Science.gov

Sample records for ceria solid solutions

  1. Statistical thermodynamics of non-stoichiometric ceria and ceria zirconia solid solutions.

    PubMed

    Bulfin, B; Hoffmann, L; de Oliveira, L; Knoblauch, N; Call, F; Roeb, M; Sattler, C; Schmücker, M

    2016-08-17

    The thermodynamic redox properties of ceria and ceria zirconia solid solutions are analysed with a new methodology for modelling such systems based on the statistical mechanics of lattice configurations. Experimental thermogravimetric equilibrium data obtained for small non-stoichiometry measurements are combined with literature data to cover a large range of non-stoichiometry (CeO2-δ, δ = 0.001-0.32), temperature (1073-1773 K) and oxygen partial pressure (1-10(-13) bar). A dilute species model of defect clusters , obeying the law of mass action, was sufficient to describe the system over the whole range of conditions, leading to a simple analytical equation of state for the system. This offers new physical insight into the redox properties of ceria based materials, and the theoretical methods developed should also be of great interest for other materials which exhibit continuous oxygen non-stoichiometry similar to ceria, such as perovskite oxides. PMID:27494765

  2. General and facile synthesis of ceria-based solid solution nanocrystals and their catalytic properties

    SciTech Connect

    Zhou Huanping; Si Rui; Song Weiguo; Yan Chunhua

    2009-09-15

    Uniform Ce{sub 1-x}Zr{sub x}O{sub 2} (x=0.2-0.8) nanocrystals with ultra-small size were synthesized through a thermolysis process, facilitated by the initial formation of precursor (hydrated (Ce,Zr)-hydroxides) at low temperature. TEM, XRD, EDAX, and Raman spectra were employed to study the formation of the solid solutions with various Ce/Zr ratios. Ultraviolet-visible (UV-vis) spectra showed that the ratios of Ce{sup 3+} to Ce{sup 4+} in both surface and bulk for the as-prepared Ce{sub 1-x}Zr{sub x}O{sub 2} nanocrystals increased with the zirconium content x. The well-distributed Zr and Ce in the hydrated (Ce,Zr)-hydroxides before their thermolysis became the crucial factor for the structural homogeneity of the products. In addition, this strategy was extended to the synthesis of Ce{sub 1-x}Gd{sub x}O{sub 1-x/2}, Ce{sub 1-x}Sm{sub x}O{sub 1-x/2}, and Ce{sub 1-x}Sn{sub x}O{sub 2} solid solutions. Catalytic measurements indicated that the ceria-based catalysts were active for CO oxidation at temperatures beyond 250 deg. C and the sequence of catalytic activity was Ce{sub 0.5}Zr{sub 0.5}O{sub 2}>Ce{sub 0.8}Zr{sub 0.2}O{sub 2}>Ce{sub 0.2}Zr{sub 0.8}O{sub 2}>Ce{sub 0.5}Sm{sub 0.5}O{sub 1.75}. - Abstract: Uniform ultra-small nanostructured Ce{sub 1-x}Zr{sub x}O{sub 2}, Ce{sub 1-x}Gd{sub x}O{sub 1-x/2}, Ce{sub 1-x}Sm{sub x}O{sub 1-x/2}, and Ce{sub 1-x}Sn{sub x}O{sub 2} solid solutions with homogeneous textures were synthesized through a thermolysis process, facilitated by the initial formation of precursors (hydrated (Ce,M)-hydroxides). Display Omitted

  3. Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity

    PubMed Central

    2012-01-01

    A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g−1 exhibited a considerably high OSC of 427 μmol-O g−1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC. PMID:23025588

  4. The effect of Nd on the properties of ceria-zirconia solid solution and the catalytic performance of its supported Pd-only three-way catalyst for gasoline engine exhaust reduction.

    PubMed

    Wang, Qiuyan; Li, Guangfeng; Zhao, Bo; Zhou, Renxian

    2011-05-15

    A series of ceria-zirconia-neodymia mixed oxides with different contents of neodymia and the supported Pd-only three-way catalysts before and after aging have been prepared and characterized. The influence of Nd doping on the structural/textural properties of ceria-zirconia (CZ) and the effect on the three-way catalytic performance are also investigated. The results demonstrate that the addition of neodymia results in the formation of ceria-zirconia-neodymia ternary solid solution (CZN) with better textural and structural properties as well as improved reducibility and redox behavior, leading to the promoted three-way catalytic activity and enlarged air/fuel operation window. The modified solid solution with 5 wt.% neodymia shows the preferable textural/structural properties considering that the capacity of foreign cation is limited in the crystal lattice of ceria-zirconia solid solution, and Pd/CZN5 shows the optimum three-way catalytic performance and wider air/fuel operation window, especially for the corresponding aged one. PMID:21371821

  5. Electrochemically Deposited Ceria Structures for Advanced Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Brown, Evan C.

    As the pursuit towards emissions reduction intensifies with growing interest and nascent technologies, solid oxide fuel cells (SOFCs) remain an illustrious candidate for achieving our goals. Despite myriad advantages, SOFCs are still too costly for widespread deployment, even as unprecedented materials developments have recently emerged. This suggests that, in addition to informed materials selection, the necessary power output--and, thereby, cost-savings--gains must come from the fuel cell architecture. The work presented in this manuscript primarily investigates cathodic electrochemical deposition (CELD) as a scalable micro-/nanoscale fabrication tool for engineering ceria-based components in a SOFC assembly. Also, polymer sphere lithography was utilized to deposit fully connected, yet fully porous anti-dot metal films on yttira-stabilized zirconia (YSZ) with specific and knowable geometries, useful for mechanistic studies. Particular attention was given to anode structures, for which anti-dot metal films on YSZ served as composite substrates for subsequent CELD of doped ceria. By tuning the applied potential, a wide range of microstructures from high surface area coatings to planar, thin films was possible. In addition, definitive deposition was shown to occur on the electronically insulating YSZ surfaces, producing quality YSZ|ceria interfaces. These CELD ceria deposits exhibited promising electrochemical activity, as probed by A.C. Impedance Spectroscopy. In an effort to extend its usefulness as a SOFC fabrication tool, the CELD of ceria directly onto common SOFC cathode materials without a metallic phase was developed, as well as templated deposition schemes producing ceria nanowires and inverse opals.

  6. Isn't the space-charge potential in ceria-based solid electrolytes largely overestimated?

    PubMed

    Kim, Sangtae

    2016-07-20

    The effective ionic conductivity of polycrystalline solid electrolytes that conduct oxide ions or protons is known to be markedly below those of the corresponding single crystals due to substantial current obstruction across the grain boundary. Numerous studies have previously demonstrated that the ionic charge carriers deplete in the vicinity of the grain boundary to form a potential barrier at the grain boundary, which further impedes the current across the grain boundary. Hence an accurate estimation of the barrier height is essential to acquire a comprehensive and precise mechanistic picture of the ionic current in solid electrolytes. The values of the potential barrier height, i.e. equivalent to the equilibrium space-charge potential with the opposite sign, in prominent solid electrolytes such as ceria solid solutions are available in the literature and were determined exclusively from the ratio of the resistivity of the grain boundary to that of the crystal interior. Here I present the results clearly demonstrating that the resistivity ratio yields considerable overestimation of the barrier height even in relatively diluted solid solutions of ceria. These results imply that the space charge is unlikely the sole origin of the large current obstruction across the grain boundary in ceria-based solid electrolytes. PMID:27388961

  7. Low-temperature preparation by polymeric complex solution synthesis of Cu-Gd-doped ceria cermets for solid oxide fuel cells anodes: Sinterability, microstructures and electrical properties

    NASA Astrophysics Data System (ADS)

    Tartaj, J.; Gil, V.; Moure, A.

    A homogeneous dispersion of fine CuO in a gadolinia-doped ceria (CGO) ceramic matrix by the polymeric organic complex solution method has been achieved. Highly sinterable powders were prepared by this method after calcining the precursor at 600 °C and attrition milled. The powders consist of individual particles of few tens of nanometer in size with a low agglomeration state. The isopressed compacts were sintered in air at 1000 °C and reducing in N 2 90%-H 2 10% atmosphere to form Cu-CGO cermets. The microstructures showed a uniform distribution of porous metallic Cu particles surrounded by microporous spaces. The influence of Cu content in Cu-CGO cermets on the electrode performance has been investigated in order to create the most suitable microstructure. The electrical properties of Cu-CGO cermets have been also studied using impedance spectroscopy, in the temperature range form 150 to about 700 °C in argon atmosphere. These measurements determined a high value of electrical conductivity at 700 °C, similar to that corresponded to pure metallic cupper.

  8. A single step solution combustion approach for preparing gadolinia doped ceria solid oxide fuel cell electrolyte material suitable for wet powder and plasma spraying processes

    NASA Astrophysics Data System (ADS)

    Shri Prakash, B.; William Grips, V. K.; Aruna, S. T.

    2012-09-01

    The present study explores the versatility of solution combustion method for preparing powders of varying characteristics suitable for intermediate temperature solid oxide fuel cell (IT-SOFC) fabrication. The promising electrolyte material for IT-SOFC, Gd0.2Ce0.8O2-δ (GDC), is considered for the present investigation. GDC powders consisting of sub-micron sized particles (<250 nm) and micron sized (>20 μm) particles are produced by varying the fuel used in the combustion reaction. Highly sinteractive nano-GDC powders prepared using oxalyl dihydrazide as a fuel results in dense pellets with high conductivity (3 × 10-4 Scm-1 at 400 °C). This powder also results in a stable suspension suitable for wet powder spraying and electrophoretic deposition. Powders with larger particle size (>20 μm) prepared by solution combustion method using mixture of fuels, exhibits necessary flowability for atmospheric plasma spraying (APS). GDC coatings fabricated by APS using flowable powders are dense with superior adhesion between the splats. Good adhesion between the splats in the APS coatings is attributed to the higher level of melting of the combustion synthesized particles in the plasma flame owing to their low specific mass.

  9. Nanostructured gadolinium-doped ceria microsphere synthesis from ion exchange resin: Multi-scale in-situ studies of solid solution formation

    SciTech Connect

    Caisso, Marie; Lebreton, Florent; Horlait, Denis; Neuville, Daniel R.; Dardenne, Kathy; Rothe, Jörg; Delahaye, Thibaud

    2014-10-15

    In the current nano-sized material revolution, the main limitations to a large-scale deployment of nanomaterials involve health concerns related to nano-dissemination via air. Developing new chemical routes benefiting from nano-size advantages while avoiding their hazards could overcome these limitations. Addressing this need, a chemical route leading to soft nano-particle agglomerates, i.e., macroscopic precursors presenting the ability to be decomposed into nano-sized materials, was developed and applied to Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ}. Using cerium/gadolinium-loaded ion exchange resin, the Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ} solid solution formation as a function of temperature was studied in-situ through X-ray diffraction, X-ray absorption spectroscopy and Raman spectroscopy. Temperatures corresponding to the organic skeleton decomposition and to the mixed oxide crystallization were identified. An optimal heat treatment, leading to nanostructured soft agglomerates, was established. Microsphere processing capabilities were evaluated and particle size distribution measurements were recorded. A very low fracture strength was calculated, and a nanometric particle size distribution (170 nm) was determined. - Graphical abstract: The elaboration of micro-spherical precursors leading to the formation of nano-oxide soft agglomerates was studied and approved through the use of ion exchange resin loaded with cerium and gadolinium. The formation of the solid solution was followed through in-situ measurements such as XAS, XRD, Raman, TGA and DSC. Key temperatures were identified for the formation of the mixed-oxide. Following this study, the microstructure and particle size of oxide microspheres formed highlight the formation of soft nano-arrangments. - Highlights: • Soft microspherical agglomerates able to be decomposed into nano-sized materials. • In situ study of cerium/gadolinium-loaded ion exchange resin conversion in oxide. • In situ multi-scale study

  10. Nanostructured gadolinium-doped ceria microsphere synthesis from ion exchange resin: Multi-scale in-situ studies of solid solution formation

    NASA Astrophysics Data System (ADS)

    Caisso, Marie; Lebreton, Florent; Horlait, Denis; Picart, Sébastien; Martin, Philippe M.; Bès, René; Renard, Catherine; Roussel, Pascal; Neuville, Daniel R.; Dardenne, Kathy; Rothe, Jörg; Delahaye, Thibaud; Ayral, André

    2014-10-01

    In the current nano-sized material revolution, the main limitations to a large-scale deployment of nanomaterials involve health concerns related to nano-dissemination via air. Developing new chemical routes benefiting from nano-size advantages while avoiding their hazards could overcome these limitations. Addressing this need, a chemical route leading to soft nano-particle agglomerates, i.e., macroscopic precursors presenting the ability to be decomposed into nano-sized materials, was developed and applied to Ce0.8Gd0.2O2-δ. Using cerium/gadolinium-loaded ion exchange resin, the Ce0.8Gd0.2O2-δ solid solution formation as a function of temperature was studied in-situ through X-ray diffraction, X-ray absorption spectroscopy and Raman spectroscopy. Temperatures corresponding to the organic skeleton decomposition and to the mixed oxide crystallization were identified. An optimal heat treatment, leading to nanostructured soft agglomerates, was established. Microsphere processing capabilities were evaluated and particle size distribution measurements were recorded. A very low fracture strength was calculated, and a nanometric particle size distribution (170 nm) was determined.

  11. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations

  12. Synthesis and atomic level in situ redox characterization in ceria and ceria zirconia

    NASA Astrophysics Data System (ADS)

    Wang, Ruigang

    2007-12-01

    Nanocrystalline ceria-based oxides are widely used in automotive three-way catalytic converters to reduce the emissions of carbon monoxide, nitrogen oxides, and unburned hydrocarbons. The primary function of ceria-based oxides in the catalytic process is to adjust the local oxygen partial pressure and maintain an air-to-fuel ratio near the stoichiometric value (˜14.5) required for the optimal catalyst performance for carbon monoxide, hydrocarbon oxidation, and nitrogen oxides reduction. In this dissertation, a study of the relationship between the nanoscale structure, chemistry, and the redox behavior on high surface area ceria and ceria zirconia is presented. Precipitation and spray freezing methods were used to synthesize nanocrystalline ceria and ceria zirconia solid solution powders respectively. The effect of thermal treatments in oxidizing and reducing atmospheres on the reducibility of the materials has been systematically investigated. X-ray diffraction and thermogravimetric analysis were used to characterize the average structure and reducibility. In situ environmental transmission electron microscope was exploited to visualize the dynamic changes during redox processes at the atomic level. This resulted in the identification of the nanoscale structure and chemistry for the most active nanoparticles in these oxides. The correlation between ex situ macroscopic redox properties and in situ redox behavior of individual nanoparticles is demonstrated. The addition of zirconia to ceria clearly enhances the reducibility and thermal stability of ceria. A fundamental difference between ceria and ceria zirconia during in situ redox processes is related to oxygen vacancy ordering. Ceria showed oxygen vacancy ordering during reduction, whereas ceria zirconia did not. It is suggested that the absence of oxygen vacancy ordering might be a fundamental factor for improved redox properties of ceria zirconia compared with pure ceria. The 50% ceria-50% zirconia solid

  13. Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

    PubMed Central

    Wu, Chieh-Chun; Tang, Ling

    2014-01-01

    Summary Treatments with organic surfactants, followed by the deposition of nanocrystalline ceria coatings from aqueous solution, were applied to anodes of solid oxide fuel cells. The cells were then operated in hydrogen/nitrogen fuel streams with H2S contents ranging from 0 to 500 ppm. Two surfactant treatments were studied: immersion in dodecanethiol, and a multi-step conversion of a siloxy-anchored alkyl bromide to a sulfonate functionality. The ceria coatings deposited after the thiol pretreatment, and on anodes with no pretreatment, were continuous and uniform, with thicknesses of 60–170 nm and 100–140 nm, respectively, and those cells exhibited better lifetime performance and sulfur tolerance compared to cells with untreated anodes and anodes with ceria coatings deposited after the sulfonate pretreatment. Possible explanations for the effects of the treatments on the structure of the coatings, and for the effects of the coatings on the performance of the cells, are discussed. PMID:25383282

  14. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    SciTech Connect

    Datta, Pradyot Majewski, Peter; Aldinger, Fritz

    2009-02-15

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce{sup 4+} and Ce{sup 3+} states. Presence of Ce{sup 3+} state was ascribed to the differential yield of oxygen atoms in the sputtering process.

  15. Continuum modeling of size effects on the composition and stresses in nanoparticles of ionic solids with application to ceria

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, Hamed; Mossaiby, Farshid

    2016-03-01

    Owing to its broad potential applications, nanostructured ceria has been subject of intense investigation in the past few decades. Experiments have demonstrated that various material properties of the nanostructured ionic solids including ceria vary with the feature size. Here, we present a theoretical study of the size effects on the composition, defect concentrations and stresses in free-standing nanoparticles of nonstoichiometric ionic solids. To this end, a continuum model is developed which accounts for the highly nonlinear coupling between mechanical, chemical and electrical driving forces, and their effects on the thermodynamic equilibrium of the defect species. It is demonstrated that the model, once applied to the case of ceria, predicts size-dependent defect concentrations and surface stresses. It is further shown that the theoretical predictions of the size effects on the composition and lattice parameter are in good agreement with the experimental observations.

  16. Highly efficient solid state catalysis by reconstructed (001) Ceria surface

    SciTech Connect

    Solovyov, VF; Ozaki, T; Atrei, A; Wu, LJ; Al-Mahboob, A; Sadowski, JT; Tong, X; Nykypanchuk, D; Li, Q

    2014-04-10

    Substrate engineering is a key factor in the synthesis of new complex materials. The substrate surface has to be conditioned in order to minimize the energy threshold for the formation of the desired phase or to enhance the catalytic activity of the substrate. The mechanism of the substrate activity, especially of technologically relevant oxide surfaces, is poorly understood. Here we design and synthesize several distinct and stable CeO2 (001) surface reconstructions which are used to grow epitaxial films of the high-temperature superconductor YBa2Cu3O7. The film grown on the substrate having the longest, fourfold period, reconstruction exhibits a twofold increase in performance over surfaces with shorter period reconstructions. This is explained by the crossover between the nucleation site dimensions and the period of the surface reconstruction. This result opens a new avenue for catalysis mediated solid state synthesis.

  17. Highly efficient solid state catalysis by reconstructed (001) Ceria surface

    PubMed Central

    Solovyov, Vyacheslav F.; Ozaki, Toshinori; Atrei, Andrea; Wu, Lijun; Al-Mahboob, Abdullah; Sadowski, Jerzy T.; Tong, Xiao; Nykypanchuk, Dmytro; Li, Qiang

    2014-01-01

    Substrate engineering is a key factor in the synthesis of new complex materials. The substrate surface has to be conditioned in order to minimize the energy threshold for the formation of the desired phase or to enhance the catalytic activity of the substrate. The mechanism of the substrate activity, especially of technologically relevant oxide surfaces, is poorly understood. Here we design and synthesize several distinct and stable CeO2 (001) surface reconstructions which are used to grow epitaxial films of the high-temperature superconductor YBa2Cu3O7. The film grown on the substrate having the longest, fourfold period, reconstruction exhibits a twofold increase in performance over surfaces with shorter period reconstructions. This is explained by the crossover between the nucleation site dimensions and the period of the surface reconstruction. This result opens a new avenue for catalysis mediated solid state synthesis. PMID:24717357

  18. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  19. Reduced-temperature firing of solid oxide fuel cells with zirconia/ceria bi-layer electrolytes

    NASA Astrophysics Data System (ADS)

    Gao, Zhan; Kennouche, David; Barnett, Scott A.

    2014-08-01

    Solid oxide fuel cells (SOFCs) with bi-layer Zirconia/Ceria electrolytes have been studied extensively because of their great potential for producing high power density at reduced operating temperature, important for reducing cost and thereby allowing broader SOFC commercialization. The bi-layer electrolytes are designed to take advantage of the high oxygen ion conductivity of Ceria, the low electronic conductivity of Zirconia, and the low reactivity of Ceria with high-performance cathodes. However, zirconia/ceria processing has proven problematic due to interdiffusion during high temperature co-firing, or ceria layer porosity after two-step firing. Here we first show a new method for bi-layer co-firing at a reduced temperature of 1250 °C, ∼150 °C lower than the usual sintering temperature, achieved using Fe2O3 as a sintering aid. This novel process enables high power density SOFCs by producing: (1) low-resistance Y0.16Zr0.92O2-δ (YSZ)/Gd0.1Ce0.9O1.95 (GDC) electrolytes that also yield high open-circuit voltage, (2) dense GDC layers that prevent reactions between highly-active La0.6Sr0.4Fe0.8Co0.2O3 (LSFC) cathode materials and YSZ, and (3) Ni-YSZ anodes with high electrochemical activity due to fine-scale microstructure with high TPB densities.

  20. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  1. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells.

    PubMed

    Zhang, Chunjuan; Yu, Yi; Grass, Michael E; Dejoie, Catherine; Ding, Wuchen; Gaskell, Karen; Jabeen, Naila; Hong, Young Pyo; Shavorskiy, Andrey; Bluhm, Hendrik; Li, Wei-Xue; Jackson, Gregory S; Hussain, Zahid; Liu, Zhi; Eichhorn, Bryan W

    2013-08-01

    Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions. PMID:23822749

  2. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    PubMed

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-01

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. PMID:26307555

  3. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  4. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  5. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ∼260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  6. Tuning the Thickness of Ba-Containing "Functional" Layer toward High-Performance Ceria-Based Solid Oxide Fuel Cells.

    PubMed

    Gong, Zheng; Sun, Wenping; Shan, Duo; Wu, Yusen; Liu, Wei

    2016-05-01

    Developing highly efficient ceria-based solid oxide fuel cells with high power density is still a big concern for commercial applications. In this work, a novel structured Ce0.8Sm0.2O2-δ (SDC)-based fuel cell with a bilayered anode consisting of Ni-SDC and Ni-BaZr0.1Ce0.7Y0.2O3-δ (Ni-BZCY) was designed. In addition to the catalysis function, the Ni-BZCY anode "functional" layer also provides Ba source for generating an electron-blocking layer in situ at the anode/electrolyte interface during sintering. The Ni-BZCY thickness significantly influences the quality of the electron-blocking layer and electrochemical performances of the cell. The cell with a 50 μm thick Ni-BZCY layer exhibits the best performance in terms of open circuit voltage (OCV) and peak power density (1068 mW cm(-2) at 650 °C). The results demonstrate that this cell with an optimal structure has a distinct advantage of delivering high power performance with a high efficiency at reduced temperatures. PMID:27078722

  7. Enhanced hydrogen oxidation activity and H2S tolerance of Ni-infiltrated ceria solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Mirfakhraei, Behzad; Paulson, Scott; Thangadurai, Venkataraman; Birss, Viola

    2013-12-01

    The effect of Ni infiltration into porous Gd-doped ceria (GDC) anodes on their H2 oxidation performance, with and without added 10 ppm H2S, is reported here. Porous GDC anodes (ca. 10 μm thick) were deposited on yttria stabilized zirconia (YSZ) supports and then infiltrated with catalytic amounts of a Ni nitrate solution, followed by electrochemical testing in a 3-electrode half-cell setup at 500-800 °C. Infiltration of 3 wt.% Ni into the porous GDC anode lowered the polarization resistance by up to 85%, affecting mainly the low frequency impedance arc. When exposed to 10 ppm H2S, the Ni-infiltrated anodes exhibited a ca. 5 times higher tolerance toward sulfur poisoning compared to GDC anodes alone, also showing excellent long-term stability in 10 ppm H2S. In the presence of H2S, it is proposed that Ni, likely distributed as a nanophase, helps to maintain a clean GDC surface at the Ni/GDC interface at which the H2 oxidation reaction takes place. In turn, the GDC will readily supply oxygen anions to the adjacent Ni surfaces, thus helping to remove adsorbed sulfur.

