of 5-hydroxytryptamine 0-1 microgram/kg. min did not effect any significant changes in cerebral blood flow, O2 consumption or glucose uptake. 3. Following transient osmotic disruption of the blood-brain barrier with the intracarotid infusion of hypertonic urea, the same dose of 5-hydroxytryptamine effected a marked reduction in cerebral blood flow from 51 +/- 2 to 36 +/- 2 ml./100 g. min (mean +/- S.E.; P less than 0-01). Both indices of cerebral metabolism were reduced significantly and the e.e.g. showed a more pronounced suppression-burst pattern. 4. We postulate that the cerebral circulatory responses to 5-hydroxytryptamine are dependent upon the integrity of the blood-brain barrier and the predominant effect of the intravascular administration of 5-hydroxytryptamine is on cortical activity or metabolism, rather than on cerebrovascular smooth muscle. Images Plate 1 PMID:411921

  7. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  8. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans.

    PubMed

    Braz, Igor D; Fisher, James P

    2016-08-15

    Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. PMID:26435295

  9. Impact of Nutrition on Cerebral Circulation and Cognition in the Metabolic Syndrome

    PubMed Central

    Mellendijk, Laura; Wiesmann, Maximilian; Kiliaan, Amanda J.

    2015-01-01

    The increasing prevalence of Metabolic Syndrome (MetS), defined as the clustering of abdominal obesity, dyslipidemia, hypertension, and hyperglycemia, appears to be driving the global epidemics cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Nutrition has a major impact on MetS and plays an important role in the prevention, development, and treatment of its features. Structural and functional alterations in the vasculature, associated with MetS, might form the link between MetS and the increased risk of developing CVD and T2DM. Not only does the peripheral vasculature seem to be affected, but the syndrome has a profound impact on the cerebral circulation and thence brain structure as well. Furthermore, strong associations are shown with stroke, cognitive impairment, and dementia. In this review the impact of nutrition on the individual components of MetS, the effects of MetS on peripheral and cerebral vasculature, and its consequences for brain structure and function will be discussed. PMID:26580647

  10. Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia

    PubMed Central

    Dehaes, Mathieu; Aggarwal, Alpna; Lin, Pei-Yi; Rosa Fortuno, C; Fenoglio, Angela; Roche-Labarbe, Nadège; Soul, Janet S; Franceschini, Maria Angela; Grant, P Ellen

    2014-01-01

    Pathophysiologic mechanisms involved in neonatal hypoxic ischemic encephalopathy (HIE) are associated with complex changes of blood flow and metabolism. Therapeutic hypothermia (TH) is effective in reducing the extent of brain injury, but it remains uncertain how TH affects cerebral blood flow (CBF) and metabolism. Ten neonates undergoing TH for HIE and seventeen healthy controls were recruited from the NICU and the well baby nursery, respectively. A combination of frequency domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) systems was used to non-invasively measure cerebral hemodynamic and metabolic variables at the bedside. Results showed that cerebral oxygen metabolism (CMRO2i) and CBF indices (CBFi) in neonates with HIE during TH were significantly lower than post-TH and age-matched control values. Also, cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) were significantly higher in neonates with HIE during TH compared with age-matched control neonates. Post-TH CBV was significantly decreased compared with values during TH whereas SO2 remained unchanged after the therapy. Thus, FDNIRS–DCS can provide information complimentary to SO2 and can assess individual cerebral metabolic responses to TH. Combined FDNIRS–DCS parameters improve the understanding of the underlying physiology and have the potential to serve as bedside biomarkers of treatment response and optimization. PMID:24064492

  11. Metabolic features of chronic fatigue syndrome.

    PubMed

    Naviaux, Robert K; Naviaux, Jane C; Li, Kefeng; Bright, A Taylor; Alaynick, William A; Wang, Lin; Baxter, Asha; Nathan, Neil; Anderson, Wayne; Gordon, Eric

    2016-09-13

    More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS. We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-matched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21-67 y). Females were 52 (±2.5) y old (range, 20-67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females. We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84-100%] in males using eight metabolites and 96% (95% CI, 86-100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer. PMID:27573827

  12. Metabolic Pattern of the Acute Phase of Subarachnoid Hemorrhage in a Novel Porcine Model: Studies with Cerebral Microdialysis with High Temporal Resolution

    PubMed Central

    Nyberg, Christoffer; Karlsson, Torbjörn; Hillered, Lars; Engström, Elisabeth Ronne

    2014-01-01

    Background Aneurysmal subarachnoid hemorrhage (SAH) may produce cerebral ischemia and systemic responses including stress. To study immediate cerebral and systemic changes in response to aneurysm rupture, animal models are needed. Objective To study early cerebral energy changes in an animal model. Methods Experimental SAH was induced in 11 pigs by autologous blood injection to the anterior skull base, with simultaneous control of intracranial and cerebral perfusion pressures. Intracerebral microdialysis was used to monitor concentrations of glucose, pyruvate and lactate. Results In nine of the pigs, a pattern of transient ischemia was produced, with a dramatic reduction of cerebral perfusion pressure soon after blood injection, associated with a quick glucose and pyruvate decrease. This was followed by a lactate increase and a delayed pyruvate increase, producing a marked but short elevation of the lactate/pyruvate ratio. Glucose, pyruvate, lactate and lactate/pyruvate ratio thereafter returned toward baseline. The two remaining pigs had a more severe metabolic reaction with glucose and pyruvate rapidly decreasing to undetectable levels while lactate increased and remained elevated, suggesting persisting ischemia. Conclusion The animal model simulates the conditions of SAH not only by deposition of blood in the basal cisterns, but also creating the transient global ischemic impact of aneurysmal SAH. The metabolic cerebral changes suggest immediate transient substrate failure followed by hypermetabolism of glucose upon reperfusion. The model has features that resemble spontaneous bleeding, and is suitable for future research of the early cerebral and systemic responses to SAH that are difficult to study in humans. PMID:24940881

  13. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Hengstler, Jan Georg; Cadenas, Cristina; Hescheler, Jürgen; Sachinidis, Agapios

    2014-04-11

    Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed. PMID:24723659

  14. Defective autophagy is a key feature of cerebral cavernous malformations

    PubMed Central

    Marchi, Saverio; Corricelli, Mariangela; Trapani, Eliana; Bravi, Luca; Pittaro, Alessandra; Delle Monache, Simona; Ferroni, Letizia; Patergnani, Simone; Missiroli, Sonia; Goitre, Luca; Trabalzini, Lorenza; Rimessi, Alessandro; Giorgi, Carlotta; Zavan, Barbara; Cassoni, Paola; Dejana, Elisabetta; Retta, Saverio Francesco; Pinton, Paolo

    2015-01-01

    Cerebral cavernous malformation (CCM) is a major cerebrovascular disease affecting approximately 0.3–0.5% of the population and is characterized by enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhages. Cerebral cavernous malformation is a genetic disease that may arise sporadically or be inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. Causative loss-of-function mutations have been identified in three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which occur in both sporadic and familial forms. Autophagy is a bulk degradation process that maintains intracellular homeostasis and that plays essential quality control functions within the cell. Indeed, several studies have identified the association between dysregulated autophagy and different human diseases. Here, we show that the ablation of the KRIT1 gene strongly suppresses autophagy, leading to the aberrant accumulation of the autophagy adaptor p62/SQSTM1, defective quality control systems, and increased intracellular stress. KRIT1 loss-of-function activates the mTOR-ULK1 pathway, which is a master regulator of autophagy, and treatment with mTOR inhibitors rescues some of the mole-cular and cellular phenotypes associated with CCM. Insufficient autophagy is also evident in CCM2-silenced human endothelial cells and in both cells and tissues from an endothelial-specific CCM3-knockout mouse model, as well as in human CCM lesions. Furthermore, defective autophagy is highly correlated to endothelial-to-mesenchymal transition, a crucial event that contributes to CCM progression. Taken together, our data point to a key role for defective autophagy in CCM disease pathogenesis, thus providing a novel framework for the development of new pharmacological strategies to prevent or reverse adverse clinical outcomes of CCM lesions. PMID:26417067

  15. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    PubMed

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  16. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  17. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  18. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury.

    PubMed

    Moro, Nobuhiro; Ghavim, Sima S; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2016-07-01

    Experimental traumatic brain injury (TBI) is known to produce an acute increase in cerebral glucose utilization, followed rapidly by a generalized cerebral metabolic depression. The current studies determined effects of single or multiple treatments with sodium pyruvate (SP; 1000mg/kg, i.p.) or ethyl pyruvate (EP; 40mg/kg, i.p.) on cerebral glucose metabolism and neuronal injury in rats with unilateral controlled cortical impact (CCI) injury. In Experiment 1 a single treatment was given immediately after CCI. SP significantly improved glucose metabolism in 3 of 13 brain regions while EP improved metabolism in 7 regions compared to saline-treated controls at 24h post-injury. Both SP and EP produced equivalent and significant reductions in dead/dying neurons in cortex and hippocampus at 24h post-CCI. In Experiment 2 SP or EP were administered immediately (time 0) and at 1, 3 and 6h post-CCI. Multiple SP treatments also significantly attenuated TBI-induced reductions in cerebral glucose metabolism (in 4 brain regions) 24h post-CCI, as did multiple injections of EP (in 4 regions). The four pyruvate treatments produced significant neuroprotection in cortex and hippocampus 1day after CCI, similar to that found with a single SP or EP treatment. Thus, early administration of pyruvate compounds enhanced cerebral glucose metabolism and neuronal survival, with 40mg/kg of EP being as effective as 1000mg/kg of SP, and multiple treatments within 6h of injury did not improve upon outcomes seen following a single treatment. PMID:27059390

  19. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  20. Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis.

    PubMed

    Juh, Rahyeong; Pae, Chi-Un; Kim, Tae-Suk; Lee, Chang-Uk; Choe, Boyoung; Suh, Taesuk

    This study measured the cerebral glucose metabolism in patients suffering from corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The aim was to determine if there is a different metabolic pattern using (18)F-labeled 2-deoxyglucose ((18)F-FDG) positron emission tomography (PET). The regional cerebral glucose metabolism was examined in 8 patients diagnosed clinically with CBD (mean age 69.6 +/- 7.8 years; male/female: 5/3), 8 patients with probable PSP (mean age 67.8 +/- 4.5 years; male/female: 4/4) and 22 healthy controls. The regional cerebral glucose metabolism between the three groups was compared using statistical parametric mapping (SPM) with a voxel-by-voxel approach (p < 0.001, 200-voxel level). Compared with the normal controls, asymmetry in the regional glucose metabolism was observed in the parietal, frontal and cingulate in the CBD patients. In the PSP patients, the glucose metabolism was lower in the orbitofrontal, middle frontal, cingulate, thalamus and mid-brain than their age matched normal controls. A comparison of the two patient groups demonstrated relative hypometabolism in the thalamus, the mid-brain in the PSP patients and the parietal lobe in CBD patients. These results suggest that when making a differential diagnosis of CBD and PSP, voxel-based analysis of the (18)F-FDG PET images using a SPM might be a useful tool in clinical examinations. PMID:15936506

  1. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  2. [Regional vasoactive and metabolic therapy of patients with severe cranio-cerebral traumas].

    PubMed

    Lapshin, V N; Shakh, B N; Teplov, V M; Smirnov, D B

    2012-01-01

    In patients with severe cranio-cerebral traumas an investigation was performed of the efficiency of using vasoactive therapy in complex treatment directed to earlier recovery of the microcirculatory blood flow and aerobic metabolism in ischemic parts of the brain. PMID:22880433

  3. [Protein metabolism in the cerebral hemispheres during the emotional-algesic stress].

    PubMed

    Yakushev, V S; Davydov, V V; Bushueva, V V; Skurygin, V P; Krisanova, N V

    1985-01-01

    Emotional-algesic stress causes essential changes in the protein metabolism of cerebral hemispheres. These changes may be of great importance for the functioning of the brain and cause the disturbances of the higher nervous activity when the organism is influenced by the emotional stress factors. PMID:4039861

  4. Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites

    PubMed Central

    Hackett, Mark J.; Aitken, Jade B.; El-Assaad, Fatima; McQuillan, James A.; Carter, Elizabeth A.; Ball, Helen J.; Tobin, Mark J.; Paterson, David; de Jonge, Martin D.; Siegele, Rainer; Cohen, David D.; Vogt, Stefan; Grau, Georges E.; Hunt, Nicholas H.; Lay, Peter A.

    2015-01-01

    Using a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe–free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies. PMID:26824064

  5. Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites.

    PubMed

    Hackett, Mark J; Aitken, Jade B; El-Assaad, Fatima; McQuillan, James A; Carter, Elizabeth A; Ball, Helen J; Tobin, Mark J; Paterson, David; de Jonge, Martin D; Siegele, Rainer; Cohen, David D; Vogt, Stefan; Grau, Georges E; Hunt, Nicholas H; Lay, Peter A

    2015-12-01

    Using a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe-free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies. PMID:26824064

  6. Differentiating cerebral lymphomas and GBMs featuring luminance distribution analysis

    NASA Astrophysics Data System (ADS)

    Yamasaki, Toshihiko; Chen, Tsuhan; Hirai, Toshinori; Murakami, Ryuji

    2013-02-01

    Differentiating lymphomas and glioblastoma multiformes (GBMs) is important for proper treatment planning. A number of works have been proposed but there are still some problems. For example, many works depend on thresholding a single feature value, which is susceptible to noise. Non-typical cases that do not get along with such simple thresholding can be found easily. In other cases, experienced observers are required to extract the feature values or to provide some interactions to the system, which is costly. Even if experts are involved, inter-observer variance becomes another problem. In addition, most of the works use only one or a few slice(s) because 3D tumor segmentation is difficult and time-consuming. In this paper, we propose a tumor classification system that analyzes the luminance distribution of the whole tumor region. The 3D MRIs are segmented within a few tens of seconds by using our fast 3D segmentation algorithm. Then, the luminance histogram of the whole tumor region is generated. The typical cases are classified by the histogram range thresholding and the apparent diffusion coefficients (ADC) thresholding. The non-typical cases are learned and classified by a support vector machine (SVM). Most of the processing elements are semi-automatic except for the ADC value extraction. Therefore, even novice users can use the system easily and get almost the same results as experts. The experiments were conducted using 40 MRI datasets (20 lymphomas and 20 GBMs) with non-typical cases. The classification accuracy of the proposed method was 91.1% without the ADC thresholding and 95.4% with the ADC thresholding. On the other hand, the baseline method, the conventional ADC thresholding, yielded only 67.5% accuracy.

  7. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    PubMed

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  8. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  9. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  10. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  11. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-01

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. PMID:25921538

  12. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    PubMed

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  13. Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants

    PubMed Central

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P. Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO2). Thus, measures of CMRO2 are reflective of neuronal viability and provide critical diagnostic information, making CMRO2 an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO2) as a surrogate for cerebral oxygen consumption. However, SO2 is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO2 are not sensitive enough to detect brain injury hours after the insult 1,2, because oxygen consumption and delivery reach equilibrium after acute transients3. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO2 (CMRO2i) 4,5. With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain development

  14. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    PubMed

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  15. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  16. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  17. Effects of diazepam on cerebral metabolism and mood in normal volunteers.

    PubMed

    de Wit, H; Metz, J; Wagner, N; Cooper, M

    1991-08-01

    The effects of diazepam on regional cerebral metabolism were examined in eight healthy volunteers using positron emission tomography with 18-fluorodeoxyglucose as the tracer. Each subject was tested three times, at 1-week intervals, with placebo, a low oral dose of diazepam (0.07 mg/kg), and a moderate dose of diazepam (0.14 mg/kg). Subjects completed mood questionnaires before and at regular intervals after taking the drug, and performed a vigilance task during the 60-minute period of tracer uptake. The effects of the drug on cerebral metabolism were examined alone and in relation to the subjective and behavioral effects of the drug. Both doses of diazepam decreased global (whole brain) metabolic rate but did not affect specific regions differentially. Subjects experienced sedative like effects during all three scans (placebo as well as drug). Compared to placebo, both doses of diazepam decreased anxiety, and neither dose produced significant impairment of task performance. Neither the subjective nor behavioral drug effects were correlated with the changes in metabolic rate. Thus, diazepam decreased whole brain metabolic rate at doses that produced only modest subjective or behavioral effects. The changes in metabolic rate were not clearly related to other observable drug effects. PMID:1930609

  18. Effects of Treatment for Tobacco Dependence on Resting Cerebral Glucose Metabolism

    PubMed Central

    Costello, Matthew R; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L; Xia, Catherine; London, Edythe D; Brody, Arthur L

    2010-01-01

    While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting 18F-fluorodeoxyglucose–positron emission tomography (FDG–PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism from before to after treatment were compared between treatment groups and correlations were determined between amount of daily cigarette usage and cerebral glucose metabolism. Compared with placebo, the two active treatments (bupropion HCl and PGC) had reductions in glucose metabolism in the posterior cingulate gyrus. Further analysis suggested that PGC had a greater effect than bupropion HCl on glucose metabolism in this region. We also found positive correlations between daily cigarette use and glucose metabolism in the left occipital gyrus and parietal–temporal junction. There were no significant negative correlations between daily cigarette use and glucose metabolism. Our findings suggest that bupropion HCl and PGC reduce neural activity much as the performance of a goal-oriented task does in the default mode network of the brain, including the posterior cingulate gyrus. Thus, this study supports the theory that active treatments for tobacco dependence move the brain into a more goal-oriented state. PMID:19865076

  19. Adiponectin: an adipokine with protective features against metabolic syndrome

    PubMed Central

    Esfahani, Maryam; Movahedian, Ahmad; Baranchi, Mostafa; Goodarzi, Mohammad Taghi

    2015-01-01

    Metabolic syndrome (MetS) as a collection of obesity-associated disorders is associated with inflammation, oxidative stress, pro-thrombotic state, elevated risk of developing cardiovascular disease and type 2 diabetes. Adiponectin is one of the most abundant peptide hormones derived from adipose tissue. This protein plays a major role in glucose and lipid metabolism and prevents development of vascular changes. Anti-oxidative and anti-inflammatory effects are the other features of adiponectin. Hypoadiponectinemia is associated with hypertension and pro-thrombotic state. In this review, we discuss the crucial role of adiponectin in prevention of metabolic syndrome considering its effects on the components of this syndrome. Pharmacological interventions and lifestyle modification may increase plasma adiponectin level or tissue sensitivity which seems to be a promising target for prevention and therapeutic approaches of MetS and related diseases. PMID:26124928

  20. Anxiety and cerebral cortical metabolism in normal persons.

    PubMed

    Giordani, B; Boivin, M J; Berent, S; Betley, A T; Koeppe, R A; Rothley, J M; Modell, J G; Hichwa, R D; Kuhl, D E

    1990-04-01

    The State-Trait Anxiety Inventory (STAI) was administered to 43 normal volunteers immediately before and after a positron emission tomography (PET) procedure with [18F]-2-fluoro-2-deoxy-D-glucose (18F-FDG). High trait-anxious individuals had significantly higher state (situational) anxiety associated with the PET scan procedure than did low trait-anxious persons. State anxiety decreased significantly for all respondents following the PET scan procedure. No significant relationships between global or regional cortical metabolic rates and state anxiety were observed. The direct cortical metabolic effects of heightened anxiety in the scan setting, should they exist, are likely obscured in the normal variance of the 18F-FDG method. PMID:2367610

  1. Metabolic Response of the Cerebral Cortex Following Gentle Sleep Deprivation and Modafinil Administration

    PubMed Central

    Petit, Jean-Marie; Tobler, Irene; Kopp, Caroline; Morgenthaler, Florence; Borbély, Alexander A.; Magistretti, Pierre J.

    2010-01-01

    Study Objectives: The main energy reserve of the brain is glycogen, which is almost exclusively localized in astrocytes. We previously reported that cerebral expression of certain genes related to glycogen metabolism changed following instrumental sleep deprivation in mice. Here, we extended our investigations to another set of genes related to glycogen and glucose metabolism. We also compared the effect of instrumentally and pharmacologically induced prolonged wakefulness, followed (or not) by 3 hours of sleep recovery, on the expression of genes related to brain energy metabolism. Design: Sleep deprivation for 6–7 hours. Setting: Animal sleep research laboratory. Participants: Adults OF1 mice. Interventions: Wakefulness was maintained by “gentle sleep deprivation” method (GSD) or by administration of the wakefulness-promoting drug modafinil (MOD) (200 mg/kg i.p.). Measurements and Results: Levels of mRNAs encoding proteins related to energy metabolism were measured by quantitative real-time PCR in the cerebral cortex. The mRNAs encoding protein targeting to glycogen (PTG) and the glial glucose transporter were significantly increased following both procedures used to prolong wakefulness. Glycogenin mRNA levels were increased only after GSD, while neuronal glucose transporter mRNA only after MOD. These effects were reversed after sleep recovery. A significant enhancement of glycogen synthase activity without any changes in glycogen levels was observed in both conditions. Conclusions: These results indicate the existence of a metabolic adaptation of astrocytes aimed at maintaining brain energy homeostasis during the sleep-wake cycle. Citation: Petit, JM; Tobler I; Kopp C; Morgenthaler F; Borbély AA; Magistretti PJ. Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration. SLEEP 2010;33(7):901–908. PMID:20614850

  2. SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS

    PubMed Central

    Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.

    2007-01-01

    Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656

  3. The brain at work: a cerebral metabolic manifestation of central fatigue?

    PubMed

    Dalsgaard, Mads K; Secher, Niels H

    2007-11-15

    Central fatigue refers to circumstances in which strength appears to be limited by the ability of the central nervous system to recruit motoneurons. Central fatigue manifests when the effort to contract skeletal muscles is intense and, thus, is aggravated when exercise is performed under stress, whereas it becomes attenuated following training. Central fatigue has not been explained, but the cerebral metabolic response to intense exercise, as to other modalities of cerebral activation, is a reduction in its "metabolic ratio" (MR), i.e., the brain's uptake of oxygen relative to that of carbohydrate. At rest the MR is close to 6 but during intense whole-body exercise it decreases to less than 3, with the uptake of lactate becoming as important as that of glucose. It remains debated what underlies this apparent inability of the brain to oxidize the carbohydrate taken up, but it may approach approximately 10 mmol glucose equivalents. In the case of exercise, a concomitant uptake of ammonium for formation of amino acids may account for only approximately 10% of this "extra" carbohydrate taken up. Also, accumulation of intermediates in metabolic pathways and compartmentalization of metabolism between astrocytes and neurons are avenues that have to be explored. Depletion of glycogen stores and subsequent supercompensation during periods of low neuronal activity may not only play a role but also link brain metabolism to its function. PMID:17394258

  4. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  5. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  6. Ozone autohemotherapy induces long-term cerebral metabolic changes in multiple sclerosis patients.

    PubMed

    Molinari, F; Simonetti, V; Franzini, M; Pandolfi, S; Vaiano, F; Valdenassi, L; Liboni, W

    2014-01-01

    Ozone autohemotherapy is an emerging therapeutic technique that is gaining increasing importance in treating neurological disorders. A validated and standard methodology to assess the effect of such therapy on brain metabolism and circulation is however still lacking. We used a near-infrared spectroscopy (NIRS) system to monitor the cerebral metabolism and a transcranial Doppler (TCD) to monitor the blood flow velocity in the middle cerebral arteries. Fifty-four subjects (32 neurological patients and 22 controls) were tested before, during, and after ozone autohemotherapy. We monitored the concentration changes in the level of oxygenated and deoxygenated haemoglobin, and in the level of the Cytochrome-c-oxidase (CYT-c). As a primary endpoint of the work, we showed the changes in the brain metabolism and circulation of the entire population. The concentration of oxygenated haemoglobin increased after the reinjection of the ozoned blood and remained higher than the beginning for another 1.5 hours. The concentration of the deoxygenated haemoglobin decreased during the therapy and the CYT-c concentration markedly increased about 1 hour after the reinjection. No significant changes were observed on the blood flow velocity. As secondary endpoint, we compared the NIRS metabolic pattern of 20 remitting-relapsing multiple sclerosis (MS) patients against 20 controls. We showed that by using only 7 NIRS variables it was possible to characterize the metabolic brain pattern of the two groups of subjects. The MS subjects showed a marked increase of the CYT-c activity and concentration about 40 minutes after the end of the autohemotherapy, possibly revealing a reduction of the chronic oxidative stress level typical of MS sufferers. From a technical point of view, this preliminary study showed that NIRS could be useful to show the effects of ozone autohemotherapy at cerebral level, in a long-term monitoring. The clinical result of this study is the quantitative measurement of the

  7. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    SciTech Connect

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.; Kayser, Ernst-Bernhard; Morgan, Phil G.; Sedensky, Margaret M.; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreased pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.

  8. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    SciTech Connect

    Beck, T.; Krieglstein, J.

    1987-03-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O/sub 2/. Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded (/sup 14/C)2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur.

  9. Genetic variants in lipid metabolism are independently associated with multiple features of the metabolic syndrome

    PubMed Central

    2011-01-01

    Background Our objective was to find single nucleotide polymorphisms (SNPs), within transcriptional pathways of glucose and lipid metabolism, which are related to multiple features of the metabolic syndrome (MetS). Methods 373 SNPs were measured in 3575 subjects of the Doetinchem cohort. Prevalence of MetS features, i.e. hyperglycemia, abdominal obesity, decreased HDL-cholesterol levels and hypertension, were measured twice in 6 years. Associations between the SNPs and the individual MetS features were analyzed by log-linear models. For SNPs related to multiple MetS features (P < 0.01), we investigated whether these associations were independent of each other. Results Two SNPs, CETP Ile405Val and APOE Cys112Arg, were associated with both the prevalence of low HDL-cholesterol level (Ile405Val P = < .0001; Cys112Arg P = 0.001) and with the prevalence of abdominal obesity (Ile405Val P = 0.007; Cys112Arg P = 0.007). For both SNPs, the association with HDL-cholesterol was partly independent of the association with abdominal obesity and vice versa. Conclusion Two SNPs, mainly known for their role in lipid metabolism, were associated with two MetS features i.e., low HDL-cholesterol concentration, as well as, independent of this association, abdominal obesity. These SNPs may help to explain why low HDL-cholesterol levels and abdominal obesity frequently co-occur. PMID:21767357

  10. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.

    PubMed

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2016-08-25

    Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. PMID:27268280

  11. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia

    PubMed Central

    2014-01-01

    Neurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium. The role of neurovascular and gliovascular uncoupling in modulating brain endothelial properties during cerebral ischemia is not clear. Specifically, the roles of metabolic stresses involved in cerebral ischemia, including aglycemia, hypoxia and combined aglycemia and hypoxia (oxygen glucose deprivation and re-oxygenation, OGDR) in modulating neurovascular and gliovascular interactions are not known. The complex intimate interactions in neurovascular and gliovascular units are highly difficult to recapitulate in vitro. However, in the present study, we used a 3D co-culture model of brain endothelium with neurons and astrocytes in vitro reflecting an intimate neurovascular and gliovascular interactions in vivo. While the cellular signaling interactions in neurovascular and gliovascular units in vivo are much more complex than the 3D co-culture models in vitro, we were still able to observe several important phenotypical changes in brain endothelial properties by metabolically stressed neurons and astrocytes including changes in barrier, lymphocyte adhesive properties, endothelial cell adhesion molecule expression and in vitro angiogenic potential. PMID:24438487

  12. Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex

    PubMed Central

    Karbowski, Jan

    2014-01-01

    Mammalian brains span about four orders of magnitude in cortical volume and have to operate in different environments that require diverse behavioral skills. Despite these geometric and behavioral diversities, the examination of cerebral cortex across species reveals that it contains a substantial number of conserved characteristics that are associated with neuroanatomy and metabolism, i.e., with neuronal connectivity and function. Some of these cortical constants or invariants have been known for a long time but not sufficiently appreciated, and others were only recently discovered. The focus of this review is to present the cortical invariants and discuss their role in the efficient information processing. Global conservation in neuroanatomy and metabolism, as well as their correlated regional and developmental variability suggest that these two parallel systems are mutually coupled. It is argued that energetic constraint on cortical organization can be strong if cerebral blood supplied is either below or above a certain level, and it is rather soft otherwise. Moreover, because maximization or minimization of parameters associated with cortical connectivity, function and cost often leads to conflicts in design, it is argued that the architecture of the cerebral cortex is a result of structural and functional compromises. PMID:24574975

  13. Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT

    PubMed Central

    Chong, Shau Poh; Merkle, Conrad W.; Leahy, Conor; Srinivasan, Vivek J.

    2015-01-01

    A method of measuring cortical oxygen metabolism in the mouse brain that uses independent quantitative measurements of three key parameters: cerebral blood flow (CBF), arteriovenous oxygen extraction (OE), and hemoglobin concentration ([HbT]) is presented. Measurements were performed using a single visible light spectral/Fourier domain OCT microscope, with Doppler and spectroscopic capabilities, through a thinned-skull cranial window in the mouse brain. Baseline metabolic measurements in mice are shown to be consistent with literature values. Oxygen consumption, as measured by this method, did not change substantially during minor changes either in the fraction of inspired oxygen (FiO2) or in the fraction of inspired carbon dioxide (FiCO2), in spite of larger variations in oxygen saturations. This set of experiments supports, but does not prove, the validity of the proposed method of measuring brain oxygen metabolism. PMID:26504644

  14. Effect of brovincamine on cerebral circulation and metabolism in internal carotid artery occlusion examined by positron emission tomography.

    PubMed

    Yamaguchi, S; Fukuyama, H; Yonekura, Y; Konishi, J

    1992-01-01

    We evaluated the effect of brovincamine on the circulatory and metabolic state in the brain ischemia with internal carotid artery occlusion accompanying the 'misery perfusion syndrome'. Cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2) and oxygen extraction fraction (OEF) were measured by PET before and after intravenous loading of brovincamine. Brovincamine increased CBF and decreased OEF significantly on the occluded side of the hemisphere. CMRO2 did not show any remarkable changes upon brovincamine administration. It was concluded that brovincamine might be useful for increasing the hemodynamic reserve, but did not affect the metabolic state immediately after its administration. PMID:1490496

  15. 13C-labelled microdialysis studies of cerebral metabolism in TBI patients☆

    PubMed Central

    Carpenter, Keri L.H.; Jalloh, Ibrahim; Gallagher, Clare N.; Grice, Peter; Howe, Duncan J.; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P.; Menon, David K.; Kirkpatrick, Peter J.; Carpenter, T. Adrian; Sutherland, Garnette R.; Pickard, John D.; Hutchinson, Peter J.

    2014-01-01

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them. PMID:24361470

  16. Patients with type 1 diabetes exhibit altered cerebral metabolism during hypoglycemia

    PubMed Central

    van de Ven, Kim C.C.; Tack, Cees J.; Heerschap, Arend; van der Graaf, Marinette; de Galan, Bastiaan E.

    2013-01-01

    Patients with type 1 diabetes mellitus (T1DM) experience, on average, 2 to 3 hypoglycemic episodes per week. This study investigated the effect of hypoglycemia on cerebral glucose metabolism in patients with uncomplicated T1DM. For this purpose, hyperinsulinemic euglycemic and hypoglycemic glucose clamps were performed on separate days, using [1-13C]glucose infusion to increase plasma 13C enrichment. In vivo brain 13C magnetic resonance spectroscopy was used to measure the time course of 13C label incorporation into different metabolites and to calculate the tricarboxylic acid cycle flux (VTCA) by a one-compartment metabolic model. We found that cerebral glucose metabolism, as reflected by the VTCA, was not significantly different comparing euglycemic and hypoglycemic conditions in patients with T1DM. However, the VTCA was inversely related to the HbA1C and was, under hypoglycemic conditions, approximately 45% higher than that in a previously investigated group of healthy subjects. These data suggest that the brains of patients with T1DM are better able to endure moderate hypoglycemia than those of subjects without diabetes. PMID:23298837

  17. Role of the Sphingosine Metabolism Pathway on Neurons against Experimental Cerebral Ischemia in Rats

    PubMed Central

    Hasegawa, Yu; Suzuki, Hidenori; Altay, Orhan; Rolland, William; Zhang, John H

    2013-01-01

    Although there is evidence that sphingosine-1-phosphate receptor-1 (S1P1) activation occurs following experimental brain injury, there is little information about its metabolic pathway in cerebral ischemia. The purpose of this study was to evaluate the role of the sphingosine metabolic pathway including S1P1, sphingosine kinases 1 (SphK1), and 2 (SphK2) in transient middle cerebral artery occlusion (MCAO). Fifty-eight male Sprague-Dawley rats were used to asses temporal profiles of S1P1, SphK1 and 2 on neurons in infarct and periinfarct cortices at pre-infarct state, 6, and 24 hours after MCAO. The animals were then treated with vehicle and 0.25mg/kg FTY720, which is an agonist of S1P receptors, and evaluated regarding neurological function, infarct volume, and S1P1 expression on neurons at 24 hours after MCAO. The expressions of S1P1, SphK1, and SphK2 were significantly decreased after MCAO. Labeling of all markers were reduced in the infarct cortex but remained present in the periinfarct cortex, and some were found to be on neurons. Significant improvements of neurological function and brain injury were observed in the FTY720 group compared with the vehicle and untreated groups, although S1P1 expression on neurons was reduced in the FTY720 group compared with the vehicle group. We demonstrated that S1P1, SphK1, and SphK2 were downregulated in the infarct cortex, whereas they were preserved in the periinfarct cortex where FTY720 reduced neuronal injury possibly via S1P1 activation. Our findings suggest that activation of the sphingosine metabolic pathway may be neuroprotective in cerebral ischemia. PMID:24187597

  18. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain

    PubMed Central

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-01-01

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  19. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.

    PubMed

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-06-30

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  20. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats.

    PubMed

    Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D

    2015-12-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. PMID:26475592

  1. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  2. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    PubMed

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J

    2016-01-01

    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  3. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts.

    PubMed Central

    Hindfelt, B; Plum, F; Duffy, T E

    1977-01-01

    Rats were made chronically hyperammonemic by portal-systemic shunting and, 8 wk later, were subjected to acute ammonia intoxication by the intraperitoneal injection of 5.2 mmol/kg of ammonium acetate. In free-ranging animals, ammonia treatment induced a brief period of precoma (10-15 min) that progressed into deep, anesthetic coma lasting for several hours and was associated with a high mortality. In paralyzed, artificially ventilated animals that were lightly anesthetized with nitrous oxide, acute ammonia intoxication caused major disturbances of cerebral carbohydrate, amino acid, and energy metabolism that correlated in time with the change in functional state. At 10 min after injection (precoma), the concentrations of most glycolytic intermediates were increased, as was the lactate/pyruvate ratio. Citrate declined, despite a twofold rise in pyruvate, suggesting that the conversion of pyruvate to citrate had been impaired. Concentrations of phosphocreatine, and of the putative neurotransmitters, glutamate and aspartate, declined during precoma, but the concentrations of the adenine nucleotides in the cerebral hemispheres, cerebellum, and brain stem remained within normal limits. At 60 min after injection (coma), ATP declined in all regions of brain; the reduction in total high-energy phosphates was most notable in the brain stem. The findings indicate that cerebral dysfunction in chronic, relapsing ammonia intoxication is not due to primary energy failure. Rather, it is suggested that ammonia-induced depletion of glutamic and aspartic acids, and inhibition of the malate-asparate hydrogen shuttle are the dominant neurochemical lesions. PMID:838855

  4. Sequential metabolic changes in rat brain following middle cerebral artery occlusion: A 2-deoxyglucose study

    SciTech Connect

    Shiraishi, K.; Sharp, F.R.; Simon, R.P. )

    1989-12-01

    The distribution and time course of altered cerebral metabolism following permanent focal ischemia was studied in rat using the 2-deoxyglucose (2DG) technique. Increased 2DG uptake preceded decreased 2DG uptake and infarction in the caudate putamen and cortex. Decreased 2DG uptake without infarction was observed for 72 h in thalamus and for 24 h in hippocampus (areas remote from the ischemic zones). This study supports the concept of cell excitation as a pathophysiologic process in permanent focal ischemia. The time course of increased metabolism may demarcate the time window of opportunity for the previously demonstrated attenuation of stroke size with inhibition of cell excitation by pharmacologic blockade of excitatory amino acid neurotransmission.

  5. The effect of LLLT on bone metabolism in children with severe cerebral palsy (a secondary publication)

    PubMed Central

    2014-01-01

    Background and aims: It is said that the average frequency of bone fracture in hospitalized children with severe cerebral palsy (unable to remain seated) is 1% (0.2 to 2.0%). Cerebral palsy patients' bones are known to be vulnerable to fracture, and refractory bone atrophy may be observed. However, the effect of low level laser therapy (LLLT) on bone density or bone metabolism has not been fully investigated. In recent years, tests for bone density or bone metabolism markers have become available. Material and methods: In this study, we evaluated changes in bone density and bone metabolism markers in 4 children with severe cerebral palsy who underwent LLLT for an average of 22 days. Results: B-ALP, a marker of ossification, increased 1 month after the start of irradiation in 3 of the 4 subjects and returned to a level close to the pre-irradiation level 2 months after the start of irradiation. In the remaining subjects in whom B-ALP failed to increase, B-ALP had been low before irradiation. Urinary N-terminal telopeptide (NTx) levels, a marker of bone resorption, decreased in 3 of the 4 subjects after the start of irradiation and remained low even 10 months later. Serum NTx levels tended to decrease in 3 of the 4 subjects. The levels of serum NTx/Crea, Deoxy-Pyridinoline (DPd) and DPd/Crea (DPd/Crea) also decreased in 3 of the 4 subjects. Transient decreases in intact parathyroid hormone (PTH) levels were observed in all 4 cases. Changes were particularly apparent in 2 cases: one with high NTx levels, which showed enhanced bone resorption, and one with high PTH levels, probably due to a vitamin D (VitD) deficiency. Although the metacarpal bone density measured by DIP was found to be lower than in normal children, there were no changes due to LLLT. Conclusion: These results suggest that LLLT has a positive influence on bone metabolism in that it temporarily increases bone formation and suppresses bone resorption while also tending to improve secondary

  6. Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat.

    PubMed

    Duckrow, R B; LaManna, J C; Rosenthal, M; Levasseur, J E; Patterson, J L

    1981-05-01

    To assess the metabolic and vascular effects of head trauma, fluid-percussion pressure waves were transmitted to the brains of anesthetized, paralyzed, and artificially ventilated cats. Changes in the redox state of cytochrome a,a3, and relative local blood volume were measured in situ by dual-wavelength reflection spectrophotometry of the cortical surface viewed through an acrylic cranial window implanted within the closed skull. Initial fluid-percussion impacts of 0.5 to 2.8 atm peak pressure produced consistent transient oxidation of cytochrome a,a3 and increases of cortical blood volume. These changes occurred despite the presence of transient posttraumatic hypotension i some cases. Also, impact-induced alterations of vascular tone occurred, independent of the presence or absence of transient hypertension in the posttraumatic period. These data demonstrate that hypoxia does not play a role in the immediate posttraumatic period in cerebral cortex, and are consistent with the idea that after injury there is increased cortical energy conservation. These data also support the concept that head trauma alters the relationship of metabolism and cerebral circulation in the period immediately after injury. PMID:7229699

  7. Cocaine abstinence following chronic treatment alters cerebral metabolism in dopaminergic reward regions. Bromocriptine enhances recovery

    SciTech Connect

    Clow, D.W.; Hammer, R.P. Jr. )

    1991-01-01

    2-(14C)deoxyglucose autoradiography was used to determine local cerebral glucose utilization (lCGU) in rats following chronic cocaine treatment and subsequent abstinence. lCGU was examined in 43 discrete brain regions in animals which had received daily injections of cocaine for 14 days (10 mg/kg) followed by 3 days of saline or bromocriptine (10 mg/kg) treatment. Cocaine abstinence following chronic treatment significantly reduced lCGU in several regions including mesocorticolimbic structures such as ventral tegmental area, medial prefrontal cortex, and nucleus accumbens (NAc). Within the NAc, however, only the rostral pole showed significant reduction. In contrast, when bromocriptine treatment accompanied abstinence, lCGU was no longer reduced in mesocorticolimbic and most other regions, implying that metabolic recovery was enhanced by bromocriptine treatment during early abstinence following chronic cocaine treatment. These data suggest that cerebral metabolism is decreased during cocaine abstinence following chronic treatment in critical brain regions, and that this alteration can be prevented by treatment with direct-acting dopamine agonists such as bromocriptine.

  8. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  9. Ovine middle cerebral artery characterization and quantification of ultrastructure and other features: changes with development.

    PubMed

    Goyal, Ravi; Henderson, David A; Chu, Nina; Longo, Lawrence D

    2012-02-15

    Regulation of tone, blood pressure, and blood flow in the cerebral vasculature is of vital importance, particularly in the developing infant. We tested the hypothesis that, in addition to accretion of smooth muscle cells (SMCs) in cell layers with vessel thickening, significant changes in smooth muscle structure, as well as phenotype, extracellular matrix, and membrane proteins, in the media of cerebral arteries (CAs) during the course of late fetal development account for associated changes in contractility. Using transmission electron, confocal, wide-field epifluorescence, and light microscopy, we examined the structure and ultrastructure of CAs. Also, we utilized wire myography, Western immunoblotting, and real-time quantitative PCR to examine several other features of these arteries. We compared the main branch ovine middle CAs of 95- and 140-gestational day (GD) fetuses with those of adults (n = 5 for each experimental group). We observed a graded increase in phenylephrine- and KCl-induced contractile responses with development. Structurally, lumen diameter, media thickness, and media cross-sectional area increased dramatically from one age group to the next. With maturation, the cross-sectional profiles of CA SMCs changed from flattened bands in the 95-GD fetus to irregular ovoid-shaped fascicles in the 140-GD fetus and adult. We also observed a change in the type of collagen, specific integrin molecules, and several other parameters of SMC morphology with maturation. Ovine CAs at 95 GD appeared morphologically immature and poorly equipped to respond to major hemodynamic adjustments with maturation. PMID:22116510

  10. To clarify features of photoplethysmography in monitoring balanced anesthesia, compared with Cerebral State Index

    PubMed Central

    Zhang, Lieliang; Xu, Lei; Zhu, Juan; Gao, Yujie; Luo, Zhonghua; Wang, Hongyu; Zhu, Zhongliang; Yu, Yi; Shi, Hongwei; Bao, Hongguang

    2014-01-01

    Background Although photoplethysmography and cerebral state index (CSI) have been used as indices in monitoring vital signs perioperatively, there are only a few reports comparing the performance of photoplethysmography with CSI in monitoring anaesthesia depth. The aim of the present study was to clarify features of photoplethysmography in monitoring balanced general anesthesia compared with CSI. Material/Methods Forty-five patients undergoing elective operation under general anaesthesia were enrolled in this study. Anaesthesia was induced with target-controlled infusion propofol. The photoplethysmogram, CSI, Modified Observer’s Assessment of Alertness/Sedation Scale (MOAAS), and mean arterial pressure (MAP) were continuously monitored and recorded. Finger photoplethysmogram amplitude (PPGA) and pulse beat interval (PBI) were calculated off-line. Results For the period of time from pre-induction to pre-intubation, the coefficient of correlation between MOAAS and CSI was higher than those between MOAAS and PPGA, PBI, and MAP. CSI showed higher prediction probabilities (Pk) to differentiate the levels of MOAAS than did PPGA, PBI, and MAP. PPGA, PBI, and MAP values showed significant differences between before and after intubation, as well as pre- and post-incision (P<0.05), but no significant changes in cerebral state index (P>0.05). Conclusions The present study shows that photoplethysmography-derived parameters appear to be more suitable in monitoring the nociceptive component of balanced general anesthesia, while CSI performs well in detecting the sedation or hypnotic component of balanced general anesthesia. PMID:24662222

  11. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    SciTech Connect

    Small, G.W.; Kuhl, D.E.; Riege, W.H.; Fujikawa, D.G.; Ashford, J.W.; Metter, E.J.; Mazziotta, J.C.

    1989-06-01

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect.

  12. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders.

  13. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . PMID:26371170

  14. Metabolic, cardiorespiratory, and neuromuscular fitness performance in children with cerebral palsy: A comparison with healthy youth.

    PubMed

    García, Claudia Cardona; Alcocer-Gamboa, Alberto; Ruiz, Margarita Pérez; Caballero, Ignacio Martínez; Faigenbaum, Avery D; Esteve-Lanao, Jonathan; Saiz, Beatriz Moral; Lorenzo, Teresa Martín; Lara, Sergio Lerma

    2016-04-01

    The aim of this study was to assess metabolic, cardiorespiratory, and neuromuscular fitness parameters in children with spastic cerebral palsy (CP) and to compare these findings with typically developing children. 40 children with CP (21 males, 19 females; mean age, 11.0±3.3 yr; range, 6.5-17.1 yr; Gross Motor Function Classification System levels 1 or 2) and 40 healthy, age- and sex-matched children completed a test battery that consisted of 8 tests and 28 measures that assessed cardio-respiratory fitness, energy expenditure, anaerobic endurance, muscle strength, agility, stability and flexibility. Children with CP had significantly lower performance (P<0.05) on most cardiorespiratory and metabolic tests than those of healthy children, Differences in neuromuscular measures of muscular strength, speed, agility, anaerobic endurance, and flexibility between groups were most apparent. Grouped differences in cardiorespiratory variables revealed a 25% difference in performance, whereas grouped differences in metabolic and neuromuscular measures were 43% and 60%, respectively. The physical fitness of contemporary children with CP is significantly less than healthy, age-matched children. Significant differences in neuromuscular measures between groups can aid in the identification of specific fitness abilities in need of improvement in this population. PMID:27162775

  15. System-wide assembly of pathways and modules hierarchically reveal metabolic mechanism of cerebral ischemia

    PubMed Central

    Zhu, Yan; Guo, Zhili; Zhang, Liangxiao; Zhang, Yingying; Chen, Yinying; Nan, Jingyi; Zhao, Buchang; Xiao, Hongbin; Wang, Zhong; Wang, Yongyan

    2015-01-01

    The relationship between cerebral ischemia and metabolic disorders is poorly understood, which is partly due to the lack of comparative fusing data for larger complete systems and to the complexity of metabolic cascade reactions. Based on the fusing maps of comprehensive serum metabolome, fatty acid and amino acid profiling, we identified 35 potential metabolic biomarkers for ischemic stroke. Our analyses revealed 8 significantly altered pathways by MetPA (Metabolomics Pathway Analysis, impact score >0.10) and 15 significantly rewired modules in a complex ischemic network using the Markov clustering (MCL) method; all of these pathways became more homologous as the number of overlapping nodes was increased. We then detected 24 extensive pathways based on the total modular nodes from the network analysis, 12 of which were new discovery pathways. We provided a new perspective from the viewpoint of abnormal metabolites for the overall study of ischemic stroke as well as a new method to simplify the network analysis by selecting the more closely connected edges and nodes to build a module map of stroke. PMID:26621314

  16. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental

    SciTech Connect

    Davis, D.W.

    1987-01-01

    Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of (6-/sup 14/C) glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg/sup -1/) and anesthetic (30 mg kg /sup -1/) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations.

  17. Metabolic, cardiorespiratory, and neuromuscular fitness performance in children with cerebral palsy: A comparison with healthy youth

    PubMed Central

    García, Claudia Cardona; Alcocer-Gamboa, Alberto; Ruiz, Margarita Pérez; Caballero, Ignacio Martínez; Faigenbaum, Avery D.; Esteve-Lanao, Jonathan; Saiz, Beatriz Moral; Lorenzo, Teresa Martín; Lara, Sergio Lerma

    2016-01-01

    The aim of this study was to assess metabolic, cardiorespiratory, and neuromuscular fitness parameters in children with spastic cerebral palsy (CP) and to compare these findings with typically developing children. 40 children with CP (21 males, 19 females; mean age, 11.0±3.3 yr; range, 6.5–17.1 yr; Gross Motor Function Classification System levels 1 or 2) and 40 healthy, age- and sex-matched children completed a test battery that consisted of 8 tests and 28 measures that assessed cardio-respiratory fitness, energy expenditure, anaerobic endurance, muscle strength, agility, stability and flexibility. Children with CP had significantly lower performance (P<0.05) on most cardiorespiratory and metabolic tests than those of healthy children, Differences in neuromuscular measures of muscular strength, speed, agility, anaerobic endurance, and flexibility between groups were most apparent. Grouped differences in cardiorespiratory variables revealed a 25% difference in performance, whereas grouped differences in metabolic and neuromuscular measures were 43% and 60%, respectively. The physical fitness of contemporary children with CP is significantly less than healthy, age-matched children. Significant differences in neuromuscular measures between groups can aid in the identification of specific fitness abilities in need of improvement in this population. PMID:27162775

  18. Cerebral Metabolic Differences Associated with Cognitive Impairment in Parkinson’s Disease

    PubMed Central

    Liu, Fengtao; Wu, Ping; Guo, Sisi; Liu, Zhenyang; Wang, Yixuan; Wang, Ying; Ding, Zhengtong; Wu, Jianjun; Zuo, Chuantao; Wang, Jian

    2016-01-01

    Purpose To characterize cerebral glucose metabolism associated with different cognitive states in Parkinson’s disease (PD) using 18F-fluorodeoxyglucose (FDG) and Positron Emission Tomography (PET). Methods Three groups of patients were recruited in this study including PD patients with dementia (PDD; n = 10), with mild cognitive impairment (PD-MCI; n = 20), and with no cognitive impairment (PD-NC; n = 30). The groups were matched for age, sex, education, disease duration, motor disability, levodopa equivalent dose and Geriatric Depression Rating Scale (GDS) score. All subjects underwent a FDG-PET study. Maps of regional metabolism in the three groups were compared using statistical parametric mapping (SPM5). Results PD-MCI patients exhibited limited areas of hypometabolism in the frontal, temporal and parahippocampal gyrus compared with the PD-NC patients (p < 0.01). PDD patients had bilateral areas of hypometabolism in the frontal and posterior parietal-occipital lobes compared with PD-MCI patients (p < 0.01), and exhibited greater metabolic reductions in comparison with PD-NC patients (p < 0.01). Conclusions Compared with PD-NC patients, hypometabolism was much higher in the PDD patients than in PD-MCI patients, mainly in the posterior cortical areas. The result might suggest an association between posterior cortical hypometabolism and more severe cognitive impairment. PD-MCI might be important for early targeted therapeutic intervention and disease modification. PMID:27064684

  19. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats.

