Science.gov

Sample records for cerium oxide films

  1. Texture Control in Cerium Oxide Films (Poster)

    SciTech Connect

    van Hest, M. F. A. M.; Leenheer, A. J.; Perkins, J. D.; Teplin, C. W.; Ginley, D. S.

    2006-05-01

    The conclusions are: (1) Texture control is possible in cerium oxide by epitaxial growth or adjusting the substrate angle; (2) Biaxial (111) texture emerges with inclined angle depositions on glass; and (3) Biaxial (200) texture emerges by epitaxial growth on YSZ.

  2. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  3. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  4. Cerium Oxide and Cerium Compounds

    Integrated Risk Information System (IRIS)

    Cerium oxide and cerium compounds ; CASRN 1306 - 38 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  5. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    PubMed Central

    Durrani, Sardar M. A.; Al-Kuhaili, Mohammad F.; Bakhtiari, Imran A.; Haider, Muhammad B.

    2012-01-01

    Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively. PMID:22736967

  6. Influences of the main anodic electroplating parameters on cerium oxide films

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu; Zhang, Zhao; Zhang, Jianqing

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  7. Electronic properties of epitaxial cerium oxide films during controlled reduction and oxidation studied by resonant inelastic X-ray scattering.

    PubMed

    Gasperi, Gabriele; Amidani, Lucia; Benedetti, Francesco; Boscherini, Federico; Glatzel, Pieter; Valeri, Sergio; Luches, Paola

    2016-07-27

    We investigated the evolution of the electronic structure of cerium oxide ultrathin epitaxial films during reduction and oxidation processes using resonant inelastic X-ray scattering at the Ce L3 absorption edge, a technique sensitive to the electronic configurations at the 4f levels and in the 5d band thanks to its high energy resolution. We used thermal treatments in high vacuum and in oxygen partial pressure to induce a controlled and reversible degree of reduction in cerium oxide ultrathin epitaxial films of different thicknesses. Two dominant spectral components contribute to the measured spectra at the different degrees of oxidation/reduction. In ultrathin films a modification of the electronic properties associated with platinum substrate proximity and with dimensionality is identified. The different electronic properties induce a higher reducibility in ultrathin films, ascribed to a decrease of the surface oxygen vacancy formation energy. PMID:27405957

  8. Silicate-free growth of high-quality ultrathin cerium oxide films on Si(111)

    SciTech Connect

    Flege, Jan Ingo; Kaemena, Bjoern; Wilkens, Torsten; Schmidt, Thomas; Falta, Jens; Gevers, Sebastian; Bruns, Daniel; Wollschlaeger, Joachim; Bertram, Florian; Baetjer, Jan

    2011-12-15

    Ultrathin Ce{sub 2}O{sub 3} layers have been grown on Si(111) by reactive metal deposition in an oxygen background and characterized by x-ray standing waves, x-ray diffraction, x-ray photoelectron spectroscopy, and low-energy electron diffraction to elucidate and quantify both atomic structure and chemical composition. It is demonstrated that highly ordered, mostly B-oriented, epitaxial ceria films can be achieved by preadsorption of a monolayer of atomic chlorine, effectively passivating the substrate and thereby suppressing cerium silicate and silicon oxide formation at the interface.

  9. Force modulation atomic force microscopy: background, development and application to electrodeposited cerium oxide films

    NASA Astrophysics Data System (ADS)

    Li, Feng-Bin; Thompson, G. E.; Newman, R. C.

    1998-04-01

    In force modulation atomic force microscopy (FMAFM), vertical oscillation of the scanning tip of the AFM is added purposely and the deflection of the tip, which is influenced by surface features of the sample, is used as the z dimension to construct images. FMAFM represents a powerful technique for scientific research, but its merit has not been realized adequately to date. In this paper, the basic principles and particular features, as well as potential drawbacks of the technique, are presented and demonstrated systematically, through its application to electrochemically deposited cerium oxide films. Comparisons are also made with the more familiar contact mode AFM (CMAFM) and tapping mode AFM (TMAFM). It is shown that FMAFM reveals the major topographic features of CMAFM, but affords (i) greater resolution for sample features that are difficult in CMAFM, and (ii) continuous two-dimensional mapping of local mechanical properties on a scale of nanometres that the CMAFM, TMAFM and any other techniques, are not capable of sensing. This information can be used to elucidate other properties of the investigated surface, such as crystallinity variation, phase separation and distribution, and mechanisms of formation of deposited films. Major artifacts associated with the technique include `wedge cavity effect' and `tip slip effect', for which a geometric model is proposed to elucidate their origins. The cerium oxide films are shown to be composed of relatively hard crystalline grains, of well-defined individual geometry and comparatively regular packing, alongside relatively soft amorphous patches, devoid of distinct geometry and assembled disorderly. These features are consistent with a nucleation and growth mechanism of the deposition, in which crystalline nuclei arise and grow from an intermediate cerium gel mass, produced in the interfacial region during deposition.

  10. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    SciTech Connect

    Nicholas, Jason.D.

    2007-06-30

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  11. Adsorption and Reaction of Methanol on Thin-film Cerium Oxide

    SciTech Connect

    Mullins,D.; Robbins, M.; Zhou, J.

    2006-01-01

    Formaldehyde adsorption and reaction have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The formaldehyde behavior was examined as a function of temperature, exposure and Ce oxidation state. Formaldehyde chemisorbs on fully oxidized CeO{sub 2} as dioxymethylene, CH{sub 2}O{sub 2}. The dioxymethylene decomposes and desorbs as formaldehyde between 200 K and 400 K. No other products are formed. On reduced ceria, formaldehyde also adsorbs as dioxymethylene. In addition to the formaldehyde desorption between 200 K and 400 K, a more strongly bound form of dioxymethylene is formed that produces formaldehyde at 440 K. Above 400 K, some of the dioxymethylene reacts to form formate and methoxy on the surface. These species decompose to produce H{sub 2}, CO and CH{sub 2}O above 500 K.

  12. Adsorption and Reaction of Formaldehyde on Thin-film Cerium Oxide

    SciTech Connect

    Zhou,J.; Mullins, D.

    2006-01-01

    Formaldehyde adsorption and reaction have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The formaldehyde behavior was examined as a function of temperature, exposure and Ce oxidation state. Formaldehyde chemisorbs on fully oxidized CeO{sub 2} as dioxymethylene, CH{sub 2}O{sub 2}. The dioxymethylene decomposes and desorbs as formaldehyde between 200 K and 400 K. No other products are formed. On reduced ceria, formaldehyde also adsorbs as dioxymethylene. In addition to the formaldehyde desorption between 200 K and 400 K, a more strongly bound form of dioxymethylene is formed that produces formaldehyde at 440 K. Above 400 K, some of the dioxymethylene reacts to form formate and methoxy on the surface. These species decompose to produce H{sub 2}, CO and CH{sub 2}O above 500 K.

  13. Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces.

    PubMed

    Luo, Yuting; Li, Juan; Zhu, Jie; Zhao, Ye; Gao, Xuefeng

    2015-04-13

    Condensate microdrop self-propelling (CMDSP) surfaces have attracted intensive interest. However, it is still challenging to form metal-based CMDSP surfaces. We design and fabricate a type of copper-based CMDSP porous nanoparticle film. An electrodeposition method based on control over the preferential crystal growth of isotropic nanoparticles and synergistic utilization of tiny hydrogen bubbles as pore-making templates is adopted for the in situ growth of cerium oxide porous nanoparticle films on copper surfaces. After characterizing their microscopic morphology, crystal structure and surface chemistry, we explore their CMDSP properties. The nanostructure can realize the efficient ejection of condensate microdrops with sizes below 50 μm. PMID:25693502

  14. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  15. Adsorption and Reaction of Methanethiol on Thin-Film Cerium Oxide

    SciTech Connect

    Mullins, David R; McDonald, Tom S

    2008-01-01

    The adsorption and reaction of methanethiol, CH{sub 3}SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH{sub 3}SH was examined as a function of the Ce oxidation state. CH{sub 3}SH weakly interacts with fully oxidized CeO{sub 2}(1 1 1) forming both chemisorbed CH{sub 3}SH and CH{sub 3}S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH{sub 3}SH desorbs near 150 K while the CH{sub 3}S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH{sub 4} and CH{sub 3}SH. A small amount of CH{sub 2}O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH{sub 3}S or S.

  16. Adsorption and reaction of methanethiol on thin-film cerium oxide

    NASA Astrophysics Data System (ADS)

    Mullins, D. R.; McDonald, T. S.

    2008-03-01

    The adsorption and reaction of methanethiol, CH 3SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH 3SH was examined as a function of the Ce oxidation state. CH 3SH weakly interacts with fully oxidized CeO 2(1 1 1) forming both chemisorbed CH 3SH and CH 3S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH 3SH desorbs near 150 K while the CH 3S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH 4 and CH 3SH. A small amount of CH 2O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH 3S or S.

  17. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajeet; Rathee Solanki, Pratima; Ansari, Anees Ahmad; Ahmad, Sharif; Dhar Malhotra, Bansi

    2009-02-01

    Rabbit-immunoglobulin antibodies (r-IgGs) and bovine serum albumin (BSA) have been immobilized onto sol-gel-derived nanostructured cerium oxide (nanoCeO2) film fabricated onto an indium-tin-oxide (ITO) coated glass plate to detect ochratoxin-A (OTA). Broad reflection planes obtained in x-ray diffraction (XRD) patterns reveal the formation of CeO2 nanostructures. Electrochemical studies reveal that nanoCeO2 particles provide an increased electroactive surface area for loading of r-IgGs with desired orientation, resulting in enhanced electron communication between r-IgGs and electrode. BSA/r-IgGs/nano CeO2/ITO immunoelectrode exhibits improved characteristics such as linear range (0.5-6 ng dl-1), low detection limit (0.25 ng dl-1), fast response time (30 s) and high sensitivity (1.27 µA ng-1 dl-1 cm-2). The high value of the association constant (Ka, 0.9 × 1011 l mol-1) indicates the high affinity of the BSA/r-IgGs/nanoCeO2/ITO immunoelectrode to OTA.

  18. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    NASA Astrophysics Data System (ADS)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  19. The formation of light emitting cerium silicates in cerium-doped silicon oxides

    SciTech Connect

    Li Jing; Zalloum, Othman; Roschuk, Tyler; Heng Chenglin; Wojcik, Jacek; Mascher, Peter

    2009-01-05

    Cerium-doped silicon oxides with cerium concentrations of up to 0.9 at. % were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Bright cerium related photoluminescence, easily seen even under room lighting conditions, was observed from the films and found to be sensitive to film composition and annealing temperature. The film containing 0.9 at. % Ce subjected to anneal in N{sub 2} at 1200 deg. C for 3 h showed the most intense cerium-related emission, easily visible under bright room lighting conditions. This is attributed to the formation of cerium silicate [Ce{sub 2}Si{sub 2}O{sub 7} or Ce{sub 4.667} (SiO{sub 4}){sub 3}O], the presence of which was confirmed by high resolution transmission electron microscopy.

  20. Cerium oxide for sunscreen cosmetics

    NASA Astrophysics Data System (ADS)

    Yabe, Shinryo; Sato, Tsugio

    2003-02-01

    Ultrafine particles of Mn+ -doped ceria ( Mn+ =Mg 2+, Ca 2+, Sr 2+, Ba 2+, Y 3+, La 3+, Nd 3+, Sm 3+, Eu 3+, Tb 3+) for UV filter were prepared via soft solution chemical routes at 40°C. X-ray diffraction revealed that the prepared doped particles had the cubic fluorite structures although peak positions changed depending on the kind and amount of doped metal ion. Doping with 20 mol% Ca 2+ and 20 mol% Zn 2+ resulted in extremely decreasing the particle size (2-4 nm) and the catalytic activity of ceria for oxidation of castor oil. Ca 2+-doped cerium dioxide showed excellent UV absorbing effect and transparency in the visible ray region compared with undoped cerium dioxide.

  1. Elaboration and characterization of thin solid films containing cerium

    NASA Astrophysics Data System (ADS)

    Hamdi, S.; Guerfi, S.; Siab, R.

    2009-11-01

    Cerium oxide films are widely studied as a promising alternative to Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electrodeposition of Cerium containing thin films was realised on TA6V substrates from a Ce(NO3)3, 6H2O and mixed water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity appears proportional to the quantity of electricity used, as indicated by the Faraday law. Subsequent thermal treatment lead to a CeO2 coating, expected to provide an increase of TA6V oxidation resistance at high temperatures. The deposits were characterized by differential scanning calorimetry (DSC), optical and scanning electron microscopies.

  2. Cerium

    SciTech Connect

    1992-11-01

    Cerium in the year 1803, three scientists (M.H. Laproth, J.J. Berzelius, and W. Hisinger) independently discovered cerium (Ce), the first lanthanide element to be isolated. The element`s name is derived from the asteroid Ceres, which was discovered just two years before cerium. The name {open_quotes}cerium{close_quotes} is especially appropriate since cerium, in its +4 ionic state, exhibits a {open_quotes}ceres,{close_quotes} or reddish-orange, color. Cerium has a very high crystal abundance of 46 ppm, similar to that of the very common gas, nitrogen, and abundant metal, copper. Of all the rare earth (RE) ores mined today, the average concentration of cerium in the ore is 46.4 percent, in terms of cerium oxide (CeO{sub 2}) content per total rare earth oxide (REO) by weight. Cerium is therefore the most abundant of all the rare earths, with concentrations as high as 50 percent CeO{sub 2}/REO in Chinese bastnasite and 52 percent in Russian loparites. Based on US Bureau of Mines statistics, CTC estimates that the world`s total mined production of cerium oxide in 1991 was about 24,000 metric tons-almost half of the total rare earth oxides produced.

  3. The surface chemistry of cerium oxide

    DOE PAGESBeta

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less

  4. The surface chemistry of cerium oxide

    SciTech Connect

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  5. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (Interagency Science Discussion Draft)

    EPA Science Inventory

    On September 29, 2009, the IRIS Summary and Toxicological Review of Cerium Oxide and Cerium Compounds was finalized and loaded onto the IRIS database. The Toxicological Review of Cerium Oxide and Cerium Compounds was reviewed internally by EPA, by other federal agencies and Whit...

  6. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  7. Optical and electrical studies of cerium mixed oxides

    SciTech Connect

    Sherly, T. R.; Raveendran, R.

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  8. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  9. Cerium oxide nanoparticles in cancer

    PubMed Central

    Gao, Ying; Chen, Kan; Ma, Jin-lu; Gao, Fei

    2014-01-01

    With the development of many nanomedicines designed for tumor therapy, the diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat cancer. Research data have shown CONPs to be toxic to cancer cells, to inhibit invasion, and to sensitize cancer cells to radiation therapy and chemotherapy. CONPs also display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species generation. Differential cytotoxicity is important for anticancer drugs to distinguish effectively between tumor cells and normal cells. The antioxidant capabilities of CONPs, which enable cancer therapy protection, have also resulted in the exploration of these particles as a potential anticancer treatment. Taken together, CONPs might be a potential nanomedicine for cancer therapy and this review highlights the current research into CONPs as a novel therapeutic for the treatment of cancer. PMID:24920925

  10. The growth and structure of thin oxide films on nickel superficially modified with ceria and cerium

    NASA Astrophysics Data System (ADS)

    Czerwinski, Franciszek

    A small addition of elements with a high affinity to oxygen can have a profound effect on the high temperature oxidation behaviour of many metals and alloys. In order to explain the improvement in oxidation resistance, the research was conducted using Ni-NiO as a model system of cation-diffusing oxides, and Ce as a typical reactive element. Three essential techniques were employed to modify the surface of Ni with Ce and CeO2: ion implantation, sol-gel technology, and reactive sputtering. The improvement of Ni oxidation resistance was assessed by oxygen uptake measurements mainly during the early stages but also for long-term exposures at temperatures between 873 and 1073 K in pure oxygen, both at low and atmospheric pressures. The variety of oxides produced were examined in detail by several advanced techniques including Rutherford backscattering spectrometry, Auger electron spectroscopy, secondary ion-mass spectrometry, transmission- and scanning-transmission electron microscopy equipped with electron and x-ray analyzers, atomic force microscopy, infrared spectroscopy, and x-ray diffraction techniques. In order to provide direct evidence regarding the mechanism of oxide growth, a sequential oxidation using oxygen isotopes 16O2/18O2 was conducted. After conversion to the form of ceramic coating, superficially applied CeO2 sol-gel significantly reduced the Ni oxidation rate as well as changing the NiO morphology and internal microstructure. The extent of the effect depended on coating thickness, size of CeO2 particles, substrate surface finishing and preoxidation before coating. Under optimum conditions, the reduction in the Ni oxidation rate achieved by sol-gel, reactive sputtering, and ion implantation, was similar. It was found that Ni oxidation resistance is controlled by a well-defined NiO sublayer that is composed of randomly-oriented NiO grains and CeO2 particles. Moreover, in this sublayer, the Ce4+ ions segregate to the NiO grain boundaries. At high

  11. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  12. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database.

  13. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  14. Cerium and yttrium oxide nanoparticles are neuroprotective

    SciTech Connect

    Schubert, David . E-mail: schubert@salk.edu; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-03-31

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.

  15. Photodissociation of Cerium Oxide Nanocluster Cations.

    PubMed

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  16. Optical glass surfaces polishing by cerium oxide particles

    NASA Astrophysics Data System (ADS)

    Bouzid, D.; Belkhie, N.; Aliouane, T.

    2012-02-01

    The use of powders in metallic oxides as means of grinding and polishing of the optical glass components have seen recently a large application in optical industry. In fact, cerium oxide abrasive is more used in the optical glass polishing. It is used as grains abrasive in suspension or fixed abrasive (pellets); these pellets are manufactured from a mixture made of cerium oxide abrasive and a organic binder. The cerium oxide used in the experiments is made by (Logitech USA) of 99 % purity, the average grain size of the particle is 300 nm, the density being 6,74 g /cm3 and the specific surface is 3,3042 m2/g. In this study, we are interested in the surfaces quality of the optical glass borosilicate crown (BK7) polished by particles in cerium oxide bounded by epoxy. The surfaces of the optical glass treated are characterized by the roughness, the flatness by using the microscope Zygo and the SEM.

  17. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  18. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.

    PubMed

    Ishizaki, Takahiro; Saito, Naobumi

    2010-06-15

    We have developed a facile, simple, time-saving method of creating a superhydrophobic surface on a magnesium alloy by a simple immersion process at room temperature. First, a crystalline CeO(2) film was vertically formed on the magnesium alloy by immersion in a cerium nitrate aqueous solution for 20 min. The density of the crystals vertically with respect to the magnesium alloy increased with increasing immersion time. Next, the film were covered with fluoroalkylsilane (FAS: CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3)) molecules within 30 min by immersion in a toluene solution containing FAS and tetrakis(trimethylsiloxy)titanium (TTST: (CH(3))(3)SiO)(4)Ti). TTST was used as a catalyst to promote the hydrolysis and/or polymerization of FAS molecules. The FAS-coated CeO(2) film had a static contact angle of more than 150 degrees, that is, a superhydrophobic property. The shortest processing time for the fabrication of the superhydrophobic surface was 40 min. The contact angle hysteresis decreased with an increase in the immersion time in the cerium nitrate aqueous solution. The chemical stability of the superhydrophobic surface on magnesium alloy AZ31 was investigated. The average static water contact angles of the superhydrophobic surfaces after immersion in the solutions at pH 4, 7, and 10 for 24 h were found to be 139.7 +/- 2, 140.0 +/- 2, and 145.7 +/- 2 degrees, respectively. In addition, the chemical stability of the superhydrophobic surface in the solutions at pH ranging from 1 to 14 was also examined. The superhydrophobic surfaces had static contact angles of more than 142 degrees in the solutions at pH ranging from 1 to 14, showing that our superhydrophobic surface had a high chemical stability. Moreover, the corrosion resistance of the superhydrophobic surface on the magnesium alloy was investigated using electrochemical measurements. PMID:20377219

  19. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    PubMed

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating. PMID:18047150

  20. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    PubMed

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth. PMID:25531028

  1. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  2. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  3. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  4. In situ growth of epitaxial cerium tungstate (100) thin films.

    PubMed

    Skála, Tomáš; Tsud, Nataliya; Orti, Miguel Ángel Niño; Menteş, Tevfik Onur; Locatelli, Andrea; Prince, Kevin Charles; Matolín, Vladimír

    2011-04-21

    The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate. PMID:21399780

  5. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

    SciTech Connect

    Mullins, David R; Albrecht, Peter M; Calaza, Florencia C

    2013-01-01

    Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

  6. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  7. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  8. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS

    EPA Science Inventory

    Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...

  9. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts. PMID:26355535

  10. Deposition and investigation of lanthanum cerium hexaboride thin films

    NASA Astrophysics Data System (ADS)

    Kuzanyan, A. S.; Harutyunyan, S. R.; Vardanyan, V. O.; Badalyan, G. R.; Petrosyan, V. A.; Kuzanyan, V. S.; Petrosyan, S. I.; Karapetyan, V. E.; Wood, K. S.; Wu, H.-D.; Gulian, A. M.

    2006-09-01

    Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 °C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ( T) and S( T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed.