  8. La2NiO4+δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling

    NASA Astrophysics Data System (ADS)

    Nicollet, C.; Flura, A.; Vibhu, V.; Rougier, A.; Bassat, J. M.; Grenier, J. C.

    2015-10-01

    This paper is devoted to the study of composite cathodes of La2NiO4+δ infiltrated into a Gd-doped ceria backbone. Porous Gd-doped ceria backbones are screen printed onto yttria-stabilized zirconia or Gd-doped ceria dense electrolytes, and infiltrated with a La and Ni nitrate solution (2:1 stoichiometry ratio). The influence of the preparation parameters on the polarization resistance, such as the concentration of the infiltration solution, the amount of infiltrated phase, the annealing temperature, the thickness of the electrode, and the nature of the electrolyte, is characterized by impedance spectroscopy performed on symmetrical cells. The optimization of these parameters results in a decrease of the polarization resistance down to 0.15 Ω cm2 at 600 °C. Using the Adler-Lane-Steele model, the modelling of the impedance diagrams leads to the determination of the ionic conductivity as well as the surface exchange rate of the infiltrated electrode.

  9. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOEpatents

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  10. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells.

    PubMed

    Kim, Jin-Yeop; Kim, Ji Hyeon; Choi, Hyung Wook; Kim, Kyung Hwan; Park, Sang Joon

    2014-08-01

    In order to prepare anode material for low-temperature solid oxide fuel cells (SOFCs), the mesoporous NiO-SDC was synthesized using a cationic surfactant (cetyltrimethyl-ammonium bromide; CTAB) for obtaining wide triple-phase boundary (TPB). In addition, Ni-SDC anode-supported SOFC single cells with YSZ electrolyte and LSM cathode were fabricated and the performance of single cells was evaluated at 600 °C. The microstructure of NiO-SDC was characterized by XRD, EDX, SEM, and BET, and the results showed that the mesoporous NiO-SDC with 10 nm pores could be obtained. It was found that the surface area and the electrical performance were strongly influenced by the Ni content in Ni-SDC cermets. After calcined at 600 °C, the surface area of NiO-SDC was between 90-117 m2/g at 35-45 Ni wt%, which was sufficiently high for providing large TPB in SOFC anode. The optimum Ni content for cell performance was around 45 wt% and the corresponding MPD was 0.36 W/cm2. Indeed, the mesoporous NiO-SDC cermet may be of interest for use as an anode for low-temperature SOFCs. PMID:25936125

  11. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

    PubMed

    Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark

    2011-05-28

    tolerance of Ni/YSZ, however, in the presence of H(2)S ceria did not promote the reverse Boudouard reaction and at high temperatures carbon deposition was greater over ceria-doped Ni/YSZ. In order to further study the effects of ceria-doping, a solid oxide fuel cell (SOFC) was constructed with a ceria-doped anode cermet and its electrical performance on simulated biogas compared to hydrogen was tested. This fuel cell was subsequently ran for 1000 h on simulated biogas with no degradation in its overall electrical performance. PMID:21494706

  13. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  14. Electrochemical synthesis and properties of ceria films grown on stainless steel

    NASA Astrophysics Data System (ADS)

    Živković, Lj. S.; Lair, V.; Lupan, O.; Ringuedé, A.

    2011-12-01

    Electrochemical synthesis of ceria films was performed on a stainless steel substrate in view of Solid Oxide Fuel Cells (SOFC) applications. Films were obtained from aqueous nitrate solutions via cathodic deposition method at room temperature. A constant potential value of -0.8 V/(SCE) was applied to reduce the molecular oxygen as hydroxide precursor, leading to a formation of adherent, homogeneous and covering films in 20 min deposition time. Structure, morphology and composition of as-grown coatings were studied by X-ray diffraction, Raman and energy-dispersive X-ray spectroscopy, as well as scanning electron microscopy. Cubic fluorite-type nanostructured ceria of leaf-like particles was synthesized. Thermal annealing (600°C, 1 h) was found to enhance ceria crystallinity.

  15. Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals.

    PubMed

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Hamed, Aya; Elrasheedy, Asmaa

    2016-01-01

    This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce(3+) ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications. PMID:27571083

  16. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  17. Study on the CO Oxidation over Ceria-Based Nanocatalysts.

    PubMed

    Piumetti, Marco; Andana, Tahrizi; Bensaid, Samir; Russo, Nunzio; Fino, Debora; Pirone, Raffaele

    2016-12-01

    A series of ceria nanocatalysts have been prepared to study the structure dependency of the CO oxidation reaction. The ceria samples with well-defined nanostructures (nanocubes/Ce-NC and nanorods/Ce-NR) have been prepared using the hydrothermal method. Mesoporous ceria (Ce-MES) and ceria synthesized with solution combustion technique (Ce-SCS) have also been prepared for comparison. The lowest CO oxidation temperature has been reached by using ceria nanocubes (Ce-NC). This high activity draws immense contributions from the highly reactive (100) and (110) surfaces of the truncated nanocubes. The Ce-MES and Ce-SCS samples, despite their high surface areas, are unable to outdo the activity of Ce-NC and Ce-NR due to the abundant presence of (111) crystalline planes. This finding confirms the structure sensitivity of CO oxidation reaction catalyzed with ceria. PMID:27009532

  18. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire. PMID:23919513

  19. Cathodes for ceria-based fuel cells

    SciTech Connect

    Doshi, R.; Krumpelt, M.; Ricvhards, V.L.

    1997-08-01

    Work is underway to develop a solid oxide fuel cell that has a ceria-based electrolyte and operates at lower temperatures (500-600{degrees}C) than conventional zirconia-based cells. At present the performance of this ceria-based solid oxide fuel cell is limited by the polarization of conventional cathode materials. The performance of alternative cathodes was measured by impedance spectroscopy and dc polarization. The performance was found to improve by using a thin dense interface layer and by using two-phase cathodes with an electrolyte and an electronic phase. The cathode performance was also found to increase with increasing ionic conductivity for single phase cathodes.

  20. Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation.

    PubMed

    Wang, Hai-Feng; Li, Hui-Ying; Gong, Xue-Qing; Guo, Yang-Long; Lu, Guan-Zhong; Hu, P

    2012-12-28

    Ceria (CeO(2)) and ceria-based composite materials, especially Ce(1-x)Zr(x)O(2) solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO(2) with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO(2-x) oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO(2)(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O(2) molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce(1-x)Zr(x)O(2) solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce(1-x)Zr(1-x)O(2). Thirdly, we briefly discuss some

  1. Energetics of Rare Earth Doped Uranium Oxide Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    J/mol. Since all the other doped fluorite oxides based on zirconia, hafnia, ceria, and thoria are in the oxygen deficit (oxygen vacancy formation) regime, a systematic study of these rare earth doped fluorite oxides (LnxA 1-xO2-0.5x) was made comparing experimental and computational results. A consistent trend suggested by both calorimetry and computation, was found for all oxygen vacancy containing systems (actinide and non-actinide oxide systems). Larger size mismatch between the smaller host cation (A 4+) and the larger rare earth dopant cation (Ln3+) generally produces more stable solid solutions. The energetics of these systems is the result of competition between strain energy arising from size mismatch (endothermic) and defect association (exothermic). The formation enthalpies of LnxU1-xO2-0.5x obtained from calculation are slightly positive.

  2. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-02-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode.

  3. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  4. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai

    2014-01-21

    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  5. Effects of some rare earth and carbonate-based co-dopants on structural and electrical properties of samarium doped ceria (SDC) electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Anwar, Mustafa; Khan, Zuhair S.; Mustafa, Kamal; Rana, Akmal

    2015-09-01

    In the present study, samarium doped ceria (SDC) and SDC-based composite with the addition of K2CO3 were prepared by co-precipitation route and effects of pH of the solution and calcination temperature on microstructure of SDC and SDC-K2CO3, respectively, were investigated. Furthermore, experimentation was performed to investigate into the ionic conductivity of pure SDC by co-doping with yttrium i.e., YSDC, XRD and SEM studies show that the crystallite size and particle size of SDC increases with the increase in pH. The SEM images of all the samples of SDC synthesized at different pH values showed the irregular shaped and dispersed particles. SDC-K2CO3 was calcined at 600∘C, 700∘C and 800∘C for 4 h and XRD results showed that crystallite size increases while lattice strain, decreases with the increase in calcination temperature and no peaks were detected for K2CO3 as it is present in an amorphous form. The ionic conductivity of the electrolytes increases with the increase in temperature and SDC-K2CO3 shows the highest value of ionic conductivity as compared to SDC and YSDC. Chemical compatibility tests were performed between the co-doped electrolyte and lithiated NiO cathode at high temperature. It revealed that the couple could be used up to the temperature of 700∘C.

  6. Hydrothermal preparation and electrochemical properties of Gd 3+ and Bi 3+, Sm 3+, La 3+, and Nd 3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Dikmen, Sibel; Aslanbay, Hasan; Dikmen, Erdal; Şahin, Osman

    The structure, the thermal expansion coefficient, electrical conductivities of Ce 0.8Gd 0.2- xM xO 2- δ (for M: Bi, x = 0-0.1, and for M: Sm, La, and Nd, x = 0.02) solid solutions, prepared for the first time hydrothermally, are investigated. The uniformly small particle size (28-59 nm) of the materials allows sintering of the samples into highly dense ceramic pellets at 1300-1400 °C. The maximum conductivity, σ 700 °C around 4.46 × 10 -2 S cm -1 with E a = 0.52 eV, is found at x = 0.1 for Bi-co-doping. Among various metal-co-dopings, for x = 0.02, the maximum conductivity, σ 700 °C around 2.88 × 10 -2 S cm -1 with E a = 0.67 eV, is found for Sm-co-doping. The electrolytic domain boundary (EDB) of Ce 0.8Gd 0.1Bi 0.1O 2- δ is found to be 1.2 × 10 -19 atm, which is relatively lower than that of the singly doped samples. The thermal expansion coefficients, determined from high-temperature X-ray data are 11.6 × 10 -6 K -1 for the CeO 2, 12.1 × 10 -6 K -1 for Ce 0.8Gd 0.2O 2- δ, and increase with co-doping to 14.2 × 10 -6 K -1 for Ce 0.8Gd 0.18Bi 0.02O 2- δ. The maximum power densities for the single cell based on the codoped samples are higher than that of the singly doped sample. These results suggest that co-doping can further improve the electrical performance of ceria-based electrolytes.

  7. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  8. Absorption spectra of cold dilute solid solutions

    SciTech Connect

    Holland, R.F.; Maier, W.B. II; Freund, S.; Beattie, W.H.

    1983-06-01

    Infrared absorption spectra have been obtained for some compounds trapped in crystalline solids by freezing liquid Xe, Kr, Ar, or CH/sub 4/ solutions. The optical quality of the solid solutions is good, and they have been cooled to approx.80 K in 1.35 cm sample thicknesses to study the absorption in fundamental vibrational bands of the solutes. In the cases discussed, the bands are narrow, with observed full widths at half-maximum absorbance 0.05--0.30 cm/sup -1/ greater than the instrumental resolution (0.18--0.29 cm/sup -1/). The spectra appear to be free of ''multiple site'' and solute aggregate absorptions. Spectra displaying isotropic splitting in bands of natural BCl/sub 3/, SeF/sub 6/, OsO/sub 4/, TiCl/sub 4/, and MoF/sub 6/ are presented, and band frequencies are compared with some results obtained in evaporative matrices, in the gas phase, and in liquid solutions. For this comparison we have obtained some spectra of SeF/sub 6/ and BCl/sub 3/ gas.

  9. Oxygen transport in ceria: a first-principles study

    NASA Astrophysics Data System (ADS)

    Sergei, Simak

    2012-02-01

    Ceria (CeO2) is an important material for environmentally benign applications, ranging from solid-oxide fuel cells (SOFC) to oxygen storage [1-2]. The key characteristic needed to be improved is the mobility of oxygen ions. Optimization of ionic transport in ceria has been the topic of many studies. In particular, it has been discovered how the ionic conductivity in ceria might be improved by choosing the proper kind and concentration of dopants [3]. In this presentation we will approach the problem from a different direction by adjusting structural parameters of ceria via the change of external conditions. A systematic first-principles study of the energy landscape and kinetics of reduced ceria as a function of external parameters reveals a physically transparent way to improve oxygen transport in ceria. [4pt] [1] N. Skorodumova, S. Simak, B. Lundqvist, I. Abrikosov, and B. Johansson, Physical Review Letters 89, 14 (2002). [0pt] [2] A. Trovarelli, in Catalysis by Ceria and related materials (Imperial College Press, London, 2002). [0pt] [3] D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A.Abrikosov, and B. Johansson, Proceedings of the National Academy of Sciences of the United States of America 103, 3518 (2006).

  10. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  11. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.

    2015-10-01

    One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.

  12. Pair correlations in crystalline solid solutions

    SciTech Connect

    Ice, G.E.; Sparks, C.J.; Shaffer, L.; Zschack, P.

    1994-06-01

    Recent measurements of pair correlations in metallic solid solutions challenge simple models of atomic size in alloy structure. These measurements take advantage of intense and tunable synchrotron X radiation to control the x-ray scattering contrast between atoms in a solid solution. For binary alloys with elements nearby in the periodic table it is possible to tune the x-ray energy near the K edge so that the scattering contrast varies from near zero to {plus_minus}5 electron units. Even larger contrast variation is possible near L edges or with complementary x-ray and neutron diffraction data sets. With adjusted scattering contrast it is possible to measure short-range-order (SRO), even in alloys with elements nearby in the periodic table. It is also possible to detect chemically-specific static displacements of {plus_minus}0.001 {angstrom} or less and with fewer assumptions than with previous experimental methods. We compare the measured chemically-specific static displacements in Fe{sub 22.5}Ni{sub 77.5} and Cr{sub 47}Fe{sub 53} with previous models and with the results of other experiments.

  13. Electrical, Electrochemical, and Optical Characterization of Ceria Films

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Sik

    Acceptor-doped ceria has been recognized as a promising intermediate temperature solid oxide fuel cell electrode/electrolyte material. For practical implementation of ceria as a fuel cell electrolyte and for designing model experiments for electrochemical activity, it is necessary to fabricate thin films of ceria. Here, metal-organic chemical vapor deposition was carried out in a homemade reactor to grow ceria films for further electrical, electrochemical, and optical characterization. Doped/undoped ceria films are grown on single crystalline oxide wafers with/without Pt line pattern or Pt solid layer. Deposition conditions were varied to see the effect on the resultant film property. Recently, proton conduction in nanograined polycrystalline pellets of ceria drew much interest. Thickness-mode (through-plane, z-direction) electrical measurements were made to confirm the existence of proton conductivity and investigate the nature of the conduction pathway: exposed grain surfaces and parallel grain boundaries. Columnar structure presumably favors proton conduction, and we have found measurable proton conductivity enhancement. Electrochemical property of gas-columnar ceria interface on the hydrogen electrooxidation is studied by AC impedance spectroscopy. Isothermal gas composition dependence of the electrode resistance was studied to elucidate Sm doping level effect and microstructure effect. Significantly, preferred orientation is shown to affect the gas dependence and performance of the fuel cell anode. A hypothesis is proposed to explain the origin of this behavior. Lastly, an optical transmittance based methodology was developed to obtain reference refractive index and microstructural parameters (thickness, roughness, porosity) of ceria films via subsequent fitting procedure.

  14. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  15. End-Member Formulation of Solid Solutions and Reactive Transport

    SciTech Connect

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  16. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the

  17. Compositional Segregation in Unidirectionally Solidified Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Wang, J. C.

    1983-01-01

    A computer program was developed to model compositional segregation in unidrectionally solidified solid-solution-semiconducting crystals. The program takes into account the variations of the interface segregation constant and solidification rate with composition. Calculations are performed for the HgCdTe solid solution system that is compared with experimental data.

  18. Theoretical Study of Sulphur Interaction with Ceria

    NASA Astrophysics Data System (ADS)

    Baranek, Ph.; Gauthier, L.; Marrony, M.

    2007-12-01

    Sulphur-containing molecules are responsible for the poisoning of catalysts used in many chemical processes such as fuel processing for hydrogen production and for fuel cells. An option which would constitute a breakthrough in this field would be to develop sulphur tolerant catalysts. Ceria (CeO2) is an important ceramic material exploited in a wide range of applications such as solid oxide fuel cells. Then it is important to understand its surface catalytic properties. The adsorption of S, H2S and other S-containing compounds on different surfaces of ceria are investigated at the ab initio quantum mechanical level, by using the periodic CRYSTAL06 code. In this extended abstract, we focus on the S adsorption on the stoichiometric (111), (110) and (100) surfaces of ceria. The equilibrium lattice parameters of CeO2, surface stabilities, and S adsorption energies have been evaluated. The calculations have been performed at the Hartree-Fock (HF), density functional theory (DFT) and hybrid levels. A good agreement between calculated, and, other theoretical and experimental various properties has been found with hybrid approximations. The role of f orbitals of Ce is commented.

  19. Theoretical Study of Sulphur Interaction with Ceria

    SciTech Connect

    Baranek, Ph.; Gauthier, L.; Marrony, M.

    2007-12-26

    Sulphur-containing molecules are responsible for the poisoning of catalysts used in many chemical processes such as fuel processing for hydrogen production and for fuel cells. An option which would constitute a breakthrough in this field would be to develop sulphur tolerant catalysts. Ceria (CeO{sub 2}) is an important ceramic material exploited in a wide range of applications such as solid oxide fuel cells. Then it is important to understand its surface catalytic properties. The adsorption of S, H{sub 2}S and other S-containing compounds on different surfaces of ceria are investigated at the ab initio quantum mechanical level, by using the periodic CRYSTAL06 code. In this extended abstract, we focus on the S adsorption on the stoichiometric (111), (110) and (100) surfaces of ceria. The equilibrium lattice parameters of CeO{sub 2}, surface stabilities, and S adsorption energies have been evaluated. The calculations have been performed at the Hartree-Fock (HF), density functional theory (DFT) and hybrid levels. A good agreement between calculated, and, other theoretical and experimental various properties has been found with hybrid approximations. The role of f orbitals of Ce is commented.

  20. Magnetic behavior of solid Ar-O2 solutions

    DOE PAGESBeta

    Prisk, Timothy R.; Sokol, P. E.

    2015-08-12

    Solid molecular oxygen presents an interesting example of a low-temperature crystal which exists within several different magnetic phases. When solid solutions of argon and oxygen are formed with molar concentrations of oxygen between 60 and 80 %, a new structural and magnetic phase, known as the δ-phase, appears at low temperatures. In order to investigate the nature of the δ-phase, we carried out SQUID magnetometry measurements solid argon-oxygen solutions made up of 74 % oxygen and 26 % argon. In particular, we performed measurements of the magnetic susceptibility of the solid solutions over complete temperature cycles and isothermally as amore » function of time. Altogether, the experimental data demonstrate that that the δ-phase is not an equilibrium thermodynamic state of the solid solutions, but is instead only a metastable state.« less

  1. Concepts for future solid state lighting solutions

    NASA Astrophysics Data System (ADS)

    von Malm, N.; Wirth, R.; Illek, S.; Steegmüller, U.

    2010-08-01

    In this contribution the relevant technological aspects of LED-based lamps for solid state lighting are discussed. In addition to general energy efficiency considerations improvements in LED chip technology and white light generation are presented.

  2. Electrospinning of Ceria and Nickel Oxide Nanofibers

    NASA Astrophysics Data System (ADS)

    Yerasi, Jyothi Swaroop Reddy

    Electrospinning uses an electrical charge to draw very fine fibers from a liquid. It has very high potential for industrial processing. Electrospinning is cost effective, repeatable and it can produce long, continuous nanofibers. Polymers such as polyalcohol, polyamides, and PLLA can be easily electrospun. The increase in demand for clean energy combined with the research work in progress and the potential advantages of electrospun electrodes over conventionally fabricated SOFCs makes electrospinning a strong candidate. In this thesis, ceramic nanofibers (ceria and nickel oxide) that can potentially be used in SOFCs are fabricated. A three-phase approach is implemented in the fabrication of ceria and nickel oxide nanofibers. The first phase involves the preparation of the composite ceramic-polymer solution to be electrospun. The second phase gives the processing conditions such as voltage applied, feed rate, and gauge of syringe tip used for successfully electrospinning composite ceramic-polymer fibers. The final stage demonstrates the temperature cycles used to burn out the polymer and calcine the ceramic particles in the ceramic-polymer nanofibers leaving behind ceria and nickel oxide nanofibers. Techniques such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray Diffraction (XRD) were used to measure the average diameter of the fibers formed and to understand the chemical composition and crystallanity of the nanofibers after calcination. This thesis also discusses the advantages and possibility of fabricating side-by-side nanofibers and oriented nanofiber mats.

  3. Silica-Ceria Hybrid Nanostructures

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Baer, Donald R.; Thevuthasan, Suntharampillai

    2012-04-25

    A new hybrid material system that consists of ceria attached silica nanoparticles has been developed. Because of the versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and antioxidant properties of ceria nanoparticles, this material system is ideally suited for biomedical applications. The silica particles of size ~50nm were synthesized by the Stöber synthesis method and ceria nanoparticles of size ~2-3nm was attached to the silica surface using a hetrocoagulation method. The presence of silanol groups on the surface of silica particles mediated homogenous nucleation of ceria which were attached to silica surface by Si-O-Ce bonding. The formations of silica-ceria hybrid nanostructures were characterized by X-photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The HRTEM image confirms the formation of individual crystallites of ceria nanoparticles attached to the silica surface. The XPS analysis indicates that ceria nanoparticles are chemically bonded to surface of silica and possess mixture of +3 and +4 chemical states.

  4. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    PubMed

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite. PMID:17182052

  5. Solid solutions based on bismuth and antimony tellurides andbismuth selenides

    SciTech Connect

    Abrikosov, N.K.; Stasova, M.M.

    1986-05-01

    The phase diagrams of the systems Bi-Te, Bi-Se, and Sb-Te serve as a basis for constructing multiphase diagrams of ternary semiconductor systems. This paper studies layered structures with large unit-cell parameters in the regions of the solid solutions to explain the ordering processes in the solid solutions of semiconductor and intermetallic systems. The laws governing the formation and structral features of bismuth and antimony chalcogenides are studied to obtain thermoelectric materials and identification of minerals.