    PubMed

    Hansen, M B; Olsen, N V; Hyldegaard, O

    2013-11-01

    Hyperbaric oxygen therapy (HBOT) or intravenous hydroxocobalamin (OHCob) both abolish cyanide (CN)-induced surges in interstitial brain lactate and glucose concentrations. HBOT has been shown to induce a delayed increase in whole blood CN concentrations, whereas OHCob may act as an intravascular CN scavenger. Additionally, HBOT may prevent respiratory distress and restore blood pressure during CN intoxication, an effect not seen with OHCob administration. In this report, we evaluated the combined effects of HBOT and OHCob on interstitial lactate, glucose, and glycerol concentrations as well as lactate-to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 kPa in 90 min). OHCob and HBOT significantly attenuated the acute surges in interstitial cerebral lactate, glucose, and glycerol concentrations compared with the intoxicated rats given no treatment. Furthermore, the combined treatment resulted in consistent low lactate, glucose, and glycerol concentrations, as well as in low lactate-to-pyruvate ratios compared with CN intoxicated controls. In rats receiving OHCob and HBOT, respiration improved and cyanosis disappeared, with subsequent stabilization of mean arterial blood pressure. The present findings indicate that a combined administration of OHCob and HBOT has a beneficial and persistent effect on the cerebral metabolism during CN intoxication. PMID:23970528

  20. Developmental trajectories of cerebral blood flow and oxidative metabolism at baseline and during working memory tasks.

    PubMed

    Jog, Mayank A; Yan, Lirong; Kilroy, Emily; Krasileva, Kate; Jann, Kay; LeClair, Holly; Elashoff, David; Wang, Danny J J

    2016-07-01

    The neurobiological interpretation of developmental BOLD fMRI findings remains difficult due to the confounding issues of potentially varied baseline of brain function and varied strength of neurovascular coupling across age groups. The central theme of the present research is to study the development of brain function and neuronal activity through in vivo assessments of cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) both at baseline and during the performance of a working memory task in a cohort of typically developing children aged 7 to 18years. Using a suite of 4 emerging MRI technologies including MR blood oximetry, phase-contrast MRI, pseudo-continuous arterial spin labeling (pCASL) perfusion MRI and concurrent CBF/BOLD fMRI, we found: 1) At baseline, both global CBF and CMRO2 showed an age related decline while global OEF was stable across the age group; 2) During the working memory task, neither BOLD nor CBF responses showed significant variations with age in the activated fronto-parietal brain regions. Nevertheless, detailed voxel-wise analyses revealed sub-regions within the activated fronto-parietal regions that show significant decline of fractional CMRO2 responses with age. These findings suggest that the brain may become more "energy efficient" with age during development. PMID:27103136

  1. Secondary muscle pathology and metabolic dysregulation in adults with cerebral palsy

    PubMed Central

    Gordon, Paul M.; Hurvitz, Edward A.; Burant, Charles F.

    2012-01-01

    Cerebral palsy (CP) is caused by an insult to or malformation of the developing brain which affects motor control centers and causes alterations in growth, development, and overall health throughout the life span. In addition to the disruption in development caused by the primary neurological insult, CP is associated with exaggerated sedentary behaviors and a hallmark accelerated progression of muscle pathology compared with typically developing children and adults. Factors such as excess adipose tissue deposition and altered partitioning, insulin resistance, and chronic inflammation may increase the severity of muscle pathology throughout adulthood and lead to cardiometabolic disease risk and/or early mortality. We describe a model of exaggerated health risk represented in adults with CP and discuss the mechanisms and secondary consequences associated with chronic sedentary behavior, obesity, aging, and muscle spasticity. Moreover, we highlight novel evidence that implicates aberrant inflammation in CP as a potential mechanism linking both metabolic and cognitive dysregulation in a cyclical pattern. PMID:22912367

  2. 3-D phantom to simulate cerebral blood flow and metabolic images for PET

    SciTech Connect

    Hoffman, E.J.; Cutler, P.D.; Digby, W.M.; Mazziotta, J.C. . Nuclear Medicine Lab.)

    1990-04-01

    A 3-dimensional brain phantom has been developed to simulate the activity distributions found in the human brain in the cerebral blood flow and metabolism studies currently employed in PET. The phantom has a single contiguous chamber and utilizes thin layers of lucite to provide apparent relative concentrations of 5, 1 and 0 for gray matter, white matter and ventricles, respectively, in the brain. The phantom and an ideal image set were created from the same set of data. Thus, the user has a basis for comparing measured images with an ideal image set which enables the user to make quantitative evaluation of the errors in PET studies with a data set similar to that obtained in patient studies.

  3. Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut; Zhou, Chao; Buckley, Erin M.; Kim, Meeri N.; Yu, Guoqiang; Choe, Regine; Gaynor, J. William; Spray, Thomas L.; Durning, Suzanne M.; Mason, Stefanie E.; Montenegro, Lisa M.; Nicolson, Susan C.; Zimmerman, Robert A.; Putt, Mary E.; Wang, Jiongjiong; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Licht, Daniel J.

    2010-05-01

    We employ a hybrid diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) monitor for neonates with congenital heart disease (n=33). The NIRS-DCS device measured changes during hypercapnia of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations; cerebral blood flow (rCBFDCS); and oxygen metabolism (rCMRO2). Concurrent measurements with arterial spin-labeled magnetic resonance imaging (rCBFASL-MRI, n=12) cross-validate rCBFDCS against rCBFASL-MRI, showing good agreement (R=0.7, p=0.01). The study demonstrates use of NIRS-DCS on a critically ill neonatal population, and the results indicate that the optical technology is a promising clinical method for monitoring this population.

  4. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2016-04-01

    In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation. PMID:26844378

  5. Cerebral blood flow and metabolism in children with severe head injuries. Part 2: Cerebrovascular resistance and its determinants.

    PubMed Central

    Sharples, P M; Matthews, D S; Eyre, J A

    1995-01-01

    It has been proposed that in children with severe head injuries the cerebral circulation does not respond appropriately to normal physiological control mechanisms, making children more susceptible than adults to low cerebrovascular resistance, increased cerebral blood flow (cerebral hyperaemia), and raised intracranial pressure. To investigate this issue, 122 serial measurements of cerebrovascular resistance in 17 children with severe head injuries have been performed and related to cerebral perfusion pressure, arterial CO2 (PaCO2), arterial oxygen content (AO2), and the cerebral metabolic rate of oxygen (CMRO2). Cerebrovascular resistance values (mean (SD) 1.54 (0.61) mm Hg.ml-1.100 g.min) were normal or raised in most cases; 71 values (58%) were within the normal range, 39 (32%) above the upper limit, and only 12 (10%) below the lower limit. There was a significant correlation between cerebral perfusion pressure and cerebrovascular resistance (r = 0.32, p = 0.0003), suggesting preservation of pressure autoregulation. This correlation was absent in four of the five children who died or survived with severe handicap. Analysis by multilevel modelling indicated that, as in normal subjects, CMRO2, CPP, AO2, PaCO2, and cerebrovenous pH were important independent determinants of cerebrovascular resistance. The results indicate that normal cerebrovascular reactivity is often preserved in children with severe head injuries but may be impaired in the most severely injured patients. PMID:7876844

  6. MRI-based methods for quantification of the cerebral metabolic rate of oxygen.

    PubMed

    Rodgers, Zachary B; Detre, John A; Wehrli, Felix W

    2016-07-01

    The brain depends almost entirely on oxidative metabolism to meet its significant energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) represents a key measure of brain function. Quantification of CMRO2 has helped elucidate brain functional physiology and holds potential as a clinical tool for evaluating neurological disorders including stroke, brain tumors, Alzheimer's disease, and obstructive sleep apnea. In recent years, a variety of magnetic resonance imaging (MRI)-based CMRO2 quantification methods have emerged. Unlike positron emission tomography - the current "gold standard" for measurement and mapping of CMRO2 - MRI is non-invasive, relatively inexpensive, and ubiquitously available in modern medical centers. All MRI-based CMRO2 methods are based on modeling the effect of paramagnetic deoxyhemoglobin on the magnetic resonance signal. The various methods can be classified in terms of the MRI contrast mechanism used to quantify CMRO2: T2*, T2', T2, or magnetic susceptibility. This review article provides an overview of MRI-based CMRO2 quantification techniques. After a brief historical discussion motivating the need for improved CMRO2 methodology, current state-of-the-art MRI-based methods are critically appraised in terms of their respective tradeoffs between spatial resolution, temporal resolution, and robustness, all of critical importance given the spatially heterogeneous and temporally dynamic nature of brain energy requirements. PMID:27089912

  7. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy

    SciTech Connect

    Lockwood, A.H.; Yap, E.W.; Rhoades, H.M.; Wong, W.H. )

    1991-03-01

    We measured CBF and the CMRglc in normal controls and in patients with severe liver disease and evidence for minimal hepatic encephalopathy using positron emission tomography. Regions were defined in frontal, temporal, parietal, and visual cortex; the thalamus; the caudate; the cerebellum; and the white matter along with a whole-slice value obtained at the level of the thalamus. There was no difference in whole-slice CBF and CMRglc values. Individual regional values were normalized to the whole-slice value and subjected to a two-way repeated measures analysis of variance. When normalized CBF and CMRglc values for regions were compared between groups, significant differences were demonstrated (F = 5.650, p = 0.00014 and F = 4.58, p = 0.0073, respectively). These pattern differences were due to higher CBF and CMRglc in the cerebellum, thalamus, and caudate in patients and lower values in the cortex. Standardized coefficients extracted from a discriminant function analysis permitted correct group assignment for 95.5% of the CBF studies and for 92.9% of the CMRglc studies. The similarity of the altered pattern of cerebral metabolism and flow in our patients to that seen in rats subjected to portacaval shunts or ammonia infusions suggests that this toxin may alter flow and metabolism and that this, in turn, causes the clinical expression of encephalopathy.

  8. The effect of the excitatory amino acid receptor antagonist dizocilipine maleate (MK-801) on hemispheric cerebral blood flow and metabolism in dogs: modification by prior complete cerebral ischemia.

    PubMed

    Perkins, W J; Lanier, W L; Karlsson, B R; Milde, J H; Michenfelder, J D

    1989-09-25

    The effect of the N-methyl-D-aspartate (NMDA) receptor antagonist dizociplipine maleate (MK-801) on cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), intracranial pressure and systemic variables was examined in 6 normal dogs (Group I). In 6 additional dogs (Group II), the effects of a prior 11 min episode of complete cerebral ischemia on the response to dizocilipine was studied. CBF was measured with a sagittal sinus outflow technique and CMRO2 was calculated as the product of CBF and the arterial to sagittal sinus O2 content difference. Dizocilipine was administered as a 150 micrograms/kg i.v. bolus followed by a 75 micrograms.kg-1.h-1 infusion for 90 min. Plasma dizocilipine levels were greater than 25 ng/ml for the duration of the infusion. The CSF levels were approximately half the plasma levels. Five minutes after initiation of dizocilipine treatment, Group I dogs experienced a 63% increase in heart rate (P less than 0.01) and an 8% decrease in the mean arterial blood pressure (P less than 0.05). Over the same time interval. CBF increased by 85% (P less than 0.01) and intracranial pressure nearly doubled (P less than 0.05). In addition, dizocilipine treatment in all Group I animals resulted in EEG quasiperiodic bursts of delta-waves and polyspikes on a background of beta-activity. With the exception of the intracranial pressure, the above changes in systemic and cerebral variables persisted for the duration of the drug infusion. Intracranial pressure was no longer significantly elevated after 80 min of drug infusion. Hemispheric CMRO2 was unchanged by dizocilipine in Group I dogs. There was a decrease in the cortical glucose level at the end of the study, but no significant change in phosphocreatine, ATP, lactate, or energy charge when compared with 6 laboratory normals. An identical dose of dizocilipine administered after an 11 min episode of complete cerebral ischemia resulted in no significant changes in either cerebral or systemic

  9. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment

    PubMed Central

    Brooks, George A.; Martin, Neil A.

    2015-01-01

    Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-2H2]glucose and [3-13C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and 13CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the 13C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia. PMID:25709562

  10. Impacts of small arteriovenous malformations (AVM) on regional cerebral blood flow and glucose metabolism

    SciTech Connect

    Liu, R.S.; Yeh, S.H.; Chu, L.S.

    1994-05-01

    This study assessed the effects of small AVMs (<3 cm) on the regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT and on the glucose metabolism (rCGlcM) by [F-18]-FDG PET. Seven AVM patients (pts) were studied. All AVMs were confirmed by cerebral angiography and CT/MR scans. Tc-99m HMPAO SPECT and [F-18]-PDG PET images were interpreted visually to detect the changes of rCBF and rCGlcM. All pts except one brain stem AVM had defects in the regions of nidi on HMPAO and FDG images. FDG PET disclosed low rCGlcM in surrounding areas of AVMs in 6 pts, while HMPAO SPECT detected only 4 cases. One AVM had increased rCBF surrounding the nidus despite of decreased rCGlcM in the same region. Five pts had abnormal rCGlcM over ipsilateral remote cortex but only one had corresponding abnormal rCBF. Contralateral cortical hypofunction was noted in 3 pts by FDG PET but none by HMPAO SPECT. Cross cerebellar diaschisis was found in 2 AVMs by FDG PET and only one by HMPAO SPECT. All regions with abnormal HMPAO uptake did not look as discernibly as seen on the FDG PET scan. CT/MR scans detected the nidi of AVMs of all pts and old hemorrhage in one pt. In conclusion, either HMPAO SPECT or FDG PET is sensitive to detect the functional abnormalities in the region of nidus of small AVM and the surrounding brain tissue. FDG PET is better than HMPAO SPECT to detect functional changes in the remote cortex and diaschisis.

  11. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior. PMID:27363927

  12. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  13. Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging

    PubMed Central

    Wang, Huiting; Liu, Renyuan; Zhang, Xin; Li, Ming; Yang, Yongbo; Yan, Jing; Niu, Fengnan; Tian, Chuanshuai; Wang, Kun; Yu, Haiping; Chen, Weibo; Wan, Suiren; Sun, Yu; Zhang, Bing

    2016-01-01

    Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance. PMID:27077923

  14. Descriptive data on cardiovascular and metabolic risk factors in ambulatory and non-ambulatory adults with cerebral palsy

    PubMed Central

    McPhee, P.G.; Gorter, J.W.; Cotie, L.M.; Timmons, B.W.; Bentley, T.; MacDonald, M.J.

    2015-01-01

    Forty-two participants with cerebral palsy were recruited for a study examining traditional and novel indicators of cardiovascular risk (McPhee et al., 2015 [1]). Data pertaining to the prevalence of obesity, smoking, hypertension, and metabolic risk are provided. These data are presented along with the scoring methods used in evaluation of the study participants. Percentages are included for comparative purposes with the existing literature. PMID:26759816

  15. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  16. Cerebral Blood Flow and Glucose Metabolism Measured With Positron Emission Tomography Are Decreased in Human Type 1 Diabetes

    PubMed Central

    van Golen, Larissa W.; Huisman, Marc C.; Ijzerman, Richard G.; Hoetjes, Nikie J.; Schwarte, Lothar A.; Lammertsma, Adriaan A.; Diamant, Michaela

    2013-01-01

    Subclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [15O]H2O and [18F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast. Regions of interest were automatically delineated on coregistered magnetic resonance images and full kinetic analysis was performed. Plasma glucose and insulin levels were higher in patients versus controls. Total gray matter CBF was 9%, whereas CMRglu was 21% lower in type 1 diabetic subjects versus control subjects. We conclude that at real-life fasting glucose and insulin levels, type 1 diabetes is associated with decreased resting cerebral glucose metabolism, which is only partially explained by the decreased CBF. These findings suggest that mechanisms other than generalized microangiopathy account for the altered CMRglu observed in well-controlled type 1 diabetes. PMID:23530004

  17. Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging.

    PubMed

    Bastin, Christine; Yakushev, Igor; Bahri, Mohamed Ali; Fellgiebel, Andreas; Eustache, Francis; Landeau, Brigitte; Scheurich, Armin; Feyers, Dorothée; Collette, Fabienne; Chételat, Gael; Salmon, Eric

    2012-11-01

    There is a great deal of heterogeneity in the impact of aging on cognition and cerebral functioning. One potential factor contributing to individual differences among the elderly is the cognitive reserve, which designates the partial protection from the deleterious effects of aging that lifetime experience provides. Neuroimaging studies examining task-related activation in elderly people suggested that cognitive reserve takes the form of more efficient use of brain networks and/or greater ability to recruit alternative networks to compensate for age-related cerebral changes. In this exploratory multi-center study, we examined the relationships between cognitive reserve, as measured by education and verbal intelligence, and cerebral metabolism at rest (FDG-PET) in a sample of 74 healthy older participants. Higher degree of education and verbal intelligence was associated with less metabolic activity in the right posterior temporoparietal cortex and the left anterior intraparietal sulcus. Functional connectivity analyses of resting-state fMRI images in a subset of 41 participants indicated that these regions belong to the default mode network and the dorsal attention network respectively. Lower metabolism in the temporoparietal cortex was also associated with better memory abilities. The findings provide evidence for an inverse relationship between cognitive reserve and resting-state activity in key regions of two functional networks respectively involved in internal mentation and goal-directed attention. PMID:22796505

  18. Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta).

    PubMed

    Parr, Lisa A; Boudreau, Matthew; Hecht, Erin; Winslow, James T; Nemeroff, Charles B; Sánchez, Mar M

    2012-01-01

    Early life stress (ELS) is a risk factor for anxiety, mood disorders and alterations in stress responses. Less is known about the long-term neurobiological impact of ELS. We used [(18)F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) to assess neural responses to a moderate stress test in adult monkeys that experienced ELS as infants. Both groups of monkeys showed hypothalamic-pituitary-adrenal (HPA) axis stress-induced activations and cardiac arousal in response to the stressor. A whole brain analysis detected significantly greater regional cerebral glucose metabolism (rCGM) in superior temporal sulcus, putamen, thalamus, and inferotemporal cortex of ELS animals compared to controls. Region of interest (ROI) analyses performed in areas identified as vulnerable to ELS showed greater activity in the orbitofrontal cortex of ELS compared to control monkeys, but greater hippocampal activity in the control compared to ELS monkeys. Together, these results suggest hyperactivity in emotional and sensory processing regions of adult monkeys with ELS, and greater activity in stress-regulatory areas in the controls. Despite these neural responses, no group differences were detected in neuroendocrine, autonomic or behavioral responses, except for a trend towards increased stillness in the ELS monkeys. Together, these data suggest hypervigilance in the ELS monkeys in the absence of immediate danger. PMID:22682736

  19. Cerebral metabolic rate of glucose computed by Bayes regression of deoxyglucose PET scans

    SciTech Connect

    Wilson, P.D.; Links, J.M.; Huang, S.C.; Douglass, K.H.; Wong, D.F.; Frost, J.J.; Wagner, H.N. Jr.

    1984-01-01

    Local cerebral metabolic rate of glucose (LCMRG) is currently measured using a PET scan of deoxyglucose at 40-60 min postinjection and computed using assumed mean normal rate constants. While the method is accurate in normal tissue, another study showed that for ischemic regions the use of mean normal rate constants underestimated LCMRG by 50%. The authors used computer simulation to study the use of Bayes Regression, a useful method for combining prior information with patient data to estimate the patient's LCMRG. Prior information (means and variances of rate constants in the population) is combined with the patient's data with weighting factors determined by the variances of the rate constants in the population and the noise in the data. The authors simulated noisy data from both a normal and an ischemic population. Each simulation was based on different randomly-selected rate constants from the parent population. They compared the current method with Bayes Regression in each of 100 simulated experiments in each of 3 cases: (1) normal patient, normal prior; (2) ischemic patient, ischemic prior; (3) ischemic patient, normal prior. In patients with ischemic, Bayes Regression appears to provide truer estimates of LCMRG.

  20. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    SciTech Connect

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-05-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression.

  1. Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic-metabolic from acquired causes.

    PubMed

    Hoon, A H; Reinhardt, E M; Kelley, R I; Breiter, S N; Morton, D H; Naidu, S B; Johnston, M V

    1997-08-01

    Experienced clinicians recognize that some children who appear to have static cerebral palsy (CP) actually have underlying genetic-metabolic disorders. We report a series of patients with motor disorders seen in children with extrapyramidal CP in whom brain magnetic resonance imaging abnormalities provided important diagnostic clues in distinguishing genetic-metabolic disorders from other causes. One cause of static extrapyramidal CP, hypoxic-ischemic encephalopathy at the end of a term gestation, produces a characteristic pattern of hyperintense signal and atrophy in the putamen and thalamus. Other signal abnormalities and atrophy in the putamen, globus pallidus, or caudate can point to genetic-metabolic diseases, including disorders of mitochondrial and organic acid metabolism. Progress in understanding and treating genetic diseases of the developing brain makes it essential to diagnose disorders that masquerade as static CP. Brain magnetic resonance imaging is a useful diagnostic tool in the initial evaluation of children who appear to have CP. PMID:9290610

  2. Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study

    PubMed Central

    Yang, Runze; Brugniaux, Julien; Dhaliwal, Harinder; Beaudin, Andrew E; Eliasziw, Misha; Poulin, Marc J; Dunn, Jeff F

    2015-01-01

    Caffeine is one of the most widely consumed psycho-stimulants in the world, yet little is known about its effects on brain oxygenation and metabolism. Using a double-blind, placebo-controlled, randomized cross-over study design, we combined transcranial Doppler ultrasound (TCD) and near-infrared spectroscopy (NIRS) to study caffeine's effect on middle cerebral artery peak blood flow velocity (Vp), brain tissue oxygenation (StO2), total hemoglobin (tHb), and cerebral oxygen metabolism (CMRO2) in five subjects. Hyperventilation-induced hypocapnia served as a control to verify the sensitivity of our measurements. During hypocapnia (∼16 mmHg below resting values), Vp decreased by 40.0 ± 2.4% (95% CI, P < 0.001), while StO2 and tHb decreased by 2.9 ± 0.3% and 2.6 ± 0.4%, respectively (P = 0.003 and P = 0.002, respectively). CMRO2, calculated using the Fick equation, was reduced by 29.3 ± 9% compared to the isocapnic-euoxia baseline (P < 0.001). In the pharmacological experiments, there was a significant decrease in Vp, StO2, and tHb after ingestion of 200 mg of caffeine compared with placebo. There was no significant difference in CMRO2 between caffeine and placebo. Both showed a CMRO2 decline compared to baseline showing the importance of a placebo control. In conclusion, this study showed that profound hypocapnia impairs cerebral oxidative metabolism. We provide new insight into the effects of caffeine on cerebral hemodynamics. Moreover, this study showed that multimodal NIRS/TCD is an excellent tool for studying brain hemodynamic responses to pharmacological interventions and physiological challenges. PMID:25907789

  3. Adaptation of cerebral oxygen metabolism and blood flow and modulation of neurovascular coupling with prolonged stimulation in human visual cortex

    PubMed Central

    Moradi, Farshad; Buxton, Richard B

    2013-01-01

    Prolonged visual stimulation results in neurophysiologic and hemodynamic adaptation. However, the hemodynamic adaptation appears to be small compared to neural adaptation. It is not clear how the cerebral metabolic rate of oxygen (CMRO2) is affected by adaptation. We measured cerebral blood flow (CBF) and CMRO2 change in responses to peripheral stimulation either continuously, or intermittently (on/off cycles). A linear system’s response to the continuous input should be equal to the sum of the original response to the intermittent input and a version of that response shifted by half a cycle. The CMRO2 response showed a large non-linearity consistent with adaptation, the CBF response adapted to a lesser degree, and the blood oxygenation level dependent (BOLD) response was nearly linear. The metabolic response was coupled with a larger flow in the continuous condition than in the intermittent condition. Our results suggest that contrast adaptation improves energy economy of visual processing. However BOLD modulations may not accurately represent the underlying metabolic nonlinearity due to modulation of the coupling of blood flow and oxygen metabolism changes. PMID:23732885

  4. Comparison of cerebral regional glucose metabolic relationships in resting and auditory stimulated states

    SciTech Connect

    Metter, E.J.; Riege, W.H.; Mazziotta, J.C.; Phelps, M.E.; Kuhl, D.E.

    1984-01-01

    FDG positron computed tomography has demonstrated strong correlations between high frontal and occipital glucose metabolism in normal resting subjects, which varied by age and were lost in Huntington's and Parkinson's Diseases. The studies raised the question whether the findings may be explained by anatomic and not metabolic factors. An approach to the issue was to examine subjects scanned under two states, where functional and not anatomic features would account for relationship differences. Seventeen subjects were identified who had scans under resting and auditory stimulated states. Measurements were taken from 12 brain regions and were expressed as percentage of mean metabolism. A principal components analysis of the resting state demonstrated 3 components (73% of variance), while the stimulated states showed 4 (79% of variance). The first resting factor related frontal, right posterior inferior frontal and superior temporal regions, while in the stimulated, the frontal associated with the occipital. The second resting factor related both angular gyri and posterior temporal, while the third related left posterior inferior frontal, superior temporal and right occipital. With stimulation both factors were replaced by three others. The change in the first factor and its presence in other subject groups points to a functional relationship between the regions. Comparison to previous studies suggest the frontal-occipital association may involve aspects of attention. The variability in other factors was similar to loose correlations noted in normal studies and may reflect the differential response to several tasks.

  5. Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis.

    PubMed

    Ott, Peter; Clemmesen, Otto; Larsen, Fin Stolze

    2005-07-01

    Several observations suggest that patients with fulminant hepatic failure may suffer from disturbances in cerebral metabolism that can be related to elevated levels of arterial ammonia. One effect of ammonia is the inhibition of the rate limiting TCA cycle enzyme alpha-ketoglutarate dehydrogenase (alphaKGDH) and possibly also pyruvate dehydrogenase, but this has been regarded to be of no quantitative importance. However, recent studies justify a revision of this point of view. Based on published data, the following sequence of events is proposed. Inhibition of alphaKGDH both enhances the detoxification of ammonia by formation of glutamine from alpha-ketoglutarate and reduces the rate of NADH and oxidative ATP production in astrocytic mitochondria. In the astrocytic cytosol this will lead to formation of lactate even in the presence of sufficient oxygen supply. Since the aspartate-malate shuttle is compromised, there is a risk of depletion of mitochondrial NADH and ATP unless compensatory mechanisms are recruited. One likely compensatory mechanism is the use of amino acids for energy production. Branched chain amino acids, like isoleucine and valine can supply carbon skeletons that bypass the alphaKGDH inhibition and maintain TCA cycle activity. Large-scale consumption of certain amino acids can only be maintained by cerebral proteolysis, as has been observed in these patients. This hypothesis provides a link between hyperammonemia, ammonia detoxification by glutamine production, cerebral lactate production, and cerebral catabolic proteolysis in patients with FHF. PMID:15921824

  6. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Yi; Hagan, Katherine; Fenoglio, Angela; Grant, P. Ellen; Franceschini, Maria Angela

    2016-05-01

    Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome.

  7. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage.

    PubMed

    Lin, Pei-Yi; Hagan, Katherine; Fenoglio, Angela; Grant, P Ellen; Franceschini, Maria Angela

    2016-01-01

    Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant's bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome. PMID:27181339

  8. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage

    PubMed Central

    Lin, Pei-Yi; Hagan, Katherine; Fenoglio, Angela; Grant, P. Ellen; Franceschini, Maria Angela

    2016-01-01

    Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome. PMID:27181339

  9. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  10. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson’s Disease

    PubMed Central

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-01-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson’s disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson’s correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients’ H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  11. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?

    NASA Astrophysics Data System (ADS)

    Boas, D. A.; Strangman, G.; Culver, J. P.; Hoge, R. D.; Jasdzewski, G.; Poldrack, R. A.; Rosen, B. R.; Mandeville, J. B.

    2003-08-01

    We have measured the changes in oxy-haemoglobin and deoxy-haemoglobin in the adult human brain during a brief finger tapping exercise using near-infrared spectroscopy (NIRS). The cerebral metabolic rate of oxygen (CMRO2) can be estimated from these NIRS data provided certain model assumptions. The change in CMRO2 is related to changes in the total haemoglobin concentration, deoxy-haemoglobin concentration and blood flow. As NIRS does not provide a measure of dynamic changes in blood flow during brain activation, we relied on a Windkessel model that relates dynamic blood volume and flow changes, which has been used previously for estimating CMRO2 from functional magnetic resonance imaging (fMRI) data. Because of the partial volume effect we are unable to quantify the absolute changes in the local brain haemoglobin concentrations with NIRS and thus are unable to obtain an estimate of the absolute CMRO2 change. An absolute estimate is also confounded by uncertainty in the flow-volume relationship. However, the ratio of the flow change to the CMRO2 change is relatively insensitive to these uncertainties. For the finger tapping task, we estimate a most probable flow-consumption ratio ranging from 1.5 to 3 in agreement with previous findings presented in the literature, although we cannot exclude the possibility that there is no CMRO2 change. The large range in the ratio arises from the large number of model parameters that must be estimated from the data. A more precise estimate of the flow-consumption ratio will require better estimates of the model parameters or flow information, as can be provided by combining NIRS with fMRI.

  12. Alteration of the regional cerebral glucose metabolism in healthy subjects by glucose loading.

    PubMed

    Ishibashi, Kenji; Wagatsuma, Kei; Ishiwata, Kiichi; Ishii, Kenji

    2016-08-01

    High plasma glucose (PG) levels can reduce fluorine-18-labeled fluorodeoxyglucose ((18) F-FDG) uptake, especially in the Alzheimer's disease (AD)-related regions. This fact is supported by studies showing that the resting-state activity in diabetes can be altered in the default mode network (DMN)-related regions, which considerably overlap with the AD-related regions. In order to expand the current knowledge, we aimed to investigate the relationship between increasing PG levels and the regional cerebral metabolic rates for glucose (CMRglc ) as a direct index of brain activity. We performed dynamic (18) F-FDG positron emission tomography with arterial blood sampling once each in the fasting and glucose-loading conditions on 12 young, healthy volunteers without cognitive impairment or insulin resistance. The absolute CMRglc values were calculated for the volume-of-interest (VOI) analysis, and normalized CMRglc maps were generated for the voxelwise analysis. The normalized measurement is known to have smaller intersubject variability than the absolute measurement, and may, thus, lead to greater statistical power. In VOI analysis, no regional difference in the CMRglc was found between the two conditions. In exploratory voxelwise analysis, however, significant clusters were identified in the precuneus, posterior cingulate, lateral parietotemporal, and medial prefrontal regions where the CMRglc decreased upon glucose loading (P < 0.05, corrected). These regions include the representative components of both the DMN and AD pathology. Taken together with the previous knowledge on the relationships between the DMN, AD, and diabetes, it may be inferred that glucose loading induces hypometabolism in the AD-related and DMN-related regions. Hum Brain Mapp 37:2823-2832, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061859

  13. Effect of ethanol on cerebral blood flow (CBF) and metabolism (CMRO2) in conscious sheep

    SciTech Connect

    Krasney, J.A.; Zubkov, B.; Iwamoto, J. )

    1991-03-11

    A moderate dose of ethanol severely depresses CBF and CMRO2 in the awake sheep fetus. However, the effects of ethanol on CBF and CMRO2 in the adult are unclear. The same dose of ethanol was infused for 2 hr in 5 ewes instrumented with aortic, left ventricular and sagittal sinus catheters. Ethanol caused ataxia accompanied by early modest and variable increases of total and regional CBF and CMRO2, followed by later modest and variable decreases of total and regional CBF (cerebellum) and CMRO2. Ethanol caused a cerebral transcapillary fluid shift as indicated by significant increases of the arterial-cerebral venous differences for hematocrit and hemoglobin. Brain wet-dry ratios increased by 10% above control levels. However, cerebral venous pressures were unchanged. The authors conclude that the adult cerebral response to ethanol differs quantitatively from that of the fetus. The functional significance of the cerebral fluid shift is unclear.

  14. Specific features of glycogen metabolism in the liver.

    PubMed Central

    Bollen, M; Keppens, S; Stalmans, W

    1998-01-01

    Although the general pathways of glycogen synthesis and glycogenolysis are identical in all tissues, the enzymes involved are uniquely adapted to the specific role of glycogen in different cell types. In liver, where glycogen is stored as a reserve of glucose for extrahepatic tissues, the glycogen-metabolizing enzymes have properties that enable the liver to act as a sensor of blood glucose and to store or mobilize glycogen according to the peripheral needs. The prime effector of hepatic glycogen deposition is glucose, which blocks glycogenolysis and promotes glycogen synthesis in various ways. Other glycogenic stimuli for the liver are insulin, glucocorticoids, parasympathetic (vagus) nerve impulses and gluconeogenic precursors such as fructose and amino acids. The phosphorolysis of glycogen is mainly mediated by glucagon and by the orthosympathetic neurotransmitters noradrenaline and ATP. Many glycogenolytic stimuli, e.g. adenosine, nucleotides and NO, also act indirectly, via secretion of eicosanoids from non-parenchymal cells. Effectors often initiate glycogenolysis cooperatively through different mechanisms. PMID:9806880

  15. [Deep hypotension induced by sodium nitroprusside in neurosurgery. II.--Cerebral hemodynamic effects and metabolic rate of oxygen (author's transl)].

    PubMed

    Pinaud, M; Souron, R; Gazeau, M F; Lajat, Y; Chatal, J F; Nicolas, F

    1979-01-01

    The cerebral hemodynamic effects of sodium nitroprusside (S. N.) have been the object of animal studies mainly. During the only human study performed, the drop in mean arterial pressure (MAP) is limited to 67 mm Hg. The study of the evolution of cerebral blood flow (CBF) in cases of more severe hypotension (MAP less than 45 mm Hg) seems of some interest. The study was composed of the measurement of the CBF using Xenon 133 and the calculation of cerebral vascular resistances (CVR) as well as cerebral metabolic rate of oxygen (CMRO2). Eleven patients with an average age of 37 years underwent surgery for cerebral aneurism 10 to 15 days after the inaugural hemorrhagic accident, under narconeuroleptanalgesia and stable ventilatory conditions. They are divided into 2 groups: Group I, 9 patients with normal levels of consciousness; Group II, 2 patients either agitated or obnubilated. The study is composed of 3 successive measures: (1) (T0) during stable anesthesia just prior to hypotension; (2) (T1) after 5 minutes of hypotension (MAP = 40 +/- 7 MM Hg); (3) (T2) 20 minutes after having stopped S. N. infusion. For the 9 patients in Group I, CBF remains unchanged at T1, the CVR decreases (p less than 0.001) and CMRO2 decreases (p less than 0.05). At T2 all of these parameters return to T0 values. The postoperative clinical evolution is favorable and uncomplicated. For the 2 patients in Group II the CBF, initially higher, falls from 20 to 30 p. cent at T1 with a drastic reduction in CMRO2. Despite the improvement of these parameters at T2, a prolonged postoperative coma is observed. This study suggests that CBF and CMRO2 are important parameters to monitor during controlled severe hypotension. Decrease in MAP must be less than 50 p. cent of control value and time-limited. PMID:484888

  16. Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms

    PubMed Central

    Causton, Helen C.; Feeney, Kevin A.; Ziegler, Christine A.; O’Neill, John S.

    2015-01-01

    Summary Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment [1, 2]. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms [1, 3, 4]. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla [3, 5]. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate [6]. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins [7–9]. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast [10]. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. PMID:25866393

  17. Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms.

    PubMed

    Causton, Helen C; Feeney, Kevin A; Ziegler, Christine A; O'Neill, John S

    2015-04-20

    Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. PMID:25866393

  18. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex.

    PubMed

    Leontiev, Oleg; Buracas, Giedrius T; Liang, Christine; Ances, Beau M; Perthen, Joanna E; Shmuel, Amir; Buxton, Richard B

    2013-03-01

    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration. PMID:23238435

  19. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism during the late phase of cerebral vasospasm

    SciTech Connect

    Delgado, T.J.; Arbab, M.A.; Diemer, N.H.; Svendgaard, N.A.

    1986-10-01

    A double-isotope technique for the simultaneous measurement of CBF and CMRglu was applied to a subarachnoid hemorrhage (SAH) model in the rat. Cisternal injection of 0.07 ml blood caused a rather uniform 20% reduction in CBF together with an increase in glucose utilization of 30% during the late phase of vasospasm. In one-third of the SAH animals, there were focal areas where the flow was lowered to 30% of the control values and the glucose uptake increased to approximately 250% of control. We suggest that blood in the subarachnoid space via a neural mechanism induces the global flow and metabolic changes, and that the foci are caused by vasospasm superimposed on the global flow and metabolic changes. In the double-isotope autoradiographic technique, (/sup 14/C)iodoantipyrine and (/sup 3/H)deoxyglucose were used for CBF and CMRglu measurements, respectively, in the same animal. In half of the sections, the (/sup 14/C)iodoantipyrine was extracted using 2,2-dimethoxypropane before the section was placed on a /sup 3/H- and /sup 14/C-sensitive film. The other sections were placed on x-ray film with an emulsion insensitive to /sup 3/H. The validity of the double-isotope method was tested by comparing the data with those obtained in animals receiving a single isotope. The CBF and metabolic values obtained in the two groups were similar.

  20. Anatomical features of the vertebral artery for transbrachial direct cannulation of a guiding catheter to perform coil embolization of cerebral aneurysms in the posterior cerebral circulation

    PubMed Central

    Iwata, Tomonori; Miyazaki, Yuichi; Tanno, Yuhei; Kasakura, Shigen; Aoyagi, Yoshinori

    2015-01-01

    Background Transbrachial approach is an alternative technique for coil embolization of posterior circulation aneurysms. The purpose of our study was to investigate the anatomical features of the vertebral artery (VA) for transbrachial direct VA cannulation of a guiding catheter (GC) to perform coil embolization of posterior circulation aneurysms. Methods Included in retrospective analysis were patients who underwent transbrachial coil embolization of cerebral aneurysms in the posterior cerebral circulation by direct VA cannulation of a GC from 2007 to 2013. Investigated were patient characteristics, preoperative sizes of aneurysms, aneurysms location, the angle formed by the target VA and the subclavian artery (AVS), and the VA diameter at the level of the fourth cervical vertebral body (VAD) in the side of the transbrachial access route. Results Thirty-one patients with 32 aneurysms met our criteria. The locations of aneurysms were the VA (n = 16), basilar artery (BA) tip (n = 10), BA trunk (n = 3), BA superior cerebellar artery (n = 1), BA anterior inferior cerebellar artery (n = 1), and VA posterior inferior cerebellar artery (n = 1). The right brachial artery was punctured in 27 cases with 28 aneurysms as transbrachial direct cannulation of a GC, and left was in 4 cases with 4 aneurysms. The average AVS, ranging from 45° to 95°, was 77°, and the average VAD, ranging from 3.18 to 4.45 mm, was 3.97 mm. Conclusion For transbrachial direct cannulation of a GC, it seems required that the AVS is about 45° or more and the VAD is about 3.18 mm or more. PMID:25964434

  1. Computer-aided classification of Alzheimer's disease based on support vector machine with combination of cerebral image features in MRI

    NASA Astrophysics Data System (ADS)

    Jongkreangkrai, C.; Vichianin, Y.; Tocharoenchai, C.; Arimura, H.; Alzheimer's Disease Neuroimaging Initiative

    2016-03-01

    Several studies have differentiated Alzheimer's disease (AD) using cerebral image features derived from MR brain images. In this study, we were interested in combining hippocampus and amygdala volumes and entorhinal cortex thickness to improve the performance of AD differentiation. Thus, our objective was to investigate the useful features obtained from MRI for classification of AD patients using support vector machine (SVM). T1-weighted MR brain images of 100 AD patients and 100 normal subjects were processed using FreeSurfer software to measure hippocampus and amygdala volumes and entorhinal cortex thicknesses in both brain hemispheres. Relative volumes of hippocampus and amygdala were calculated to correct variation in individual head size. SVM was employed with five combinations of features (H: hippocampus relative volumes, A: amygdala relative volumes, E: entorhinal cortex thicknesses, HA: hippocampus and amygdala relative volumes and ALL: all features). Receiver operating characteristic (ROC) analysis was used to evaluate the method. AUC values of five combinations were 0.8575 (H), 0.8374 (A), 0.8422 (E), 0.8631 (HA) and 0.8906 (ALL). Although “ALL” provided the highest AUC, there were no statistically significant differences among them except for “A” feature. Our results showed that all suggested features may be feasible for computer-aided classification of AD patients.

  2. "Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients.

    PubMed

    Phillips, Christophe L; Bruno, Marie-Aurelie; Maquet, Pierre; Boly, Mélanie; Noirhomme, Quentin; Schnakers, Caroline; Vanhaudenhuyse, Audrey; Bonjean, Maxime; Hustinx, Roland; Moonen, Gustave; Luxen, André; Laureys, Steven

    2011-05-15

    The vegetative state is a devastating condition where patients awaken from their coma (i.e., open their eyes) but fail to show any behavioural sign of conscious awareness. Locked-in syndrome patients also awaken from their coma and are unable to show any motor response to command (except for small eye movements or blinks) but recover full conscious awareness of self and environment. Bedside evaluation of residual cognitive function in coma survivors often is difficult because motor responses may be very limited or inconsistent. We here aimed to disentangle vegetative from "locked-in" patients by an automatic procedure based on machine learning using fluorodeoxyglucose PET data obtained in 37 healthy controls and in 13 patients in a vegetative state. Next, the trained machine was tested on brain scans obtained in 8 patients with locked-in syndrome. We used a sparse probabilistic Bayesian learning framework called "relevance vector machine" (RVM) to classify the scans. The trained RVM classifier, applied on an input scan, returns a probability value (p-value) of being in one class or the other, here being "conscious" or not. Training on the control and vegetative state groups was assessed with a leave-one-out cross-validation procedure, leading to 100% classification accuracy. When applied on the locked-in patients, all scans were classified as "conscious" with a mean p-value of .95 (min .85). In conclusion, even with this relatively limited data set, we could train a classifier distinguishing between normal consciousness (i.e., wakeful conscious awareness) and the vegetative state (i.e., wakeful unawareness). Cross-validation also indicated that the clinical classification and the one predicted by the automatic RVM classifier were in accordance. Moreover, when applied on a third group of "locked-in" consciously aware patients, they all had a strong probability of being similar to the normal controls, as expected. Therefore, RVM classification of cerebral metabolic

  3. A CAD system for cerebral glioma based on texture features in DT-MR images

    NASA Astrophysics Data System (ADS)

    de Nunzio, G.; Pastore, G.; Donativi, M.; Castellano, A.; Falini, A.

    2011-08-01

    Tumor cells in cerebral glioma invade the surrounding tissues preferentially along white-matter tracts, spreading beyond the abnormal area seen on conventional MR images. Diffusion Tensor Imaging can reveal large peritumoral abnormalities in gliomas, which are not apparent on MRI.Our aim was to characterize pathological vs. healthy tissue in DTI datasets by 3D statistical Texture Analysis, developing an automatic segmentation technique (CAD, Computer Assisted Detection) for cerebral glioma based on a supervised classifier (an artificial neural network). A Matlab GUI (Graphical User Interface) was created to help the physician in the assisted diagnosis process and to optimize interactivity with the segmentation system, especially for patient follow-up during chemotherapy, and for preoperative assessment of tumor extension. Preliminary tissue classification results were obtained for the p map (the calculated area under the ROC curve, AUC, was 0.96) and the FA map (AUC=0.98). Test images were automatically segmented by tissue classification; manual and automatic segmentations were compared, showing good concordance.

  4. Bidirectional Relationships and Disconnects between NAFLD and Features of the Metabolic Syndrome

    PubMed Central

    Wainwright, Patrick; Byrne, Christopher D.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) represents a wide spectrum of liver disease from simple steatosis, to steatohepatitis, (both with and without liver fibrosis), cirrhosis and end-stage liver failure. NAFLD also increases the risk of hepatocellular carcinoma (HCC) and both HCC and end stage liver disease may markedly increase risk of liver-related mortality. NAFLD is increasing in prevalence and is presently the second most frequent indication for liver transplantation. As NAFLD is frequently associated with insulin resistance, central obesity, dyslipidaemia, hypertension and hyperglycaemia, NAFLD is often considered the hepatic manifestation of the metabolic syndrome. There is growing evidence that this relationship between NAFLD and metabolic syndrome is bidirectional, in that NAFLD can predispose to metabolic syndrome features, which can in turn exacerbate NAFLD or increase the risk of its development in those without a pre-existing diagnosis. Although the relationship between NAFLD and metabolic syndrome is frequently bidirectional, recently there has been much interest in genotype/phenotype relationships where there is a disconnect between the liver disease and metabolic syndrome features. Such potential examples of genotypes that are associated with a dissociation between liver disease and metabolic syndrome are patatin-like phospholipase domain-containing protein-3 (PNPLA3) (I148M) and transmembrane 6 superfamily member 2 protein (TM6SF2) (E167K) genotypes. This review will explore the bidirectional relationship between metabolic syndrome and NAFLD, and will also discuss recent insights from studies of PNPLA3 and TM6SF2 genotypes that may give insight into how and why metabolic syndrome features and liver disease are linked in NAFLD. PMID:26978356

  5. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  6. Resting cerebral glucose metabolism and perfusion patterns in women with posttraumatic stress disorder related to sexual assault.

    PubMed

    Kim, Shin-Young; Chung, Young-Ki; Kim, Bom Sahn; Lee, Su Jin; Yoon, Joon-Kee; An, Young-Sil

    2012-03-31

    In the literature, numerous trials using neuroimaging techniques have investigated brain function in patients with post-traumatic stress disorder (PTSD). However, the contrasting results showed that improvements, including in the study design, were required to reach consistent and convincing conclusions. This study evaluated the functional neuroimaging pattern of resting cerebral blood flow and glucose metabolism in patients with PTSD related to sexual assault. Twelve patients were enrolled for both brain single photon emission computed tomography (SPECT) and (18)F-fluorodeoxyglucose positron emission tomography (PET) investigations. All data were analyzed with statistical parametric mapping 2 (SPM2). The PTSD patients showed significant relative decreases in perfusion in the left hippocampus and in the basal ganglia compared with the control group. The PTSD group also had significantly lower cerebral glucosemetabolic activity in the left hippocampus and the superior temporal and precentral gyri than in the control group. These specific patterns of perfusion and glucose metabolism may be closely related to various neurophysiologic symptoms of PTSD. PMID:22464826

  7. Modifications of the expression of genes involved in cerebral cholesterol metabolism in the rat following chronic ingestion of depleted uranium.

    PubMed

    Racine, Radjini; Gueguen, Yann; Gourmelon, Patrick; Veyssiere, Georges; Souidi, Maâmar

    2009-06-01

    Depleted uranium results from the enrichment of natural uranium for energetic purpose. Its potential dispersion in the environment would set human populations at risk of being contaminated through ingestion. Uranium can build up in the brain and induce behavior disorders. As a major constituent of the myelin sheath, cholesterol is essential to brain function, and several neurological pathologies result from a disruption of cholesterol metabolism. To assess the effect of a chronic contamination with depleted uranium on cerebral cholesterol metabolism, rats were exposed to depleted uranium for 9 months through drinking water at 40 mg/l. The study focuses on gene expression. Cholesterol-catabolizing enzyme CYP46A1 displayed a 39% increase of its messenger RNA (mRNA) level. 3-Hydroxy-3-methylglutamyl CoA synthase gene expression rose from 91%. Concerning cholesterol transport, mRNA levels of scavenger receptor-B1 and adenosine triphosphate-binding cassette transporter A1 increased by 34% and that of apolipoprotein E by 75%. Concerning regulation, gene expression of nuclear receptors peroxisome proliferator-activated receptors alpha and gamma increased by 46% and 36% respectively, whereas that of retinoid-X-receptor decreased by 29%. In conclusion, a chronic internal contamination with depleted uranium does not affect the health status of rats but induces molecular changes in the dynamic equilibrium of the cerebral cholesterol pool. PMID:18792811

  8. The value of anthropometric indices for identifying women with features of metabolic syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BMI is a widely used anthropometric measure for identifying CVD and metabolic syndrome (MetS) risk. Two new anthropometric indices are A Body Shape Index (ABSI) and Body Roundness Index (BRI) that may provide better correlations to features of MetS. Methods: Subject data were obtained from 91 over...

  9. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    PubMed Central

    2011-01-01

    Background The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles. Methods Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O2/88% N2) or normoxic (22% O2/78% N2) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique. Results TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels. Conclusion Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction. PMID

  10. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field (17)O MR spectroscopy.

    PubMed

    Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin

    2013-12-01

    To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. (17)O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with (17)O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490

  11. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field 17O MR spectroscopy

    PubMed Central

    Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin

    2013-01-01

    To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. 17O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with 17O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490

  12. Compartmentalized Cerebral Metabolism of [1,6-13C]Glucose Determined by in vivo 13C NMR Spectroscopy at 14.1 T

    PubMed Central

    Duarte, João M. N.; Lanz, Bernard; Gruetter, Rolf

    2011-01-01

    Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by 13C nuclear magnetic resonance (NMR) spectroscopy upon infusion of 13C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-13C]glucose and 13C enrichment in the brain metabolites was measured by 13C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining 13C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (VTCA) and neurotransmission rate (VNT) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial VTCA was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (VPC) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism. PMID:21713114

  13. Characterization of the interaction between local cerebral metabolic rate for glucose and acid-base index in ischemic rat brain employing a double-isotope methodology

    SciTech Connect

    Peek, K.E.H.