  11. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    SciTech Connect

    Khan, Shadab Ali; Ahmad, Absar

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  12. High temperature stability of a 316 austenitic stainless steel coated with cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Del Angel, Humberto

    Cerium oxide (CeO2-x) nanoparticles were used for coating protection on a 316 Austenitic Stainless Steel (Aust. SS) to enhance the thermal stability of the oxide films formed at high temperatures. Three simple coating methods were used, dipping, spraying and spinning in order to explore the coating film morphology, nanoparticle distribution and its effect on thermal stability of the steel substrates. Experimentally, the selected steel was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. The cerium oxide nanoparticles used on the three methods were synthesized in the laboratory obtaining nanoparticles in the range of 3.5 to 6.2 nanometers. It was found that cerium oxide particle size is affected by temperature. In this case, the activation energy for particle growth was estimated to be around 21,1 kJ/mol. Characterization of the film morphologies before and after oxidation were carried out using Atomic Force Microscopy (AFM), Surface Profilometry, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). A comparison of the three coating methods was carried out for the particular case of the 316 Aust. SS coupons. In addition, the oxidation kinetics was experimentally investigated for the coated samples. For this purpose thermal gravimetric determinations were made at 800°C, 900°C, and 1000°C and oxidation rate constants were calculated at each temperature.

  13. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  14. Antioxidant activity of levan coated cerium oxide nanoparticles.

    PubMed

    Kim, Sun-Jung; Chung, Bong Hyun

    2016-10-01

    Levan coated cerium oxide nanoparticles (LCNPs) with the enhanced antioxidant activity were successfully synthesized and characterized. Levan and their derivatives are attractive for biomedical applications attributable to their antioxidant, anti-inflammation and anti-tumor properties. LCNPs were synthesized using the one-pot and green synthesis system with levan. For production of nanoparticles, levan plays a role as a stabilizing and reducing agent. Fourier transform infrared spectroscopy (FT-IR) analysis showed that LCNPs successfully synthesized. The morphology and size of nanoparticles were confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). LCNPs have good water solubility and stability. The conjugation of levan with cerium oxide nanoparticles improved antioxidant activity. Moreover the level of ROS was reduced after treatment of LCNPs to H2O2 stimulated NIH3T3 cells. These results demonstrate that the LCNPs are useful for applying of treatment of ROS induced diseases. PMID:27312651

  15. Engineered cerium oxide nanoparticles: Effects on bacterial growth and viability

    SciTech Connect

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Allison, Martin R; Brown, Steven D; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear. Further, standardized methods for assessing such interactions are lacking. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. In this study the effects of cerium oxide nanoparticles on the growth and viability of Gram-negative Escherichia coli and Shewanella oneidensis, a metal-reducing bacteria, and Gram-positive Bacillus subtilis were examined relative to particle size, growth media, pH, and dosage. A hydrothermal based synthesis procedure was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined by minimum inhibitory concentration, colony forming units, disc diffusion tests and Live/Dead assays. In growth inhibition experiments involving E. coli and B. subtilis, a clear strain and size-dependent inhibition was observed. S. oneidensis appeared to be unaffected by the cerium oxide nanoparticles. Transmission electron microscopy along with microarray-based transcriptional profiling have been used to understand the response mechanism of the bacteria. The use of multiple analytical approaches adds confidence to toxicity assessments while the use of different bacterial systems highlights the potential wide-ranging effects of

  16. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  17. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    SciTech Connect

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  18. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    PubMed

    Dahle, Jessica T; Arai, Yuji

    2015-02-01

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  19. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    PubMed Central

    Dahle, Jessica T.; Arai, Yuji

    2015-01-01

    Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  20. Biaxially aligned buffer layers of cerium oxide, yttria stabilized zirconia, and their bilayers

    NASA Astrophysics Data System (ADS)

    Gnanarajan, S.; Katsaros, A.; Savvides, N.

    1997-05-01

    Biaxially aligned cerium oxide (CeO2) and yttria stabilized zirconia (YSZ) films were deposited on Ni-based metal (Hastelloy C276) substrates held at room temperature using ion beam assisted (IBAD) magnetron deposition with the ion beam directed at 55° to the normal of the film plane. In addition, we achieved, room-temperature epitaxial growth of CeO2 by bias sputtering to form biaxially aligned CeO2/YSZ bilayers. The crystalline structure and in-plane orientation of films was investigated by x-ray diffraction techniques. Both the IBAD CeO2 and YSZ films, and the CeO2/YSZ bilayers have a (111) pole in the ion beam direction.

  1. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  2. Superconductive articles including cerium oxide layer

    SciTech Connect

    Wu, X.D.; Muenchausen, R.E.

    1991-12-31

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  3. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  4. Anomalous charge trapping dynamics in cerium oxide grown on germanium substrate

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Evangelou, E. K.; Dimoulas, A.; Mavrou, G.; Galata, S.

    2008-03-01

    We have observed charge trapping phenomena in thin films of cerium oxide on n-type germanium (Ge) substrate under constant voltage stress (CVS) condition. The measured shift of the flatband voltage of a high frequency C-V curve immediately after each CVS cycle, was utilized as a method to study the capture dynamics of both preexisting and stress induced oxide defects. At low stress electric field, it is the creation of new interface traps that dominates the trapping characteristics of the corresponding metal-oxide semiconductor capacitors. At higher stress electric field, negative charges are trapped on preexisting traps uniformly located in the bulk of the oxide. From data analysis, the capture cross section of the traps is estimated to be around 1×10-19cm2 which indicates neutral traps possibly related to H+ species and/or oxygen vacancies.

  5. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  6. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  7. Real-time observation of dynamic process of oxygen vacancy migration in cerium oxides under electric field

    SciTech Connect

    Li, Xiaomin; Qi, Kuo; Sun, Muhua; Huang, Qianming; Xu, Zhi E-mail: xdbai@iphy.ac.cn; Wang, Wenlong; Bai, Xuedong E-mail: xdbai@iphy.ac.cn

    2015-11-23

    The dynamic process of oxygen vacancy migration driven by the external electric field is directly observed at atomic scale in the cerium oxides (CeO{sub 2}) thin film by in-situ transmission electron microscopy method. When a bias voltage of a proper value is applied across the CeO{sub 2} film, the oxygen vacancies are formed near the interface of CeO{sub 2}/anode, followed by their migration along the direction of the external electric field. The structural modulation occurs in the [110] zone axis due to the ordering of oxygen vacancies. The migration of oxygen vacancies results in the reversible structural transformation, i.e., releasing and storing oxygen processes in CeO{sub 2}, which is of great significance for the ionic and electronic applications of the cerium oxides materials, such as oxygen pump, gas sensor, resistive random access memory, etc.

  8. Real-time observation of dynamic process of oxygen vacancy migration in cerium oxides under electric field

    NASA Astrophysics Data System (ADS)

    Li, Xiaomin; Qi, Kuo; Sun, Muhua; Huang, Qianming; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2015-11-01

    The dynamic process of oxygen vacancy migration driven by the external electric field is directly observed at atomic scale in the cerium oxides (CeO2) thin film by in-situ transmission electron microscopy method. When a bias voltage of a proper value is applied across the CeO2 film, the oxygen vacancies are formed near the interface of CeO2/anode, followed by their migration along the direction of the external electric field. The structural modulation occurs in the [110] zone axis due to the ordering of oxygen vacancies. The migration of oxygen vacancies results in the reversible structural transformation, i.e., releasing and storing oxygen processes in CeO2, which is of great significance for the ionic and electronic applications of the cerium oxides materials, such as oxygen pump, gas sensor, resistive random access memory, etc.

  9. Interaction of Perchloroethylene with Cerium Oxide in Three-Way Catalysts

    PubMed Central

    Rupp, Erik C.; Betterton, Eric A.; Arnold, Robert G.

    2010-01-01

    The role of cerium oxide on direct oxidation of perchloroethylene (PCE) by a three-way catalyst was explored. In the absence of an external oxidizing agent, PCE was oxidized over an alumina supported Pt/Rh three-way catalyst. We hypothesize that the chlorine atoms in the adsorbed PCE interact with oxygen in CeO2, reducing the cerium to create CeCl3. PMID:21218178

  10. Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajeet; Solanki, Pratima R.; Pandey, M. K.; Ahmad, Sharif; Malhotra, Bansi D.

    2009-10-01

    Cerium oxide nanoparticles (NanoCeO2) and chitosan (CH) based nanobiocomposite film deposited onto indium-tin-oxide coated glass substrate has been used to coimmobilize rabbit immunoglobin (r-IgGs) and bovine serum albumin (BSA) for food borne mycotoxin [ochratoxin-A (OTA)] detection. Electrochemical studies reveal that presence of NanoCeO2 increases effective electro-active surface area of CH-NanoCeO2/indium tin oxide (ITO) nanobiocomposite resulting in high loading of r-IgGs. BSA/r-IgGs/CH-NanoCeO2/ITO immunoelectrode exhibits improved linearity (0.25-6.0 ng/dl), detection limit (0.25 ng/dl), response time (25 s), sensitivity (18 μA/ng dl-1 cm-2), and regression coefficient (r2˜0.997).

  11. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  12. Recent advances (2010-2015) in studies of cerium oxide nanoparticles' health effects.

    PubMed

    Li, Yan; Li, Peng; Yu, Hua; Bian, Ying

    2016-06-01

    Cerium oxide nanoparticles, widespread applied in our life, have attracted much concern for their human health effects. However, most of the works addressing cerium oxide nanoparticles toxicity have only used in vitro models or in vivo intratracheal instillation methods. The toxicity studies have varied results and not all are conclusive. The information about risk assessments derived from epidemiology studies is severely lacking. The knowledge of occupational safety and health (OSH) for exposed workers is very little. Thus this review focuses on recent advances in studies of toxicokinetics, antioxidant activity and toxicity. Additionally, aim to extend previous health effects assessments of cerium oxide nanoparticles, we summarize the epidemiology studies of engineered cerium oxide nanoparticles used as automotive diesel fuel additive, aerosol particulate matter in air pollution, other industrial ultrafine and nanoparticles (e.g., fumes particles generated in welding and flame cutting processes). PMID:27088851

  13. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  14. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  15. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants.

    PubMed

    Barrios, Ana Cecilia; Rico, Cyren M; Trujillo-Reyes, Jesica; Medina-Velo, Illya A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO2, CA+nCeO2) bulk cerium oxide (bCeO2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500mg/kg, both the uncoated and CA+nCeO2 increased shoot length by ~9 and ~13%, respectively, while bCeO2 and CeAc decreased shoot length by ~48 and ~26%, respectively, compared with MPW (p≤0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA+nCeO2 at 250mg/kg, but reduced by bCeO2 at 62.5mg/kg, compared with MPW. At 250 and 500mg/kg, nCeO2 increased Ce in roots by 10 and 7 times, compared to CA+nCeO2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO2 nor CA+nCeO2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO2 at 62.5mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO2 on tomato plants. PMID:26672385

  16. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    PubMed Central

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects. PMID:22613087

  17. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    Sun, Yongfu; Liu, Qinghua; Gao, Shan; Cheng, Hao; Lei, Fengcai; Sun, Zhihu; Jiang, Yong; Su, Haibin; Wei, Shiqiang; Xie, Yi

    2013-11-01

    Finding ideal material models for studying the role of catalytic active sites remains a great challenge. Here we propose pits confined in an atomically thin sheet as a platform to evaluate carbon monoxide catalytic oxidation at various sites. The artificial three-atomic-layer thin cerium(IV) oxide sheet with approximately 20% pits occupancy possesses abundant pit-surrounding cerium sites having average coordination numbers of 4.6 as revealed by X-ray absorption spectroscopy. Density-functional calculations disclose that the four- and five-fold coordinated pit-surrounding cerium sites assume their respective role in carbon monoxide adsorption and oxygen activation, which lowers the activation barrier and avoids catalytic poisoning. Moreover, the presence of coordination-unsaturated cerium sites increases the carrier density and facilitates carbon monoxide diffusion along the two-dimensional conducting channels of surface pits. The atomically thin sheet with surface-confined pits exhibits lower apparent activation energy than the bulk material (61.7 versus 122.9 kJ mol-1), leading to reduced conversion temperature and enhanced carbon monoxide catalytic ability.

  18. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    PubMed Central

    Nelson, Bryant C.; Johnson, Monique E.; Walker, Marlon L.; Riley, Kathryn R.; Sims, Christopher M.

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  19. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine.

    PubMed

    Nelson, Bryant C; Johnson, Monique E; Walker, Marlon L; Riley, Kathryn R; Sims, Christopher M

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  20. Antioxidant Cerium Oxide Nanoparticle Hydrogels for Cellular Encapsulation

    PubMed Central

    Weaver, Jessica D; Stabler, Cherie L

    2015-01-01

    Oxidative stress and the resulting radical by-products cause significant toxicity and graft loss in cellular transplantation. Here, the engineering of an auto-catalytic, antioxidant, self-renewing cerium oxide nanoparticle (CONP)-composite hydrogel is reported. This enzyme-mimetic material ubiquitously scavenges ambient free radicals, with the potential to provide indefinite antioxidant protection. Here, we evaluated the potential of this system to enhance the protection of encapsulated beta cells. Co-incubation of CONPs, free in solution with beta cells, demonstrated potent cytoprotection from superoxide exposure; however, phagocytosis of the CONPs by the beta cells resulted in cytotoxicity at concentrations as low as 1 mM. When CONPs were embedded within alginate hydrogels, the composite hydrogel provided cytoprotection to encapsulated beta cells from free radical attack without cytotoxicity, even up to 10 mM concentrations. This nanocomposite hydrogel has wide applicability in cellular transplantation, with the unique advantage of localization of these potent antioxidant CONPs and their capacity for sustained, long-term scavenging. PMID:25620795

  1. Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Azahar, Md; Malhotra, B. D.

    2012-04-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been co-immobilized onto a nanostructured-cerium oxide (Nano-CeO2) film deposited onto a indium-tin-oxide (ITO) coated glass substrate by dip-coating via sol-gel process for urea detection. This nanostructured film has characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM) and electrochemical techniques, respectively. The particle size of the Nano-CeO2 film has been found to be 23 nm. Electrochemcial response (CV) studies show that Ur-GLDH/Nano-CeO2/ITO bioelectrode is found to be sensitive in the 10-80 mg/dL urea concentration range and can detect urea concentration upto 0.1 mg/dL level. The value of Michaelis-Menten constant (Km) estimated using Lineweaver-Burke plot found as 6.09 mg/dL indicates enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4°C.

  2. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    SciTech Connect

    Rottkay, K. von; Richardson, T.; Rubin, M.; Slack, J.

    1997-07-01

    Cerium titanium oxide samples derived from a solution have been compared against sputtered films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture M{sub A}O{sub 2}-M{sub B}O{sub 2}. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO{sub 2} and TiO{sub 2}, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO{sub 2} and TiO{sub 2}. In order to investigate the performance as passive counter-electrode in Li{sup +} based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  3. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    NASA Astrophysics Data System (ADS)

    von Rottkay, Nik; Richardson, Terry J.; Rubin, Michael; Slack, J.; Masetti, Enrico; Dautzenberg, G.

    1997-10-01

    Cerium titanium oxide samples produced by sol-gel have been compared against sputtered and pulsed laser deposited films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture MAO2-MBO2. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO2 and TiO2, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO2 and TiO2. In order to investigate the performance as passive counter-electrode in Li+ based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  4. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles

    PubMed Central

    Walkey, Carl; Das, Soumen; Seal, Sudipta; Erlichman, Joseph; Heckman, Karin; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William T.

    2014-01-01

    Cerium oxide nanoparticles (Nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of Nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of Nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of Nanoceria in animal studies? 2) What are the considerations to develop Nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials? PMID:26207185

  5. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  6. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    NASA Astrophysics Data System (ADS)

    Tang, Junlei; Han, Zhongzhi; Zuo, Yu; Tang, Yuming

    2011-01-01

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  7. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. PMID:27343939

  8. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction

    PubMed Central

    Asano, Shinichi; Arvapalli, Ravikumar; Manne, Nandini DPK; Maheshwari, Mani; Ma, Bing; Rice, Kevin M; Selvaraj, Vellaisamy; Blough, Eric R

    2015-01-01

    The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (Po) function (sham: 25.6±1.6 N/cm2 vs CeO2: 23.4±0.8 N/cm2 vs Sep: 15.9±1.0 N/cm2 vs Sep+CeO2: 20.0±1.0 N/cm2, P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat. PMID:26491293

  9. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    NASA Astrophysics Data System (ADS)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  10. Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode.

    PubMed

    Silveira, Gustavo; de Morais, Andréia; Villis, Paulo César Mendes; Maroneze, Camila Marchetti; Gushikem, Yoshitaka; Lucho, Alzira Maria Serpa; Pissetti, Fábio Luiz

    2012-03-01

    A silica-cerium mixed oxide (SiCe) was prepared by the sol-gel process, using tetraethylorthosilicate and cerium nitrate as precursors and obtained as an amorphous solid possessing a specific surface area of 459 m(2) g(-1). Infrared spectroscopy of the SiCe material showed the formation of the Si-O-Ce linkage in the mixed oxide. Scanning electron microscopy/energy dispersive spectroscopy indicated that the cerium oxide particles were homogenously dispersed on the matrix surface. X-ray diffraction and (29)Si solid-state nuclear magnetic resonance implied non-crystalline silica matrices with chemical environments that are typical for silica-based mixed oxides. X-ray photoelectron spectroscopy showed that Ce was present in approximately equal amounts of both the 3+ and 4+ oxidation states. Cyclic voltammetry data of electrode prepared from the silica-cerium mixed oxide showed a peak for oxidation of Ce(3+)/Ce(4+) at 0.76 V and electrochemical impedance spectroscopy equivalent circuit indicated a porous structure with low charge transfer resistance. In the presence of nitrite, the SiCe electrode shows an anodic oxidation peak at 0.76 V with a linear response as the concentration of the analyte increases from 3×10(-5) at 3.9×10(-3) mol L(-1). PMID:22192596

  11. Development of graphene-nanometre-sized cerium oxide-incorporated aluminium and its electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Ashraf, P. Muhamed; Thomas, Saly N.; Edwin, Leela

    2016-02-01

    Graphene-nanometre-sized cerium oxide-incorporated aluminium was prepared and its electrochemical and surface morphological characteristics were studied. The atomic force micrographs and scanning electron micrographs evaluation highlighted that the graphene and nanometre-sized cerium oxide in aluminium had decreased the surface roughness and improved the surface morphological characteristics. The graphene: nanometre-sized cerium oxide (ratios 1:2 or 2:1) with lesser amounts of particle in the matrix showed excellent corrosion resistance in the marine environment as evidenced by linear polarization, electrochemical impedance and weight loss studies. Introduction of graphene in the aluminium matrix showed a barrier separation between the outermost layer and inner layer, increased roughness and increased corrosion. The material is found to be a potential candidate for use in marine environment.

  12. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  13. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    SciTech Connect

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-15

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 deg. C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 deg. C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles. - Graphical abstract: The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated using small angle X-ray scattering, dynamic light scattering and high-resolution transmission electron microscopy. Catalytic activity of ceria nanoparticles was tested in soot combustion reaction indicating size-dependent reactivity.

  14. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.

    PubMed

    Ma, Xingmao; Wang, Qiang; Rossi, Lorenzo; Zhang, Weilan

    2016-07-01

    Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants. PMID:26691446

  15. (Hydro)peroxide ligands on colloidal cerium oxide nanoparticles.

    PubMed

    Damatov, Delina; Mayer, James M

    2016-08-11

    Anhydrous H2O2 reacts with organic colloidal solutions of ceria nanoparticles to form a stable surface peroxo/hydroperoxo species with the release of oleate capping ligands into solution. A new optical spectroscopic signature was identified for cerium-peroxo/hydroperoxo species in solution and correlated with solid-state IR spectroscopy and chemical reactivity. PMID:27468991

  16. Hydrothermal preparation of fractal dendrites: Cerium carbonate hydroxide and cerium oxide

    SciTech Connect

    Wu Mingzai; Zhang Qihua; Liu Yanmei; Fang Qingqing; Liu Xiansong

    2009-06-03

    The surfactant-assisted hydrothermal route was used to prepare fractal dendrite cerium carbonate hydroxide (CeOHCO{sub 3}) microstructures. After annealing at 600 deg. C for 4 h, the products were transformed to CeO{sub 2}. The crystal structures of the two compounds were determined by X-ray diffraction (XRD). The morphologies and microstructures were characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Room temperature photoluminescence (PL) showed that a strong ultraviolet emission at 336 nm was observed for CeOHCO{sub 3}, and that centered at 415 nm for CeO{sub 2} microstructures. Both of these emission peaks are different from those reported for CeOHCO{sub 3} and CeO{sub 2} with other shapes. In addition, the possible growth mechanism of dendrite CeOHCO{sub 3} microstructures and the role of surfactant polyvinyl pyrrolidone (PVP) were also investigated in this paper.

  17. Gold-supported cerium-doped NiOx catalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-05-01

    The development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  18. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis.