  6. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  7. Ozonation of bezafibrate over ceria and ceria supported on carbon materials.

    PubMed

    Gonçalves, Alexandra G; Órfão, José J M; Pereira, Manuel Fernando R

    2015-01-01

    Two catalysts containing ceria dispersed on the surface of multi-walled carbon nanotubes and activated carbon were investigated as ozonation catalysts for the mineralization of bezafibrate (BZF). The results were compared with those obtained in the absence of the catalyst and in the presence of the parent carbon materials, as well as in the presence of ceria (CeO2). Carbon materials containing ceria showed an interesting catalytic effect. Both materials enhanced the mineralization of BZF relatively to single ozonation and ozonation catalysed by the corresponding carbon materials. In the catalytic ozonation with these materials, both surface and bulk reactions are supposed to occur. The BZF ozonation catalysed by CeO2 leaded to the highest mineralization degrees, indicating that the reaction mechanism followed in the presence of CeO2 (free radical oxidation in solution) leads to the formation of intermediates more easily degradable, mainly after 120 min of reaction. Some primary products and refractory final oxidation compounds in single and catalytic ozonation of BZF were followed. The original chlorine present on the BZF molecule is completely converted to chloride anion and part of the nitrogen is mainly converted to NO3- along with smaller amounts of NO2- and NH4+. Microtox tests revealed that simultaneous use of ozone and CeO2 originated lower acute toxicity. PMID:25189707

  8. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An experimental study was conducted to determine whether alloy softening in Fe alloys is dependent on electron concentration and to provide a direct comparison of alloy softening and hardening in several binary Fe alloy systems having the same processing history. Alloy additions to Fe included the elements in the Periods 4-6 and the Groups IV-VIII with the exception of technetium. A total of 19 alloy systems was investigated, and hardness testing was the primary means of evaluation. Testing was carried out at four temperatures over a homologous temperature range of 0.043-0.227 times the absolute melting temperature of unalloyed Fe. Major conclusions are that the atomic radius ratio of solute-to-Fe is the key factor in controlling low-temperature hardness of the binary Fe alloys and that alloy softening rates at 77 K and alloy hardening rates at 411 K are correlated with this atomic radius ratio for 15 of the binary alloy systems. Mechanisms of alloy softening and hardening are proposed.

  9. Thermal conductivity of halide solid solutions: measurement and prediction.

    PubMed

    Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice

    2014-09-14

    The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed. PMID:25217938

  10. Synthesis and Characterization of Pure and Doped Ceria Films by Sol-gel and Sputtering

    SciTech Connect

    Koch, Kurt T.; Saraf, Laxmikant V.

    2004-12-01

    Synthesis and Characterization of Pure and Doped Ceria Films by Sol-gel and Sputtering. KURT T. KOCH (University of Missouri, Rolla, MO, 65409) LAXMIKANT SARAF (Environmental and Molecular Science Laboratory (Part of Pacific Northwest National Laboratory), Richland, Washington 99352). Pure and doped Ceria are known for their ability to gain or lose Oxygen, which is of interest to the Solid Oxide Fuel Cell (SOFC) and catalyst community. Current efforts are focused in SOFCs to reduce the operating temperature of the cell while maintaining ionic conduction. Ceria is known for its high ionic conductivity in the intermediate temperature region. (600-800 C) We have prepared pure and doped Ceria films by Sol-gel and magnetron sputtering methods. These films were characterized by X-ray diffraction (XRD), nuclear reaction analysis (NRA), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and Oxygen conduction measurements. We have observed greater volume diffusion in nanocrystalline Ceria compared to bulk polycrystalline films as a result of low density. Near surface diffusion properties with increasing temperature indicate a decrease in the volume diffusion as a result of grain growth. However, a linear increase in O2 content at {approx}600nm depth was observed and can be correlated to the redistribution of O2 in the samples. Surface roughness of <111> and <200> oriented Ceria films on Al2O3 and YSZ was observed to be 0.13nm and 0.397nm, respectively. In the case of Ceria grown on YSZ, structural properties from XRD results showed a highly oriented structure with cube on cube growth. XRD results from Ceria grown on Al2O3 showed an oriented state near the surface. structure whose degree of orientation appeared to be partially dependent on substrate temperature. Preliminary XPS results indicate reduction in Ceria from the Ce4+ to Ce3+ state near the surface.

  11. Characterization of ceria-based SOFCs

    SciTech Connect

    Doshi, R.; Routbort, J.; Krumpelt, M.

    1996-12-31

    Solid Oxide Fuel Cells (SOFCs) operating at low temperatures (500-700{degrees}C) offer many advantages over the conventional zirconia-based fuel cells operating at higher temperatures. Reduced operating temperatures result in: (1) Application of metallic interconnects with reduced oxidation problems (2) Reduced time for start-up and lower energy consumption to reach operating temperatures (3) Increased thermal cycle ability for the cell structure due to lower thermal stresses of expansion mismatches. While this type of fuel cell may be applied to stationary applications, mobile applications require the ability for rapid start-up and frequent thermal cycling. Ceria-based fuel cells are currently being developed in the U.K. at Imperial College, Netherlands at ECN, and U.S.A. at Ceramatec. The cells in each case are made from a doped ceria electrolyte and a La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} cathode.

  12. Brazing method produces solid-solution bond between refractory metals

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Brazing two refractory metals by diffusion bonding minimizes distortion and avoids excessive grain growth in the metals. This method requires the selection of an interface metal that forms intermediate low-melting eutectics or solid solutions with the metals to be brazed.

  13. On the solution of a lubrication problem with particulate solids

    NASA Technical Reports Server (NTRS)

    Dai, F.; Khonsari, M. M.

    1991-01-01

    The lubrication characteristic of a fluid with solid particles is studied using the continuum theory of mixtures. The governing equations are formulated and appropriate boundary conditions are introduced for an arbitrary-shaped lubricant film thickness. As a special case, closed-form analytical perturbation solutions for pressure and shear stress are obtained for a mixture of a conventional oil and solid particles with small values of solid-volume fraction sheared in the clearance space of an infinitely long slider bearing. It is found that when compared with a pure fluid, the mixture of the fluid and solid generates a higher pressure and therefore a higher load-carrying capacity with the added advantage of a reduction in the coefficient of friction.

  14. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Qinzhong; Zhang, Zhiyong; Ma, Yuhui; He, Xiao; Zhao, Yuliang; Chai, Zhifang

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (Δ H 0 , Δ S 0 , and Δ G 0 ) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment.

  15. Solid-liquid phase boundaries of lens protein solutions.

    PubMed Central

    Berland, C R; Thurston, G M; Kondo, M; Broide, M L; Pande, J; Ogun, O; Benedek, G B

    1992-01-01

    We report measurement of the solid-liquid phase boundary, or liquidus line, for aqueous solutions of three pure calf gamma-crystallin proteins: gamma II, gamma IIIa, and gamma IIIb. We also studied the liquidus line for solutions of native gamma IV-crystallin calf lens protein, which consists of 85% gamma IVa/15% gamma IVb. In all four proteins the liquidus phase boundaries lie higher in temperature than the previously determined liquid-liquid coexistence curves. Thus, over the range of concentration and temperature for which liquid-liquid phase separation occurs, the coexistence of a protein crystal phase with a protein liquid solution phase is thermodynamically stable relative to the metastable separated liquid phases. The location of the liquidus lines clearly divides these four crystallin proteins into two groups: those in which liquidus lines flatten at temperatures greater than 70 degrees C: gamma IIIa and gamma IV, and those in which liquidus lines flatten at temperatures less than 50 degrees C: gamma II and gamma IIIb. We have analyzed the form of the liquidus lines by using specific choices for the structures of the Gibbs free energy in solution and solid phases. By applying the thermodynamic conditions for equilibrium between the two phases to the resulting chemical potentials, we can estimate the temperature-dependent free energy change upon binding of protein and water into the solid phase. PMID:1741375

  16. Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method

    SciTech Connect

    Samiee, Sara; Goharshadi, Elaheh K.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A rapid and efficient microwave method was applied for synthesis of nano ceria. Black-Right-Pointing-Pointer Changing precursor has great effects on optical properties and size of nano ceria. Black-Right-Pointing-Pointer Fabrication of ceria nanoparticles using Ce{sup 4+} salts leads to better results. Black-Right-Pointing-Pointer Band gap energies of ceria nanoparticles were evaluated by UV-vis spectroscopy. -- Abstract: Cerium oxide, ceria (CeO{sub 2}), is one of the favourable nanoparticles (NPs) that possesses many remarkable properties so that it can be used in medicine, chemistry, environment, energy, information, industry, and so on. In this study, the crystalline ceria NPs were successfully prepared by an efficient microwave-assisted heating technique from an aqueous solution using different cerium salts (Ce(IV) and Ce(III) salts). The products were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), FTIR spectroscopy, Raman spectroscopy, and UV-vis absorption spectroscopy. The results revealed that changing the precursor led to great effects on size, band gap energy, and the reaction time of preparing the ceria NPs. The significant feature of this manuscript is that the effects of different precursors on the structural and optical properties of ceria NPs were investigated for the first time. The average particle size of different samples was below 8 nm.

  17. Solid Solution Model for Interstellar Dust Grains and Their Organics

    NASA Astrophysics Data System (ADS)

    Freund, Minoru M.; Freund, Friedemann T.

    2006-03-01

    We present a dust grain model based on the fundamental principle of solid solutions. The model is applicable to the mineral (silicate) component of the dust in the interstellar medium (ISM). We show that nanometer-sized mineral grains, which condense in the gas-rich outflow of late-stage stars or expanding gas shells of supernova explosions, do not consist of just high melting point oxides or silicates. Instead they form solid solutions with gas-phase components H2O, CO, and CO2 that are omnipresent in environments where the grains condense. Through a series of thermodynamically well-understood solid-state processes, these solid solutions become ``parents'' of organic matter that precipitates inside the grains. Thus, the mineral dust grains and their organics become part of the same thermodynamically defined solid phase and, hence, physically inseparable. This model can account for many astronomical observations, which no prior model can adequately address, specifically: (1) Organics in the diffuse ISM are identified by a 3.4 μm IR band, characteristic of aliphatic hydrocarbons composed of CH2 and of CH3 groups. (2) The methylene-to-methyl ratio is nearly constant, implying a CH2:CH3 ratio of ~5:2. (3) The intensity ratio between the 9.7 and the 3.4 μm band is nearly constant, implying a silicate-to-organics ratio of ~10:1. (4) In dense clouds the complex 3.4 μm band is replaced by a weak, featureless 3.47 μm band. (5) Whereas silicate grains identified by their 9.7 μm band tend to align in magnetic fields, grains with a strong 3.4 μm organic signature do not tend to align.

  18. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    DOE PAGESBeta

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less

  19. Solid-State and Solution Characterization of Myricetin.

    PubMed

    Franklin, Stephen J; Myrdal, Paul B

    2015-12-01

    Myricetin (MYR) is a natural compound that has been investigated as a chemopreventative agent. MYR has been shown to suppresses ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) protein expression and reduce the incidence of UVB-induced skin tumors in mice. Despite MYR's promise as a therapeutic agent, minimal information is available to guide the progression of formulations designed for future drug development. Here, data is presented describing the solid-state and solution characterization of MYR. Investigation into the solid-state properties of MYR identified four different crystal forms, two hydrates (MYR I and MYR II) and two metastable forms (MYR IA and MYR IIA). From solubility studies, it was evident that all forms are very insoluble (<5 μg/ml) in pure water. MYR I was found to be the most stable form at 23, 35, and 56°C. Stability determination indicated that MYR undergoes rapid apparent first-order degradation under basic pH conditions, and that degradation was influenced by buffer species. Apparent first-order degradation was also seen when MYR was introduced to an oxidizing solution. Improved stability was achieved after introducing 0.1% antioxidants to the solution. MYR was found to have good stability following exposure to ultraviolet radiation (UVR), which is a consideration for topical applications. Finally, a partitioning study indicated that MYR possess a log P of 2.94 which, along with its solid-state properties, contributes to its poor aqueous solubility. Both the solid-state properties and solution stability of MYR are important to consider when developing future formulations. PMID:25986594

  20. Synthesis and Characterization of Pure and Doped Ceria Films by Sol-Gel and Sputtering

    SciTech Connect

    Koch, K.T.; Saraf, L.

    2004-01-01

    Pure and doped Ceria are known for their ability to gain or lose Oxygen, which is of interest to the Solid Oxide Fuel Cell (SOFC) and catalyst community. Current efforts are focused in SOFCs to reduce the operating temperature of the cell while maintaining ionic conduction. Ceria is known for its high ionic conductivity in the intermediate temperature region. (600-800° C) We have prepared pure and doped Ceria films by Sol-gel and magnetron sputtering methods. Enhanced grain-boundary contribution in the conductivity can be studied in the Sol-gel process due to excellent control over the synthesis conditions, which enabled us to control the average grain size. Sputtered films were grown and investigated as a prelude to possible multi-layered CeO2 structures in the near future. These films were characterized by X-ray diffraction (XRD), nuclear reaction analysis (NRA), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and Oxygen conduction measurements. We have observed greater volume diffusion in nanocrystalline Ceria compared to bulk polycrystalline films as a result of low density. Near surface diffusion properties with increasing temperature indicate a decrease in the volume diffusion as a result of grain growth. However, a linear increase in O2 content at ~600nm depth was observed and can be correlated to the redistribution of O2 in the samples. Surface roughness of <111> and <200> oriented Ceria films on Al2O3 and YSZ was observed to be 0.13nm and 0.397nm, respectively. In the case of Ceria grown on YSZ, structural properties from XRD results showed a highly oriented structure with cube on cube growth. XRD results from Ceria grown on Al2O3 showed an oriented structure whose degree of orientation appeared to be partially dependent on substrate temperature. Preliminary XPS results indicate reduction in Ceria from the Ce4+ to Ce3+ state near the surface.

  1. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    SciTech Connect

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  2. A Thermodynamic Investigation of the Redox Properties of Ceria-Titania Mixed Oxides

    SciTech Connect

    Zhou,G.; Hanson, J.; Gorte, R.

    2008-01-01

    Ceria-titania solutions with compositions of Ce0.9Ti0.1O2 and Ce0.8Ti0.2O2 were prepared by the citric-acid (Pechini) method and characterized using X-ray diffraction (XRD) for structure, coulometric titration for redox thermodynamics, and water-gas-shift (WGS) reaction rates. Following calcination at 973 K, XRD suggests that the mixed oxides exist as single phase, fluorite structures, although there was no significant change in the lattice parameter compared to pure ceria. The mixed oxides are shown to be significantly more reducible than bulk ceria, with enthalpies for re-oxidation being approximately -500 kJ/mol O2, compared to -760 kJ/mol O2 for bulk ceria. However, WGS rates over 1 wt% Pd supported on ceria, Ce0.8Ti0.2O2, and Ce0.8Zr0.2O2 were nearly the same. For calcination at 1323 K, the mixed oxides separated into ceria and titania phases, as indicated by both the XRD and thermodynamic results.

  3. Crystallization in solid solution-aqueous solution systems: Thermodynamic and kinetic approaches

    SciTech Connect

    Shtukenberg, A. G. Punin, Yu. O.; Azimov, P. Ya.

    2010-03-15

    A new phenomenological approach is proposed to describe the crystallization kinetics in solid solution-aqueous solution binary systems. The phase diagrams, equilibria, and quasie-quilibria are considered within this approach. The crystallization kinetics near the true equilibrium and the crystallization features at large deviations from equilibrium are discussed on this basis. Special attention is paid to possible interactions in a solution with a seed crystal placed in it. In particular, the interactions leading to the seed's crystal growth or dissolution and to a possible exchange or metasomatic reactions are considered. In addition, the effect of the generated mismatch stress on the crystal growth rate and composition is analyzed.

  4. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug. PMID:17107929

  5. Performance studies of copper-iron/ceria-yttria stabilized zirconia anode for electro-oxidation of butane in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Basu, Suddhasatwa

    2013-11-01

    Addition of second metal to Cu is useful for electro-oxidation of hydrocarbons in solid oxide fuel cells (SOFC). In this work, electro-catalysts based on Cu-Fe bimetallic anode for use of both H2 and n-C4H10 in SOFC is prepared by wet impregnation method into a porous CeO2-YSZ matrix. The prepared Cu-Fe/CeO2-YSZ anodes are then characterized by thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), elemental dispersive X-ray (EDX) and scanning electron microscopy (SEM). Carbonaceous deposits formed on Cu-Fe/CeO2-YSZ anodes after exposure to n-C4H10 are studied using a combination of i-V characteristics and TGA measurements. It is observed that the addition of Fe to Cu in CeO2-YSZ cermet anode enhance the performance in H2 and n-C4H10 fuels. The performance of cell having molar ratio of Cu-Fe of 1:1 in Cu-Fe/CeO2-YSZ anode shows power density of 240 mW cm-2 and 260 mW cm-2 in n-C4H10 and in H2 after n-C4H10 flow at 800 °C. The i-V curve shows that the conductivity of the anode improves after exposure to n-C4H10. No apparent degradation in performance is observed after n-C4H10 flow except for carbon fibre formation indicating Cu-Fe bimetallic is worth considering as an anode for direct butane SOFC.

  6. Synthesis and characterization of ceria nanomaterials

    NASA Astrophysics Data System (ADS)

    Cheong Ng, Nitzia

    Cerium dioxide or ceria, CeO2, has been widely used in industry as catalyst for automotive exhaust controls, chemical mechanical polishing (CMP) slurries, and high temperature fuel cells because of its unique metal oxide properties. This well-known rare metal oxide has high thermal stability, electrical conductivity and chemical diffusivity. Proper synthesis method requires knowledge of reaction temperature, concentration, and time effects on the synthesis. In this work, ceria nanomaterials were prepared via the hydrothermal method using a Teflon autoclave. Cerium nitrate solution was used as the source and three different precursors: NaOH, H2O 2, and NH4OH were used as the oxidizing agents. CeO 2 nanoplates, nanocubes and nanorods were produced and studied using transmission electron microscopy (TEM), BET specific surface area, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Through characterization, CeO2 nanomaterials showed the presence of mixed valence states (Ce3+ and Ce4+) through XPS spectra. Deconvolution was performed to investigate the ratio of Ce 3+/Ce4+ concentration in the synthesized CeO2 nanostructures. Nanocubes showed a higher Ce3+ concentration. CeO2 nanomaterials were found to be mesoporous. Nanoplates synthesized with H2O2, and NH4OH were found with surface areas of 95.11 m2/g and 62.07 m2/g, respectively. Nanorods and nanocubes showed surface areas of 16.77 m2/g and 16.55 m2/g, respectively. The prepared ceria nanoplates, nanocubes and nanorods had crystallite size in the range of 5--25 nm and pore size range of 7--15 nm. XRD spectra confirmed that the peaks were indexed to the cubic phase of CeO2 with fluorite structure and with an average lattice parameter, 5.407 A. Higher Ce3+ concentration and exposed surface of crystalline planes suggest that nanorods are better catalyst for CO oxidation and oxygen storage capacity (OSC).

  7. Interfacial Free Energy of Cu-Co Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhevnenko, S. N.

    2013-06-01

    The surface energies of Cu-Co solid solutions in hydrogen atmosphere were measured. The measurements were performed on pure copper and copper alloys containing 0.45, 0.7, 1.4, 2.25, 2.50, and 2.8 at. pct Co and 4.1 at. pct Co for the temperature range 1245 K to 1349 K (972 °C to 1076 °C). The experiments were conducted using the zero creep method for 18 mcm foils. The modified method allowed " in situ" determining of the surface energy. It was shown that the surface energy increases as the concentration increases up to 1.4 at. pct Co and then decreases. Such extreme behavior was obtained by the direct method for the first time in a solid metallic system.

  8. Vibrational spectroscopic study of hydroxylpyromorphite-hydroxylmimetite solid solutions

    NASA Astrophysics Data System (ADS)

    Kwaśniak-Kominek, Monika; Matusik, Jakub; Bajda, Tomasz; Manecki, Maciej

    2013-04-01

    Hydroxylpyromorphite Pb5(PO4)3OH and hydroxylmimetite Pb5(AsO4)3OH minerals belong to the apatite supergroup. Their structure allows isomorphous substitutions in both cationic and anionic positions. They are isostructural with pyromorphite Pb5(PO4)3Cl and mimetite Pb5(AsO4)3OH which are the end products of in situ phosphate induced remediation of soils polluted with heavy metals e.g. lead. The research objective was to synthesize and characterize the members of above mentioned solid solution. The minerals were synthesized at room temperature and analyzed by X-Ray diffraction and Infrared spectroscopy (FTIR-DRIFT). The product syntheses was crystalline phase without any impurities within the detection limit of XRD. Shifts of certain diffraction peaks were observed in solid solution series due to replacement PO4 after AsO4. The bands v3 and v4 attributed to vibrations in the PO4 and AsO4 tetrahedra appear at 1050-790 and 580-534 cm-1. Due to difference in atomic mass of P and As as well as bonding strength of P-O and As-O the skeletal bands shift to lower wavenumbers with the increase of AsO4 substitution. The correlation between the position of vibrational modes and the chemical composition is observed. The OH stretching mode in the FTIR spectra appears in the range of 3765-3552 cm-1 as a sharp band for the end members of the solid solution. For the intermediate minerals the OH band becomes complex. The analysis of deconvoluted OH bands indicated several vibrational modes which suggested a significant change of OH group local environment induced by substitutions. The study was supported by the AGH University of Science and Technology (Krakow, Poland) as the research project No. 307 473 638.

  9. Comparison of ceria nanoparticle concentrations in effluent from chemical mechanical polishing of silicon dioxide.

    PubMed

    Zazzera, Larry; Mader, Brian; Ellefson, Mark; Eldridge, Jess; Loper, Steve; Zabasajja, John; Qian, Julie

    2014-11-18

    This work measured and compared the effluent from the chemical mechanical polishing (CMP) of silicon dioxide using ceria slurry and ceria fixed abrasive. CMP waste streams were tested for total solids, cerium, silicon, and 6 nm to 20 μm diameter particles. The concentration of cerium and total solids in the effluent were very different for the two polishes studied. The fixed abrasive polish produced 94% less CeO2 emissions per SiO2 removed. The higher ceria levels in the slurry effluent are associated with 99-279 nm particles, and attributed to ceria abrasive. The lower concentration of ceria in the effluent from the fixed abrasive process is due to the lower wear rate of mineral from the fixed abrasive, compared to the more environmentally mobile mineral in the slurry. These results support the "bonded" nature of the abrasive particles in fixed abrasive polishing and are relevant to sustainability strategies that seek to reduce particle emissions in surface conditioning technology. PMID:25317965

  10. METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION

    DOEpatents

    Ogard, A.E.; Leary, J.A.; Maraman, W.J.

    1963-03-19

    A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)

  11. Diffusion of Chromium in Alpha Cobalt-Chromium Solid Solutions

    NASA Technical Reports Server (NTRS)

    Weeton, John W

    1951-01-01

    Diffusion of chromium in cobalt-chromium solid solutions was investigated in the range 0 to 40 atomic percent at temperatures of 1360 degrees, 1300 degrees, 1150 degrees, and 10000 degrees c. The diffusion coefficients were found to be relatively constant within the composition range covered by each specimen. The activation heat of diffusion was determined to be 63,000 calories per mole. This value agrees closely with the value of 63,400 calories per mole calculated by means of the Dushman-Langmuir equation.