    1988-01-01

    The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH-the acid-base index (ABI)-concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ({sup 14}C)2-deoxyglucose and ({sup 14}C)dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices.

  14. Functional essentiality from topology features in metabolic networks: a case study in yeast.

    PubMed

    Palumbo, Maria Concetta; Colosimo, Alfredo; Giuliani, Alessandro; Farina, Lorenzo

    2005-08-29

    The relation between the position of mutations in Saccharomyces cerevisiae metabolic network and their lethality is the subject of this work. We represent the topology of the network by a directed graph: nodes are metabolites and arcs represent the reactions; a mutation corresponds to the removal of all the arcs referring to the deleted enzyme. Using publicly available knock-out data, we show that lethality corresponds to the lack of alternative paths in the perturbed network linking the nodes affected by the enzyme deletion. Such feature is at the basis of the recently recognized importance of 'marginal' arcs of metabolic networks. PMID:16095595

  15. Hypertension Is a Key Feature of the Metabolic Syndrome in Subjects Aging with HIV.

    PubMed

    Martin-Iguacel, Raquel; Negredo, Eugènia; Peck, Robert; Friis-Møller, Nina

    2016-06-01

    With widespread and effective antiretroviral therapy, the life expectancy in the HIV population has dramatically improved over the last two decades. Consequently, as patients are aging with HIV, other age-related comorbidities, such as metabolic disturbances and cardiovascular disease (CVD), have emerged as important causes of morbidity and mortality. An overrepresentation of traditional cardiovascular risk factors (RF), toxicities associated with long exposure to antiretroviral therapy, together with residual chronic inflammation and immune activation associated with HIV infection are thought to predispose to these metabolic complications and to the excess risk of CVD observed in the HIV population. The metabolic syndrome (MS) represents a clustering of RF for CVD that includes abdominal obesity, hypertension, dyslipidemia and insulin resistance. Hypertension is a prevalent feature of the MS in HIV, in particular in the aging population, and constitutes an important RF for CVD. Physicians should screen their patients for metabolic and cardiovascular risk at the regular visits to reduce MS and the associated CVD risk among people aging with HIV, since many of RF are under-diagnosed and under-treated conditions. Interventions to reduce these RF can include lifestyle changes and pharmacological interventions such as antihypertensive and lipid-lowering therapy, and treatment of glucose metabolism disturbances. Changes in antiretroviral therapy to more metabolic neutral antiretroviral drugs may also be considered. PMID:27131801

  16. Relation of EEG alpha background to cognitive fuction, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes

    SciTech Connect

    Devinsky, O.; Sato, S.; Conwit, R.A.; Schapiro, M.B. )

    1990-01-01

    We studied 19 young adults (19 to 37 years old) and 9 older patients (42 to 66 years old) with Down's syndrome (DS) and a control group of 13 healthy adults (22 to 38 years old) to investigate the relation of electroencephalographic (EEG) alpha background to cognitive function and cerebral metabolism. Four of the older patients with DS had a history of mental deterioration, disorientation, and memory loss and were demented. Patients and control subjects had EEGs, psychometric testing, quantitative computed tomography, and positron emission tomography with fludeoxyglucose F 18. A blinded reader classified the EEGs into two groups--those with normal alpha background or those with abnormal background. All the control subjects, the 13 young adult patients with DS, and the 5 older patients with DS had normal EEG backgrounds. In comparison with the age-matched patients with DS with normal alpha background, older patients with DS with decreased alpha background had dementia, fewer visuospatial skills, decreased attention span, larger third ventricles, and a global decrease in cerebral glucose utilization with parietal hypometabolism. In the young patients with DS, the EEG background did not correlate with psychometric or positron emission tomographic findings, but the third ventricles were significantly larger in those with abnormal EEG background. The young patients with DS, with or without normal EEG background, had positron emission tomographic findings similar to those of the control subjects. The mechanism underlying the abnormal EEG background may be the neuropathologic changes of Alzheimer's disease in older patients with DS and may be cerebral immaturity in younger patients with DS.

  17. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with ( sup 18 F)fluorodeoxyglucose

    SciTech Connect

    Kuwabara, H.; Evans, A.C.; Gjedde, A. )

    1990-03-01

    In the three-compartment model of transfer of native glucose and (18F)fluorodeoxyglucose (FDG) into brain, both transport across the blood-brain barrier and phosphorylation by hexokinase can be described by the Michaelis-Menten equation. This permits the use of fixed transport (tau = K*1/K1) and phosphorylation (psi = k*3/k3) ratios and a common partition volume (Ve = K1/k2) for tracer and glucose. By substituting transfer constants of FDG for those of glucose, using tau and psi, the lumped constant was determined directly by positron tomography. The same constraints also eliminated k*2 and k*3 from the model, thus limiting the parameters to K* (equivalent to K*1k*3/(k*2 + k*3)), K*1, and the cerebral vascular volume (Vo). In six healthy elderly men (aged 61 +/- 5 years), time-activity records of cerebral cortical regions were analyzed with tau = 1.1 and psi = 0.3. The results were compared with those of the conventional FDG method. At 20 min, the goodness of fit by the new equation was as good as that of the conventional method at 45 min. The estimates obtained by the constrained method had stable coefficients of variation. After 20 min, regional differences between the estimates were independent of time, although we observed steady decreases of K* and (k*3). The decrease strongly suggested dephosphorylation of FDG-6-phosphate, particularly after 20 min. All estimates of variables with the constrained method were more accurate than those of the conventional method, including the cerebral glucose metabolic rate itself, as well as physiologically more meaningful, particularly with respect to k*2 and k*3.

  18. Marked Elevation in Plasma Osteoprotegerin Constitutes an Early and Consistent Feature of Cerebral Malaria

    PubMed Central

    O’Regan, Niamh; Moxon, Chris; Gegenbauer, Kristina; O’Sullivan, Jamie M.; Chion, Alain; Smith, Owen P.; Preston, Roger J. S.; Brophy, Teresa M.; Craig, Alister G.

    2016-01-01

    Summary Adherence of infected erythrocytes to vascular endothelium causes acute endothelial cell (EC) activation during Plasmodium falciparum infection. Consequently, proteins stored in Weibel-Palade (WP) bodies within EC are secreted into the plasma. Osteoprotegerin (OPG) binds to VWF and consequently is stored within WP bodies. Given the critical role of EC activation in the pathogenesis of severe malaria, we investigated plasma OPG levels in children with P. falciparum malaria. At presentation, plasma OPG levels were significantly elevated in children with cerebral malaria (CM) compared to healthy controls (means 16.0 vs 0.8 ng/ml; p<0.01). Importantly, OPG levels were also significantly higher in children with CM who had a fatal outcome, compared to children with CM who survived. Finally, in children with CM, plasma OPG levels correlated with other established prognostic indices (including plasma lactate levels and peripheral parasite density). To further investigate the relationship between severe malaria and OPG, we utilised a murine model of experimental CM in which C57BL/6J mice were infected with P. berghei ANKA. Interestingly, plasma OPG levels were increased 4.6 fold within 24 hours following P. berghei inoculation. This early marked elevation in OPG levels was observed before any objective clinical signs were apparent, and preceded the development of peripheral blood parasitaemia. As the mice became increasingly unwell, plasma OPG levels progressively increased. Collectively, these data suggest that OPG constitutes a novel biomarker with prognostic significance in patients with severe malaria. In addition, further studies are required to determine whether OPG plays a role in modulating malaria pathogenesis. PMID:26766771

  19. Decrease in cerebral metabolic rate of glucose after high-dose methotrexate in childhood acute lymphocytic leukemia

    SciTech Connect

    Komatsu, K.; Takada, G.; Uemura, K.; Shishido, F.; Kanno, I. )

    1990-09-01

    We measured changes in the regional cerebral metabolic rate of glucose (rCMRGlu) using {sup 18}F-fluorodeoxyglucose and positron emission tomography for the assessment of neurotoxicity in childhood acute lymphocytic leukemia treated with high-dose methotrexate (HD-MTX) therapy. We studied 8 children with acute lymphocytic leukemia (mean age: 9.6 years) treated with HD-MTX (200 mg/kg or 2,000 mg/M2) therapy. CMRGlu after HD-MTX therapy was most reduced (40%) in the patient who had central nervous system leukemia and was treated with the largest total doses of both intrathecal MTX (IT-MTX) and HD-MTX. CMRGlu in the whole brain after HD-MTX therapy was reduced by an average of 21% (P less than 0.05). The reductions of CMRGlu in 8 patients were correlated with total doses of both IT-MTX (r = 0.717; P less than 0.05) and systemic HD-MTX (r = 0.784; P less than 0.05). CMRGlu of the cerebral cortex, especially the frontal and occipital cortex, was reduced more noticeably than that of the basal ganglia and white matter. We suggest that the measurement of changes in rCMRGlu after HD-MTX therapy is useful for detecting accumulated MTX neurotoxicity.

  20. [Ten-years records of organic arsenic (diphenylarsinic acid) poisoning: epidemiology, clinical feature, metabolism, and toxicity].

    PubMed

    Ishi, Kazuhiro; Tamaoka, Akira

    2015-01-01

    We report here the symptoms of diphenylarsinic acid (DPAA) poisoning recorded over 10 years since the DPAA contamination of the potable well water was first detected in the Kamisu City, Ibaraki Prefecture, in 2003. The poisoning symptoms associated with the cerebellum and brainstem included nystagmus, tremors, myoclonus, and cerebellar ataxia as well as the symptoms associated with the temporal and occipital lobes such as memory impairment, sleep disorder, and visual disturbance. Some of the affected children exhibited mental retardation. Moreover, reduced blood flow and reduced glucose metabolism in the cerebella, brainstem, and temporal and occipital lobes persisted for several years among the DPAA-exposed persons. Based on the animal studies for DPAA intoxication, the target organs for the DPAA toxicity were determined to be the central nervous system (CNS), liver, and biliary system. In particular, DPAA tends to persist in the brain for a long time, resulting in long-term impacts on the brain. The cerebral blood flow and brain glucose metabolism, which can be measured by positron emission tomography (PET) and single photon emission computed tomography (SPECT), respectively, are useful objective clinical markers to determine the effect of DPAA on CNS. We believe that continuous monitoring of the DPAA-exposed people may promote the effect of carcinogen and accelerate brain aging. PMID:25585431

  1. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression

    PubMed Central

    Conway, Charles R.; Chibnall, John T.; Gebara, Marie Anne; Price, Joseph L.; Snyder, Abraham Z.; Mintun, Mark A.; (Bud) Craig, A.D.; Cornell, Martha E.; Perantie, Dana C.; Giuffra, Luis A.; Bucholz, Richard D.; Sheline, Yvette I.

    2014-01-01

    Background Vagus nerve stimulation (VNS) has antidepressant effects in treatment resistant major depression (TRMD); these effects are poorly understood. This trial examines associations of subacute (3 months) and chronic (12 months) VNS with cerebral metabolism in TRMD. Objective 17Fluorodeoxyglucose positron emission tomography was used to examine associations between 12-month antidepressant VNS response and cerebral metabolic rate for glucose (CMRGlu) changes at 3 and 12 months. Methods Thirteen TRMD patients received 12 months of VNS. Depression assessments (Hamilton Depression Rating Scale [HDRS]) and PET scans were obtained at baseline (pre-VNS) and 3/12 months. CMRGlu was assessed in eight a priori selected brain regions (bilateral anterior insular [AIC], orbitofrontal [OFC], dorsolateral prefrontal [DLPFC], and anterior cingulate cortices [ACC]). Regional CMRGlu changes over time were studied in VNS responders (decreased 12 month HDRS by ≥50%) and nonresponders. Results A significant trend (decreased 3 month CMRGlu) in the right DLPFC was observed over time in VNS responders (n = 9; P = 0.006). An exploratory whole brain analysis (Puncorrected = 0.005) demonstrated decreased 3 month right rostral cingulate and DLPFC CMRGlu, and increased 12 month left ventral tegmental CMRGlu in responders. Conclusions/Limitations VNS response may involve gradual (months in duration) brain adaptations. Early on, this process may involve decreased right-sided DLPFC/cingulate cortical activity; longer term effects (12 months) may lead to brainstem dopaminergic activation. Study limitations included: a) a small VNS nonresponders sample (N = 4), which limited conclusions about nonresponder CMRGlu changes; b) no control group; and, c) patients maintained their psychotropic medications. PMID:23485649

  2. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  3. Region-specific cerebral metabolic alterations in streptozotocin-induced type 1 diabetic rats: an in vivo proton magnetic resonance spectroscopy study.

    PubMed

    Zhang, Hui; Huang, Mingming; Gao, Lifeng; Lei, Hao

    2015-11-01

    Clinical and experimental in vivo (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies have demonstrated that type 1 diabetes mellitus (T1DM) is associated with cerebral metabolic abnormalities. However, less is known whether T1DM induces different metabolic disturbances in different brain regions. In this study, in vivo (1)H-MRS was used to measure metabolic alterations in the visual cortex, striatum, and hippocampus of streptozotocin (STZ)-induced uncontrolled T1DM rats at 4 days and 4 weeks after induction. It was observed that altered neuronal metabolism occurred in STZ-treated rats as early as 4 days after induction. At 4 weeks, T1DM-related metabolic disturbances were clearly region specific. The diabetic visual cortex had more or less normal-appearing metabolic profile; while the striatum and hippocampus showed similar abnormalities in neuronal metabolism involving N-acetyl aspartate and glutamate; but only the hippocampus exhibited significant changes in glial markers such as taurine and myo-inositol. It is concluded that cerebral metabolic perturbations in STZ-induced T1DM rats are region specific at 4 weeks after induction, perhaps as a manifestation of varied vulnerability among the brain regions to sustained hyperglycemia. PMID:26036938

  4. Cerebral metabolism and blood brain transport: toxicity of organophosphorus compounds. Report No. 3 (Annual) 15 April 1984-30 September 1985

    SciTech Connect

    Drewes, L.R.; Singh, A.K.

    1987-04-01

    The acute neurotoxicity of the organophosphorus (OP) compounds, soman and sarin was investigated using the isolated, perfused canine brain preparation. This experimental model allows a comprehensive study of the metabolic (biochemical) and physiological (vascular and electrical) responses to neurotoxicants because extra-cerebral tissues and influences are absent, and blood and tissue samples are readily collected for quantitative biochemical analyses. The specific aims of this project period were to investigate OP-induced alterations in 1)neurotransmitter (acetylcholine (ACh), amino acids, biogenic amines) metabolism; 2) cellular morphology and subcellular structures (light and electron microscopy); 3) vascular integrity (blood-brain interface damage)l and 4) regional cerebral glucose metabolism (rCMRG) and regional cerebral blood flow (rCBF). The data indicate that inhibition of acetylcholinesterase results in elevation of ACh and choline (Ch). The Ch is largely intracellular, does not originate from blood Ch, is not produced by de novo synthesis, and is probably formed from Ch-containing lipids by lipase activity which may be activated by a receptor-mediated mechanism. The enzymes involved in ACh/Ch/Ch-lipid metabolism and their regulation are putative targets for OP agents and potential sites for therapeutic intervention. It is recommended that investigations be pursued to define clearly the metabolic pathways of this key neurotransmitter.

  5. Cerebral metabolic changes in a depression-like rat model of chronic forced swimming studied by ex vivo high resolution 1H magnetic resonance spectroscopy.

    PubMed

    Li, Chun-Xia; Wang, Yaqiang; Gao, Hongchang; Pan, Wen-Ju; Xiang, Yun; Huang, Mingming; Lei, Hao

    2008-11-01

    Many previous in vivo (1)H magnetic resonance spectroscopy (MRS) studies have shown that patients with major depressive disorder (MDD) are associated with perturbations of cerebral metabolism of neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA). In this study, we investigated the changes of cerebral metabolism in a depression-like rat model of chronic forced swimming stress (CFSS). The aims are to further understand the pathophysiological mechanisms underlying CFSS treatment, and to further establish the face and predictive validity of the CFSS model. The results showed that, relative to control, the CFSS rats had significantly reduced Glu, taurine and glutamate + glutamine (Glx) levels in the PFC, and significantly reduced N-acetyl aspartate (NAA) level, Glu level and Glu/GABA ratio in the hippocampus. Taking together, these results suggest that CFSS treatment can induce region-specific changes in the metabolism of Glu. The CFSS model might be used to study antidepressants specifically targeting the central glutamatergic system. PMID:18473166

  6. Post-hypoxic hypoperfusion is associated with suppression of cerebral metabolism and increased tissue oxygenation in near-term fetal sheep

    PubMed Central

    Jensen, E C; Bennet, L; Hunter, C J; Power, G C; Gunn, A J

    2006-01-01

    Secondary cerebral hypoperfusion is common following perinatal hypoxia–ischaemia. However, it remains unclear whether this represents a true failure to provide sufficient oxygen and nutrients to tissues, or whether it is simply a consequence of reduced cerebral metabolic demand. We therefore examined the hypothesis that cerebral oxygenation would be reduced during hypoperfusion after severe asphyxia, and further, that the greater neural injury associated with blockade of the adenosine A1 receptor during the insult would be associated with greater hypoperfusion and deoxygenation. Sixteen near-term fetal sheep received either vehicle or 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) for 1 h, followed by 10 min of severe asphyxia induced by complete occlusion of the umbilical cord. Infusions were discontinued at the end of the occlusion and data were analysed for the following 8 h. A transient, secondary fall in carotid artery blood flow and laser Doppler flow was seen from approximately 1–4 h after occlusion (P < 0.001), with no significant differences between vehicle and DPCPX. Changes in laser Doppler blood flow were highly correlated with carotid blood flow (r2 = 0.81, P < 0.001). Cortical metabolism was suppressed, reaching a nadir 1 h after occlusion and then resolving. Cortical tissue PO2 was significantly increased at 1, 2 and 3 h after occlusion compared to baseline, and inversely correlated with carotid blood flow (r2 = 0.69, P < 0.001). In conclusion, contrary to our initial hypothesis, delayed posthypoxic hypoperfusion was associated with suppression of cerebral metabolism and increased tissue PO2, and was not significantly affected by preceding adenosine A1 blockade. These data suggest that posthypoxic hypoperfusion is actively mediated and reflects suppressed cerebral metabolism. PMID:16484307

  7. Effects of Antioxidant Supplements (BioPQQ™) on Cerebral Blood Flow and Oxygen Metabolism in the Prefrontal Cortex.

    PubMed

    Nakano, Masahiko; Murayama, Yuta; Hu, Lizhen; Ikemoto, Kazuto; Uetake, Tatsuo; Sakatani, Kaoru

    2016-01-01

    Pyrroloquinoline quinone (PQQ) is a quinone compound originally identified in methanol-utilizing bacteria and is a cofactor for redox enzymes. At the Meeting of the International Society on Oxygen Transport to Tissue (ISOTT) 2014, we reported that PQQ disodium salt (BioPQQ™) improved cognitive function in humans, as assessed by the Stroop test. However, the physiological mechanism of PQQ remains unclear. In the present study, we measured regional cerebral blood flow (rCBF) and oxygen metabolism in prefrontal cortex (PFC), before and after administration of PQQ, using time-resolved near-infrared spectroscopy (tNIRS). A total of 20 healthy subjects between 50 and 70 years of age were administered BioPQQ™ (20 mg) or placebo orally once daily for 12 weeks. Hemoglobin (Hb) concentration and absolute tissue oxygen saturation (SO2) in the bilateral PFC were evaluated under resting conditions using tNIRS. We found that baseline concentrations of hemoglobin and total hemoglobin in the right PFC significantly increased after administration of PQQ (p < 0.05). In addition, decreases in SO2 level in the PFC were more pronounced in the PQQ group than in the placebo group (p < 0.05). These results suggest that PQQ causes increased activity in the right PFC associated with increases in rCBF and oxygen metabolism, resulting in enhanced cognitive function. PMID:27526146

  8. Relationship Between Cerebral Oxygenation and Metabolism During Rewarming in Newborn Infants After Therapeutic Hypothermia Following Hypoxic-Ischemic Brain Injury.

    PubMed

    Mitra, Subhabrata; Bale, Gemma; Meek, Judith; Uria-Avellanal, Cristina; Robertson, Nicola J; Tachtsidis, Ilias

    2016-01-01

    Therapeutic hypothermia (TH) has become a standard of care following hypoxic ischemic encephalopathy (HIE). After TH, body temperature is brought back to 37 °C over 14 h. Lactate/N-acetylasperatate (Lac/NAA) peak area ratio on proton magnetic resonance spectroscopy ((1)H MRS) is the best available outcome biomarker following HIE. We hypothesized that broadband near infrared spectroscopy (NIRS) measured changes in the oxidation state of cytochrome-c-oxidase concentration (Δ[oxCCO]) and cerebral hemodynamics during rewarming would relate to Lac/NAA. Broadband NIRS and systemic data were collected during rewarming from 14 infants following HIE over a mean period of 12.5 h. (1)H MRS was performed on day 5-9. Heart rate increased by 20/min during rewarming while blood pressure and peripheral oxygen saturation (SpO2) remained stable. The relationship between mitochondrial metabolism and oxygenation (measured as Δ[oxCCO] and Δ[HbD], respectively) was calculated by linear regression analysis. This was reviewed in three groups: Lac/NAA values <0.5, 0.5-1, >1. Mean regression coefficient (r (2)) values in these groups were 0.41 (±0.27), 0.22 (±0.21) and 0.01, respectively. The relationship between mitochondrial metabolism and oxygenation became impaired with rising Lac/NAA. Cardiovascular parameters remained stable during rewarming. PMID:27526150

  9. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    PubMed Central

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722

  10. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722

  11. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    SciTech Connect

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. )

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  12. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review.

    PubMed

    Amiot, M J; Riva, C; Vinet, A

    2016-07-01

    Dietary polyphenols constitute a large family of bioactive substances potential beneficial effect on metabolic syndrome (MetS). This review summarizes the results of clinical studies on patients with MetS involving the chronic supplementation of a polyphenol-rich diet, foods, extracts or with single phenolics on the features of MetS (obesity, dyslipidemia, blood pressure and glycaemia) and associated complications (oxidative stress and inflammation). Polyphenols were shown to be efficient, especially at higher doses, and there were no specific foods or extracts able to alleviate all the features of MetS. Green tea, however, significantly reduced body mass index and waist circumference and improved lipid metabolism. Cocoa supplementation reduced blood pressure and blood glucose. Soy isoflavones, citrus products, hesperidin and quercetin improved lipid metabolism, whereas cinnamon reduced blood glucose. In numerous clinical studies, antioxidative and anti-inflammatory effects were not significant after polyphenol supplementation in patients with MetS. However, some trials pointed towards an improvement of endothelial function in patients supplemented with cocoa, anthocyanin-rich berries, hesperidin or resveratrol. Therefore, diets rich in polyphenols, such as the Mediterranean diet, which promote the consumption of diverse polyphenol-rich products could be an effective nutritional strategy to improve the health of patients with MetS. © 2016 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity. PMID:27079631

  13. Lowered circulating aspartate is a metabolic feature of human breast cancer

    PubMed Central

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer. PMID:26452258

  14. Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography

    SciTech Connect

    Tyler, J.L.; Strother, S.C.; Zatorre, R.J.; Alivisatos, B.; Worsley, K.J.; Diksic, M.; Yamamoto, Y.L.

    1988-05-01

    Cerebral glucose utilization (LCMRGI) was measured using the (/sup 18/F)fluorodeoxyglucose method with PET in two groups of ten healthy young volunteers, each scanned in a resting state under different methodological conditions. In addition, five subjects had a second scan within 48 hr. Mean hemispheric values averaged 45.8 +/- 3.3 mumol/100 g/min in the right cerebral hemisphere and 47.0 +/- 3.7 mumol/100 g/min in the left hemisphere. A four-way analysis of variance (group, sex, region, hemisphere) was carried out on the results using three different methods of data manipulation: (a) the raw values of glucose utilization, (b) LCMRGI values normalized by the mean hemispheric gray matter LCMRGI value, and (c) log transformed LCMRGI values. For all analysis techniques, significantly higher LCMRGI values were consistently seen in the left mid and posterior temporal area and caudate nucleus relative to the right, and in the right occipital region relative to the left. The coefficient of variation of intrasubject regional differences (9.9%) was significantly smaller than the coefficient of variation for regions between subjects (16.5%). No differences were noted between the sexes and no effect of repeat procedures was seen in subjects having multiple scans. In addition, inter-regional LCMRGI correlations were examined both in values from the 20 normal subjects, as well as in a set of hypothetical abnormal values. Results were compared with those reported from other PET centers; despite certain methodological differences, the intersubject and inter-regional variation of LCMRGI is fairly constant.

  15. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  16. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Zilin; Wang, Zhen; Yang, Xiaoquan; Luo, Qingming; Gong, Hui

    2012-08-01

    Stroke is a devastating disease. The changes in cerebral hemodynamics and oxygen metabolism associated with stroke play an important role in pathophysiology study. But the changes were difficult to describe with a single imaging modality. Here the changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and oxygen saturation (SO2) were yielded with laser speckle imaging (LSI) and photoacoustic microscopy (PAM) during and after 3-h acute focal ischemic rats. These hemodynamic measures were further synthesized to deduce the changes in oxygen extraction fraction (OEF). The results indicate that all the hemodynamics except CBV had rapid declines within 40-min occlusion of middle cerebral artery (MCAO). CBV in arteries and veins first increased to the maximum value of 112.42±36.69% and 130.58±31.01% by 15 min MCAO; then all the hemodynamics had a persistent reduction with small fluctuations during the ischemic. When ischemia lasted for 3 h, CBF in arteries, veins decreased to 17±14.65%, 24.52±20.66%, respectively, CBV dropped to 62±18.56% and 59±18.48%. And the absolute SO2 decreased by 40.52±22.42% and 54.24±11.77%. After 180-min MCAO, the changes in hemodynamics and oxygen metabolism were also quantified. The study suggested that combining LSI and PAM provides an attractive approach for stroke detection in small animal studies.

  17. Autoradiographic determination of regional cerebral blood flow and metabolism in conscious rats after fluid resuscitation from haemorrhage with a haemoglobin-based oxygen carrier.

    PubMed

    Waschke, K F; Albrecht, D M; van Ackern, K; Kuschinsky, W

    1994-10-01

    The effects of resuscitation fluids on the brain have been investigated in previous studies by global measurements of cerebral blood flow and metabolism. In this study we have examined the effects of a novel haemoglobin-based oxygen carrier on local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) after resuscitation from a volume-controlled haemorrhage of 30 min (3.0 ml/100 g body weight) with ultrapurified, polymerized, bovine haemoglobin (UPBHB). LCBF and LCGU were measured in 34 brain structures of conscious rats 2 h after resuscitation using quantitative iodo(14C)antipyrine and 2-(14C)-deoxy-D-glucose methods. The data were compared with a control group without haemorrhage and fluid resuscitation. In the haemorrhage group, LCBF increased after resuscitation by 12-56% in the different brain structures (mean 36%). LCGU changed less (0 to +18%, mean +9%). In the control group there was a close relationship between LCGU and LCBF (r = 0.95). After fluid resuscitation the relationship was preserved (r = 0.95), although it was reset at a higher ratio of LCBF to LCGU (P < 0.05). We conclude that fluid resuscitation of a 30 min volume-controlled haemorrhage using the haemoglobin-based oxygen carrier, UPBHB, induced a moderate degree of heterogeneity in the resulting changes of LCGU and LCBF. Local disturbances of cerebral blood flow or metabolism were not observed. PMID:7999496

  18. The change in cerebral glucose metabolism after electroacupuncture: a possible marker to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa.

    PubMed

    Liu, Tao-Tao; Hong, Qing-Xiong; Xiang, Hong-Bing

    2015-01-01

    Some reports have demonstrated that deep brain stimulation (DBS) is a promising treatment for patients who suffer from intractable anorexia nervosa. However, the nature of DBS may not be viewed as a standard clinical treatment option for anorexia nervosa because of the unpredictable outcome before DBS. Just like DBS in the brain, electroacupuncture at acupoints is also efficient in treating refractory anorexia nervosa. Some neuroimaging studies using functional magnetic resonance imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) had revealed that both DBS and electroacupuncture at acupoints with electrical stimulation are related to the changes in cerebral glucose metabolism. Therefore, we hypothesize that the changes in cerebral glucose metabolism after electroacupuncture might be useful to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa. PMID:26770596

  19. The change in cerebral glucose metabolism after electroacupuncture: a possible marker to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa

    PubMed Central

    Liu, Tao-Tao; Hong, Qing-Xiong; Xiang, Hong-Bing

    2015-01-01

    Some reports have demonstrated that deep brain stimulation (DBS) is a promising treatment for patients who suffer from intractable anorexia nervosa. However, the nature of DBS may not be viewed as a standard clinical treatment option for anorexia nervosa because of the unpredictable outcome before DBS. Just like DBS in the brain, electroacupuncture at acupoints is also efficient in treating refractory anorexia nervosa. Some neuroimaging studies using functional magnetic resonance imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) had revealed that both DBS and electroacupuncture at acupoints with electrical stimulation are related to the changes in cerebral glucose metabolism. Therefore, we hypothesize that the changes in cerebral glucose metabolism after electroacupuncture might be useful to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa. PMID:26770596

  20. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    PubMed Central

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  1. Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function

    SciTech Connect

    Berent, S.; Giordani, B.; Lehtinen, S.; Markel, D.; Penney, J.B.; Buchtel, H.A.; Starosta-Rubinstein, S.; Hichwa, R.; Young, A.B.

    1988-06-01

    Fifteen drug-free patients with early to mid-stage Huntington's disease (HD) were evaluated with positron emission tomographic (PET) scans of /sup 18/F-2-fluoro-2-deoxy-D-glucose uptake and quantitative measures of neurological function, learning, memory, and general intelligence. In comparison with a group of normal volunteers, the HD patients showed lower metabolism in both caudate (p less than 0.001) and putamen (p less than 0.001) on PET scans. A significant and positive relationship was found between neuropsychological measures of verbal learning and memory and caudate metabolism in the patient group but not in the normal group. Visual-spatial learning did not reflect a similar pattern, but performance intelligence quotient was positively related to both caudate and putamen metabolism in the HD group. Vocabulary level was unrelated to either brain structure. Discussion focuses on these and other observed brain-behavior relationships and on the implications of these findings for general behaviors such as those involved in coping and adaptation.

  2. Changes in cerebral metabolism in patients with a minimally conscious state responding to zolpidem

    PubMed Central

    Chatelle, Camille; Thibaut, Aurore; Gosseries, Olivia; Bruno, Marie-Aurélie; Demertzi, Athena; Bernard, Claire; Hustinx, Roland; Tshibanda, Luaba; Bahri, Mohamed A.; Laureys, Steven

    2014-01-01

    Background: Zolpidem, a short-acting non-benzodiazepine GABA agonist hypnotic, has been shown to induce paradoxical responses in some patients with disorders of consciousness (DOC), leading to recovery of arousal and cognitive abilities. We here assessed zolpidem-induced changes in regional brain metabolism in three patients with known zolpidem response in chronic post-anoxic minimally conscious state (MCS). Methods: [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) and standardized clinical assessments using the Coma Recovery Scale-Revised were performed after administration of 10 mg zolpidem or placebo in a randomized double blind 2-day protocol. PET data preprocessing and comparison with a healthy age-matched control group were performed using statistical parametric mapping (SPM8). Results: Behaviorally, all patients recovered functional communication after administration of zolpidem (i.e., emergence from the MCS). FDG-PET showed increased metabolism in dorsolateral prefrontal and mesiofrontal cortices after zolpidem but not after placebo administration. Conclusion: Our data show a metabolic activation of prefrontal areas, corroborating the proposed mesocircuit hypothesis to explain the paradoxical effect of zolpidem observed in some patients with DOC. It also suggests the key role of the prefrontal cortices in the recovery of functional communication and object use in hypoxic patients with chronic MCS. PMID:25520636

  3. Multi-parametric imaging of cerebral hemodynamic and metabolic response followed by ischemic injury

    NASA Astrophysics Data System (ADS)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    We use rodent parietal cortex as a model system and utilize a synchronized dual wavelength laser speckle imaging (SDW-LSCI) technique to explore the hemodynamic response of infarct and penumbra to a brain injury (middle cerebral artery occlusion (MCAO) model). The SDW-LSCI system is able to take snapshots rapidly (maximum 500 Hz) over the entire brain surface, providing key information about the hemodynamic response, in terms of which it may be used to elucidate evolution of penumbra region from onsite to 90 min of MCAO. Changes in flow are quantified as to the flow experiencing physical occlusions of the MCA normalized to that of baseline. Furthermore, the system is capable of providing information as to the changes of the concentration of oxygenated, (HbO) deoxygenated (Hb), and total hemoglobin (HbT) in the cortex based on the spectral characteristics of HbO and Hb. We observe that the oxygenation variations in the four regions are detectable and distinct. Combining the useful information, four regions of interest (ROI), infarct, penumbra, reduced flow and contralateral portions in the brain upon ischemic injury may be differentiated. Implications of our results are discussed with respect to current understanding of the mechanisms underlying MCAO. We anticipate that SDW-LSCI holds promise for rapid and large field of view localization of ischemic injury.

  4. Cerebral palsy.

    PubMed

    Graham, H Kerr; Rosenbaum, Peter; Paneth, Nigel; Dan, Bernard; Lin, Jean-Pierre; Damiano, Diane L; Becher, Jules G; Gaebler-Spira, Deborah; Colver, Allan; Reddihough, Dinah S; Crompton, Kylie E; Lieber, Richard L

    2016-01-01

    Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging. PMID:27188686

  5. Simultaneous double-isotope autoradiographic measurement of local cerebral glucose metabolic rate and acid-base status in rat brain.

    PubMed

    Lockwood, A H; Peek, K E; Berridge, M; Bogue, L; Yap, E

    1987-03-01

    We developed a double-isotope autoradiographic method for the simultaneous measurement of the local cerebral metabolic rate for glucose (1CMRG) and index of regional acid-base status (rABI) in single brain slices using [2-14C]deoxy-D-glucose (DG) and 5,5-dimethyl-[2-14C]oxazolidine-2,4,dione (DMO). After iv isotope administration, paper chromatography separates plasma DMO from DG activity using a methanol-methylene chloride solvent system. Initial tissue autoradiograms depict regional DMO plus DG and DG metabolite distribution. After 14 days in a well-ventilated hood, 97.5 +/- 0.5% of all DMO is lost from tissue sections by sublimation, and a second autoradiogram depicts DG plus DG metabolite distribution. Retention of brain lipids does not alter beta-particle self-absorption, avoiding problems associated with isotope extraction with solvents. Autoradiograms are digitized and converted to isotope-content images. The second autoradiogram is used for 1CMRG computation. After subtracting the second regional isotope-content value from the first, the DMO content is obtained and used to compute rABI. Application of this method to normal animals yields expected values for 1CMRG and rABI. This method is amenable to whole-slice digitization and creation of functional images of 1CMRG and ABI followed by pixel-by-pixel correlations of the two variables, making this a potentially valuable tool for the investigation of the relationships between glucose metabolism and brain acid-base balance. PMID:3505334

  6. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness.

    PubMed

    Gu, Jenny; Weber, Katrin; Klemp, Elisabeth; Winters, Gidon; Franssen, Susanne U; Wienpahl, Isabell; Huylmans, Ann-Kathrin; Zecher, Karsten; Reusch, Thorsten B H; Bornberg-Bauer, Erich; Weber, Andreas P M

    2012-05-01

    The contribution of metabolism to heat stress may play a significant role in defining robustness and recovery of systems; either by providing the energy and metabolites required for cellular homeostasis, or through the generation of protective osmolytes. However, the mechanisms by which heat stress attenuation could be adapted through metabolic processes as a stabilizing strategy against thermal stress are still largely unclear. We address this issue through metabolomic and transcriptomic profiles for populations along a thermal cline where two seagrass species, Zostera marina and Zostera noltii, were found in close proximity. Significant changes captured by these profile comparisons could be detected, with a larger response magnitude observed in northern populations to heat stress. Sucrose, fructose, and myo-inositol were identified to be the most responsive of the 29 analyzed organic metabolites. Many key enzymes in the Calvin cycle, glycolysis and pentose phosphate pathways also showed significant differential expression. The reported comparison suggests that adaptive mechanisms are involved through metabolic pathways to dampen the impacts of heat stress, and interactions between the metabolome and proteome should be further investigated in systems biology to understand robust design features against abiotic stress. PMID:22402787

  7. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    SciTech Connect

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  8. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (/sup 18/F)fluorodeoxyglucose

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Ganz, E.; Yano, Y.; Mathis, C.A.; Koss, B.; Ober, B.A.; Huesman, R.H.; Derenzo, S.E.

    1983-08-01

    Alzheimer disease is the most common cause of dementia in adults. Despite recent advances in our understanding of its anatomy and chemistry, we remain largely ignorant of its pathogenesis, physiology, diagnosis, and treatment. Dynamic positron emission tomography using (/sup 18/F)fluorodeoxyglucose (FDG) was performed on the Donner 280-crystal ring in 10 subjects with dementia of the Alzheimer type and six healthy age-matched controls. Ratios comparing mean counts per resolution element in frontal, temporoparietal, and entire cortex regions in brain sections 10 mm thick obtained 40-70 min following FDG injection showed relatively less FDG uptake in the temporoparietal cortex bilaterally in all the Alzheimer subjects (p less than 0.01). Left-right alterations were less prominent than the anteroposterior changes. This diminished uptake was due to lowered rates of FDG use and suggests that the metabolic effects of Alzheimer disease are most concentrated in the temporoparietal cortex. Positron emission tomography is a most powerful tool for the noninvasive in vivo assessment of cerebral pathophysiology in dementia.

  9. Noninvasive quantification of cerebral metabolic rate for glucose in rats using (18)F-FDG PET and standard input function.

    PubMed

    Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi

    2015-10-01

    Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed (18)F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIF(NS)) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF(1S)). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIF(NS)-, and EIF(1S)-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIF(NS) was highly correlated with those derived from AIF and EIF(1S). Preliminary comparison between AIF and EIF(NS) in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIF(NS) method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947

  10. Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography

    SciTech Connect

    Lear, J.L.; Ackermann, R.F.

    1988-08-01

    We compared local cerebral glucose metabolic rates (LCMRglu) that were determined with (/sup 18/F)fluorodeoxyglucose (FDG) and (/sup 14/C)glucose labeled in the 1, 2, 3-4, and 6 positions. Double label digital autoradiography was used with published kinetic models to determine LCMRglu for FDG and glucose in the same animals. Glucose showed metabolic rate dependent underestimation of LCMRglu compared to FDG, which worsened with increasing experimental times. The least underestimation occurred with glucose labeled in the 6 position at 6 min, reaching 10% in areas of high metabolism. Labeling in the 1 position, the 2 position and the 3-4 position caused progressively worse underestimation at all times. In addition, some structures showed differences not directly related to metabolic rate, indicating regional variations in relationships between individual kinetic constants of FDG and glucose.

  11. [Glutamate metabolism in cerebral cortex obtained from chronic hepatic failure rats].

    PubMed

    Ito, M; Matsumoto, H; Kikuchi, S; Yachi, A

    1986-09-01

    The present investigation was carried out in order to elucidate the amino acid metabolism in hepatic failure with particular emphasis placed on glutamate. For this purpose, chronic hepatic failure models were produced in adult male Wistar rats by successive carbontetrachloride injection (0.20 ml/100 g. B. W., twice/week) for 13 weeks. They were confirmed to develop chemical changes compartible with hepatic failure, showing markedly elevated serum levels of NH3, GOT and ALP. Animals were killed by decapitation during fasting and the brains were removed immediately. After the parietal cortical slices were incubated for 45 min at 37 degrees C together with L-(U-14C) glutamate in O2-saturated Gey's balanced salt solution, they were homogenized in 75% ethanol and deproteinized with water saturated chloroform. The radioactivities of liberated CO2, glutamate and its metabolites (glutamine, aspartate and GABA) obtained from the slices were measured. The amount of radioactivity recovered from CO2, glutamine and aspartate revealed a significant increase (p less than 0.001), while that of glutamate and GABA remained unchanged. The main source of the CO2 is believed to originate from TCA cycle rather than the decarboxylation of glutamate to form GABA, and glutamate forms glutamine when it fixes ammonia. Furthermore, glutamate is converted into aspartate via TCA cycle when the carbon was labeled. Therefore, the results indicate that in chronic hepatic failure brains glutamate metabolism is enhanced through TCA cycle as well as ammonia fixation mechanism. PMID:3790365

  12. Application of the ''bootstrap'' technique to understanding cerebral interregional metabolic relationships

    SciTech Connect

    Metter, E.J.; Riege, W.H.; Kuhl, D.E.; Phelps, M.E.

    1984-01-01

    The authors' previous studies using (F18)-flourodeoxyglucose with positron computed tomography examined region to region metabolic correlations in (1) normal subjects, (2) normal elderly versus younger individuals, and (3) Alzheimer's, Huntington's and Parkinson's Diseases. Variations in the correlation matrices suggested differences in how brain regions function together. An alternative explanation was that the distribution of each matrix was not distinctly different, and the observations represented variations from the same distribution. To examine this tissue, the authors focused on the observation of differences in the total number of reliable correlations (i.e. correlations with r representing a p .01 uncorrected for the number of correlations) between the groups. For example in Parkinson Disease a total of 12 reliable correlations were found, as compared to 34 in Alzheimer's Disease. Four groups were compared including normal elderly, normal young, Alzheimer and Parkinson's Diseases. For each group, random samples were drawn from the studied subjects, and correlation matrices were calculated from the new samples. 508 matrices were calculated for the two normal groups, and 1016 were calculated for the Alzheimer's and Parkinson's groups. The total number of reliable correlations were counted for each matrix and the distribution of these counts were examined. Distinct differences were found in the mean, median and mode for each group. In particular, Parkinson's Disease peaked the earliest of the four groups, while Alzheimer's peaked the latest. The findings demonstrated that the metabolic data for each group were derived from different populations.

  13. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans

    PubMed Central

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin

    2015-01-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563

  14. Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children.

    PubMed

    Lee, Hyo Jeong; Kang, Eunjoo; Oh, Seung-Ha; Kang, Hyejin; Lee, Dong Soo; Lee, Myung Chul; Kim, Chong-Sun

    2005-05-01

    In congenitally deaf children, chronological age is generally accepted as a critical factor that affects successful rehabilitation following cochlear implantation (CI). However, a wide variance among patients is known to exist regardless of the age at CI [Sarant, J.Z., Blamey, P.J., Dowell, R.C., Clark, G.M., Gibson, W.P., 2001. Variation in speech perception scores among children with cochlear implants. Ear Hear. 22, 18-28]. In a previous study, we reported that prelingually deaf children in the age range 5-7 years at implantation showed greatest outcome variability [Oh S.H., Kim C.S., Kang E.J., Lee D.S., Lee H.J., Chang S.O., Ahn S.H., Hwang C.H., Park H.J., Koo J.W., 2003. Speech perception after cochlear implantation over a 4-year time period. Acta Otolaryngol. 123, 148-153]. Eleven children who underwent CI between the age of 5 and 7 1/2 years were subdivided into a good (above 65%: GOOD) and a poor (below 45%: POOR) group based on the performance in a speech perception test given 2 years after CI. The preoperative (18)F-FDG-PET (F-18 fluorodeoxyglucose positron emission tomography) images were compared between the two groups in order to examine if regional glucose metabolic difference preexisted before the CI surgery. In the GOOD group, metabolic activity was greater in diverse fronto-parietal regions compared to the POOR group. In the POOR group, the regions related to the ventral visual pathway showed greater metabolic activity relative to the GOOD group. These findings suggest that the deaf children who had developed greater executive and visuospatial functions subserved by the prefrontal and parietal cortices might be successful in auditory language learning after CI. On the contrary, greater dependency on the visual function subserved by the occipito-temporal region due to auditory deprivation may interfere with acquisition of auditory language after CI. PMID:15855024

  15. Dose-Dependent Effects of Radiation Therapy on Cerebral Blood Flow, Metabolism, and Neurocognitive Dysfunction

    SciTech Connect

    Hahn, Carol A. Zhou Sumin; Raynor, Renee; Tisch, Andrea; Light, Kim; Shafman, Timothy; Kirkpatrick, John; Turkington, Timothy; Hollis, Donna; Marks, Lawrence B.

    2009-03-15

    Purpose: A prospective study was performed to formally relate dose-dependent radiologically defined changes in normal brain induced by radiotherapy (RT) to neurocognitive dysfunction in subjects with primary brain tumors. Methods and Materials: Adult patients receiving three-dimensional RT for central nervous system (CNS) tumors were enrolled. Positron emission tomography (PET) scanning and neuropsychological testing were performed before RT and 3 weeks and 6 months after treatment. Analyses were performed for correlations between changes in 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose (FDG)-PET (metabolism), {sup 15}O-PET (relative blood flow), regional radiation dose, follow-up time, and neuropsychological test scores. Results: Eleven subjects were enrolled and 6 completed follow-up studies. The PET data showed reduced FDG uptake, with average decreases of 2-6% in regions of the brain receiving greater than 40 Gy at 3 weeks' and 6 months' follow-up. The {sup 15}O-H{sub 2}O PET showed increases (<10%) at 3 weeks in relative regional blood flow in brain receiving greater than 30 Gy, but less at the 6-month follow-up studies. There were significant correlations between decreases in FDG uptake and increased scores from the Symptom Checklist-90-R, with an average increase in T score of 2 (p < 0.0001). The Wisconsin Card Sorting Test showed a significant correlation of decreased FDG uptake with increased errors and perseveration in test performance, with an average decrease in T score of 11 (p = 0.037). Conclusions: A dose-dependent response of CNS tissue was detected using FDG PET in this small number of patients. Decreases in CNS metabolism correlated with decreased performance on neuropsychological tests for problem solving, cognitive flexibility, and global measures of psychopathology. Additional research is needed to verify and define these findings.

  16. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from (13)C-glucose.

    PubMed

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Masoodi, Mojgan; Escrig, Stéphane; Meibom, Anders; Comment, Arnaud

    2015-11-01

    Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100 nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes. PMID:26409162

  17. Local cerebral metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys.

    PubMed

    Porrino, L J; Burns, R S; Crane, A M; Palombo, E; Kopin, I J; Sokoloff, L

    1987-08-01

    The quantitative 2-deoxy[14C]glucose autoradiographic method was used to map the distribution of alterations in local cerebral glucose utilization that accompanies clinically effective chronic L-dopa therapy of rhesus monkeys made parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This pattern of changes was compared to the effects of a similar treatment regimen in normal monkeys. L-Dopa (100 mg with 10 mg carbidopa) was administered orally to normal and parkinsonian monkeys 3 times daily for 60-120 days prior to measurement of local cerebral glucose utilization. In parkinsonian monkeys treated with L-dopa, signs and symptoms of parkinsonism were controlled or suppressed, and widespread increases in glucose utilization were seen throughout the brain. Cerebral metabolic activity was increased both in areas rich in dopaminergic receptors, such as the caudate and putamen, and in nondopaminergic areas involved in motor functions. In many structures the rates of glucose utilization in L-dopa-treated parkinsonian monkeys were increased to levels that far exceeded rates measured in normal monkeys. In sharp contrast, similar treatment with L-dopa in normal monkeys had little if any effect on local cerebral glucose utilization. L-Dopa, then, appears to have an action in animals with selective lesions of the substantia nigra pars compacta produced by MPTP that is distinctly different from its effects in the normal monkey. PMID:3497401

  18. Local cerebral metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys

    SciTech Connect

    Porrino, L.J.; Burns, R.S.; Crane, A.M.; Palombo, E.; Kopin, I.J.; Sokoloff, L.

    1987-08-01

    The quantitative 2-deoxy(/sup 14/C) glucose autoradiographic method was used to map the distribution of alterations in local cerebral glucose utilization that accompanies clinically effective chronic L-dopa therapy of rhesus monkeys made parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This pattern of changes was compared to the effects of a similar treatment regimen in normal monkeys. L-Dopa was administered orally to normal and parkinsonian monkeys 3 times daily for 60-120 days prior to measurement of local cerebral glucose utilization. In parkinsonian monkeys treated with L-dopa, signs and symptoms of parkinsonism were controlled or suppressed, and widespread increases in glucose utilization were seen throughout the brain. Cerebral metabolic activity was increased both in areas rich in dopaminergic receptors, such as the caudate and putamen, and in nondopaminergic areas involved in motor functions. In many structures the rates of glucose utilization in L-dopa-treated parkinsonian monkeys were increased to levels that far exceeded rates measured in normal monkeys. In sharp contrast, similar treatment with L-dopa in normal monkeys had little if any effect on local cerebral glucose utilization. L-Dopa, then, appears to have an action in animals with selective lesions of the substantia nigra pars compacta produced by MPTP that is distinctly different from its effects in the normal monkey.

  19. Amyloid-β peptide absence in short term effects on kinase activity of energy metabolism in mice hippocampus and cerebral cortex.