    PubMed

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankenhanel, Erin; Ma, J Y; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-09-01

    The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of cerium oxide nanoparticle treatments ability to prevent the LPS induced sepsis associated changes in physiological, blood cell count, inflammatory protein and growth factors in vivo. In vitro assays investigation the treated of macrophages cells with different concentrations of cerium oxide nanoparticle demonstrate that concentration of cerium oxide nanoparticles below 1 µg/ml did not significantly influence cell survival as determined by the MTT assay. PMID:26217772

  19. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  20. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-01

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 °C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 °C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles.

  1. Sulfurization behavior of cerium doped uranium oxides by CS{sub 2}

    SciTech Connect

    Sato, Nobuaki; Kato, Shintaro; Kirishima, Akira; Tochiyama, Osamu

    2007-07-01

    For the recovery of nuclear materials from the spent nuclear fuel, the sulfide process has been proposed and the voloxidation of spent fuel and selective sulfurization rare-earth elements has been proposed. In this paper, cerium was used as a stand-in of plutonium and sulfurization behavior of cerium doped uranium dioxide by CS{sub 2} was studied. UO{sub 2} was oxidized to U{sub 3}O{sub 8} in air, while the Ce doped UO{sub 2} solid solution was formed in the presence of CeO{sub 2} by the heat treatment in air. The effect of heating time, temperature and the ratio of uranium to cerium on the formation of solid solution was analyzed. The results were also compared with those of thermodynamic consideration. (authors)

  2. Cerium(IV) Hexanuclear Clusters from Cerium(III) Precursors: Molecular Models for Oxidative Growth of Ceria Nanoparticles.

    PubMed

    Mathey, Laurent; Paul, Mitali; Copéret, Christophe; Tsurugi, Hayato; Mashima, Kazushi

    2015-09-14

    Reactions of cerium(III) nitrate, Ce(NO3 )3 ⋅6 H2 O, with different carboxylic acids, such as pivalic acid, benzoic acid, and 4-methoxybenzoic acid, in the presence of a tridentate N,N,N-donor ligand, diethylenetriamine (L(1) ), under aerobic conditions yielded the corresponding cerium hexamers Ce6 O8 (O2 CtBu)8 (L(1) )4 (1), Ce6 O8 (O2 CC6 H5 )8 (L(1) )4 (2), and Ce6 O8 (O2 CC6 H4 -4-OCH3 )8 (L(1) )4 (3). Hexamers 1, 2, and 3 contain the same octahedral Ce(IV) 6 O8 core, in which all interstitial oxygen atoms are connected by μ3 -oxo bridging ligands. In contrast, treatment of the Ce(IV) precursor (NH4 )2 Ce(NO3 )6 (CAN) with pivalic acid and the ligand L(1) under the same conditions afforded Ce6 O4 (OH)4 (O2 CtBu)12 (L(1) )2 (4), exhibiting a deformed octahedral Ce(IV) 6 O4 (OH)4 core containing μ3 -oxo and μ3 -hydroxo moieties in defined positions. In contrast to the formation of 1-3, the use of N-methyldiethanolamine (L) in the reaction with Ce(NO3 )3 ⋅6 H2 O and pivalic acid afforded a previously reported Ce(III) dinuclear cluster, Ce2 (O2 CtBu)6 L2 , even in the presence of dioxygen. ESI-MS analysis of the reaction mixture clearly indicated the importance of the ligand L(1) in promoting oxidation of the Ce(III) aggregates, [Cen (O2 CtBu)3n (L(1) )2 ], which is necessary for the formation of Ce(IV) hexamers. PMID:26236034

  3. Electrochemical & Thermochemical Behavior of Cerium(IV) Oxide delta

    NASA Astrophysics Data System (ADS)

    Chueh, William C.

    The mixed-valent nature of nonstoichiometric ceria (CeO2-delta ) gives rise to a wide range of intriguing properties, such as mixed ionic and electronic conduction and oxygen storage. Surface and transport behavior in rare-earth (samaria) doped and undoped ceria were investigated, with particular emphasis on applications in electrochemical and thermochemical energy conversion processes such as fuel cells and solar fuel production. The electrochemical responses of bulk-processed ceria with porous Pt and Au electrodes were analyzed using 1-D and 2-D transport models to decouple surface reactions, near-surface transport and bulk transport. Combined experimental and numerical results indicate that hydrogen electro-oxidation and hydrolysis near open-circuit conditions occur preferentially over the ceria | gas interface rather than over the ceria | gas | metal interface, with the rate-limiting step likely to be either surface reaction or transport through the surface oxygen vacancy depletion layer. In addition, epitaxial thin films of ceria were grown on zirconia substrates using pulsed-laser deposition to examine electrocatalysis over well-defined microstructures. Physical models were derived to analyze the electrochemical impedance response. By varying the film thickness, interfacial and chemical capacitance were decoupled, with the latter shown to be proportional to the small polaron densities. The geometry of microfabricated metal current collectors (metal = Pt, Ni) was also systematically varied to investigate the relative activity of the ceria | gas and the ceria | metal | gas interfaces. The data suggests that the electrochemical activity of the metal-ceria composite is only weakly dependent on the metal due to the relatively high activity of the ceria | gas interface. In addition to electrochemical experiments, thermochemical reduction-oxidation studies were performed on ceria. It was shown that thermally-reduced ceria, upon exposure to H 2O and/or CO2, can be

  4. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  5. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk.

    PubMed

    Bölükbaşı, S C; Al-Sagan, A A; Ürüşan, H; Erhan, M K; Durmuş, O; Kurt, N

    2016-08-01

    This study was conducted to determine the effects of dietary cerium oxide levels (0, 100, 200, 300 or 400 mg/kg) on the laying performance, egg quality, some blood serum parameters and egg lipid peroxidation of laying hen. In total, one hundred and twenty 22-week-old brown Lohman LSL laying hens were randomly assigned to five groups equally (n = 24). Each treatment was replicated six times. Dietary supplementation of cerium oxide had no significant effect on feed intake and egg weight. The addition of cerium oxide to the laying hens' feed improved feed conversion ratio and increased (p < 0.05) egg production. Quality criteria of egg for except shell breaking strength were not affected by supplementing cerium oxide. In particular, supplementation of 200 and 300 mg/kg cerium oxide to the laying hens feed led to a significant (p < 0. 01) increase in egg shell breaking strength. Calcium and phosphorus concentration of serum increased significantly (p < 0.05) with supplementation of 100 mg/kg cerium oxide to laying hen diets. It was also observed that serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration decreased significantly with supplementation of cerium oxide in diets. Inclusion of cerium oxide resulted in a significant reduction in thiobarbituric acid reactive substance (TBARS) values in egg yolk in this study. It can be concluded that the addition of cerium oxide had positive effects on egg production, feed conversion ratio and egg shelf life. Based on the results of this study, it could be advised to supplement laying hens feed with cerium oxide as feed additives. PMID:26847677

  6. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  7. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  8. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    SciTech Connect

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  9. Thermal Property Evaluation of Cerium Dioxide and Cerium Dioxide Magnesium Oxide Powders for Testing Plutonium

    SciTech Connect

    HOYT, R C

    2002-06-01

    Ceric oxide (CeO{sub 2}) and mixtures of CeO{sub 2} -magnesium oxide (MgO) have been utilized at the Plutonium Finishing Plant (PFP) as surrogate materials to represent plutonium dioxide (PuO{sub 2}) and impure PuO{sub 2} containing impurities such as MgO during verification tests on PFP's stabilization furnaces. Magnesium oxide was selected during furnace testing as the impurity of interest since much of the impure PuO{sub 2} to be stabilized and packaged at the PFP contains significant amounts of MgO from solution stabilization work. The issue being addressed in this study is whether or not heating the surrogate materials to 950 C adequately simulates heating PuO{sub 2} powders to 950 C. This paper evaluates some of the thermal properties of these oxides, as related to the heating of powders of these materials where heat transfer within the powders is governed primarily by conduction. Detailed heat transfer modeling was outside the scope of this paper.

  10. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  11. Aqueous Co-precipitation of Pd-doped Cerium Oxide Nanoparticles: Chemistry Structure and Particle Growth

    SciTech Connect

    Liang H.; Zhang L.; Raitano J.M.; He G.; Akey A.J.; Herman I.P.; Chan S.-W.

    2012-01-01

    Nanoparticles of palladium-doped cerium oxide (Pd-CeO{sub 2}) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson-Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO{sub 2} in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO{sub 2} lattice inhibits the growth of the 6% Pd-CeO{sub 2} particles compared to pure CeO{sub 2} between 600 and 850 C. Activation energies for grain growth of 54 {+-} 7 and 79 {+-} 8 kJ/mol were determined for 6% Pd-CeO{sub 2} and pure CeO{sub 2}, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide.

  12. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover.

    PubMed

    Novotny, Zbynek; Netzer, Falko P; Dohnálek, Zdenek

    2015-08-25

    Cerium oxide is an important catalytic material known for its ability to store and release oxygen, and as such, it has been used in a range of applications, both as an active catalyst and as a catalyst support. Using scanning tunneling microscopy and Auger electron spectroscopy, we investigated oxygen interactions with CeOx nanoclusters on a complete graphene monolayer-covered Ru(0001) surface at elevated temperatures (600-725 K). Under oxidizing conditions (PO2 = 1 × 10(-7) Torr), oxygen intercalation under the graphene layer is observed. Time dependent studies demonstrate that the intercalation proceeds via spillover of oxygen from CeOx nanoclusters through the graphene (Gr) layer onto the Ru(0001) substrate and extends until the Gr layer is completely intercalated. Atomically resolved images further show that oxygen forms a p(2 × 1) structure underneath the Gr monolayer. Temperature dependent studies yield an apparent kinetic barrier for the intercalation of 1.21 eV. This value correlates well with the theoretically determined value for the reduction of small CeO2 clusters reported previously. At higher temperatures, the intercalation is followed by a slower etching of the intercalated graphene (apparent barrier of 1.60 eV). Vacuum annealing of the intercalated Gr leads to the formation of carbon monoxide, causing etching of the graphene film, demonstrating that the spillover of oxygen is not reversible. In agreement with previous studies, no intercalation is observed on a complete graphene monolayer without CeOx clusters, even in the presence of a large number of point defects. These studies demonstrate that the easily reducible CeOx clusters act as intercalation gateways capable of efficiently delivering oxygen underneath the graphene layer. PMID:26230753

  13. The effect of cerium and lanthanum surface treatments on early stages of oxidation of A361 aluminium alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Pardo, A.; Feliú, S.; Merino, M. C.; Arrabal, R.; Matykina, E.

    2007-11-01

    X-ray photoelectron spectroscopy analysis has been used to study the surface of A361 aluminium alloy after electrodeposition of cerium and lanthanum compounds followed by oxidation tests in air at 100-500 °C for 2 h. Cerium and lanthanum oxide deposits are found on the β-AlFeSi second phase particles and to a lesser extent on the eutectic Al-Si areas, while the α-Al phase is covered with a thin aluminium oxide film. This uneven deposition may be related either to a preferential nucleation and growth process on active interfaces or to the differing electrical conductivity of the phases and intermetallic compounds of the alloy. Initial stages of oxidation of A361 alloy disclosed thickening of the aluminium oxide layer and Mg enrichment at the surface, especially above 400 °C. Rare earth deposits revealed two different effects: reduced Mg diffusion and enhanced thickening of the aluminium oxide film. A distinctive behaviour of Ce oxide appears at 300-500 °C related with Ce(III) to Ce(IV) transition.

  14. One step hydrothermal synthesis of a carbon nanotube/cerium oxide nanocomposite and its electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kalubarme, Ramchandra S.; Kim, Yong-Han; Park, Chan-Jin

    2013-09-01

    A carbon nanotube (CNT)/cerium oxide composite was prepared by a one-pot hydrothermal reaction in the presence of KOH and capping agent polyvinylpyrrolidone. The nanocomposite displayed pronounced capacitive behaviour with very small diffusion resistance. The electrochemical performance of the composite electrode in a symmetric supercapacitor displayed a high energy density of 35.9 Wh kg-1 corresponding to a specific capacitance of 289 F g-1. These composite electrodes also demonstrated a long cycle life with better capacity retention.

  15. Reactivity of oxygen deficient cerium oxide clusters with small gaseous molecules.

    PubMed

    Nagata, Toshiaki; Miyajima, Ken; Hardy, Robert Allan; Metha, Gregory F; Mafuné, Fumitaka

    2015-06-01

    Oxygen deficient cerium oxide cluster ions, Ce(n)O(m)(+) (n = 2-10, m = 1-2n) were prepared in the gas phase by laser ablation of a cerium oxide rod. The reactivity of the cluster ions was investigated using mass spectrometry, finding that oxygen deficient clusters are able to extract oxygen atoms from CO, CO2, NO, N2O, and O2 in the gas phase. The oxygen transfer reaction is explained in terms of the energy balance between the bond dissociation energy of an oxygen containing molecule and the oxygen affinity of the oxygen-deficient cerium oxide clusters, which is supported by DFT calculations. The reverse reaction, i.e., formation of the oxygen deficient cluster ions from the stoichiometric ones was also examined. It was found that intensive heating of the stoichiometric clusters results in formation of oxygen deficient clusters via Ce(n)O(2n)(+) → Ce(n)O(2n-2)(+) + O2, which was found to occur at different temperatures depending on cluster size, n. PMID:25965076

  16. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-05-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.

  17. Highly stable, mesoporous mixed lanthanum-cerium oxides with tailored structure and reducibility

    SciTech Connect

    Liang, Shuang; Broitman, Esteban; Wang, Yanan; Cao, Anmin; Veser, Goetz

    2011-05-01

    Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity.

  18. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods

    SciTech Connect

    Johnson, B.Y.; Edington, J.; Williams, A.; O'Keefe, M.J. . E-mail: mjokeefe@umr.edu

    2005-01-15

    Microstructural characteristics of cerium oxide conversion coatings obtained by electrolytic, dip-immersion and spray deposition methods from aqueous solutions were studied by transmission electron microscopy and electron diffraction analysis. The coatings were applied to aluminum alloy 7075-T6 panels and the pretreatment conditions were the same for all coating methods. The results indicated that the as-deposited coatings were all composed of nanocrystalline particles with narrow size distributions. Electron diffraction analysis revealed that the electrolytic and the spray coatings developed the same crystal structure, possibly Ce{sub 7}O{sub 12}, while the dip-immersion coating had a different structure that has not been reported in the literature. After post-treatment in phosphate solution, all three as-deposited coatings were converted to hydrated cerium phosphate.

  19. Long-term testing of in-situ cerium oxide coated anodes for aluminum electrowinning

    SciTech Connect

    King, H.L.

    1989-10-01

    The ELTECH Anode Phase 2 Project (Contract Number AC07-86ID12655), as supported by the Department of Energy (DOE) from December 1988 through April 1989, focused on long-term testing of in-situ anodically deposited cerium oxide (CEROX) coatings on nickel ferrite/Cu cermets. The specific objective of this research was to determine the effectiveness of the CEROX coating in reducing the transfer of cermet components to the produced aluminum. A dosing regimen was first established for the minimum addition of cerium to the cell necessary to produce targeted CEROX coatings on the cermet anode and the periodic additions necessary to maintain coating thicknesses. The effects of the addition of CeF{sub 3} on CEROX coating formation was evaluated for targeted coating thicknesses at three different current densities. Analytical procedures were identified for determining alumina concentrations and the cryolite bath ratio for quasi-commercial baths.

  20. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    PubMed Central

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Background Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. Methods A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Results Spherical nanoceria of 7–10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti

  1. The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Hołyńska, Małgorzata; Shen, Jian-Ren; Allakhverdiev, Suleyman I; Allakhverdiev, Suleyman

    2015-12-01

    Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 (18) O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides. PMID:25701552

  2. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator.

    PubMed

    Dogra, Yuktee; Arkill, Kenton P; Elgy, Christine; Stolpe, Bjorn; Lead, Jamie; Valsami-Jones, Eugenia; Tyler, Charles R; Galloway, Tamara S

    2016-05-01

    Cerium oxide nanoparticles (CeO2 NPs) exhibit fast valence exchange between Ce(IV) and Ce(III) associated with oxygen storage and both pro and antioxidant activities have been reported in laboratory models. The reactivity of CeO2 NPs once they are released into the aquatic environment is virtually unknown, but this is important to determine for assessing their environmental risk. Here, we show that amphipods (Corophium volutator) grown in marine sediments containing CeO2 NPs showed a significant increase in oxidative damage compared to those grown in sediments without NPs and those containing large-sized (bulk) CeO2 particles. There was no exposure effect on survival, but significant increases in single-strand DNA breaks, lipid peroxidation and superoxide dismutase activity were observed after a 10-day exposure to 12.5 mg L(-1) CeO2. Characterisation of the CeO2 NPs dispersed in deionised or saline exposure waters revealed that more radicals were produced by CeO2 NPs compared with bulk CeO2. Electron energy loss spectroscopy (EELS) analysis revealed that both CeO2 NPs were predominantly Ce(III) in saline waters compared to deionised waters where they were predominantly Ce(IV). In both types of medium, the bulk CeO2 consisted mainly of Ce(IV). These results support a model whereby redox cycling of CeO2 NPs between Ce(III) and Ce(IV) is enhanced in saline waters, leading to sublethal oxidative damage to tissues in our test organism. PMID:26554927

  3. Stable stoichiometry of gas-phase cerium oxide cluster ions and their reactions with CO.

    PubMed

    Nagata, Toshiaki; Miyajima, Ken; Mafuné, Fumitaka

    2015-03-12

    Cerium oxide cluster ions, Ce(n)O(2n+x)(+) (n = 2-9, x = -1 to +2), were prepared in the gas phase by laser ablation of a cerium oxide rod in the presence of oxygen diluted in He as the carrier gas. The stable stoichiometry of the cluster ions was investigated using a mass spectrometer in combination with a newly developed post heating device. The oxygen-rich clusters, Ce(n)O(2n+x)(+) (x = 1, 2), were found to release oxygen molecules, and Ce(n)O(2n+x)(+) (x = -1, 0) were exclusively formed by post heating treatment at 573 K. The Ce(n)O(2n-1)(+) and Ce(n)O(2n)(+) clusters were found to be thermally stable, and the oxygen-rich clusters consisted of robust Ce(n)O(2n-1)(+) and Ce(n)O(2n)(+) and weakly bound oxygen atoms. Evaluation of the reactivity of Ce(n)O(2n+x)(+) with CO molecules demonstrated that Ce(n)O(2n)(+) oxidized CO to form Ce(n)O(2n-1)(+) and CO2, and the rate constants of the reaction were in the range of 10(-12)-10(-16) cm(3) s(-1). The CO oxidation reaction was distinct for n = 5, which occurred in parallel with the CO attachment reaction. PMID:25651032

  4. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation.

    PubMed

    Salomäki, Mikko; Tupala, Matti; Parviainen, Timo; Leiro, Jarkko; Karonen, Maarit; Lukkari, Jukka

    2016-04-26

    The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction. PMID:27049932

  5. Cerium-based binary and ternary oxides in the transesterification of dimethylcarbonate with phenol.

    PubMed

    Dibenedetto, Angela; Angelini, Antonella; di Bitonto, Luigi; De Giglio, Elvira; Cometa, Stefania; Aresta, Michele

    2014-04-01

    Diphenyl carbonate (DPC) plays a key role in phosgene-free carbonylation processes. It can be produced by transesterification of dimethyl carbonate (DMC) with phenol in the presence of catalysts. Methyl phenyl carbonate (MPC) is first produced that is then converted into DPC by either disproportionation or further transesterification with phenol. Cerium-based bimetallic oxides (with the heterometal being niobium, iron, palladium, or aluminum) are used as catalysts in the transesterification of DMC to synthesize MPC. The catalytic activity is affected by the type and concentration of the heterometal. XPS, IR and elementary analyses are employed to characterize the new catalysts. Differently from pure oxides, the mixed oxides produce a significant increase of the conversion and selectivity towards MPC. PMID:24616260

  6. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Chi, Anthony

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  7. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    NASA Astrophysics Data System (ADS)

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  8. Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Román, E.; de Segovia, J. L.; Poupard, S.; Creus, J.; Pedraza, F.

    2011-05-01

    A surface study of electrodeposited cerium oxide based coatings is presented. Different surface analytical techniques were used in order to obtain complementary information to fully characterize such complex systems. X-ray Photoelectron Spectroscopy was used as the main technique to determine the surface composition of the coating. The analysis of the core level peaks of the elements provides additional information about the functional groups present on the surface. A mixture of Ce (III) and Ce (IV) was found in the coating and their proportion was calculated at different depths. The analysis of the O 1s core level peak revealed a triple structure whose origin will be discussed. To support the results obtained, electron stimulated desorption was performed. The study was completed with Auger electron spectroscopy and Raman spectroscopy, both techniques having different surface sensitivities. From all these results, it is derived that incomplete electrochemical reactions occurred during the growth of the coatings. This led to rather complex compositions, in which defective cerium oxides are the major species. In addition, hydroxides, carbonates and nitrates are also present, together with adsorbed water.

  9. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2015-01-01

    The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth. PMID:25242526

  10. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes.

    PubMed

    Janoš, Pavel; Henych, Jiří; Pelant, Ondřej; Pilařová, Věra; Vrtoch, Luboš; Kormunda, Martin; Mazanec, Karel; Štengl, Václav

    2016-03-01

    Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol-gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase. PMID:26561750

  11. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro.