  12. Temperature dependence of nucleation rate in a binary solid solution

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Philippe, T.; Duguay, S.; Blavette, D.

    2012-12-01

    The influence of regression (partial dissolution) effects on the temperature dependence of nucleation rate in a binary solid solution has been studied theoretically. The results of the analysis are compared with the predictions of the simplest Volmer-Weber theory. Regression effects are shown to have a strong influence on the shape of the curve of nucleation rate versus temperature. The temperature TM at which the maximum rate of nucleation occurs is found to be lowered, particularly for low interfacial energy (coherent precipitation) and high-mobility species (e.g. interstitial atoms).

  13. Lattice Strain Defects in a Ceria Nanolayer

    PubMed Central

    2016-01-01

    An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu–O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state. PMID:26988695

  14. A novel composite cathode Er0.4Bi1.6O3-Pr0.5Ba0.5MnO3-δ for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hou, Jie; Bi, Lei; Qian, Jing; Gong, Zheng; Zhu, Zhiwen; Liu, Wei

    2016-01-01

    A novel composite cathode consisting of A-site disordered Pr0.5Ba0.5MnO3-δ (PBM) and Er0.4Bi1.6O3 (ESB) is developed for solid oxide fuel cells (SOFCs) with ceria-bismuth bilayer electrolyte. Based on Sm0.075Nd0.075Ce0.85O2-δ|ESB (SNDC|ESB) bilayer structured film, the single cell NiO-SNDC|SNDC|ESB|ESB-PBM achieves an encouraging performance with the maximum power density (MPD) of 994 mW cm-2 and an interfacial polarization resistance (Rp) of 0.027 Ω cm2 at 650 °C. Although a possible reaction between ESB and PBM has been identified in the cathode, the ascendant electrochemical performance including the very high fuel cell performance and Rp obtained here can demonstrate that the novel cobalt-free composite cathode ESB-PBM is a preferable alternative for ceria-bismuth bilayer electrolyte high performance low temperature SOFCs (HPLT-SOFCs) and the interfacial reaction in the cathode seems not to be detrimental to the electrochemical performance.

  15. Synthesis and characterization of cadmium-calcium hydroxyapatite solid solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Zhu, Yi-nian; Dai, Liu-qin

    2014-06-01

    A series of cadmium-calcium hydroxyapatite solid solutions was prepared by an aqueous precipitation method. By various means, the characterizations confirmed the formation of continuous solid solutions over all ranges of Cd/(Cd+Ca) atomic ratio. In the results, both lattice parameters a and c display slight deviations from Vegard's rule when the Cd/(Cd+Ca) atomic ratio is greater than 0.6. The particles change from smaller acicular to larger hexagonal columnar crystals as the Cd/(Cd+Ca) atomic ratio increases from 0-0.60 to 0.60-1.00. The area of the phosphate peak for symmetric P-O stretching decreases with the increase in Cd/(Cd+Ca) atomic ratio, and the peak disappears when the Cd/(Cd+Ca) atomic ratio is greater than 0.6; the two phosphate peaks of P-O stretching gradually merge together for the Cd/(Cd+Ca) atomic ratio near 0.60. These variations can be explained by a slight tendency of larger Cd ions to occupy M(2) sites and smaller Ca ions to prefer M(1) sites in the structure.

  16. Irradiation-induced composition patterns in binary solid solutions

    SciTech Connect

    Dubey, Santosh; El-Azab, Anter

    2013-09-28

    A theoretical/computational model for the irradiation-driven compositional instabilities in binary solid solutions has been developed. The model is suitable for investigating the behavior of structural alloys and metallic nuclear fuels in a reactor environment as well as the response of alloy thin films to ion beam irradiation. The model is based on a set of reaction-diffusion equations for the dynamics of vacancies, interstitials, and lattice atoms under irradiation. The dynamics of these species includes the stochastic generation of defects by collision cascades as well as the defect reactions and diffusion. The atomic fluxes in this model are derived based on the transitions of lattice defects. The set of reaction-diffusion equations are stiff, hence a stiffly stable method, also known as the Gear method, has been used to numerically approximate the equations. For the Cu-Au alloy in the solid solution regime, the model results demonstrate the formation of compositional patterns under high-temperature particle irradiation, with Fourier space properties (Fourier spectrum, average wavelength, and wavevector) depending on the cascade damage characteristics, average composition, and irradiation temperature.

  17. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  18. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    NASA Astrophysics Data System (ADS)

    Rai, R. N.; Kant, Shiva; Reddi, R. S. B.; Ganesamoorthy, S.; Gupta, P. K.

    2016-01-01

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal.

  19. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.; Plummer, L.N.; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  20. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    SciTech Connect

    Glynn, P.D.; Plummer, L.N.; Busenberg, E. ); Reardon, E.J. )

    1990-02-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO{sub 4} and (Sr, Ca)CO{sub 3orth.} solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO{sub 3orth.} solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallization experiments in the highly soluble KCl-KBr-H{sub 2}O system demonstrate equilibrium. The phase diagram reveals an alyotropic maximum located at {chi}{sub KBr} = 0.676 and at a total solubility product, {Sigma}II = (K{sup +})((Cl{sup {minus}}) + (Br{sup {minus}})) = 15.35.

  1. Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng

    For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and

  2. Crystalline structure of ceria particles controlled by the oxygen partial pressure and STI CMP performances.

    PubMed

    Kim, Ye-Hwan; Kim, Sang-Kyun; Kim, Namsoo; Park, Jea-Gun; Paik, Ungyu

    2008-09-01

    The effect of the crystalline structures of nano-sized ceria particles on shallow trench isolation (STI) chemical mechanical planarization (CMP) performance was investigated. The ceria particles were synthesized via a solid-state displacement reaction method, and their crystalline structure was controlled by regulating the oxygen partial pressure at the reaction site on the precursor. The crystalline structures of ceria particles were analyzed by the high-resolution TEM nano-beam diffraction pattern. In a calcination process with a high oxygen concentration, the synthesized ceria particles had a cubic fluorite structure (CeO(2)), because of the decarbonation of the cerium precursor. However, a low oxygen concentration results in a hexagonal phase cerium oxide (Ce(2)O(3)) rather than the cubic phase due to the insufficient oxidation of Ce(3+) to Ce(4+). In the STI CMP evaluation, the ceria slurry prepared with the cubic CeO(2) shows enhanced performances of the oxide-to-nitride removal selectivity. PMID:18562111

  3. Lattice thermal conductivity of nanograined half-Heusler solid solutions

    SciTech Connect

    Geng, Huiyuan Meng, Xianfu; Zhang, Hao; Zhang, Jian

    2014-05-19

    We report a phenomenological model of atomic weight, lattice constant, temperature, and grain size to calculate the high-temperature lattice thermal conductivity of nanograined solid solutions. The theoretical treatment developed here is reasonably consistent with the experimental results of n-type MNiSn and p-type MCoSb alloys, where M is the combination of Hf, Zr, and Ti. For disordered half-Heusler alloys with moderated grain sizes, we predict that the reduction in lattice thermal conductivity due to grain boundary scattering is independent of the scattering parameter, which characterizes the phonon scattering cross section of point defects. In addition, the lattice thermal conductivity falls off with temperature as T{sup –1∕2} around the Debye temperature.

  4. Nucleation of the diamond phase in aluminium-solid solutions

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.

    1993-01-01

    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  5. carbonate solid solution at high pressures up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Spivak, Anna; Solopova, Natalia; Cerantola, Valerio; Bykova, Elena; Zakharchenko, Egor; Dubrovinsky, Leonid; Litvin, Yuriy

    2014-09-01

    Magnesite, siderite and ferromagnesites Mg1- x Fe x CO3 ( x = 0.05, 0.09, 0.2, 0.4) were characterized using in situ Raman spectroscopy at high pressures up to 55 GPa. For the Mg-Fe-carbonates, the Raman peak positions of six modes (T, L, ν4, ν1, ν3 and 2ν2) in the dependence of iron content in the carbonates at ambient conditions are presented. High-pressure Raman spectroscopy shows that siderite undergoes a spin transition at ~40 GPa. The examination of the solid solutions with compositions Mg0.6Fe0.4CO3, Mg0.8Fe0.2CO3, Mg0.91Fe0.09CO3 and Mg0.95Fe0.05CO3 indicates that with increase in the amount of the Fe spin transition pressure increases up to ~45 GPa.

  6. Dielectric properties of the multicomponent PZT-type solid solution

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Niemiec, Przemysław; Adamczyk, Małgorzata; Machnik, Zbigniew; Dercz, Grzegorz

    2015-10-01

    In this paper the multicomponent PZT-type solid solution doped by barium, calcium, strontium, bismuth and germanium with composition: Pb0.975Ba0.01Ca0.01Sr0.005(Zr0.52Ti0.48)O3 + 1.4 wt.% Bi2O3 + 0.3 wt.% GeO obtained by hot uniaxial pressing method is described. The results of structural, dielectric, ferroelectric and electromechanical studies of these ceramics are presented. It has been stated that introduction to the basic composition PZT admixtures of the barium, calcium, strontium, bismuth and germanium has a positive effect on the electro-physic parameters of obtained ceramic samples. This material has good microstructure, with high value of the dielectric permittivity (with the high temperature of phase transition) as well as low dielectric losses. It allows considering this material as elements for low frequency and high temperature electromechanical transducers.

  7. Crystal-chemical features of the solid solutions

    SciTech Connect

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  8. Purification of uranothorite solid solutions from polyphase systems

    NASA Astrophysics Data System (ADS)

    Clavier, Nicolas; Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann; Poinssot, Christophe; Dacheux, Nicolas

    2013-10-01

    The mineral coffinite, nominally USiO4, and associated Th1-xUxSiO4 uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO2 and nanometric crystallized Th1-yUyO2. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th1-yUyO2 in acid media and of SiO2 in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron Microscopy) observations and X-EDS (X-Ray Energy Dispersive Spectroscopy) analyses.

  9. Thermal expansion of solid solutions in apatite binary systems

    SciTech Connect

    Knyazev, Alexander V.; Bulanov, Evgeny N. Korokin, Vitaly Zh.

    2015-01-15

    Graphical abstract: Thermal dependencies of volume thermal expansion parameter for with thermal expansion diagrams for Pb{sub 5}(PO{sub 4}){sub 3}F{sub x}Cl{sub 1−x}. - Highlights: • Solid solutions in three apatitic binary systems were investigated via HT-XRD. • Thermal expansion coefficients of solid solutions in the systems were calculated. • Features of the thermal deformation of the apatites were described. • Termoroentgenography is a sensitive method for the investigation of isomorphism. - Abstract: High-temperature insitu X-ray diffraction was used to investigate isomorphism and the thermal expansion of apatite-structured compounds in three binary systems in the entire temperature range of the existence of its hexagonal modifications. Most of the studied compounds are highly expandable (α{sub l} > 8 × 10{sup 6} (K{sup −1})). In Pb{sub 5}(PO{sub 4}){sub 3}F–Pb{sub 5}(PO{sub 4}){sub 3}Cl system, volume thermal expansion coefficient is independence from the composition at 573 K. In Pb{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(VO{sub 4}){sub 3}Cl, the compound with equimolar ratio of substituted atoms has constant volume thermal expansion coefficient in temperature range 298–973 K. Ca{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(PO{sub 4}){sub 3}Cl system is characterized by the most thermal sensitive composition, in which there is an equal ratio of isomorphic substituted atoms.

  10. Optical properties of Sm-doped ceria nanostructured films grown by electrodeposition at low temperature

    NASA Astrophysics Data System (ADS)

    Ursaki, V. V.; Lair, V.; Żivković, L.; Cassir, M.; Ringuedé, A.; Lupan, O.

    2012-09-01

    Nanostructured undoped and samarium doped ceria thin nanocolumnar films are electrodeposited onto (FTO) glass substrates at low-temperature (30 °C) with a subsequent thermal annealing at 600 °C for 1 h. Films are obtained from mixed Sm3+/Ce3+ aqueous nitrate solutions, applying a -0.8 V/(SCE) potential for 1 h. Cubic fluorite type ceria nanostructured films of high crystal quality are synthesized as confirmed by X-ray diffraction and Raman spectroscopy. SEM analysis demonstrates that doping with Sm improves the quality of the film with respect to crack formation. The incorporation and activation of the Sm3+ ions in the ceria host as well as the Stark splitting of the manifolds responsible for emission in the red-orange spectral range are investigated by means of photoluminescence spectroscopy.

  11. Stability region of the liebermannite-lingunite solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Irifune, T.; Ohfuji, H.; Shinmei, T.; DU, W.

    2015-12-01

    Aluminosilicate hollandite, with the chemical formula of (K,Na)AlSi3O8, is a potential host mineral of K and Na in the deep Earth [1,2]. The Na hollandite end member is called lingunite, and the K hollandite end member was named liebermannite recently. Phase relations in the system KAlSi3O8-NaAlSi3O8 under conditions of the Earth mantle transition zone and uppermost lower mantle [3,4] are essential to understanding the behavior of the liebermannite-lingunite solid solution under high pressure and high temperature, however, it is still not clear whether or not the end members can form complete solid solutions with the hollandite structure under some conditions. Previous high pressure experiments obtained the K hollandite with the limited Na content up to 50 mol % [3,4], while the Na-rich hollandite with the Na content of about 80 mol % was discovered in some meteorites [5,6]. Here we report our successful synthesis of the Na-rich hollandite with the Na content of 78 mol % at 22 GPa, 2273 K, the same condition under which the Na-rich hollandite found in the meteorite was inferred to be formed during the shock event [5]. Phase relations around 22 GPa at 1873 and 2273 K determined by our experiments indicate the solubility of NaAlSi3O8 in K hollandite is sensitive to both pressure and temperature, especially around the pressure corresponding to the dissociation of jadeite into the calcium ferrite type NaAlSiO4and stishovite, and there may be a stability region for the Na hollandite end member at temperatures slightly higher than 2273 K. Our improved phase relations provide a reasonable access to estimate the composition of hollandite in the Earth's interior and a supportive evidence to interpret the formation of the Na-rich hollandite found in meteorites via phase equilibria. [1] Irifune T., Ringwood A.E. and Hibberson W.O. (1994) Earth Planet. Sci. Lett. 126: 351-368. [2] Ishii T., Kojitani H. and Akaogi M. (2012) Earth Planet. Sci. Lett. 357-358: 34-41. [3] Yagi A

  12. Thermal Expansion of Fluorapatite-Chlorapatite Solid Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Abraham, Tony; Hudacek, William; Wildermuth, Sarah; Scott, Brian; Altomare, Caitlin; Medford, Aaron; Conlon, Maricate; Morris, Matthew; Leaman, Amanda; Almer, Christine; Tomaino, Gary; Harlov, Daniel

    2015-04-01

    X-ray powder diffraction experiments have been performed on fifteen fluorapatite-chlorapatite solid solutions synthesized and chemically characterized at the GeoForschungsZentrum - Potsdam (Hovis and Harlov, 2010; Schettler, Gottschalk, and Harlov, 2011), as well as two natural near-end-member samples, from room temperature to ~900 °C at 50 to 75 °C intervals. NIST 640a Si was employed as an internal standard; data from Parrish (1953) were used to determine Si peak positions at elevated temperatures. Unit-cell parameters calculated using the software of Holland and Redfern (1997) result in volume-temperature (V-T) plots that are linear or slightly concave up (V plotted as the vertical axis) over the T range investigated. Relations for the "a" and "c" unit-cell dimensions with T for these hexagonal minerals are nearly linear, but as with V, commonly improved by quadratic fits to the data. Coefficients of thermal expansion for volume (αV ), calculated as (1/V0°C) x (ΔV/ΔT) based on linear V-T relationships, mostly fall within the range 42 ± 2 x 10-6 deg-1 and show no obvious dependence on composition. Thermal expansion coefficients for individual unit-cell axes, however, do show clear relationships to composition, αa increasing from ~9.5 to ~13.5 x 10-6 deg-1 and αc decreasing from ~19.5 to ~13 x 10-6 deg-1 from the Cl to the F end member. Clearly, a compensating structural relationship accounts for the observed relationships. Such compositional dependence was not seen in the thermal expansion data for F-OH apatite solid solutions (Hovis, Scott, Altomare, Leaman, Morris, and Tomaino, American Mineralogist, in press). This difference can be explained by the similar sizes of F- and (OH)- versus the much greater size contrast between F- and Cl-. Sincere thanks to the National Science Foundation for support of this work, which has provided numerous research experiences for Lafayette College undergraduates. Thanks also to the Earth Sciences Department, University

  13. Thermal Expansion of Fluorapatite-Chlorapatite Solid Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Abraham, T.; Hudacek, W.; Wildermuth, S.; Scott, B.; Altomare, C.; Medford, A.; Conlon, M.; Morris, M.; Leaman, A.; Almer, C.; Tomaino, G.; Harlov, D. E.

    2014-12-01

    X-ray powder diffraction experiments have been performed on fifteen fluorapatite-chlorapatite solid solutions synthesized and chemically characterized at the GeoForschungsZentrum - Potsdam (Hovis and Harlov, 2010; Schettler, Gottschalk, and Harlov, 2011), as well as two natural near-end-member samples, from room temperature to ~900 °C at 50 to 75 °C intervals. NIST 640a Si was employed as an internal standard; data from Parrish (1953) were used to determine Si peak positions at elevated temperatures. Unit-cell parameters calculated using the software of Holland and Redfern (1997) result in volume-temperature (V-T) plots that are linear or slightly concave up (V plotted as the vertical axis) over the T range investigated. Relations for the "a" and "c" unit-cell dimensions with T for these hexagonal minerals are nearly linear but, as with V, commonly improved by quadratic fits to the data. Coefficients of thermal expansion for volume (αV), calculated as (1/V0°C) x (ΔV/ΔT) based on linear V-T relationships, mostly fall within the range 42 ± 2 x 10-6 deg-1 and show no obvious dependence on composition. Thermal expansion coefficients for individual unit-cell axes, however, do show clear relationships to composition, αa increasing from ~9.5 to ~13.5 x 10-6 deg-1 and αc decreasing from ~19.5 to ~13 x 10-6 deg-1 from the Cl to the F end member. Clearly, a compensating structural relationship accounts for the observed relationships. Such compositional dependence was not seen in the thermal expansion data for F-OH apatite solid solutions (Hovis, Scott, Altomare, Leaman, Morris, and Tomaino, American Mineralogist, in press). This difference can be explained by the similar sizes of F- and (OH)- versus the much greater size contrast between F- and Cl-. Sincere thanks to the National Science Foundation for support of this work, which has provided numerous research experiences for Lafayette College undergraduates. Thanks also to the Earth Sciences Department, University

  14. Sustainable solutions for solid waste management in Southeast Asian countries

    SciTech Connect

    Uyen Nguyen Ngoc Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  15. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    PubMed

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets. PMID:25958611

  16. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  17. Relaxor-based solid solutions for piezoelectric and electrostrictive applications

    NASA Astrophysics Data System (ADS)

    Alberta, Edward F.

    This thesis explores the dielectric, piezoelectric, and electrostrictive properties of a number of relaxor ferroelectric-based solid solution systems. The components of these solid solution systems have a variety of characteristics ranging from normal- to relaxor- to anti-ferroelectric. Some of the relaxor end-members investigated were Pb(In1/2Nb1/2)O3 [PIN], Pb(In1/2Ta1/2)O3 [PIT], Pb(Sc 1/2Nb1/2)O3 [PSN], Pb(Ni1/3Nb 2/3)O3 [PNN], Pb(Mg1/3Nb2/3)O 3 [PMN], and Pb(Zn1/3Nb2/3)O3 [PZN]. Several of these systems have Curie temperatures [Tc] that are among the highest known for MPB compositions. Some examples are PIN-0.38PT with a Tc of 319°C, PIT-0.38PT with a Tc of 248°C, and PSN 0.42PT with a Tc of 254°C. While these are slightly lower that those of typically found in PZT, the temperature dependence of the piezoelectric properties was found to be minimal. The electromechanical coupling coefficients were largely unchanged upon heating to as high as 150°C. This is approximately equal to the Tc of PMN-PT and PZN-PT and significantly exceeds the generally accepted maximum operating temperature for these materials. Many of the materials studied were found to have very large electromechanical coupling factors and produce extraordinarily high field-induced strains. Both PSN-0.42PT and PNN-0.15PZ-0.34PT were found to produce strain levels of ˜0.30% under unipolar drive with limited hysteresis. Peak-to-peak strain levels of as much as 0.60% were possible under bipolar drive conditions. Both of these MPB compositions had very large piezoelectric properties, with the slightly larger values of d33 = 810pC/N, kp = 0.69, kt = 0.56, and k33 = 0.80 occurring in PNN-PZ-PT. Each of the MPB compositions studied has features that can be exploited for specific applications. The combination of high Tc and coercive field found in both PIN-PT and Bi(Ni1/2T1/2)O3 -PT should allow these materials to be used at high drive levels and/or at high temperatures. The high strain, low hysteresis

  18. Solid state lighting for the developing world: the only solution

    NASA Astrophysics Data System (ADS)

    Peon, Rudolfo; Doluweera, Ganesh; Platonova, Inna; Irvine-Halliday, Dave; Irvine-Halliday, Gregor

    2005-09-01

    Approximately two billion people, one third of humanity still has no access to electricity, and thus relies on fuel-based lighting, a dangerous alternative of last resort that is unhealthy, expensive, and offers very poor levels of illumination. This lack of light makes it difficult to perform most evening activities including studies by children and adults alike and therefore represents a significant barrier to human development. Over the past five years The Light Up The World Foundation (LUTW) has pioneered the use of the white light emitting diode (WLED) as an alternative home lighting solution, bringing clean, affordable light to thousands of non-electrified homes around the world. The information presented herein is intended to increase awareness of the enormous potential possessed by this emergent technology, "Solid State Lighting" (SSL), to improve the quality of life of millions of people around the world. The feasibility of its implementation is demonstrated with results from comprehensive field experience and laboratory research work. The mutual economic, social and environmental benefits for both stakeholders and SSL suppliers are discussed. Strategies conducive to the dissemination of this technology throughout the developing world are also presented.

  19. Synthesis and characterisation of chromium lutetium gallium garnet solid solution

    SciTech Connect

    Galindo, R.; Badenes, J.A. . E-mail: jbadenes@qio.uji.es; Llusar, M.; Tena, M.A.; Monros, G.