    PubMed

    Ianiski, Francine R; Rech, Virginia C; Nishihira, Vivian S K; Alves, Catiane B; Baldissera, Matheus D; Wilhelm, Ethel A; Luchese, Cristiane

    2016-07-11

    Considering that Alzheimer's disease is a prevalent neurodegenerative disease worldwide, we investigated the activities of three key kinases: creatine kinase, pyruvate kinase and adenylate kinase in the hippocampus and cerebral cortex in Alzheimer's disease model. Male adult Swiss mice received amyloid-β or saline. One day after, mice were treated with blank nanocapsules (17 ml/kg) or meloxicam-loaded nanocapsules (5 mg/kg) or free meloxicam (5 mg/kg). Treatments were performed on alternating days, until the end of the experimental protocol. In the fourteenth day, kinases activities were performed. Amyloid-β did not change the kinases activity in the hippocampus and cerebral cortex of mice. However, free meloxicam decrease the creatine kinase activity in mitochondrial-rich fraction in the group induced by amyloid-β, but for the cytosolic fraction, it has raised in the activity of pyruvate kinase activity in cerebral cortex. Further, meloxicam-loaded nanocapsules administration reduced adenylate kinase activity in the hippocampus of mice injected by amyloid-β. In conclusion we observed absence in short-term effects in kinases activities of energy metabolism in mice hippocampus and cerebral cortex using amyloid-β peptide model. These findings established the foundation to further study the kinases in phosphoryltransfer network changes observed in the brains of patients post-mortem with Alzheimer's disease. PMID:27411072

  20. Regional cerebral glucose metabolism is normal in young adults with Down syndrome

    SciTech Connect

    Schapiro, M.B.; Grady, C.L.; Kumar, A.; Herscovitch, P.; Haxby, J.V.; Moore, A.M.; White, B.; Friedland, R.P.; Rapoport, S.I. )

    1990-03-01

    Regional CMRglc (rCMRglc) values were measured with ({sup 18}F)2-fluoro-2-deoxy-D-glucose ({sup 18}FDG) and positron emission tomography (PET), using a Scanditronix PC-1024-7B scanner, in 14 healthy, noninstitutionalized subjects with trisomy 21 (Down syndrome; DS) (mean age 30.0 years, range 25-38 years) and in 13 sex-matched, healthy volunteers (mean age 29.5 years, range 22-38 years). In the DS group, mean mental age on the Peabody Picture Vocabulary Test was 7.8 years and dementia was not present. Resting rCMRglc was determined with eyes covered and ears occluded in a quiet, darkened room. Global gray CMRglc equaled 8.76 +/- 0.76 mg/100 g/min (mean +/- SD) in the DS group as compared with 8.74 +/- 1.19 mg/100 g/min in the control group (p greater than 0.05). Gray matter regional measurements also did not differ between groups. The ratio of rCMRglc to global CMRglc, calculated to reduce the variance associated with absolute rCMRglc, and right/left ratios did not show any consistent differences. These results show that healthy young DS adults do not have alterations in regional or global brain glucose metabolism, as measured with 18FDG and PET, prior to an age at which the neuropathological changes in Alzheimer disease are reported to occur.

  1. Metabolic disorders with clinical and radiologic features of sporadic Creutzfeldt-Jakob disease

    PubMed Central

    Rosenbloom, Michael H.; Tartaglia, M. Carmela; Forner, Sven A.; Wong, Katherine K.; Kuo, Amy; Johnson, David Y.; Colacurcio, Valerie; Andrews, Bret D.; Miller, Bruce L.; DeArmond, Stephen J.

    2015-01-01

    Summary Two patients with metabolic disorders presented with clinical and radiologic features suggestive of sporadic Creutzfeldt-Jakob disease (sCJD). Case 1 was a 50-year-old man with rapid decline in cognitive, behavioral, and motor function following new-onset seizures. MRI was read as consistent with CJD, and he was referred for a treatment trial, but it was determined that he recently experienced rapid correction of hyponatremia resulting in extrapontine myelinolysis. Case 2 was a 66-year-old woman with poorly controlled diabetes mellitus who was found unconscious after a suspected insulin overdose. Examination showed altered mental status and neuroimaging was remarkable for cortical/striatal hyperintensities suggestive of sCJD. On autopsy, she had hypoglycemic/hypoxic nerve cell loss. Although characteristic MRI findings have high sensitivity and specificity for sCJD, potentially reversible metabolic disorders sometimes present rapidly and can resemble sCJD both clinically and radiologically. These cases highlight the importance of establishing a broad differential diagnosis when evaluating a patient with suspected sCJD. PMID:26137419

  2. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features

    SciTech Connect

    Aklujkar, Muktak; Haveman, Shelley; DiDonatoJr., Raymond; Chertkov, Olga; Han, Cliff; Land, Miriam L; Brown, Peter; Lovley, Derek

    2012-01-01

    Background: The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species. Results: Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to their structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate: ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol. The P. carbinolicus genome was found to encode autotransporters and various appendages, including three proteins with similarity to the geopilin of electroconductive nanowires. Conclusions: Several surprising metabolic capabilities and physiological features were predicted from the genome of P. carbinolicus, suggesting that it is more versatile than anticipated.

  3. Correlation Between Cerebral Atrophy and Texture Features in Alzheimer-type Dementia Brains: A 3-Year Follow-up MRI Study

    NASA Astrophysics Data System (ADS)

    Kodama, Naoki; Takeuchi, Hiroshi

    We assessed relationships between six texture features and changes in atrophy of the cerebral parenchyma, the hippocampus, and the parahippocampal gyrus in the Alzheimer-type dementia (ATD) brain to determine whether or not the features reflect cerebral atrophy in ATD patients. The subjects of this study were 10 ATD patients, and underwent an magnetic resonanse imaging test of the head annually for at least 3 consecutive years. They consisted of three men and seven women, with a mean age of 71.4 ± 6.7 years. The results of study, the mean run length nonuniformity (RLN), angular second moment (ASM), and contrast (CON) increased with time, whereas the mean gray level nonuniformity (GLN), run percentage (RPC), and entropy (ENT) decreased with time. There was a statistically significant correlation between brain-intracranial area ratio (BIR) and GLN (p = 0.039), between BIR and ASM (p = 0.011), and between BIR and ENT (p = 0.023) as well as between parahippocampal-intracranial area ratio and GLN (p = 0.049). These results indicate that the six texture features were shown to reflect gray matter atrophy associated with ATD and to change with the progress of the disease. Although the course of ATD can be followed up by measuring a hippocampal area or volume and determining a decrease in the area or volume, texture features should be a more effective instrument for identifying the progress of ATD.

  4. Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults.

    PubMed

    Gardener, Samantha L; Sohrabi, Hamid R; Shen, Kai-Kai; Rainey-Smith, Stephanie R; Weinborn, Michael; Bates, Kristyn A; Shah, Tejal; Foster, Jonathan K; Lenzo, Nat; Salvado, Olivier; Laske, Christoph; Laws, Simon M; Taddei, Kevin; Verdile, Giuseppe; Martins, Ralph N

    2016-03-31

    Increasing evidence suggests that Alzheimer's disease (AD) sufferers show region-specific reductions in cerebral glucose metabolism, as measured by [18F]-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET). We investigated preclinical disease stage by cross-sectionally examining the association between global cognition, verbal and visual memory, and 18F-FDG PET standardized uptake value ratio (SUVR) in 43 healthy control individuals, subsequently focusing on differences between subjective memory complainers and non-memory complainers. The 18F-FDG PET regions of interest investigated include the hippocampus, amygdala, posterior cingulate, superior parietal, entorhinal cortices, frontal cortex, temporal cortex, and inferior parietal region. In the cohort as a whole, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in both the left hippocampus and right amygdala. There were no associations observed between global cognition, delayed recall in logical memory, or visual reproduction and 18F-FDG PET SUVR. Following stratification of the cohort into subjective memory complainers and non-complainers, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in the right amygdala in those with subjective memory complaints. There were no significant associations observed in non-memory complainers between 18F-FDG PET SUVR in regions of interest and cognitive performance. We observed subjective memory complaint-specific associations between 18F-FDG PET SUVR and immediate verbal memory performance in our cohort, however found no associations between delayed recall of verbal memory performance or visual memory performance. It is here argued that the neural mechanisms underlying verbal and visual memory performance may in fact differ in their pathways, and the characteristic reduction of 18F-FDG PET SUVR observed in this and previous studies likely reflects the pathophysiological changes in specific

  5. MELANCHOLIC DEPRESSION PREDICTION BY IDENTIFYING REPRESENTATIVE FEATURES IN METABOLIC AND MICROARRAY PROFILES WITH MISSING VALUES

    PubMed Central

    Nie, Zhi; Yang, Tao; Liu, Yashu; Lin, Binbin; Li, Qingyang; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2014-01-01

    Recent studies have revealed that melancholic depression, one major subtype of depression, is closely associated with the concentration of some metabolites and biological functions of certain genes and pathways. Meanwhile, recent advances in biotechnologies have allowed us to collect a large amount of genomic data, e.g., metabolites and microarray gene expression. With such a huge amount of information available, one approach that can give us new insights into the understanding of the fundamental biology underlying melancholic depression is to build disease status prediction models using classification or regression methods. However, the existence of strong empirical correlations, e.g., those exhibited by genes sharing the same biological pathway in microarray profiles, tremendously limits the performance of these methods. Furthermore, the occurrence of missing values which are ubiquitous in biomedical applications further complicates the problem. In this paper, we hypothesize that the problem of missing values might in some way benefit from the correlation between the variables and propose a method to learn a compressed set of representative features through an adapted version of sparse coding which is capable of identifying correlated variables and addressing the issue of missing values simultaneously. An efficient algorithm is also developed to solve the proposed formulation. We apply the proposed method on metabolic and microarray profiles collected from a group of subjects consisting of both patients with melancholic depression and healthy controls. Results show that the proposed method can not only produce meaningful clusters of variables but also generate a set of representative features that achieve superior classification performance over those generated by traditional clustering and data imputation techniques. In particular, on both datasets, we found that in comparison with the competing algorithms, the representative features learned by the proposed

  6. Melancholic depression prediction by identifying representative features in metabolic and microarray profiles with missing values.

    PubMed

    Nie, Zhi; Yang, Tao; Liu, Yashu; Li, Qingyang; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2015-01-01

    Recent studies have revealed that melancholic depression, one major subtype of depression, is closely associated with the concentration of some metabolites and biological functions of certain genes and pathways. Meanwhile, recent advances in biotechnologies have allowed us to collect a large amount of genomic data, e.g., metabolites and microarray gene expression. With such a huge amount of information available, one approach that can give us new insights into the understanding of the fundamental biology underlying melancholic depression is to build disease status prediction models using classification or regression methods. However, the existence of strong empirical correlations, e.g., those exhibited by genes sharing the same biological pathway in microarray profiles, tremendously limits the performance of these methods. Furthermore, the occurrence of missing values which are ubiquitous in biomedical applications further complicates the problem. In this paper, we hypothesize that the problem of missing values might in some way benefit from the correlation between the variables and propose a method to learn a compressed set of representative features through an adapted version of sparse coding which is capable of identifying correlated variables and addressing the issue of missing values simultaneously. An efficient algorithm is also developed to solve the proposed formulation. We apply the proposed method on metabolic and microarray profiles collected from a group of subjects consisting of both patients with melancholic depression and healthy controls. Results show that the proposed method can not only produce meaningful clusters of variables but also generate a set of representative features that achieve superior classification performance over those generated by traditional clustering and data imputation techniques. In particular, on both datasets, we found that in comparison with the competing algorithms, the representative features learned by the proposed

  7. Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance.

    PubMed

    Chapa, F; Künnecke, B; Calvo, R; Escobar del Rey, F; Morreale de Escobar, G; Cerdán, S

    1995-01-01

    The effects of adult-onset hypothyroidism on the metabolic compartmentation of the cerebral tricarboxylic acid cycle and the gamma-aminobutyric acid (GABA) shunt have been investigated by 13C nuclear magnetic resonance spectroscopy. Rats thyroidectomized as adults and age-matched controls were infused in the right jugular vein with unlabeled or (1,2-13C2) acetate solutions for 60 min. At the end of the infusion, the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by 13C nuclear magnetic resonance and reverse-phase HPLC. Thyroidectomized animals showed a decrease in the incorporation of 13C from (1,2-13C2) acetate in cerebral metabolites and an increase in the concentrations of unlabeled glutamate and GABA. Computer-assisted interpretation of the 13C multiplets observed for the carbons of glutamate, glutamine, and GABA indicated that adult-onset hypothyroidism produced 1) a decrease in the contribution of infused (1,2-13C2) acetate to the glial tricarboxylic acid cycle; 2) an increase in the contribution of unlabeled acetyl-CoA to the neuronal tricarboxylic acid cycle; and 3) impairments in the exchange of glutamate, glutamine, and GABA between the neuronal and glial compartments. Despite the fact that the adult brain has often been considered metabolically unresponsive to thyroid hormone status, present results show metabolic alterations in the neuronal and glial compartments that are reversible with substitution therapy. PMID:7828544

  8. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature.

    PubMed

    Wortmann, Saskia B; Duran, Marinus; Anikster, Yair; Barth, Peter G; Sperl, Wolfgang; Zschocke, Johannes; Morava, Eva; Wevers, Ron A

    2013-11-01

    Increased urinary 3-methylglutaconic acid excretion is a relatively common finding in metabolic disorders, especially in mitochondrial disorders. In most cases 3-methylglutaconic acid is only slightly elevated and accompanied by other (disease specific) metabolites. There is, however, a group of disorders with significantly and consistently increased 3-methylglutaconic acid excretion, where the 3-methylglutaconic aciduria is a hallmark of the phenotype and the key to diagnosis. Until now these disorders were labelled by roman numbers (I-V) in the order of discovery regardless of pathomechanism. Especially, the so called "unspecified" 3-methylglutaconic aciduria type IV has been ever growing, leading to biochemical and clinical diagnostic confusion. Therefore, we propose the following pathomechanism based classification and a simplified diagnostic flow chart for these "inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature". One should distinguish between "primary 3-methylglutaconic aciduria" formerly known as type I (3-methylglutaconyl-CoA hydratase deficiency, AUH defect) due to defective leucine catabolism and the--currently known--three groups of "secondary 3-methylglutaconic aciduria". The latter should be further classified and named by their defective protein or the historical name as follows: i) defective phospholipid remodelling (TAZ defect or Barth syndrome, SERAC1 defect or MEGDEL syndrome) and ii) mitochondrial membrane associated disorders (OPA3 defect or Costeff syndrome, DNAJC19 defect or DCMA syndrome, TMEM70 defect). The remaining patients with significant and consistent 3-methylglutaconic aciduria in whom the above mentioned syndromes have been excluded, should be referred to as "not otherwise specified (NOS) 3-MGA-uria" until elucidation of the underlying pathomechanism enables proper (possibly extended) classification. PMID:23296368

  9. The influence of intravenous laser irradiation of blood on some metabolic and functional parameters in intact rabbits and experimental cerebral ischaemia

    NASA Astrophysics Data System (ADS)

    Nechipurenko, N.; Vasilevskaya, L.; Musienko, J.; Maslova, G.

    2007-07-01

    It has been studied the intravenous laser irradiation of blood (ILIB) influence with helium-neon laser (HNL) of 630 nm wavelength on some of lipid peroxidation (LPO) and antioxidant system (AOS) findings, aside-base status (ABS) and blood oxygen transport (BOT), state of dermal microhaemodynamics (MGD) in the intact rabbits and after modeling of local ischemia of brain (LIB). Depending on conditions of organism functioning (norm or brain ischaemia) ILIB has resulted in stimulating or normalizing effects on the whole metabolic and microhaemocirculation processes which had been studied during our investigation. It is discussed the mechanisms of pathogenetic directivity of ILIB influence in cerebral ischaemia

  10. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine

    PubMed Central

    Mellon, Eric A.; Beesam, R. Shashank; Baumgardner, James E.; Borthakur, Arijitt; Witschey, Walter R.; Reddy, Ravinder

    2009-01-01

    Despite the importance of metabolic disturbances in many diseases, there are currently no clinically used methods for the detection of oxidative metabolism in vivo. To address this deficiency, 17O MRI techniques are scaled from small animals to swine as a large animal model of human inhalation and circulation. The hemispheric cerebral metabolic rate of oxygen consumption (CMRO2) is estimated in swine by detection of metabolically produced H217O by rapid T1ρ-weighted proton magnetic resonance imaging on a 1.5 Tesla clinical scanner. The 17O is delivered as oxygen gas by a custom, minimal-loss, precision-delivery breathing circuit and converted to H217O by oxidative metabolism. A model for gas arterial input is presented for the deeply breathing large animal. The arterial input function for recirculation of metabolic water is measured by arterial blood sampling and high field 17O spectroscopy. It is found that minimal metabolic water “wash-in” occurs before 60 seconds. A high temporal resolution pulse sequence is employed to measure CMRO2 during those 60 seconds after delivery begins. Only about one tidal volume of 17O enriched oxygen gas is used per measurement. Proton measurements of signal change due to metabolically produced water are correlated with 17O in vivo spectroscopy. Using these techniques, the hemispheric CMRO2 in swine is estimated to be 1.23 ± 0.26 μmol/g/min, consistent with existing literature values. All of the technology used to perform these CMRO2 estimates can easily be adapted to clinical MR scanners, and it is hoped that this work will lead to future studies of human disease. PMID:19428508

  11. Use of 2-deoxy-D(1-/sup 11/C)glucose for the determination of local cerebral glucose metabolism in humans: variation within and between subjects

    SciTech Connect

    Reivich, M.; Alavi, A.; Wolf, A.; Greenberg, J.H.; Fowler, J.; Christman, D.; MacGregor, R.; Jones, S.C.; London, J.; Shiue, C.; Yonekura, Y.

    1982-09-01

    The deoxyglucose technique for the measurement of local cerebral glucose metabolism (LCMRgl) has been widely applied in animals utilizing /sup 14/C-deoxyglucose and in humans employing /sup 18/F-fluorodeoxyglucose. Repeat studies in humans over a relatively brief period of time have not been possible because of the 110-min half-life of /sup 18/F. With the synthesis of /sup 11/C-deoxyglucose it has now become possible to utilize this short-lived (20 min) tracer for the measurement of LCMRgl and to determine its variability within subjects over a 2-h period. The kinetic rate constants for /sup 11/C-deoxyglucose were determined for gray and white matter and found to be very similar to those for /sup 18/F-fluorodeoxyglucose, suggesting that these two analogues of glucose have similar affinities for the facilitated transport system and are similar substrates for hexokinase in the brain. The coefficient of variation of repeated measurements of LCMRgl in a series of six normal subjects was 5.5% to 8.7% for various gray matter structures and 9.7% and 14.0% for white matter structures. The pattern of cerebral metabolic rates is relatively constant in a given individual when the conditions of the study are unchanged. The ability to make repeat measurements in the same subject reduces the variance due to between-subject differences, allowing smaller changes in LCMRgl to be detected with confidence.

  12. Cerebral Palsy

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Cerebral Palsy KidsHealth > For Teens > Cerebral Palsy Print A A ... do just what everyone else does. What Is Cerebral Palsy? Cerebral palsy (CP) is a disorder of the ...

  13. Control of the cerebral circulation and metabolism by the rostral ventrolateral medulla: Possible role in the cerebrovascular response to hypoxia

    SciTech Connect

    Underwood, M.D.

    1988-01-01

    Neurons within the rostral ventrolateral medulla (RVL) corresponding to the location of adrenaline neurons of the C1 group (C1 area) maintain resting levels of arterial pressure (AP) and mediate the reflex cardiovascular responses to baro- and chemoreceptor activation and cerebral ischemia. The author therefore sought to determine whether neurons in the C1 area: (a) modulate regional cerebral blood flow (rCBF) and/or cerebral glucose utilization (rCGU), (b) participate in the maintenance of resting levels of CBF and CGU, and (c) mediate the CBF response to hypoxia. Rats were anesthetized, paralyzed and ventilated. The RVL was stimulated electrically or chemically, with kainic acid; lesions were placed electrolytically. rCBF was measured using 14-C-iodoantipyrine and rCGU with {sup 14}C-2-deoxyglucose in 11 dissected brain regions.

  14. Features of an altered AMPK metabolic pathway in Gilbert’s Syndrome, and its role in metabolic health

    PubMed Central

    Mölzer, Christine; Wallner, Marlies; Kern, Carina; Tosevska, Anela; Schwarz, Ursula; Zadnikar, Rene; Doberer, Daniel; Marculescu, Rodrig; Wagner, Karl-Heinz

    2016-01-01

    Energy metabolism, involving the ATP-dependent AMPK-PgC-Ppar pathway impacts metabolic health immensely, in that its impairment can lead to obesity, giving rise to disease. Based on observations that individuals with Gilbert’s syndrome (GS; UGT1A1*28 promoter mutation) are generally lighter, leaner and healthier than controls, specific inter-group differences in the AMPK pathway regulation were explored. Therefore, a case-control study involving 120 fasted, healthy, age- and gender matched subjects with/without GS, was conducted. By utilising intra-cellular flow cytometry (next to assessing AMPKα1 gene expression), levels of functioning proteins (phospho-AMPK α1/α2, PgC 1 α, Ppar α and γ) were measured in PBMCs (peripheral blood mononucleated cells). In GS individuals, rates of phospho-AMPK α1/α2, -Ppar α/γ and of PgC 1α were significantly higher, attesting to a boosted fasting response in this condition. In line with this finding, AMPKα1 gene expression was equal between the groups, possibly stressing the post-translational importance of boosted fasting effects in GS. In reflection of an apparently improved health status, GS individuals had significantly lower BMI, glucose, insulin, C-peptide and triglyceride levels. Herewith, we propose a new theory to explain why individuals having GS are leaner and healthier, and are therefore less likely to contract metabolic diseases or die prematurely thereof. PMID:27444220

  15. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  16. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity

    PubMed Central

    Brahe, L K; Le Chatelier, E; Prifti, E; Pons, N; Kennedy, S; Hansen, T; Pedersen, O; Astrup, A; Ehrlich, S D; Larsen, L H

    2015-01-01

    Background: Gut microbial gene richness and specific bacterial species are associated with metabolic risk markers in humans, but the impact of host physiology and dietary habits on the link between the gut microbiota and metabolic markers remain unclear. The objective of this study was to identify gut metagenomic markers associated with estimates of insulin resistance, lipid metabolism and inflammation in obesity, and to explore whether the associations between metagenomic and metabolic markers persisted after adjustment for body fat, age and habitual dietary intake. Methods: Faecal DNA from 53 women with obesity was analysed through quantitative metagenomic sequencing and analysis, and a systematic search was performed for bacterial genes associated with estimates of insulin resistance, inflammation and lipid metabolism. Subsequently, the correlations between metagenomic species and metabolic markers were tested by linear regression models, with and without covariate adjustment. Results: One hundred and fourteen metagenomic species correlated with metabolic markers (P<0.001) including Akkermansia muciniphila, Bilophila wadsworthia, Bifidobacterium longum and Faecalibacterium prausnitzii, but also species not previously associated with metabolic markers including Bacteroides faecis and Dorea longicatena. The majority of the identified correlations between bacterial species and metabolic markers persisted after adjustment for differences in body fat, age and dietary macronutrient composition; however, the negative correlation with insulin resistance observed for B. longum and F. prausnitzii appeared to be modified by the intake of dietary fibre and fat, respectively. Conclusions: This study shows that several gut bacterial species are linked to metabolic risk markers in obesity, also after adjustment for potential confounders, such as long-term diet composition. The study supports the use of gut metagenomic markers for metabolic disease prediction and warrants

  17. Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of chromium-containing dietary supplements is widespread among patients with type 2 diabetes as a means of improving glucose metabolism. However, chromium’s role as a potential therapy for patients at high risk for developing type 2 diabetes, specifically those with metabolic syndrome, is n...

  18. Cerebral, cerebellar, and colobomatous anomalies in three related males: Sex-linked inheritance in a newly recognized syndrome with features overlapping with Joubert syndrome.

    PubMed

    Kroes, Hester Y; Nievelstein, Rutger-Jan A J; Barth, Peter G; Nikkels, Peter G J; Bergmann, Carsten; Gooskens, Rob H J M; Visser, Gepke; van Amstel, Hans-Kristian Ploos; Beemer, Frits A

    2005-06-15

    We present a so far unrecognized X-linked mental retardation syndrome with features overlapping with Joubert syndrome (JBS). Two brothers showed hypotonia, mental retardation, ocular abnormalities with impaired vision and colobomas and a breathing pattern compatible with JBS. Neuroimaging revealed cerebellar vermis hypoplasia and ventriculomegaly. A tentative diagnosis of JBS was made, and autosomal recessive inheritance considered most likely. In a subsequent pregnancy that occurred after artificial donor insemination, ultrasound in the 22nd week revealed a Dandy-Walker malformation and hydrocephaly. At autopsy at 34 weeks of gestation, the male infant showed cerebellar vermis aplasia and abnormalities of the brainstem and cerebral cortex. He was considered to have the same disorder as his two half-brothers. This renders the pedigree highly suggestive of X-linked inheritance. The clinical symptoms of this syndrome resemble JBS. However, the absence of the molar tooth sign and the X-linked inheritance do not support JBS. We propose the name X-linked cerebral-cerebellar-coloboma syndrome to distinguish the two disorders. Differentiation of the two disorders is especially important in genetic counseling, where artificial donor insemination may be considered as a means of reducing the recurrence risk, or when female relatives of the patient are concerned. PMID:15887274

  19. Neuron-Specific Enolase Is Correlated to Compromised Cerebral Metabolism in Patients Suffering from Acute Bacterial Meningitis; An Observational Cohort Study

    PubMed Central

    Bartek, Jiri; Thelin, Eric Peter; Ghatan, Per Hamid; Glimaker, Martin; Bellander, Bo-Michael

    2016-01-01

    Introduction Patients suffering from acute bacterial meningitis (ABM) with a decreased level of consciousness have been shown to have an improved clinical outcome if treated with an intracranial pressure (ICP) guided therapy. By using intracranial microdialysis (MD) to monitor cerebral metabolism in combination with serum samples of biomarkers indicating brain tissue injury, S100B and Neuron Specific Enolase (NSE), additional information might be provided. The aim of this study was to evaluate biomarkers in serum and MD parameters in patients with ABM. Methods From a prior study on patients (n = 52) with a confirmed ABM and impaired consciousness (GCS ≤ 9, or GCS = 10 combined with lumbar spinal opening pressure > 400 mmH2O), a subgroup of patients (n = 21) monitored with intracerebral MD and biomarkers was included in the present study. All patients were treated in the NICU with intracranial pressure (ICP) guided therapy. Serum biomarkers were obtained at admission and every 12 hours. The MD parameters glucose, lactate, pyruvate and glycerol were analyzed. Outcome was assessed at 12–55 months after discharge from hospital. Mann-Whitney U-Test and Wilcoxon matched-pairs signed rank test were applied. Results The included patients had a mean GCS of 8 (range, 3–10) on admission and increased ICP (>20 mmHg) was observed in 62% (n = 13/21) of the patients. Patients with a lactate:pyruvate ratio (LPR) >40 (n = 9/21, 43%) had significantly higher peak levels of serum NSE (p = 0.03), with similar, although non-significant observations made in patients with high levels of glycerol (>500 μmol/L, p = 0.11) and those with a metabolic crisis (Glucose <0.8 mmol/L, LPR >25, p = 0.09). No associations between serum S100B and MD parameters were found. Furthermore, median MD glucose levels decreased significantly between day 1 (0–24h) and day 3 (48–72h) after admission to the NICU (p = 0.0001). No correlation between MD parameters or biomarkers and outcome was found

  20. Cerebral Palsy (CP) Quiz

    MedlinePlus

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  1. Triheptanoin for glucose transporter type I deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate and cognitive indices by a food supplement

    PubMed Central

    Pascual, Juan M.; Liu, Peiying; Mao, Deng; Kelly, Dorothy; Hernandez, Ana; Sheng, Min; Good, Levi B.; Ma, Qian; Marin-Valencia, Isaac; Zhang, Xuchen; Park, Jason Y.; Hynan, Linda S.; Stavinoha, Peter; Roe, Charles R.; Lu, Hanzhang

    2015-01-01

    Objective G1D is commonly associated with electrographic spike-wave and - less-noticeably – with absence seizures. The G1D syndrome has long been attributed to energy (i.e., ATP-synthetic) failure, as have experimental, toxic-rodent epilepsies to impaired brain metabolism and tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, a (seldom-acknowledged) function of glucose and other substrates is the generation of brain TCAs via carbon-donor reactions collectively named anaplerosis. However, TCAs are preserved in murine G1D. This renders inferences about energy failure premature and suggests a different hypothesis, also grounded on our findings, that consumption of alternate TCA precursors is stimulated, potentially detracting from other functions. Second, common ketogenic diets can ameliorate G1D seizures, but lead to a therapeutically-counterintuitive reduction in blood glucose available to the brain, and they can prove ineffective in 1/3 of cases. While developing G1D treatments, all of this motivated us to: a) uphold (rather than attenuate) the residual brain glucose flux that all G1D patients possess; and b) stimulate the TCA cycle, including anaplerosis. Therefore, we tested the medium-chain triglyceride triheptanoin, a widely-used medical food supplement that can fulfill both of these metabolic roles. The rationale is that ketone bodies derived from ketogenic diets are not anaplerotic, in contrast with triheptanoin metabolites, as we have shown in the G1D mouse brain. Design We supplemented the regular diet of a case series of G1D patients with food-grade triheptanoin. First we confirmed that, despite their frequent electroencephalographic (EEG) presence as spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used EEG, quantitative neuropsychological, blood analytical, and MRI cerebral metabolic rate measurements as main outcomes. Setting Academic and

  2. Influence of age upon the cerebral metabolic changes induced by acute hypoxia on the synaptosomes from dog brain.

    PubMed

    Benzi, G; Arrigoni, E; Agnoli, A; Raimondo, S; Fulle, D; Pastoris, O; Curti, D; Villa, R F

    1982-01-01

    The synaptosomal fraction obtained from the motor area of the cerebral cortex of normocapnic, normoxic or hypoxic "young adult," "mature" and "senescent" beagle dogs is incubated and analyzed for : ATP, ADP, AMP, creatine phosphate, pyruvate and lactate. The data are compared with those obtained from the whole controlateral cortical motor area, by the surface freezing technique. After hypoxic hypoxia /15 min; PaO2 = 17-19 mm Hg), the metabolite contents and ratios are differently affected by ageing when the evaluations are performed in the incubated synaptosomal preparation or in the controlateral whole cerebral tissue. In fact, ageing does not affect so much the cerebral changes that occur in the overall energetic state during the hypoxic assault in vivo, but rather those that the synaptosomes remember the tend to reverse during the subsequent incubation in vitro. The protective action of several drugs on the synaptosomal phosphorylation state is tested. Phenobarbital shows a quite broad, age-independent spectrum of action. (-)Eburnamonine and dihydroergocristine exhibits a more limited, age-dependent effectiveness, but are devoid of anesthetic action. Papaverine proves unable to affect the tested biochemical parameters. PMID:6807702

  3. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain

    PubMed Central

    Fridman, Esteban A.; Beattie, Bradley J.; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D.

    2014-01-01

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [18F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following. PMID:24733913

  4. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain.

    PubMed

    Fridman, Esteban A; Beattie, Bradley J; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D

    2014-04-29

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following. PMID:24733913

  5. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy

    PubMed Central

    Zhao, Xiaohui; Zhou, Yu; Zeng, Bing; Yu, Min; Zhou, Quanbo; Lin, Qing; Gao, Wenchao; Ye, Huilin; Zhou, Jiajia; Li, Zhihua; Liu, Yimin; Chen, Rufu

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) cells utilize a novel non-canonical pathway of glutamine metabolism that is essential for tumor growth and redox balance. Inhibition of this metabolic pathway in PDAC can potentially synergize with therapies that increase intracellular reactive oxygen species (ROS) such as radiation. Here, we evaluated the dependence of pancreatic cancer stem cells (PCSCs) on this non-canonical glutamine metabolism pathway and researched whether inhibiting this pathway can enhance radiosensitivity of PCSCs. We showed that glutamine deprivation significantly inhibited self-renewal, decreased expression of stemness-related genes, increased intracellular ROS, and induced apoptosis in PCSCs. These effects were countered by oxaloacetate, but not α-ketoglutarate. Knockdown of glutamic-oxaloacetic transaminase dramatically impaired PCSCs properties, while glutamate dehydrogenase knockdown had a limited effect, suggesting a dependence of PCSCs on non-canonical glutamine metabolism. Additionally, glutamine deprivation significantly increased radiation-induced ROS and sensitized PCSCs to fractionated radiation. Moreover, transaminase inhibitors effectively enhanced ROS generation, promoted radiation sensitivity, and attenuated tumor growth in nude mice following radiation exposure. Our findings reveal that inhibiting the non-canonical pathway of glutamine metabolism enhances the PCSC radiosensitivity and may be an effective adjunct in cancer radiotherapy. PMID:26439804

  6. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy.

    PubMed

    Li, Doudou; Fu, Zhiqiang; Chen, Ruiwan; Zhao, Xiaohui; Zhou, Yu; Zeng, Bing; Yu, Min; Zhou, Quanbo; Lin, Qing; Gao, Wenchao; Ye, Huilin; Zhou, Jiajia; Li, Zhihua; Liu, Yimin; Chen, Rufu

    2015-10-13

    Pancreatic ductal adenocarcinoma (PDAC) cells utilize a novel non-canonical pathway of glutamine metabolism that is essential for tumor growth and redox balance. Inhibition of this metabolic pathway in PDAC can potentially synergize with therapies that increase intracellular reactive oxygen species (ROS) such as radiation. Here, we evaluated the dependence of pancreatic cancer stem cells (PCSCs) on this non-canonical glutamine metabolism pathway and researched whether inhibiting this pathway can enhance radiosensitivity of PCSCs. We showed that glutamine deprivation significantly inhibited self-renewal, decreased expression of stemness-related genes, increased intracellular ROS, and induced apoptosis in PCSCs. These effects were countered by oxaloacetate, but not α-ketoglutarate. Knockdown of glutamic-oxaloacetic transaminase dramatically impaired PCSCs properties, while glutamate dehydrogenase knockdown had a limited effect, suggesting a dependence of PCSCs on non-canonical glutamine metabolism. Additionally, glutamine deprivation significantly increased radiation-induced ROS and sensitized PCSCs to fractionated radiation. Moreover, transaminase inhibitors effectively enhanced ROS generation, promoted radiation sensitivity, and attenuated tumor growth in nude mice following radiation exposure. Our findings reveal that inhibiting the non-canonical pathway of glutamine metabolism enhances the PCSC radiosensitivity and may be an effective adjunct in cancer radiotherapy. PMID:26439804

  7. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. PMID:26048614

  8. Metabolic Features of Protochlamydia amoebophila Elementary Bodies – A Link between Activity and Infectivity in Chlamydiae

    PubMed Central

    Watzka, Margarete; Wultsch, Anna; Tziotis, Dimitrios; Montanaro, Jacqueline; Richter, Andreas; Schmitt-Kopplin, Philippe; Horn, Matthias

    2013-01-01

    The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from 13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide

  9. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.

    PubMed

    Sixt, Barbara S; Siegl, Alexander; Müller, Constanze; Watzka, Margarete; Wultsch, Anna; Tziotis, Dimitrios; Montanaro, Jacqueline; Richter, Andreas; Schmitt-Kopplin, Philippe; Horn, Matthias

    2013-01-01

    The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13)C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide

  10. Cerebral Hypoxia

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  11. [Pyruvate dehydrogenase deficiency and cerebral malformations].

    PubMed

    Eirís, J; Alvarez-Moreno, A; Briones, P; Alonso-Alonso, C; Castro-Gago, M

    1996-10-01

    Pyruvate dehydrogenase (PDH) deficiency is a major cause of primary lactic acidosis and severe global developmental delay. A deficiency of PDH E1 alpha, a subunit of the PDH complex is a prominent cause of congenital lactic acidosis. The E1 alpha cDNA and corresponding genomic DNA have been located in the short arm of the X-chromosome (Xp22-1). A isolated 'cerebral' lactic acidosis with cerebral dysgenesis is a recognized pattern of presentation of PDH deficiency. Here, we report clinical features, magnetic resonance, and biochemical studies of two females aged 6 months (case 1) and 26 months (case 2). Both had severe development delay, minor dysmorphic features, microcephaly, severe hypoplasia of the corpus callosum, cerebral atrophy, ventricular dilatation and increase in serum lactate levels without systemic acidosis. Urinary organic acid profile was compatible with PDH deficiency. Increased CSF lactate and pyruvate levels and reduced total PDH and PDH E1 activities in muscle and fibroblasts were observed in case 1. Otherwise, decreased total PDH activity in muscle but not in fibroblasts was seen in case 2. The PDH E1á gene was sequenced in the case 1 and a deletion in exon 7 was demonstrated. Dysmorphism with severe cerebral malformations in female patients merits a metabolic evaluation, including determination of lactate and pyruvate levels in CSF. PMID:8983728

  12. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals

    PubMed Central

    Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D.

    2016-01-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion—via a novel pathway—of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages. PMID:27383626

  13. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals.

    PubMed

    Najle, Sebastián R; Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D

    2016-07-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion-via a novel pathway-of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages. PMID:27383626

  14. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis.

    PubMed

    Ramesh, M; Bharatam, Prasad V

    2012-02-01

    Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms. PMID:21562823

  15. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

    PubMed Central

    Collén, Jonas; Porcel, Betina; Carré, Wilfrid; Ball, Steven G.; Chaparro, Cristian; Tonon, Thierry; Barbeyron, Tristan; Michel, Gurvan; Noel, Benjamin; Valentin, Klaus; Elias, Marek; Artiguenave, François; Arun, Alok; Aury, Jean-Marc; Barbosa-Neto, José F.; Bothwell, John H.; Bouget, François-Yves; Brillet, Loraine; Cabello-Hurtado, Francisco; Capella-Gutiérrez, Salvador; Charrier, Bénédicte; Cladière, Lionel; Cock, J. Mark; Coelho, Susana M.; Colleoni, Christophe; Czjzek, Mirjam; Da Silva, Corinne; Delage, Ludovic; Denoeud, France; Deschamps, Philippe; Dittami, Simon M.; Gabaldón, Toni; Gachon, Claire M. M.; Groisillier, Agnès; Hervé, Cécile; Jabbari, Kamel; Katinka, Michael; Kloareg, Bernard; Kowalczyk, Nathalie; Labadie, Karine; Leblanc, Catherine; Lopez, Pascal J.; McLachlan, Deirdre H.; Meslet-Cladiere, Laurence; Moustafa, Ahmed; Nehr, Zofia; Nyvall Collén, Pi; Panaud, Olivier; Partensky, Frédéric; Poulain, Julie; Rensing, Stefan A.; Rousvoal, Sylvie; Samson, Gaelle; Symeonidi, Aikaterini; Weissenbach, Jean; Zambounis, Antonios; Wincker, Patrick; Boyen, Catherine

    2013-01-01

    Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements. PMID:23503846

  16. The Features of Copper Metabolism in the Rat Liver during Development

    PubMed Central

    2015-01-01

    Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene

  17. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: The purpose of this study was to determine the effects of supplementation with a water-soluble cinnamon extract (Cinnulin PF®) on body composition and features of the metabolic syndrome. Methods: Twenty-two subjects with prediabetes and the metabolic syndrome (mean ± SD: age, BMI, systolic ...

  18. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids.

    PubMed

    McMurtrey, Richard J

    2016-03-01

    Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a

  19. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria

    PubMed Central

    Rios-Covian, David; Sánchez, Borja; Salazar, Nuria; Martínez, Noelia; Redruello, Begoña; Gueimonde, Miguel; de los Reyes-Gavilán, Clara G.

    2015-01-01

    Bacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen. The intestine is the habitat of most Bifidobacterium species, some of whose strains are considered probiotics. Bifidobacteria can synthesize exopolysaccharides (EPSs), which are complex carbohydrates that may be available in the intestinal environment. We studied the metabolism of B. fragilis when an EPS preparation from bifidobacteria was added to the growth medium compared to its behavior with added glucose. 2D-DIGE coupled with the identification by MALDI-TOF/TOF evidenced proteins that were differentially produced when EPS was added. The results were supported by RT-qPCR gene expression analysis. The intracellular and extracellular pattern of certain amino acids, the redox balance and the α-glucosidase activity were differently affected in EPS with respect to glucose. These results allowed us to hypothesize that three general main events, namely the activation of amino acids catabolism, enhancement of the transketolase reaction from the pentose-phosphate cycle, and activation of the succinate-propionate pathway, promote a shift of bacterial metabolism rendering more reducing power and optimizing the energetic yield in the form of ATP when Bacteroides grow with added EPSs. Our results expand the knowledge about the capacity of B. fragilis for adapting to complex carbohydrates and amino acids present in the intestinal environment. PMID:26347720

  20. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria.

    PubMed

    Rios-Covian, David; Sánchez, Borja; Salazar, Nuria; Martínez, Noelia; Redruello, Begoña; Gueimonde, Miguel; de Los Reyes-Gavilán, Clara G

    2015-01-01

    Bacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen. The intestine is the habitat of most Bifidobacterium species, some of whose strains are considered probiotics. Bifidobacteria can synthesize exopolysaccharides (EPSs), which are complex carbohydrates that may be available in the intestinal environment. We studied the metabolism of B. fragilis when an EPS preparation from bifidobacteria was added to the growth medium compared to its behavior with added glucose. 2D-DIGE coupled with the identification by MALDI-TOF/TOF evidenced proteins that were differentially produced when EPS was added. The results were supported by RT-qPCR gene expression analysis. The intracellular and extracellular pattern of certain amino acids, the redox balance and the α-glucosidase activity were differently affected in EPS with respect to glucose. These results allowed us to hypothesize that three general main events, namely the activation of amino acids catabolism, enhancement of the transketolase reaction from the pentose-phosphate cycle, and activation of the succinate-propionate pathway, promote a shift of bacterial metabolism rendering more reducing power and optimizing the energetic yield in the form of ATP when Bacteroides grow with added EPSs. Our results expand the knowledge about the capacity of B. fragilis for adapting to complex carbohydrates and amino acids present in the intestinal environment. PMID:26347720

  1. Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae).

    PubMed

    Lattuca, M E; Malanga, G; Aguilar Hurtado, C; Pérez, A F; Calvo, J; Puntarulo, S

    2009-12-01

    The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showed a significantly higher degree of damage than liver. The content of alpha-tocopherol, beta-carotene and catalase activity showed significantly higher values in the liver than in the gills. The ascorbyl radical (A(*)) content showed no significant differences between gills and liver. The ascorbate (AH(-)) content was 12+/-2 and 159+/-28 nmol/mg FW in gills and liver, respectively. Oxidative metabolism at the hydrophilic level was assessed as the ratio A(*)/AH(-). The ratio A(*)/AH(-) was significantly different between organs, (6+/-2)10(-5) and (5+/-2)10(-6), for the gills and the liver, respectively. Both, lipid radical content/alpha-tocopherol content and lipid radical content/beta-carotene content ratios were significantly higher in gills as compared to the values recorded for the liver, suggesting an increased situation of oxidative stress condition in the lipid phase of the gills. Taken as a whole, the O. nigricans liver exhibited a better control of oxidative damage than the gills, allowing minimization of intracellular damage when exposed to environmental stressing conditions. PMID:19706336

  2. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  3. Fetal PCB syndrome: clinical features, intrauterine growth retardation and possible alteration in calcium metabolism

    SciTech Connect

    Yamashita, F.; Hayashi, M.

    1985-02-01

    Pregnant mothers with Yusho in Fukuoka, Nagasaki and Kochi Prefectures delivered babies with a peculiar clinical manifestation which will be called fetal PCB syndrome (FPS). The birth rate incidences were 3.6% (Fukuoka Prefecture), 4% (Nagasaki Prefecture), 2.9% (Kochi Prefecture) and 3.9% (total). The manifestations consisted of dark brown pigmentation of the skin and the mucous membrane, gingival hyperplasia, exophthalmic edematous eye, dentition at birth, abnormal calcification of the skull as demonstrated by X-ray, rocker bottom heel and high incidence of light for date (low birth weight) babies. The authors suggest that there may be a possible alteration in calcium metabolism in these babies, related to the fragile egg shells observed in PCB-contaminated birds and to the female hormone-enhancing effect of PCB. The high incidence of low birth weight among these newborns and two other similar studies indicated that PCBs suppress fetal growth.

  4. Neuropsychiatric features associated with nutritional and metabolic status in a gastric bypass patient.

    PubMed

    Waserman, Jessica E; Hategan, Ana; Bourgeois, James A

    2015-01-01

    Bariatric patients may present for psychiatric evaluation due to exacerbation of preexisting psychiatric disorders, new onset psychiatric disorders and/or neuropsychiatric complications associated with abnormal nutritional and metabolic states following the surgical procedure. These neuropsychiatric complications can be insidious, and clinical manifestations may vary, possibly due to the individual central nervous system (CNS) vulnerability to nutritional decline. Lack of awareness of these complications and their symptoms can result in delays in diagnosis and treatment. Identifying and correcting underlying pathophysiologic processes that lead to such neuropsychiatric syndromes can be challenging. We report a case of a patient who developed a protracted course of mood and cognitive disorder after gastric bypass surgery, which illustrates some of the complexities encountered in diagnosing and managing these patients. PMID:25459978

  5. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria

    PubMed Central

    Roalkvam, Irene; Drønen, Karine; Stokke, Runar; Daae, Frida L.; Dahle, Håkon; Steen, Ida H.

    2015-01-01

    In this study we characterized and sequenced the genome of Arcobacter anaerophilus strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In addition, the strain grew organoheterotrophically on yeast extract, peptone, and various organic acids. We show for the first time that Arcobacter could grow on the complex organic substrate tryptone and oxidize acetate with elemental sulfur as electron acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen, nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the free-living strains had a wider metabolic range and more genes in common compared to the pathogen strain. The presence of genes for NAD+-reducing hydrogenase (hox) and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway where the end product was nitrite, which is different from other Arcobacter strains where the end product is ammonia. Altogether, our study shows that traditional characterization in combination with a modern genomics approach can expand our knowledge on free-living Arcobacter, and that this complementary approach could also provide invaluable knowledge about the physiology and metabolic pathways in other Epsilonproteobacteria from various environments. PMID:26441916

  6. Oral administration of Cimicifuga racemosa extract affects immobilization stress-induced changes in murine cerebral monoamine metabolism.

    PubMed

    Nadaoka, Isao; Yasue, Masaaki; Sami, Manabu; Kitagawa, Yasushi

    2012-04-01

    We investigated the effects of Cimicifuga racemosa (CR) plant extracts on the changes in levels of the cerebral monoamines norepinephrine (NE), dopamine (DA), and serotonin (5-HT), the respective metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA), and plasma corticosterone in mice subjected to acute immobilization stress. Single oral administration of the CR extract (1,000 mg/kg) significantly attenuated plasma corticosterone levels that had been increased as a result of enforced immobilization. Acute immobilization stress caused significant changes in the corresponding amine-to-metabolite ratios in the hypothalamus, hippocampus, and cortex; however, CR-extract treatment significantly attenuated the MHPG/NE change in the hypothalamus, and the 5-HIAA/5- HT changes in each region of the brain. Our results suggest that the CR extract interacts not only with the hypothalamic-pituitary-adrenal (HPA) axis but also with the sympathetic adrenomedullary (SAM) system under stress conditions. Thus the CR extract can alleviate acute stress responses by suppressing the changes of amine-to-metabolite ratio in brain. PMID:22572387

  7. Tin chloride enhances parvalbumin-positive interneuron survival by modulating heme metabolism in a model of cerebral ischemia.

    PubMed

    Li Volti, Giovanni; Zappalà, Agata; Leggio, Gian Marco; Mazzola, Carmen; Drago, Filippo; La Delia, Francesco; Serapide, Maria Francesca; Pellitteri, Rosalia; Giannone, Ignazio; Spatuzza, Michela; Cicirata, Valentina; Cicirata, Federico

    2011-03-29

    SnCl(2) has been reported to increase the expression of heme-oxygenase 1 (HO-1), a major antioxidant enzyme, and to decrease ischemic injury, in non-nervous tissues. This study examined the neuroprotective effect of SnCl(2) in the hippocampus of rats submitted to cerebral ischemia. SnCl(2) was administered 18 h before bilateral carotids obstruction. Changes in HO-1 expression and activity, heme content, inducible nitric oxide synthase (iNOS) expression and parvalbumin positive interneuron survival were studied. Thereafter both behavior and memory recovery were tested. The administration of SnCl(2) increased the expression of HO-1 protein and HO activity in the hippocampus and concomitantly decreased heme content at both mitochondrial and nuclear level. Furthermore, ischemized animals showed a strong increase in iNOS expression in the hippocampus, where a loss of parvalbumin positive interneurons also occurred. Pre-treatment with SnCl(2), decreased both iNOS expression in ischemized rats and increased cell survival. The beneficial effects of SnCl(2) were prevented by concomitant treatment with SnMP, a strong inhibitor of HO activity. SnCl(2) also caused an improvement in short term memory recovery. Our results showed that following SnCl(2) administration, HO-1 is strongly induced in the hippocampus and modulate iNOS expression, resulting in a strong neuroprotective effect. PMID:21276833

  8. New Insights on Cytological and Metabolic Features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): A Multidisciplinary Approach

    PubMed Central

    Honsell, Giorgio; Bonifacio, Alois; De Bortoli, Marco; Penna, Antonella; Battocchi, Cecilia; Ciminiello, Patrizia; Dell’Aversano, Carmela; Fattorusso, Ernesto; Sosa, Silvio; Yasumoto, Takeshi; Tubaro, Aurelia

    2013-01-01

    The harmful dinoflagellate Ostreopsis cf. ovata has been causing toxic events along the Mediterranean coasts and other temperate and tropical areas, with increasing frequency during the last decade. Despite many studies, important biological features of this species are still poorly known. An integrated study, using different microscopy and molecular techniques, Raman microspectroscopy and high resolution liquid chromatography-mass spectrometry (HR LC-MS), was undertaken to elucidate cytological aspects, and identify main metabolites including toxins. The species was genetically identified as O. cf. ovata, Atlantic-Mediterranean clade. The ultrastructural results show unique features of the mucilage network abundantly produced by this species to colonize benthic substrates, with a new role of trichocysts, never described before. The amorphous polysaccharidic component of mucilage appears to derive from pusule fibrous material and mucocysts. In all stages of growth, the cells show an abundant production of lipids. Different developmental stages of chloroplasts are found in the peripheral cytoplasm and in the centre of cell. In vivo Raman microspectroscopy confirms the presence of the carotenoid peridinin in O. cf. ovata, and detects in several specimen the abundant presence of unsaturated lipids structurally related to docosahexaenoic acid. The HR LC-MS analysis reveals that ovatoxin-a is the predominant toxin, together with decreasing amounts of ovatoxin-b, -d/e, -c and putative palytoxin. Toxins concentration on a per cell basis increases from exponential to senescent phase. The results suggest that benthic blooms of this species are probably related to features such as the ability to create a unique mucilaginous sheath covering the sea bottom, associated with the production of potent toxins as palytoxin-like compounds. In this way, O. cf. ovata may be able to rapidly colonize benthic substrates outcompeting other species. PMID:23460837

  9. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18)F-FDG PET and arterial spin labeling.