    PubMed

    Popov, Anton L; Popova, Nelly R; Selezneva, Irina I; Akkizov, Azamat Y; Ivanov, Vladimir K

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. PMID:27524035

  12. Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass.

    PubMed

    Yi, Peng; Pignatello, Joseph J; Uchimiya, Minori; White, Jason C

    2015-11-17

    Heteroaggregation with indigenous particles is critical to the environmental mobility of engineered nanomaterials (ENM). We studied heteroaggregation of ceria nanoparticles (n-CeO2), as a model for metal oxide ENM, with nanoparticles of pyrogenic carbonaceous material (n-PCM) derived from pecan shell biochar, a model for natural chars and human-made chars used in soil remediation and agriculture. The TEM and STEM images of n-PCM identify both hard and soft particles, both C-rich and C,O,Ca-containing particles (with CaCO3 crystals), both amorphous and "onion-skin" C-rich particles, and traces of nanotubes. Heteroaggregation was evaluated at constant n-CeO2, variable n-PCM concentration by monitoring hydrodynamic diameter by dynamic light scattering and ζ-potential under conditions where n-PCM is "invisible". At pH 5.3, where n-CeO2 and n-PCM are positively and negatively charged, respectively, and each stable to homoaggregation, heteroaggregation is favorable and occurs by a charge neutralization-charge reversal mechanism (CNCR): in this mechanism, primary heteroaggregates that form in the initial stage are stable at low or high n-PCM concentration due to electrostatic repulsion, but unstable at intermediate n-PCM concentration, leading to secondary heteroaggregation. The greatest instability coincides with full charge neutralization. At pH 7.1, where n-CeO2 is neutral and unstable alone, and n-PCM is negative and stable alone, heteroaggregation occurs by a charge-accumulation, core-shell stabilization (CACS) mechanism: n-PCM binds to and forms a negatively charged shell on the neutral surface of the nascent n-CeO2 core, stabilizing the core-shell heteraggregate at a size that decreases with n-PCM concentration. The CNCR and CACS mechanisms give fundamental insight into heteroaggregation between oppositely charged, and between neutral and charged nanoparticles. PMID:26461459

  13. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    PubMed Central

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  14. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects.

    PubMed

    Snow, Samantha J; McGee, John; Miller, Desinia B; Bass, Virginia; Schladweiler, Mette C; Thomas, Ronald F; Krantz, Todd; King, Charly; Ledbetter, Allen D; Richards, Judy; Weinstein, Jason P; Conner, Teri; Willis, Robert; Linak, William P; Nash, David; Wood, Charles E; Elmore, Susan A; Morrison, James P; Johnson, Crystal L; Gilmour, Matthew Ian; Kodavanti, Urmila P

    2014-12-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  15. Catalytic oxidative treatment of diluted black liquor at mild conditions using copper oxide/cerium oxide catalyst.

    PubMed

    Garg, Anurag; Mishra, Indra M; Chand, Shri

    2008-02-01

    Wet-air oxidation of diluted black liquor (chemical oxygen demand [COD] approximately 3250 to 14 500 mg/L) was performed at mild operating conditions (temperature = 388 to 423 K and total pressure = 0.6 MPa) in the presence of heterogeneous 60% copper oxide (CuO)/ 40% cerium oxide (CeO2) catalyst. Maximum COD reduction of 77.3% was obtained at 423 K at pH 3.0, which was marginally higher than that obtained at 413 K temperature (77.1%). In the acidic environment (pH < or = 3), most of the COD was removed in the form of settleable solids during the transient heating of the wastewater from room temperature to the desired one. The solid residue obtained after the reaction has a heating value of 20.1 MJ/kg, which is comparable with that of Indian coal. Thermal degradation kinetic determination suggested that thermal characteristics of the solid residue are well represented by a power law model with Agarwal and Sivasubramanian approximation (Safi et al., 2004). PMID:18330223

  16. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  17. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  18. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    PubMed Central

    von Montfort, Claudia; Alili, Lirija; Teuber-Hanselmann, Sarah; Brenneisen, Peter

    2014-01-01

    Recently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS)-induced cell death and stimulate proliferation due to the antioxidative property of these particles. PMID:25479549

  19. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  20. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.

    PubMed

    Naganuma, Tamaki; Traversa, Enrico

    2014-06-21

    Abundant oxygen vacancies coexisting with Ce(3+) ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce(3+) ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce(3+) ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce(3+) and Ce(4+) ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce(3+) ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce(3+) ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce(3+) ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce(3+) to Ce(4+) occurred at 350 °C in air. Highly concentrated Ce(3+) ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce(3+) stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce(3+) sites. This study also illuminates the potential interaction mechanisms of stable Ce(3+) ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. PMID:24812662

  1. Computational and Experimental Study of the Thermodynamics of Uranium-Cerium Mixed Oxides

    NASA Astrophysics Data System (ADS)

    Hanken, Benjamin Edward

    The thermophysical properties of mixed oxide (MOX) fuels, and how they are influenced by the incorporation of fission products and other actinides, must be well understood for their safe use in an advanced fuel cycle. Cerium is a common plutonium surrogate in experimental studies of MOX, as it closely matches plutonium's ionic radii in the 3+ and 4+ oxidation states, and is soluble in fluorite-structured UO2. As a fission product, cerium's effects on properties of MOX are also of practical interest. To provide additional insights on structure-dependent behavior, urania solid solutions can be studied via density functional theory (DFT), although approaches beyond standard DFT are needed to properly account for the localized nature of the ƒ-electrons. In this work, DFT with Hubbard-U corrections (DFT+U) was employed to study the energetics of fluorite-structured U1-yCe yO2 mixtures. The employed computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties of U1-yCeyO2 on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, it was found that charge transfer between U4+ and Ce4+ ions, leading to the formation of U5+ and Ce3+, gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of the formula unit, depending on the nature of the cation ordering. In conjunction with the computational approach, high-temperature oxide-melt drop-solution calorimetry experiments were performed on eight samples spanning compositions of y = 0.119 to y = 0.815. Room temperature mixing enthalpies of U1-yCeyO2 determined from these experiments show near

  2. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  3. Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonii.

    PubMed

    Rundle, Amanda; Robertson, Anne B; Blay, Alexandra M; Butler, Kathryn M A; Callaghan, Neal I; Dieni, Christopher A; MacCormack, Tyson J

    2016-01-01

    Metal oxide nanomaterials can cause oxidative, cardiorespiratory, and osmoregulatory stress in freshwater fish. In contrast, cerium oxide nanoparticles (nCeO2) can have antioxidant effects but their aquatic toxicity has not been fully characterized. Heart rate and heart rate variability were followed in white sucker (Catostomus commersonii) acutely exposed to 1.0 mg L(-1) nCeO2 for 25 h. Malondialdehyde (MDA) was measured to assess oxidative tissue damage, and plasma cortisol, glucose, lactate, and osmolality were assessed as indicators of physiological and osmoregulatory stress. There was no MDA accumulation in gill or heart of fish exposed to nCeO2 and heart function was unchanged over the 25 h treatment. Plasma cortisol increased 6-fold but there was no change in plasma glucose or lactate. Cellular osmoregulatory toxicity was studied using an isolated red blood cell (RBC) model. In vitro exposure to 1.0 mg L(-1) nCeO2 for 1h had no effect on cell morphological parameters and did not sensitize RBCs to hemolysis under hypotonic stress. Overall, there were no indications of oxidative, cardiorespiratory, or osmoregulatory stress following acute exposure to nCeO2. Elevated plasma cortisol levels suggest that nCeO2 may exert mild toxicity to tissues outside of the cardiorespiratory system. PMID:26743956

  4. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  5. Hyaluronan coated cerium oxide nanoparticles modulate CD44 and reactive oxygen species expression in human fibroblasts.

    PubMed

    Lord, Megan S; Farrugia, Brooke L; Yan, Claudia M Y; Vassie, James A; Whitelock, John M

    2016-07-01

    Cerium oxide nanoparticles are being widely explored for cell therapies. In this study, nanoceria was functionalized with hyaluronan (HA) using the organosilane linker, 3-aminopropyltriethoxysilane. HA-nanoceria was found to be cytocompatible and to reduce intracellular reactive oxygen species in human fibroblasts. The HA-nanoceria was found to colocalize with CD44 on the surface of the cells and once internalized traffic to the lysosomes, be degraded and induce markers of autophagy. These particles were also effective in reducing the cell surface expression of CD44. Together these data suggest that HA-nanoceria is a promising drug delivery material to target CD44-expressing cells through a variety of mechanisms. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1736-1746, 2016. PMID:26946213

  6. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R.; Vanderspurt, Thomas Henry; Tulyani, Sonia; Radhakrishnan, Rakesh; Opalka, Susanne Marie; Emerson, Sean C.

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  7. Ultrathin, epitaxial cerium dioxide on silicon

    SciTech Connect

    Flege, Jan Ingo Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens; Bertram, Florian; Wollschläger, Joachim

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  8. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  9. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    PubMed Central

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns. PMID:24793434

  10. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI)

    PubMed Central

    Ouyang, Zi; Mainali, Madan Kumar; Sinha, Neeharika; Strack, Guinevere; Altundal, Yucel; Hao, Yao; Winningham, Thomas Andrew; Sajo, Erno; Celli, Jonathan; Ngwa, Wilfred

    2016-01-01

    The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators—via a degradable coating—and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4 Gy, 5 ng-g−1 of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2 nm sized NPs, with an initial concentration of 1 mg-g−1, we found that 2–10 days of diffusion is required to obtain desired concentrations of CONPs in regions 1–2 cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity. PMID:27053452

  11. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI).

    PubMed

    Ouyang, Zi; Mainali, Madan Kumar; Sinha, Neeharika; Strack, Guinevere; Altundal, Yucel; Hao, Yao; Winningham, Thomas Andrew; Sajo, Erno; Celli, Jonathan; Ngwa, Wilfred

    2016-04-01

    The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators-via a degradable coating-and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4Gy, 5ng·g(-1) of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2nm sized NPs, with an initial concentration of 1mg·g(-1), we found that 2-10days of diffusion is required to obtain desired concentrations of CONPs in regions 1-2cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity. PMID:27053452

  12. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    NASA Astrophysics Data System (ADS)

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-10-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials.

  13. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states.

    PubMed

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-01-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce(3+) sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce(3+) sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials. PMID:26489858

  14. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    PubMed Central

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-01-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials. PMID:26489858

  15. Morphology of cerium oxide surfaces in an oxidzing enviroment:a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Fronzi, Marco; Soon, Aloysius; Stampfl, Catherine; Delley, Bernard; Traversa, Enrico

    2007-03-01

    A good understanding of the stability and chemistry of CeO2 surfaces is crucial for a better designing of solid oxide fuel cells. As the first step, we use DFT [1] to study the structural and electronic ground state properties of bulk CeO2. various surface termination of the low-index surface of CeO2 are then investigated, namely the stoichiometric, metal- and oxygen- rich terminations, and defected surfaces. Using the concept of ab initio atomistic thermodynamics&[tilde;2], we calculate the surface free energy phase diagram. This allows us to identify and predict stable, and potentally catalytically important, structures. There is an evidence to suggest an interesting morphological change in the surface structures with varying oxygen concentration. Reaction pathways for methane oxidation on low energy cerium oxide surfaces are being investigated and will be reported.[1] Formulated in the DMol^3 code; B. Delley, J. Chem. Phys. 92, 508 (1990);ibid. 113, 7756 (2000).[2] K. Reuter, C. Stampfl and M. Scheffler, in Handbook of Materials Modeling, Volume 1, Fundamental Models and Methods, Sidney Yip (Ed)(2005).

  16. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  17. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    SciTech Connect

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  18. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability.

    PubMed

    Li, Kai; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2016-06-01

    Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress. PMID:27091042

  19. Cerium Dioxide Nanoparticle Exposure Improves Microvascular Dysfunction and Reduces Oxidative Stress in Spontaneously Hypertensive Rats

    PubMed Central

    Minarchick, Valerie C.; Stapleton, Phoebe A.; Sabolsky, Edward M.; Nurkiewicz, Timothy R.

    2015-01-01

    The elevated production of reactive oxygen species (ROS) in the vascular wall is associated with cardiovascular diseases such as hypertension. This increase in oxidative stress contributes to various mechanisms of vascular dysfunction, such as decreased nitric oxide bioavailability. Therefore, anti-oxidants are being researched to decrease the high levels of ROS, which could improve the microvascular dysfunction associated with various cardiovascular diseases. From a therapeutic perspective, cerium dioxide nanoparticles (CeO2 NP) hold great anti-oxidant potential, but their in vivo activity is unclear. Due to this potential anti-oxidant action, we hypothesize that injected CeO2 NP would decrease microvascular dysfunction and oxidative stress associated with hypertension. In order to simulate a therapeutic application, spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were intravenously injected with either saline or CeO2 NP (100 μg suspended in saline). Twenty-four hours post-exposure mesenteric arteriolar reactivity was assessed via intravital microscopy. Endothelium-dependent and –independent function was assessed via acetylcholine and sodium nitroprusside. Microvascular oxidative stress was analyzed using fluorescent staining in isolated mesenteric arterioles. Finally, systemic inflammation was examined using a multiplex analysis and venular leukocyte flux was counted. Endothelium-dependent dilation was significantly decreased in the SH rats (29.68 ± 3.28%, maximal response) and this microvascular dysfunction was significantly improved following CeO2 NP exposure (43.76 ± 4.33%, maximal response). There was also an increase in oxidative stress in the SH rats, which was abolished following CeO2 NP treatment. These results provided evidence that CeO2 NP act as an anti-oxidant in vivo. There were also changes in the inflammatory profile in the WKY and SH rats. In WKY rats, IL-10 and TNF-α were increased following CeO2 NP treatment. Finally, leukocyte

  20. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent.

    PubMed

    Zhang, Lingfan; Zhu, Tianyi; Liu, Xin; Zhang, Wenqing

    2016-05-01

    Since most existing arsenic removal adsorbents are difficult to effectively remove arsenite (As(III)), an urgent need is to develop an efficient adsorbent for removing As(III) from contaminated water. In this study, a novel ultrafine nanobiosorbent of cerium modified chitosan (Ce-CNB) with simultaneous oxidation and adsorption As(III) performance has been successfully developed. The resulting Ce-CNB with or without As(III) adsorption was characterized by FTIR, XRD, SEM, EDS, TEM, EMI and XPS analysis. Batch of adsorption experiments were performed to investigate the effects of various conditions on the As(III) adsorption. The adsorption behaviors were well described by the Langmuir isotherm and the pseudo-second-order kinetic model, with the maximum adsorption capacities of 57.5 mg g(-1). The adsorption mechanisms for As(III) were (i) formed monodentate and bidentate complexes between hydroxyl groups and arsenite; and (ii) partial As(III) oxidized to As(V) followed by simultaneously adsorbed on the surface of Ce-CNB. This novel nanocomposite can be reused while maintaining a high removal efficiency and can be applied to treat 5.8L of As(III)-polluted water with the effluent concentration lower than the World Health Organization standard, which suggests its great potential to remove As(III) from contaminated water. PMID:26808237

  1. Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation

    PubMed Central

    Codolà, Zoel; Gómez, Laura; Kleespies, Scott T.; Que, Lawrence; Costas, Miquel; Lloret-Fillol, Julio

    2016-01-01

    The non-haem iron complex α-[FeII(CF3SO3)2(mcp)] (mcp = (N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-cis-diaminocyclohexane) reacts with CeIV to oxidize water to O2, representing an iron-based functional model for the oxygen evolving complex of photosystem II. Here we trap an intermediate, characterized by cryospray ionization high resolution mass spectrometry and resonance Raman spectroscopy, and formulated as [(mcp)FeIV(O) (μ-O)CeIV(NO3)3]+, the first example of a well-characterized inner-sphere complex to be formed in cerium(IV)-mediated water oxidation. The identification of this reactive FeIV–O–CeIV adduct may open new pathways to validate mechanistic notions of an analogous MnV–O–CaII unit in the oxygen evolving complex that is responsible for carrying out the key O–O bond forming step. PMID:25609387

  2. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning

    SciTech Connect

    Not Available

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  3. Fluorinated Cerium(IV) Enaminolates: Alternative Precursors for Chemical Vapor Deposition of CeO2 Thin Films.

    PubMed

    Schläfer, J; Graf, D; Fornalczyk, G; Mettenbörger, A; Mathur, S

    2016-06-01

    High-yield synthesis of four new fluorinated enaminones LH2 (RfC(O)C2H2NH)2C2H4 (Rf = CF3 (2a), C2F5 (2b), C3F7 (2c)) and (F3CC(O)C2H2NH)2C3H6 (2a') as dianionic ligands is described. The ligands were characterized in solution (via nuclear magnetic resoannce (NMR)) as well as in the solid state (via X-ray diffraction (XRD)). The ligating ability of the enaminones was verified by reacting them with [Ce2(O(i)Pr)8(HO(i)Pr)2], which resulted in monomeric cerium(IV) complexes [CeL2] (3a-c, 3a') based on tetradentate chelation of the ligands. Cerium enaminolates were comprehensively analyzed by NMR spectroscopy, mass spectrometry, and single-crystal XRD studies to verify their monomeric nature. High stability under ambient conditions and high volatility makes them a potential precursor for the gas-phase synthesis of CeO2. Complexes 3a and 3b were applied as precursors in thermal and plasma-enhanced chemical vapor deposition to obtain crystalline ceria films with different surface morphologies. The purity and surface states of the films were analyzed by X-ray photoelectron spectroscopy, which revealed a high amount of Ce(3+) on the subsurface of CeO2 films. PMID:27159551

  4. Getting the most out of your cerium oxide glass polishing slurry: reducing risk and improving performance with plasma produced particles

    NASA Astrophysics Data System (ADS)

    Murray, Patrick G.; Hooper, Abigail; Keleher, Jason; Kaiser, Jordan; Nichol, Meghan

    2013-09-01

    Recent dramatic price volatility and assurance of supply concerns with cerium oxide have left many users of this material in an uncertain and vulnerable position. Since few viable alternatives to ceria for precision glass polishing exist, and much of the supply is very concentrated geographically, technology which conserves ceria, improves absolute removal rate and promotes slurry longevity becomes extremely attractive under these circumstances. Using a plasma-based process to produce cerium oxide confers some unique attributes to the particles which make them particularly well suited for precision glass polishing operations. Many of those same particle characteristics, such as full crystallinity, near theoretical density, very high surface and bulk purity and extremely high zeta potentials in water can also be useful in mitigating the risks associated with a limited and costly ceria supply. This paper will explore how plasma-derived particles, in combination with a high performance chemistry package, can together constitute a fully formulated precision glass polishing slurry with very high activity, extended slurry lifetime, ability to recycle, and excellent overall process economics. Results showing the effect of particle longevity and chemical additives on removal rate and process stability will be discussed in detail, and selected examples which distinguish the benefits of a fully formulated, plasma-derived cerium oxide polishing slurry over conventional milled ceria will be shown.

  5. Electrodeposition of cerium oxide on porous silicon via anodization and enhancement of photoluminescence

    NASA Astrophysics Data System (ADS)

    Mizuhata, Minoru; Kubo, Yohei; Maki, Hideshi

    2016-02-01

    A porous Si/cerium oxide composite (PSi/CeO2) was synthesized by electrodeposition of CeO2 via anodic oxidation on PSi. The PSi photoluminescence (PL) was enhanced. The anodically oxidized PSi substrates in HF solution had macropores (diameter 2 μm), mesopores (diameter 15 nm), and micropores (diameter less than 4 nm). Emission at 700 nm from microporous PSi (microPSi) was observed under ultraviolet irradiation. Transmission electron microscopy showed that in microPSi/CeO2, the oxide was infiltrated into microPSi by anodization. The deposited amount of CeO2 depended on the reaction time, applied voltage, temperature, and reaction species concentrations in anodization. Emission by microPSi/CeO2 at 650 nm was observed; the PL intensity was higher (about 10-30 times) than that of PSi because of energy transfer from CeO2 to nanosized Si in porous layers produced by HF etching. The lifetime of the PL of microPSi/CeO2 was longer than that of microPSi. Excitation spectra of microPSi/CeO2 at 650 nm and diffuse-reflectance spectra showed that the excitation peak for microPSi/CeO2 was similar to the absorbance of CeO2, and excitation of microPSi/CeO2 gave two peaks, at 3.7 and 4.4 eV; these peaks originated from the absorptions of CeO2 and Si nanocrystals. The PL of PSi was enhanced in microPSi/CeO2 because of efficient energy transfer from CeO2 to the Si nanocrystal.

  6. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Gordan, O. D.; Zahn, D. R. T.; Jha, M.; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Schmidt, O. G.

    2014-03-07

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB{sub 6}) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB{sub 6}-coated CNT film when compared to pristine CeB{sub 6} film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB{sub 6} nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB{sub 6} nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB{sub 6} films. The enhanced FE properties of the CeB{sub 6} coated CNT films are correlated to the microstructure of the films.

  7. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.