    2007-03-22

    The chromium lutetium gallium garnet system has been studied. Samples with 2xCaOxCr{sub 2}O{sub 3}(3 - 2x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0.025, 0.05, 0.075, 0.1, 0.2 and 0.3,) and xCr{sub 2}O{sub 3}(3 - x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0, 0.05, 0.075 and 0.3) compositions have been prepared in Ca,Cr:LGG and Cr:LGG systems, respectively. Samples were prepared by ceramic method, fired at 1250 deg. C/6 h and characterised by XRD, lattice parameters, UV-vis-NIR spectroscopy, CIE L * a * b * measurements and SEM/EDX. Results indicate that Ca,Cr:LGG and Cr:LGG solid solutions are obtained. In Cr:LGG system only Cr(III) is stabilised in octahedral positions substituting for Lu(III) and Ga(III). Both Cr(III) and Cr(IV) are present in Ca,Cr:LGG. The calcium is a charge compensator to stabilise Cr(IV) and this is the predominant oxidation state up to x = 0.075 composition. From this composition, Cr(III) becomes more stabilised in garnet lattice. Cr(IV) occupies generally tetrahedral and dodecahedral sites substituting for Ga(III) and Lu(III), while Cr(III) is in octahedral site substituting for Ga(III)

  20. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  1. Solid-solution aqueous-solution equilibria: thermodynamic theory and representation

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.

    1990-01-01

    Thorstenson and Plummer's (1977) "stoichiometric saturation' model is reviewed, and a general relation between stoichiometric saturation Kss constants and excess free energies of mixing is derived for a binary solid-solution B1-xCxA: GE = RT[ln Kss - xln(xKCA) - (l-x)ln((l-x)KBA)]. This equation allows a suitable excess free energy function, such as Guggenheim's (1937) sub-regular function, to be fitted from experimentally determined Kss constants. Solid-phase free energies and component activity-coefficients can then be determined from one or two fitted parameters and from the endmember solubility products KBA and KCA. A general form of Lippmann's (1977,1980) "solutus equation is derived from an examination of Lippmann's (1977,1980) "total solubility product' model. Lippmann's ??II or "total solubility product' variable is used to represent graphically not only thermodynamic equilibrium states and primary saturation states but also stoichiometric saturation and pure phase saturation states. -from Authors

  2. General solution technique for transient thermoelasticity of transversely isotropic solids in Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Noda, N.; Ashida, F.; Okumura, I. A.

    1992-07-01

    In the present paper we propose a new general solution technique for transient thermoelastic problems of transversely isotropic solids in Cartesian coordinates. The solution technique consists of five fundamental solutions. By considering the relations among the material constants of transverse isotropy, the solution technique is classified into five groups. One among those corresponds to Goodier's thermoelastic potential function as well as the generalized Boussinesq solutions and the Michell function. For an application of the solution technique, an inverse problem of transient thermoelasticity in a transversely isotropic semi-infinite solid is analyzed.

  3. Magnetic behavior of solid Ar-O2 solutions

    SciTech Connect

    Prisk, Timothy R.; Sokol, P. E.

    2015-08-12

    Solid molecular oxygen presents an interesting example of a low-temperature crystal which exists within several different magnetic phases. When solid solutions of argon and oxygen are formed with molar concentrations of oxygen between 60 and 80 %, a new structural and magnetic phase, known as the δ-phase, appears at low temperatures. In order to investigate the nature of the δ-phase, we carried out SQUID magnetometry measurements solid argon-oxygen solutions made up of 74 % oxygen and 26 % argon. In particular, we performed measurements of the magnetic susceptibility of the solid solutions over complete temperature cycles and isothermally as a function of time. Altogether, the experimental data demonstrate that that the δ-phase is not an equilibrium thermodynamic state of the solid solutions, but is instead only a metastable state.

  4. Solid-liquid interfacial energy of neopentylglycol solid solution in equilibrium with neopentylglycol-(D) camphor eutectic liquid

    NASA Astrophysics Data System (ADS)

    Bayram, Ü.; Aksöz, S.; Maraşlı, N.

    2012-01-01

    The grain boundary groove shapes for equilibrated solid neopentylglycol (NPG) solution (NPG-3 mol% D-camphor) in equilibrium with the NPG-DC eutectic liquid (NPG-36.1 mol% D-camphor) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient ( Г), solid-liquid interfacial energy ( σSL) of NPG solid solution have been determined to be (7.5±0.7)×10 -8 K m and (8.1±1.2)×10 -3 J m -2, respectively. The Gibbs-Thomson coefficient versus TmΩ1/3, where Ω is the volume per atom was also plotted by linear regression for some organic transparent materials and the average value of coefficient ( τ) for nonmetallic materials was obtained to be 0.32 from graph of the Gibbs-Thomson coefficient versus TmΩ1/3. The grain boundary energy of solid NPG solution phase has been determined to be (14.6±2.3)×10 -3 J m -2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution was also measured to be 0.80.

  5. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  6. Al and Zn Impurity Diffusion in Binary and Ternary Magnesium Solid-Solutions

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Magnesium alloys are considered for implementation into structural components where energy-efficiency and light-weighting are important. Two of the most common alloying elements in magnesium alloys are Aluminum and Zinc. The present work examines impurity diffusion coefficients of Al and Zn in Mg(Zn) and Mg(Al) binary solid solutions, respectively. Experimental investigation is carried out with ternary diffusion couples with polycrystalline alloys. Concentration profiles were measured by electron microprobe micro-analysis and the impurity diffusion coefficients were determined by the Hall Method. Results of Al and Zn impurity diffusion in Mg solid solutions are reported, and examined as a function of composition of Mg solid solution.

  7. Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria

    SciTech Connect

    Hernandez, W.Y.; Laguna, O.H.; Centeno, M.A.; Odriozola, J.A.

    2011-11-15

    Ce{sub 0.9}M{sub 0.1}O{sub 2-{delta}} mixed oxides (M=La, Eu and Gd) were synthesized by coprecipitation. Independent of the dopant cation, the obtained solids maintain the F-type crystalline structure, characteristic of CeO{sub 2} (fluorite structure) without phase segregation. The ceria lattice expands depending on the ionic radii of the dopant cation, as indicated by X-ray diffraction studies. This effect also agrees with the observed shift of the F{sub 2g} Raman vibrational mode. The presence of the dopant cations in the ceria lattice increases the concentration of structural oxygen vacancies and the reducibility of the redox pair Ce{sup 4+}/Ce{sup 3+}. All synthesized materials show higher catalytic activity for the CO oxidation reaction than that of bare CeO{sub 2}, being Eu-doped solid the one with the best catalytic performances despite of its lower surface area. - Graphical abstract: In this work, Ce{sub 0.9}M{sub 0.1}O{sub 2-{delta}} mixed oxides (M=La, Eu and Gd) were synthesized by coprecipitation. Independent of the dopant cation, the obtained solids maintain the F-type crystalline structure, characteristic of CeO{sub 2} (fluorite structure) without phase segregation. The ceria lattice expands depending on the ionic radii of the dopant cation, as indicated by X-ray diffraction studies. This effect also agrees with the observed shift of the F{sub 2g} Raman vibrational mode. The presence of the dopant cations in the ceria lattice increases the concentration of structural oxygen vacancies and the reducibility of the redox pair Ce{sup 4+}/Ce{sup 3+}. All synthesized materials show higher catalytic activity for the CO oxidation reaction than that of bare CeO{sub 2}, being Eu-doped solid the one with the best catalytic performances despite of its lower surface area. Highlights: > Lanthanide doped ceria as catalytic supports for CO oxidation reaction. > A higher concentration of oxygen vacancies promotes a higher catalytic activity. > Eu-doped ceria shows

  8. Local structure of the halite-sylvine solid solution according to the computer simulation data

    SciTech Connect

    Urusov, V. S. Leonenko, E. V.

    2008-09-15

    The structural, elastic, and thermodynamic properties of halite NaCl and sylvine KCl and the miscibility properties of the NaCl-KCl solid solution found by computer simulation are in good agreement with the experimental data. Analysis of the relaxation of the solid solution structure suggests that both anion and cation sublattices are distorted; however, the anion sublattice is distorted much more strongly. Calculations of the local bond valence at all types of ions in the solid solution show opposite deviations from the balance at cations, whereas the general balance is retained. The values of the electrostatic potential in the ion positions reflect weakening of bonding in the solid solution with respect to its pure components. In addition, with an increase in the average interatomic distance in the first coordination sphere around cations, the modulus of the electrostatic potential at cations decreases.

  9. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  10. Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.

    ERIC Educational Resources Information Center

    Shively, Patti J.; And Others

    This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…

  11. Positron annihilation studies in binary solid solutions and mechanical mixtures of lanthanide dipivaloylmethanate complexes

    NASA Astrophysics Data System (ADS)

    Fulgêncio, F.; Oliveira, F. C.; Windmöller, D.; Araujo, M. H.; Marques-Netto, A.; Machado, J. C.; Magalhães, W. F.

    2015-11-01

    Measurements using positron annihilation lifetime (PALS) and Doppler broadening annihilation radiation lineshape (DBARLS) spectroscopies were performed in several lanthanide dipivaloylmethanate complexes, Ln(dpm)3 where Ln = Sm3+, Gd3+, Tb3+, Ho3+, Er3+, Yb3+ and dpm = 2,2,6,6-tetramethyl-3,5-pentanedionate, and also on their binary solid solutions and mechanical mixtures, biphasic systems, of the general formula Ln1-xEux(dpm)3. Expressive positronium formation was observed in all Ln(dpm)3 complexes, except in Eu(dpm)3 complex. The results indicate formation of solid solutions in the Sm3+, Gd3+and Tb3+ systems, where total inhibition of positronium formation was observed. A Stern-Volmer type equation, I30/I3 = 1 + kx, was used to fit the data, enabling the calculation of the inhibition constants, k. A mechanical mixture behavior, with linear variation of I3 between the I3 values of the pure complexes, was observed in systems containing Ho3+, Er3+ and Yb3+ complexes, where no effective solid solution formation occurred due to differences between the crystalline structures of these complexes and Eu(dpm)3. No positronium quenching reactions were observed in the solid solutions. DBARLS results confirmed those of PALS, evidencing that the positron annihilation spectroscopies are useful techniques to characterize the formation of solid solutions. PALS measurements at 80 K were performed in the Sm1-xEux(dpm)3 and Gd1-xEux(dpm)3 solid solutions. The results indicate that, despite a contraction in the crystalline structures, the solid solution structure remains intact at low temperatures. The temperature dependence of the inhibition constant do not seem to be understood from the positronium formation spur model and might be related to intra and intermolecular energy and charge transfer processes in the solid solutions, which is currently being studied.

  12. Magnetic properties of Sm1-xYxSe solid solutions

    NASA Astrophysics Data System (ADS)

    Beeken, R. B.; Bissell, P. R.

    1991-05-01

    Sm1-xYxSe solid solutions prepared as sintered pellets exhibit a miscibility gap in the composition range from x = 0.50 to x = 0.80. Lattice parameter and magnetic susceptibility determinations on alloys within the remaining composition regions indicate that the samarium cations remain essentially divalent throughout this series of solid solutions. An enhancement of the SmSe Van Vleck paramagnetism with increasing yttrium substitution is attributed to the conduction electrons introduced by chemical alloying.

  13. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    NASA Astrophysics Data System (ADS)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  14. Oversolubility in the microvicinity of solid-solution interfaces.

    PubMed

    Bergonzi, Isabelle; Mercury, Lionel; Simon, Patrick; Jamme, Frédéric; Shmulovich, Kirill

    2016-06-01

    Water-solid interactions at the macroscopic level (beyond tens of nanometers) are often viewed as the coexistence of two bulk phases with a sharp interface in many areas spanning from biology to (geo)chemistry and various technological fields (membranes, microfluidics, coatings, etc.). Here we present experimental evidence indicating that such a view may be a significant oversimplification. High-resolution infrared and Raman experiments were performed in a 60 × 20 μm(2) quartz cavity, synthetically created and initially filled with demineralized water. The IR mapping (3 × 3 μm(2) beam size) performed using the SOLEIL synchrotron radiation source displays two important features: (i) the presence of a dangling free-OH component, a signature of hydrophobic inner walls; (ii) a shift of the OH-stretching band which essentially makes the 3200 cm(-1) sub-band predominate over the usual main component at around 3400 cm(-1). Raman maps confirmed these signatures (though less marked than IR's) and afforded a refined spatial distribution of this interfacial signal. This spatial resolution, statistically treated, results in a puzzling image of a 1-3 μm thick marked-liquid layer along the entire liquid-solid interface. The common view is then challenged by this strong evidence that a μm-thick layer analogous to an interphase forms at the solid-liquid interface. The thermodynamic counterpart of the vibrational shifts amounts to around +1 kJ mol(-1) at the interface with a rapidly decreasing signature towards the cavity centre, meaning that vicinal water may form a reactive layer, of micrometer thickness, expected to have an elevated melting point, a depressed boiling temperature, and enhanced solvent properties. PMID:27191014

  15. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.; Svetukhin, V. V.

    2015-06-01

    Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.

  16. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  17. High-temperature temporal stability of selected oxidizers as solids and in aqueous solutions. Interim report

    SciTech Connect

    Pellenbarg, R.E.; Smiroldo

    1986-08-08

    Various potential decontamination agents were examined as solids and in aqueous solutions for long-term stability at high temperatures. The following oxidizers were assayed iodometrically: the hypochlorite salts of calcium and lithium, sodium dischloroisocyanurate (PACE) and the preoxygen compounds sodium perborate, sodium peroxydisulfate, sodium percarbonate, and magnesium monoperoxyphthalate (H-48). The inorganic peroxide solids and the solid sodium dischloroisoyanurate were stable at 80 C, while the organic peroxide solids and the hypochlorite salts deteriorated markedly within 72 hours. In freshwater solutions of 0.01 N or less, the inorganic hypochlorite and peroxide salts decomposed slowly at 60 c. Conversely, the sodium dischloroisocyanurate, magnesium monoperoxyphthalate, and sodium percarbonate solutions exhibited near complete decomposition in 24 hours.

  18. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach.

    PubMed

    Inukai, Munehiro; Fukushima, Tomohiro; Hijikata, Yuh; Ogiwara, Naoki; Horike, Satoshi; Kitagawa, Susumu

    2015-09-30

    Rational design to control the dynamics of molecular rotors in crystalline solids is of interest because it offers advanced materials with precisely tuned functionality. Herein, we describe the control of the rotational frequency of rotors in flexible porous coordination polymers (PCPs) using a solid-solution approach. Solid-solutions of the flexible PCPs [{Zn(5-nitroisophthalate)x(5-methoxyisophthalate)1-x(deuterated 4,4'-bipyridyl)}(DMF·MeOH)]n allow continuous modulation of cell volume by changing the solid-solution ratio x. Variation of the isostructures provides continuous changes in the local environment around the molecular rotors (pyridyl rings of the 4,4'-bipyridyl group), leading to the control of the rotational frequency without the need to vary the temperature. PMID:26368067

  19. Colloidal quantum dot solids for solution-processed solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-03-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  20. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    SciTech Connect

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-15

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.

  1. Creating single-atom Pt-ceria catalysts by surface step decoration

    NASA Astrophysics Data System (ADS)

    Dvořák, Filip; Farnesi Camellone, Matteo; Tovt, Andrii; Tran, Nguyen-Dung; Negreiros, Fabio R.; Vorokhta, Mykhailo; Skála, Tomáš; Matolínová, Iva; Mysliveček, Josef; Matolín, Vladimír; Fabris, Stefano

    2016-02-01

    Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces--monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt2+ ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt2+ and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts.

  2. Creating single-atom Pt-ceria catalysts by surface step decoration.

    PubMed

    Dvořák, Filip; Farnesi Camellone, Matteo; Tovt, Andrii; Tran, Nguyen-Dung; Negreiros, Fabio R; Vorokhta, Mykhailo; Skála, Tomáš; Matolínová, Iva; Mysliveček, Josef; Matolín, Vladimír; Fabris, Stefano

    2016-01-01

    Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces--monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt(2+) ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt(2+) and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts. PMID:26908356

  3. Creating single-atom Pt-ceria catalysts by surface step decoration

    PubMed Central

    Dvořák, Filip; Farnesi Camellone, Matteo; Tovt, Andrii; Tran, Nguyen-Dung; Negreiros, Fabio R.; Vorokhta, Mykhailo; Skála, Tomáš; Matolínová, Iva; Mysliveček, Josef; Matolín, Vladimír; Fabris, Stefano

    2016-01-01

    Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces—monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt2+ ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt2+ and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts. PMID:26908356

  4. Crystal-Phase Control by Solution-Solid-Solid Growth of II-VI Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2016-02-10

    A simple and potentially general means of eliminating the planar defects and phase alternations that typically accompany the growth of semiconductor nanowires by catalyzed methods is reported. Nearly phase-pure, defect-free wurtzite II-VI semiconductor quantum wires are grown from solid rather than liquid catalyst nanoparticles. The solid-catalyst nanoparticles are morphologically stable during growth, which minimizes the spontaneous fluctuations in nucleation barriers between zinc blende and wurtzite phases that are responsible for the defect formation and phase alternations. Growth of single-phase (in our cases the wurtzite phase) nanowires is thus favored. PMID:26731426

  5. Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer

    SciTech Connect

    Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung; Engelhard, Mark H.

    2013-01-01

    Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.

  6. Morphological Control and Characterization of Monodispersed Ceria Particles

    SciTech Connect

    Minamidate, Y.; Yin, S.; Devaraju, M. K.; Sato, T.

    2010-11-24

    The morphological control of cerium oxide particles was carried out by a homogeneous precipitation followed by calcination in air at 400 deg. C. The effects of pre-aging temperature, aging time and precipitation reagents on the morphologies of final products were investigated. When urea was used as a precipitation reagent, monodispersed spherical and flake-like cerium carbonate hydroxide precursor was precipitated in the solution at 90 deg. C for 2 h after pre-aging at 25 deg. C - 50 deg. C for 24-72 h. On the other hand, monodispersed nanosize rod-like cerium hydroxide particles were obtained using triethanolamine as precipitation reagent. Ceria particles with the same morphologies and slightly smaller particle size than those of as-prepared cerium precursor could be obtained after calcination in air at 400 deg. C. Physical-chemical characteristics of the monodispersed cerium oxide particles were evaluated.

  7. Existence of Solutions for a Mathematical Model Related to Solid-Solid Phase Transitions in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bonetti, Elena; Colli, Pierluigi; Fabrizio, Mauro; Gilardi, Gianni

    2016-01-01

    We consider a strongly nonlinear PDE system describing solid-solid phase transitions in shape memory alloys. The system accounts for the evolution of an order parameter χ (related to different symmetries of the crystal lattice in the phase configurations), of the stress (and the displacement u), and of the absolute temperature ϑ. The resulting equations present several technical difficulties to be tackled; in particular, we emphasize the presence of nonlinear coupling terms, higher order dissipative contributions, possibly multivalued operators. As for the evolution of temperature, a highly nonlinear parabolic equation has to be solved for a right hand side that is controlled only in L 1. We prove the existence of a solution for a regularized version by use of a time discretization technique. Then, we perform suitable a priori estimates which allow us pass to the limit and find a weak global-in-time solution to the system.

  8. Mechanical properties of mesoporous ceria nanoarchitectures.

    PubMed

    Sayle, Thi X T; Inkson, Beverley J; Möbus, Günter; Parker, Stephen C; Seal, Sudipta; Sayle, Dean C

    2014-12-01

    Architectural constructs are engineered to impart desirable mechanical properties facilitating bridges spanning a thousand meters and buildings nearly 1 km in height. However, do the same 'engineering-rules' translate to the nanoscale, where the architectural features are less than 0.0001 mm in size? Here, we calculate the mechanical properties of a porous ceramic functional material, ceria, as a function of its nanoarchitecture using molecular dynamics simulation and predict its yield strength to be almost two orders of magnitude higher than the parent bulk material. In particular, we generate models of nanoporous ceria with either a hexagonal or cubic array of one-dimensional pores and simulate their responses to mechanical load. We find that the mechanical properties are critically dependent upon the orientation between the crystal structure (symmetry, direction) and the pore structure (symmetry, direction). PMID:25322448

  9. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.

    PubMed

    Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng

    2016-02-10

    In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. PMID:26691211

  10. Solid Solution Effects on the MgAl2O4 System

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

    2009-01-01

    Phase relations between the binaries MgAl2O4-ZnAl2O4 and MgAl2O4-MgGa2O4 were studied. Stoichiometric MgAl2O4 spinel can be formed in the laboratory through a coprecipitation method. Complete solid solution formation in the MgAl2O4-MgGa2O4 system was confirmed through X-ray diffraction (XRD) analysis. XRD analysis of the MgAl2O4-ZnAl2O4 system did not confirm solid solution due to the similar lattice parameters of the two end points, however, previous studies have shown that complete solid solution does form. Thermal conductivity data is pending and will be included in the presentation. Based on previous experimentation and open literature, it is suspected that thermal conductivity will be decreased with the addition of solid solution. With increased amounts of disruption to the lattice from solid solution it is also theorized that the temperature at which the mean free path still impacts thermal conductivity could be increased.

  11. On the Effect of Atoms in Solid Solution on Grain Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Hersent, Emmanuel; Marthinsen, Knut; Nes, Erik

    2014-10-01

    The discrepancy between the classical grain growth law in high purity metals (grain size ) and experimental measurements has long been a subject of debate. It is generally believed that a time growth exponent less than 1/2 is due to small amounts of impurity atoms in solid solution even in high purity metals. The present authors have recently developed a new approach to solute drag based on solute pinning of grain boundaries, which turns out to be mathematically simpler than the classic theory for solute drag. This new approach has been combined with a simple parametric law for the growth of the mean grain size to simulate the growth kinetics in dilute solid solution metals. Experimental grain growth curves in the cases of aluminum, iron, and lead containing small amounts of impurities have been well accounted for.

  12. Iron salts in solid state and in frozen solutions as dosimeters for low irradiation temperatures.

    PubMed

    Martínez, T; Lartigue, J; Ramos-Bernal, S; Ramos, A; Mosqueira, G F; Negrón-Mendoza, A

    2005-01-01

    The aim of this work is to study the irradiation of iron salts in solid state (heptahydrated ferrous sulfate) and in frozen acid solutions. The study is focused on finding their possible use as dosimeters for low temperature irradiations and high doses. The analysis of the samples was made by UV-visible and Mössbauer spectroscopies. The output signal was linear from 0 to 10 MGy for the solid samples, and 0-600 Gy for the frozen solutions. The obtained data is reproducible and easy to handle. For these reasons, heptahydrate iron sulfate is a suitable dosimeter for low temperature and high irradiation doses, in solid state, and in frozen solution. PMID:15985374

  13. Mechanosynthesis and structural characterization of nanocrystalline Ce{sub 1–x}Y{sub x}O{sub 2–δ} (x=0.1–0.35) solid solutions

    SciTech Connect

    Fabián, Martin; Antić, Bratislav; Girman, Vladimír; Vučinić-Vasić, Milica; Kremenović, Aleksandar; Suzuki, Shigeru; Hahn, Horst; Šepelák, Vladimír

    2015-10-15

    A series of nanostructured fluorite-type Ce{sub 1–x}Y{sub x}O{sub 2–δ} (0≤x≤0.35) solid solutions, prepared via high-energy milling of the CeO{sub 2}/Y{sub 2}O{sub 3} mixtures, are investigated by XRD, HR-TEM, EDS and Raman spectroscopy. For the first time, complementary information on both the long-range and short-range structural features of mechanosynthesized Ce{sub 1–x}Y{sub x}O{sub 2–δ}, obtained by Rietveld analysis of XRD data and Raman spectroscopy, is provided. The lattice parameters of the as-prepared solid solutions decrease with increasing yttrium content. Rietveld refinements of the XRD data reveal increase in microstrains in the host ceria lattice as a consequence of yttrium incorporation. Raman spectra are directly affected by the presence of oxygen vacancies; their existence is evidenced by the presence of vibration modes at ~560 and ~600 cm{sup –1}. The detailed spectroscopic investigations enable us to separate extrinsic and intrinsic origin of oxygen vacancies. It is demonstrated that mechanosynthesis can be successfully employed in the one-step preparation of nanocrystalline Ce{sub 1–x}Y{sub x}O{sub 2–δ} solid solutions. - Graphical abstract: Mechanosynthesis of nanocrystalline Ce{sub 1–x}Y{sub x}O{sub 2–δ} (x=0.1–0.35) solid solutions. - Highlights: • One-step mechanosynthesis of nanoscale Ce{sub 1–x}Y{sub x}O{sub 2–δ} (0≤x≤0.35) solid solutions. • Complementary information on the long-range and short-range structural features of mechanosynthesized Ce{sub 1–x}Y{sub x}O{sub 2–δ} is provided. • Structural variations as a response to the yttrium doping. • Separation of extrinsic and intrinsic origin of the induced oxygen vacancies.