    PubMed

    Boscolo Galazzo, Ilaria; Mattoli, Maria Vittoria; Pizzini, Francesca Benedetta; De Vita, Enrico; Barnes, Anna; Duncan, John S; Jäger, Hans Rolf; Golay, Xavier; Bomanji, Jamshed B; Koepp, Matthias; Groves, Ashley M; Fraioli, Francesco

    2016-01-01

    The major challenge in pre-surgical epileptic patient evaluation is the correct identification of the seizure onset area, especially in MR-negative patients. In this study, we aimed to: (1) assess the concordance between perfusion, from ASL, and metabolism, from (18)F-FDG, acquired simultaneously on PET/MR; (2) verify the utility of a statistical approach as supportive diagnostic tool for clinical readers. Secondarily, we compared (18)F-FDG PET data from the hybrid PET/MR system with those acquired with PET/CT, with the purpose of validate the reliability of (18)F-FDG PET/MR data. Twenty patients with refractory focal epilepsy, negative MR and a defined electro-clinical diagnosis underwent PET/MR, immediately followed by PET/CT. Standardized uptake value ratio (SUVr) and cerebral blood flow (CBF) maps were calculated for PET/CT-PET/MR and ASL, respectively. For all techniques, z-score of the asymmetry index (zAI) was applied for depicting significant Right/Left differences. SUVr and CBF images were firstly visually assessed by two neuroimaging readers, who then re-assessed them considering zAI for reaching a final diagnosis. High agreement between (18)F-FDG PET/MR and ASL was found, showing hypometabolism and hypoperfusion in the same hemisphere in 18/20 patients, while the remaining were normal. They were completely concordant in 14/18, concordant in at least one lobe in the remaining. zAI maps improved readers' confidence in 12/20 and 15/20 patients for (18)F-FDG PET/MR and ASL, respectively. (18)F-FDG PET/CT-PET/MR showed high agreement, especially when zAI was considered. The simultaneous metabolism-perfusion acquisition provides excellent concordance on focus lateralisation and good concordance on localisation, determining useful complementary information. PMID:27222796

  10. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.

    PubMed

    Seedorf, Henning; Fricke, W Florian; Veith, Birgit; Brüggemann, Holger; Liesegang, Heiko; Strittmatter, Axel; Miethke, Marcus; Buckel, Wolfgang; Hinderberger, Julia; Li, Fuli; Hagemeier, Christoph; Thauer, Rudolf K; Gottschalk, Gerhard

    2008-02-12

    Clostridium kluyveri is unique among the clostridia; it grows anaerobically on ethanol and acetate as sole energy sources. Fermentation products are butyrate, caproate, and H2. We report here the genome sequence of C. kluyveri, which revealed new insights into the metabolic capabilities of this well studied organism. A membrane-bound energy-converting NADH:ferredoxin oxidoreductase (RnfCDGEAB) and a cytoplasmic butyryl-CoA dehydrogenase complex (Bcd/EtfAB) coupling the reduction of crotonyl-CoA to butyryl-CoA with the reduction of ferredoxin represent a new energy-conserving module in anaerobes. The genes for NAD-dependent ethanol dehydrogenase and NAD(P)-dependent acetaldehyde dehydrogenase are located next to genes for microcompartment proteins, suggesting that the two enzymes, which are isolated together in a macromolecular complex, form a carboxysome-like structure. Unique for a strict anaerobe, C. kluyveri harbors three sets of genes predicted to encode for polyketide/nonribosomal peptide synthetase hybrides and one set for a nonribosomal peptide synthetase. The latter is predicted to catalyze the synthesis of a new siderophore, which is formed under iron-deficient growth conditions. PMID:18218779

  11. A kinetic approach to assess oxidative metabolism related features in the bivalve Mya arenaria.

    PubMed

    González, Paula Mariela; Abele, Doris; Puntarulo, Susana

    2012-12-01

    Electron paramagnetic resonance uses the resonant microwave radiation absorption of paramagnetic substances to detect highly reactive and, therefore, short-lived oxygen and nitrogen centered radicals. Previously, steady state concentrations of nitric oxide, ascorbyl radical (A·) and the labile iron pool (LIP) were determined in digestive gland of freshly collected animals from the North Sea bivalve Mya arenaria. The application of a simple kinetic analysis of these data based on elemental reactions allowed us to estimate the steady state concentrations of superoxide anion, the rate of A· disappearance and the content of unsaturated lipids. This analysis applied to a marine invertebrate opens the possibility of a mechanistic understanding of the complexity of free radical and LIP interactions in a metabolically slow, cold water organism under unstressed conditions. This data can be further used as a basis to assess the cellular response to stress in a simple system as the bivalve M. arenaria that can then be compared to cells of higher organisms. PMID:22829190

  12. Clinically important features of porphyrin and heme metabolism and the porphyrias.

    PubMed

    Besur, Siddesh; Hou, Wehong; Schmeltzer, Paul; Bonkovsky, Herbert L

    2014-01-01

    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther's disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria. PMID:25372274

  13. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    PubMed Central

    Besur, Siddesh; Hou, Weihong; Schmeltzer, Paul; Bonkovsky, Herbert L.

    2014-01-01

    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria. PMID:25372274

  14. Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data

    PubMed Central

    Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B

    2014-01-01

    13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745

  15. Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants

    PubMed Central

    Diop, Mamadou; Kishimoto, Jessica; Toronov, Vladislav; Lee, David S. C.; St. Lawrence, Keith

    2015-01-01

    Neonatal neuromonitoring is a major clinical focus of near-infrared spectroscopy (NIRS) and there is an increasing interest in measuring cerebral blood flow (CBF) and oxidative metabolism (CMRO2) in addition to the classic tissue oxygenation saturation (StO2). The purpose of this study was to assess the ability of broadband NIRS combined with diffusion correlation spectroscopy (DCS) to measured changes in StO2, CBF and CMRO2 in preterm infants undergoing pharmaceutical treatment of patent ductus arteriosus. CBF was measured by both DCS and contrast-enhanced NIRS for comparison. No significant difference in the treatment-induced CBF decrease was found between DCS (27.9 ± 2.2%) and NIRS (26.5 ± 4.3%). A reduction in StO2 (70.5 ± 2.4% to 63.7 ± 2.9%) was measured by broadband NIRS, reflecting the increase in oxygen extraction required to maintain CMRO2. This study demonstrates the applicability of broadband NIRS combined with DCS for neuromonitoring in this patient population. PMID:26504641

  16. [Blood flow changes in the optic nerve head of albino rabbits following intravenous administration of brovincamine fumarate, an improver of cerebral circulation and metabolism].

    PubMed

    Nirei, M

    1996-02-01

    The blood flow changes in the optic nerve head in adult albino rabbits following intravenous administration of brovincamine fumarate, an improver of cerebral circulation and metabolism, were investigated employing the hydrogen clearance method. In the brovincamine fumarate (0.1 mg/kg)-administered group, the blood flow in the optic nerve head increased soon after injection and reached the maximal value of 124.2 +/- 7.3% against the value before injection, at 20 minutes after injection, followed by a gradual decrease in the blood flow. Statistical analysis showed a significant increase (p < 0.05) in the blood flow at 10 to 40 minutes after injection, compared with the value before injection in the brovincamine fumarate (0.1 mg/kg)-administered group, but no significant increases in the blood flow were observed in either the brovincamine fumarate (0.5 mg/kg)-administered group or the control group given no brovincamine fumarate throughout the course. No significant changes in the mean values of the blood pressure in the femoral artery, pulse rate, respiratory rate or rectal temperature were observed in any group through the experiment. To learn the mechanism of the different efficacy of the two doses, further studies are needed in light of the cyclic adenosine monophosphate (cyclic AMP) changes induced by brovincamine fumarate administration or in light of the receptor responsiveness to the drug concentration. PMID:8851150

  17. The measurement of sequential changes in cerebral blood flow and oxygen metabolism by positron computed tomography with continuous inhalation of oxygen-15 labeled gases

    SciTech Connect

    Tanada, S.; Yonekura, Y.; Senda, M.; Nishimura, K.; Tamaki, N.; Saji, H.; Fujita, T.; Kobayashi, A.; Taki, W.; Ishikawa, M.

    1984-01-01

    The use of continuous inhalation of oxygen-15 labeled gases is a widely accepted method to measure regional cerebral blood flow (CBF) and oxygen metabolism (CMRO/sub 2/) with positron computed tomography (PCT). The purpose of this study is to evaluate the feasibility to measure sequential changes in CBF and CMRO/sub 2/ by PCT. The functional images of CBF, oxygen extraction fraction (OEF), and CMRO/sub 2/ were obtained using continuous inhalation of oxygen-15 labeled carbon dioxide and oxygen. The effects of spinal drainage in CBF and CMRO/sub 2/ were studied in patients with hydrocephalus following subarachnoid hemorrhage due to the rupture of intracranial aneurysm. Following the measurement in control state, 20 ml of cerebrospinal fluid (CSF) were withdrawn gradually through lumbar puncture, and sequential PCT scans were performed. CBF and CMRO/sub 2/ were markedly depressed in the case with hydrocephalus. The drainage of CSF significantly improved OEF and CMRO/sub 2/, whereas CBF remained depressed. In patients with chronic cerebrovascular disease, the changes in CBF were studied with inhalation of 5% carbon dioxide (CO/sub 2/). CO/sub 2/ loading demonstrated the increase in CBF, while poor regional increase was observed in ''moyamoya'' disease, which permitted the assessment of vascular response to the elevation of plasma CO/sub 2/. The authors preliminary work indicated the potential usefulness of sequential PCT to study the changes in CBF and CMRO/sub 2/ with various interventions.

  18. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism

    PubMed Central

    Steinfeld, Robert; Grapp, Marcel; Kraetzner, Ralph; Dreha-Kulaczewski, Steffi; Helms, Gunther; Dechent, Peter; Wevers, Ron; Grosso, Salvatore; Gärtner, Jutta

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRα). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRα or FRβ could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development. PMID:19732866

  19. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features.

    PubMed

    Saulnier, Delphine M; Santos, Filipe; Roos, Stefan; Mistretta, Toni-Ann; Spinler, Jennifer K; Molenaar, Douwe; Teusink, Bas; Versalovic, James

    2011-01-01

    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a detailed genomic comparison of two breast milk-derived isolates representative of each group: an established probiotic strain (L. reuteri ATCC 55730) and a strain with promising probiotic features (L. reuteri ATCC PTA 6475). Transcriptomes of L. reuteri strains in different growth phases were monitored using strain-specific microarrays, and compared using a pan-metabolic model representing all known metabolic reactions present in these strains. Both strains contained candidate genes involved in the survival and persistence in the gut such as mucus-binding proteins and enzymes scavenging reactive oxygen species. A large operon predicted to encode the synthesis of an exopolysaccharide was identified in strain 55730. Both strains were predicted to produce health-promoting factors, including antimicrobial agents and vitamins (folate, vitamin B(12)). Additionally, a complete pathway for thiamine biosynthesis was predicted in strain 55730 for the first time in this species. Candidate genes responsible for immunomodulatory properties of each strain were identified by transcriptomic comparisons. The production of bioactive metabolites by human-derived probiotics may be predicted using metabolic modeling and transcriptomics. Such strategies may facilitate selection and optimization of probiotics for health promotion, disease prevention and amelioration. PMID:21559529

  20. A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome.

    PubMed

    Williams, D E; Prevost, A T; Whichelow, M J; Cox, B D; Day, N E; Wareham, N J

    2000-03-01

    Previous epidemiological studies have demonstrated relationships between individual nutrients and glucose intolerance and type 2 diabetes, but the association with the overall pattern of dietary intake has not previously been described. In order to characterize this association, 802 subjects aged 40-65 years were randomly selected from a population-based sampling frame and underwent a 75 g oral glucose-tolerance test. Principal component analysis was used to identify four dietary patterns explaining 31.7% of the dietary variation in the study cohort. These dietary patterns were associated with other lifestyle factors including socio-economic group, smoking, alcohol intake and physical activity. Component 1 was characterized by a healthy balanced diet with a frequent intake of raw and salad vegetables, fruits in both summer and winter, fish, pasta and rice and low intake of fried foods, sausages, fried fish, and potatoes. This component was negatively correlated with central obesity, fasting plasma glucose, 120 min non-esterified fatty acid and triacylglycerol, and positively correlated with HDL-cholesterol. It therefore appears to be protective for the metabolic syndrome. Component 1 was negatively associated with the risk of having undiagnosed diabetes, and this association was independent of age, sex, smoking and obesity. The findings support the hypothesis that dietary patterns are associated with other lifestyle factors and with glucose intolerance and other features of the metabolic syndrome. The results provide further evidence for the recommendation of a healthy balanced diet as one of the main components of chronic disease prevention. PMID:10884714

  1. Metabolic Determinants and Anthropometric Indicators Impact Clinical-pathological Features in Epithelial Ovarian Cancer Patients

    PubMed Central

    Vici, Patrizia; Pizzuti, Laura; Di Lauro, Luigi; Conti, Laura; Mandoj, Chiara; Antenucci, Anna; Digiesi, Giovanna; Sergi, Domenico; Amodio, Antonella; Marchetti, Paolo; Sperati, Francesca; Valle, Mario; Garofalo, Alfredo; Vizza, Enrico; Corrado, Giacomo; Vincenzoni, Cristina; Tomao, Federica; Kayal, Ramy; Marsella, Annalise; Carosi, Mariantonia; Antoniani, Barbara; Giordano, Antonio; Maugeri-Saccà, Marcello; Barba, Maddalena

    2016-01-01

    Background: Over the last twenty years, the efforts of the scientific community devoted to the comprehension and treatment of ovarian cancer have remained poorly remunerative, with the case-fatality ratio of this disease remaining disappointedly high. Limited knowledge of the basic principles regulating ovarian carcinogenesis and factors impacting the course of disease may significantly impair our ability to intervene in early stages and lessen our expectations in terms of treatment outcomes. In the present study, we sought to assess whether metabolic factors and anthropometric indicators, i.e., pre-treatment fasting glucose and body mass index, are associated with renown cancer related prognostic factors such as tumour stage and grade at diagnosis. Materials and Methods: Study participants were 147 women diagnosed with epithelial ovarian cancer and treated with platinum based regimens and/or surgery at the Regina Elena National Cancer Institute of Rome, Italy. Glucose levels were assessed at the institutional laboratories on venous blood collected in overnight fasting conditions and prior to any therapeutic procedure. Stage was coded according to the FIGO staging system based on the results of the diagnostic workup, while tumour grade was locally assessed by an expert pathologist. Participants' characteristics were descriptively analyzed for the overall study population and in a subgroup of 70 patients for whom data on body mass index (BMI) were available. FIGO stage and grade were compared by categories of pre-treatment fasting glucose defined upon the median value, i.e., 89 mg/dl. The association of interest was tested in regression models including BMI. Results: For the overall study population, patients in the lowest category of fasting glucose were significantly more likely to exhibit a FIGO stage III-IV at diagnosis compared with their counterpart in the highest glucose category (81.3 vs 66.7%, p: 0.021). Subgroup analysis in 70 patients with BMI data

  2. Cerebral Palsy

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  3. Cerebral Palsy

    MedlinePlus

    ... Loss > Birth defects & other health conditions > Cerebral palsy Cerebral palsy E-mail to a friend Please fill in ... movement problems a child has. What is spastic CP? Spastic means tight or stiff muscles, or muscles ...

  4. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  5. Cerebral palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that can involve brain and nervous system functions, such as movement, ... and thinking. There are several different types of cerebral palsy, including spastic, dyskinetic, ataxic, hypotonic, and mixed.

  6. Cerebral Palsy

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Cerebral Palsy Information Page Clinical Trials Trial of Erythropoietin Neuroprotection ... en Español Additional resources from MedlinePlus What is Cerebral Palsy? The term cerebral palsy refers to a group ...

  7. Cerebral Aneurysms

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Aneurysms Information Page Synonym(s): Aneurysm, Brain Aneurysm Condensed from ... Español Additional resources from MedlinePlus What is Cerebral Aneurysms? A cerebral aneurysm is a weak or thin ...

  8. Genome-Scale NAD(H/+) Availability Patterns as a Differentiating Feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in Relation to Fermentative Metabolism

    PubMed Central

    Acevedo, Alejandro; Aroca, German; Conejeros, Raul

    2014-01-01

    Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/+) availability characterizes fermentative behavior in both yeasts. Thus, differentiating features in S. stipitis and S. cerevisiae were determined analyzing growth sensitivity response to changes in available reducing capacity in relation to ethanol production capacity and overall metabolic flux span. Using genome-scale constraint-based metabolic models, phenotypic phase planes and shadow price analyses, an excess of available reducing capacity for growth was found in S. cerevisiae at every metabolic phenotype where growth is limited by oxygen uptake, while in S. stipitis this was observed only for a subset of those phenotypes. Moreover, by using flux variability analysis, an increased metabolic flux span was found in S. cerevisiae at growth limited by oxygen uptake, while in S. stipitis flux span was invariant. Therefore, each yeast can be characterized by a significantly different metabolic response and flux span when growth is limited by oxygen uptake, both features suggesting a higher metabolic flexibility in S. cerevisiae. By applying an optimization-based approach on the genome-scale models, three single reaction deletions were found to generate in S. stipitis the reducing capacity availability pattern found in S. cerevisiae, two of them correspond to reactions involved in the overflow phenomenon. These results show a close relationship between the growth sensitivity response given by the metabolic network and fermentative behavior. PMID:24489927

  9. Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T.

    PubMed

    Sonnay, Sarah; Duarte, João Mn; Just, Nathalie; Gruetter, Rolf

    2016-05-01

    Many tissues exhibit metabolic compartmentation. In the brain, while there is no doubt on the importance of functional compartmentation between neurons and glial cells, there is still debate on the specific regulation of pathways of energy metabolism at different activity levels. Using (13)C magnetic resonance spectroscopy (MRS) in vivo, we determined fluxes of energy metabolism in the rat cortex under α-chloralose anaesthesia at rest and during electrical stimulation of the paws. Compared to resting metabolism, the stimulated rat cortex exhibited increased glutamate-glutamine cycle (+67 nmol/g/min, +95%, P < 0.001) and tricarboxylic (TCA) cycle rate in both neurons (+62 nmol/g/min, +12%, P < 0.001) and astrocytes (+68 nmol/g/min, +22%, P = 0.072). A minor, non-significant modification of the flux through pyruvate carboxylase was observed during stimulation (+5 nmol/g/min, +8%). Altogether, this increase in metabolism amounted to a 15% (67 nmol/g/min, P < 0.001) increase in CMRglc(ox), i.e. the oxidative fraction of the cerebral metabolic rate of glucose. In conclusion, stimulation of the glutamate-glutamine cycle under α-chloralose anaesthesia is associated to similar enhancement of neuronal and glial oxidative metabolism. PMID:26823472

  10. Alterations in local cerebral metabolic rates for glucose (LCMRGlc) in childhood epilepsies as determined with FDG and PET

    SciTech Connect

    Phelps, M.E.; Chugani, H.T.; Mazziotta, J.C.; Engel, Jr.

    1985-05-01

    The authors investigated LCMRGlc in Lennox-Gastant Syndrome (LGS) (n=15), infantile spasm (IS) (n=14) and Sturge-Weber Syndrome (SWS) (n=5). In children with LGS, 3 distinct metabolic patterns are seen interically: 1) unilateral focal hypometabolism in frontal or temporal lobes, 2) unilateral diffuse hypometabolism, and 3) bilateral diffuse hypometabolism. Therapeutic implications of this classification are: surgical resection in focal (i.e., as for partial epilepsy), corpus callosotomy in diffuse unilateral, and elimination of surgery for those with bilateral diffuse hypometabolism. Babies with idiopathic IS showed symmetrical hypometabolism of lenticular nuclei and midbrain/brain stem compared to cortex and is characterized by slightly better prognosis. In contrast, babies with symtomatic IS had additional CMRGlc disturbances such as bilateral assymetric and multi focal hypometabolism in infant with neurofibromatosis; right parieto-occipital hypometabolims in infant with tuberous sclerosis; intense hypermetabolism of hypothalamus (34.5 vs 3.18 ..mu..moles/-min/100g in other regions) in another where x-ray CT showed only obstructive hydrocephalus. Findings support classical notion of subcortical involvement in this disorder. In SWS, PET showed marked hypometabolism in affected hemisphere in older children, while a 9 month old showed increased LCMRGlc unilaterally (40-50 vs 28-44 ..mu.. moles/min/100g contralateral) with cross cerebellar hypermetabolism (48-50 vs 27-31 ..mu.. moles/min/100g) with no behavioral or EEG evidence of seizure during study. PET studies of LCMRGlc appear sensitive and useful in classifying heterogeneous syndromes into subtypes regarding differential therapy and prognosis, and provide more comprehensive identification of sites of disturbance for investigating mechanisms of these disorders.

  11. Purine metabolism enzyme pattern, cytochemical characteristics and clinicopathologic features of CD10-positive childhood T-cell leukemia.

    PubMed

    Babusíková, O; Cáp, J; Hrivnáková, A; Klobusická, M; Mesárosová, A; Koníková, E

    1991-01-01

    Purine metabolism enzyme pattern, cytochemical markers and clinicopathologic features of common acute lymphoblastic leukemia antigen (cALLA; CD10)-positive, CD10-negative T acute lymphoblastic leukemia (ALL), and cALLA-positive non-T, non-B ALL (common ALL; C ALL) of children were compared. The results of immunophenotyping of blast cells in 61 children with ALL who were treated and followed during the last 7 years at the Second Pediatric Clinic in Bratislava are presented. The aim of our study was to determine the correlation of CD10 marker expression with purine enzyme activities and clinical course in ALL of children. Immunologic phenotype performed by a panel of monoclonal antibodies in indirect immunofluorescence assay revealed 3 main ALL groups: Common ALL (C ALL), T ALL and CD10+ T ALL (C + T ALL). An additional exact cytochemical marker analysis was performed in these three ALL immunologic subtypes. Two enzymes of purine metabolism, i.e. adenosine deaminase (ADA) and purine nucleosidephosphorylase (PNP) were investigated in blast cells by paper radiochromatography. Life-table analysis revealed significant prognostic differences with regard to event-free survival and overall survival in followed groups of ALL patients. Our results showed a rather high frequency of mixed (C + T) ALL phenotype. The characteristic T ALL enzyme pattern (high ADA, low PNP) was present not only in T, but also in CD10+ T ALL blast cells. The T cell marker showed to be dominant in the determination of clinical course and prognostic significance in children with ALL; children with T and CD10+ T ALL phenotype, in contrast to C ALL phenotype, experienced more frequent relapses and a shorter event-free survival. PMID:1837333

  12. Evaluation of the child with cerebral palsy.

    PubMed

    Russman, Barry S; Ashwal, Stephen

    2004-03-01

    Cerebral palsy (CP) is a common problem, occurring in about 2 to 2.5 per 1000 live births. The diagnosis of CP is based upon a history of abnormal motor development that is not progressive coupled with an examination (e.g. hypertonicity, increased reflexes, clonus) "placing" the lesion in the brain. In order to establish that a brain abnormality exists in children with CP that may, in turn, suggest an etiology and prognosis, neuroimaging is recommended with magnetic resonance imaging preferred to computed tomography. Metabolic and genetic studies should be obtained if there are atypical features in the history or on the examination. Detection of a brain malformation in a child with CP might suggest an underlying genetic or metabolic etiology. As cerebral infarction is high in children with hemiplegic CP, diagnostic testing for coagulation disorders should be considered. However, there is insufficient evidence at present to be precise as to what studies should be ordered. An electroencephalogram is not recommended unless there are features suggestive of epilepsy or a specific epileptic syndrome. As children with CP may have associated deficits of mental retardation, ophthalmologic and hearing impairments, speech and language disorders and oral-motor dysfunction, screening for these conditions should be part of the initial assessment. PMID:15132253

  13. Cerebral ischemia during surgery: an overview

    PubMed Central

    Zhou, Zhi-Bin; Meng, Lingzhong; Gelb, Adrian W; Lee, Roger; Huang, Wen-Qi

    2016-01-01

    Abstract Cerebral ischemia is the pathophysiological condition in which the oxygenated cerebral blood flow is less than what is needed to meet cerebral metabolic demand. It is one of the most debilitating complications in the perioperative period and has serious clinical sequelae. The monitoring and prevention of intraoperative cerebral ischemia are crucial because an anesthetized patient in the operating room cannot be neurologically assessed. In this paper, we provide an overview of the definition, etiology, risk factors, and prevention of cerebral ischemia during surgery.

  14. Individuals with coronary artery disease at a young age and features of the metabolic syndrome have an increased prothrombotic potential.

    PubMed

    Kok, M G M; Meijers, J C M; Pinto-Sietsma, S-J

    2014-03-01

    The relation between coagulation and atherosclerosis has been extensively described, pointing towards a hypercoagulable state in patients with atherosclerosis, especially in young individuals. However, not all studies were conclusive. It is known that the metabolic syndrome (MetS), a risk factor for coronary artery disease (CAD), is related to a higher incidence of thrombo-embolic events. We hypothesised that individuals with CAD at a young age and MetS have an increased prothrombotic potential. It was the study objective to analyse the endogenous thrombin potential (ETP) and related thrombin generation parameters in patients with CAD before the age of 51 in men and 56 in women with and without MetS features and their healthy first-degree relatives. In this case-control study we included 118 CAD patients and 50 first-degree relatives (controls). Parameters of thrombin generation were obtained with calibrated automated thrombinography. An adjusted general linear model (GLM) showed a positive association between the peak thrombin levels and the presence of CAD at a young age. Based on the NCEP criteria we divided our patient group in CAD patients with and without MetS, and compared them to the controls without MetS. We showed that CAD patients with MetS have increased ETP levels, both in comparison with healthy first-degree relatives and with CAD patients without MetS. There were no differences in ETP between patients without MetS and healthy controls. In conclusion, this study shows that individuals with CAD at a young age and MetS features have an increased prothrombotic potential, compared to CAD patients without MetS. PMID:24306178

  15. Neuropathological Changes and Clinical Features of Autism Spectrum Disorder Participants Are Similar to that Reported in Congenital and Chronic Cerebral Toxoplasmosis in Humans and Mice

    ERIC Educational Resources Information Center

    Prandota, Joseph

    2010-01-01

    Anatomic, histopathologic, and MRI/SPET studies of autistic spectrum disorders (ASD) patients' brains confirm existence of very early developmental deficits. In congenital and chronic murine toxoplasmosis several cerebral anomalies also have been reported, and worldwide, approximately two billion people are chronically infected with T. "gondii"…

  16. SERPINE1, PAI-1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction

    PubMed Central

    Lopez-Legarrea, Patricia; Mansego, Maria Luisa; Zulet, Marian Angeles; Martinez, Jose Alfredo

    2013-01-01

    Plasminogen activator inhibitor 1 (PAI-1) has been associated with metabolic disorders, through different mechanisms, which could involve changes in DNA methylation. This work aimed to assess the potential relationships of the cytosine methylation levels within SERPINE1 gene transcriptional regulatory region, which codes for PAI-1, in peripheral white blood cells with anthropometrical, metabolic and inflammatory features. Forty-six obese subjects with metabolic syndrome features followed Control or Metabolic Syndrome Reduction in Navarra (RESMENA) energy-restricted (−30%E) diets for 8 weeks. SERPINE1 transcriptional regulatory region methylation at baseline was analyzed by a microarray technical. Both dietary strategies reduced anthropometric and biochemical parameters. The Control group significantly reduced plasma PAI-1 concentrations but not the RESMENA group. Participants from both nutritional interventions with higher SERPINE1 methylation levels at baseline showed significantly major reductions in body weight, total fat mass, android fat mass, total cholesterol and triglycerides, as compared with those with lower initial SERPINE1 methylation levels. In conclusion, the DNA methylation levels of SERPINE1 transcriptional regulatory region were associated with some metabolic and anthropometric changes in obese subjects with metabolic syndrome under energy restriction, suggesting a complex epigenetic network in the regulation of this recognized pro-inflammatory marker. (www.clinicaltrials.gov; NCT01087086) PMID:24249967

  17. First Chemical Feature Based Pharmacophore Modeling of Potent Retinoidal Retinoic Acid Metabolism Blocking Agents (RAMBAs): Identification of Novel RAMBA Scaffolds

    PubMed Central

    Purushottamachar, Puranik; Patel, Jyoti B.; Gediya, Lalji K; Clement, Omoshile O.; Njar, Vincent C. O.

    2011-01-01

    The first three-dimensional (3D) pharmacophore model was developed for potent retinoidal retinoic acid metabolism blocking agents (RAMBAs) with IC50 values ranging from 0.0009 to 5.84 nM. The seven common chemical features in these RAMBAs as deduced by the Catalyst/HipHop program include five hydrophobic groups (hydrophobes), one hydrogen bond acceptor (HBA) and one ring aromatic group. Using the pharmacophore model as a 3D search query against NCI and Maybridge conformational Catalyst formatted databases; we retrieved several compounds with different structures (scaffolds) as hits. Twenty one retrieved hits were tested for RAMBA activity at 100 nM concentration. The most potent of these compounds, NCI10308597 and HTS01914 showed inhibitory potencies less (54.7% and 53.2%, respectively, at 100 nM) than those of our best previously reported RAMBAs VN/12-1 and VN/14-1 (90% and 86%, respectively, at 100 nM). Docking studies using a CYP26A1 homology model revealed that our most potent RAMBAs showed similar binding to the one observed for a series of RAMBAs reported previously by others. Our data shows the potential of our pharmacophore model in identifying structurally diverse and potent RAMBAs. Further refinement of the model and searches of other robust databases is currently in progress with a view to identifying and optimizing new leads. PMID:22130607

  18. Clustering of immunological, metabolic and genetic features in latent autoimmune diabetes in adults: evidence from principal component analysis.

    PubMed

    Pes, Giovanni Mario; Delitala, Alessandro Palmerio; Errigo, Alessandra; Delitala, Giuseppe; Dore, Maria Pina

    2016-06-01

    Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers

  19. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes

    PubMed Central

    Morris, Jodie L.; Bridson, Tahnee L.; Alim, Md Abdul; Rush, Catherine M.; Rudd, Donna M.; Govan, Brenda L.; Ketheesan, Natkunam

    2016-01-01

    ABSTRACT The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  20. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes.

    PubMed

    Morris, Jodie L; Bridson, Tahnee L; Alim, Md Abdul; Rush, Catherine M; Rudd, Donna M; Govan, Brenda L; Ketheesan, Natkunam

    2016-01-01

    The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D. PMID:27402965

  1. [Cerebral microdialysis. Brain metabolism monitoring].

    PubMed

    Esteban Jarque, Encarna; Expósito Mozas, Lourdes; Olalla Martín, Mercedes; Alvarez Alvarez, Irene

    2002-09-01

    This is a novel technique which provides information about all the happenings going on in the brain and which helps to better interpret the complete physiologic pathology of a patient suffering from serious cranial encephalitic trauma. The authors describe how to put this technique into practice, what materials are necessary to do so, and what conclusions may be obtained from biochemical analysis. PMID:13677751

  2. Cerebral palsy.

    PubMed

    Wimalasundera, Neil; Stevenson, Valerie L

    2016-06-01

    Cerebral palsy has always been known as a disorder of movement and posture resulting from a non-progressive injury to the developing brain; however, more recent definitions allow clinicians to appreciate more than just the movement disorder. Accurate classification of cerebral palsy into distribution, motor type and functional level has advanced research. It also facilitates appropriate targeting of interventions to functional level and more accurate prognosis prediction. The prevalence of cerebral palsy remains fairly static at 2-3 per 1000 live births but there have been some changes in trends for specific causal groups. Interventions for cerebral palsy have historically been medical and physically focused, often with limited evidence to support their efficacy. The use of more appropriate outcome measures encompassing quality of life and participation is helping to deliver treatments which are more meaningful for people with cerebral palsy and their carers. PMID:26837375

  3. Glyoxylate Metabolism Is a Key Feature of the Metabolic Degradation of 1,4-Dioxane by Pseudonocardia dioxanivorans Strain CB1190

    PubMed Central

    Grostern, Ariel; Sales, Christopher M.; Zhuang, Wei-Qin; Erbilgin, Onur

    2012-01-01

    The groundwater contaminant 1,4-dioxane (dioxane) is transformed by several monooxygenase-expressing microorganisms, but only a few of these, including Pseudonocardia dioxanivorans strain CB1190, can metabolize the compound as a sole carbon and energy source. However, nothing is yet known about the genetic basis of dioxane metabolism. In this study, we used a microarray to study differential expression of genes in strain CB1190 grown on dioxane, glycolate (a previously identified intermediate of dioxane degradation), or pyruvate. Of eight multicomponent monooxygenase gene clusters carried by the strain CB1190 genome, only the monooxygenase gene cluster located on plasmid pPSED02 was upregulated with dioxane relative to pyruvate. Plasmid-borne genes for putative aldehyde dehydrogenases, an aldehyde reductase, and an alcohol oxidoreductase were also induced during growth with dioxane. With both dioxane and glycolate, a chromosomal gene cluster encoding a putative glycolate oxidase was upregulated, as were chromosomal genes related to glyoxylate metabolism through the glyoxylate carboligase pathway. Glyoxylate carboligase activity in cell extracts from cells pregrown with dioxane and in Rhodococcus jostii strain RHA1 cells expressing the putative strain CB1190 glyoxylate carboligase gene further demonstrated the role of glyoxylate metabolism in the degradation of dioxane. Finally, we used 13C-labeled dioxane amino acid isotopomer analysis to provide additional evidence that metabolites of dioxane enter central metabolism as three-carbon compounds, likely as phosphoglycerate. The routing of dioxane metabolites via the glyoxylate carboligase pathway helps to explain how dioxane is metabolized as a sole carbon and energy source for strain CB1190. PMID:22327578

  4. Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190.

    PubMed

    Grostern, Ariel; Sales, Christopher M; Zhuang, Wei-Qin; Erbilgin, Onur; Alvarez-Cohen, Lisa

    2012-05-01

    The groundwater contaminant 1,4-dioxane (dioxane) is transformed by several monooxygenase-expressing microorganisms, but only a few of these, including Pseudonocardia dioxanivorans strain CB1190, can metabolize the compound as a sole carbon and energy source. However, nothing is yet known about the genetic basis of dioxane metabolism. In this study, we used a microarray to study differential expression of genes in strain CB1190 grown on dioxane, glycolate (a previously identified intermediate of dioxane degradation), or pyruvate. Of eight multicomponent monooxygenase gene clusters carried by the strain CB1190 genome, only the monooxygenase gene cluster located on plasmid pPSED02 was upregulated with dioxane relative to pyruvate. Plasmid-borne genes for putative aldehyde dehydrogenases, an aldehyde reductase, and an alcohol oxidoreductase were also induced during growth with dioxane. With both dioxane and glycolate, a chromosomal gene cluster encoding a putative glycolate oxidase was upregulated, as were chromosomal genes related to glyoxylate metabolism through the glyoxylate carboligase pathway. Glyoxylate carboligase activity in cell extracts from cells pregrown with dioxane and in Rhodococcus jostii strain RHA1 cells expressing the putative strain CB1190 glyoxylate carboligase gene further demonstrated the role of glyoxylate metabolism in the degradation of dioxane. Finally, we used (13)C-labeled dioxane amino acid isotopomer analysis to provide additional evidence that metabolites of dioxane enter central metabolism as three-carbon compounds, likely as phosphoglycerate. The routing of dioxane metabolites via the glyoxylate carboligase pathway helps to explain how dioxane is metabolized as a sole carbon and energy source for strain CB1190. PMID:22327578

  5. A diet rich in OMEGA-6 polyunsaturated fat and sucrose reproduces key features of metabolic syndrome in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine whether a diet enriched in v-6 fatty acids and sucrose will reproduce features of metabolic syndrome in C57BL/6 mice. 4- to 7-week-old male C57BL/6 mice were randomized to chow (13% kcal fat, lard and corn oil) or high fat/high sucrose (HF/HS) diet (48% kcal fat, corn oil) for a period ...

  6. Subpathway-CorSP: Identification of metabolic subpathways via integrating expression correlations and topological features between metabolites and genes of interest within pathways.

    PubMed

    Feng, Chenchen; Zhang, Jian; Li, Xuecang; Ai, Bo; Han, Junwei; Wang, Qiuyu; Wei, Taiming; Xu, Yong; Li, Meng; Li, Shang; Song, Chao; Li, Chunquan

    2016-01-01

    Metabolic pathway analysis is a popular strategy for comprehensively researching metabolites and genes of interest associated with specific diseases. However, the traditional pathway identification methods do not accurately consider the combined effect of these interesting molecules and neglects expression correlations or topological features embedded in the pathways. In this study, we propose a powerful method, Subpathway-CorSP, for identifying metabolic subpathway regions. This method improved on original pathway identification methods by using a subpathway identification strategy and emphasizing expression correlations between metabolites and genes of interest based on topological features within the metabolic pathways. We analyzed a prostate cancer data set and its metastatic sub-group data set with detailed comparison of Subpathway-CorSP with four traditional pathway identification methods. Subpathway-CorSP was able to identify multiple subpathway regions whose entire corresponding pathways were not detected by traditional pathway identification methods. Further evidences indicated that Subpathway-CorSP provided a robust and efficient way of reliably recalling cancer-related subpathways and locating novel subpathways by the combined effect of metabolites and genes. This was a novel subpathway strategy based on systematically considering expression correlations and topological features between metabolites and genes of interest within given pathways. PMID:27625019

  7. Single feature polymorphism (SFP)-based selective sweep identification and association mapping of growth-related metabolic traits in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background Natural accessions of Arabidopsis thaliana are characterized by a high level of phenotypic variation that can be used to investigate the extent and mode of selection on the primary metabolic traits. A collection of 54 A. thaliana natural accession-derived lines were subjected to deep genotyping through Single Feature Polymorphism (SFP) detection via genomic DNA hybridization to Arabidopsis Tiling 1.0 Arrays for the detection of selective sweeps, and identification of associations between sweep regions and growth-related metabolic traits. Results A total of 1,072,557 high-quality SFPs were detected and indications for 3,943 deletions and 1,007 duplications were obtained. A significantly lower than expected SFP frequency was observed in protein-, rRNA-, and tRNA-coding regions and in non-repetitive intergenic regions, while pseudogenes, transposons, and non-coding RNA genes are enriched with SFPs. Gene families involved in plant defence or in signalling were identified as highly polymorphic, while several other families including transcription factors are depleted of SFPs. 198 significant associations between metabolic genes and 9 metabolic and growth-related phenotypic traits were detected with annotation hinting at the nature of the relationship. Five significant selective sweep regions were also detected of which one associated significantly with a metabolic trait. Conclusions We generated a high density polymorphism map for 54 A. thaliana accessions that highlights the variability of resistance genes across geographic ranges and used it to identify selective sweeps and associations between metabolic genes and metabolic phenotypes. Several associations show a clear biological relationship, while many remain requiring further investigation. PMID:20302660

  8. Cerebral Palsy

    MedlinePlus

    ... Español (Spanish) Recommend on Facebook Tweet Share Compartir Cerebral palsy (CP) is a group of disorders that affect a ... ability to move and maintain balance and posture. CP is the most common motor disability in childhood. ...

  9. Cerebral Arteriosclerosis

    MedlinePlus

    ... Cerebral arteriosclerosis is the result of thickening and hardening of the walls of the arteries in the ... cause an ischemic stroke. When the thickening and hardening is uneven, arterial walls can develop bulges (called ...

  10. Cerebral angiography

    MedlinePlus

    ... Cerebral angiography is done in the hospital or radiology center. You lie on an x-ray table. ... be done in preparation for medical treatment (interventional radiology procedures) by way of certain blood vessels. What ...

  11. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease—Implications for Prevention

    PubMed Central

    McCarty, Mark F.

    2015-01-01

    Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways—exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine—which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine—mediate this benefit. Ameliorating the risk factors for SVD—including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine—also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  12. Effect of curcumin on diabetic rat model of cerebral ischemia.

    PubMed

    Miao, Mingsan; Cheng, Bolin; Li, Min

    2015-01-01

    To investigate the effect of curcumin on cerebral ischemia in diabetic rats the effects and features. intravenous injection alloxan diabetes model, to give alloxan first seven days the tail measured blood glucose value, the election successful model rats were fed with large, medium and small doses of curcumin suspension, Shenqijiangtang suspension and the same volume of saline, administered once daily. The first 10 days after administration 2h (fasting 12h) rat tail vein blood glucose values measured in the first 20 days after administration of 2h (fasting 12h), do cerebral ischemia surgery; rapid carotid artery blood after 30min rats were decapitated, blood serum, blood glucose and glycated serum protein levels; take part of the brain homogenates plus nine times the amount of normal saline, made 10 percent of brain homogenates. Another part of the brain tissue, in the light microscope observation of pathological tissue. Compared with model group, large, medium and small doses of curcumin can significantly lower blood sugar and glycated serum protein levels, significantly reduced brain homogenates lactic acid content and lactate dehydrogenase activity; large, medium-dose curcumin can significantly increase brain homogenates Na(+)-K(+)-ATP activity, dose curcumin can significantly improve brain homogenates Ca(+)-Mg(+)- ATP activity. Curcumin can reduce blood sugar in diabetic rat model of cerebral ischemia and improve brain energy metabolism, improve their brain tissue resistance to ischemia and hypoxia, cerebral ischemia in diabetic rats have a good drop the role of sugar and protect brain tissue. PMID:25631517

  13. Two case reports indicating the dilemma in diagnosing lupus cerebritis.

    PubMed

    Goswami, Dharitri; Chatterjee, Shuddhosatta; Ahmad, Bashar Imam; Das, Shantanu

    2013-01-01

    Systemic Lupus Erythematosus (SLE) is a connective-tissue disorder commonly affecting females of reproductive age group. Lupus Cerebritis is a serious neurological complication encountered in a good percentage of SLE cases. In this report, we discuss two Lupus Cerebritis patients, who were successfully diagnosed and treated. The first case, presented with generalized seizure, severe metabolic acidosis, and shock, with a history of fever of one-month duration. The second case manifested with an attack of generalized seizure after suffering from low-grade intermittent fever and joint pains for a duration of one-and-a-half months. Central Nervous System (CNS) involvement in SLE is caused by an inflammatory response of the autoimmune system, precipitated by an increased concentration of cytokines. Prompt identification of Lupus Cerebritis is extremely difficult, mainly because there is no single laboratory or radiological confirmatory test. Assessment of the clinical features and neurological signs, along with detection of antibodies in the serum and cerebrospinal fluid are necessary to arrive at a diagnosis. Lupus Cerebritis should be included in the provisional diagnosis of a female patient of reproductive age group, who presents with complicated neurological manifestations and with no clear-cut clinical, pathological, or image finding. PMID:24479062

  14. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    SciTech Connect

    Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve; Lapidus, Alla L.; Land, Miriam L; Lovley, Derek

    2009-01-01

    Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and

  15. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    SciTech Connect

    Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve; Lapidus, Alla; Land, Miriam L.; Lovley, Derek R.

    2008-12-01

    Background: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.

  16. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    PubMed Central

    2009-01-01

    Background The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae. PMID:19473543

  17. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy Print A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  18. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  19. Prophylactic treatment with melatonin before recurrent neonatal seizures: Effects on long-term neurobehavioral changes and the underlying expression of metabolism-related genes in rat hippocampus and cerebral cortex.

    PubMed

    Ni, Hong; Sun, Qi; Tian, Tian; Feng, Xing; Sun, Bao-liang

    2015-06-01

    Although it has been suggested that the protective effect of melatonin against seizure-induced neurotoxicity involves inhibition of neuronal lipid peroxidation, current data concerning the exact molecular mechanism are still limited. This study was undertaken to investigate the changes in neurobehavioral, cognitive and lipid metabolism-related gene expressions in both hippocampus and cerebral cortex of rats subjected to recurrent neonatal seizures, and the effects of melatonin treatment before seizure (55mg/kg, 1mg/ml). 6-day-old (P6) SD rats were randomly divided into four groups of control (CONT, the same below), melatonin treated control (Mel), recurrent neonatal seizure (RS) and melatonin and RS combination treatment (Mel+RS). Neurological behavioral parameters of brain damage (plane righting reflex, negative geotaxis reaction reflex, Cliff avoidance reflex, forelimb suspension reflex) were observed on P31. Morris water maze test was performed during P29-P35. Then the protein levels of ACAT1, Cathepsin-E and Ca(2+)/calmodulin-dependent protein kinase II (CAMK II) in hippocampus and cerebral cortex were detected by western blot method. As expected, RS group showed a significant delay or reduce of the four reflexes, as well as bad performance in the Morris water maze test. Flurothyl-induced neurobehavioral toxicology was blocked by pre-treatment with melatonin. In parallel with these behavioral changes, gene expression by western blot method demonstrated that rats pretreated with melatonin (Mel+RS) showed a significant down-regulated expression of ACAT-1, Cathepsin-E and up-regulated CAMK II in hippocampus and cerebral cortex when compared with RS group. Our findings provide support for ACAT-1/Cathepsin-E as well as CaMK II being potential targets for the treatment of neonatal seizure-induced brain damage by melatonin. PMID:25818576

  20. Effect of an obesogenic diet during the juvenile period on growth pattern, fatness and metabolic, cardiovascular and reproductive features of Swine with obesity/leptin resistance.

    PubMed

    Torres-Rovira, Laura; Gonzalez-Anover, Pedro; Astiz, Susana; Caro, Alicia; Lopez-Bote, Clemente; Ovilo, Cristina; Pallares, Pilar; Perez-Solana, Maria Luz; Sanchez-Sanchez, Raul; Gonzalez-Bulnes, Antonio

    2013-06-01

    The objective of this study was to determine, in a female swine model of leptin resistance (Iberian pig), the effect of an obesogenic diet, with high saturated fat content, during the juvenile period, on the appearance of early obesity and its possible effects on metabolic syndrome-related parameters and reproductive features (puberty attainment). Thus, from 130 to 245 days-old, seven Iberian gilts had ad libitum access to food enriched with saturated fat whilst six females acted as controls and had ad libitum access to a commercial maintenance diet. Results showed that a high fat intake-level during the juvenile period induces early obesity with lower body weight and size but a higher body fat-content. Such obesity was related with impairments of glucose regulation predisposing for insulin resistance, but also with an earlier onset of puberty. However, there were no signs of hypertriglyceridemia and hypertension; the gilts diminish their intake level and modify their metabolic features by increasing insulin secretion. In conclusion, Iberian gilts freely eating saturated fat diets during the juvenile period have the prodrome of metabolic syndrome but, during their juvenile period, are still able to develop an adaptive response to the diet. PMID:23094796

  1. A Suite of Lotus japonicus Starch Mutants Reveals Both Conserved and Novel Features of Starch Metabolism1[W][OA

    PubMed Central

    Vriet, Cécile; Welham, Tracey; Brachmann, Andreas; Pike, Marilyn; Pike, Jodie; Perry, Jillian; Parniske, Martin; Sato, Shusei; Tabata, Satoshi; Smith, Alison M.; Wang, Trevor L.

    2010-01-01

    The metabolism of starch is of central importance for many aspects of plant growth and development. Information on leaf starch metabolism other than in Arabidopsis (Arabidopsis thaliana) is scarce. Furthermore, its importance in several agronomically important traits exemplified by legumes remains to be investigated. To address this issue, we have provided detailed information on the genes involved in starch metabolism in Lotus japonicus and have characterized a comprehensive collection of forward and TILLING (for Targeting Induced Local Lesions IN Genomes) reverse genetics mutants affecting five enzymes of starch synthesis and two enzymes of starch degradation. The mutants provide new insights into the structure-function relationships of ADP-glucose pyrophosphorylase and glucan, water dikinase1 in particular. Analyses of the mutant phenotypes indicate that the pathways of leaf starch metabolism in L. japonicus and Arabidopsis are largely conserved. However, the importance of these pathways for plant growth and development differs substantially between the two species. Whereas essentially starchless Arabidopsis plants lacking plastidial phosphoglucomutase grow slowly relative to wild-type plants, the equivalent mutant of L. japonicus grows normally even in a 12-h photoperiod. In contrast, the loss of GLUCAN, WATER DIKINASE1, required for starch degradation, has a far greater effect on plant growth and fertility in L. japonicus than in Arabidopsis. Moreover, we have also identified several mutants likely to be affected in new components or regulators of the pathways of starch metabolism. This suite of mutants provides a substantial new resource for further investigations of the partitioning of carbon and its importance for symbiotic nitrogen fixation, legume seed development, and perenniality and vegetative regrowth. PMID:20699404

  2. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (/sup 18/F)-2-fluoro-2-deoxy-D-glucose

    SciTech Connect

    Heiss, W.D.; Pawlik, G.; Herholz, K.; Wagner, R.; Goeldner, H.; Wienhard, K.