    PubMed

    Röhder, Lena A; Brandt, Tanja; Sigg, Laura; Behra, Renata

    2014-07-01

    Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140nm and agglomerated in absence of phosphate with a mean size of 2000nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5±0.84μM for wild type and EC50 of 6.3±0.53μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of photosynthetic yield at the highest concentrations (100μM), while no effect was observed for dispersed CeO2 NP. The low toxicity of agglomerated CeO2 NP was attributed quantitatively to Ce(3+) ions co-occurring in the nanoparticle suspension whereas for dispersed CeO2 NP, dissolved Ce(3+) was precipitated with phosphate and not bioavailable. Furthermore CeO2 NP did not affect the intracellular ROS level. The cell wall free mutant and wild type of C

  8. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    SciTech Connect

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  9. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke.

    PubMed

    Zhou, Da; Fang, Ting; Lu, Lin-Qing; Yi, Li

    2016-08-01

    During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS. PMID:27465320

  10. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    NASA Astrophysics Data System (ADS)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  11. Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis.

    PubMed

    Soren, Siba; Jena, Soumya Ranjan; Samanta, Luna; Parhi, Purnendu

    2015-09-01

    Monodispersed cerium oxide nanoparticle has been synthesized by microwave-mediated hydrothermal as well as microwave-mediated solvothermal synthesis. X-ray diffraction (XRD) data shows that the synthesized particles are single phase. SEM and TEM analysis suggest that particle synthesized by microwave-mediated solvothermal method are less agglomerated. In vitro toxicology study of the synthesized nanoceria particles has shown good free radical scavenging activity for NO and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assayed except superoxide radical within a concentration range of 25 to 75 ng ml(-1). Nanoceria particle also showed inhibition of Fe-ascorbate-induced lipid peroxidation (LPx) in chick liver mitochondrial fractions. Solvothermally synthesized nanoceria showed better protection against Fe-ascorbate-induced LPx than the hydrothermal one while the hydrothermally synthesized nanoceria showed better DPPH and NO scavenging activity. The ceria nanoparticles also prevented Fe-ascorbate-H2O2-induced carbonylation of bovine serum albumin in a dose-dependent manner. At higher concentration, i.e., 100 ng ml(-1), the synthesized nanoparticles showed a reverse trend in all the parameters measured indicating its toxicity at higher doses. PMID:26137877

  12. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.).

    PubMed

    Rico, Cyren M; Lee, Sang Chul; Rubenecia, Rosnah; Mukherjee, Arnab; Hong, Jie; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2014-10-01

    The implications of engineered nanomaterials on crop productivity and food quality are not yet well understood. The impact of cerium oxide nanoparticles (nCeO2) on growth and yield attributes and nutritional composition in wheat (Triticum aestivum L.) was examined. Wheat was cultivated to grain production in soil amended with 0, 125, 250, and 500 mg of nCeO2/kg (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). At harvest, grains and tissues were analyzed for mineral, fatty acid, and amino acid content. Results showed that, relative to the control, nCeO2-H improved plant growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. Ce accumulation in roots increased at increased nCeO2 concentration but did not change across treatments in leaves, hull, and grains, indicating a lack of Ce transport to the above-ground tissues. nCeO2 modified S and Mn storage in grains. nCeO2-L modified the amino acid composition and increased linolenic acid by up to 6.17% but decreased linoleic acid by up to 1.63%, compared to the other treatments. The findings suggest the potential of nanoceria to modify crop physiology and food quality with unknown consequences for living organisms. PMID:25220448

  13. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression

    PubMed Central

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15. PMID:27486320

  14. Spectrophotometric determination of H 2-receptor antagonists via their oxidation with cerium(IV)

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Hussein, Samiha A.; Mahmoud, Ashraf M.; Hassan, Ahmed I.

    2008-01-01

    A simple, accurate and sensitive spectrophotometric method has been developed and validated for determination of H 2-receptor antagonists: cimetidine, famotidine, nizatidine and ranitidine hydrochloride. The method was based on the oxidation of these drugs with cerium(IV) in presence of perchloric acid and subsequent measurement of the excess Ce(IV) by its reaction with p-dimethylaminobenzaldehyde to give a red colored product ( λmax at 464 nm). The decrease in the absorption intensity of the colored product (Δ A), due to the presence of the drug was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9990-0.9994) were found between Δ A values and the concentrations of the drugs in a concentration range of 1-20 μg ml -1. The assay limits of detection and quantitation were 0.18-0.60 and 0.54-1.53 μg ml -1, respectively. The method was validated, in terms of accuracy, precision, ruggedness and robustness; the results were satisfactory. The proposed method was successfully applied to the determination of the investigated drugs in pure and pharmaceutical dosage forms (recovery was 98.3-102.6 ± 0.57-1.90%) without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods.

  15. Effect of cerium oxide nanoparticles on the quality of rice ( Oryza sativa L.) grains.

    PubMed

    Rico, Cyren M; Morales, Maria Isabel; Barrios, Ana Cecilia; McCreary, Ricardo; Hong, Jie; Lee, Wen-Yee; Nunez, Jose; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2013-11-27

    Despite the remarkable number of publications on the interaction of engineered nanoparticles (ENPs) with plants, knowledge of the implications of ENPs in the nutritional value of food crops is still limited. This research was performed to study the quality of rice grains harvested from plants grown in soil treated with cerium oxide nanoparticles (nCeO2). Three rice varieties (high, medium, and low amylose) were cultivated to full maturity in soil amended with nCeO2 at 0 and 500 mg kg(-1) soil. Ce accumulation, nutrient content, antioxidant property, and nutritional quality of the rice grains were evaluated. Results showed that rice grains from nCeO2-treated plants had less Fe, S, prolamin, glutelin, lauric and valeric acids, and starch. Moreover, the nCeO2 reduced in grains all antioxidant values, except flavonoids. Medium- and low-amylose varieties accumulated more Ce in grains than the high-amylose variety, but the grain quality of the medium-amylose variety showed higher sensitivity to the nCeO2 treatment. These results indicate that nCeO2 could compromise the quality of rice. To the authors' knowledge, this is the first report on the effects nCeO2 on rice grain quality. PMID:24188281

  16. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans

    PubMed Central

    Rogers, Steven; Rice, Kevin M; Manne, Nandini DPK; Shokuhfar, Tolou; He, Kun; Selvaraj, Vellaisamy

    2015-01-01

    Objective: The continual increase in production and disposal of nanomaterials raises concerns regarding the safety of nanoparticles on the environmental and human health. Recent studies suggest that cerium oxide (CeO2) nanoparticles may possess both harmful and beneficial effects on biological processes. The primary objective of this study is to evaluate how exposure to different concentrations (0.17–17.21 µg/mL) of aggregated CeO2 nanoparticles affects indices of whole animal stress and survivability in Caenorhabditis elegans. Methods: Caenorhabditis elegans were exposed to different concentrations of CeO2 nanoparticles and evaluated. Results: Our findings demonstrate that chronic exposure of CeO2 nanoparticle aggregates is associated with increased levels of reactive oxygen species and heat shock stress response (HSP-4) in Caenorhabditis elegans, but not mortality. Conversely, CeO2 aggregates promoted strain-dependent decreases in animal fertility, a decline in stress resistance as measured by thermotolerance, and shortened worm length. Conclusion: The data obtained from this study reveal the sublethal toxic effects of CeO2 nanoparticle aggregates in Caenorhabditis elegans and contribute to our understanding of how exposure to CeO2 may affect the environment. PMID:26770770

  17. Kinetic Spectrofluorometric Determination of Certain Calcium Channel Blockers via Oxidation with Cerium (IV) in Pharmaceutical Preparations.

    PubMed

    Walash, M I; Belal, F; El-Enany, N; Abdelal, A A

    2009-06-01

    A simple and sensitive kinetic spectrofluorometric method was developed for the determination of some calcium channel blockers namely, verapamil hydrochloride, diltiazem hydrochloride, nicardipine hydrochloride and flunarizine. The method is based upon oxidation of the studied drugs with cerium (IV) ammonium sulphate in acidic medium. The fluorescence of the produced Ce (III) was measured at 365 nm after excitation at 255 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence-concentration plots were rectilinear for all the studied compounds over the concentration range of 0.01 to 0.12 μg mL(-1). The limits of detections for the studied compounds ranged from 2.93 × 10(-3) to 0.012 μg mL(-1) and limits of quantification from 9.76 × 10(-3) to 0.04 μg mL(-1) were obtained. The method was successfully applied to the analysis of commercial tablets. The results obtained were in good agreement with those obtained with reference methods. PMID:23675129

  18. Kinetic Spectrofluorometric Determination of Certain Calcium Channel Blockers via Oxidation with Cerium (IV) in Pharmaceutical Preparations

    PubMed Central

    Walash, M. I.; Belal, F.; El-Enany, N.; Abdelal, A. A.

    2009-01-01

    A simple and sensitive kinetic spectrofluorometric method was developed for the determination of some calcium channel blockers namely, verapamil hydrochloride, diltiazem hydrochloride, nicardipine hydrochloride and flunarizine. The method is based upon oxidation of the studied drugs with cerium (IV) ammonium sulphate in acidic medium. The fluorescence of the produced Ce (III) was measured at 365 nm after excitation at 255 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The fluorescence-concentration plots were rectilinear for all the studied compounds over the concentration range of 0.01 to 0.12 μg mL-1. The limits of detections for the studied compounds ranged from 2.93 × 10-3 to 0.012 μg mL-1 and limits of quantification from 9.76 × 10-3 to 0.04 μg mL-1 were obtained. The method was successfully applied to the analysis of commercial tablets. The results obtained were in good agreement with those obtained with reference methods. PMID:23675129

  19. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. PMID:26011425

  20. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    PubMed Central

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3 days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  1. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    SciTech Connect

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  2. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.

    PubMed

    Ma, Jane; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M; Demokritou, Philip; Castranova, Vincent

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  3. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice☆

    PubMed Central

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-01-01

    Background Cerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods Atherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7 mg/m3, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results Addition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions These results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects. PMID:22507957

  4. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    SciTech Connect

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-05-15

    Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  5. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - a case study.

    PubMed

    Park, Barry; Donaldson, Kenneth; Duffin, Rodger; Tran, Lang; Kelly, Frank; Mudway, Ian; Morin, Jean-Paul; Guest, Robert; Jenkinson, Peter; Samaras, Zissis; Giannouli, Myrsini; Kouridis, Haris; Martin, Patricia

    2008-04-01

    Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO(2)), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems. PMID:18444008

  6. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.

    PubMed

    Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2015-07-01

    Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state. PMID:25778836

  7. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles

    PubMed Central

    Suresh Babu, K; Anandkumar, M; Tsai, TY; Kao, TH; Stephen Inbaraj, B; Chen, BH

    2014-01-01

    Background Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. Methods In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. Results The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0–1,000 μM except for Au at >100 μM. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 μM. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella

  8. Stability and spinodal decomposition of the solid-solution phase in the ruthenium-cerium-oxide electro-catalyst.

    PubMed

    Li, Yanmei; Wang, Xin; Shao, Yanqun; Tang, Dian; Wu, Bo; Tang, Zhongzhi; Lin, Wei

    2015-01-14

    The phase diagram of Ru-Ce-O was calculated by a combination of ab initio density functional theory and thermodynamic calculations. The phase diagram indicates that the solubility between ruthenium oxide and cerium oxide is very low at temperatures below 1100 K. Solid solution phases, if existing under normal experimental conditions, are metastable and subject to a quasi-spinodal decomposition to form a mixture of a Ru-rich rutile oxide phase and a Ce-rich fluorite oxide phase. To study the spinodal decomposition of Ru-Ce-O, Ru0.6Ce0.4O2 samples were prepared at 280 °C and 450 °C. XRD and in situ TEM characterization provide proof of the quasi-spinodal decomposition of Ru0.6Ce0.4O2. The present study provides a fundamental reference for the phase design of the Ru-Ce-O electro-catalyst. PMID:25418197

  9. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  10. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    SciTech Connect

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  11. Imaging nanostructural modifications induced by electronic metal-support interaction effects at Au||cerium-based oxide nanointerfaces.

    PubMed

    López-Haro, Miguel; Cíes, José M; Trasobares, Susana; Pérez-Omil, José A; Delgado, Juan J; Bernal, Serafín; Bayle-Guillemaud, Pascale; Stéphan, Odile; Yoshida, Kenta; Boyes, Edward D; Gai, Pratibha L; Calvino, José J

    2012-08-28

    A variety of advanced (scanning) transmission electron microscopy experiments, carried out in aberration-corrected equipment, provide direct evidence about subtle structural changes taking place at nanometer-sized Au||ceria oxide interfaces, which agrees with the occurrence of charge transfer effects between the reduced support and supported gold nanoparticles suggested by macroscopic techniques. Tighter binding of the gold nanoparticles onto the ceria oxide support when this is reduced is revealed by the structural analysis. This structural modification is accompanied by parallel deactivation of the CO chemisorption capacity of the gold nanoparticles, which is interpreted in exact quantitative terms as due to deactivation of the gold atoms at the perimeter of the Au||cerium oxide interface. PMID:22789638

  12. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity.

    PubMed

    Pešić, Milica; Podolski-Renić, Ana; Stojković, Sonja; Matović, Branko; Zmejkoski, Danica; Kojić, Vesna; Bogdanović, Gordana; Pavićević, Aleksandra; Mojović, Miloš; Savić, Aleksandar; Milenković, Ivana; Kalauzi, Aleksandar; Radotić, Ksenija

    2015-05-01

    Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 μM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine. PMID

  13. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal-support interactions

    NASA Astrophysics Data System (ADS)

    Durgasri, D. Naga; Vinodkumar, T.; Lin, Fangjian; Alxneit, Ivo; Reddy, Benjaram M.

    2014-09-01

    The aim of the present investigation was to ascertain the role of Al2O3, SiO2, and TiO2 supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al2O3, Ce-Gd/SiO2, and Ce-Gd/TiO2 catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H2-TPR, and UV-vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F2g mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV-vis DRS measurements. The H2-TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO2 catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support.

  14. Electrochromism in nickel oxide films

    SciTech Connect

    Wruck, D.A.

    1991-01-01

    Optical absorption in a thin-film nickel oxide electrode depends on the state of charge of the electrode; the effect has been called electrochromism, and it may have practical applications in low-speed light modulation devices. In this dissertation, the physical and chemical processes which lead to the change in optical properties are investigated. Preparation of NiO film electrodes by reactive sputtering of a Ni target in an Ar + O[sub 2] gas mixture is described, and the electrochromic response is correlated to film growth conditions. Structural, electronic, and electrochemical properties of the NiO films are characterized by x-ray diffraction, infrared absorption, x-ray photoemission, optical absorption, electrical conductivity, and electrochemical measurements. It is proposed that the electrochromism results from the adsorption and desorption of protons at the oxygen-rich surface of a granular and porous NiO film. The surface electronic levels are then modified by the presence or absence of the O-H bonds, and the effect on the film electronic properties is discussed. A general discussion is also given of the current-limiting processes at the NiO film electrodes.

  15. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  16. Characteristics and mechanism study of cerium oxide based random access memories

    SciTech Connect

    Hsieh, Cheng-Chih; Roy, Anupam; Rai, Amritesh; Chang, Yao-Feng; Banerjee, Sanjay K.

    2015-04-27

    In this work, low operating voltage and high resistance ratio of different resistance states of binary transition metal oxide based resistive random access memories (RRAMs) are demonstrated. Binary transition metal oxides with high dielectric constant have been explored for RRAM application for years. However, CeO{sub x} is considered as a relatively new material to other dielectrics. Since research on CeO{sub x} based RRAM is still at preliminary stage, fundamental characteristics of RRAM such as scalability and mechanism studies need to be done before moving further. Here, we show very high operation window and low switching voltage of CeO{sub x} RRAMs and also compare electrical performance of Al/CeO{sub x}/Au system between different thin film deposition methods and discuss characteristics and resistive switching mechanism.

  17. Investigation of nanostructural, optical and magnetic properties of cerium-substituted yttrium iron garnet films prepared by a sol gel method

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. B.; Arsad, A. Z.

    2016-03-01

    Cerium substituted yttrium iron garnet films with a chemical formula Y3-xCexFe5O12 (x=0.0-0.3) have been successfully prepared by a sol-gel method. The microstructure analysis showed that all films exist in the cubic garnet structure. The lattice parameter and grain size increased with the increment of Ce concentrations up to 0.25, indicating the complete Ce substitution in yttrium site. For a film with x=0.3, the lattice parameter remained unchanged and grain size decreased. The film thickness increased and surface roughness varied with the increment of Ce content. All of the films have high optical transparency (above 80%). The Ce content reduced the saturation magnetization of the film up to a certain limit where above this limit the value increased. Overall, the findings showed that the films with x≤0.25 exhibited very excellent properties, hence they are promising materials for magneto-optical devices.

  18. Oxidation of SO2 to SO3 by Cerium Oxide Cluster Cations Ce2O4(+) and Ce3O6(.).

    PubMed

    Zhou, Zhen-Xun; Wang, Li Na; Li, Zi-Yu; He, Sheng-Gui; Ma, Tong-Mei

    2016-06-01

    Cerium oxide cationic clusters (CeO2)1-3(+) were generated through laser ablation and then reacted with sulfur dioxide (SO2) at ambient conditions in an ion trap reactor and those reactions were studied and characterized by combining the art of time-of-flight mass spectrometry (TOF-MS) with density functional theory (DFT) calculations. Molecule association and oxygen atom transfer (OAT) were observed for the CeO2(+) and (CeO2)2,3(+) reaction systems, respectively. The mechanistic analysis indicates that the weak Ce-O bond strength associated with the oxygen release capacity of cerium oxide clusters is considered as the key factor to achieve the oxidation of SO2. To our best knowledge, this research should be the first example to identify the OAT reactivity of metal oxide cluster ions toward sulfur dioxide under thermal collision conditions, and a fundamental understanding of the elementary oxidation of SO2 to SO3 is provided. PMID:27184540

  19. Synthesis and characterization of C14TAB passivated cerium oxide nanoparticles prepared by co-precipitation route

    NASA Astrophysics Data System (ADS)

    Krishna Chandar, N.; Jayavel, R.

    2014-04-01

    A facile co-precipitation route has been employed to synthesize cerium oxide (CeO2) nanoparticles using cationic surfactant (tetradecyltrimethyl ammonium bromide, C14TAB) and cerium nitrate hexahydrate at room temperature. X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscope (TEM), selected area electron diffraction (SAED), fourier transform infrared spectroscopy (FT-IR), UV-vis spectrophotometer and photoluminescence spectroscopy (PL) were employed to characterize the as-prepared sample. The XRD pattern showed cubic fluorite structure of CeO2 without any impurity peaks, revealing high purity of the sample. The lattice strain experienced by the sample was analyzed using Williamson-Hall plot. FTIR studies confirmed the presence of C14TAB on the CeO2 nanoparticles. TEM revealed that the as-prepared CeO2 sample consists of uniform particles with particle size of 10 nm. The red shift phenomenon was observed in UV-vis spectrum, which was further supported by PL studies.

  20. The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Slattery, Darlene; Hampton, Michael; Seal, Sudipta; Cullen, David A

    2013-01-01

    Perfluorosulfonic acid membranes, the polymer of choice for polymer electrolyte hydrogen fuel cells, are susceptible to degradation due to attacks on polymer chains from radicals. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of single-crystal cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Side-product analysis demonstrated that in the liquid Fenton test, the main point of attack are weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the durability improvement is found to be independent of particle size.

  1. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mariño, Mariana; Rieu, Mathilde; Viricelle, Jean-Paul; Garrelie, Florence

    2016-06-01

    In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce0.9Gd0.1O1.95 (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  2. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.

    2015-11-01

    Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.

  3. Evaluation of the effect of valence state on cerium oxide nanoparticle toxicity following intratracheal instillation in rats.

    PubMed

    Dunnick, Katherine M; Morris, Anna M; Badding, Melissa A; Barger, Mark; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2016-09-01

    Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo. PMID:26898289

  4. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  5. Sorption of trivalent cerium by a mixture of microbial cells and manganese oxides: Effect of microbial cells on the oxidation of trivalent cerium

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Jiang, Mingyu; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian; Tanaka, Kazuya; Utsunomiya, Satoshi; Xia, Xiaobin; Yang, Ke; He, Jianhua

    2015-08-01

    Sorption of Ce by mixtures of synthetic Mn oxides and microbial cells of Pseudomonas fluorescens was investigated to elucidate the role of microorganisms on Ce(III) oxidative migration in the environment. The mixtures, upon which Ce was sorbed following exposure to solutions containing 1.0 × 10-4 or 1.0 × 10-5 mol L-1 Ce(III), were analyzed by scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS) and micro-X-ray fluorescence (micro-XRF) at synchrotron facilities. A Ce LIII-edge micro XANES spectra analysis was also performed to determine the oxidation states of Ce adsorbed to the Mn oxides and microbial cells in the mixtures. The distribution ratios (Kd) of Ce between the individual solids and solution increased with increasing pH of the solution, and was nearly the same in mixtures containing varying amounts of microbial cells. SEM-EDS and micro-XRF analyses showed that Ce was sorbed by both MnO2 and microbial cells (1.7 × 10-1 or 3.3 × 10-1 g L-1). In addition, nano-particles containing Ce and P developed on the surface of the microbial cells. XANES analysis showed that lower fractions of Ce(III) were oxidized to Ce(IV) in the mixtures containing greater amounts of microbial cells. Micro-XANES analysis revealed that Ce was present as Ce(III) on the microbial cells and as Ce(IV) on Mn oxides. These results strongly suggest that the association of Ce(III) with the microbial cell surface and the formation of Ce phosphate nano-particles are responsible for suppressing the oxidation of Ce(III) to Ce(IV) in the mixtures.