  14. Distribution of solute at solid-liquid interface during solidification of melt

    NASA Astrophysics Data System (ADS)

    Fukui, Keisuke; Maeda, Kouji

    1998-11-01

    A model for predicting a distribution coefficient (ki) of solute at the solid-liquid (S-L) interface, when the solid layer is growing, is proposed. The interfacial distribution coefficient is expressed as a function of two gradients of the liquid concentration and equilibrium concentration at the S-L interface. The model is applied to the solidification of a simple eutectic binary liquid of lauric acid and myristic acid in an enclosed rectangular box in which a vertical wall is cooled. The impurity-concentration profile in solid is predicted from the direct numerical computations.

  15. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  16. Exciton mobility edge in CdS 1-xSe x solid solutions

    NASA Astrophysics Data System (ADS)

    Permogorov, S.; Reznitsky, A.; Verbin, S.; Lysenko, V.

    1983-07-01

    Low temperature emission spectra of localized excitons in CdS 1-xSe x solid solutions under the monochromatic excitation with tunable laser have been studied. It has been found that the luminescence of localized excitons has a high degree of linear polarization with respect to the polarization direction of exciting light. This polarization reflects the "hidden" anisotropy of macroscopically isotropic localized exciton system and strongly depends on the frequency of exciting light. Study of this dependence has permitted for the first time a determination of position of the "mobility edge" for exciton migration in disordered semiconductor solid solution.

  17. Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Jani, A. R.

    2011-12-01

    Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.

  18. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.

    PubMed

    Xing, Shengtao; Lu, Xiaoyang; Liu, Jia; Zhu, Lin; Ma, Zichuan; Wu, Yinsu

    2016-02-01

    Manganese oxide supported on mesoporous ceria was prepared and used as catalyst for catalytic ozonation of sulfosalicylic acid (SA). Characterization results indicated that the manganese oxide was mostly incorporated into the pores of ceria. The synthesized catalyst exhibited high activity and stability for the mineralization of SA in aqueous solution by ozone, and more than 95% of total organic carbon was removed in 30 min under various conditions. Mechanism studies indicated that SA was mainly degraded by ozone molecules, and hydroxyl radical reaction played an important role for the degradation of its ozonation products (small molecular organic acids). The manganese oxide in the pores of CeO2 improved the adsorption of small molecular organic acids and the generation of hydroxyl radicals from ozone decomposition, resulting in high TOC removal efficiency. PMID:26344143

  19. First-principles investigation of solute-hydrogen interaction in a α-Ti solid solution

    NASA Astrophysics Data System (ADS)

    Hu, Q. M.; Xu, D. S.; Yang, R.; Li, D.; Wu, W. T.

    2002-08-01

    In this paper, a first-principles method is used to calculate the interaction energy between substitutional solute atoms and hydrogen in α-Ti. The results show that simple metal (SM) solute atoms are repulsive to H and therefore are detraps for H, whereas transition metal (TM) solute atoms, with smaller sizes than that of the host atoms, attract H and provide traps for H. The relationship between the interaction energy and lattice distortion as well as the electronic structure is investigated. The SM-H and TM-H interactions are dominated by different factors. The repulsive interaction between SM atoms and H is mainly due to the hybridization between the electrons of SM atoms and H when they are close to each other. The interaction between the TM solutes and H is attributable to the atomic size effect, and can be described satisfactorily by Matsumoto's strain field relaxation model. From the solute-H interaction energy and available measured terminal solubility of hydrogen (TSH), the relationship between the solute trapping of hydrogen and TSH in α-Ti is discussed. No coherent relationship is found between the theoretical hydrogen trapping effect and the experimental TSH in α-Ti alloys.

  20. Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser

    SciTech Connect

    Sabaeian, Mohammad; Nadgaran, Hamid; Mousave, Laleh

    2008-05-01

    Knowledge about the temperature distribution inside solid-state laser crystals is essential for calculation of thermal phase shift, thermal lensing, thermally induced birefringence, and heat-induced crystal bending. Solutions for the temperature distribution for the case of steady-state heat loading have appeared in the literature only for simple cylindrical crystal shapes and are usually based on numerical techniques. For the first time, to our knowledge, a full analytical solution of the heat equation for an anisotropic cubic cross-section solid-state crystal is presented. The crystal is assumed to be longitudinally pumped by a Gaussian pump profile. The pump power attenuation along the crystal and the real cooling mechanisms, such as convection, are considered in detail. A comparison between our analytical solutions and its numerical counterparts shows excellent agreement when just a few terms are employed in the series solutions.

  1. Copper-ceria interaction: A combined photoemission and DFT study

    NASA Astrophysics Data System (ADS)

    Szabová, Lucie; Skála, Tomáš; Matolínová, Iva; Fabris, Stefano; Farnesi Camellone, Matteo; Matolín, Vladimír

    2013-02-01

    Stoichiometric and partially reduced ceria films were deposited on preoxidized Ru(0 0 0 1) crystal by Ce evaporation in oxygen atmosphere of different pressures at 700 K. Copper-ceria interaction was investigated by deposition of metalic copper on both types of substrate. The samples were characterized by low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) of core states and resonant photoelectron spectroscopy (RPES) of the valence bands. Copper adsorption on stoichiometric ceria caused reduction of CeO2, while on the oxygen-defficient ceria it partially reoxidized the substrate. This is in agreement with DFT+U calculations of copper adsorption on stoichiometric and defective ceria surfaces.

  2. Special quasirandom structures for gadolinia-doped ceria and related materials.

    PubMed

    Wang, H; Chroneos, A; Jiang, C; Schwingenschlögl, U

    2012-09-01

    Gadolinia doped ceria in its doped or strained form is considered to be an electrolyte for solid oxide fuel cell applications. The simulation of the defect processes in these materials is complicated by the random distribution of the constituent atoms. We propose the use of the special quasirandom structure (SQS) approach as a computationally efficient way to describe the random nature of the local cation environment and the distribution of the oxygen vacancies. We have generated two 96-atom SQS cells describing 9% and 12% gadolinia doped ceria. These SQS cells are transferable and can be used to model related materials such as yttria stabilized zirconia. To demonstrate the applicability of the method we use density functional theory to investigate the influence of the local environment around a Y dopant in Y-codoped gadolinia doped ceria. It is energetically favourable if Y is not close to Gd or an oxygen vacancy. Moreover, Y-O bonds are found to be weaker than Gd-O bonds so that the conductivity of O ions is improved. PMID:22828722

  3. Characterization of Sm-Doped Ceria Ceramics Synthesized by Two Different Methods

    NASA Astrophysics Data System (ADS)

    Arabaci, Aliye; Serin, Özgün

    2015-07-01

    Ceria-based materials have attracted much attention as electrolyte materials for low and intermediate temperature solid oxide fuel cells (SOFCs). In this study, we examined the effect of synthesis method on the microstructure and the ionic conductivity of ceria-based electrolytes. Sm0.2Ce0.8O1.9 (SDC) electrolytes for SOFCs were prepared using the Pechini and cellulose templating (CT) methods. Microstructures of the calcined and sintered samples were characterized by XRD and SEM techniques. The XRD results indicate that a single-phase fluorite structure formed at the relatively low calcination temperature of 500 °C. The relative densities of the sintered pellets were higher than 90%, which was proved by the SEM images. Calcined powders were characterized by FTIR technique. The electrical properties of the samarium-doped ceria electrolytes were analyzed by electrochemical impedance spectroscopy. The total ionic conductivities are 3.02 × 10-2 and 3.42 × 10-2 S/cm at 750 °C for the SDC electrolytes prepared by the Pechini method and the CT method, respectively.

  4. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGESBeta

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; Strelcov, Evgheni; Foglietti, Vittorio; Orgiani, Pasquale; Balestrino, Giuseppe; Kalinin, Sergei V.; Jennifer L. M. Rupp; Aruta, Carmela; et al

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  5. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  6. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect

    Rudisill, T; Fernando Fondeur, F

    2009-01-15

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the

  7. Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Interdiffusion and impurity diffusion in Mg binary solid solutions, Mg(Al) and Mg(Zn) were investigated at temperatures ranging from 623 to 723 K. Interdiffusion coef cients were determined via the Boltzmann Matano Method using solid-to-solid diffusion couples assembled with polycrystalline Mg and Mg(Al) or Mg(Zn) solid solutions. In addition, the Hall method was employed to extrapolate the impurity diffusion coef cients of Al and Zn in pure polycrystalline Mg. For all diffusion couples, electron micro-probe analysis was utilized for the measurement of concentration pro les. The interdiffusion coef cient in Mg(Zn) was higher than that of Mg(Al) by an order of magnitude. Additionally, the interdiffusion coef cient increased signi cantly as a function of Al content in Mg(Al) solid solution, but very little with Zn content in Mg(Zn) solid solution. The activation energy and pre-exponential factor for the average effective interdiffusion coef cient in Mg(Al) solid solution were determined to be 186.8 ( 0.9) kJ/mol and 7.69 x 10-1 ( 1.80 x 10-1) m2/s, respectively, while those determined for Mg(Zn) solid solution were 139.5 ( 4.0) kJ/mol and 1.48 x 10-3 ( 1.13 x 10-3) m2/s. In Mg, the Zn impurity diffusion coef cient was an order of magnitude higher than the Al impurity diffusion coef cient. The activation energy and pre-exponential factor for diffusion of Al impurity in Mg were determined to be 139.3 ( 14.8) kJ/mol and 6.25 x 10-5 ( 5.37 x 10-4) m2/s, respectively, while those for diffusion of Zn impurity in Mg were determined to be 118.6 ( 6.3) kJ/mol and 2.90 x 10-5 ( 4.41 x 10-5) m2/s.

  8. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    ERIC Educational Resources Information Center

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  9. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    PubMed

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail. PMID:25833567

  10. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    SciTech Connect

    Gheribi, Aïmen E. Chartrand, Patrice; Salanne, Mathieu

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  11. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGESBeta

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  12. Preparation and Analysis of Solid Solutions in the Potassium Perchlorate-Permanganate System.

    ERIC Educational Resources Information Center

    Johnson, Garrett K.

    1979-01-01

    Describes an experiment, designed for and tested in an advanced inorganic laboratory methods course for college seniors and graduate students, that prepares and analyzes several samples in the nearly ideal potassium perchlorate-permanganate solid solution series. The results are accounted for by a theoretical treatment based upon aqueous…

  13. Dynamic Nuclear Polarization Methods in Solids and Solutions to Explore Membrane Proteins and Membrane Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Han, Songi

    2013-04-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  14. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments. PMID:23331309

  15. Electronic Properties of 1,2;8,9-Dibenzopentacene in Solutions, Solid Matrices, and Thin Films

    NASA Astrophysics Data System (ADS)

    Tovstopyat, A.; Zojer, E.; Leising, G.

    2016-03-01

    The optical properties of 1,2;8,9-dibenzopentacene molecules in different environments, namely solutions, solid solutions, and thin films, focusing on the shift of the electronic levels as a function of the dielectric properties of the surrounding media are investigated. In all cases, we find that the optical gap of 1,2;8,9-dibenzopentacene is somewhat larger than that of pentacene (by ~0.21 eV in solution) in spite of the larger extent of the π-electron system in the former molecule. This a priori unexpected finding is rationalized on the basis of quantum-mechanical simulations.

  16. On the solute coupling at the moving solid/liquid interface during equiaxed solidification

    NASA Astrophysics Data System (ADS)

    Yao, X.

    2006-08-01

    Integral mass conservation was widely accepted for the solute coupling to solve solute redistribution during equiaxed solidification so far. The present study revealed that the integral form was invalid for moving boundary problems as it could not represent the mass balance at the moving interface. Accordingly, differential mass conservation at the solid/liquid interface was used to solve solute diffusion for spherical geometry. The model was applied for hydrogen diffusion in solidification to validate that the hydrogen enrichment was significant and depended on the growth rate.

  17. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  18. Synthesis and characterization of Sr(Al,Cr) 12O 19 solid solution

    NASA Astrophysics Data System (ADS)

    Sandiumenge, Felip; Galí, Salvador

    1989-09-01

    Magnetoplumbite-type crystalline powders with SrAl 12- xCr xO 19 composition were synthesized in the range 0 ≤ x ≤ 4.4 by two different solid state reactions in air. The limited substitution of Al by trivalent Cr is accompanied by the appearance of a sesquioxide Al 2- yCr yO 3 solid solution and a new cubic phase with composition 3Al 2O 3 · SrCrO 4. These results are compared with those obtained in the synthesis of Sr(Fe,Cr) 12O 19 and Sr(Al,Fe) 12O 19 solid solutions. Finally, the cation distribution of Al and Cr in the system Sr(Al,Cr) 12O 19(Al,Cr) 2O 3 was obtained from X-ray diffraction profile analysis. The cationic distribution suggests that the solid solution range depends more on the crystal chemistry of the substitution than on the starting compounds used in the synthesis.

  19. Thermodynamic Considerations in Solid Adsorption of Bound Solutes for Patient Support in Liver Failure

    PubMed Central

    Patzer, John F.

    2008-01-01

    New detoxification modes of treatment for liver failure that use solid adsorbents to remove toxins bound to albumin in the patient bloodstream are entering clinical evaluations, frequently in head-to-head competition. While generally effective in reducing toxin concentration beyond that obtainable by conventional dialysis procedures, the solid adsorbent processes are largely the result of heuristic development. Understanding the principles and limitations inherent in competitive toxin binding, albumin versus solid adsorbent, will enhance the design process and, possibly, improve detoxification performance. An equilibrium thermodynamic analysis is presented for both the Molecular Adsorbent Recirculating System (MARS) and Fractionated Plasma Separation, Adsorption, and Dialysis System (Prometheus), two advanced systems with distinctly different operating modes but with similar equilibrium limitations. The Prometheus analysis also applies to two newer approaches: sorbent suspension reactor (SSR) and microspheres-based detoxification system (MDS). Primary results from the thermodynamic analysis are that: (1) the solute-albumin binding constant is of minor importance to equilibrium once it exceeds about 105 L mol−1; (2) the Prometheus approach requires larger solid adsorbent columns than calculated by adsorbent solute capacity alone; and (3) the albumin-containing recycle stream in the MARS approach is a major reservoir of removed toxin. A survey of published results indicates that MARS is operating under mass transfer control dictated by solute-albumin equilibrium in the recycle stream and Prometheus is approaching equilibrium limits under current clinical protocols. PMID:18638303

  20. Thermodynamics and solubility of (UxNp1-x) O2(am) solid solution in the carbonate system

    SciTech Connect

    Rai, Dhanpat; Hess, Nancy J.; Yui, Mikazu; Felmy, Andrew R.; Moore, D. A.

    2004-12-31

    SUMMARY-The formation of a solid solution can significantly affect the solubility of a minor component. The objectives of this study were to determine the nature of U(IV) and Np(IV) solid solutions and their thermodynamic properties. For this purpose...

  1. Probing adsorption sites for CO on ceria.

    PubMed

    Mudiyanselage, Kumudu; Kim, Hyun You; Senanayake, Sanjaya D; Baber, Ashleigh E; Liu, Ping; Stacchiola, Dario

    2013-10-14

    Ceria based catalysts show remarkable activity for CO conversion reactions such as CO oxidation and the water-gas shift reaction. The identification of adsorption sites on the catalyst surfaces is essential to understand the reaction mechanisms of these reactions, but the complexity of heterogeneous powder catalysts and the propensity of ceria to easily change oxidation states in the presence of small concentrations of either oxidizing or reducing agents make the process difficult. In this study, the adsorption of CO on CuOx/Cu(111) and CeOx/Cu(111) systems has been studied using infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. IR peaks for the adsorbed CO on O/Cu(111) with only chemisorbed oxygen, well-ordered Cu2O/Cu(111) and disordered copper oxide [CuOx/Cu(111)] were observed at 2070-2072, 2097-2098 and 2101-2111 cm(-1), respectively. On CeOx/Cu(111) systems CO chemisorbs at 90 K only on Cu sites under ultra-high vacuum (UHV) conditions, whereas at elevated CO pressures and low temperatures adsorption of CO on Ce(3+) is observed, with a corresponding IR peak at 2162 cm(-1). These experimental results are further supported by DFT calculations, and help to unequivocally distinguish the presence of Ce(3+) cations on catalyst samples by using CO as a probe molecule. PMID:23942870

  2. Kr and Xe irradiations in lanthanum (La) doped ceria: Study at the high dose regime

    NASA Astrophysics Data System (ADS)

    Yun, Di; Oaks, Aaron J.; Chen, Wei-ying; Kirk, Marquis A.; Rest, Jeffrey; Insopov, Zinetula Z.; Yacout, Abdellatif M.; Stubbins, James F.

    2011-11-01

    In order to understand cavity and bubble formation and growth in oxide nuclear fuel materials, ion beam irradiation experiments were conducted with two common fission gas species: Kr and Xe. Ceria (CeO 2) was selected as a surrogate material for uranium dioxide (UO 2) due to its many similar properties to UO 2. Ion beam energies were chosen such that both cavities and gas bubbles structures were induced by ion irradiations. The ion irradiation experiments were carried out at 600 °C, at which temperature, cavity/gas bubble structures are believed to be immobile in this material. Lanthanum (La) was chosen as a dopant in CeO 2 to investigate the effect of impurities. The presence of La in the CeO 2 lattice also introduces a predictable initial concentration of oxygen vacancies, similar to the introduction of oxygen vacancies by the existence of Pu 3+ in MOX fuel [1]. The influence of two La concentrations, 5% and 25%, were examined. The study focused on the high dose regime where cavity/gas bubble structures were clearly identifiable with their sizes and number densities readily measurable. Cavity/gas bubble coarsening by coalescence was identified with TEM (Transmission Electron Microscopy) characterizations of as-irradiated La doped CeO 2 specimens. The results revealed that lanthanum trapping has significant influence on the cavity/bubble growth in the material lattice by comparing the cavity/gas bubble size distributions between 5% La doped ceria and 25% La doped ceria. Lattice and kinetic Monte Carlo calculations described in a previous work have provided insights to the interpretations of the experimental results [2]. Solid state Xe precipitates were observed in low energy Xe implantation in 5% La doped ceria to a very high fluence of 1 × 10 17 ions/cm 2 at 600 °C. The solid state Xe precipitate structures are represented by faceted morphology. Very similar observations of solid state/near solid state Xe bubbles were made by Nogita et al. in the outer region

  3. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution. PMID

  4. Influence of the activation conditions on the elimination of residual impurities on ceria-zirconia mixed oxides

    NASA Astrophysics Data System (ADS)

    Daturi, M.; Binet, C.; Lavalley, J. C.; Vidal, H.; Kaspar, J.; Graziani, M.; Blanchard, G.

    1998-10-01

    A series of samples belonging to the ceria-zirconia solid solution has been investigated from the point of view of surface impurities, via TPO/TPD and FTIR spectroscopy. Species likely due either to the precursors or to atmospheric contamination have been taken into account and their stability has been studied following two different thermal treatments. A complete cleaning treatment is proposed in order to obtain powders of satisfactory quality for catalytic purposes. Les impuretés superficielles contenues dans une série d'oxydes mixtes cérine- zircone ont été étudiées par TPO/TPD et spectroscopie infrarouge. Les impuretés provenant soit des précurseurs soit de la contamination atmosphérique (carbonates) ont été identifiées et leur stabilité thermique a été étudiée en fonction de différents traitements thermiques. Une méthode thermique de purification est proposée afin d'obtenir des poudres de qualité suffisante pour les applications catalytiques.

  5. Synthesis and properties of samaria-doped ceria electrolyte for IT-SOFCs by EDTA-citrate complexing method

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Chang; Huang, Jui-Ting; Chiba, Atsushi

    An ultra-fine samaria-doped ceria (Ce 0.8Sm 0.2O 1.9, SDC) electrolyte prepared by a non-ion selective EDTA-citric complexing method is developed herein for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The rigid agglomerates due to organic compounds that exist in the SDC precursors during the EDTA-citrate complexing synthesis process inhibit crystalline growth and grain growth, leading to the generation of ultra-fine grain following the sintering procedure. Calcination is necessary above 500 °C for all precursors. The average grain size of the pellets after sintering at 1400 °C for 2 h is submicron in scale (from 200 nm to 600 nm) with various pH values, and the pellets are smaller than those obtained from other synthesis processes. Dense pellets with pH values of 10 (relative density of 99%) are obtained with precursor powder calcination at 900 °C for 3 h. Electrical conductivity is dependent on the calcination temperature and pH value of the solution, and the maximum electrical conductivity is 0.01 S cm -1 at 700 °C with a pH value of 10.

  6. Thermodynamic analysis of the concentration profiles of epitaxial layers of nonideal solid solutions

    SciTech Connect

    Kazakov, A.I.; Kishmar, I.N.; Mokritskii, V.A.; Yakubovskii, M.V.

    1988-03-01

    Based on thermodynamic analysis employing the quasiregular approach a mathematical model of the process of equilibrium crystallization of nonideal three-component solid solutions of compounds of the type A/sup III/B/sup V/ from a restricted volume of a solution in a melt was constructed. This model enables calculation of the distribution of the components over the thickness of the epitaxial layer for low rates of cooling of the solution in a melt. The computer calculations of the concentration profiles of the epitaxial layers of Ga/sub 1-x/Al/sub x/ agreed well with the experimental data for thicknesses of the epitaxial layers up to 20 ..mu..m. For high rates of cooling the mass transfer in the volume of the solution in a melt must be taken into account.

  7. Regression relations for estimating the mechanical properties of steels subjected to solid-solution hardening

    NASA Astrophysics Data System (ADS)

    Protopopov, E. A.; Val'ter, A. I.; Protopopov, A. A.; Malenko, P. I.