    1984-06-01

    Using dynamic (18F)fluorodeoxyglucose (FDG) positron emission tomography with a high-resolution, seven-slice positron camera, the kinetic constants of the original three-compartment model of Sokoloff and co-workers (1977) were determined in 43 distinct topographic brain regions of seven healthy male volunteers aged 28-38 years. Regional averages of the cerebral metabolic rate for glucose (CMRglu) were calculated both from individually fitted rate constants (CMRglukinetic) and from activity maps recorded 30-40 min after FDG injection, employing a four-parameter operational equation with standard rate constants from the literature (CMRgluautoradiographic). Metabolic rates and kinetic constants varied significantly among regions and subjects, but not between hemispheres. k1 ranged between 0.0485 +/- 0.00778 min-1 in the oval center and 0.0990 +/- 0.01347 min-1 in the primary visual cortex. k2 ranged from 0.1198 +/- 0.01533 min-1 in the temporal white matter to 0.1472 +/- 0.01817 min-1 in the cerebellar dentate nucleus. k3 was lowest (0.0386 +/- 0.01482 min-1) in temporal white matter and highest (0.0823 +/- 0.02552 min-1) in the caudate nucleus. Maximum likelihood cluster analysis revealed four homogeneous groups of brain regions according to their respective kinetic constants: (1) white matter and mixed brainstem structures; (2) cerebellar gray matter and hippocampal formations; (3) basal ganglia and frontolateral and primary visual cortex; and (4) other cerebral cortex and thalamus. Across the entire brain, k1 and k2 were positively correlated (r . 0.79); k1 and k3 showed some correlation (r . 0.59); but no significant linear association was found between k2 and k3. A strong correlation with CMRglu could be demonstrated for k1 (r . 0.88) and k3 (r . 0.90), but k2 was loosely correlated (r . 0.56).

  3. Association of PCK1 with Body Mass Index and Other Metabolic Features in Patients With Psychotropic Treatments.

    PubMed

    Saigi-Morgui, Núria; Vandenberghe, Frederik; Delacrétaz, Aurélie; Quteineh, Lina; Choong, Eva; Gholamrezaee, Mehdi; Magistretti, Pierre; Aubry, Jean-Michel; von Gunten, Armin; Preisig, Martin; Castelao, Enrique; Vollenweider, Peter; Waeber, Gerard; Kutalik, Zoltán; Conus, Philippe; Eap, Chin B

    2015-10-01

    Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years. PMID:26280835

  4. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    PubMed

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA. PMID:20209990

  5. Laminar and cytoarchitectonic features of the cerebral cortex in the Risso's dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus).

    PubMed

    Furutani, Rui

    2008-09-01

    The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V. PMID:18625031

  6. mtDNA germ line variation mediated ROS generates retrograde signaling and induces pro-cancerous metabolic features

    PubMed Central

    Singh, Rajnish Kumar; Srivastava, Archita; Kalaiarasan, Ponnusamy; Manvati, Siddharth; Chopra, Rupali; Bamezai, Rameshwar N. K.

    2014-01-01

    mtDNA non-synonymous germ line variation (G10398A; p.A114T) has remained equivocal with least mechanistic understanding in showing an association with cancer. This has necessitated showing in-vitro how an over-expression within mitochondria of either of the variants produces higher intracellular ROS, resulting in differential anchorage dependent and independent growth. Both these features were observed to be relatively higher in ND3:114T variant. An elevated amount of intracellular carbonylated proteins and a reduced activity of a key glycolytic enzyme, Pyruvate kinase M2, along with high glucose uptake and lactate production were other pro-cancerous features observed. The retrograde signaling through surplus ROS was generated by post-ND3 over-expression regulated nuclear gene expression epigenetically, involving selectively the apoptotic-DDR-pathways. The feature of ND3 over-expression, inducing ROS mediated pro-cancerous features in the cells in in vitro, was replicated in a pilot study in a limited number of sporadic breast tumors, suggesting the importance of mitochondrial germ-line variant(s) in enabling the cells to acquire pro-cancerous features. PMID:25300428

  7. Effects of reactive oxygen species on metabolism monitored by longitudinal 1H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    NASA Astrophysics Data System (ADS)

    Constans, J. M.; Collet, S.; Guillamo, J. S.; Hossu, G.; Lacombe, S.; Gauduel, Y. A.; Houée Levin, C.; Dou, W.; Ruan, S.; Barré, L.; Rioult, F.; Derlon, J. M.; Lechapt-Zalcman, E.; Valable, S.; Chapon, F.; Courtheoux, P.; Fong, V.; Kauffmann, F.

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  8. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem

    SciTech Connect

    Delgado, T.J.; Diemer, N.H.; Svendgaard, N.A.

    1986-10-01

    A double-isotope autoradiographic technique was used to evaluate CBF and glucose metabolism 2 days after a subarachnoid hemorrhage (SAH) in rats with lesions in the lower brainstem. Lesioning in the mesencephalon of the ascending catecholamine pathways from locus ceruleus and from the A1 and A2 nuclei, or lesioning in the medulla oblongata of the ascending fibers from A1 and A2, prevents the development of the global changes in flow and metabolism seen in normal animals post SAH. Also the focal low-flow areas with markedly elevated deoxyglucose uptake, which can develop in normal animals 2 days post SAH, were not seen in the lesioned animals after the SAH. The findings indicate that the A1 and A2 nuclei, which project to the hypothalamus-pituitary, are essential for the flow and metabolic changes after an SAH. The lesions per se did not change baseline flow and metabolism as compared with sham-lesioned animals.

  9. Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts

    PubMed Central

    Lozupone, Catherine; Faust, Karoline; Raes, Jeroen; Faith, Jeremiah J.; Frank, Daniel N.; Zaneveld, Jesse; Gordon, Jeffrey I.; Knight, Rob

    2012-01-01

    We lack a deep understanding of genetic and metabolic attributes specializing in microbial consortia for initial and subsequent waves of colonization of our body habitats. Here we show that phylogenetically interspersed bacteria in Clostridium cluster XIVa, an abundant group of bacteria in the adult human gut also known as the Clostridium coccoides or Eubacterium rectale group, contains species that have evolved distribution patterns consistent with either early successional or stable gut communities. The species that specialize to the infant gut are more likely to associate with systemic infections and can reach high abundances in individuals with Inflammatory Bowel Disease (IBD), indicating that a subset of the microbiota that have adapted to pioneer/opportunistic lifestyles may do well in both early development and with disease. We identified genes likely selected during adaptation to pioneer/opportunistic lifestyles as those for which early succession association and not phylogenetic relationships explain genomic abundance. These genes reveal potential mechanisms by which opportunistic gut bacteria tolerate osmotic and oxidative stress and potentially important aspects of their metabolism. These genes may not only be biomarkers of properties associated with adaptation to early succession and disturbance, but also leads for developing therapies aimed at promoting reestablishment of stable gut communities following physiologic or pathologic disturbances. PMID:22665442

  10. Intrinsic Features in MicroRNA Transcriptomes Link Porcine Visceral Rather than Subcutaneous Adipose Tissues to Metabolic Risk

    PubMed Central

    Liu, Yingkai; Chen, Lei; Long, Keren; Jin, Long; Jiang, An'an; Zhu, Li; Wang, Jinyong; Li, Mingzhou; Li, Xuewei

    2013-01-01

    MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types. Here, we present a comprehensive investigation of miRNA transcriptomes across six variant porcine adipose tissues by small RNA-sequencing. We identified 219 known porcine miRNAs, 97 novel miRNA*s, and 124 miRNAs that are conserved to other mammals. A set of universally abundant miRNAs (i.e., miR-148a-3p, miR-143-3p, miR-27b-3p, miR-let-7a-1-5p, and miR-let-7f-5p) across the distinct adipose tissues was found. This set of miRNAs may play important housekeeping roles that are involved in adipogenesis. Clustering analysis indicated significant variations in miRNA expression between the VATs and SATs, and highlighted the role of the greater omentum in responding to potential metabolic risk because of the observed enrichment in this tissue of the immune- and inflammation-related miRNAs, such as the members of miR-17-92 cluster and miR-181 family. Differential expression of the miRNAs between the VATs and SATs, and miRNA target prediction analysis revealed that the VATs-specific enriched miRNAs were associated mainly with immune and inflammation responses. In summary, the differences of miRNA expression between the VATs and SATs revealed some of their intrinsic differences and indicated that the VATs might be closely associated with increased risk of metabolic disorders. PMID:24223210

  11. Homocystinuria: A Rare Disorder Presenting as Cerebral Sinovenous Thrombosis

    PubMed Central

    ESLAMIYEH, Hossein; ASHRAFZADEH, Farah; AKHONDIAN, Javad; BEIRAGHI TOOSI, Mehran

    2015-01-01

    Objective Homocystinuria is an inborn error of amino acid metabolism caused by cystathionine beta-synthase deficiency that affects methionine metabolism. The clinical features are heterogeneous ranging from mental retardation, ectopia lentis, and osteoporosis to vascular events such as deep vein thrombosis, sagital sinus thrombosis, and myocardial infarction. Cerebral sinovenous thrombosis (CVST) is an unusual disorder in children and requires prompt and accurate management. Some causal factors for the development of CVST differ between children and adults. The majority of cases with CSVT are found to have an underlying cause for thrombosis like dehydration, infections, prothrombotic and hematologic disorders, malignancy and trauma. Although homocystinuria is usually associated with ischemic strokes, CVST as initial clinical presentation of homocystinuria is rare in children. In this article, we presented a 10-year old boy with seizure, hemiparesis, and ataxia due to CSVT caused by homocystinuria. PMID:26221164

  12. Oculoauriculovertebral spectrum and cerebral anomalies.

    PubMed Central

    Schrander-Stumpel, C T; de Die-Smulders, C E; Hennekam, R C; Fryns, J P; Bouckaert, P X; Brouwer, O F; da Costa, J J; Lommen, E J; Maaswinkel-Mooy, P D

    1992-01-01

    We report on three Dutch children with a clinical diagnosis of oculoauriculovertebral spectrum (OAVS) and hydrocephalus. The clinical features are compared to 15 published cases of OAVS and hydrocephalus. Several other cerebral abnormalities were present in the whole group. About half of the cases had cleft lip/palate, anophthalmia/microphthalmia, or a cardiac defect. Mental retardation was found in five of the surviving 11 patients and early death occurred in one-third. We compared the cases with OAVS and hydrocephalus with published reports of OAVS and other cerebral anomalies and found no significant clinical differences. However, the clinical characteristics were clearly more severely expressed than generally found in patients with OAVS. Children with OAVS and more severe clinical features, especially anophthalmia/microphthalmia and cleft lip/palate, seem to be at an increased risk for cerebral malformations and for mental retardation. Images PMID:1583660

  13. Relationship Between Metabolic Syndrome and Clinical Features, and Its Personal-Social Performance in Patients with Schizophrenia.

    PubMed

    Saatcioglu, Omer; Kalkan, Murat; Fistikci, Nurhan; Erek, Sakire; Kilic, Kasim Candas

    2016-06-01

    The aim of this study was to evaluate the metabolic syndrome (MS) criteria and also to investigate the effects of MS on medical treatment, clinical course and personal and social performance in patients with schizophrenia. One hundred-sixteen patients with schizophrenia were included in the study. Measurements of MS were calculated in all patients. Brief Psychiatric Rating Scale, Scale for the Assessment of Positive Symptoms, Scale for the Assessment of Negative Symptoms, Calgary Depression Scale for Schizophrenia, Personal and Social Performance Scale (PSP) were applied. The frequency of MS according to IDF criteria was 42.2 % among the patients. There was no significant difference between patients with and without MS in terms of age. The ratios of MS were 62.5 % for the group taking typical and atypical antipsychotics together and 35.7 % for the group taking two or more atypical antipsychotics together. The duration of disorder in patients with MS was higher than those without MS. Furthermore there was no significant difference between the schizophrenic patients with and without MS, in terms of PSP scores. Our findings showed that the duration of illness, high scores of BMI, use of clozapine or concurrent use of typical and atypical antipsychotics, depressive and negative symptoms of schizophrenia were significant risk factors for the development of MS. PMID:26174109

  14. [The specific features of lipid metabolism and changes in the plasma activity of transaminases in patients with sepsis].

    PubMed

    Shcherbakova, L N; Iakovleva, I I; Molchanova, L V

    2004-01-01

    A parallel study of changes in the activity of transaminases and the parameters of lipid metabolism was conducted in patients with sepsis or septic shock, receiving renal replacement therapy. The multiple baseline increase in the activity of gamma-glutamyltranspeptidase was observed in about 50% of the patients and the elevated level of triglycerides and very low density-lipoprotein cholesterol in all the examinees. In case of the baseline multiple increased activity of gamma-glutamyltranspeptidase as compared with the normal physiological values, the probability of a good clinical outcome was some 67%, in the survivors, the activity of the enzyme significantly increasing during therapy. In the absence of the baseline multiple increased activity of gamma-glutamyltranspeptidase, there was a good clinical outcome provided that there were positive changes in triglycerides and very low-density lipoprotein cholesterol during therapy and its probability was about 33%. It is concluded that the activity of gamma-glutamyltranspeptidase and the concentration of triglycerides and very low-density lipoprotein cholesterol may be used to evaluate the efficiency of treatment and as predictors of the outcome of treatment in patients with sepsis and septic shock. PMID:15717510

  15. Neuropathology of Acquired Cerebral Trauma.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1987-01-01

    To help educators understand the cognitive and behavioral sequelae of cerebral injury, the neuropathology of traumatic brain injury and the main neuropathological features resulting from trauma-related brain damage are reviewed. A glossary with definitions of 37 neurological terms is appended. (Author/DB)

  16. Employees with Cerebral Palsy

    MedlinePlus

    ... Resources Home | Accommodation and Compliance Series: Employees with Cerebral Palsy (CP) By Eddie Whidden, MA Preface Introduction Information About ... SOAR) at http://AskJAN.org/soar. Information about Cerebral Palsy (CP) What is CP? Cerebral palsy is a ...

  17. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS Cerebral Aneurysms Fact Sheet See a list of all NINDS ... I get more information? What is a cerebral aneurysm? A cerebral aneurysm (also known as an intracranial ...

  18. Quantitative comparison of cerebral artery development in metatherians and monotremes with non-human eutherians.

    PubMed

    Ashwell, Ken W S; Shulruf, Boaz

    2016-03-01

    A quantitative comparison of the internal diameters of cerebral feeder arteries (internal carotid and vertebral) and the aorta in developing non-human eutherians, metatherians and monotremes has been made, with the aim of determining if there are differences in cerebral arterial flow between the three infraclasses of mammals such as might reflect differences in metabolism of the developing brain. There were no significant differences between eutherians and metatherians in the internal radius of the aorta or the thickness of the aortic wall, but aortic internal radius was significantly smaller in developing monotremes than therians at the < 10 mm body length range. Aortic thickness in the developing monotremes also rose at a slower rate relative to body length than in metatherians or eutherians. The sums of the internal calibres of the internal carotid and vertebral arteries were significantly lower in metatherians as a group and monotremes compared with non-human eutherians at body lengths up to 20 mm and in metatherians at > 20 mm body length. The internal calibre of the internal carotids relative to the sum of all cerebral feeder arteries was also significantly lower in monotremes at < 10 mm body length compared with eutherians. It was noted that dasyurids differed from other metatherians in several measures of cerebral arterial calibre and aortic internal calibre. The findings suggest that: (i) both aortic outflow and cerebral arterial inflow may be lower in developing monotremes than in therians, particularly at small body size (< 20 mm); (ii) cerebral inflow may be lower in some developing metatherians than non-human eutherians; and (iii) dasyurids have unusual features of cerebral arteries possibly related to the extreme immaturity and small size at which they are born. The findings have implications for nutritional sourcing of the developing brain in the three infraclasses of mammals. PMID:26644330

  19. [Pathogenesis of infantile cerebral palsy].

    PubMed

    Semenova, K A

    1980-01-01

    Some causes of the pathological activity of postural reflexes and other motor disturbances underlying the clinical picture of infantile cerebral paralysis are considered. It is shown that disturbed metabolism of corticosteroids observed in that disease, as well as impaired functional activity of T lymphocytes promote the development of both inflammatory and neuroimmune processes in the brain, mainly in large hemispheres--and this may be one of the causes of the pathological postural activity. PMID:6969015

  20. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state

  1. Modelling the effects of cerebral microvasculature morphology on oxygen transport

    PubMed Central

    Park, Chang Sub; Payne, Stephen J.

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating

  2. [AGE-SPECIFIC METABOLIC THERAPY FOR ALCOHOL DEPENDENCE IN ELDERLY PATIENTS WITH REGARD TO THEIR AKMEOLOGICAL FEATURES].

    PubMed

    Zaplutanov, V A; Spikina, A A; Belov, V G; Parfyonov, U A; Ermishin, Ye V

    2015-01-01

    Aocoholism in the elderly determines tne protracted nature or tne pathological craving for etnanol in post-abstinence syndrome period, restricts arsenal of active pharmacotherapy and updates the search for new pharmacological therapeutic strategies. The results showed that the inclusion of the drug "Remaxol" in the treatment of clinical manifestations of craving for ethanol in post-abstinence syndrome period of associated forms of alcoholism in the elderly provides better in relation to conventional therapy dynamics of reduction of somatovegetative and neurological manifestations of alcohol withdrawal syndrome, as well as the main components of craving for alcohol, will increase the efficiency of outpatient treatment at the stage of remission. The duration of remission of mental and behavioral disorders caused by alcohol use in elderly patients is, apart from pharmacotherapy, due to such social and psychological factors and akmeological features as education, leadership potential, high social activity, a high level of social intelligence and its implementation, lack of intense intrapersonal conflict, high ductility and activity. PMID:26856103

  3. Cerebral malaria.

    PubMed

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  4. The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy: An in vivo 1H-MR spectroscopy study.

    PubMed

    Wisnowski, Jessica L; Wu, Tai-Wei; Reitman, Aaron J; McLean, Claire; Friedlich, Philippe; Vanderbilt, Douglas; Ho, Eugenia; Nelson, Marvin D; Panigrahy, Ashok; Blüml, Stefan

    2016-06-01

    Therapeutic hypothermia has emerged as the first empirically supported therapy for neuroprotection in neonates with hypoxic-ischemic encephalopathy (HIE). We used magnetic resonance spectroscopy ((1)H-MRS) to characterize the effects of hypothermia on energy metabolites, neurotransmitters, and antioxidants. Thirty-one neonates with HIE were studied during hypothermia and after rewarming. Metabolite concentrations (mmol/kg) were determined from the thalamus, basal ganglia, cortical grey matter, and cerebral white matter. In the thalamus, phosphocreatine concentrations were increased by 20% during hypothermia when compared to after rewarming (3.49 ± 0.88 vs. 2.90 ± 0.65, p < 0.001) while free creatine concentrations were reduced to a similar degree (3.00 ± 0.50 vs. 3.74 ± 0.85, p < 0.001). Glutamate (5.33 ± 0.82 vs. 6.32 ± 1.12, p < 0.001), aspartate (3.39 ± 0.66 vs. 3.87 ± 1.19, p < 0.05), and GABA (0.92 ± 0.36 vs. 1.19 ± 0.41, p < 0.05) were also reduced, while taurine (1.39 ± 0.52 vs. 0.79 ± 0.61, p < 0.001) and glutathione (2.23 ± 0.41 vs. 2.09 ± 0.33, p < 0.05) were increased. Similar patterns were observed in other brain regions. These findings support that hypothermia improves energy homeostasis by decreasing the availability of excitatory neurotransmitters, and thereby, cellular energy demand. PMID:26661180

  5. Decorticate, decerebrate and opisthotonic posturing and seizures in Kenyan children with cerebral malaria

    PubMed Central

    Idro, Richard; Otieno, Godfrey; White, Steven; Kahindi, Anderson; Fegan, Greg; Ogutu, Bernhards; Mithwani, Sadik; Maitland, Kathryn; Neville, Brian GR; Newton, Charles RJC

    2005-01-01

    Background Abnormal motor posturing is often observed in children with cerebral malaria, but the aetiology and pathogenesis is poorly understood. This study examined the risk factors and outcome of posturing in Kenyan children with cerebral malaria. Methods Records of children admitted to Kilifi district hospital with cerebral malaria from January, 1999 through December, 2001 were reviewed for posturing occurring on or after admission. The clinical characteristics, features of raised intracranial pressure, number of seizures and biochemical changes in patients that developed posturing was compared to patients who did not. Results Of the 417 children with complete records, 163 (39.1%) had posturing: 85 on admission and 78 after admission to hospital. Decorticate posturing occurred in 80, decerebrate in 61 and opisthotonic posturing in 22 patients. Posturing was associated with age ≥ 3 years (48.1 vs 35.8%, p = 0.01) and features of raised intracranial pressure on funduscopy (adjusted OR 2.1 95%CI 1.2–3.7, p = 0.009) but not other markers of severity of disease. Unlike decorticate posturing, decerebrate (adjusted OR 1.9 95%CI 1.0–3.5) and opisthotonic posturing (adjusted OR 2.9 95%CI 1.0–8.1) were, in addition, independently associated with recurrence of seizures after admission. Opisthotonus was also associated with severe metabolic acidosis (OR 4.2 95%CI 3.2–5.6, p < 0.001). Thirty one patients with posturing died. Of these, 19 (61.3%) had features suggestive of transtentorial herniation. Mortality and neurological deficits on discharge were greatest in those developing posturing after admission. Conclusion Abnormal motor posturing is a common feature of cerebral malaria in children. It is associated with features of raised intracranial pressure and recurrence of seizures, although intracranial hypertension may be the primary cause. PMID:16336645

  6. [Comprehensive therapy of cerebral and cerebrovascular decompensation (author's transl)].

    PubMed

    Hofmann, G

    1980-06-01

    Many psychiatric syndroms in older age are based on cerebral and cerebrovascular decompensation. Diagnosis of metabolic dysfunction or vascular dysregulation--leading to cerebral decompensation--and their therapy is of greater importance than immediate therapy of psychiatric syndroms. We use Strophantin therapy, hemodilation, stabilization of blood pressure, antidiabetics combined with mild sedation by low dose neuroleptics. After achieving metabolic and cerebrovascular equilibrium we start more or less specific psychiatric syndrom therapy like antidepressants. PMID:6109459

  7. [Cerebral palsy].

    PubMed

    Malagón Valdez, Jorge

    2007-01-01

    The term cerebral palsy (CP), is used for a great number of clinical neurological syndromes. The syndromes are characterized by having a common cause, motor defects. It is important, because they can cause a brain damage by presenting motor defects and some associated deficiencies, such as mental deficiency, epilepsy, language and visual defects and pseudobulbar paralysis, with the non-evolving fact. Some authors prefer using terms such as "non-evolving encephalopathies". In the treatment the utility of prevention programs of early stimulation and special rehabilitation methods, and treatment of associated deficiencies such as epilepsy, mental deficiency, language, audition and visual problems, and the attention deficit improve the prognosis in an important way. The prognosis depends on the severity of the disease and the associated manifestations. PMID:18422084

  8. First chemical feature-based pharmacophore modeling of potent retinoidal retinoic acid metabolism blocking agents (RAMBAs): identification of novel RAMBA scaffolds.

    PubMed

    Purushottamachar, Puranik; Patel, Jyoti B; Gediya, Lalji K; Clement, Omoshile O; Njar, Vincent C O

    2012-01-01

    The first three-dimensional (3D) pharmacophore model was developed for potent retinoidal retinoic acid metabolism blocking agents (RAMBAs) with IC(50) values ranging from 0.0009 to 5.84nM. The seven common chemical features in these RAMBAs as deduced by the Catalyst/HipHop program include five hydrophobic groups (hydrophobes), and two hydrogen bond acceptors. Using the pharmacophore model as a 3D search query against NCI and Maybridge conformational Catalyst formatted databases; we retrieved several compounds with different structures (scaffolds) as hits. Twenty-one retrieved hits were tested for RAMBA activity at 100nM concentration. The most potent of these compounds, NCI10308597 and HTS01914 showed inhibitory potencies less (54.7% and 53.2%, respectively, at 100nM) than those of our best previously reported RAMBAs VN/12-1 and VN/14-1 (90% and 86%, respectively, at 100nM). Docking studies using a CYP26A1 homology model revealed that our most potent RAMBAs showed similar binding to the one observed for a series of RAMBAs reported previously by others. Our data shows the potential of our pharmacophore model in identifying structurally diverse and potent RAMBAs. Further refinement of the model and searches of other robust databases is currently in progress with a view to identifying and optimizing new leads. PMID:22130607

  9. [Noradrenaline and cerebral aging].

    PubMed

    Jouvet, M; Albarede, J L; Lubin, S; Meyrignac, C

    1991-01-01

    The central functions of norepinephrine (NE) are a recent discovery: regulation of alertness and of the wakefulness-sleep cycle, maintenance of attention, memory and learning, cerebral plasticity and neuro-protection. The anatomical, histological, biochemical and physiological properties of the central noradrenergic system: extreme capacity for ramification and arborization; slow conduction, non-myelinized axons with extrasynaptic varicosities producing and releasing NE; frequency of co-transmission phenomena, and; neuromodulation with fiber effect responsible for improvement in the signal over background noise ratio and selection of significant stimuli form a true interface between the outside world and the central nervous system, notably for the neocortex in the context of the cognitive treatment of information. This central noradrenergic system is involved in the neurophysiology and the clinical features of cerebral aging (ideation-motor and cognitive function slowing down, loss of behavioral adjustment), neuro-degenerative disorders (SDAT, Parkinson's disease), certain aspects of depression and less obvious conditions (head injuries, sequelae of cerebrovascular accidents, sub-cortical dementia). The recent development of medications improving alertness (adrafinil, modafinil) with a pure central action and specifically noradrenergic, may contribute to an improvement in these multifactorial disorders. PMID:1864252

  10. United Cerebral Palsy

    MedlinePlus

    ... of UCP blog for the latest updates. United Cerebral Palsy UCP educates, advocates and provides support services to ... Partners Merz Logo Sprint Relay Copyright © 2015 United Cerebral Palsy 1825 K Street NW Suite 600 Washington, DC ...

  11. Cerebral amyloid angiopathy

    MedlinePlus

    Cerebral amyloid angiopathy is a neurological condition in which proteins called amyloid build up on the walls of the arteries ... The cause of cerebral amyloid angiopathy is unknown. Sometimes, it ... Persons with this condition have deposits of amyloid protein ...

  12. Cerebral Contusions and Lacerations

    MedlinePlus

    ... Stretch Additional Content Medical News Cerebral Contusions and Lacerations By James E. Wilberger, MD, Derrick A. Dupre, ... a direct, strong blow to the head. Cerebral lacerations are tears in brain tissue, caused by a ...

  13. Cerebral venous angiomas

    SciTech Connect

    Olson, E.; Gilmor, R.L.; Richmond, B.

    1984-04-01

    Several unusual cases of cerebral venous angiomas as well as some characteristic cases are reported. The characteristic angiographic feature is that of a collection of dilated medullary veins draining into a single large draining vein, which appears first in the early venous phase and persists into the late venous phase of the arteriogram. Computed tomography (CT) was abnormal in 12/13 cases. The draining vein was the most common abnormality identified on CT. Coronal and sagittal reconstruction may be helpful in demonstrating the draining vein. A case of large twin venous angiomas, a case of hemorrhage from a venous angioma, and a case of a venous angioma with an incidentally associated glioblastoma are presented.

  14. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  15. Cerebral perturbations during exercise in hypoxia.

    PubMed

    Verges, Samuel; Rupp, Thomas; Jubeau, Marc; Wuyam, Bernard; Esteve, François; Levy, Patrick; Perrey, Stéphane; Millet, Guillaume Y

    2012-04-15

    Reduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O(2) delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compared with normoxia, while changes in cerebral perfusion may depend on the brain region, the level of arterial oxygenation and hyperventilation induced alterations in arterial CO(2). With the use of transcranial magnetic stimulation, inconsistent changes in cortical excitability have been reported in hypoxia, whereas a greater impairment in maximal voluntary activation following a fatiguing exercise has been suggested when arterial O(2) content is reduced. Electromyographic recordings during exercise showed an accelerated rise in central motor drive in hypoxia, probably to compensate for greater muscle contractile fatigue. This accelerated development of muscle fatigue in moderate hypoxia may be responsible for increased inhibitory afferent signals to the central nervous system leading to impaired central drive. In severe hypoxia (arterial O(2) saturation <70-75%), cerebral hypoxia per se may become an important contributor to impaired performance and reduced motor drive during prolonged exercise. This review examines the effects of acute and chronic reduction in arterial O(2) (and CO(2)) on cerebral blood flow and cerebral oxygenation, neuronal function, and central drive to the muscles. Direct and indirect influences of arterial deoxygenation on central command are separated. Methodological concerns as well as future research avenues are also considered. PMID:22319046

  16. Incidental Cerebral Microbleeds and Cerebral Blood Flow in Elderly Individuals

    PubMed Central

    Gregg, Nicholas M.; Kim, Albert E.; Gurol, M. Edip; Lopez, Oscar L.; Aizenstein, Howard J.; Price, Julie C.; Mathis, Chester A.; James, Jeffrey A.; Snitz, Beth E.; Cohen, Ann D.; Kamboh, M. Ilyas; Minhas, Davneet; Weissfeld, Lisa A.; Tamburo, Erica L.; Klunk, William E.

    2016-01-01

    IMPORTANCE Cerebral microbleeds (CMBs) are collections of blood breakdown products that are a common incidental finding in magnetic resonance imaging of elderly individuals. Cerebral microbleeds are associated with cognitive deficits, but the mechanism is unclear. Studies show that individuals with CMBs related to symptomatic cerebral amyloid angiopathy have abnormal vascular reactivity and cerebral blood flow (CBF), but, to our knowledge, abnormalities in cerebral blood flow have not been reported for healthy individuals with incidental CMBs. OBJECTIVE To evaluate the association of incidental CMBs with resting-state CBF, cerebral metabolism, cerebrovascular disease, β-amyloid (Aβ), and cognition. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study of 55 cognitively normal individuals with a mean (SD) age of 86.8 (2.7) years was conducted from May 1, 2010, to May 1, 2013, in an academic medical center in Pittsburgh; data analysis was performed between June 10, 2013, and April 9, 2015. INTERVENTIONS 3-Tesla magnetic resonance imaging was performed with susceptibility-weighted imaging or gradient-recalled echo to assess CMBs, arterial spin labeling for CBF, and T1- and T2-weighted imaging for atrophy, white matter hyperintensities, and infarcts. Positron emission tomography was conducted with fluorodeoxyglucose to measure cerebral metabolism and Pittsburgh compound B for fibrillar Aβ. Neuropsychological evaluation, including the Clinical Dementia Rating scale, was performed. MAIN OUTCOMES AND MEASURES Magnetic resonance images were rated for the presence and location of CMBs. Lobar CMBs were subclassified as cortical or subcortical. Measurements of CBF, metabolism, and Aβ were compared with the presence and number of CMBs with voxelwise and region-of-interest analyses. RESULTS The presence of cortical CMBs was associated with significantly reduced CBF in multiple regions on voxelwise and region-of-interest analyses (percentage difference in global CBF,

  17. [Etiology of cerebral palsy].

    PubMed

    Jaisle, F

    1996-01-01

    The "perinatal asphyxia" is regarded to be one of the causes of cerebral palsy, though in the very most of the children with cerebral palsy there is found no hypoxia during labour. It should be mentioned, that the definition of "perinatal" and "asphyxia" neither are unic nor concret. And also there is no correlation between nonreassuring fetal heart rate patterns and acidosis in fetal blood with the incidence of cerebral palsy. Numerous studies in pregnant animals failed in proving an acute intrapartal hypoxia to be the origin of the cerebral palsy. Myers (1975) describes four patterns of anatomic brain damage after different injuries. Only his so called oligo-acidotic hypoxia, which is protracted and lasts over a longer time is leading to brain injury, which can be regarded in analogy to the injury of children with cerebral palsy. Summarising the update publications about the causes of cerebral palsy and the studies in pregnant animals there is no evidence that hypoxia during labour may be the cause of cerebral palsy. There is a great probability of a pre(and post-)natal origin of brain injury (for instance a periventricular leucomalacia found after birth) which leads to cerebral palsy. Short after labour signs of a so called "asphyxia" may occur in addition to this preexisting injury and misrepresent the cause of cerebral palsy. Finally the prepartal injury may cause both: Cerebral palsy and hypoxia. PMID:9035826

  18. Energy metabolism of the developing brain

    SciTech Connect

    Abrams, R.M.; Hutchison, A.A.

    1985-04-01

    Cerebral metabolism in utero and in the neonatal period remains incompletely understood. A major investigative technique uses /sup 14/C deoxyglucose. Species differences, behavioral states and gestational age all have an impact. Hormonal and sensory stimuli have potential influences. The use of this new investigative technique in the human will allow detailed study of the effects of a variety of pathophysiologic events and possibly of drug therapy on cerebral glucose metabolism.

  19. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    NASA Technical Reports Server (NTRS)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  20. Ependymal lined paraventricular cerebral cysts; a report of three cases

    PubMed Central

    Bouch, D. C.; Mitchell, I.; Maloney, A. F. J.

    1973-01-01

    Three cases are reported, each with a benign ependymal-lined cyst which produced clinical signs and symptoms simulating cerebrovascular disease or cerebral neoplasm. The pathological features are described and their histogenesis discussed. Images PMID:4731330

  1. Advanced cerebral monitoring in neurocritical care.

    PubMed

    Barazangi, Nobl; Hemphill, J Claude

    2008-01-01

    New cerebral monitoring techniques allow direct measurement of brain oxygenation and metabolism. Investigation using these new tools has provided additional insight into the understanding of the pathophysiology of acute brain injury and suggested new ways to guide management of secondary brain injury. Studies of focal brain tissue oxygen monitoring have suggested ischemic thresholds in focal regions of brain injury and demonstrated the interrelationship between brain tissue oxygen tension (P bt O 2 ) and other cerebral physiologic and metabolic parameters. Jugular venous oxygen saturation (SjVO 2 ) monitoring may evaluate global brain oxygen delivery and consumption, providing thresholds for detecting brain hypoperfusion and hyperperfusion. Furthermore, critically low values of P bt O 2 and SjVO 2 have also been predictive of mortality and worsened functional outcome, especially after head trauma. Cerebral microdialysis measures the concentrations of extracellular metabolites which may be relevant to cerebral metabolism or ischemia in focal areas of injury. Cerebral blood flow may be measured in the neurointensive care unit using continuous methods such as thermal diffusion and laser Doppler flowmetry. Initial studies have also attempted to correlate findings from advanced neuromonitoring with neuroimaging using dynamic perfusion computed tomography, positron emission tomography, and Xenon computed tomography. Additionally, new methods of data acquisition, storage, and analysis are being developed to address the increasing burden of patient data from neuromonitoring. Advanced informatics techniques such as hierarchical data clustering, generalized linear models, and heat map dendrograms are now being applied to multivariable patient data in order to better develop physiologic patient profiles to improve diagnosis and treatment. PMID:19127034

  2. Hemiparesis post cerebral malaria

    PubMed Central

    Taiaa, Oumkaltoum; Amil, Touriya; Darbi, Abdelatif

    2015-01-01

    Cerebral malaria is one of the most serious complications in the Plasmodium falciparum infection. In endemic areas, the cerebral malaria interested mainly children. The occurrence in adults is very rare and most interested adult traveling in tropical zones. This case report describes a motor deficit post cerebral malaria in a young adult traveling in malaria endemic area. This complication has been reported especially in children and seems very rare in adults. PMID:25995798

  3. Pediatric neuroradiology: Cerebral and cranial diseases

    SciTech Connect

    Diebler, C.; Dulac, O.

    1987-01-01

    In this book, a neuroradiologist and a neuropediatrician have combined forces to provide the widest possible knowledge in investigating cranial and cerebral disorders in infancy and childhood. Based on more than 20,000 pediatric CT examinations, with a follow-up time often exceeding ten years, the book aims to bridge interdisciplinary gaps and help radiologists, pediatricians and neurosurgeons solve the various problems of pediatric neuroradiology that frequently confront them. For each disease, the etiology, clinical manifestation, pathological lesions and radiological presentations are discussed, supported by extensive illustrations. Malformative, vascular, traumatic, tumoral, infectious and metabolic diseases are reviewed. Miscellaneous conditions presenting particular symptoms or syndromes are also studied, such as hydrocephalus and neurological complications of leukemia. Contents: Cerebral and cranial malformations; neurocutaneous syndromes; inherited metabolic diseases; infectious diseases - vascular disorders; intracranial tumors; cranial trauma - miscellaneous and subject index.

  4. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  5. Effects of ischemic stroke on dynamics of cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen Ch; Hu, Kun; Stanley, Eugene; Novak, Vera

    2004-03-01

    Cerebral vasoregulation involves several complex mechanisms adapting blood flow to fluctuations of systemic blood pressure (BP). Autonomic BP and metabolic vasoregulation are impaired after stroke and cerebral blood flow depends on systemic BP. To probe the mechanisms of cerebral autoregulation we study levels of nonlinear synchronization between cerebral blood flow velocity (BFV) and peripheral BP. We quantify the instantaneous phase of each signal employing analytic signal approach and Hilbert transform. As a marker of synchronization, we introduce a measure of cross-correlation between the instantaneous phase increments of the BFV and BP signals at different time lags. We have studied 12 subjects with minor chronic ischemic stroke and 11 matched normotensive controls (age<65years). BFV and BP of these subjects are continuously recorded during supine baseline, head-up tilt, hyperventilation and CO2 rebreathing. For control subjects we find significant synchronization between cerebral BFV and peripheral BP only for short time lags of up to 5-6 seconds, suggesting a rapid return to a steady cerebral blood flow after initial blood pressure perturbations. In contrast, for stroke subjects BFV/BP we find enhanced synchronization over longer time lags of up to 20 seconds, suggesting entrainment of cerebral blood flow velocity by slow vasomotor rhythms. These findings suggest that cerebral vasoregulation is impaired and cerebral blood flow follows the fluctuations of systemic BP in a synchronous manner. Our analysis shows that cerebral autoregulation is impaired in 10 out of the 12 stroke subjects, which is typically difficult to diagnose with conventional methods. Thus, our novel synchronization approach offers a new tool sensitive for evaluation of changes in the dynamics of cerebral autoregulation under stroke.

  6. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    PubMed

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  7. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii

    PubMed Central

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E.; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  8. Vitamin E deficiency and metabolic deficits in neuronal ceroid lipofuscinosis described by bioinformatics.

    PubMed

    Griffin, J L; Muller, D; Woograsingh, R; Jowatt, V; Hindmarsh, A; Nicholson, J K; Martin, J E

    2002-12-01

    The mnd mouse, a model of neuronal ceroid lipofusinosis (NCL), has a profound vitamin E deficiency in sera and brain, associated with cerebral deterioration characteristic of NCL. In this study, the vitamin E deficiency is corrected using dietary supplementation. However, the histopathological features associated with NCL remained. With use of a bioinformatics approach based on high-resolution solid and solution state 1H-NMR spectroscopy and principal component analysis (PCA), the deficits associated with NCL are defined in terms of a metabolic phenotype. Although vitamin E supplementation reversed some of the metabolic abnormalities, in particular the concentration of phenylalanine in extracts of cerebral tissue, PCA demonstrated that metabolic deficits associated with NCL were greater than any effects produced from vitamin E supplementation. These deficits included increased glutamate and N-acetyl-L-aspartate and decreased creatine and glutamine concentrations in aqueous extracts of the cortex, as well as profound accumulation of lipid in intact cerebral tissue. This is discussed in terms of faulty production of mitochondrial-associated membranes, thought to be central to the deficits in mnd mice. PMID:12388797

  9. Cerebral glucose utilization is reduced in second test session.

    PubMed

    Stapleton, J M; Morgan, M J; Liu, X; Yung, B C; Phillips, R L; Wong, D F; Shaya, E K; Dannals, R F; London, E D

    1997-06-01

    Cerebral glucose utilization was higher during the first positron emission tomography (PET) session than during the second session, as assayed using the PET [18F]fluorodeoxyglucose method in male human volunteers. This difference was due largely to data from subjects with low-trait anxiety, since subjects with high anxiety showed similar metabolism in both PET sessions. High-anxiety subjects showed greater right/ left ratios of cerebral metabolism than low-anxiety subjects, particularly during the second PET session. These findings suggest that the level of anxiety may be an important variable to consider in PET studies using multiple sessions. PMID:9236727

  10. Antidepressants Alter Cerebrovascular Permeability and Metabolic Rate in Primates

    NASA Astrophysics Data System (ADS)

    Preskorn, Sheldon H.; Raichle, Marcus E.; Hartman, Boyd K.

    1982-07-01

    External detection of the annihilation radiation produced by water labeled with oxygen-15 was used to measure cerebrovascular permeability and cerebral blood flow in six rhesus monkeys. Use of oxygen-15 also permitted assessment of cerebral metabolic rate in two of the monkeys. Amitriptyline produced a dose-dependent, reversible increase in permeability at plasma drug concentrations which are therapeutic for depressed patients. At the same concentrations the drug also produced a 20 to 30 percent reduction in cerebral metabolic rate. At higher doses normal autoregulation of cerebral blood flow was suspended, but responsivity to arterial carbon dioxide was normal.

  11. Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions between Bacteria and Plants is accepted for publication in MPMI

    SciTech Connect

    Karpinets, Tatiana V; Park, Byung H; Syed, Mustafa H; Klotz, Martin G; Uberbacher, Edward C

    2014-01-01

    Most bacterial symbionts of plants are phenotypically characterized by their parasitic or matualistic relationship with the host; however, the genomic characteristics that likely discriminate mutualistic symbionts from pathogens of plants are poorly understood. This study comparatively analyzed the genomes of 54 plant-symbiontic bacteria, 27 mutualists and 27 pathogens, to discover genomic determinants of their parasitic and mutualistic nature in terms of protein family domains, KEGG orthologous groups, metabolic pathways and families of carbohydrate-active enzymes (CAZymes). We further used all bacteria with sequenced genomesl, published microarrays and transcriptomics experimental datasets, and literature to validate and to explore results of the comparison. The analysis revealed that genomes of mutualists are larger in size and higher in GC content and encode greater molecular, functional and metabolic diversity than the investigated genomes of pathogens. This enriched molecular and functional enzyme diversity included constructive biosynthetic signatures of CAZymes and metabolic pathways in genomes of mutualists compared with catabolic signatures dominant in the genomes of pathogens. Another discriminative characteristic of mutualists is the co-occurence of gene clusters required for the expression and function of nitrogenase and RuBisCO. Analysis of previously published experimental data indicate that nitrogen-fixing mutualists may employ Rubisco to fix CO2 not in the canonical Calvin-Benson-Basham cycle but in a novel metabolic pathway, here called Rubisco-based glycolysis , to increase efficiency of sugar utilization during the symbiosis with plants. An important discriminative characteristic of plant pathogenic bacteria is two groups of genes likely encoding effector proteins involved in host invasion and a genomic locus encoding a putative secretion system that includes a DUF1525 domain protein conserved in pathogens of plants and of other organisms. The

  12. [Cerebral venous thrombosis during tuberculous meningoencephalitis].

    PubMed

    Guenifi, W; Boukhrissa, H; Gasmi, A; Rais, M; Ouyahia, A; Hachani, A; Diab, N; Mechakra, S; Lacheheb, A

    2016-05-01

    Cerebral venous thrombosis is a rare disease characterized by its clinical polymorphism and multiplicity of risk factors. Infections represent less than 10% of etiologies. Tuberculosis is not a common etiology, only a few observations are published in the literature. Between January 2005 and March 2015, 61 patients were hospitalized for neuro-meningeal tuberculosis. Among them, three young women had presented one or more cerebral venous sinus thromboses. No clinical feature was observed in these patients; vascular localizations were varied: sagittal sinus (2 cases), lateral sinus (2 cases) and transverse sinus (1 case). With anticoagulant and antituberculosis drugs, the outcome was favorable in all cases. During neuro-meningeal tuberculosis, the existence of consciousness disorders or neurological focal signs is not always the translation of encephalitis, hydrocephalus, tuberculoma or ischemic stroke; cerebral venous sinus thrombosis may be the cause and therefore should be sought. PMID:27090100

  13. Metabolism and Mental Illness.

    PubMed

    Sestan-Pesa, Matija; Horvath, Tamas L

    2016-02-01

    Over the past century, overwhelming evidence has emerged pointing to the hypothalamus of the central nervous system (CNS) as a crucial regulator of systemic control of metabolism, including appetite and feeding behavior. Appetite (or hunger) is a fundamental driver of survival, involving complex behaviors governed by various parts of the brain, including the cerebral cortex. Here, we provide an overview of basic metabolic principles affecting the CNS and discuss their relevance to physiological and pathological conditions of higher brain functions. These novel perspectives may well provide new insights into future research strategies to facilitate the development of novel therapies for treating mental illness. PMID:26776095

  14. Cerebral Syndromes of Diabetes Mellitus

    PubMed Central

    Shavelle, Henry S.

    1969-01-01

    Three labile diabetic patients had recurring episodes of altered sensorium. Each had severe cerebrovascular disease with superimposed metabolic derangements, including ketoacidosis, hyperglycemia without ketosis, mild uremia, and possibly cerebral edema. Two of the patients were examined postmortem. Severe leptomeningeal scarring, basal ganglial calcification and destruction of small intracerebral vessels without evidence of large vessel atherosclerosis were found unexpectedly in one patient, a rare occurrence in this country although recently reported from Europe. The other patient had large vessel atherosclerosis only. The clinical expression of the vascular disease was modified by concurrent abnormalities and reflected the sum total of the complexities which coexisted. The pathophysiology of the unconscious state necessarily depends on the inciting factors. Ketoacidotic coma is associated with depressed cerebral oxygen consumption. Spinal fluid pH is usually maintained during ketosis but is sometimes lowered inadvertently during bicarbonate therapy, with resultant coma. Other variables influencing the clinical expression, with or without ketosis, would include, among others, blood viscosity alterations, rapid decrements in blood sugar, and existing degrees of lactic acidosis. The increasing life-span of the juvenile diabetics, favorably influenced by improved management and recently by hemodialysis, may uncover vascular complications heretofore rarely seen and create additional diagnostic and therapeutic enigmas. ImagesFigure 1.Figure 2.Figure 3. PMID:5798497

  15. High-altitude cerebral oedema mimicking stroke.

    PubMed

    Yanamandra, Uday; Gupta, Amul; Patyal, Sagarika; Varma, Prem Prakash

    2014-01-01

    High-altitude cerebral oedema (HACO) is the most fatal high-altitude illness seen by rural physicians practising in high-altitude areas. HACO presents clinically with cerebellar ataxia, features of raised intracranial pressure (ICP) and coma. Early identification is important as delay in diagnosis can be fatal. We present two cases of HACO presenting with focal deficits mimicking stroke. The first patient presented with left-sided hemiplegia associated with the rapid deterioration in the sensorium. Neuroimaging revealed features suggestive of vasogenic oedema. The second patient presented with monoplegia of the lower limb. Neuroimaging revealed perfusion deficit in anterior cerebral artery territory. Both patients were managed with dexamethasone and they improved dramatically. Clinical picture and neuroimaging closely resembled acute ischaemic stroke in both cases. Thrombolysis in these patients would have been disastrous. Recent travel to high altitude, young age, absence of atherosclerotic risk factors and features of raised ICP concomitantly directed the diagnosis to HACO. PMID:24671373

  16. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  17. Cerebral astroblastoma: A radiopathological diagnosis.

    PubMed

    Singh, Deepak Kumar; Singh, Neha; Singh, Ragini; Husain, Nuzhat

    2014-01-01

    Astroblastoma is a rare glial neoplasm whose histogenesis has been clarified recently. It primarily occurs in children and young adults. We are reporting a case of 12-year-old girl child who presented with features of raised intracranial tension and generalized tonic-clonic seizures. Brain magnetic resonance imaging revealed a large well-circumscribed, cystic lesion without perifocal edema, and enhancing mural nodule in right parietal region. A radiological differential diagnosis of pilocytic astrocytoma and cerebral astroblastoma was made. A complete excision was done and histologically the lesion turned out to be an astroblastoma. We review the histology, immunohistochemistry, and imaging features of astroblastoma and survey the current literature, treatment strategies, and prognostic aspects for the management of this rare neoplasm. PMID:24891904

  18. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation

    PubMed Central

    Kuznetsov, Andrey V.; Javadov, Sabzali; Sickinger, Stephan; Frotschnig, Sandra; Grimm, Michael

    2015-01-01

    Dysfunction of cardiac energy metabolism plays a critical role in many cardiac diseases, including heart failure, myocardial infarction and ischemia–reperfusion injury and organ transplantation. The characteristics of these diseases can be elucidated in vivo, though animal-free in vitro experiments, with primary adult or neonatal cardiomyocytes, the rat ventricular H9c2 cell line or the mouse atrial HL-1 cells, providing intriguing experimental alternatives. Currently, it is not clear how H9c2 and HL-1 cells mimic the responses of primary cardiomyocytes to hypoxia and oxidative stress. In the present study, we show that H9c2 cells are more similar to primary cardiomyocytes than HL-1 cells with regard to energy metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and morphology of mitochondria. In contrast to HL-1, H9c2 cells possess beta-tubulin II, a mitochondrial isoform of tubulin that plays an important role in mitochondrial function and regulation. We demonstrate that H9c2 cells are significantly more sensitive to hypoxia-reoxygenation injury in terms of loss of cell viability and mitochondrial respiration, whereas HL-1 cells were more resistant to hypoxia as evidenced by their relative stability. In comparison to HL-1 cells, H9c2 cells exhibit a higher phosphorylation (activation) state of AMP-activated protein kinase, but lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels, suggesting that each cell type is characterized by distinct regulation of mitochondrial biogenesis. Our results provide evidence that H9c2 cardiomyoblasts are more energetically similar to primary cardiomyocytes than are atrial HL-1 cells. H9c2 cells can be successfully used as an in vitro model to simulate cardiac ischemia–reperfusion injury. PMID:25450968

  19. Influence of Low-Dose Aspirin on Cerebral Amyloid Angiopathy in Mice.

    PubMed

    Hattori, Yorito; Maki, Takakuni; Saito, Satoshi; Yamamoto, Yumi; Nagatsuka, Kazuyuki; Ihara, Masafumi

    2016-04-12

    Accumulation of amyloid-β peptide (Aβ) in the brain is one of the most important features of Alzheimer's dementia (AD). Cerebral amyloid angiopathy (CAA) is characterized by Aβ accumulation in the walls of cerebral arteries and capillaries, and is present in over 90% of patients with AD. Several novel agents for AD/CAA developed around the amyloid hypothesis have shown positive signs in animal studies but have failed in clinical trials due to adverse events and/or lack of efficiency. As CAA is presumably caused by a failure in Aβ clearance, drugs that promote Aβ clearance may hold promise in the treatment of CAA and possibly AD. With this in mind, cilostazol, an anti-platelet drug with vasodilating action, has been found to promote Aβ clearance along perivascular drainage pathway, reduce Aβ accumulation in the brain, and restore memory impairment in Tg-SwDI mice, an animal model of CAA. We therefore tested whether the most common anti-platelet agent, aspirin, also reduced Aβ and rescued cognitive impairment in Tg-SwDI mice, and also whether aspirin affected hemorrhagic complications that can occur in Tg-SwDI mice. Mice aged 4 months were assigned into vehicle-treated and low-dose aspirin-treated groups. Low-dose aspirin for 8 months did not increase hemorrhagic lesions, nor increase resting cerebral blood flow or cerebral vascular reserve in response to hypercapnia or acetylcholine. Subsequently, aspirin did not restore cognitive dysfunction. These results suggest that low-dose aspirin does not have a direct influence on cerebrovascular Aβ metabolism nor aggravate hemorrhagic complications in CAA. PMID:27079719

  20. Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet.