  6. Luminescence properties of Ce 3+-Dy 3+ codoped aluminium oxide films

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, R.; Rivera, S.; Yescas-Mendoza, E.; Álvarez, E.; Falcony, C.; Caldiño, U.

    2011-06-01

    Photoluminescence properties of CeCl 3 and DyCl 3 codoped aluminium oxide films deposited by the ultrasonic spray pyrolysis technique were characterized by excitation, emission and decay time spectroscopy. When excited by ultraviolet radiation the films emit a combination of blue and yellow wavelengths through an efficient energy transfer from Ce 3+ to Dy 3+ ions (up to around 77%). From spectroscopic data it is inferred that such energy transfer is nonradiative in nature taking place between Ce 3+ and Dy 3+ clusters through a short-range interaction mechanism. In the Ce 3+ doped single film the chromaticity coordinates are in the purplish blue region, whereas that in the cerium and dysprosium codoped films the coordinates move toward the white light emission region.

  7. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    PubMed

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns. PMID:27231888

  8. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications

    SciTech Connect

    Chandra Sekhar, M.; Singh, Mahi R.

    2012-10-15

    The Bi{sub x}Ce{sub 3-x}Fe{sub 5}O{sub 12} (x = 0.8) epitaxial films of high quality were grown by means of pulsed laser deposition on paramagnetic substrates of Gadolinium Gallium Garnet. We study the modifications of substitutions in the parent garnet Y{sub 3}Fe{sub 5}O{sub 12} that produces a higher magneto-optical response at communication wavelengths. These films displayed a strong in plane textures which are treated in argon as well as reduced atmosphere conditions. The elemental constituents of these films were confirmed by energy dispersive-X ray analysis, elastic recoil detection system, Rutherford backscattering spectroscopy, and X-ray photoelectron spectroscopy measurements. The transmittance spectra were measured and found these films exhibit good transmittance values. The transmittance-spectra were fitted with the theoretical model and the optical constants such as refractive index and absorption edge were evaluated. The highest (negative) Faraday rotation was found for these films treated in the environment of Ar + H{sub 2}. A density matrix theory has been developed for the Faraday rotation and a good agreement between the theory and experiment is found. These epitaxial garnet films can be used in a wide range of frequencies from visible to infrared spectra making them ideal for many magneto optical applications. Therefore, these films may overcome many issues in fabricating all optical isolators which is the viable solution for integrated photonics.

  9. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  10. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  11. Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis

    PubMed Central

    Pandey, Alok K.

    2014-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have promising industrial and biomedical applications. In spite of their applications, the toxicity of these NPs in biological/physiological environment is a major concern. Present study aimed to understand the molecular mechanism underlying the toxicity of CeO2 NPs on lung adenocarcinoma (A549) cells. After internalization, CeO2 NPs caused significant cytotoxicity and morphological changes in A549 cells. Further, the cell death was found to be apoptotic as shown by loss in mitochondrial membrane potential and increase in annexin-V positive cells and confirmed by immunoblot analysis of BAX, BCl-2, Cyt C, AIF, caspase-3, and caspase-9. A significant increase in oxidative DNA damage was found which was confirmed by phosphorylation of p53 gene and presence of cleaved poly ADP ribose polymerase (PARP). This damage could be attributed to increased production of reactive oxygen species (ROS) with concomitant decrease in antioxidant “glutathione (GSH)” level. DNA damage and cell death were attenuated by the application of ROS and apoptosis inhibitors N-acetyl-L- cysteine (NAC) and Z-DEVD-fmk, respectively. Our study concludes that ROS mediated DNA damage and cell cycle arrest play a major role in CeO2 NPs induced apoptotic cell death in A549 cells. Apart from beneficial applications, these NPs also impart potential harmful effects which should be properly evaluated prior to their use. PMID:24987704

  12. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  13. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning. Final report, August 1990--March 1992

    SciTech Connect

    Not Available

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  14. Activity and stability of nanostructured gold-cerium oxide catalysts for the water-gas shift reaction

    NASA Astrophysics Data System (ADS)

    Fu, Qi

    Advanced low-temperature water-gas shift (LTS) catalysts of high activity and stability are under development to produce essentially CO-free hydrogen to feed PEM fuel cells for power generation. Materials based on nanocrystalline cerium oxide (ceria) are among the most promising LTS catalysts. Understanding the structural properties relationship with the WGS activity is fundamentally important in order to rational design the catalysts. Various gold structures, such as metallic gold nanoparticles, cluster and cations were found in gold-ceria sample containing 4--8 at% gold. To discriminate between the various gold species, leaching of the gold-ceria in sodium cyanide was conducted. The metallic gold and all other gold species not in close association with ceria were removed by leaching. A small amount of gold remained in the leached samples. The exact content of non-leachable gold was a function of the parent catalyst properties. Similar data were collected from Pt-ceria samples. STEM or HRTEM, coupled with EDX showed no gold or platinum particles remaining; only what appeared to be very fine clusters or atomically dispersed gold or platinum. Cationic gold or platinum was identified in these samples by XPS. The unexpected finding was that the catalytic activity of the leached samples was similar or slightly better than that of the parent catalyst after removal of the metallic gold or platinum particles by cyanide leaching. Thus, metallic nanoparticles are not necessary; they are mere spectators in the water-gas shift reaction. Nonmetallic gold or platinum species strongly associated with surface cerium-oxygen groups are responsible for the activity, since the extra gold or platinum present in the parent material does not increase the reaction rate; nor does it change the activation energy of the reaction. The importance of the oxide support properties became clear by this work. The amount of gold or platinum retained in active form depends on the surface properties

  15. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. PMID:27208478

  16. A study of ceramic structures during sintering of cerium and tantalum oxides

    SciTech Connect

    Podkletnov, E.E.; Akopov, F.A.; Dolgireva, N.G.; Val'yano, G.E.; Vlasov, A.S.

    1986-03-01

    A study of the ceramic formation processes in the CeO/sub 2/-Ta/sub 2/O/sub 5/ binary system is of interest when developing the production technology of high-refractory current-carrying ceramics. Cerium dioxide (TsOOP grade) containing 99.99% CeO/sub 2/ by weight and tantalum pentoxide (pure grade) containing 99.95% Ta/sub 2/O/sub 5/ were used as the raw materials. Briquettes were compacted and fired. The briquettes were then crushed and milled in a planetary mill and the absence of iron grind contaminant was checked on a sample using ammonium thiocyanate. Ceramic specimens were made and fired. The ceramic materials were prepared containing 1,3,5,15, and 50% Ta/sub 2/O/sub 5/. The authors determined the ultimate compressive and tensile strength, and the dynamic modulus of elasticity on the fired specimens. After synthesis, x-ray phase analysis of the material showed that a fluorite-type cubic solidsolution forms the predominant phase in all specimens. The results of the studies can be used for developing electrically conducting ceramics intended for high-temperature power installations.

  17. Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance.

    PubMed

    Frieke Kuper, C; Gröllers-Mulderij, Mariska; Maarschalkerweerd, Thérèse; Meulendijks, Nicole M M; Reus, Astrid; van Acker, Frédérique; Zondervan-van den Beuken, Esther K; Wouters, Mariëlle E L; Bijlsma, Sabina; Kooter, Ingeborg M

    2015-03-01

    We investigated the toxicity of aggregated nanoparticles of cerium oxide (CeO2) using an in vitro 3D human bronchial epithelial model that included a mucociliary apparatus (MucilAir™). CeO2 was dispersed in saline and applied to the apical surface of the model. CeO2 did not induce distinct effects in the model, whereas it did in BEAS-2B and A549 cell cultures. The absence of effects of CeO2 was not because of the model's insensitivity. Nanoparticles of zinc oxide (ZnO) elicited positive responses in the toxicological assays. Respiratory mucus (0.1% and 1%) added to dispersions increased aggregation/agglomeration to such an extent that most CeO2 sedimented within a few minutes. Also, the mucociliary apparatus of the model removed CeO2 from the central part of the apical surface to the borders. This 'clearance' may have prevented the majority of CeO2 from reaching the epithelial cells. Chemical analysis of cerium in the basal tissue culture medium showed only minimal translocation of cerium across the 3D barrier. In conclusion, mucociliary defence appeared to prevent CeO2 reaching the respiratory epithelial cells in this 3D in vitro model. This model and approach can be used to study compounds of specific toxicological concern in airway defence mechanisms in vitro. PMID:25448805

  18. Silicon oxide films grown in microwave discharge

    NASA Technical Reports Server (NTRS)

    Kraitchman, J.

    1968-01-01

    Silicon oxide films thicker than 1000 angstrom are produced in the dense plasma of a microwave discharge. The oxide growth is characterized by a rate limiting diffusion process modified by sputtering effects produced by the discharge. Silicon is rapidly oxidized at temperatures estimated to be 500 degrees C or lower.

  19. Cerium Oxide Nanoparticle Modified Scaffold Interface Enhances Vascularization of Bone Grafts by Activating Calcium Channel of Mesenchymal Stem Cells.

    PubMed

    Xiang, Junyu; Li, Jianmei; He, Jian; Tang, Xiangyu; Dou, Ce; Cao, Zhen; Yu, Bo; Zhao, Chunrong; Kang, Fei; Yang, Lu; Dong, Shiwu; Yang, Xiaochao

    2016-02-01

    Insufficient blood perfusion is one of the critical problems that hamper the clinical application of tissue engineering bone (TEB). Current methods for improving blood vessel distribution in TEB mainly rely on delivering exogenous angiogenic factors to promote the proliferation, migration, differentiation, and vessel formation of endothelial cells (ECs) and/or endothelial progenitor cells (EPCs). However, obstacles including limited activity preservation, difficulty in controlled release, and high cost obstructed the practical application of this strategy. In this study, TEB scaffold were modified with cerium oxide nanoparticles (CNPs) and the effects of CNPs existed at the scaffold surface on the growth and paracrine behavior of mesenchymal stem cells (MSCs) were investigated. The CNPs could improve the proliferation and inhibit the apoptosis of MSCs. Meanwhile, the interaction between the cell membrane and the nanoparticle surface could activate the calcium channel of MSCs leading to the rise of intracellular free Ca(2+) level, which subsequently augments the stability of HIF-1α. These chain reactions finally resulted in high expression of angiogenic factor VEGF. The improved paracrine of VEGF could thereby promote the proliferation, differentiation, and tube formation ability of EPCs. Most importantly, in vivo ectopic bone formation experiment demonstrated this method could significantly improve the blood vessel distribution inside of TEB. PMID:26824825

  20. Synthesis, characterization and photocatalytic study of graphene oxide and cerium co-doped in TiO2

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Quan; Zeng, Liping; He, Deliang

    2016-02-01

    The nanocomposite of titanium dioxide (TiO2) combined with graphene oxide (GO) and cerium (Ce) was successfully synthesized via sol-gel method followed by calcining at 300 °C for 2 h. The composite was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) under the irradiation of xenon lamp. This study demonstrated that GO and Ce co-doped in TiO2 could broaden absorption edge to the visible light and increase surface area of samples. SEM observation showed that addition of Ce could solve the problem of the agglomeration of GO under the same experimental conditions. Moreover, the MB photocatalytic degradation rate of the composite with GO doped for 0.2 % and Ce doped for 0.6 % (mass ratio) was up to 97.7 %, which was largely attributed to the synergistic effects in the GO, Ce and TiO2 system.

  1. Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template.

    PubMed

    Yamaguchi, Ippei; Watanabe, Mitsuru; Shinagawa, Tsutomu; Chigane, Masaya; Inaba, Minoru; Tasaka, Akimasa; Izaki, Masanobu

    2009-05-01

    Core/shell nanostructures of polystyrene (PS)/CeO2 have been prepared on conductive glass substrates by using a novel electrochemical route consisting of (i) the electrophoretic deposition of a PS sphere monolayer on the substrate and (ii) the following potentiostatic electrodeposition of CeO2 on the PS sphere template in Ce(NO3)3 aqueous solutions. The structural morphologies of the deposit changed drastically depending on the Ce(NO3)3 concentration; i.e., spherical and needlelike shells were deposited. The deposit was formed only on the PS sphere surface because of an interaction between cationic cerium species and a sulfate group that was immobilized on the PS sphere surface. The spherical shell layer was assigned as CeO2, and the needlelike shells were composed of Ce(OH)3 needles formed on the CeO2 layer surface, indicating that the deposit species changes from CeO2 to Ce(OH)3 during electrodeposition only in a 1 mM Ce3+ solution. Deposition of Ce(OH)3 would begin when electrogenerated hydrogen peroxide was consumed by decomposition under reductive conditions and could no longer oxidize Ce3+ ions. The corresponding CeO2 hollow shells were obtained by thermal elimination of the PS sphere core and transformation of Ce(OH)3 into CeO2 while keeping their original shapes. PMID:20355893

  2. The Degradation Mitigation Effect of Cerium Oxide in Polymer Electrolyte Membranes in Extended Fuel Cell Durability Tests

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Brooker, R. Paul; Rodgers, Marianne; Slattery, Darlene; Hampton, Michael; Cullen, David A; Seal, Sudipta

    2013-01-01

    In this work, two formulations of single-crystal cerium oxide nanoparticles of varying particle sizes were incorporated into perfluorosulfonic acid membrane electrode assemblies (MEAs) and their ability to improve the in-situ membrane durability was studied by subjecting them to 94 and 500 hours open-circuit voltage hold accelerated durability tests . In the shorter test the open circuit voltage decay rate was reduced by half and the fluoride emission by at least one order of magnitude, though no effect on hydrogen crossover or performance of the baseline MEAs was measured. The presence of the additive increased the particle size but decreased the number of platinum catalyst particles that were deposited in the membrane. The main Pt band was found at the predicted location; however, the incorporation of ceria caused a broadening with particles reaching further into the membrane. In 500 h tests, ceria-containing MEAs demonstrated a seven-fold decrease in open-circuit voltage decay and three order of magnitude reduction in fluoride emission rates with unchanged performance and hydrogen crossover, remaining effectively pristine whilst the baseline MEA underwent catastrophic failure.

  3. State and catalytic activity of iridium compounds in the reaction of mercury(I) oxidation by cerium(IV)

    SciTech Connect

    Khomutova, E.G.; Rysev, A.P.; Romanovskaya, L.E.; Malysheva, N.M.

    1995-12-01

    Kinetic methods of determining Ir are insufficiently selective and sensitive as compared to the methods of determining Os and Ru. These characteristics may be improved by increasing the catalytic activity of iridium. All other factors being equal, catalytic activity depends on the state and form of iridium that enters the catalytic process. This is why one of the ways of improving the performance characteristics of a method of determining iridium involves searching for forms of the catalyst with higher catalytic activity. The aim of this work was to study the state and catalytic activity of iridium compounds. The method based on the iridium-catalyzed reaction of mercury(I) oxidation by cerium(IV) was chosen for the investigation. This method is most commonly used for analyzing complex samples. It was found previously that both the catalytic activity and selectivity of iridium determination increase when the reaction is conducted in the medium of perchloric acid or the sample is pretreated with nitric acid.

  4. Near- and supercritical alcohols as solvents and surface modifiers for the continuous synthesis of cerium oxide nanoparticles.

    PubMed

    Slostowski, Cédric; Marre, Samuel; Babot, Odile; Toupance, Thierry; Aymonier, Cyril

    2012-12-01

    Supercritical fluids offer fast and facile routes toward well-crystallized tailor-made cerium oxide nanoparticles. However, the use of surfactants to control morphology and surface properties remains essential. Therefore, although water, near-critical (nc) or supercritical (sc), is a solvent of choice, the poor water solubility of some surfactants could require other solvent systems such as alcohols, which could themselves behave as surface modifiers. In here, the influence of seven different alcohols, MeOH, EtOH, PrOH, iPrOH, ButOH, PentOH, and HexOH, in alcothermal conditions (300 °C, 24.5 MPa) over CeO(2) nanocrystals (NCs) size, morphology, and surface properties was investigated. The crystallite size of the CeO(2) nanocrystals can be tuned in the range 3-7 nm depending on the considered alcohol, and their surface has been modified by these solvents without the use of surfactants. Mechanisms are proposed for the interaction of primary and secondary alcohols with CeO(2) surface and its functionalization during the synthesis based on FTIR and TGA-MS studies. This study allows apprehending the role of alcohols during the synthesis and may lead to an informed choice of solvent as a function of the required size and surface properties of CeO(2) NCs. It also opens new route to CeO(2) functionalization using supercritical alcohol derivatives. PMID:23126630

  5. Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species.

    PubMed

    Zhang, Wei; Pu, Zhichao; Du, Songyan; Chen, Yongsheng; Jiang, Lin

    2016-05-01

    The potential environmental impacts of engineered cerium oxide nanoparticles (CeO2 NPs) on aquatic organisms have remained largely unknown. Therefore, the laboratory study featured herein was performed to determine the fate of CeO2 NPs in an aquatic environment and their toxicity towards 14 different ciliated protist species at a specified population level. An investigation of 48 h aggregation kinetics in the Dryl's solution showed the CeO2 NPs to be relatively stable. The pH values in three test medium were too far away from PZC, which explained the stability of CeO2 NPs. CeO2 NPs generally elicited more toxicity with increasing NP concentration, following certain dose-response relationships. Nano-CeO2 resulted in greater toxicity in a particle state than when added as bulk material. LC50 values showed a negative correlation with the surface-to-volume ratio for these protists, suggesting that surface adsorption of CeO2 NPs might contribute to the observed toxicity. Additionally, acute toxic responses of 14 ciliated protist species to CeO2 NPs were not significantly phylogenetically conserved. The results of these observations provide a better insight into the potential risks of CeO2 NPs in an aquatic environment. PMID:26986089

  6. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation

    PubMed Central

    WINGARD, CHRISTOPHER J.; WALTERS, DIANNE M.; CATHEY, BROOK L.; HILDERBRAND, SUSANA C.; KATWA, PRANITA; LIN, SIJIE; KE, PU CHUN; PODILA, RAMAKRISHNA; RAO, APPARAO; LUST, ROBERT M.; BROWN, JARED M.

    2011-01-01

    Cerium oxide (CeO2) represents an important nanomaterial with wide ranging applications. However, little is known regarding how CeO2 exposure may influence pulmonary or systemic inflammation. Furthermore, how mast cells would influence inflammatory responses to a nanoparticle exposure is unknown. We thus compared pulmonary and cardiovascular responses between C57BL/6 and B6.Cg-KitW-sh mast cell deficient mice following CeO2 nanoparticle instillation. C57BL/6 mice instilled with CeO2 exhibited mild pulmonary inflammation. However, B6.Cg-KitW-sh mice did not display a similar degree of inflammation following CeO2 instillation. Moreover, C57BL/6 mice instilled with CeO2 exhibited altered aortic vascular responses to adenosine and an increase in myocardial ischemia/reperfusion injury which was absent in B6.Cg-KitW-sh mice. In vitro CeO2 exposure resulted in increased production of PGD2, TNF-α, IL-6 and osteopontin by cultured mast cells. These findings demonstrate that CeO2 nanoparticles activate mast cells contributing to pulmonary inflammation, impairment of vascular relaxation and exacerbation of myocardial ischemia/reperfusion injury. PMID:21043986

  7. Effect of nano-sized cerium-zirconium oxide solid solution on far-infrared emission properties of tourmaline powders

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Yang, Liqing; Hu, Weijie; Li, Wenlong; Wang, Haojing

    2015-10-01

    Far-infrared functional nanocomposites were prepared by the co-precipitation method using natural tourmaline (XY3Z6Si6O18(BO3)3V3W, where X is Na+, Ca2+, K+, or vacancy; Y is Mg2+, Fe2+, Mn2+, Al3+, Fe3+, Mn3+, Cr3+, Li+, or Ti4+; Z is Al3+, Mg2+, Cr3+, or V3+; V is O2-, OH-; and W is O2-, OH-, or F-) powders, ammonium cerium(IV) nitrate and zirconium(IV) nitrate pentahydrate as raw materials. The reference sample, tourmaline modified with ammonium cerium(IV) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that tourmaline modified with Ce and Zr has a better far-infrared emission property than tourmaline modified with Ce alone. Through characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), the mechanism for oxygen evolution during the heat process in the two composite materials was systematically studied. The XPS spectra show that Fe3+ ratio inside tourmaline modified with Ce alone can be raised by doping Zr. Moreover, it is showed that there is a higher Ce3+ ratio inside the tourmaline modified with Ce and Zr than tourmaline modified with Ce alone. In addition, XRD results indicate the formation of CeO2 and Ce1-xZrxO2 crystallites during the heat treatment and further TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce-Zr doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe2+ to Fe3+ inside the tourmaline caused by the change in the catalyst redox properties of CeO2 brought about by doping with Zr4+. In all samples, tourmaline modified with 7.14 wt.% Ce and 1.86 wt.% Zr calcined at 800∘C for 5 h has the best far-infrared emission property with the maximum emissivity value of 98%.