    2015-07-01

    An approach is proposed to obtain regression relations to estimate the mechanical properties of steels subjected to solid-solution hardening. The applicability of the developed approach is shown for hot-rolled sheet austenitic iron-nickel and nickel alloys after quenching, toughened low-alloy structural steels with a sorbite structure in the case of full hardenabilty, sheet corrosion-resistant ferritic steels after softening heat treatment, and corrosion-resistant austenitic steels after austenitization. The derived regression relations serve as the basis for correcting the chemical composition of a metal melt to ensure the required level of the mechanical properties of ready products by controlling the degree of solid-solution hardening.

  8. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    PubMed Central

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  9. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  10. Synthesis and Optical Properties of GaN/ZnO Solid Solution Nanocrystals

    SciTech Connect

    Han, W.; Liu, Z; Yu, H

    2010-01-01

    We devised a synthesis route to prepare narrow band gap GaN/ZnO solid solution nanocrystals via nitriding a homogeneous Ga-Zn-O nanoprecursor. The nanocrystals were characterized by several following methods: x-ray diffractometer, transmission electron microscopy, ultraviolet-visible diffuse reflection, and Raman spectroscopy. Here, we can control the composition of nanocrystals by the nitridation temperature. From 550 to 850 C, the corresponding crystalline size varies from 6.1 to 27 nm. It has been demonstrated that the sample prepared at 650 C had the narrowest band gap of 2.21 eV. Microstructural investigations show that the (101) surface is the predominantly exposed one for the GaN/ZnO solid solution nanocrystals. We also discuss the influence of chemical disorder based on the Raman spectra acquired.

  11. p-t-x diagram of Pb(TiZr)O/sub 3/ solid solutions

    SciTech Connect

    Polandov, I.N.; Alekhina, N.S.; Gulish, O.K.; Isaev, G.P.; Malyutin, B.I.

    1986-07-01

    This paper attempts to generalize work the authors performed at high pressures on the phase equilibria in the PbTiO/sub 3/-PbZrO/sub 3/ system for Ti contents up to 50 at.%, i.e., the most interesting compositions from the practical standpoint. It is established that the rhombohedral ferroelectric phase, localized near the Curie point, not only expands its region of temperature stability, but also shifts its region of temperature stability to higher pressures with rise of solid solution Ti content. The authors construct for the first time the complete p-t-x diagram of Pb(Ti, Zr)O/sub 3/ solid solutions with Ti contents up to 50 at.%.

  12. Criterion for the formation of solid solutions based on silicon carbide

    SciTech Connect

    Safaraliev, G.K.; Sukhanek, G.K.; Tairov, Yu.M.; Tsvetkov, V.F.

    1987-04-01

    Criteria for the formation of solid solutions based on silicon carbide were determined based on correlations obtained between the maximum solubility of impurities in SiC and their electronegativity and also between the semiempirical orbital radii r/sub sigma/ and r/sub ..pi../ of the elements. It was established experimentally that the solid solutions (SiC)/sub 1-x/(AlN)/sub x/ with a wide range of concentrations (0.04 less than or equal to x less than or equal to 0.95) form in the system SiC-AlN at temperatures T greater than or equal to 1800/sup 0/K. For 0.2 less than or equal to x less than or equal to 0.95 they crystallize in the polytypal modification 2H.

  13. Accelerated exploration of multi-principal element alloys with solid solution phases.

    PubMed

    Senkov, O N; Miller, J D; Miracle, D B; Woodward, C

    2015-01-01

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge--how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs--that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749

  14. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    SciTech Connect

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.

  15. High-temperature decomposition of solid solutions of beta-tantalum with copper in films

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Zhakanbaev, E. A.

    2014-05-01

    Using high-temperature X-ray diffractometry and electron microprobe analysis decomposition of alloys of beta-tantalum with copper produced by codeposition of sputtered ultradisperse particles of tantalum and copper has been established. At a temperature of 900°C, the precipitation of copper from the solid solution into an individual phase starts, and its diffusion onto the film surface with the formation of globular particles and simultaneous transition of the matrix β-modification into α-tantalum. The suggested mechanism of decomposition of solid solutions includes the following stages: the precipitation of copper into an individual phase, its diffusion onto the surface because of lattice pressure and the concentration gradient inside and outside the tantalum matrix, the coalescence of nanosized formations into drops at the coating surface, and the subsequent evaporation of copper from them in a vacuum.

  16. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-10-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

  17. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys.

    PubMed

    Zhang, Yanwen; Stocks, G Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C; Wang, Lumin; Béland, Laurent K; Stoller, Roger E; Samolyuk, German D; Caro, Magdalena; Caro, Alfredo; Weber, William J

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  18. Designing room-temperature multiferroic materials in a single-phase solid-solution film

    NASA Astrophysics Data System (ADS)

    Mao, H. J.; Song, C.; Cui, B.; Peng, J. J.; Li, F.; Xiao, L. R.; Pan, F.

    2016-09-01

    The search for multiferroic materials with simultaneous ferroelectric and ferromagnetic properties in a single phase at room temperature continues to be fuelled from the perspective of developing multifunctional devices. Here we design a single-phase multiferroic La0.67Sr0.33MnO3-BaTiO3 film, which possesses epitaxial single-crystal and solid-solution structure, high magnetic Curie temperature (~640 K) as well as switchable ferroelectric polarization. Moreover, a notable strain-mediated magnetoelectric coupling at room temperature in the way of modulating the magnetism with an external applied voltage is also observed. The synthetic solid-solution multiferroic film may open an extraordinary avenue for exploring a series of room-temperature multiferroic materials.

  19. Physicochemical and photoelectric properties of cadmium hexathio- and hexaselenogermanate crystals and solid solutions derived from them

    SciTech Connect

    Motrya, S.F.; Tkachenko, V.I.; Chereshnya, V.M.; Kikineshi, A.A.; Semrad, E.E.

    1987-03-01

    Single crystals of Cd/sub 4/GeS/sub 6/, Cd/sub 4/GeSe/sub 6/, and the derived solid solutions have been synthesized and grown. Investigation of physicochemical and photoelectric properties of the alloys showed the existence in the Cd/sub 4/GeS/sub 6/-Cd/sub 4/GeSe/sub 6/ system of a continuous series of solid solutions. The specific resistance and the photosensitivity of the alloys fall with increasing selenium content. For polycrystalline Cd/sub 4/GeS/sub 6/ and Cd/sub 4/GeSe/sub 6/, the average low-temperature heat capacity was determined, and the standard entropy, enthalpy, and entropy of formation were calculated.

  20. Hydrolysis of lanthanide dicarbides: Rates of reaction of cubic and tetragonal solid solutions with water

    SciTech Connect

    McColm, I.J. )

    1993-05-01

    Two series of solid solutions, Ho[sub 1[minus]x]La[sub x]C[sub 2] and Nd[sub 1[minus]x]LaC[sub 2], have been made and their X-ray unit cell parameters measured. The Ho[sub 1[minus]x]La[sub x]C[sub 2] series contains two tetragonal phases and a cubic solid solution series which has enabled the reaction rate constants for the water hydrolysis reaction of a cubic dicarbide phase to be determined for the first time. By comparing the linear rate constants and the activation energies across the two series the nature of bonding in general and the structure of the cubic phase are elucidated. A comparison with microhardness data is made and the change in M-C[sub 2] bonding as a function of composition is considered. 10 refs., 9 figs., 3 tabs.

  1. Accelerated exploration of multi-principal element alloys with solid solution phases

    PubMed Central

    Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.

    2015-01-01

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749

  2. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    PubMed

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-26

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires. PMID:26695560

  3. Photoinduced processes in solid polymer solutions of dyes in an interference field of laser radiation

    SciTech Connect

    Sizykh, A G; Tarakanova, E A

    1998-12-31

    An investigation was made of the relationships governing the photochemical mechanism of formation of light-induced gratings in solid polymer solutions of a dye with a high quantum yield of the triplet states. The combined analysis of the results of real and numerical experiments was made for a solution of eosin K in gelatin. The protonation rate constant of the dye was measured and the dependence of the diffraction efficiency on the duration of irradiation was explained taking diffusion of the dye into account. A method was proposed for determination of the duffusion coefficient in a spatially modified interference field of the laser radiation. The diffusion coefficients were found. (nonlinear optical phenomena)

  4. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1984-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem. Previously announced in STAR as N83-30109

  5. On the effect of concentrated solid solutions on properties of clusters in a model binary alloy

    NASA Astrophysics Data System (ADS)

    Lepinoux, J.; Sigli, C.

    2016-04-01

    In a series of papers aimed at better understanding precipitation in binary alloys, it was shown that Cluster Dynamics (CD) is a valuable tool to bridge the gap between microscopic and macroscopic scales, provided that cluster-free energies are carefully derived from Monte Carlo calculations. Indeed, in such conditions, CD predictions compare well with Atomistic Kinetic MC simulations. Nevertheless, in a recent work, the authors pointed out some limitations of this approach at high solute concentration. The present work aims at revisiting the notion of cluster-free energy in the context of concentrated solid solutions at thermal equilibrium.

  6. Role of Associated Defects in Oxygen Ion Conduction and Surface Exchange Reaction for Epitaxial Samaria-Doped Ceria Thin Films as Catalytic Coatings.

    PubMed

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; Strelcov, Evgheni; Belianinov, Alex; Foglietti, Vittorio; Orgiani, Pasquale; Balestrino, Giuseppe; Kalinin, Sergei V; Rupp, Jennifer L M; Aruta, Carmela

    2016-06-15

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications. PMID:27192540

  7. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    SciTech Connect

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  8. Solution-Processed Ambipolar Organic Thin-Film Transistors by Blending p- and n-Type Semiconductors: Solid Solution versus Microphase Separation.

    PubMed

    Xu, Xiaomin; Xiao, Ting; Gu, Xiao; Yang, Xuejin; Kershaw, Stephen V; Zhao, Ni; Xu, Jianbin; Miao, Qian

    2015-12-30

    Here, we report solid solution of p- and n-type organic semiconductors as a new type of p-n blend for solution-processed ambipolar organic thin film transistors (OTFTs). This study compares the solid-solution films of silylethynylated tetraazapentacene 1 (acceptor) and silylethynylated pentacene 2 (donor) with the microphase-separated films of 1 and 3, a heptagon-embedded analogue of 2. It is found that the solid solutions of (1)x(2)1-x function as ambipolar semiconductors, whose hole and electron mobilities are tunable by varying the ratio of 1 and 2 in the solid solution. The OTFTs of (1)0.5(2)0.5 exhibit relatively balanced hole and electron mobilities comparable to the highest values as reported for ambipolar OTFTs of stoichiometric donor-acceptor cocrystals and microphase-separated p-n bulk heterojunctions. The solid solution of (1)0.5(2)0.5 and the microphase-separated blend of 1:3 (0.5:0.5) in OTFTs exhibit different responses to light in terms of absorption and photoeffect of OTFTs because the donor and acceptor are mixed at molecular level with π-π stacking in the solid solution. PMID:25886029

  9. Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2

    NASA Technical Reports Server (NTRS)

    Adler, Stuart B.

    2009-01-01

    Gadolinia-doped ceria, or GDC, (Gd(0.4)Ce(0.6)O(2-delta), where the value of delta in this material varies, depending on the temperature and oxygen concentration in the atmosphere in which it is being used) has shown promise as a cathode material for high-temperature electrolysis of carbon dioxide in solid oxide electrolysis cells. The polarization resistance of a GDC electrode is significantly less than that of an otherwise equivalent electrode made of any of several other materials that are now in use or under consideration for use as cathodes for reduction of carbon dioxide. In addition, GDC shows no sign of deterioration under typical temperature and gas-mixture operating conditions of a high-temperature electrolyzer. Electrolysis of CO2 is of interest to NASA as a way of generating O2 from the CO2 in the Martian atmosphere. On Earth, a combination of electrolysis of CO2 and electrolysis of H2O might prove useful as a means of generating synthesis gas (syngas) from the exhaust gas of a coal- or natural-gas-fired power plant, thereby reducing the emission of CO2 into the atmosphere. The syngas a mixture of CO and H2 could be used as a raw material in the manufacture, via the Fisher-Tropsch process, of synthetic fuels, lubrication oils, and other hydrocarbon prod

  10. Nanocrystalline ceria powders through citrate-nitrate combustion.

    PubMed

    Purohit, R D; Saha, S; Tyagi, A K

    2006-01-01

    Nanocrystalline ceria powders have been synthesized by combustion technique using citric acid as a fuel and nitrate as an oxidizer. The auto-ignition of the gels containing cerium nitrate and citric acid resulted in ceria powders. A theory based on adiabatic flame temperature for different citric acid-to-cerium nitrate molar ratios has been proposed to explain the nature of combustion reaction and its correlation with the powder characteristics. Specific surface area and primary particle size of the ceria powder obtained through fuel-deficient precursor was found to be approximately = 127 m2/g and 2.5-10 nm, respectively. The combustion synthesized ceria powder when cold pressed and sintered in air at 1250 degrees C for 1 hour resulted in approximately = 96% of its theoretical density with sub-micron grains. PMID:16573097

  11. High-Performance Hydrogen Evolution from MoS2(1-x) P(x) Solid Solution.

    PubMed

    Ye, Ruquan; del Angel-Vicente, Paz; Liu, Yuanyue; Arellano-Jimenez, M Josefina; Peng, Zhiwei; Wang, Tuo; Li, Yilun; Yakobson, Boris I; Wei, Su-Huai; Yacaman, Miguel Jose; Tour, James M

    2016-02-17

    A MoS2(1-x) P(x) solid solution (x = 0 to 1) is formed by thermally annealing mixtures of MoS2 and red phosphorus. The effective and stable electrocatalyst for hydrogen evolution in acidic solution holds promise for replacing scarce and expensive platinum that is used in present catalyst systems. The high performance originates from the increased surface area and roughness of the solid solution. PMID:26644209

  12. Solid Solution Photocatalyst with Spontaneous Polarization Exhibiting Low Recombination Toward Efficient CO2 Photoreduction.

    PubMed

    Zhou, Peng; Wang, Xin; Yan, Shicheng; Zou, Zhigang

    2016-08-23

    Decreasing the recombination of photogenerated carriers is a major challenge for efficiently converting solar energy into chemical energy by photocatalysis. Here, we have demonstrated that growth of a polar GaN:ZnO solid solution single crystal along its polarization axis is beneficial to efficient separation of photogenerated carriers, owing to the periodic potential barriers and wells generated from the periodically positive and negative atom arrangements in crystal structure. Local charge imbalance caused by replacing Ga(3+) with Zn(2+) leads to a polarization vector in the {0 0 0 1} planes of GaN:ZnO solid solution, thus forming a 1 D electron transport path along [2 1‾  1‾  0] in the {0 0 0 1} planes of GaN:ZnO solid solution to decrease recombination. Shorting the hole-transport distance by synthesizing porous nanoplates can further decrease recombination under the polarization field and improve the performance of polar photocatalyst in photoreduction of CO2 into CH4 . PMID:27479937

  13. Local structure in the disordered solid solution of cis- and trans-perinones.

    PubMed

    Teteruk, Jaroslav L; Glinnemann, Jürgen; Heyse, Winfried; Johansson, Kristoffer E; van de Streek, Jacco; Schmidt, Martin U

    2016-06-01

    The cis- and trans-isomers of the polycyclic aromatic compound perinone, C26H12N4O2, form a solid solution (Vat Red 14). This solid solution is isotypic to the crystal structures of cis-perinone (Pigment Red 194) and trans-perinone (Pigment Orange 34) and exhibits a combined positional and orientational disorder: In the crystal, each molecular position is occupied by either a cis- or trans-perinone molecule, both of which have two possible molecular orientations. The structure of cis-perinone exhibits a twofold orientational disorder, whereas the structure of trans-perinone is ordered. The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic positions, but also the site occupancies and anisotropic displacement parameters. PMID:27240774

  14. Thermodynamic modelling of miscibility in (InAs) x (GaAs)1-x solid solutions

    NASA Astrophysics Data System (ADS)

    Adhikari, Jhumpa

    2013-05-01

    Current methods used to model the solution thermodynamics of III-V compound semiconductors involve the use of the valence force field as the molecular model and the regular solution model (with the temperature independent interaction parameter and underlying assumption of random mixing) as the engineering model. In this study, excess free energy models (with three or less adjustable parameters) are investigated to predict the solid-solid miscibility of (InAs) x (GaAs)1- x . The models investigated include the Porter/one-constant Margules (OCM) model, the two-constant Margules (TCM) model and the non-random two liquid (NRTL) model. These models are fit to excess free energy values derived from free energy change of mixing (variation with composition) data available from molecular simulations at different temperatures. The parameters in all the models have been found to be temperature dependent. The coexistence compositions are best predicted by the NRTL model, indicating the need to consider non-random mixing effects present in these solid solutions. The TCM model predicts better equilibrium composition data as compared to the OCM model.

  15. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

    SciTech Connect

    Gonzalez, L.A.; Lohmann, K.C.

    1985-01-01

    Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

  16. Crystal chemical properties of synthetic lazulite-scorzalite solid-solution series

    NASA Astrophysics Data System (ADS)

    Schmid-Beurmann, P.; Knitter, St.; Cemič, L.

    Members of the lazulite-scorzalite (MgAl2- (PO4)2(OH)2-FeAl2(PO4)2(OH)2) solid-solution series were synthesized in compositional steps of 12.5mol% at T=485°C and P=0.3GPa under hydrothermal conditions and controlled oxygen fugacities of the Ni/NiO-buffer. X-ray powder diffraction and 57Fe-Mössbauer studies show that under these conditions a complete solid-solution series is formed which is characterized by the substitution of Mg2+ and Fe2+ on the octahedral Me2+ site. The 57Fe-Mössbauer spectra which reveal the presence of both ferrous and ferric iron and the compositional data were interpreted in terms of a defect model with a distribution of the ferric ions over both the Me2+ and the Al3+ positions and vacancies on the Me2+ site. The 57Fe-Mössbauer parameters of the synthetic compounds correspond to those of natural lazulites except for the total absorption ratio of the ferric iron A(Fe3+)/(A(Fe3+)+A(Fe2+)), which is significantly higher in natural lazulites of the same composition. The total absorption ratio of the ferric iron increases from 4% in pure scorzalite to 15% in a Mg-rich solid-solution with xFe=12(1)%

  17. Characterizing SiC-AlN semiconductor solid solutions with indirect and direct bandgaps

    NASA Astrophysics Data System (ADS)

    Dallaeva, Dinara; Ramazanov, Shikhgasan; Ramazanov, Gusejn; Akhmedov, Ramazan; Tománek, Pavel

    2015-01-01

    The objective of the study is to characterize the dependence of the optical properties of solid solutions of silicon carbide and aluminum nitride on composition. Even small differences in composition provide manipulation of band gap features over a wide range. Data for this paper were collected by X-ray diffraction, photoluminescence and absorption spectroscopy. The evolution of the observed optical properties as a result of compositional changes were studied. X-ray studies confirm the presence of a(SiC)1-x(AlN)x solid solution. Investigation of absorption spectra shows the optical band gap of the sample with composition (SiC)0,88(AlN)0,12 is 3.5eV, and 4.24 eV for the (SiC)0,36(AlN)0,64 solid solution. The photoluminescence spectra demonstrate the strong dependence of the spectra on composition x. The experimental results are in agreement with theory. These data demonstrate the optimization of optical properties for particular optoelectronic applications by varying the (SiC)1-x(AlN)xcomposition.

  18. Existence of a solid solution from brucite to {beta}-Co(OH){sub 2}

    SciTech Connect

    Giovannelli, F.; Delorme, F.; Autret-Lambert, C.; Seron, A.; Jean-Prost, V.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A solid solution exist between Mg(OH){sub 2} and {beta}-Co(OH){sub 2}. Black-Right-Pointing-Pointer Synthesis has been performed through an easy and fast coprecipitation route. Black-Right-Pointing-Pointer No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH){sub 2}) and {beta}-Co(OH){sub 2}, all the compositions are possible. The solid solution Mg{sub 1-x}Co{sub x}(OH){sub 2} has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg-Co mixed oxide with all possible cationic ratios.

  19. Extraction and Quantitative Analysis of Iodine in Solid and Solution Matrixes

    SciTech Connect

    Brown, Christopher F.; Geiszler, Keith N.; Vickerman, Tanya S.

    2005-11-01

    129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately-owned facilities. Several techniques have been utilized to extract iodine from solid matrices; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. Because some of the iodine partitions onto the soil, extraction methods that do not result in total sample dissolution could underestimate the total iodine content of solid samples. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to completely extract iodine from solid matrices. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. Direct analysis of the dissolved sample was performed via inductively coupled plasma mass spectrometry (Perkin Elmer Elan DRC II) using a tertiary amine (Spectrasol CFA-C) carrier solution. The fusion extraction method resulted in complete sample dissolution of all solid matrices tested: sediment, glass samples containing low-levels of iodine, as well as tank waste material collected from the Hanford Site. Quantitative analysis of iodine (127I and 129I) showed better than ? 10% accuracy for certified reference standards, with the linear operating range extending more than three orders of magnitude (0.005 to 5 ug/L). Extraction and analysis of four replicates of standard reference material (San Joaquin Soil) from the National Institute of Standards and Technology, Gaithersburg, MD, resulted in an average recovery of 98% with a relative percent deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrices with little or no adaptation.

  20. Nano-ceria pre-infiltration improves La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated Solid Oxide Fuel Cell cathode performance

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-12-01

    Here, scanning electron microscopy, X-ray diffraction, and thermo-gravimetric analysis experiments show that the pre-infiltration of Ce0.9Gd0.1O1.95 (GDC) nano-particles reduces the average size of La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) produced from the subsequent infiltration of precursor nitrate solutions containing the surfactant Triton X-100 or the chelating agent citric acid. In contrast, GDC pre-infiltration has no effect on the average size of LSCF particles produced from precursor solutions containing only lanthanum, strontium, cobalt, and iron nitrate. Consistent with the observed particle size trends, electrochemical impedance spectroscopy measurements show that GDC pre-infiltration improves the performance of Triton X-100 Derived (TXD) LSCF-GDC cathodes and Citric Acid Derived (CAD) LSCF-GDC cathodes, but has no effect on the performance of Pure Nitrate Derived (PND) LSCF-GDC cathodes. In particular, TXD LSCF-GDC cathodes with more than ˜5 vol% of GDC pre-infiltration display average LSCF particle sizes of 21 nm and open-circuit polarization resistance values of 0.10 Ωcm2 at 540 °C, compared to 48 nm and 640 °C without GDC pre-infiltration. Results suggest that this 100 °C reduction in cathode operating temperature is caused solely by LSCF particle size reductions. 7.4 vol% GDC pre-infiltrated TXD LSCF-GDC cathodes also display lower 540 °C degradation rates than conventionally infiltrated PND LSCF-GDC cathodes.