    PubMed

    Li Kwok Cheong, J D; Croft, K D; Henry, P D; Matthews, V; Hodgson, J M; Ward, N C

    2014-10-01

    We have investigated the effects of the major polyphenol in coffee, chlorogenic acid (CGA), on obesity, glucose intolerance, insulin resistance, systemic oxidative stress and endothelial dysfunction in a mouse model of the metabolic syndrome. Thirty C57BL6 mice were randomly divided into (n=10/group) (i) normal diet (ND), (ii) high fat diet (HFD), or (iii) high fat diet supplemented with 0.5% w/w green coffee bean extract (GCE) rich in chlorogenic acid (HFD+GCE). The high fat diet consisted of 28% fat and all animals were maintained on their diets for 12 weeks. The mice fed a HFD and HFD+GCE displayed symptoms of the metabolic syndrome compared to their normal fed counterparts, although no endothelial dysfunction was detected in the abdominal aortas after 12 weeks. GCE did not attenuate HFD-induced obesity, glucose intolerance, insulin resistance or systemic oxidative stress. Furthermore, GCE did not protect against ex vivo oxidant (hypochlorous acid)-induced endothelial dysfunction. PMID:24583266

  1. Effect of a new vasodilator (flunarizine) on the cerebral circulation.

    PubMed

    Toyoda, M; Takagi, S; Seki, T; Takeoka, T; Goto, F

    1975-07-01

    In order to clarify the effects of flunarizine, a newly-synthesized derivative of piperazine on cerebral circulation and metabolism, cerebrocortical oxygen tension, carbon dioxide tension and cerebrocortical blood flow were continuously recorded, along with a simultaneous monitoring of arterial blood pressure in 11 cats. Maximal changes in cerebrocortical oxygen tension induced by intravenous administration of flunarizine (0.6-1.0 mg/kg) were compared with those of papaverine hydrochloride (1 mg/kg). Flunarizine caused increases in cerebrocortical oxygen tension as well as cerebrocortical blood flow and a decrease in cerebrocortical carbon dioxide tension despite a fall in blood pressure, indicating an increase of cerebral blood flow presumably due to cerebral vasodilatation. Since the increase of cerebrocortical oxygen tension induced by flunarizine was comparable to that induced by papaverine, it was concluded that flunarizine appears to be a potent vasodilator of cerebral vessels. PMID:1159451

  2. Cerebral amyloid angiopathy

    MedlinePlus

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411-1416. PMID: 17452586 www.ncbi. ...

  3. The fetal cerebral circulation: three decades of exploration by the LLU Center for Perinatal Biology.

    PubMed

    Pearce, William J

    2014-01-01

    For more than three decades, research programs in the Center of Perinatal Biology have focused on the vascular biology of the fetal cerebral circulation. In the 1980s, research in the Center demonstrated that cerebral autoregulation operated over a narrower pressure range, and was more vulnerable to insults, in fetuses than in adults. Other studies were among the first to establish that compared to adult cerebral arteries, fetal cerebral arteries were more hydrated, contained smaller smooth muscle cells and less connective tissue, and had endothelium less capable of producing NO. Work in the 1990s revealed that pregnancy depressed reactivity to NO in extra-cerebral arteries, but elevated it in cerebral arteries through effects involving changes in cGMP metabolism. Comparative studies verified that fetal lamb cerebral arteries were an excellent model for cerebral arteries from human infants. Biochemical studies demonstrated that cGMP metabolism was dramatically upregulated, but that contraction was far more dependent on calcium influx, in fetal compared to adult cerebral arteries. Further studies established that chronic hypoxia accelerates functional maturation of fetal cerebral arteries, as indicated by increased contractile responses to adrenergic agonists and perivascular adrenergic nerves. In the 2000s, studies of signal transduction established age-dependent roles for PKG, PKC, PKA, ERK, ODC, IP3, myofilament calcium sensitivity, and many other mechanisms. These diverse studies clearly demonstrated that fetal cerebral arteries were functionally quite distinct compared to adult cerebral arteries. In the current decade, research in the Center has expanded to a more molecular focus on epigenetic mechanisms and their role in fetal vascular adaptation to chronic hypoxia, maternal drug abuse, and nutrient deprivation. Overall, the past three decades have transformed thinking about, and understanding of, the fetal cerebral circulation due in no small part to the

  4. Acute presentation of gestational diabetes insipidus with pre-eclampsia complicated by cerebral vasoconstriction: a case report and review of the published work.

    PubMed

    Mor, Amir; Fuchs, Yael; Zafra, Kathleen; Haberman, Shoshana; Tal, Reshef

    2015-08-01

    Gestational diabetes insipidus (GDI) is a rare, self-limited complication of pregnancy. As it is related to excess placental vasopressinase enzyme activity, which is metabolized in the liver, GDI is more common in pregnancies complicated by conditions associated with liver dysfunction. We present a case of a 41-year-old woman at 38 weeks' gestation who presented with pre-eclampsia with severe features, including impaired liver function and renal insufficiency. Following cesarean section she was diagnosed with GDI, which was further complicated by cerebral vasoconstriction as demonstrated by magnetic resonance angiography. This case raises the possibility that cerebral vasoconstriction may be related to the cause of GDI. A high index of suspicion of GDI should be maintained in patients who present with typical signs and symptoms, especially in the setting of pregnancy complications associated with liver dysfunction. PMID:25832854

  5. Rehabilitation in cerebral palsy.

    PubMed Central

    Molnar, G. E.

    1991-01-01

    Cerebral palsy is the most frequent physical disability of childhood onset. Over the past four decades, prevalence has remained remarkably constant at 2 to 3 per 1,000 live births in industrialized countries. In this article I concentrate on the rehabilitation and outcome of patients with cerebral palsy. The epidemiologic, pathogenetic, and diagnostic aspects are highlighted briefly as they pertain to the planning and implementation of the rehabilitation process. PMID:1866952

  6. Nanomedicine in cerebral palsy

    PubMed Central

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed. PMID:24204146

  7. Differential diagnosis of cerebral hemispheric pathology: multimodal approach.

    PubMed

    Moritani, T; Smoker, W R K; Lee, H K; Sato, Y

    2011-06-01

    This article gives a comprehensive review and illustrations of the imaging features of various pathological conditions and clinical syndromes associated with cerebral hemispheric involvement. The various conditions are described and defined to provide a basis for the differential diagnostics. The hypotheses relating to the pathology of the various syndromes are discussed with special emphasis on excitotoxic mechanisms for explaining the subsequent cerebral hemiatrophy. PMID:21528369

  8. Anterior cerebral artery territory infarctions presenting with ascending tetraparesis.

    PubMed

    Okamoto, Kensho; Hamada, Eri; Okuda, Bungo

    2004-01-01

    We describe a patient with ascending tetraparesis following stroke. The patient presented initially with spastic paraparesis which acutely evolved to tetraparesis with abulia. Magnetic resonance imaging revealed acute infarctions in the bilateral medial frontal regions but not in the brainstem or spinal cord. Multiple infarctions in the anterior cerebral artery territory appeared to originate from artery to artery embolism. The present case provides distinct clinical features of anterior cerebral artery syndrome which mimic myelopathy or brainstem lesions. PMID:17903956

  9. Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy.

    PubMed

    Yang, Ling; Christensen, David A; McKinnon, John J; Beattie, Aaron D; Xin, Hangshu; Yu, Peiqiang

    2013-11-27

    The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); β-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of β-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix. PMID:24156528

  10. Impaired fasting glucose is associated with increased regional cerebral amyloid.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Wilkins, Heather M; Archer, Ashley E; Burns, Nicole C; Karcher, Rainer T; Graves, Rasinio S; Swerdlow, Russell H; Thyfault, John P; Burns, Jeffrey M

    2016-08-01

    The Alzheimer's disease risk gene apolipoprotein E epsilon 4 (APOE ε4) is associated with increased cerebral amyloid. Although impaired glucose metabolism is linked to Alzheimer's disease risk, the relationship between impaired glycemia and cerebral amyloid is unclear. To investigate the independent effects of APOE ε4 and impaired glycemia on cerebral amyloid, we stratified nondemented subjects (n = 73) into 4 groups: normal glucose, APOE ε4 noncarrier (control [CNT]; n = 31), normal glucose, APOE ε4 carrier (E4 only; n = 14) impaired glycemia, APOE ε4 noncarrier (IG only; n = 18), and impaired glycemia, APOE ε4 carrier (IG+E4; n = 10). Cerebral amyloid differed both globally (p = 0.023) and regionally; precuneus (p = 0.007), posterior cingulate (PCC; p = 0.020), superior parietal cortex (SPC; p = 0.029), anterior cingulate (p = 0.027), and frontal cortex (p = 0.018). Post hoc analyses revealed that E4 only subjects had increased cerebral amyloid versus CNT globally and regionally in the precuneus, PCC, SPC, anterior cingulate, and frontal cortex. In IG only subjects, increased cerebral amyloid compared with CNT was restricted to precuneus, PCC, and SPC. IG+E4 subjects exhibited higher cerebral amyloid only in the precuneus relative to CNT. These results indicate that impaired glycemia and APOE ε4 genotype are independent risk factors for regional cerebral amyloid deposition. However, APOE ε4 and impaired glycemia did not have an additive effect on cerebral amyloid. PMID:27318141

  11. Measuring cerebral hemodynamic changes during action observation with functional transcranial doppler

    PubMed Central

    Kim, Seong-Sik; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of action observation training (AOT) on cerebral hemodynamic changes including cerebral blood flow velocity (CBFV) and cerebral blood flow volume (CBFvol) in healthy subjects. [Subjects] Fifteen healthy subjects participated in this study. [Methods] All subjects were educated regarding AOT, and systolic peak velocity (Vs) as well as mean flow velocity (Vm) in the middle cerebral artery (MCA), anterior cerebral artery (ACA), and posterior cerebral artery (PCA) were evaluated using functional transcranial doppler with a 2-MHz probe, before and after performing AOT. [Results] Healthy subjects showed significant differences in Vs and Vm in the MCA, ACA, and PCA after AOT compared with those before AOT. [Conclusion] Our findings indicate that AOT has a positive effect in terms of an increase in CBFV and CBFvol in healthy subjects, since the brain requires more blood to meet the metabolic demand during AOT. PMID:26157224

  12. Adrenergic and prostanoid mechanisms in control of cerebral blood flow in hypotensive newborn pigs

    SciTech Connect

    Armstead, W.M.; Leffler, C.W.; Busija, D.W.; Beasley, D.G.; Mirro, R. )

    1988-04-01

    The interaction between adrenergic and prostanoid mechanisms in the control of cerebral hemodynamics in the conscious, hypotensive newborn pig was investigated. Pretreatment with the selective {alpha}{sub 1}- and {alpha}{sub 2}-adrenoceptor antagonists prazosin and yohimbine, respectively, had no effect on cerebral blood flow, calculated cerebral vascular resistance, or cerebral metabolic rate either before or after hemmorrhagic hypotension. Indomethacin treatment (5 mg/kg ia) of piglets following hemorrhage caused a significant decrease in blood flow to all brain regions within 20 min. This decrease in cerebral blood flow resulted from increased cerebral vascular resistances of 54 and 177%, 20 and 40 min after treatment, respectively. Cerebral oxygen consumption was reduced from 2.42 {+-} 0.28 to 1.45 {+-} 0.28 ml{center dot}100 g{sup {minus}1} and to 1.0 {+-} 0.28 ml{center dot}100 g{sup {minus}1}{center dot}min{sup {minus}1} 20 and 40 min after indomethacin, respectively, in hemorrhaged piglets. Decreases in cerebral blood flow and metabolic rate and increases in vascular resistance on treatment with indomethacin were the same as in animals pretreated with vehicle, prazosin, or yohimbine. These data are consistent with the hypothesis that the prostanoid system contributes to the maintenance of cerebral blood flow and cerebral metabolic rate during hypotension in the newborn, as reported previously. These data do not implicate removal of sympathetic modulation by prostanoids as a mechanism for indomethacin-induced cerebral vasoconstriction in hypotensive newborn piglets.

  13. Etiologic Framework for the Study of Neurodegenerative Disorders as Well as Vascular and Metabolic Comorbidities on the Grounds of Shared Epidemiologic and Biologic Features

    PubMed Central

    de Pedro-Cuesta, Jesús; Martínez-Martín, Pablo; Rábano, Alberto; Ruiz-Tovar, María; Alcalde-Cabero, Enrique; Calero, Miguel

    2016-01-01

    Background: During the last two decades, protein aggregation at all organismal levels, from viruses to humans, has emerged from a neglected area of protein science to become a central issue in biology and biomedicine. This article constitutes a risk-based review aimed at supporting an etiologic scenario of selected, sporadic, protein-associated, i.e., conformational, neurodegenerative disorders (NDDs), and their vascular- and metabolic-associated ailments. Methods: A rationale is adopted, to incorporate selected clinical data and results from animal-model research, complementing epidemiologic evidences reported in two prior articles. Findings: Theory is formulated assuming an underlying conformational transmission mechanism, mediated either by horizontal transfer of mammalian genes coding for specific aggregation-prone proteins, or by xeno-templating between bacterial and host proteins. We build a few population-based and experimentally-testable hypotheses focusing on: (1) non-disposable surgical instruments for sporadic Creutzfeldt-Jakob disease (sCJD) and other rapid progressive neurodegenerative dementia (sRPNDd), multiple system atrophy (MSA), and motor neuron disease (MND); and (2) specific bacterial infections such as B. pertussis and E. coli for all forms, but particularly for late-life sporadic conformational, NDDs, type 2 diabetes mellitus (T2DM), and atherosclerosis where natural protein fibrils present in such organisms as a result of adaptation to the human host induce prion-like mechanisms. Conclusion: Implications for cohort alignment and experimental animal research are discussed and research lines proposed. PMID:27378910

  14. Effect of hypoxia and hypercapnia on ACE activity in the cerebral microcirculation of anesthetized dogs

    SciTech Connect

    Pitt, B.R.; Lister, G.; Dawson, C.A.; Linehan, J.H.

    1986-05-01

    Angiotensin-converting enzyme (ACE) activity of the cerebral microcirculation of anesthetized dogs was measured from cerebral venous outflow curves after bolus injection of a synthetic ACE substrate, (/sup 3/H)benzoyl-phenylalanyl-alanylproline ((/sup 3/H)BPAP), into a common carotid artery. Cerebral BPAP metabolism was quantified by measuring the concentration of (/sup 3/H)benzoyl-phenylalanine (the product of BPAP hydrolysis by ACE) in blood samples from the sagittal sinus after occlusion of the lateral sinuses with bone wax. Instantaneous BPAP metabolism in each sample increased as a function of time after injection, suggestive of perfusion heterogeneity, and averaged 59 +/- 4% (n = 8) over a single pass during normoxia and normocapnia. The ratio of Vmax (the maximal rate of cerebral BPAP metabolism) to Km (the concentration at Vmax/2), was calculated from instantaneous outflow curves using a model based on first-order kinetics. Increases in cerebral blood flow during either hypoxia or hypercapnia significantly reduced BPAP metabolism to 33 +/- 3 (n = 7) and 24 +/- 3% (n = 5), respectively; however, Vmax/Km of ACE activity (0.19 +/- 0.03 ml/s) was not affected by either condition. The lack of change in apparent kinetics of ACE activity (i.e., in Vmax/Km) during hypoxia or hypercapnia suggests that recruitment of cerebral capillaries was not a quantitatively significant factor in controlling BPAP metabolism with this degree of either hypoxia or hypercapnia.

  15. Vasospasm in Cerebral Inflammation

    PubMed Central

    Eisenhut, Michael

    2014-01-01

    All forms of cerebral inflammation as found in bacterial meningitis, cerebral malaria, brain injury, and subarachnoid haemorrhage have been associated with vasospasm of cerebral arteries and arterioles. Vasospasm has been associated with permanent neurological deficits and death in subarachnoid haemorrhage and bacterial meningitis. Increased levels of interleukin-1 may be involved in vasospasm through calcium dependent and independent activation of the myosin light chain kinase and release of the vasoconstrictor endothelin-1. Another key factor in the pathogenesis of cerebral arterial vasospasm may be the reduced bioavailability of the vasodilator nitric oxide. Therapeutic trials in vasospasm related to inflammation in subarachnoid haemorrhage in humans showed a reduction of vasospasm through calcium antagonists, endothelin receptor antagonists, statins, and plasminogen activators. Combination of therapeutic modalities addressing calcium dependent and independent vasospasm, the underlying inflammation, and depletion of nitric oxide simultaneously merit further study in all conditions with cerebral inflammation in double blind randomised placebo controlled trials. Auxiliary treatment with these agents may be able to reduce ischemic brain injury associated with neurological deficits and increased mortality. PMID:25610703

  16. Cerebral venous sinus thrombosis

    PubMed Central

    Allroggen, H.; Abbott, R.

    2000-01-01

    Cerebral venous sinus thrombosis is a challenging condition because of its variability of clinical symptoms and signs. It is very often unrecognised at initial presentation. All age groups can be affected. Large sinuses such as the superior sagittal sinus are most frequently involved. Extensive collateral circulation within the cerebral venous system allows for a significant degree of compensation in the early stages of thrombus formation. Systemic inflammatory diseases and inherited as well as acquired coagulation disorders are frequent causes, although in up to 30% of cases no underlying cause can be identified. The oral contraceptive pill appears to be an important additional risk factor. The spectrum of clinical presentations ranges from headache with papilloedema to focal deficit, seizures and coma. Magnetic resonance imaging with venography is the investigation of choice; computed tomography alone will miss a significant number of cases. It has now been conclusively shown that intravenous heparin is the first-line treatment for cerebral venous sinus thrombosis because of its efficacy, safety and feasability. Local thrombolysis may be indicated in cases of deterioration, despite adequate heparinisation. This should be followed by oral anticoagulation for 3-6 months. The prognosis of cerebral venous sinus thrombosis is generally favourable. A high index of clinical suspicion is needed to diagnose this uncommon condition so that appropriate treatment can be initiated.


Keywords: cerebral venous sinus thrombosis PMID:10622773

  17. Engineering of metabolic control

    DOEpatents

    Liao, James C.

    2004-03-16

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  18. Engineering of metabolic control

    DOEpatents

    Liao, James C.

    2006-10-17

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  19. Leaves of the Arabidopsis maltose exporter1 Mutant Exhibit a Metabolic Profile with Features of Cold Acclimation in the Warm

    PubMed Central

    Purdy, Sarah J.; Bussell, John D.; Nunn, Christopher P.; Smith, Steven M.

    2013-01-01

    Background Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. Principal Findings Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. Conclusions The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation. PMID:24223944

  20. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD.

    PubMed

    Luo, Yuwen; Burrington, Christine M; Graff, Emily C; Zhang, Jian; Judd, Robert L; Suksaranjit, Promporn; Kaewpoowat, Quanhathai; Davenport, Samantha K; O'Neill, Ann Marie; Greene, Michael W

    2016-03-15

    nonalcoholic fatty liver disease (NAFLD), an obesity and insulin resistance associated clinical condition - ranges from simple steatosis to nonalcoholic steatohepatitis. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. Even though liver pathophysiology has been well characterized in the model, little is known about the metabolic phenotype (e.g., energy expenditure, activity, or food intake). Furthermore, whether the consumption of liquid sugar exacerbates the development of glucose intolerance, insulin resistance, and adipose tissue dysfunction in the model is currently in question. In our study, a high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT). Hepatic TG, plasma alanine aminotransferase, and normalized liver weight were significantly increased only in HFWD+F/S-fed mice. HFWD+F/S also resulted in increased hepatic fibrosis and elevated collagen 1a2, collagen 3a1, and TGFβ gene expression. Furthermore, HWFD+F/S-fed mice developed more profound eWAT inflammation characterized by adipocyte hypertrophy, macrophage infiltration, a dramatic increase in crown-like structures, and upregulated proinflammatory gene expression. An early hypoxia response in the eWAT led to reduced vascularization and increased fibrosis gene expression in the HFWD+F/S-fed mice. Our results demonstrate that sugary water consumption induces acute hyperphagia, limits adipose tissue expansion, and exacerbates glucose intolerance and insulin resistance, which are associated with NAFLD progression. PMID:26670487

  1. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    SciTech Connect

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.

  2. The relationship of pineal calcification to cerebral atrophy on CT scan in multiple sclerosis.

    PubMed

    Sandyk, R; Awerbuch, G I

    1994-05-01

    Calcification is a known morphological feature of the pineal gland. The mechanisms underlying the development of pineal calcification (PC) are elusive although there is experimental evidence that calcification may be a marker of the past secretory activity of the gland and/or of degeneration. The increased incidence of PC with aging suggests that it may reflect cerebral degenerative changes as well. In a recent Editorial in this Journal it was proposed that the pineal gland is implicated in the pathogenesis of multiple sclerosis (MS). Cerebral atrophy, which can be demonstrated on CT scan, is a common feature of MS resulting from demyelination and gliosis. If PC is a marker of a cerebral degenerative process, then one would expect a higher incidence of calcification of the gland in patients with cerebral atrophy compared to those without cerebral atrophy. To test this hypothesis, we studied the incidence of PC on CT scan in a cohort of 48 MS patients, 21 of whom had cerebral atrophy. For the purpose of comparison, we also assessed the incidence of choroid plexus calcification (CPC) in relation to cerebral atrophy. PC was found in 42 patients (87.5%) and its incidence in patients with cerebral atrophy was significantly higher compared to the incidence in patients without cerebral atrophy (100% vs. 77.7%; p < .025). In contrast, CPC was unrelated to cerebral atrophy or to PC thus supporting the notion of a specific association between the pineal gland and the pathogenesis of MS.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7960471

  3. Neuroprotection after cerebral ischemia

    PubMed Central

    Namura, Shobu; Ooboshi, Hiroaki; Liu, Jialing; Yenari, Midori A.

    2013-01-01

    Cerebral ischemia, a focal or global insufficiency of blood flow to the brain, can arise through multiple mechanisms, including thrombosis and arterial hemorrhage. Ischemia is a major driver of stroke, one of the leading causes of morbidity and mortality worldwide. While the general etiology of cerebral ischemia and stroke has been known for some time, the conditions have only recently been considered treatable. This report describes current research in this field seeking to fully understand the pathomechanisms underlying stroke; to characterize the brain’s intrinsic injury, survival, and repair mechanisms; to identify putative drug targets as well as cell-based therapies; and to optimize the delivery of therapeutic agents to the damaged cerebral tissue. PMID:23488559

  4. Local cerebral glucose utilisation in chronic alcoholics: a positron tomographic study.

    PubMed Central

    Samson, Y; Baron, J C; Feline, A; Bories, J; Crouzel, C

    1986-01-01

    Using positron tomography, a study of regional cerebral glucose utilisation was performed prospectively in a highly selected group of six neurologically unaffected primary chronic alcoholics. In this group, neuropsychological, behavioural and CT scan anomalies were comparable with those previously reported in more extensive studies. With respect to age-matched control values, cerebral metabolic rate was not significantly modified in the selected cortical, subcortical and cerebellar regions of interest. However, the metabolic regional distribution index, which reflects the distribution pattern of glucose utilisation, was selectively and significantly decreased in the medio-frontal area, pointing to a limbic metabolic dysfunction apparently linked to chronic alcoholism. Images PMID:3491181

  5. Fractal dimension of cerebral surfaces using magnetic resonance images

    SciTech Connect

    Majumdar, S.; Prasad, R.R.

    1988-11-01

    The calculation of the fractal dimension of the surface bounded by the grey matter in the normal human brain using axial, sagittal, and coronal cross-sectional magnetic resonance (MR) images is presented. The fractal dimension in this case is a measure of the convolutedness of this cerebral surface. It is proposed that the fractal dimension, a feature that may be extracted from MR images, may potentially be used for image analysis, quantitative tissue characterization, and as a feature to monitor and identify cerebral abnormalities and developmental changes.

  6. Update on cerebral uptake of blood ammonia.

    PubMed

    Sørensen, Michael

    2013-06-01

    Ammonia is believed to play a key role in the development of hepatic encephalopathy (HE) with increased formation of glutamine playing a central role. It has been debated whether blood ammonia enters the brain by passive diffusion and/or active transport by ion-transporters and that changes in blood pH could affect the blood-to-brain transfer of ammonia. It has also been proposed that the permeability-surface area product for ammonia across the blood-brain barrier (PSBBB) should be increased in cirrhosis and HE. In the present paper it is argued that changes in blood pH does not alter PSBBB for ammonia and the question of passive diffusion versus active transport of ammonia remains unresolved. Furthermore, recent studies do not find evidence for increased PSBBB for ammonia in cirrhosis. The main determent for cerebral uptake of blood ammonia (i.e. flux) is the arterial blood ammonia concentration. This means that the only way to protect the brain from hyperammonemia is by lowering blood ammonia, inhibit cerebral uptake of ammonia, or by manipulating cerebral ammonia metabolism so that less glutamine is produced. PMID:23479402

  7. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  8. Cerebral Palsy Litigation

    PubMed Central

    Sartwelle, Thomas P.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds’ labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule—the Daubert doctrine that excludes “junk science” from the courtroom—as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring’s 40-year masquerade as science. PMID:25183322

  9. Cerebral White Matter

    PubMed Central

    Schmahmann, Jeremy D.; Smith, Eric E.; Eichler, Florian S.; Filley, Christopher M.

    2013-01-01

    Lesions of the cerebral white matter (WM) result in focal neurobehavioral syndromes, neuropsychiatric phenomena, and dementia. The cerebral WM contains fiber pathways that convey axons linking cerebral cortical areas with each other and with subcortical structures, facilitating the distributed neural circuits that subserve sensorimotor function, intellect, and emotion. Recent neuroanatomical investigations reveal that these neural circuits are topographically linked by five groupings of fiber tracts emanating from every neocortical area: (1) cortico-cortical association fibers; (2) corticostriatal fibers; (3) commissural fibers; and cortico-subcortical pathways to (4) thalamus and (5) pontocerebellar system, brain stem, and/or spinal cord. Lesions of association fibers prevent communication between cortical areas engaged in different domains of behavior. Lesions of subcortical structures or projection/striatal fibers disrupt the contribution of subcortical nodes to behavior. Disconnection syndromes thus result from lesions of the cerebral cortex, subcortical structures, and WM tracts that link the nodes that make up the distributed circuits. The nature and the severity of the clinical manifestations of WM lesions are determined, in large part, by the location of the pathology: discrete neurological and neuropsychiatric symptoms result from focal WM lesions, whereas cognitive impairment across multiple domains—WM dementia—occurs in the setting of diffuse WM disease. We present a detailed review of the conditions affecting WM that produce these neurobehavioral syndromes, and consider the pathophysiology, clinical effects, and broad significance of the effects of aging and vascular compromise on cerebral WM, in an attempt to help further the understanding, diagnosis, and treatment of these disorders. PMID:18990132

  10. [Diagnosis and follow-up of cerebral ventricle pathology using transfontanelle real-time echography].

    PubMed

    Nogués, A; Pagola, C; Rey, A; Collado, V; Gaztañaga, R; Albisu, J

    1984-01-01

    Authors evaluate 36 patients with different degrees of cerebral ventricular dilation divided in three groups according with previous clinical features. Cerebral ultrasonography demonstrated to be a more accurate method than CAT in most of cases examined by these two procedures. Real time cerebral ecography is indicated in follow-up of conditions which need repetitive controls like hydrocephalus with ventriculo-peritoneal shunts, posthemorhagic ventricular dilations or daily follow-up o acute pathology like ill-course meningitis. Finally they describe situations in which ultrasonography may have a great value as cerebral screening test. PMID:6608302

  11. Cerebral Amyloid Angiopathy: Emerging Concepts

    PubMed Central

    2015-01-01

    Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis

  12. Bone Density in Cerebral Palsy

    PubMed Central

    Houlihan, Christine Murray; Stevenson, Richard D.

    2010-01-01

    Osteoporosis is a skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture.1 Osteoporosis remains a major health problem worldwide, costing an estimated $13.8 billion in health care each year in the United States. Despite advances in treating osteoporosis in the elderly, no cure exists. Osteoporosis has its roots in childhood. Accrual of bone mass occurs throughout childhood and early adulthood, and peak bone mass is a key determinant of the lifetime risk of osteoporosis. Because the foundation for skeletal health is established so early in life, osteoporosis prevention begins by optimizing gains in bone mineral throughout childhood and adolescence.2,3 Osteoporosis evaluation and prevention is relevant to children with cerebral palsy (CP). CP is the most prevalent childhood condition associated with osteoporosis. Bone density is significantly decreased, and children with CP often sustain painful fractures with minimal trauma that impair their function and quality of life. Preventing or improving osteoporosis and maximizing bone accrual during critical stages of growth will minimize the future lifelong risks of fractures in children with CP. This article addresses the anatomy and structure of bone and bone metabolism, the clinical assessment of bone mass, the causes of osteoporosis and its evaluation and treatment in children with CP. PMID:19643349

  13. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy.

    PubMed

    Ho, Kung-Chu; Fang, Yu-Hua Dean; Chung, Hsiao-Wen; Yen, Tzu-Chen; Ho, Tsung-Ying; Chou, Hung-Hsueh; Hong, Ji-Hong; Huang, Yi-Ting; Wang, Chun-Chieh; Lai, Chyong-Huey

    2016-01-01

    We examined the role of intratumoral metabolic heterogeneity on (18)F-FDG PET during concurrent chemoradiotherapy (CCRT) in predicting survival outcomes for patients with cervical cancer. This prospective study consisted of 44 patients with bulky (≥ 4 cm) cervical cancer treated with CCRT. All patients underwent serial (18)F-FDG PET studies. Primary cervical tumor standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) were measured in pretreatment and intra-treatment (2 weeks) PET scans. Regional textural features were analyzed using the grey level run length encoding method (GLRLM) and grey-level size zone matrix. Associations between PET parameters and overall survival (OS) were tested by Kaplan-Meier analysis and Cox regression model. In univariate analysis, pretreatment grey-level nonuniformity (GLNU) > 48 by GLRLM textural analysis and intra-treatment decline of run length nonuniformity < 55% and the decline of TLG (∆TLG) < 60% were associated with significantly worse OS. In multivariate analysis, only ∆TLG was significant (P = 0.009). Combining pretreatment with intra-treatment factors, we defined the patients with a initial GLNU > 48 and a ∆TLG ≤ 60% as the high-risk group and the other patients as the low-risk. The 5-year OS rate for the high-risk group was significantly worse than that for the low-risk group (42% vs. 81%, respectively, P = 0.001). The heterogeneity of intratumoral FDG distribution and the early temporal change in TLG may be an important predictor for OS in patients with bulky cervical cancer. This gives the opportunity to adjust individualized regimens early in the treatment course. PMID:27508103

  14. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in 18F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy

    PubMed Central

    Ho, Kung-Chu; Fang, Yu-Hua Dean; Chung, Hsiao-Wen; Yen, Tzu-Chen; Ho, Tsung-Ying; Chou, Hung-Hsueh; Hong, Ji-Hong; Huang, Yi-Ting; Wang, Chun-Chieh; Lai, Chyong-Huey

    2016-01-01

    We examined the role of intratumoral metabolic heterogeneity on 18F-FDG PET during concurrent chemoradiotherapy (CCRT) in predicting survival outcomes for patients with cervical cancer. This prospective study consisted of 44 patients with bulky (≥ 4 cm) cervical cancer treated with CCRT. All patients underwent serial 18F-FDG PET studies. Primary cervical tumor standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) were measured in pretreatment and intra-treatment (2 weeks) PET scans. Regional textural features were analyzed using the grey level run length encoding method (GLRLM) and grey-level size zone matrix. Associations between PET parameters and overall survival (OS) were tested by Kaplan-Meier analysis and Cox regression model. In univariate analysis, pretreatment grey-level nonuniformity (GLNU) > 48 by GLRLM textural analysis and intra-treatment decline of run length nonuniformity < 55% and the decline of TLG (∆TLG) < 60% were associated with significantly worse OS. In multivariate analysis, only ∆TLG was significant (P = 0.009). Combining pretreatment with intra-treatment factors, we defined the patients with a initial GLNU > 48 and a ∆TLG ≤ 60% as the high-risk group and the other patients as the low-risk. The 5-year OS rate for the high-risk group was significantly worse than that for the low-risk group (42% vs. 81%, respectively, P = 0.001). The heterogeneity of intratumoral FDG distribution and the early temporal change in TLG may be an important predictor for OS in patients with bulky cervical cancer. This gives the opportunity to adjust individualized regimens early in the treatment course. PMID:27508103

  15. Noninvasive measurement of cerebral oxygen saturation and cerebral phronetal function

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Zhang, Aiyu; Xu, Min; Jin, Taiyi

    1998-08-01

    Using the Near-Infrared Spectroscopy (NIRS), the noninvasive measurement of cerebral oxygen concentration can be achieved in vivo based on the Lambert-Beer Law. In this paper, we discuss the possibility of studying higher brain functions through combining cerebral oxygen saturation and cerebral function measurement. Event-related experiments are introduced to measure the cerebral phronetal function. Time domain curves show sight differences among these experiment results. However, with the aid of DFT, experiment data of all five human volunteers show the frequency near 20 Hz or 40 Hz is evoked depending on the difficulty of the mental tasks. The results demonstrate the feasibility of cerebral functions study by means of cerebral oxygen saturation measurement analyzed in the frequency domain.

  16. Reversible cerebral vasoconstriction syndrome: rare or underrecognized in children?

    PubMed

    Probert, Rebecca; Saunders, Dawn E; Ganesan, Vijeya

    2013-04-01

    Reversible cerebral vasoconstriction syndrome (RCVS) is a clinicoradiological diagnosis comprising 'thunderclap' headaches and reversible segmental vasoconstriction of cerebral arteries, occasionally complicated by ischaemic or haemorrhagic stroke. We report a case of RCVS in a 13-year-old male with severe thunderclap headaches and no focal neurological signs. Brain imaging showed multiple posterior circulation infarcts; cerebral computed tomography, magnetic resonance imaging, and catheter angiography showed multifocal irregularity and narrowing, but in different arterial segments. Laboratory studies did not support a diagnosis of vasculitis. Symptoms resolved over 3 weeks; magnetic resonance angiography 3 months later was normal and remained so after 2 years. We highlight the typical clinical features of RCVS in this case and suggest that the diagnosis should be considered in children with thunderclap headaches or stroke syndromes where headache is a prominent feature, especially if cerebrovascular imaging studies appear to be evolving or discrepant. PMID:23066702

  17. Genetics of Cerebral Vasospasm

    PubMed Central

    Ladner, Travis R.; Zuckerman, Scott L.; Mocco, J

    2013-01-01

    Cerebral vasospasm (CV) is a major source of morbidity and mortality in aneurysmal subarachnoid hemorrhage (aSAH). It is thought that an inflammatory cascade initiated by extravasated blood products precipitates CV, disrupting vascular smooth muscle cell function of major cerebral arteries, leading to vasoconstriction. Mechanisms of CV and modes of therapy are an active area of research. Understanding the genetic basis of CV holds promise for the recognition and treatment for this devastating neurovascular event. In our review, we summarize the most recent research involving key areas within the genetics and vasospasm discussion: (1) Prognostic role of genetics—risk stratification based on gene sequencing, biomarkers, and polymorphisms; (2) Signaling pathways—pinpointing key inflammatory molecules responsible for downstream cellular signaling and altering these mediators to provide therapeutic benefit; and (3) Gene therapy and gene delivery—using viral vectors or novel protein delivery methods to overexpress protective genes in the vasospasm cascade. PMID:23691311

  18. Phenylpropanolamine and cerebral hemorrhage

    SciTech Connect

    McDowell, J.R.; LeBlanc, H.J.

    1985-05-01

    Computerized tomography, carotid angiograms, and arteriography were used to diagnose several cases of cerebral hemorrhage following the use of phenylpropanolamine. The angiographic picture in one of the three cases was similar to that previously described in association with amphetamine abuse and pseudoephedrine overdose, both substances being chemically and pharmacologically similar to phenylpropanolamine. The study suggests that the arterial change responsible for symptoms may be due to spasm rather than arteriopathy. 14 references, 5 figures.

  19. Cerebral dysgenesis. An overview.

    PubMed

    Schaefer, G B; Sheth, R D; Bodensteiner, J B

    1994-11-01

    A significant portion of patients with neurodevelopmental abnormalities (mental retardation, learning disabilities, and so forth) have no definable cause for these problems. Mounting evidence suggests a substantial number of these idiopathic conditions have subtle abnormalities of brain development (cerebral dysgenesis) as the inherent pathophysiologic event. In this article the authors summarize normal and abnormal brain development, the diagnostic approach to idiopathic neurodevelopmental anomalies, and the new molecular genetic insights into the underlying causes of brain malformations. PMID:7845342

  20. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.

    PubMed

    Seifert, Thomas; Fisher, James P; Young, Colin N; Hartwich, Doreen; Ogoh, Shigehiko; Raven, Peter B; Fadel, Paul J; Secher, Niels H

    2010-10-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1) (P < 0.01) and cardiac output by approximately 40% (P < 0.05), but did not affect mean arterial pressure. The central cardiovascular responses to exercise with glycopyrrolate were similar to the control responses, except that cardiac output did not increase during static handgrip with glycopyrrolate. Glycopyrrolate did not significantly affect cerebral metabolism during static handgrip, but a parallel increase in MCA V(mean) (approximately 16%; P < 0.01) and CBF (approximately 12%; P < 0.01) during static handgrip, as well as the increase in MCA V(mean) during cycling (approximately 15%; P < 0.01), were abolished by glycopyrrolate (P < 0.05). Thus, during both cycling and static handgrip, a cholinergic receptor mechanism is important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen. PMID:20660020

  1. What provides cerebral reserve?

    PubMed

    Staff, Roger T; Murray, Alison D; Deary, Ian J; Whalley, Lawrence J

    2004-05-01

    The cerebral reserve hypothesis is a heuristic concept used to explain apparent protection from the onset of cerebral disease and/or cognitive decline in old age. A significant obstacle when investigating the reserve hypothesis is the absence of baseline data with which to compare current cognitive status. We tested the influence of three hypothesized proxies of reserve (education, head size and occupational attainment [OCC]) in 92 volunteers born in 1921, whose cognitive function was measured at age 11 and 79 years, and who underwent brain MRI. The association between each proxy and old age cognitive function was tested, adjusting for variance contributed by childhood mental ability and detrimental age-related pathological changes measured using MRI. The results showed that education and OCC, but not total intracranial volume (TICV), contribute to cerebral reserve and help retain cognitive function in old age. Education was found to contribute between 5 and 6% of the variance found in old age memory function but was found to have no significant association with reasoning abilities. OCC was found to contribute around 5% of the variance found in old age memory function and between 6 and 8% of the variance found in old age reasoning abilities. We conclude that the intellectual challenges experienced during life, such as education and occupation, accumulate reserve and allow cognitive function to be maintained in old age. PMID:15047587

  2. [Insomnia and cerebral hypoperfusion].

    PubMed

    Káposzta, Zoltán; Rácz, Klára

    2007-11-18

    Insomnia is defined as difficulty with the initiation, maintenance, duration, or quality of sleep that results in the impairment of daytime functioning, despite adequate opportunity and circumstances for sleep. In most countries approximately every third inhabitant has insomnia. Insomnia can be classified as primary and secondary. The pathogenesis of primary insomnia is unknown, but available evidence suggests a state of hyperarousal. Insomnia secondary to other causes is more common than primary insomnia. Cerebral hypoperfusion can be the cause of insomnia in some cases. In such patients the cerebral blood flow should be improved using parenteral vascular therapy. If insomnia persists despite treatment, then therapy for primary insomnia should be instituted using benzodiazepine-receptor agonists such as Zolpidem, Zopiclone, or Zaleplon. In those cases Midazolam cannot be used for the treatment of insomnia due to its marked negative effect on cerebral blood flow. In Hungary there is a need to organize multidisciplinary Insomnia Clinics because insomnia is more than a disease, it is a public health problem in this century. PMID:17988972

  3. Cerebral oxygenation and hyperthermia

    PubMed Central

    Bain, Anthony R.; Morrison, Shawnda A.; Ainslie, Philip N.

    2014-01-01

    Hyperthermia is associated with marked reductions in cerebral blood flow (CBF). Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g., posture and degree of hyperthermia). The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2) causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g., hemorrhage or orthostatic challenges), an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy) during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e., 1.0°C to 2.0°C increase in body core temperature) levels of hyperthermia. Future research directions are provided. PMID:24624095

  4. Metabolic neuropathies

    MedlinePlus

    Neuropathy - metabolic ... can be caused by many different things. Metabolic neuropathy may be caused by: A problem with the ... one of the most common causes of metabolic neuropathies. People who are at the highest risk for ...

  5. Cerebral blood flow in experimental ischemia assessed by sup 19 F magnetic resonance spectroscopy in cats

    SciTech Connect

    Brunetti, A.; Nagashima, G.; Bizzi, A.; DesPres, D.J. )

    1990-10-01

    We evaluated a 19F magnetic resonance spectroscopic technique that detects Freon-23 washout as a means of measuring cerebral blood flow in halothane-anesthetized adult cats during and after transient cerebral ischemia produced by vascular occlusion. The experiments were performed to test the ability of this recently developed method to detect postischemic flow deficits. Results were consistent with postischemic hypoperfusion. The method also proved valuable for measuring small residual flow during vascular occlusion. Our experiments indicate that this method provides simple, rapid, and repeatable flow measurements that can augment magnetic resonance examinations of cerebral metabolic parameters in the study of ischemia.

  6. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    SciTech Connect

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  7. Training Guide to Cerebral Palsy Sports. Third Edition.

    ERIC Educational Resources Information Center

    Jones, Jeffery A., Ed.

    This official training manual of the United States Cerebral Palsy Athletic Association includes the latest coaching and training techniques specific to all sports in the national program. The book features guidelines for coaching over a dozen sports, including soccer, swimming, cycling, and track and field. It contains everything coaches,…

  8. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  9. What You Should Know about Cerebral Aneurysms

    MedlinePlus

    ... About Stroke What You Should Know About Cerebral Aneurysms Updated:Jun 13,2014 About Cerebral Aneurysms Diagnosis ... to view an animation What is a cerebral aneurysm? An aneurysm is a weak area in a ...

  10. Evaluation of N-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein relationship with features of metabolic syndrome in high-risk subgroups for cardiovascular disease

    PubMed Central

    Nayak, Bijoor Shivananda; Jagessar, Avinas; Mohammed, Zaryd; Rampersad, Jarryd; Ramkissoon, Solange; Biswah, Shivonne; Mohammed, Amisha; Maraj, Aneela; Rampersad, Christina

    2015-01-01

    Aim: This study evaluating N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) and high-sensitivity C-reactive protein (hs-CRP) relationship with features of the metabolic syndrome (MS) in high risk subgroups for cardiovascular disease (CVD) in Trinidad. Materials and Methods: The sample population consisted of 160 subjects, 78 of whom were African and 82 East Indian attending medical outpatient clinics of regional health authority hospitals of Trinidad. Results: Systolic blood pressure, triglycerides, glucose and insulin as well as NT-pro-BNP were elevated among the East Indian sub-population, with only systolic blood pressure being significantly elevated among the African sub-population. NT-pro-BNP and hs-CRP demonstrated significant correlations with respect to the majority of independent risk factors inclusive of Adult Treatment Panel III and American Association of Clinical Endocrinologists defined criteria for MS. NT-pro-BNP demonstrated stronger association among the East Indian sub-population as compared to that of the African sub-population. Conclusions: Our study showed that the East Indian subgroup was more at risk for CVD as evidenced by the fulfillment of the criteria for diagnosis of MS and therefore NT-pro-BNP and hs-CRP can be deemed a suitable marker for MS. PMID:26539369

  11. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  12. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  13. Glycogen: the forgotten cerebral energy store.

    PubMed

    Gruetter, Rolf

    2003-10-15

    The brain contains a significant amount of glycogen that is an order of magnitude smaller than that in muscle, but several-fold higher than the cerebral glucose content. Although the precise role of brain glycogen to date is unknown, it seems affected by focal activation, neurotransmitters, and overall electrical activity and hormones. Based on its relatively low concentration, the role of brain glycogen as a significant energy store has been discounted. This work reviews recent experimental evidence that brain glycogen is an important reserve of glucose equivalents: (1) glial glycogen can provide the majority of the glucose supply deficit during hypoglycemia for more than 100 min, consistent with the proposal that glial lactate is a fuel for neurons; (2) glycogen concentrations may be as high as 10 micromol/g, substantially higher than was thought previously; (3) glucose cycling in and out of glycogen amounts to approximately 1% of the cerebral metabolic rate of glucose (CMRglc) in human and rat brain, amounting to an effective stability of glycogen in the resting awake brain during euglycemia and hyperglycemia, (4) brain glycogen metabolism/concentrations are insulin/glucose sensitive; and (5) after a single episode of hypoglycemia, brain glycogen levels rebound to levels that exceed the pre-hypoglycemic concentrations (supercompensation). This experimental evidence supports the proposal that brain glycogen may be involved in the development of diabetes complications, specifically impaired glucose sensing (hypoglycemia unawareness) observed clinically in some diabetes patients under insulin treatment. It is proposed further that brain glycogen becomes important in any metabolic state where supply transiently cannot meet demand, such conditions that could occur during prolonged focal activation, sleep deprivation, seizures, and mild hypoxia. PMID:14515346

  14. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology.

    PubMed

    Stockler, Sylvia; Schutz, Peter W; Salomons, Gajja S

    2007-01-01

    Cerebral creatine deficiency syndromes (CCDSs) are a group of inborn errors of creatine metabolism comprising two autosomal recessive disorders that affect the biosynthesis of creatine--i.e. arginine:glycine amidinotransferase deficiency (AGAT; MIM 602360) and guanidinoacetate methyltransferase deficiency (GAMT; MIM 601240)--and an X-linked defect that affects the creatine transporter, SLC6A8 deficiency (SLC6A8; MIM 300036). The biochemical hallmarks of these disorders include cerebral creatine deficiency as detected in vivo by 1H magnetic resonance spectroscopy (MRS) of the brain, and specific disturbances in metabolites of creatine metabolism in body fluids. In urine and plasma, abnormal guanidinoacetic acid (GAA) levels are found in AGAT deficiency (reduced GAA) and in GAMT deficiency (increased GAA). In urine of males with SLC6A8 deficiency, an increased creatine/creatinine ratio is detected. The common clinical presentation in CCDS includes mental retardation, expressive speech and language delay, autistic like behaviour and epilepsy. Treatment of the creatine biosynthesis defects has yielded clinical improvement, while for creatine transporter deficiency, successful treatment strategies still need to be discovered. CCDSs may be responsible for a considerable fraction of children and adults affected with mental retardation of unknown etiology. Thus, screening for this group of disorders should be included in the differential diagnosis of this population. In this review, also the importance of CCDSs for the unravelling of the (patho)physiology of cerebral creatine metabolism is discussed. PMID:18652076

  15. Lactate transport and receptor actions in cerebral malaria

    PubMed Central

    Mariga, Shelton T.; Kolko, Miriam; Gjedde, Albert; Bergersen, Linda H.

    2014-01-01

    Cerebral malaria (CM), caused by Plasmodium falciparum infection, is a prevalent neurological disorder in the tropics. Most of the patients are children, typically with intractable seizures and high mortality. Current treatment is unsatisfactory. Understanding the pathogenesis of CM is required in order to identify therapeutic targets. Here, we argue that cerebral energy metabolic defects are probable etiological factors in CM pathogenesis, because malaria parasites consume large amounts of glucose metabolized mostly to lactate. Monocarboxylate transporters (MCTs) mediate facilitated transfer, which serves to equalize lactate concentrations across cell membranes in the direction of the concentration gradient. The equalizing action of MCTs is the basis for lactate’s role as a volume transmitter of metabolic signals in the brain. Lactate binds to the lactate receptor GPR81, recently discovered on brain cells and cerebral blood vessels, causing inhibition of adenylyl cyclase. High levels of lactate delivered by the parasite at the vascular endothelium may damage the blood–brain barrier, disrupt lactate homeostasis in the brain, and imply MCTs and the lactate receptor as novel therapeutic targets in CM. PMID:24904266

  16. [Traumatic disease and metabolism].