  8. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D.; Alman, David E.

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  9. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  10. Cerium metallofullerenes

    NASA Astrophysics Data System (ADS)

    Georgi, Petra; Kuran, Pavel; Dunsch, Lothar

    1999-09-01

    With respect to its redox state cerium is of high interest in metallofullerene research as its preferable redox states are 3+ and 4+. As representative structures of the cerium fullerene family both Ce2@C72 and Ce@C82 were prepared by the Krätschmer arc burning method. The metallofullerene Ce2@C72 was isolated for the first time using a two stage HPLC separation technique. The UV-Vis-NIR, IR and ESR spectra were compared with those of other C72 cage metallofullerenes. The existence and stability of the Ce2@C72 structure supports the assumption that the C72 carbon cage can be stabilised by metal ions. The endohedral fullerene Ce@C82 was also isolated by two stage HPLC and characterized by UV-Vis-NIR, IR and ESR spectroscopy for comparison with other endohedral C82 fullerenes. The redox properties of this metallofullerene structure were studied by cyclic voltammetry.

  11. CVD diamond film oxidation resistance research

    NASA Astrophysics Data System (ADS)

    Jing, Longwei; Wang, Xiaoping; Wang, Lijun; Pan, Xiufang; Sun, Yiqing; Wang, Jinye; Sun, Hongtao

    2013-12-01

    Diamond films were deposited on a silicon substrate by microwave plasma chemical vapor deposition system, and its oxidation experiments were carried out in atmospheric environmental condition by using a muffle furnace. Inatmospheric environment (the temperature is from 400°C to 900°C) the oxidation resistance of diamond thin films was investigated. The results indicate that under the atmospheric environment diamond thin film surface morphology did not change after 6 hours at 400°C. Diamond thin film surface morphology began to change after 2 hours at 600°C, and when time was extended to 4 hours, the diamond thin film surface morphology changed significantly. The surface morphology of diamond films began to change after 15 minutes at a 700°C condition and when time was extended to 6 hours diamond films were all destroyed. All the diamond films on the silicon substrate disappeared completely in 20 minutes at 900°C. The intact crystal face is the reason that natural diamond has stable chemical property. The crystal face of synthetic diamond film has a lot of defects, especially on the side. Oxidation of the diamond films begin with the grain boundary and defects.

  12. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels.

    PubMed

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO₂) and titanium oxide (nTiO₂) nanoparticles in soil at 0, 500 and 1000 mg·kg(-1) on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO₂ and nTiO₂ had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO₂·kg(-1). On the contrary Zn and Mn concentrations were improved by 500 mg nTiO₂·kg(-1), and Ca by both nTiO₂ treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO₂ while nTiO₂ can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  13. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles.

    PubMed

    Andersen, Christian P; King, George; Plocher, Milt; Storm, Marjorie; Pokhrel, Lok R; Johnson, Mark G; Rygiewicz, Paul T

    2016-09-01

    Ten agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs. Eight of 10 species responded to nTiO2 , and 5 species responded to nCeO2 . Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain the developmental effects of these 2 ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, with unknown effects at later stages of the life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Environ Toxicol Chem 2016;35:2223-2229. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26773270

  14. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels

    PubMed Central

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO2) and titanium oxide (nTiO2) nanoparticles in soil at 0, 500 and 1000 mg·kg−1 on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO2 and nTiO2 had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO2·kg−1. On the contrary Zn and Mn concentrations were improved by 500 mg nTiO2·kg−1, and Ca by both nTiO2 treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO2 while nTiO2 can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  15. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  16. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  17. Influence of a Cerium surface treatment on the oxidation behavior of type 347 stainless steel

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2007-04-01

    A surface treatment was applied to the surface of Type 347 stainless steel to enhance oxidation resistance. The treatment consisted of dip coating coupons in a CeO2 and halide activator slurry, followed by a thermal treatment at 900C in an inert atmosphere for 12 hours. Cyclical oxidation tests were conducted at 800C in either dry air or air+3%H2O. In dry air, the treatment reduced the oxidation rate (reduced the magnitude of weight gain) of the alloy by a factor of three. Protective chromium based oxide and spinel ((Mn,Cr)3O4 and (Cr,Fe)2O3) phases formed on the surface of the untreated and treated alloy. More significantly, the treatment suppressed the oxide scale spallation that occurred upon cyclical exposure of this alloy to moist air. In moist air, less protective chromite (FeCr2O4), magnetite (Fe+2Fe2+3O4), and hematite (Fe2O3) formed as oxide products on the surface of the base alloy. The treated alloy did not spall during exposure to moist air, and interestingly, the treated alloy possessed similar oxidation rates (magnitude of weight gain) in both moist and dry air. The same protective chromium based oxide and spinel ((Mn,Cr)3O4 and (Cr,Fe)2O3) phases formed on the surface of the treated alloy exposed to both moist and dry air. In the aggressive moist environment, the Ce surface treatment suppressed the formation of less protective iron-oxides, and concomitant oxide scale spallation during thermal cycling.

  18. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  19. Au-mixed lanthanum/cerium oxide catalysts for water-gas-shift

    SciTech Connect

    Wang, Yanan; Liang, Shuang; Cao, Anmin; Thompson, Robert L; Veser, Goetz

    2010-08-01

    We report on the synthesis of highly homogeneous mixed La/Ce-oxides via a microemulsion-templated approach, and their evaluation as active supports for Au in the water gas shift (WGS) reaction. Both structure and reducibility of the oxides could be tailored by adjusting the La content across the entire range of La:Ce-ratios. The reducibility of the Au-free oxides shows an optimum at ∼25% La content, which can be traced back to improved oxygen mobility due to formation of oxygen vacancies and to the formation of more strongly bound oxygen upon La addition. Deposition of Au onto these oxides gives rise to an additional, low-temperature reduction peak, presumably due to hydrogen spill-over from the noble metal onto the oxide support. The WGS activity of Au/La{sub x}Ce{sub 1−x}O{sub 2−0.5x} catalysts correlates closely with the reducibility of the oxide supports, and hence with La content, demonstrating that carefully controlled synthesis of nanostructured catalysts with uniform, tailored composition allows for fine control of reactive properties of these materials, and might ultimately open the way towards a more rational design of catalysts.

  20. Preparation and characterization of RF sputtered Ce-V mixed oxide thin films

    SciTech Connect

    Malini, D. Rachel; Sanjeeviraja, C.

    2012-06-05

    Cerium-Vanadium mixed oxide thin films were deposited at room temperature by varying RF power in RF magnetron sputtering. The morphology and structural features were studied by taking FESEM and XRD and optical properties were analyzed by taking transmittance and absorption spectra. The crystalline film shows orthorhombic CeVO{sub 3} phase and the observed grain size varies from 89.4nm to 208.7nm. The transmission increases and the absorption edge at 330nm is blue shifted with increase in RF power. The optical band gap is found to increase from 1.59 to 1.94eV. The PL spectra shows blue shift in the emission peak centered at a wavelength of 495nm with increase in RF power.

  1. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  2. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  3. Oxidation behavior of titanium nitride films

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Ying; Lu, Fu-Hsing

    2005-07-01

    The oxidation behavior of titanium nitride (TiN) films has been investigated by using x-ray diffraction, Raman scattering spectroscopy, and field emission scanning electron microscopy. TiN films were deposited onto Si substrates by using cathodic arc plasma deposition technique. After that, the films were annealed in the air at 500-800 °C for 2 h. The x-ray diffraction spectra showed that rutile-TiO2 appeared above 600 °C. The relative intensity of TiO2 rapidly increased with temperatures. Only rutile-TiO2 was detected above 700 °C. Raman scattering spectra indicated the presence of rutile-TiO2 signals above 500 °C. Meanwhile an additional Si peak appeared at 700 °C in Raman spectra, above which only Si peak appeared. Many nano pores were found on the surface of films annealed at temperatures between 600 and 700 °C in field emission scanning electron microscopy, while the granular structure existed at 800 °C. The as-deposited TiN films had an apparent columnar structure. The thin and dense oxide overlayer appeared at 500 °C, and thicker oxide layer existed above 600 °C. The elongated grain structure with many voids existed in the film at 800 °C. These pores-voids might result from the nitrogen release during the oxidation of the nitride. The oxide layer obviously grows inward indicating the oxidation of TiN films belongs to an inward oxidation. The pre-exponential factor and the activation energy of the oxidation were evaluated by Arrhenius-type relation. These values were 2.2×10-6 cm2/s and 110+/-10 kJ/mol, which are consistent with those reports in the literature.

  4. Cerium Oxide Nanoparticles: A Potential Medical Countermeasure to Mitigate Radiation-Induced Lung Injury in CBA/J Mice.

    PubMed

    Xu, P-T; Maidment, B W; Antonic, V; Jackson, I L; Das, S; Zodda, A; Zhang, X; Seal, S; Vujaskovic, Z

    2016-05-01

    Cerium oxide nanoparticles (CNPs) have a unique surface regenerative property and can efficiently control reactive oxygen/nitrogen species. To determine whether treatment with CNPs can mitigate the delayed effects of lung injury after acute radiation exposure, CBA/J mice were exposed to 15 Gy whole-thorax radiation. The animals were either treated with nanoparticles, CNP-18 and CNP-ME, delivered by intraperitoneal injection twice weekly for 4 weeks starting 2 h postirradiation or received radiation treatment alone. At the study's end point of 160 days, 90% of the irradiated mice treated with high-dose (10 μM) CNP-18 survived, compared to 10% of mice in the radiation-alone (P < 0.0001) and 30% in the low-dose (100 nM) CNP-18. Both low- and high-dose CNP-ME-treated irradiated mice showed increased survival rates of 40% compared to 10% in the radiation-alone group. Multiple lung functional parameters recorded by flow-ventilated whole-body plethysmography demonstrated that high-dose CNP-18 treatment had a significant radioprotective effect on lethal dose radiation-induced lung injury. Lung histology revealed a significant decrease (P < 0.0001) in structural damage and collagen deposition in mice treated with high-dose CNP-18 compared to the irradiated-alone mice. In addition, significant reductions in inflammatory response (P < 0.01) and vascular damage (P < 0.01) were observed in the high-dose CNP-18-treated group compared to irradiated-alone mice. Together, the findings from this preclinical efficacy study clearly demonstrate that CNPs have both clinically and histologically significant mitigating and protective effects on lethal dose radiation-induced lung injury. PMID:27135969

  5. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    PubMed Central

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  6. Effect of cerium substitution on microstructure and Faraday rotation of Ce x Y3- x Fe5O12 thin films

    NASA Astrophysics Data System (ADS)

    Shahrokhvand, S. M.; Mozaffari, M.; Rozatian, A. S. H.; Hamidi, S. M.; Tehranchi, M. M.

    2016-01-01

    In this work, cerium-substituted yttrium iron garnet (Ce x Y3- x Fe5O12, x = 0.25-1) targets were fabricated by conventional ceramic method at different temperatures, and their crystal structures were investigated by X-ray diffraction method. The results showed that the minimum calcining temperature required to get single-phase targets depends on x value and decreased by increasing x value. Then, thin films of the targets were deposited on GGG (444) single-crystal substrates by pulsed laser deposition technique. Based on the previous studies, preferred (444) oriented Ce x Y3- x Fe5O12 thin films were fabricated under optimum conditions. Faraday rotation of the thin films was measured at 635 nm wavelength, and the results showed that Faraday rotation and sensitivity constant increased by increasing x value. Scanning electron microscope images showed that by increasing x value, cracks on the thin films' surface increased. Atomic force microscopy images showed that the films have smooth surfaces and the surface roughness decreased by increasing the x value.

  7. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm

    NASA Astrophysics Data System (ADS)

    Onbasli, Mehmet C.; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F.; Veis, Martin; Ross, Caroline A.

    2016-03-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices.

  8. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200-1770 nm.

    PubMed

    Onbasli, Mehmet C; Beran, Lukáš; Zahradník, Martin; Kučera, Miroslav; Antoš, Roman; Mistrík, Jan; Dionne, Gerald F; Veis, Martin; Ross, Caroline A

    2016-01-01

    Magneto-optical cerium-substituted yttrium iron garnet (Ce:YIG) thin films display Faraday and Kerr rotation (rotation of light polarisation upon transmission and reflection, respectively) as well as a nonreciprocal phase shift due to their non-zero off-diagonal permittivity tensor elements, and also possess low optical absorption in the near-infrared. These properties make Ce:YIG useful in providing nonreciprocal light propagation in integrated photonic circuits, which is essential for accomplishing energy-efficient photonic computation and data transport architectures. In this study, 80 nm-thick Ce:YIG films were grown on Gadolinium Gallium Garnet substrates with (100), (110) and (111) orientations using pulsed laser deposition. The films had bulk-like structural and magnetic quality. Faraday and Kerr spectroscopies along with spectroscopic ellipsometry were used to deduce the complete permittivity tensor of the films in the ultraviolet, visible and near-infrared spectral region, and the magneto-optical figure of merit as a function of wavelength was determined. The samples showed the highest IR Faraday rotation reported for thin films of Ce:YIG, which indicates the importance of this material in development of nonreciprocal photonic devices. PMID:27025269

  9. Microstructural evolution of tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  10. Direct Comparison of the X-Ray Emission and Absorption of Cerium Oxide

    SciTech Connect

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Denlinger, J D

    2010-11-24

    Bremstrahlung Isochromat Spectroscopy (BIS). The XES spectra were collected using a Specs electron gun for the excitation and the XES 350 grating monochromator and channel plate system from Scienta as the photon detection. Spectra were collected in 'normal mode,' where the electron gun kinetic energy (KE) and the energy position of the center of the channel plate were both fixed and the energy distribution in the photon (hv) spectrum was derived from the intensities distributed across the channel plate detector in the energy dispersal direction. The polycrystalline Ce sample was oxidized by exposure to air at ambient pressures. After introduction to the ultra-high vacuum system, the oxidized sample was bombarded with Ar, to clean the topmost surface region and stabilize the surface and near surface regions. Although CeO{sub 2} would be the thermodynamically preferred composition in an oxygen rich environment, the combination of a vacuum environment and ion etching may have driven the near surface region into a Ce{sub 2}O{sub 3} stoichiometry. XES data collection occurred with the sample at or near room temperature. The base pressure of the system was 3 x 10{sup -10} torr, but the pressure changed depending the energy and current of the electron gun. For example, with the XES measurements at KE = 3KeV, the pressure was approximately 8 to 9 x 10{sup -10} torr and the excitation current to the sample was typically 0.01 mA. More detail of the sample preparation and analysis can be found in Reference 1. The XAS experiments were performed at Beamline 8 of the Advance Light Source, as part of a larger collaboration. The ex situ sample used at the ALS was prepared in a fashion similar to that described above. X-ray Emission Spectroscopy (XES) and X-ray Absorption Spectroscopy (XAS), have been used to investigate the photon emission and absorption associated with the Ce3d{sub 5/2} and Ce3d{sub 3/2} core-levels in CeOxide. A comparison of the two processes and their spectra

  11. Electro-deposition of superconductor oxide films

    DOEpatents

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  12. Cerium oxide layers on the Cu(1 1 1) surface: Substrate-mediated redox properties

    NASA Astrophysics Data System (ADS)

    Wrobel, R.; Suchorski, Y.; Becker, S.; Weiss, H.

    Ceria submonolayers consisting of nanosized 2D islands on a Cu(1 1 1) surface have been prepared by oxidation of the nucleating Ce submonolayer (0.7 ML) and characterized using XPS and STM. The reducibility of the resulting well-defined CeO 2-x/Cu(1 1 1) model system of the "inverse supported catalyst" type was studied by XPS using CO as reducing agent. In order to investigate the contribution of the substrate in the redox process, the properties of a ceria submonolayer (0.7 ML) on Cu(1 1 1), of an optically dense layer of ceria (1.5 ML) on Cu(1 1 1) and of a ceria submonolayer (0.7 ML) on Pt(1 1 1) have been compared. The direct comparison reveals the (metal substrate mediated) spillover mechanism of the ceria reduction by CO in the present CeO 2-x/Me fcc(1 1 1) model systems.

  13. A spray drying system for synthesis of rare-earth doped cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Vaneet; Eberhardt, Kathryn M.; Sharma, Renu; Adams, James B.; Crozier, Peter A.

    2010-08-01

    We have constructed a spray dryer to synthesize doped ceria nanoparticles. The system was employed to synthesize mixed oxide nanoparticles of praseodymium doped CeO 2 (Ce 0.97Pr 0.03O 2, Ce 0.90Pr 0.10O 2, and Ce 0.80Pr 0.20O 2). X-ray diffraction confirmed the fluorite-like cubic crystal structure of the synthesized materials after heat treatment at 700 °C for 2 h. As-dried CeO 2 samples were found to have an average particle size of (6.0 ± 0.2) nm which increased to (17.0 ± 0.4) nm after heat treatment with an improvement in crystallinity. The particle size increased steadily with Pr content. The lattice parameter of Pr-doped CeO 2 was found to increase or decrease with Pr content depending on the heat treatment process.

  14. Pilot demonstration of cerium oxide coated anodes. Final report, April 1990--October 1992

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ({approximately}1.5) and low current density (0.5 A/cm{sup 2}), a {ge}1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  15. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  16. A rapid solvothermal synthesis of cerium oxide hollow spheres and characterization

    SciTech Connect

    Kempaiah Devaraju, Murukanahally; Liu, Xiangwen; Yin, Shu; Sato, Tsugio

    2012-10-15

    An easy and size controlled solvothermal synthesis of CeO{sub 2} hollow spheres is still a challenge in the area of materials synthesis. Here, CeO{sub 2} hollow spheres have been synthesized using PVA500 as a surfactant via solvothermal reaction followed by calcinations. The size of CeO{sub 2} hollow spheres could be controlled from 500 to 150 nm by changing the amounts of Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O and PVA500. The possible growth mechanism of CeO{sub 2} hollow sphere was explained. The CO oxidation catalytic activity of the CeO{sub 2} hollow spheres were superior to that of the commercial CeO{sub 2} powder due to the high specific surface area and small crystallite size. - Graphical abstract: A rapid and easy way to prepare CeO{sub 2} hollow sphere with 150-500 nm in diameter was successfully achieved by solvothermal reaction. The prepared particles showed hollowness due to Ostwald ripening process. An improved catalytic activity was observed and discussed. Highlights: A rapid synthesis of CeO{sub 2} hollow spheres with diameter size from 15 to 500 nm. Black-Right-Pointing-Pointer Cheap surfactant was used to prepare hollow spheres. Black-Right-Pointing-Pointer Effect of temperature and surfactant ratio were investigated. Black-Right-Pointing-Pointer Systematic characterization by XRD, FESEM, TEM, TG, FTIR and UV. Black-Right-Pointing-Pointer CO oxidation analysis results showed better catalytic activity.

  17. Mesoporous semiconducting oxide thin films with nanocrystalline walls: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Frindell, Karen Lynne

    Mesoporous titania thin films were synthesized using a novel modified sol-gel method, which involves the inhibition of rapid condensative polymerization of hydrolyzed titanium alkoxide using concentrated acid solutions. Lamellar, 2D-hexagonal, and cubic mesostructures were created by varying the volume fraction of the structure-directing block copolymer in the precursor solution. A mesostructured cubic semiconducting framework made up of three-dimensionally arranged anatase nanocrystallites embedded in an amorphous titania matrix was obtained by heat treating the films. Interesting absorbance and photoluminescence properties were observed including a blue shifted band gap and well-defined photoluminescence peaks owing to the high surface area and unusual surface environment of the nanocrystallites present in the framework. Selected rare earth ions were included into the walls of the mesoporous titania thin films and excitation of the mesoporous titania in its band gap resulted in sensitized photoluminescence in the visible and near infrared regions of the spectrum. The energy transfer mechanism was determined in part by evaluating which rare earth ions exhibited photoluminescence via energy transfer. Mesoporous titania thin films were incorporated into several devices including a dye sensitized solar cell. The photocurrent, photovoltage and power conversion efficiency of several iterations of solar cell devices were tested. Electrochromic devices were also fabricated and tested using pure mesoporous titania films and those doped with cerium ions. Contrary to the behavior of non-porous Ce-TiO2 thin films, the addition of cerium to mesoporous titania films caused an increased electrochromic effect. The calcination temperature was varied to correlate the evolution of the structure of the titania thin films with optical and electrochemical properties. Electron microscopy, optical absorbance, photoluminescence, lithium insertion, chronoamperometry, and

  18. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    NASA Astrophysics Data System (ADS)

    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.

    2010-04-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  19. Graphene oxide film as solid lubricant.

    PubMed

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  20. Cerium oxidation state in silicate melts: Combined fO2, temperature and compositional effects

    NASA Astrophysics Data System (ADS)

    Smythe, Duane J.; Brenan, James M.