  1. Nano-ceria pre-infiltration improves La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated Solid Oxide Fuel Cell cathode performance

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-12-01

    Here, scanning electron microscopy, X-ray diffraction, and thermo-gravimetric analysis experiments show that the pre-infiltration of Ce0.9Gd0.1O1.95 (GDC) nano-particles reduces the average size of La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) produced from the subsequent infiltration of precursor nitrate solutions containing the surfactant Triton X-100 or the chelating agent citric acid. In contrast, GDC pre-infiltration has no effect on the average size of LSCF particles produced from precursor solutions containing only lanthanum, strontium, cobalt, and iron nitrate. Consistent with the observed particle size trends, electrochemical impedance spectroscopy measurements show that GDC pre-infiltration improves the performance of Triton X-100 Derived (TXD) LSCF-GDC cathodes and Citric Acid Derived (CAD) LSCF-GDC cathodes, but has no effect on the performance of Pure Nitrate Derived (PND) LSCF-GDC cathodes. In particular, TXD LSCF-GDC cathodes with more than ∼5 vol% of GDC pre-infiltration display average LSCF particle sizes of 21 nm and open-circuit polarization resistance values of 0.10 Ωcm2 at 540 °C, compared to 48 nm and 640 °C without GDC pre-infiltration. Results suggest that this 100 °C reduction in cathode operating temperature is caused solely by LSCF particle size reductions. 7.4 vol% GDC pre-infiltrated TXD LSCF-GDC cathodes also display lower 540 °C degradation rates than conventionally infiltrated PND LSCF-GDC cathodes.

  2. Investigations on the predictability of the formation of glassy solid solutions of drugs in sugar alcohols.

    PubMed

    Langer, M; Höltje, M; Urbanetz, N A; Brandt, B; Höltje, H-D; Lippold, B C

    2003-02-18

    A prerequisite for the formation of glassy solid solutions prepared by the melting method is the miscibility of the respective drug and the carrier in the molten state. As could be shown experimentally, all investigated drug/sugar alcohol combinations miscible in the molten state form to some extent glassy solid solutions, dependent on their tendency to recrystallize during preparation. Therefore, the present study focuses on the evaluation of factors that govern the miscibility of molten drugs and sugar alcohols as carriers. In this context, solubility parameters are discussed as a means of predicting miscibility in comparison to a new approach, using calculated interaction parameters derived from molecular dynamics (MD) studies. There is evidence that a Coulomb interaction term C(SR), comprising short-range electrostatic interactions and hydrogen bonding energy is essential for the miscibility of drug and carrier in the molten state. To relate C(SR) to the molecular volume, a non-dimensional parameter P(i) is defined. For this parameter, a limiting value for miscibility exists. Contrary, calculated solubility parameter differences between drug and sugar alcohol in the range of 8-15 MPa(1/2) are not suitable for a prediction of miscibility or immiscibility, since the mixtures deviate from regular solution behavior. In irregular mixtures of drugs and sugar alcohols, an excess entropy and the formation of hydrogen bonds between unlike molecules favor miscibility, that cannot be predicted by regular solution theory. PMID:12550792

  3. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  4. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers.

    PubMed

    Buttini, Francesca; Miozzi, Michele; Balducci, Anna Giulia; Royall, Paul G; Brambilla, Gaetano; Colombo, Paolo; Bettini, Ruggero; Forbes, Ben

    2014-04-25

    Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs. PMID:24491530

  5. A well-structured metastable ceria surface

    SciTech Connect

    Olbrich, R.; Pieper, H. H.; Oelke, R.; Wilkens, H.; Wollschläger, J.; Reichling, M.; Zoellner, M. H.; Schroeder, T.

    2014-02-24

    By the growth of a 180 nm thick film on Si(111), we produce a metastable ceria surface with a morphology dominated by terraced pyramids with an oriented triangular base. Changes in the nanoscale surface morphology and local surface potential due to annealing at temperatures ranging from 300 K to 1150 K in the ultra-high vacuum are studied with non-contact atomic force microscopy and Kelvin probe force microscopy. As the surface is stable in the temperature range of 300 K to 850 K, it is most interesting for applications requiring regular steps with a height of one O-Ce-O triple layer.

  6. A structural study of the intermolecular interactions of tyramine in the solid state and in solution

    NASA Astrophysics Data System (ADS)

    Quevedo, Rodolfo; Nuñez-Dallos, Nelson; Wurst, Klaus; Duarte-Ruiz, Álvaro

    2012-12-01

    The nature of the interactions between tyramine units was investigated in the solid state and in solution. Crystals of tyramine in its free base form were analyzed by Fourier transform infrared (FT-IR) spectroscopy and single-crystal X-ray diffraction (XRD). The crystal structure shows a linear molecular organization held together by "head-to-tail" intermolecular hydrogen bonds between the amino groups and the phenolic hydroxyl groups. These chains are arranged in double layers that can geometrically favor the formation of templates in solution, which may facilitate macrocyclization reactions to form azacyclophane-type compounds. Computational calculations using the PM6-DH+ method and electrospray ionization mass spectrometry (ESI-HRMS) reveal that the formation of a hydrogen-bonded tyramine dimer is favored in solution.

  7. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGESBeta

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  8. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    SciTech Connect

    Xie, Miao; Turner, Christopher L.; Mohammadi, Reza; Kaner, Richard B. E-mail: akavner@ucla.edu Tolbert, Sarah H. E-mail: akavner@ucla.edu; Kavner, Abby E-mail: akavner@ucla.edu

    2015-07-27

    In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  9. Effect of Sr and Ca solid-solution behaviour on superconductive properties as determined by microstructure analysis

    NASA Astrophysics Data System (ADS)

    Hong, Zhanglian; Wang, Minquan; Xiong, Guohong; Fan, Xianping

    1997-02-01

    The effects of the Sr and Ca composition and site-selection in a solid solution of a Bi-system superconductor on the superconductive properties were studied. Results showed that the Sr and Ca solid-solution behaviour had a remarkable effect on the superconductive properties. Further analysis indicated that this effect originated from varied hole concentration which was determined by the content of Sr atoms substituting for Bi atoms within the BiO layers. This substitution was influenced by the Sr and Ca solid-solution behaviour. This result offers a new mechanism for clarifying why the bivalent Sr and Ca cations affect the superconductive properties.

  10. BixLa1-xVO4 solid solutions: tuning of electronic properties via stoichiometry modifications

    NASA Astrophysics Data System (ADS)

    Kwolek, Przemysław; Pilarczyk, Kacper; Tokarski, Tomasz; Lewandowska, Kornelia; Szaciłowski, Konrad

    2014-01-01

    BixLa1-xVO4 solid solutions were obtained in the form of fine powder via a microwave-assisted hydrothermal route. The presence of a solid solution in the studied system was confirmed using X-ray diffraction (XRD) and optical spectroscopy techniques. Pure BiVO4 and LaVO4 were obtained in the monoclinic form, whereas solid solutions in the tetragonal, zircon-type structure. The optical band gap dependence on the composition of the solid solution is parabolic, thus there is a possibility to tune this parameter in a wide concentration range, from 2.4 to 4.0 eV. An absorption coefficient maximum is also concentration-dependent, possibly, due to the structural disorder of the samples. Solid solutions with Bi3+ concentration between 11.94 and 32.57 at.% exhibit intense, green luminescence. This indicates the presence of Bi-originated electronic states within the band gap. The value of the conduction band edge potential, measured by both electrochemical impedance spectroscopy and work function measurements, is concentration-independent. Moreover, solid solutions exhibit a photoelectrochemical photocurrent switching effect, thus they may be promising materials for molecular electronics and as dioxygen activators.BixLa1-xVO4 solid solutions were obtained in the form of fine powder via a microwave-assisted hydrothermal route. The presence of a solid solution in the studied system was confirmed using X-ray diffraction (XRD) and optical spectroscopy techniques. Pure BiVO4 and LaVO4 were obtained in the monoclinic form, whereas solid solutions in the tetragonal, zircon-type structure. The optical band gap dependence on the composition of the solid solution is parabolic, thus there is a possibility to tune this parameter in a wide concentration range, from 2.4 to 4.0 eV. An absorption coefficient maximum is also concentration-dependent, possibly, due to the structural disorder of the samples. Solid solutions with Bi3+ concentration between 11.94 and 32.57 at.% exhibit intense

  11. The solution and solid state stability and excipient compatibility of parthenolide in feverfew.

    PubMed

    Jin, Ping; Madieh, Shadi; Augsburger, Larry L

    2007-01-01

    The objectives of this research were to evaluate the stability of parthenolide in feverfew solution state and powdered feverfew (solid state), and explore the compatibility between commonly used excipients and parthenolide in feverfew. Feverfew extract solution was diluted with different pH buffers to study the solution stability of parthenolide in feverfew. Powdered feverfew extract was stored under 40 degrees C/0% approximately 75% relative humidities (RH) or 31% RH/5~50 degrees C to study the influence of temperature and relative humidity on the stability of parthenolide in feverfew solid state. Binary mixtures of feverfew powered extract and different excipients were stored at 50 degrees C/ 75% RH for excipient compatibility evaluation. The degradation of parthenolide in feverfew solution appears to fit a typical first-order reaction. Parthenolide is comparatively stable when the environmental pH is in the range of 5 to 7, becoming unstable when pH is less than 3 or more than 7. Parthenolide degradation in feverfew in the solid state does not fit any obvious reaction model. Moisture content and temperature both play important roles affecting the degradation rate. After 6 months of storage, parthenolide in feverfew remains constant at 5 degrees C/31% RH. However, approximately 40% parthenolide in feverfew can be degraded if stored at 50 degrees C/31% RH. When the moisture changed from 0% to 75% RH, the degradation of parthenolide in feverfew increased from 18% to 32% after 6-month storage under 40 degrees C. Parthenolide in feverfew exhibits good compatibility with commonly used excipients under stressed conditions in a 3-week screening study. PMID:18181526

  12. Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications

    NASA Astrophysics Data System (ADS)

    Ganguly, J.; Cheng, Weiji; Tirone, Massimiliano

    1996-12-01

    We have experimentally determined the displacement of the equilibrium Grossular + 2 Kyanite + Quartz ⇆ 3 Anorthite (GASP) as a function of garnet composition in the systems Mg-Ca-Mn, Fe-Mg-Ca and Fe-Mg-Ca-Mn at 1000°C. The results were treated along with selected experimental and observational data available in the literature as well as binary parameters from other workers to obtain a set of mutually compatible binary mixing parameters of the quaternary (Fe,Mg,Ca,Mn)- aluminosilicate garnet solid solution. Attempts to determine equilibrium garnet composition in the GASP equilibrium in the Ca-Mg binary were unsuccessful due to the formation of pyroxene. Calculations of binary and ternary miscibility gaps show that the P,T,X combination required for unmixing of garnet solid solution is not realized by natural samples. The solution model was applied to account for compositional effects on Fe-Mg exchange between garnet and ortho- or clino-pyroxene. Applications of the revised thermometric formulations to selected natural assemblages yield P-T conditions which are much less sensitive to compositional effects compared to the other available formulations, and are consistent with independent constraints.

  13. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. PMID:26886313

  14. Elastic properties and electronic structures of Y atom solid solute supercell γ-Fe

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Hou, Xiaoru; Xing, Xiaolei; Yun, Xiao; Yang, Yulin; Ren, Xuejun; Yang, Qingxiang

    2014-11-01

    Elastic properties and electronic structures of a Y atom solid solute supercell γ-Fe structure, which includes either a Y atom octahedral interstitial solid solute (Y-OISS), a Y atom tetrahedral interstitial solid solute (Y-TISS), a Y atom vertex substitutional solid solute (Y-VSSS) and a Y atom face-centered substitutional solid solute (Y-FSSS) have been calculated using a first-principles density functional theory plane-wave ultrasoft pseudopotential method, i.e. the Generalized Gradient Approximation (GGA) Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. The results indicate that, the Y-VSSS and Y-FSSS supercell γ-Fe are stable, while the Y-OISS and Y-TISS supercell γ-Fe are both unstable, especially Y-TISS. The bulk moduli of the Y-OISS, Y-TISS, Y-VSSS and Y-FSSS supercell γ-Fe are 234.72, 200.32, 262.45 and 262.56 GPa, and the shear moduli are 74.23, 52.02, 156.78 and 156.76 GPa, which shows that the directional bonding in Y-SSS supercell γ-Fe is stronger than that in Y-ISS and that the Y-ISS supercell γ-Fe is much stiff than the Y-SSS. The ratios between the shear modulus and bulk modulus of Y-OISS, Y-TISS, Y-VSSS and Y-FSSS supercell γ-Fe are 0.32, 0.26, 0.60 and 0.60, respectively, which implies that the Y-SSS supercell γ-Fe is essentially brittle and that the Y-ISS is slightly ductile. Poisson's ratio of them are 0.47, 0.38, 0.25 and 0.35, which shows that compared with Y-ISS supercell γ-Fe, the Y-SSS supercell γ-Fe has good plasticity in the investigated binary alloys. The universal elastic anisotropy indexes of the Y-OISS, Y-TISS, Y-VSSS and Y-FSSS supercell γ-Fe are 1.765, 1.205, 0.965 and 0.95, the result indicates that the anisotropy decreases in the following sequence: Y-OISS supercell γ-Fe > Y-TISS > Y-FSSS > Y-VSSS. The amounts of transferred charges (per supercell) from Fe atom to Y atom is in the order of Y-VSSS supercell γ-Fe = Y-FSSS > Y-TISS > Y-OISS, respectively, which indicates that their ionicity is Y

  15. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    PubMed

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p < 0.05) in the extractable or acid-soluble and reducible fractions. By adopting the proposed approach, the leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001. PMID:26185165

  16. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  17. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1992-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  18. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Toshifumi Sugama.

    1993-04-06

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR)[sub n] (wherein M is Ti, Zr, Ge or Al; R is CH[sub 3], C[sub 2]H[sub 5] or C[sub 3]H[sub 7]; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., < 1,000 C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  19. Thermodynamic properties of CexTh1-xO2 solid solution from first-principles calculations

    SciTech Connect

    Xiao, Haiyan Y.; Zhang, Yanwen; Weber, William J.

    2012-11-02

    A systematic study based on first-principles calculations along with a quasi-harmonic approximation has been conducted to calculate the thermodynamic properties of the CexTh1xO2 solid solution. The predicted density, thermal expansion coefficients, heat capacity and thermal conductivity for the CexTh1xO2 solid solution all agree well with the available experimental data. The thermal expansion coefficient for ThO2 increases with CeO2 substitution, and complete substitution shows the highest expansion coefficient. On the other hand, the mixed CexTh1xO2 (0 < x < 1) solid solution generally exhibits lower heat capacity and thermal conductivity than the ThO2 and CeO2 end members. Our calculations indicate a strong effect of Ce concentration on the thermodynamic properties of the CexTh1xO2 solid solution.

  20. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  1. Formation of non-equilibrium Fe-Au solid solutions in nanoclusters

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Zhou, Lin; Kramer, M. J.; Shield, J. E.

    2013-06-01

    Fe-Au nanoclusters ranging in composition from ˜33 to 79 at. % Fe were prepared by inert gas condensation. Resulting phases were single crystalline solid solutions for all compositions with significant defects present. The as-deposited clusters formed in a bcc structure for Fe content >65 at. % and in a fcc structure for Fe < 65 at. %. Lattice parameters were expanded beyond rule-of-mixture estimates. The lattice expansion is explained by an analytical self-interstitial model. All clusters were ferromagnetic, although the fcc structures showed low magnetization. The low magnetizations are thought to arise from antiferromagnetic cores with uncompensated ferromagnetic surface spins.

  2. Formation of 3He droplets in dilute 3He-4He solid solutions

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Candela, Don; Kim, Sung; Yin, Liang; Xia, Jiang-Sheng; Sullivan, Neil

    2015-03-01

    We review the different stages of the formation of 3He droplets in dilute solid 3He-4He solutions. The studies are interesting because the phase separation in isotopic helium mixtures is a first-order transition with a conserved order parameter. The rate of growth of the droplets as observed in NMR studies is compared with the rates expected for homogeneous nucleation followed by a period of coarsening known as Ostwald ripening. Work suported by the National Science Foundation - DMR-1303599 and DMR- 1157490 (National High Magnetic Field Laboratory).

  3. Structural and Electronic Properties of a Wide-Gap Quaternary Solid Solution: \\(Zn, Mg\\) \\(S, Se\\)

    NASA Astrophysics Data System (ADS)

    Saitta, A. M.; de Gironcoli, S.; Baroni, S.

    1998-06-01

    The structural properties of the (Zn, Mg) (S, Se) solid solutions are determined by a combination of the computational alchemy and the cluster expansion methods with Monte Carlo simulations. We determine the phase diagram of the alloy and show that the homogeneous phase is characterized by a large amount of short-range order occurring among first-nearest neighbors. Electronic-structure calculations performed using the special quasirandom structure approach indicate that the energy gap of the alloy is rather sensitive to this short-range order.

  4. Phase Diagram of Pb(Zr,Ti)O{sub 3} Solid Solutions from First Principles

    SciTech Connect

    Kornev, Igor A.; Bellaiche, L.; Janolin, P.-E.; Dkhil, B.; Suard, E.

    2006-10-13

    A first-principles-derived scheme that incorporates ferroelectric and antiferrodistortive degrees of freedom is developed to study finite-temperature properties of Pb(Zr{sub 1-x}Ti{sub x})O{sub 3} solid solution near its morphotropic phase boundary. The use of this numerical technique (i) resolves controversies about the monoclinic ground state for some Ti compositions (ii) leads to the discovery of an overlooked phase, and (iii) yields three multiphase points that are each associated with four phases. Additional neutron diffraction measurements strongly support some of these predictions.

  5. Phase Diagram of Pb(Zr,Ti)O3 Solid Solutions from First Principles

    NASA Astrophysics Data System (ADS)

    Kornev, Igor A.; Bellaiche, L.; Janolin, P.-E.; Dkhil, B.; Suard, E.

    2006-10-01

    A first-principles-derived scheme that incorporates ferroelectric and antiferrodistortive degrees of freedom is developed to study finite-temperature properties of Pb(Zr1-xTix)O3 solid solution near its morphotropic phase boundary. The use of this numerical technique (i) resolves controversies about the monoclinic ground state for some Ti compositions, (ii) leads to the discovery of an overlooked phase, and (iii) yields three multiphase points that are each associated with four phases. Additional neutron diffraction measurements strongly support some of these predictions.

  6. Electron-microscope study of lanthanum-doped lead zirconate-titanate solid solutions

    SciTech Connect

    Ishchuk, V.M.; Presnyakova, O.V.

    1985-12-01

    This paper examines the structure of specimens of lanthanumdoped lead zirconate-titanate solid solutions in the hysteresis region of the phase diagram, using transmission electron microscopy. The electron-microscopic images of PLZT ceramic of composition display an unusual diffraction contrast. An analysis of the images obtained for different orientations of the cleavages of specimens of composition indicate that the second-phase inclusions are cylindrical in the main. The authors hypothesize that the inclusions are a ferroelectric phase in an antiferroelectric matrix.

  7. Synthesis and characterization of the LDH hydrotalcite-pyroaurite solid-solution series

    SciTech Connect

    Rozov, K.; Berner, U.; Taviot-Gueho, C.; Leroux, F.; Renaudin, G.; Kulik, D.; Diamond, L.W.

    2010-08-15

    A layered double hydroxide (LDH) hydrotalcite-pyroaurite solid-solution series Mg{sub 3}(Al{sub x}Fe{sub 1-x})(CO{sub 3}){sub 0.5}(OH){sub 8} with 1 - x = 0.0, 0.1...1.0 was prepared by co-precipitation at 23 {+-} 2 {sup o}C and pH = 11.40 {+-} 0.03. The compositions of the solids and the reaction solutions were determined using ICP-OES (Mg, Al, Fe, and Na) and TGA techniques (CO{sub 3}{sup 2-}, OH{sup -}, and H{sub 2}O). Powder X-ray diffraction was employed for phase identification and determination of the unit cell parameters a{sub o} and c{sub o} from peak profile analysis. The parameter a{sub o} = b{sub o} was found to be a linear function of the composition. This dependency confirms Vegard's law and indicates the presence of a continuous solid-solution series in the hydrotalcite-pyroaurite system. TGA data show that the temperatures at which interlayer H{sub 2}O molecules and CO{sub 3}{sup 2-} anions are lost, and at which dehydroxylation of the layers occurs, all decrease with increasing mole fraction of iron within the hydroxide layers. Features of the Raman spectra also depend on the iron content. The absence of Raman bands for Fe-rich members (x{sub Fe} > 0.5) is attributed to possible fluorescence phenomena. Based on chemical analysis of both the solids and the reaction solutions after synthesis, preliminary Gibbs free energies of formation have been estimated. Values of {Delta}G{sup o}{sub f}(hydrotalcite) = - 3773.3 {+-} 51.4 kJ/mol and {Delta}G{sup o}{sub f}(pyroaurite) = - 3294.5 {+-} 95.8 kJ/mol were found at 296.15 K. The formal uncertainties of these formations constants are very high. Derivation of more precise values would require carefully designed solubility experiments and improved analytical techniques.

  8. Predicting hardness of covalent/ionic solid solution from first-principles theory

    NASA Astrophysics Data System (ADS)

    Hu, Q. M.; Kádas, K.; Hogmark, S.; Yang, R.; Johansson, B.; Vitos, L.

    2007-09-01

    We introduce a hardness formula for the multicomponent covalent and ionic solid solutions. This expression is tested on nitride spinel materials A3N4 (A=C,Si,Ge) and applied to titanium nitrogen carbide (TiN1-xCx with 0⩽x ⩽1), off-stoichiometric transition-metal nitride (TiN1-x and VN1-x with x ⩽0.25), and B-doped semiconductors (C1-xBx, Si1-xBx, and Ge1-xBx with x ⩽0.1). In all cases, the theoretical hardness is in good agreement with experiments.

  9. Hydration and proton transport in solid solutions based on Ba2CaWO6

    NASA Astrophysics Data System (ADS)

    Animitsa, I. E.; Kochetova, N. A.; Denisova, T. A.; Zhuravlev, N. A.; Baklanova, I. V.

    2009-02-01

    Hydrated alkaline-earth metal tungstates Ba4Ca2 + x W2 - x O12 - 2 x with perovskite structure were studied by the thermogravimetry, 1H NMR, IR, and Raman spectroscopy methods. Electrical conductivity and transfer numbers were measured with varying T, p_{O_2 } and p_{H_2 O} . The solid solutions are capable of reversibly intercalating water and can exhibit high-temperature proton transport. The localization of protons on oxygen results in the appearance of energetically nonequivalent OH groups; a small fraction of protons are present in the form of H2O and H3O+.

  10. Direct observation of charge mediated lattice distortions in complex oxide solid solutions

    SciTech Connect

    Sang, Xiahan; Grimley, Everett D.; Niu, Changning; Irving, Douglas L.; LeBeau, James M.

    2015-02-09

    Using aberration corrected scanning transmission electron microscopy combined with advanced imaging methods, we directly observe atom column specific, picometer-scale displacements induced by local chemistry in a complex oxide solid solution. Displacements predicted from density functional theory were found to correlate with the observed experimental trends. Further analysis of bonding and charge distribution was used to clarify the mechanisms responsible for the detected structural behavior. By extending the experimental electron microscopy measurements to previously inaccessible length scales, we identified correlated atomic displacements linked to bond differences within the complex oxide structure.