    PubMed

    Deriabin, I I; Nasonkin, O S; Nemchenko, N S; Gol'm, N P; Zimina, Z P

    1984-06-01

    The authors have established that the traumatic disease is accompanied by phasic nonspecific changes of metabolism correlating with the trauma severity as well as with its specific features and outcomes. Within the first 3-7 days catabolic processes are found to prevail and metabolic acidosis develop. Later, anabolic processes become activated in the non-complicated course of the disease. Normalization of most biochemical processes is accomplished within 15-21 days. More pronounced and prolonged disturbances of metabolism are observed in complications and lethal outcomes. PMID:6474706

  17. Stent Application for the Treatment of Cerebral Aneurysms

    PubMed Central

    Kim, Dong Joon; Kim, Dong Ik

    2011-01-01

    Rapid and striking development in both the techniques and devices make it possible to treat most of cerebral aneurysms endovascularly. Stent has become one of the most important tools in treating difficult aneurysms not feasible for simple coiling. The physical features, the dimensions, and the functional characteristics of the stents show considerable differences. There are also several strategies and tips to treat difficult aneurysms by using stent and coiling. Nevertheless, they require much experience in clinical practice as well as knowledge of the stents to treat cerebral aneurysms safely and effectively. In this report, a brief review of properties of the currently available stents and strategies of their application is presented. PMID:22125751

  18. Effect of certain cerebral hemispheric diseases on dreaming.

    PubMed

    Epstein, A W

    1979-02-01

    Dreaming may be altered by cerebral hemispheric disease. A woman who sustained a probable left posterior cerebral artery thrombosis, with right homonymous hemianopsia and alexia, had virtual cessation of dreaming for at least 9 months. Four individuals with temporal lobe epilepsy experienced recurrent painful (frightening) dreams, which in two patients showed features identical to seizures. Sleep recordings showed abnormalities in all four, including rhythmic temporal epileptiform activity during REM sleep. Lesions in parieto-occipital loci may interfere with production of the visual imagery required for dreaming (negative symptom in the Jacksonian sense) while epileptic activity in temporal loci may produce painful repetitive dream imagery (positive symptom). PMID:217457

  19. Oligodendrogenesis after cerebral ischemia

    PubMed Central

    Zhang, Ruilan; Chopp, Michael; Zhang, Zheng Gang

    2013-01-01

    Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that cerebral ischemia induces oligodendrogenesis during brain repair processes. This article will review evidence of stroke-induced proliferation and differentiation of OPCs that are either resident in white matter or are derived from SVZ neural progenitor cells and of therapies that amplify endogenous oligodendrogenesis in ischemic brain. PMID:24194700

  20. Hemodynamics of Cerebral Aneurysms

    PubMed Central

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan Raul

    2009-01-01

    The initiation and progression of cerebral aneurysms are degenerative processes of the arterial wall driven by a complex interaction of biological and hemodynamic factors. Endothelial cells on the artery wall respond physiologically to blood-flow patterns. In normal conditions, these responses are associated with nonpathological tissue remodeling and adaptation. The combination of abnormal blood patterns and genetics predisposition could lead to the pathological formation of aneurysms. Here, we review recent progress on the basic mechanisms of aneurysm formation and evolution, with a focus on the role of hemodynamic patterns. PMID:19784385

  1. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by (14C)iodoantipyrine autoradiography following middle cerebral artery occlusion

    SciTech Connect

    Tamura, A.; Graham, D.I.; McCulloch, J.; Teasdale, G.M.

    1981-01-01

    Local cerebral blood flow has been measured by quantitative autoradiography, employing (14C)iodoantipyrine as tracer, in rats killed half an hour after occlusion of the middle cerebral artery. The results were compared with pattern of local cerebral blood flow (CBF) in sham-operated rats and with neuropathological findings. In every animal there was a profound reduction (to 13% of control levels)in blood flow in the neocortex previously by the occluded artery. The level of blood flow in the areas in which ischaemic brain damage occurred was 0.24 +/- 0.03 ml g-1 min-1 (mean +/- SEM). this level of CBF is considerably greater than that reported following a similar surgical procedure in cats and primates. Moderate reductions in blood flow were also seen outside the territory of the occluded artery and in parts of the opposite hemisphere. Absolute increases in blood flow (hyperaemia) were seen only in the substantia nigra and globus pallidus ipsilateral to the occlusion. It is of the middle cerebral artery are reflections of alterations in neuronal function and metabolic activity secondary to the ischaemic lesion.

  2. Therapeutic interventions in cerebral palsy.

    PubMed

    Patel, Dilip R

    2005-11-01

    Various therapeutic interventions have been used in the management of children with cerebral palsy. Traditional physiotherapy and occupational therapy are widely used interventions and have been shown to be of benefit in the treatment of cerebral palsy. Evidence in support of the effectiveness of the neurodevelopmental treatment is equivocal at best. There is evidence to support the use and effectiveness of neuromuscular electrical stimulation in children with cerebral palsy. The effectiveness of many other interventions used in the treatment of cerebral palsy has not been clearly established based on well-controlled trials. These include: sensory integration, body-weight support treadmill training, conductive education, constraint-induced therapy, hyperbaric oxygen therapy, and the Vojta method. This article provides an overview of salient aspects of popular interventions used in the management of children with cerebral palsy. PMID:16391455

  3. Cerebral pathology post heart transplantation.

    PubMed

    Peteghem, S Van; Pauw, M De

    2015-04-01

    Cerebral pathology is frequently encountered post heart transplantation with a cumulative incidence of about 80% after 15 years. A broad spectrum of disease entities is reported, from minor abnormalities to life-threatening diseases. Although cerebral infections and malignancies are rare in this patient population, they have a high mortality rate. Since 1991, 171 orthotopic heart transplantations were performed at the Ghent University Hospital with a 10-year survival rate of 75%. Severe cerebral complications occurred in 10 patients, with epilepsy in 2 patients, cerebrovascular accidents in 4 patients, cerebral infections in 3 patients and a cerebral malignancy in 1 patient, resulting in a fatal outcome in 7 patients. We present four of these cases. PMID:25292206

  4. Cerebral aneurysms: relations between geometry, hemodynamics and aneurysm location in the cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Passerini, Tiziano; Veneziani, Alessandro; Sangalli, Laura; Secchi, Piercesare; Vantini, Simone

    2010-11-01

    In cerebral blood circulation, the interplay of arterial geometrical features and flow dynamics is thought to play a significant role in the development of aneurysms. In the framework of the Aneurisk project, patient-specific morphology reconstructions were conducted with the open-source software VMTK (www.vmtk.org) on a set of computational angiography images provided by Ospedale Niguarda (Milano, Italy). Computational fluid dynamics (CFD) simulations were performed with a software based on the library LifeV (www.lifev.org). The joint statistical analysis of geometries and simulations highlights the possible association of certain spatial patterns of radius, curvature and shear load along the Internal Carotid Artery (ICA) with the presence, position and previous event of rupture of an aneurysm in the entire cerebral vasculature. Moreover, some possible landmarks are identified to be monitored for the assessment of a Potential Rupture Risk Index.

  5. Effects of conditioning temperature and time during the pelleting process on feed molecular structure, pellet durability index, and metabolic features of co-products from bio-oil processing in dairy cows.

    PubMed

    Huang, Xuewei; Christensen, Colleen; Yu, Peiqiang

    2015-07-01

    The objectives of this study were to systematically determine effects of conditioning temperature (70, 80, and 90°C), time (50 and 75 s), and interaction (temperature × time) during the pelleting process on co-products from bio-oil processing (canola meal) in terms of processing-induced changes on (1) protein molecular structure, (2) pellet durability index, (3) detailed chemical profile, (4) metabolic features and fractions of protein and carbohydrate, (5) total digestible nutrients and energy values, and (6) rumen degradable and undegradable content. Pellet durability was increased with increasing conditioning time. Chemical and carbohydrate profiles of co-products were not altered by pelleting process under different conditioning temperatures and times. With regard to protein fraction profiles, pellets conditioned for 50 s had higher soluble crude protein (SCP) and lower neutral detergent insoluble crude protein (NDICP) contents than those conditioned for 75 s (21.7 vs. 20.1% SCP, 16.0 vs. 16.5% NDICP, respectively). Total digestible nutrients and energy values were not altered by processing. Samples conditioned for 50 s had a higher content of rapidly degradable protein fraction (PA2) than those conditioned for 75 s (21.7 vs. 21.1% crude protein). In addition, the slowly degradable true protein fraction (PB2) was affected by the interaction of conditioning temperature and time. However, carbohydrate fractions did not differ with different conditioning temperatures and time. Different temperatures and time of conditioning during pelleting process greatly affect protein profiles without altering carbohydrate profiles. Molecular structure analyses also showed that pelleting altered inherent protein molecular structures of the co-products from bio-oil processing. Future study is needed to detect how molecular structure changes affect nutrient availability in dairy cattle. PMID:25958276

  6. Chronic cough as a presenting feature of cerebral lymphoma

    PubMed Central

    Williams, Stephen P.; Bhutta, Mahmood F.

    2014-01-01

    We report a rare case of chronic cough as the presenting symptom of a primary brainstem lesion. A 69-year-old gentleman presented with chronic cough followed by onset of progressive truncal ataxia, incoordination and nystagmus. Contrast-enhanced imaging showed a midbrain lesion extending into the cerebellum, confirmed as lymphoma by stereotactic brain biopsy. The patient was successfully treated with chemotherapy, but his cough persists. We present this case to highlight the possibility of a brainstem lesion as a rare central cause of chronic cough, and suggest that the diagnosis is considered in those with concomitant neurological symptoms. PMID:25344556

  7. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  8. Cerebral sinus venous thrombosis

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Milena Castellar-Leones, Sandra; Alcala-Cerra, Gabriel; Rafael Moscote-Salazar, Luis

    2013-01-01

    Cerebral sinus venous thrombosis (CSVT) is a rare phenomenon that can be seen with some frequency in young patients. CSVT is a multifactorial condition with gender-related specific causes, with a wide clinical presentation, the leading causes differ between developed and developing countries, converting CSVT in a condition characterized by a highly variable clinical spectra, difficult diagnosis, variable etiologies and prognosis that requires fine medical skills and a high suspicious index. Patients who presents with CSVT should underwent to CT-scan venography (CVT) and to the proper inquiry of the generating cause. This disease can affect the cerebral venous drainage and related anatomical structure. The symptoms may appear in relation to increased intracranial pressure imitating a pseudotumorcerebri. Prognosis depends on the early detection. Correcting the cause, generally the complications can be prevented. Mortality trends have diminished, and with the new technologies, surely it will continue. This work aims to review current knowledge about CSVT including its pathogenesis, etiology, clinical manifestations, diagnosis, and treatment. PMID:24347950

  9. Cerebral sinus venous thrombosis.

    PubMed

    Alvis-Miranda, Hernando Raphael; Milena Castellar-Leones, Sandra; Alcala-Cerra, Gabriel; Rafael Moscote-Salazar, Luis

    2013-10-01

    Cerebral sinus venous thrombosis (CSVT) is a rare phenomenon that can be seen with some frequency in young patients. CSVT is a multifactorial condition with gender-related specific causes, with a wide clinical presentation, the leading causes differ between developed and developing countries, converting CSVT in a condition characterized by a highly variable clinical spectra, difficult diagnosis, variable etiologies and prognosis that requires fine medical skills and a high suspicious index. Patients who presents with CSVT should underwent to CT-scan venography (CVT) and to the proper inquiry of the generating cause. This disease can affect the cerebral venous drainage and related anatomical structure. The symptoms may appear in relation to increased intracranial pressure imitating a pseudotumorcerebri. Prognosis depends on the early detection. Correcting the cause, generally the complications can be prevented. Mortality trends have diminished, and with the new technologies, surely it will continue. This work aims to review current knowledge about CSVT including its pathogenesis, etiology, clinical manifestations, diagnosis, and treatment. PMID:24347950

  10. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  11. Cerebral blood flow velocity in two patients with neonatal cerebral infarction.

    PubMed

    Nishimaki, S; Seki, K; Yokota, S

    2001-04-01

    Cerebral blood flow velocity was measured in the middle cerebral artery of two patients who exhibited unilateral neonatal cerebral infarction during the neonatal period. Doppler studies demonstrated increases in cerebral blood flow velocity but decreases in the resistance index on the affected side of the middle cerebral artery in the neonate who developed hemiplegia with cystic encephalomalacia, although the neonate with normal neurologic outcome exhibited symmetric cerebral blood flow velocity and resistance index. The asymmetry in cerebral blood flow velocity measurements of both middle cerebral arteries may be useful to evaluate the severity of brain damage and predict the neurodevelopmental prognosis of unilateral neonatal cerebral infarction. PMID:11377112

  12. Pharmacologic interventions for reducing spasticity in cerebral palsy.

    PubMed

    Patel, Dilip R; Soyode, Olufemi

    2005-10-01

    Motor function abnormalities are a key feature of cerebral palsy. Spasticity is one of the main motor abnormalities seen in children with cerebral palsy. Spasticity is a velocity dependent increased resistance to movement. While in some children, spasticity may adversely impact the motor abilities, in others, it may help maintain posture and ability to ambulate. Thus, treatment to reduce spasticity requires careful consideration of various factors. Non-pharmacologic interventions used to reduce spasticity include physiotherapy, occupational therapy, use of adaptive equipment, various orthopedic surgical procedures and neurosurgical procedures. Pharmacologic interventions used for reducing spasticity in children with cerebral palsy reviewed in this article include oral administration of baclofen, diazepam, dantrolene and tizanidine, intrathecal baclofen, and local injections of botulinum toxin, phenol, and alcohol. PMID:16272661

  13. Laser Speckle Imaging of Cerebral Blood Flow

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  14. Infrared laser hemotherapy in cerebral ischemia modeling

    NASA Astrophysics Data System (ADS)

    Musienko, Julia I.; Nechipurenko, Natalia I.

    2003-10-01

    Use of intravenous laser irradiation of blood (ILIB) is considered to be the most effective method of laser therapy and its application is expedient pathogenetically in the ischemic disturbances. The aim of this study is to investigate ILIB influence with infrared laser (IL) with 860 nm wavelength on hemostasis, acid-base status (ABS) of blood in normal rabbits and after modeling of local ischemia of brain (LIB). Experimental cerebral ischemia is characterized by development of hypercoagulation syndrom and metabolic acidosis. ILIB with infrared radiation of 2.0 mW power provokes hypocoagulation in intact animals. Application of ILIB in rabbits after LIB contributes for hemostasis and acid-base status normalizing compared to operated animals. IL radiation with 8,5 mW power results in marked hemostatic activation in all animals. Therefore, beneficial effect of low power laser radiation (LPLR) manifests in narrow power diapason in experimental brain ischemia.

  15. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups.

    PubMed

    Goettel, Nicolai; Patet, Camille; Rossi, Ariane; Burkhart, Christoph S; Czosnyka, Marek; Strebel, Stephan P; Steiner, Luzius A

    2016-06-01

    Autoregulation of blood flow is a key feature of the human cerebral vascular system to assure adequate oxygenation and metabolism of the brain under changing physiological conditions. The impact of advanced age and anesthesia on cerebral autoregulation remains unclear. The primary objective of this study was to determine the effect of sevoflurane anesthesia on cerebral autoregulation in two different age groups. This is a follow-up analysis of data acquired in a prospective observational cohort study. One hundred thirty-three patients aged 18-40 and ≥65 years scheduled for major noncardiac surgery under general anesthesia were included. Cerebral autoregulation indices, limits, and ranges were compared in young and elderly patient groups. Forty-nine patients (37 %) aged 18-40 years and 84 patients (63 %) aged ≥65 years were included in the study. Age-adjusted minimum alveolar concentrations of sevoflurane were 0.89 ± 0.07 in young and 0.99 ± 0.14 in older subjects (P < 0.001). Effective autoregulation was found in a blood pressure range of 13.8 ± 9.8 mmHg in young and 10.2 ± 8.6 mmHg in older patients (P = 0.079). The lower limit of autoregulation was 66 ± 12 mmHg and 73 ± 14 mmHg in young and older patients, respectively (P = 0.075). The association between sevoflurane concentrations and autoregulatory capacity was similar in both age groups. Our data suggests that the autoregulatory plateau is shortened in both young and older patients under sevoflurane anesthesia with approximately 1 MAC. Lower and upper limits of cerebral blood flow autoregulation, as well as the autoregulatory range, are not influenced by the age of anesthetized patients. Trial registration ClinicalTrials.gov (NCT00512200). PMID:26285741

  16. CYCLOOXYGENASE PRODUCTS STIMULATE CARBON MONOXIDE PRODUCTION BY PIGLET CEREBRAL MICROVESSELS

    PubMed Central

    Kanu, Alie; Gilpin, David; Fedinec, Alexander L.

    2005-01-01

    Products of arachidonic acid (AA) metabolism by cyclooxygenase (COX) are important in regulation of neonatal cerebral circulation. The brain and cerebral microvessels also express heme oxygenase (HO) that metabolizes heme to carbon monoxide (CO), biliverdin, and iron. The purpose of this study in newborn pig cerebral microvessels was to address the hypothesis that COX products affect HO activity and HO products affect COX activity. AA (2.0-20μM) increased PGE2 measured by RIA and also CO measured by gas chromatography/mass spectrometry (GC-MS). Further, indomethacin (10-4M), that inhibited COX, reduced both AA and heme-induced CO production. Conversely, neither exogenous heme (2×10-6M), that markedly increased CO production, nor the inhibitor of HO, chromium mesoporphyrin, altered PGE2 synthesis. Because AA metabolism by COX generates both prostanoids and superoxides, we determined the effects of the predominant prostanoid and superoxide on CO production. While PGE2 caused a small increase in CO production, xanthine oxidase plus hypoxanthine that produces superoxide strongly stimulated the production of CO by cerebral microvessels. This increase was mildly attenuated by catalase. These data suggest that COX catalyzed AA metabolite(s), most likely superoxide, H2O2, and / or a subsequent reactive oxygen species increases cerebrovascular CO production. This increase appears to be due, at least in part, to the elevation of HO-2 catalytic activity. Conversely, COX activity is not affected by HO-catalyzed heme metabolites. These data suggest that some cerebrovascular functions attributable to COX activity could be mediated by CO. PMID:16446494

  17. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude.

    PubMed

    Willie, Christopher K; MacLeod, David B; Smith, Kurt J; Lewis, Nia C; Foster, Glen E; Ikeda, Keita; Hoiland, Ryan L; Ainslie, Philip N

    2015-05-01

    The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial-jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H(+) relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia. PMID:25690474

  18. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude

    PubMed Central

    Willie, Christopher K; MacLeod, David B; Smith, Kurt J; Lewis, Nia C; Foster, Glen E; Ikeda, Keita; Hoiland, Ryan L; Ainslie, Philip N

    2015-01-01

    The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial–jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H+ relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia. PMID:25690474

  19. Metabolic Disorders

    MedlinePlus

    ... as your liver, muscles, and body fat. A metabolic disorder occurs when abnormal chemical reactions in your body ... that produce the energy. You can develop a metabolic disorder when some organs, such as your liver or ...

  20. Patterns of cerebral glucose utilization in depression, multiple infarct dementia, and Alzheimer's disease

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Riege, W.H.

    1983-01-01

    Patterns of local cerebral glucose utilization were determined in moderately to severely disabled patients with depression (n=7), multiple infarct dementia (n=6), and Alzheimer's disease (n=6), and in normal controls (n=6), using positron emission tomography with the /sup 18/F-fluorodeoxyglucose method. Average global metabolic rate was decreased 30% in patients with Alzheimer's disease, but overlap among the other groups reduced the discriminant value of this measure. In depressed patients, the cerebral metabolic pattern was normal, except for evidence of hypometabolic zone in the posterior-inferior frontal cortex which was of marginal statistical significance. In multiple infarct dementia, focal metabolic defects were scattered throughout the brain and exceeded the extent of infarction. In Alzheimer's disease, metabolism was markedly reduced in cortex, especially parietal cortex, but relatively preserved in caudate, thalamus, anterior cingulate gyrus, pre and post central gyrus, and calcarine occipital cortex, a pattern duplicating the degree and location of pathological and neurochemical alterations characteristic of this disorder.

  1. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  2. [Changes of cerebral blood flow during diving reactions in humans].

    PubMed

    Baranova, T I; Berlov, D N; Ianvareva, I N

    2014-05-01

    The characteristics of human cerebral blood flow were estimated during the implementation of the diving response, simulated by complex cold-hypoxic-hypercapnic exposure (CHHE), and under the influence of separate cold, hypercapnic and hypoxic stimuli. Was studied 18 people aged 18-22 years who had no special training. Cerebral blood flow was recorded by transcranial Doppler. It is shown that in the CHHE with the respect initial state to observe a marked increase in cerebral blood flow linear velocity (BFV) to 82.3 ± 15.2%, as well as reducing characterizing the tone of resistance vessels of the brain pulsatility index (PI) to 77.2 ± 13.1%. During cold and tactile stimulation of facial skin BFV and PI did not change significantly, with a single breath hold (Genchi test) BFV increased by 52.3 ± 12.5%, PI at 64.5 ± 15%. The latent period of cerebral blood flow (14-43) allow suppose metabolic (chemical) nature of regulatory influences, which provide changes of considered indicators. PMID:25669101

  3. 1,5-Diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia.

    PubMed

    Liu, Huihui; Chen, Rui; Wang, Jiyun; Chen, Suming; Xiong, Caiqiao; Wang, Jianing; Hou, Jian; He, Qing; Zhang, Ning; Nie, Zongxiu; Mao, Lanqun

    2014-10-21

    A sensitive analytical technique for visualizing small endogenous molecules simultaneously is of great significance for clearly elucidating metabolic mechanisms during pathological progression. In the present study, 1,5-naphthalenediamine (1,5-DAN) hydrochloride was prepared for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of small molecules in liver, brain, and kidneys from mice. Furthermore, 1,5-DAN hydrochloride assisted LDI MSI of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) was carried out to investigate the altered metabolic pathways and mechanisms underlying the development of ischemic brain damage. Our results suggested that the newly prepared matrix possessed brilliant features including low cost, strong ultraviolet absorption, high salt tolerance capacity, and fewer background signals especially in the low mass range (typically m/z < 500), which permitted us to visualize the spatial distribution of a broad range of small molecule metabolites including metal ions, amino acids, carboxylic acids, nucleotide derivatives, peptide, and lipids simultaneously. Nineteen endogenous metabolites involved in metabolic networks such as ATP metabolism, tricarboxylic acid (TCA) cycle, glutamate-glutamine cycle, and malate-aspartate shuttle, together with metal ions and phospholipids as well as antioxidants underwent relatively obvious changes after 24 h of MCAO. The results were highly consistent with the data obtained by MRM MS analysis. These findings highlighted the promising potential of the organic salt matrix for application in the field of biomedical research. PMID:25247713

  4. Cerebral Laterality and Verbal Processes

    ERIC Educational Resources Information Center

    Sherman, Jay L.; And Others

    1976-01-01

    Research suggests that we process information by way of two distinct and functionally separate coding systems. Their location, somewhat dependent on cerebral laterality, varies in right- and left-handed persons. Tests this dual coding model. (Editor/RK)

  5. Cognitive Deficits and Cerebral Asymmetry.

    ERIC Educational Resources Information Center

    Bakker, Dirk J.

    1982-01-01

    Research concerning cerebral asymmetry and its effect on scholastic achievement, reading disabilities, learning disabilities, and linguistic competence is reviewed in an exploration of brain hemisphere-specific etiologies of dyslexia. (CJ)

  6. Brief inhalation method to measure cerebral oxygen extraction fraction with PET: Accuracy determination under pathologic conditions

    SciTech Connect

    Altman, D.I.; Lich, L.L.; Powers, W.J. )

    1991-09-01

    The initial validation of the brief inhalation method to measure cerebral oxygen extraction fraction (OEF) with positron emission tomography (PET) was performed in non-human primates with predominantly normal cerebral oxygen metabolism (CMRO2). Sensitivity analysis by computer simulation, however, indicated that this method may be subject to increasing error as CMRO2 decreases. Accuracy of the method under pathologic conditions of reduced CMRO2 has not been determined. Since reduced CMRO2 values are observed frequently in newborn infants and in regions of ischemia and infarction in adults, we determined the accuracy of the brief inhalation method in non-human primates by comparing OEF measured with PET to OEF measured by arteriovenous oxygen difference (A-VO2) under pathologic conditions of reduced CMRO2 (0.27-2.68 ml 100g-1 min-1). A regression equation of OEF (PET) = 1.07 {times} OEF (A-VO2) + 0.017 (r = 0.99, n = 12) was obtained. The absolute error in oxygen extraction measured with PET was small (mean 0.03 {plus minus} 0.04, range -0.03 to 0.12) and was independent of cerebral blood flow, cerebral blood volume, CMRO2, or OEF. The percent error was higher (19 {plus minus} 37), particularly when OEF is below 0.15. These data indicate that the brief inhalation method can be used for measurement of cerebral oxygen extraction and cerebral oxygen metabolism under pathologic conditions of reduced cerebral oxygen metabolism, with these limitations borne in mind.

  7. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo

    PubMed Central

    Lindquist, Britta E; Shuttleworth, C William

    2014-01-01

    Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions. PMID:25160669

  8. Antiphospholipid syndrome presenting as cerebral venous sinus thrombosis: a case series and a review.

    PubMed

    Shlebak, Abdul

    2016-04-01

    The cerebral venous sinus system is a rare site for venous thrombosis except in patients with antiphospholipid syndrome. We describe three patients presenting with cerebral venous thrombosis in association with other thrombotic sites in two patients and as an only site in one patient. Antiphospholipid syndrome has varied clinical manifestations but the defining feature is the persistent presence of antiphospholipid antibodies. In this report we will review the clinical and laboratory diagnostic criteria and the management of patients with antiphospholipid syndrome. PMID:26424813

  9. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, ...

  10. Gait energy efficiency in children with cerebral palsy.

    PubMed

    Rosen, Sarah; Tucker, Carole A; Lee, Samuel C K

    2006-01-01

    Children with cerebral palsy (CP) expend up to three times the energy required for ambulation as compared to typically developed children of the same age. Measuring the metabolic energy required to execute a task is an intuitively appealing way to quantify task efficiency. Task energy demand is often quantified through pulmonary tests that measure oxygen consumption. Although providing an accepted measure of energy demand, these tests are technically demanding and staff intensive. For this reason, we sought a measure of gait efficiency based on spatiotemporal and kinematic parameters that would be reflective of the energy cost during ambulation in children with cerebral palsy. Gait data from 18 subjects with CP over 30 separate data collection sessions was used. Statistical analysis showed oxygen cost highly correlates to several kinematic variables, most notably, pelvic tilt, walking speed, landing angle and the biomechanical efficiency quotient (BEQ). The results of the work support the development of a computational model that would capture gait energy efficiency. PMID:17946881

  11. Cerebral aneurysms following radiotherapy for medulloblastoma

    SciTech Connect

    Benson, P.J.; Sung, J.H.

    1989-04-01

    Three patients, two males and one female aged 21, 14, and 31 years, respectively, developed cerebral saccular aneurysms several years after undergoing radiotherapy for cerebellar medulloblastoma at 2, 5, and 14 years of age, respectively. Following surgery, all three received combined cobalt-60 irradiation and intrathecal colloidal radioactive gold (/sup 198/Au) therapy, and died from rupture of the aneurysm 19, 9, and 17 years after the radiotherapy, respectively. Autopsy examination revealed no recurrence of the medulloblastoma, but widespread radiation-induced vasculopathy was found at the base of the brain and in the spinal cord, and saccular aneurysms arose from the posterior cerebral arteries at the basal cistern or choroidal fissure. The aneurysms differed from the ordinary saccular aneurysms of congenital type in their location and histological features. Their locations corresponded to the areas where intrathecally administered colloidal /sup 198/Au is likely to pool, and they originated directly from a segment of the artery rather than from a branching site as in congenital saccular aneurysms. It is, therefore, concluded that the aneurysms in these three patients were most likely radiation-induced.

  12. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  13. Cerebral Small Vessel Disease and Arterial Stiffness: Tsunami Effect in the Brain?

    PubMed Central

    Saji, Naoki; Toba, Kenji; Sakurai, Takashi

    2016-01-01

    Background Cerebral small vessel diseases, including silent lacunar infarcts, white matter hyperintensities, and microbleeds, pose a risk for cerebrovascular disease, cognitive impairment, and the geriatric syndrome via effects on arterial stiffness. However, the vascular, physiological, and metabolic roles of arterial stiffness in cerebral small vessel diseases remain unclear. Summary Arterial stiffness can be assessed using various indicators such as the ankle-brachial index, pulse wave velocity, cardio-ankle vascular index, and augmentation index. Arterial stiffness is independently associated with all components of cerebral small vessel disease including silent lacunar infarcts, white matter hyperintensities, and microbleeds, although there are some methodological differences between the various surrogate markers. Evidence of arterial stiffness indicates microvessel arteriosclerosis presenting with vascular endothelial dysfunction. Further, vascular narrowing due to atherosclerosis and vascular stiffness due to lipohyalinosis can accelerate the pulse waves. This hemodynamic stress, pulsatile pressure, or blood pressure variability can cause a ‘tsunami effect’ towards the cerebral parenchyma and lead to cerebral small vessel disease. Previous studies have shown that silent lacunar infarcts and white matter hyperintensities are strongly associated with arterial stiffness. However, the association between microbleeds and arterial stiffness remains controversial, as there are two vessel mechanisms related to microbleeds: cerebral amyloid angiopathy and hypertensive small vessel disease. Key Messages Cerebral small vessel disease with associated arterial stiffness is a risk factor for silent cerebral lesions, stroke, and cognitive impairment. Improvement of the living environment, management of risk factors, and innovation and development of novel drugs that improve arterial stiffness may suppress the progression of cerebral small vessel disease, and may reduce

  14. [Plasma osmolarity and cerebral volume].

    PubMed

    Boulard, G

    2001-02-01

    Under normal physiological conditions, the osmolarity of extracellular fluids (ECFs) and natremia are controlled by two regulatory mechanisms modulating the water balance and sodium outflow from information collected by the osmoreceptors and baroreceptors, respectively. As well, under normal physiological conditions, water and electrolytes of brain ECFs are secreted by the endothelial cells of brain capillaries. Furthermore, isotonicity is present on both sides of the blood-brain barrier. In the event of systemic osmolarity disorders, water transport subject to osmosis laws occurs at the level of the blood-brain barrier. In the case of plasmatic hyperosmolarity cerebral dehydration is observed, while cerebral edema occurs in the contrary case. However, plasmatic osmolarity disorders have less effect on the cerebral volume when their introduction is slow. Experimentation in acute conditions shows that measured variations of the cerebral water content are lower than calculated variations, thus suggesting the existence of an adaptive mechanism, that is, the cerebral osmoregulation which limits the variation of the volume of brain cells by modulating their osmoactive molecule content. These osmoactive molecules are, on the one hand, the electrolytes, which are early and rapidly mobilized, and, on the other hand, the organic osmoles (amino acids, etc.), whose secretion is slower and delayed. This phenomenon should be taken into account in the treatment of osmolarity disorders. Thus, the related-risk of treatment for natremia disorders is therapeutic reversal of the osmotic gradient at the level of the blood-brain barrier. This reversal, which corresponds to a second osmotic stress, requires the implementation of a new procedure of cerebral osmoregulation in the opposite direction of the preceding one. As successive osmotic stresses decrease the effectiveness of brain osmoregulation, the risk for cerebral dehydration and pontine myelinolysis increases when the treatment

  15. Regulation of cerebral blood flow after spinal cord injury.

    PubMed

    Phillips, Aaron A; Ainslie, Philip N; Krassioukov, Andrei V; Warburton, Darren E R

    2013-09-15

    Significant cardiovascular and autonomic dysfunction occurs after era spinal cord injury (SCI). Two major conditions arising from autonomic dysfunction are orthostatic hypotension and autonomic dysreflexia (i.e., severe acute hypertension). Effective regulation of cerebral blood flow (CBF) is essential to offset these drastic changes in cerebral perfusion pressure. In the context of orthostatic hypotension and autonomic dysreflexia, the purpose of this review is to critically examine the mechanisms underlying effective CBF after an SCI and propose future avenues for research. Although only 16 studies have examined CBF control in those with high-level SCI (above the sixth thoracic spinal segment), it appears that CBF regulation is markedly altered in this population. Cerebrovascular function comprises three major mechanisms: (1) cerebral autoregulation, (i.e., ΔCBF/Δ blood pressure); (2) cerebrovascular reactivity to changes in PaCO2 (i.e. ΔCBF/arterial gas concentration); and (3) neurovascular coupling (i.e., ΔCBF/Δ metabolic demand). While static cerebral autoregulation appears to be well maintained in high-level SCI, dynamic cerebral autoregulation, cerebrovascular reactivity, and neurovascular coupling appear to be markedly altered. Several adverse complications after high-level SCI may mediate the changes in CBF regulation including: systemic endothelial dysfunction, sleep apnea, dyslipidemia, decentralization of sympathetic control, and dominant parasympathetic activity. Future studies are needed to describe whether altered CBF responses after SCI aid or impede orthostatic tolerance. Further, simultaneous evaluation of extracranial and intracranial CBF, combined with modern structural and functional imaging, would allow for a more comprehensive evaluation of CBF regulatory processes. We are only beginning to understand the functional effects of dysfunctional CBF regulation on brain function on persons with SCI, which are likely to include increased risk

  16. Magnetic resonance perfusion imaging in proliferative cerebral angiopathy.

    PubMed

    Vargas, María Catalina; Castillo, Mauricio

    2011-01-01

    Cerebral proliferative angiopathy (CPA) is an unusual type of vascular malformation with unique clinical and imaging characteristics that distinguish it from the classic arteriovenous malformations. The features of CPA include absence of dominant arterial feeders or flow-related aneurysms, capillary angioectasia without large draining veins, and presence of intermingled normal brain parenchyma that is hypoperfused. We describe the magnetic resonance imaging findings including perfusion in 3 patients with CPA. PMID:21245687

  17. Transgenic mice overexpressing APP and transforming growth factor-beta1 feature cognitive and vascular hallmarks of Alzheimer's disease.

    PubMed

    Ongali, Brice; Nicolakakis, Nektaria; Lecrux, Clotilde; Aboulkassim, Tahar; Rosa-Neto, Pedro; Papadopoulos, Panayiota; Tong, Xin-Kang; Hamel, Edith

    2010-12-01

    High brain levels of amyloid-β (Aβ) and transforming growth factor-β1 (TGF-β1) have been implicated in the cognitive and cerebrovascular alterations of Alzheimer's disease (AD). We sought to investigate the impact of combined increases in Aβ and TGF-β1 on cerebrovascular, neuronal, and mnemonic function using transgenic mice overproducing these peptides (A/T mice). In particular, we measured cerebrovascular reactivity, evoked cerebral blood flow and glucose uptake during brain activation, cholinergic status, and spatial memory, along with cerebrovascular fibrosis, amyloidosis, and astrogliosis, and their evolution with age. An assessment of perfusion and metabolic responses was considered timely, given ongoing efforts for their validation as AD biomarkers. Relative to wild-type littermates, A/T mice displayed an early progressive decline in cerebrovascular dilatory ability, preserved contractility, and reduction in constitutive nitric oxide synthesis that establishes resting vessel tone. Altered levels of vasodilator-synthesizing enzymes and fibrotic proteins, resistance to antioxidant treatment, and unchanged levels of the antioxidant enzyme, superoxide dismutase-2, accompanied these impairments. A/T mice featured deficient neurovascular and neurometabolic coupling to whisker stimulation, cholinergic denervation, cerebral and cerebrovascular Aβ deposition, astrocyte activation, and impaired Morris water maze performance, which gained severity with age. The combined Aβ- and TGF-β1-driven pathology recapitulates salient cerebrovascular, neuronal, and cognitive AD landmarks and yields a versatile model toward highly anticipated diagnostic and therapeutic tools for patients featuring Aβ and TGF-β1 increments. PMID:21088218

  18. Magnetic Resonance Imaging Criteria for Thrombolysis in Hyperacute Cerebral Infarction

    PubMed Central

    AHMETGJEKAJ, ILIR; KABASHI-MUÇAJ, SERBEZE; LASCU, LUANA CORINA; KABASHI, ANTIGONA; BONDARI, A.; BONDARI, SIMONA; DEDUSHI-HOTI, KRESHNIKE; BIÇAKU, ARDIAN; SHATRI, JETON

    2014-01-01

    Purpose: Selection of patients with cerebral infarction for MRI that is suitable for thrombolytic therapy as an emerging application. Although the efficiency of the therapy with i.v. tissue plasminogen activator (tPA) within 3 hours after onset of symptoms has been proven in selected patients with CT, now these criteria are determined by MRI, as the data we gather are fast and accurate in the first hours. Material and methods: MRI screening in patients with acute cerebral infarction before application of thrombolytic therapy was done in a UCC Mannheim in Germany. Unlike trials with CT, MRI studies demonstrated the benefits of therapy up to 6 hours after the onset of symptoms. We studied 21 patients hospitalized in Clinic of Neuroradiology at University Clinical Centre in Mannheim-Germany. They all undergo brain MRI evaluation for stroke. This article reviews literature that has followed application of thrombolysis in patients with cerebral infarction based on MRI. Results: We have analyzed the MRI criteria for i.v. application of tPA at this University Centre. Alongside the personal viewpoints of clinicians, survey reveals a variety of clinical aspects and MRI features that are opened for further more exploration: therapeutic effects, the use of the MRI angiography, dynamics, and other. Conclusions: MRI is a tested imaging method for rapid evaluation of patients with hyperacute cerebral infarction, replacing the use of CT imaging and clinical features. MRI criteria for thrombolytic therapy are being applied in some cerebral vascular centres. In Kosovo, the application of thrombolytic therapy has not started yet. PMID:25729591

  19. Hereditary and metabolic myelopathies.

    PubMed

    Hedera, Peter

    2016-01-01

    Hereditary and metabolic myelopathies are a heterogeneous group of neurologic disorders characterized by clinical signs suggesting spinal cord dysfunction. Spastic weakness, limb ataxia without additional cerebellar signs, impaired vibration, and positional sensation are hallmark phenotypic features of these disorders. Hereditary, and to some extent, metabolic myelopathies are now recognized as more widespread systemic processes with axonal loss and demyelination. However, the concept of predominantly spinal cord disorders remains clinically helpful to differentiate these disorders from other neurodegenerative conditions. Furthermore, metabolic myelopathies are potentially treatable and an earlier diagnosis increases the likelihood of a good clinical recovery. This chapter reviews major types of degenerative myelopathies, hereditary spastic paraplegia, motor neuron disorders, spastic ataxias, and metabolic disorders, including leukodystrophies and nutritionally induced myelopathies, such as vitamin B12, E, and copper deficiencies. Neuroimaging studies usually detect a nonspecific spinal cord atrophy or demyelination of the corticospinal tracts and dorsal columns. Brain imaging can be also helpful in myelopathies caused by generalized neurodegeneration. Given the nonspecific nature of neuroimaging findings, we also review metabolic or genetic assays needed for the specific diagnosis of hereditary and metabolic myelopathies. PMID:27430441

  20. Metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Martin, A.; Haller, R. G.; Barohn, R.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    Metabolic myopathies are disorders of muscle energy production that result in skeletal muscle dysfunction. Cardiac and systemic metabolic dysfunction may coexist. Symptoms are often intermittent and provoked by exercise or changes in supply of lipid and carbohydrate fuels. Specific disorders of lipid and carbohydrate metabolism in muscle are reviewed. Evaluation often requires provocative exercise testing. These tests may include ischemic forearm exercise, aerobic cycle exercise, and 31P magnetic resonance spectroscopy with exercise.

  1. Hydrostatic determinants of cerebral perfusion

    SciTech Connect

    Wagner, E.M.; Traystman, R.J.

    1986-05-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure.

  2. Cerebral oximetry and cardiac arrest.

    PubMed

    Skhirtladze-Dworschak, Keso; Dworschak, Martin

    2013-12-01

    Cerebral oximetry is a Food and Drug Administration-approved technology that allows monitoring of brain oxygen saturation in accessible superficial brain cortex regions, which are amongst the most vulnerable in regard to ischemic or hypoxic injury. Since most oxygen in the area of interest is located in the venous compartment, the determined regional brain oxygen saturation approximately reflects the local balance between oxygen delivery and oxygen consumption. Major systemic alterations in blood oxygen content and oxygen delivery will be accompanied by corresponding changes in regional brain saturation. This systematic review, which is based on a Medline search, focuses on the characteristic changes in regional cerebral oxygen saturation that occur, when global oxygen supply to the brain ceases. It further highlights the potential application of cerebral oximetry in the management of cardiac arrest victims, the predictability of clinical outcome after global cerebral ischemia, and it also indicates possible potentials for the management of cerebral reperfusion after having instituted return of spontaneous circulation. PMID:23782549

  3. Metabolic ecology.

    PubMed

    Humphries, Murray M; McCann, Kevin S

    2014-01-01

    Ecological theory that is grounded in metabolic currencies and constraints offers the potential to link ecological outcomes to biophysical processes across multiple scales of organization. The metabolic theory of ecology (MTE) has emphasized the potential for metabolism to serve as a unified theory of ecology, while focusing primarily on the size and temperature dependence of whole-organism metabolic rates. Generalizing metabolic ecology requires extending beyond prediction and application of standardized metabolic rates to theory focused on how energy moves through ecological systems. A bibliometric and network analysis of recent metabolic ecology literature reveals a research network characterized by major clusters focused on MTE, foraging theory, bioenergetics, trophic status, and generalized patterns and predictions. This generalized research network, which we refer to as metabolic ecology, can be considered to include the scaling, temperature and stoichiometric models forming the core of MTE, as well as bioenergetic equations, foraging theory, life-history allocation models, consumer-resource equations, food web theory and energy-based macroecology models that are frequently employed in ecological literature. We conclude with six points we believe to be important to the advancement and integration of metabolic ecology, including nomination of a second fundamental equation, complementary to the first fundamental equation offered by the MTE. PMID:24028511

  4. Fetal brain regional responses to cerebral hypoperfusion: modulation by estrogen.

    PubMed

    Wood, Charles E; Giroux, Damian; Gridley, Kelly

    2003-12-12

    cerebral cortex. In these regions with statistically significant interactions, the expression of Fos in response to the combined treatment of estradiol and BCO was less than the sum of responses to either treatment alone. We conclude that estradiol has a potent action on the fetal brain which is identifiable in the brainstem, cerebellum, and hippocampus and that it modulates the Fos response to cerebral hypoperfusion. The measurement of regional Fos responses using Western blot reveals a negative interaction between estrogen and BCO which might result from alterations in cerebral blood flow or metabolism. PMID:14642833

  5. International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism.

    PubMed

    Hutchinson, Peter; O'Phelan, Kristine

    2014-12-01

    Microdialysis is a powerful technique, which enables the chemistry of the extracellular space to be measured directly. Applying this technique to patients in neurointensive care has increased our understanding of the pathophysiology of traumatic brain injury and spontaneous hemorrhage. In parallel, it is important to determine the place of microdialysis in assisting in the management of patients on an individual intention to treat basis. This is made possible by the availability of analyzers which can measure the concentration of glucose, pyruvate, lactate, and glutamate at the bedside. Samples can then be stored for later analysis of other substrate and metabolites e.g., other amino acids and cytokines. The objective of this paper is to review the fundamental literature pertinent to the clinical application of microdialysis in neurointensive care and to give recommendations on how the technique can be applied to assist in patient management and contribute to outcome. A literature search detected 1,933 publications of which 55 were used for data abstraction and analysis. The role of microdialysis was evaluated in three conditions (traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage) and recommendations focused on three fundamental areas (relationship to outcome, application of microdialysis to guide therapy, and the ability of microdialysis to predict secondary deterioration). PMID:25208673

  6. Local cerebral glucose metabolism (LCMRGlc) in mood disorders

    SciTech Connect

    Phelps, M.E.; Baxter, L.R.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.

    1985-05-01

    PET studies (LCMRGlc units of ..mu.. moles/min/100g and errors in std. dev.) were performed in patients with unipolar depression (n=11), bipolar depression (n=8), hypomania (n=8) and bipolar mixed states (n=3) in drug free states as well as during spontaneous or drug induced changes in mood, and age/sex matched normals (n=9). The major findings were: bipolar depressed patients had lower (P<0.001) supratentorial CMRGlc (16.7 +- 3.7) than normals (23.6 +- 1.9), hypomanic bipolars (24.7 + 44.6) or unipolars (24.5 +- 3.0). Bipolar mixed (16.4 +- 4.8) were not different from bipolar depressed but were different from all other states (P<0.02). Bipolar depressed and mixed showed increased (30%) supratentorial CMRGlc (P<0.05) with elevated mood (euthymic or hypomanic). Three rapid cycling bipolar patients (2 studies depressed and 1 hypomanic) also showed consistent increases (35%) in supratentorial CMRGlc from depressed to elevated mood state. Unipolar depressed patients had a low LCMRGlc ratio of caudate to hemispheric (c/Hem) (1.18 +- 0.09) compared to bipolar depression (1.30 +- 0.13) or normals (1.32 +- 0.07). Four unipolar patients studied after drug induced recovery showed corresponding return of Cd/Hem ratio to normal. Results of these studies show; delineation of bipolar depressed from unpolar depressed and normals. Separation of mixed biopolar from unipolar and correspondence of the former with bipolar rather than unipolar depression (controversial characterization by other diagnostic criteria), separation of unipolar from normal and bipolar by reduced LCMRGlc of caudate, and direct correspondence of changes in mood state with changes in LCMRGlc independent of whether changes in mood were drug induced or spontaneous.

  7. Cerebral palsy and aging

    PubMed Central

    Haak, Peterson; Lenski, Madeleine; Hidecker, Mary Jo Cooley; Li, Min; Paneth, Nigel

    2014-01-01

    Cerebral palsy (CP), the most common major disabling motor disorder of childhood, is frequently thought of as a condition that affects only children. Deaths in children with CP, never common, have in recent years become very rare, unless the child is very severely and multiply disabled. Thus, virtually all children assigned the diagnosis of CP will survive into adulthood. Attention to the adult with CP has been sparse, and the evolution of the motor disorder as the individual moves through adolescence, young adulthood, middle age, and old age is not well understood. Nor do we know what happens to other functional domains, such as communication and eating behavior, in adults with CP. Although the brain injury that initially causes CP by definition does not progressively worsen through the lifetime, the effects of CP manifest differently throughout the life span. The aging process must inevitably interact with the motor disorder, but we lack systematic, large-scale follow-up studies of children with CP into adulthood and through adulthood with thorough assessments performed over time. In this paper we summarize what is known of the epidemiology of CP throughout the life span, beginning with mortality and life expectancy, then survey what is known of functioning, ability, and quality of life of adults with CP. We conclude by describing a framework for future research on CP and aging that is built around the World Health Organization's International Classification of Functioning, Disability, and Health (ICF) and suggest specific tools and approaches for conducting that research in a sound manner. PMID:19740206

  8. Binding of radiolabeled misonidazole in cerebral infarction

    SciTech Connect

    Rasey, J.S.; Hoffman, J.; Spence, A.M.; Krohn, K.A.

    1985-05-01

    The metabolic trapping of the radiolabeled nitroimidazole, misonidazole, in viable hypoxic tissue may form the basis for the nuclear imaging of ischemia in cerebral infarction. Misonidazole congeners could be labeled with /sup 75/Br, /sup 18/F, or /sup 11/C and detected with PET. Infarction was induced in male Mongolian gerbils by ligation of the right common carotid artery. Severity of the lesions was determined by scoring neurological symptoms with a stroke index, in which scores >10, out of a possible 25, indicate presence of a severe infarct. Gerbils with scores ranging from 0 (asymptomatic) to 13 as well as control (unligated) animals received 3 injections (50 ..mu..Moles/kg) of /sup 3/H-misonidazole in 2 hours and % injected dose/g (% I.D./g) was determined 2 hours after the final injection. Uptake into whole brain of control animals averaged 0.137 +- 0.0168 % I.D./g. The cerebral hemispheres of ligated gerbils were divided into 7, 2 mm-thick coronal sections which were then bisected. In the right half of slide number3 (midparietal region) the % I.D./g increased with increasing stroke index. For animals with a stroke index = 0, uptake was 0.159 % I.D./g, and right/left R/L ratio was 1.07. For 2 animals with a score = 13, uptake in the same region ws 0.752 and 0.717 and I.D./g with R/L ratios of 3.29 and 2.3l, respectively. Animals with intermediate scores had moderately elevated uptake. The authors conclude that the uptake of /sup 3/H-misonidazole in the right hemisphere positively correlates with the severity of infarction. Studies are underway to determine whether the regions of highest uptake correlate with histological evidence of infarction and reduced oxygen availability.

  9. Progressive cerebral vascular degeneration with mitochondrial encephalopathy.

    PubMed

    Longo, Nicola; Schrijver, Iris; Vogel, Hannes; Pique, Lynn M; Cowan, Tina M; Pasquali, Marzia; Steinberg, Gary K; Hedlund, Gary L; Ernst, Sharon L; Gallagher, Renata C; Enns, Gregory M

    2008-02-01

    MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) is a maternally inherited disorder characterized by recurrent cerebral infarctions that do not conform to discreet vascular territories. Here we report on a patient who presented at 7 years of age with loss of consciousness and severe metabolic acidosis following vomiting and dehydration. She developed progressive sensorineural hearing loss, myopathy, ptosis, short stature, and mild developmental delays after normal early development. Biochemical testing identified metabolites characteristic of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (hexanoylglycine and suberylglycine), but also severe lactic acidemia (10-25 mM) and, in urine, excess of lactic acid, intermediates of the citric cycle, and marked ketonuria, suggesting mitochondrial dysfunction. She progressed rapidly to develop temporary cortical blindness. Brain imaging indicated generalized atrophy, more marked on the left side, in addition to white matter alterations consistent with a mitochondrial disorder. Magnetic resonance angiography indicated occlusion of the left cerebral artery with development of collateral circulation (Moyamoya syndrome). This process worsened over time to involve the other side of the brain. A muscle biopsy indicated the presence of numerous ragged red fibers. Molecular testing confirmed compound heterozygosity for the common mutation in the MCAD gene (985A>G) and a second p