    2015-12-01

    To quantify the relative proportions of Ce3+ and Ce4+ in natural magmas, we have synthesized a series of Ce doped glasses ranging in composition from basalt to rhyolite (±H2O) at 0.001 and 1 GPa, under fO2 conditions varying from FMQ -4.0 to FMQ +8.4, and temperatures from 1200 to 1500 °C. The Ce4+/Ce3+ ratio in the experimental run products was determined both potentiometrically and in situ, using Ce M4,5-edge X-ray absorption near-edge structure (XANES) spectroscopy. For a given melt composition, the change in Ce4+/Ce3+ ratio with fO2 follows the trend predicted from the reaction stoichiometry assuming simple oxides as melt species. In addition to fO2, melt composition and water content have been found to be secondary controls on Ce4+/Ce3+, with more depolymerized melts and hydrous compositions favoring the stabilization of Ce3+. The Ce4+/Ce3+ ratio can be expressed through the equation,

  1. Combination of supported bimetallic rhodium-molybdenum catalyst and cerium oxide for hydrogenation of amide

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshinao; Tamura, Riku; Tamura, Masazumi; Tomishige, Keiichi

    2015-02-01

    Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6-7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh-MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2-8 MPa and 393-433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh-MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh-MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh-MoOx/SiO2, i.e. reducing the ratio of Mo-OH/Mo-O- sites.

  2. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  3. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  4. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. PMID:26744830

  5. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  6. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  7. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  8. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  9. Cerium-Complex-Catalyzed Oxidation of Arylmethanols under Atmospheric Pressure of Dioxygen and Its Mechanism through a Side-On μ-Peroxo Dicerium(IV) Complex.

    PubMed

    Paul, Mitali; Shirase, Satoru; Morimoto, Yuma; Mathey, Laurent; Murugesapandian, Balasubramanian; Tanaka, Shinji; Itoh, Shinobu; Tsurugi, Hayato; Mashima, Kazushi

    2016-03-14

    A new Ce(IV) complex [Ce{NH(CH2 CH2 N=CHC6 H2 -3,5-(tBu)2 -2-O)2 }(NO3 )2 ] (1), bearing a dianionic pentadentate ligand with an N3 O2 donor set, has been prepared by treating (NH4 )2 Ce(NO3 )6 with the sodium salt of ligand L1. Complex 1 in the presence of TEMPO and 4 Å molecular sieves (MS4 A) has been found to serve as a catalyst for the oxidation of arylmethanols using dioxygen as an oxidant. We propose an oxidation mechanism based on the isolation and reactivity study of a trivalent cerium complex [Ce{NH(CH2 CH2 N=CHC6 H2 -3,5-(tBu)2 -2-O)2 }(NO3 )(THF)] (2), its side-on μ-O2 adduct [Ce{NH(CH2 CH2 N=CHC6 H2 -3,5-(tBu)2 -2-O)2 }(NO3 )]2 (μ-η(2) :η(2) -O2 ) (3), and the hydroxo-bridged Ce(IV) complex [Ce{NH(CH2 CH2 N=CHC6 H2 -3,5-(tBu)2 -2-O)2 }(NO3 )]2 (μ-OH)2 (4) as key intermediates during the catalytic cycle. Complex 2 was synthesized by reduction of 1 with 2,5-dimethyl-1,4-bis(trimethylsilyl)-1,4-diazacyclohexadiene. Bubbling O2 into a solution of 2 resulted in formation of the peroxo complex 3. This provides the first direct evidence for cerium-catalyzed oxidation of alcohols under an O2 atmosphere. PMID:26797722

  10. Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs

    PubMed Central

    Rice, Kevin M.; Nalabotu, Siva K.; Manne, Nandini D.P.K.; Kolli, Madhukar B.; Nandyala, Geeta; Arvapalli, Ravikumar; Ma, Jane Y.; Blough, Eric R.

    2015-01-01

    Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p<0.05). Conclusions: Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response. PMID:26081650

  11. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  12. Interfacial Assembly of Graphene Oxide Films

    NASA Astrophysics Data System (ADS)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  13. Influence of doping with third group oxides on properties of zinc oxide thin films

    SciTech Connect

    Palimar, Sowmya Bangera, Kasturi V.; Shivakumar, G. K.

    2013-03-15

    The study of modifications in structural, optical and electrical properties of vacuum evaporated zinc oxide thin films on doping with III group oxides namely aluminum oxide, gallium oxide and indium oxide are reported. It was observed that all the films have transmittance ranging from 85 to 95%. The variation in optical properties with dopants is discussed. On doping the film with III group oxides, the conductivity of the films showed an excellent improvement of the order of 10{sup 3} {Omega}{sup -1} cm{sup -1}. The measurements of activation energy showed that all three oxide doped films have 2 donor levels below the conduction band.

  14. High-permitivity cerium oxide prepared by molecular beam deposition as gate dielectric and passivation layer and applied to AlGaN/GaN power high electron mobility transistor devices

    NASA Astrophysics Data System (ADS)

    Chiu, Yu Sheng; Liao, Jen Ting; Lin, Yueh Chin; Chien Liu, Shin; Lin, Tai Ming; Iwai, Hiroshi; Kakushima, Kuniyuki; Chang, Edward Yi

    2016-05-01

    High-κ cerium oxide (CeO2) was applied to AlGaN/GaN high-electron-mobility transistors (HEMTs) as a gate insulator and a passivation layer by molecular beam deposition (MBD) for high-power applications. From capacitance–voltage (C–V) measurement results, the dielectric constant of the CeO2 film was 25.2. The C–V curves showed clear accumulation and depletion behaviors with a small hysteresis (20 mV). Moreover, the interface trap density (D it) was calculated to be 5.5 × 1011 eV‑1 cm‑2 at 150 °C. A CeO2 MOS-HEMT was fabricated and demonstrated a low subthreshold swing (SS) of 87 mV/decade, a high ON/OFF drain current ratio (I ON/I OFF) of 1.14 × 109, and a low gate leakage current density (J leakage) of 2.85 × 10‑9 A cm‑2 with an improved dynamic ON-resistance (R ON), which is about one order of magnitude lower than that of a conventional HEMT.

  15. Stability of Commercial Small-Sized Cerium Oxide in the Presence of Biological Material: Dilucidating Relationships between Reactivity and Toxicity of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cervini-Silva, J.; Gilbert, B.; Fernandez-Lomelin, P.; Guzman-Mendoza, J.; Chavira, E.

    2007-05-01

    Cerium is the most abundant lanthanide and generally the only one to undergo redox reactions at the Earth's surface. Although rarely studied in natural environments, the redox chemistry of cerium may regulate metal toxicity. Unlike Ce(III) or other lanthanide ions, Ce(IV) has shown a remarkably efficacy to hydrolyze DNA. While Ce(IV) has been recognized as an important candidate to occupy peptidases catalytic centers, Ce(III) is virtually inactive for peptide hydrolysis. The selectivity of Ce as Ce(IV) relates to the specific coordination of water molecules and their orientation. Ce(IV) may bind selectivity to biomolecules to instigate conformation changes or cleavage of complexes, which affect metabolic pathways pivotal to growth and survival. For instance, Ce(IV) promotes the selective cleavage of RNA-type substrates, cyclic monophosphates, peptides, or monocleotides such as AMP, leading to mixtures of nucleosides and nucleobases. Association constants for Ce(IV)-DNA complexes are reported to be higher in magnitude for single stranded than double stranded DNA, while cleavage rates for either complexes are comparable. Complexation of Ce(IV) with mitoxantrone results in the intercalation of such complex into DNA, enabling mitoxantrone to bind effectively with DNA, along with concomitant conformational changes in the DNA double helix and inhibition of DNA synthesis. To the authors' knowledge, however, little information is available on the reactivity as it relates to toxicity of Ce-bearing nanoparticles widely used in nanotechnological applications. Here, we study molecular interactions between small-sized CeO2 and biomolecules(e.g., DNA, RNA, proteins) using carbon and cerium spectroscopy. Suspension stability as determined by aggregation kinetics was studied by Dynamic Light Scattering (DSL) and UV. In addition, acidophiles and fungi cultures were analyzed by nephelometry to estimate population density and growth rate values. Results show a progressive increase in

  16. An assessment of the validity of cerium oxide as a surrogate for plutonium oxide gallium removal studies

    SciTech Connect

    Kolman, D.G.; Park, Y.; Stan, M.; Hanrahan, R.J. Jr.; Butt, D.P.

    1999-03-01

    Methods for purifying plutonium metal have long been established. These methods use acid solutions to dissolve and concentrate the metal. However, these methods can produce significant mixed waste, that is, waste containing both radioactive and chemical hazards. The volume of waste produced from the aqueous purification of thousands of weapons would be expensive to treat and dispose. Therefore, a dry method of purification is highly desirable. Recently, a dry gallium removal research program commenced. Based on initial calculations, it appeared that a particular form of gallium (gallium suboxide, Ga{sub 2}O) could be evaporated from plutonium oxide in the presence of a reducing agent, such as small amounts of hydrogen dry gas within an inert environment. Initial tests using ceria-based material (as a surrogate for PuO{sub 2}) showed that thermally-induced gallium removal (TIGR) from small samples (on the order of one gram) was indeed viable. Because of the expense and difficulty of optimizing TIGR from plutonium dioxide, TIGR optimization tests using ceria have continued. This document details the relationship between the ceria surrogate tests and those conducted using plutonia.

  17. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  18. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    PubMed

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-01

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping. PMID:26599729

  19. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  20. Plasma deposition of aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Catherine, Y.; Talebian, A.

    1988-03-01

    A plasma deposition technique for amorphous aluminum oxide films is discussed. A 450 kHz or 13.56 MHz power supply was used to generate the plasma and the deposition of the film was achieved at low plasma power using trimethyl-aluminum and carbon dioxide reactant sources. It has been found that for the low frequency plasma the growth is strongly dependent upon TMA concentration, indicating that the growth process is mass transport limited. On the other hand using the 13.56 MHz discharge results in a surface controlled growth rate. An increase in the deposition temperature up to 300° C makes the films more dense and lowers their etching rate. FTIR and ESCA measurements showed that oxidation is only completed with high CO2 concentrations and a deposition temperature above 250° C. The dielectric films were found to have a dielectric constant in the range 7.3=2-9 and a refractive index between 1.5 1.8 depending upon deposition conditions.

  1. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  2. Investigation of photoelectrochemical-oxidized p-GaSb films

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Huang, Hung-Lin; Lee, Ching-Ting; Petrovich Pchelyakov, Oleg; Andreevich Pakhanov, Nikolay

    2012-12-01

    GaSb oxide films were directly formed on the p-GaSb films using the bias-assisted photoelectrochemical (PEC) oxidation method. X-ray photoelectron spectroscopy analysis indicated that the resulting GaSb oxide films consisted of Ga2O3, Sb2O3, and Sb2O5. Different from the non-PEC oxides, the PEC derived oxide contained much more Sb2O5 than Sb2O3. Besides, the interface state density between the PEC oxide and p-GaSb was lower than that of the ordinary oxide/p-GaSb interface. The high quality of the PEC-oxidized GaSb films was attributed to the increase of the stable Sb2O5 content and decrease of the elemental Sb content in the films.

  3. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99±9% vs. 73±7%, respectively). A limit of detection of 0.9μgL(-1) CeO2 corresponding to a number concentration of 1.8×1012L(-1) for NPs of 5nm was achieved for an injection volume of 100μL. PMID:26903472

  4. Comparative study of structural, optical and impedance measurements on V{sub 2}O{sub 5} and V-Ce mixed oxide thin films

    SciTech Connect

    Malini, D. Rachel; Sanjeeviraja, C.

    2015-06-24

    Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.

  5. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies. PMID:26239283

  6. Copper oxide thin films for ethanol sensing

    NASA Astrophysics Data System (ADS)

    Lamri Zeggar, M.; Bourfaa, F.; Adjimi, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    The present is a study of a new active layer for ethanol (C2H5OH) vapour sensing devices based on copper oxide (CuO). CuO films were prepared by spray ultrasonic pyrolysis at a substrate temperature of 350 °C. Films microstructure was examined by X-ray diffraction and atomic force microscopy. Vapour-sensing testing was conducted using static vapour-sensing system, at different operating temperatures in the range of 100°C to 175°C for the vapour concentration of 300 ppm. The results show a high response of 45% at relatively low operating temperatures of 150°C towards ethanol vapour.

  7. Thin zinc oxide and cuprous oxide films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Jeong, Seongho

    Metal oxide semiconductors and heterojunctions made from thin films of metal oxide semiconductors have broad range of functional properties and high potential in optical, electrical and magnetic devices such as light emitting diodes, spintronic devices and solar cells. Among the oxide semiconductors, zinc oxide (ZnO) and cuprous oxide (Cu2O) are attractive because they are inexpensive, abundant and nontoxic. As synthesized ZnO is usually an intrinsic n - type semiconductor with wide band gap (3.4 eV) and can be used as the transparent conducting window layer in solar cells. As synthesized Cu2O is usually a p - type semiconductor with a band gap of 2.17 eV and has been considered as a potential material for the light absorbing layer in solar cells. I used various techniques including metal organic chemical vapor deposition, magnetron sputtering and atomic layer deposition to grow thin films of ZnO and Cu2O and fabricated Cu2O/ZnO heterojunctions. I specifically investigated the optical and electrical properties of Cu 2O thin films deposited on ZnO by MOCVD and showed that Cu2O thin films grow as single phase with [110] axis aligned perpendicular to the ZnO surface which is (0001) plane and with in-plane rotational alignment due to (220) Cu2O || (0002)ZnO; [001]Cu2O || [12¯10]ZnO epitaxy. Moreover, I fabricated solar cells based on these Cu2O/ZnO heterojunctions and characterized them. Electrical characterization of these solar cells as a function of temperature between 100 K and 300 K under illumination revealed that interface recombination and tunneling at the interface are the factors that limit the solar cell performance. To date solar cells based on Cu2O/ZnO heterojunctions had low open circuit voltages (~ 0.3V) even though the expected value is around 1V. I achieved open circuit voltages approaching 1V at low temperature (~ 100 K) and showed that if interfacial recombination is reduced these cells can achieve their predicted potential.

  8. Determination of different valence forms of cerium in glasses using potentiometric titration

    SciTech Connect

    Chesnokova, S.M.; Danilova, I.Yu.; Andreev, P.A.

    1987-09-01

    This paper describes a potentiometric method for the quantitative determination of two cerium oxide forms--cerium dioxide and dicerium trioxide--in glasses where the oxides form a major constituent. The method uses hydroquinone as a reducing agent. Cerium valences are also determined. The sensitivity of the method is tested by analyzing known synthetic mixtures simulating the composition of the glasses. The method has been used to determine the total concentration of cerium and to monitor the redox regime in glass melting furnaces during the melting of cerium-containing glasses.

  9. Oxidation resistance of Pb-Te-Se optical recording film

    NASA Astrophysics Data System (ADS)

    Terao, Motoyasu; Horigome, Shinkichi; Shigematsu, Kazuo; Miyauchi, Yasushi; Nakazawa, Masatoshi

    1987-08-01

    The dependence of oxidation resistance of metal-Te-Se optical recording films on film composition is investigated, as well as the effects of oxidation on laser beam recorded hole shape. The films are deposited by vacuum evaporation on substrates with a glass/UV light curing resin/cellulose nitrate structure. The role of Se in the film is to inhibit the oxidation. With at least 14% Se addition, film oxidation is completely inhibited even at 60 °C, relative humidity 95%. Depth profiles of elements in the recording films are analyzed by Auger electron and x-ray photoelectron spectroscopy to clarify the mechanisms of oxidation inhibition by Se addition. A selenium condensed layer is found at the inner part of an oxidized surface layer. The surface Te oxide layer and the Se-rich layer should inhibit the film inside from oxidizing. The role of the metallic elements In, Pb, Sn, Bi, and Sb in the film is to inhibit cracking and to decrease noise in reproduced signals by decreasing the size of crystal grains. Lead is found to be the best among these metallic elements, because the recorded hole shape is clean even when recorded after 15 days accelerated oxidation at 60 °C, relative humidity 95%. A very long storage life is expected for the Pb-Te-Se optical recording film.

  10. Electrochromism: from oxide thin films to devices

    NASA Astrophysics Data System (ADS)

    Rougier, A.; Danine, A.; Faure, C.; Buffière, S.

    2014-03-01

    In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers. Herein, our approach for optimized ECDs is illustrated through the example of WO3 electrochromic layer in the visible and in the IR domain as well as ZnO based transparent conducting oxide layer. Targeting the field of printed electronics, simplification of the device architecture for low power ECDs is also reported.

  11. Transparent Conductive Oxides in Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hamelmann, Frank U.

    2014-11-01

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion.

  12. Oxidizing annealing effects on VO2 films with different microstructures

    NASA Astrophysics Data System (ADS)

    Dou, Yan-Kun; Li, Jing-Bo; Cao, Mao-Sheng; Su, De-Zhi; Rehman, Fida; Zhang, Jia-Song; Jin, Hai-Bo

    2015-08-01

    Vanadium dioxide (VO2) films have been prepared by direct-current magnetron sputter deposition on m-, a-, and r-plane sapphire substrates. The obtained VO2 films display different microstructures depending on the orientation of sapphire substrates, i.e. mixed microstructure of striped grains and equiaxed grains on m-sapphire, big equiaxed grains on a-sapphire and fine-grained microstructure on r-sapphire. The VO2 films were treated by the processes of oxidation in air. The electric resistance and infrared transmittance of the oxidized films were characterized to examine performance characteristics of VO2 films with different microstructures in oxidation environment. The oxidized VO2 films on m-sapphire exhibit better electrical performance than the other two films. After air oxidization for 600 s at 450 °C, the VO2 films on m-sapphire show a resistance change of 4 orders of magnitude over the semiconductor-to-metal transition. The oxidized VO2 films on a-sapphire have the highest optical modulation efficiency in infrared region compared to other samples. The different performance characteristics of VO2 films are understood in terms of microstructures, i.e. grain size, grain shape, and oxygen vacancies. The findings reveal the correlation of microstructures and performances of VO2 films, and provide useful knowledge for the design of VO2 materials to different applications.

  13. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles.

    PubMed

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankhanel, Erin; Ma, Jane J; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-08-01

    Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis. PMID:25968464

  14. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles

    PubMed Central

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D.P.K.; Arvapalli, Ravikumar; Rice, Kevin M.; Asano, Shinichi; Fankhanel, Erin; Ma, Jane J.; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R.

    2015-01-01

    Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis. PMID:25968464

  15. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  16. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  17. Fabrication of nanostructured metal oxide films with supercritical carbon dioxide: Processing and applications

    NASA Astrophysics Data System (ADS)

    You, Eunyoung

    was performed thereafter. Subsequent calcination of the samples at high temperature of 400 °C revealed TiO2 nanochannels. H2-assisted-codeposition of Pt and cerium oxide using SFD was performed on porous carbon substrates for their use as anodes for direct methanol fuel cells. X-ray photoelectron analysis revealed that Pt was deposited as a pure metal and Ce was deposited as an oxide. Electrochemical analysis of a full cell revealed that an anode prepared with SFD exhibited better performance than that prepared with conventional brush-painting method. The second process that was developed is a direct spray-on technique to rapidly deposit crystalline nanoscale dendritic TiO2 onto a solid surface. This technique employs atomization of precursor solutions in supercritical fluids combined with the plasma thermal spraying. A solution of metal oxide precursor in scCO2 was expanded across a nozzle into the plasma jet where it is converted to metal oxide. We have investigated TiO2 as our model system using titanium tetra isopropoxide (Ttip) as a precursor. The film structure depends on key process variables including precursor concentration, precursor solution flow rate and plasma gun to substrate distance. The high surface area of the deposited films is attractive for applications in photovoltaics and we have fabricated dye-sensitized solar cells using these films.

  18. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  19. Methane Activation Mediated by a Series of Cerium-Vanadium Bimetallic Oxide Cluster Cations: Tuning Reactivity by Doping.

    PubMed

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2016-04-18

    The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. PMID:26714587

  20. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L).

    PubMed

    Corral-Diaz, Baltazar; Peralta-Videa, Jose R; Alvarez-Parrilla, Emilio; Rodrigo-García, Joaquin; Morales, Maria Isabel; Osuna-Avila, Pedro; Niu, Genhua; Hernandez-Viezcas, Jose A; Gardea-Torresdey, Jorge L

    2014-11-01

    The effects of nCeO2 on food quality are not well known yet. This research was performed to determine the impact of nCeO2 on radish (Raphanus sativus L.). Plants were cultivated to full maturity in potting soil treated with nCeO2 at concentrations of 0, 62.5, 125, 250, and 500 mg/kg. Germination, growth, photosynthesis, ionome, and antioxidants were evaluated at different growth stages. Results showed that at 500 mg/kg, nCeO2 significantly retarded seed germination but did not reduce the number of germinated seeds. None of the treatments affected gas exchange, photosynthesis, growth, phenols, flavonoids, and nutrients' accumulation in tubers and leaves of adult plants. However, tubers' antioxidant capacity, expressed as FRAP, ABTS(•-) and DPPH, increased by 30%, 32%, and 85%, respectively, in plants treated with 250 mg nCeO2kg(-1) soil. In addition, cerium accumulation in tubers of plants treated with 250 and 500 mg/kg reached 72 and 142 mg/kg d wt, respectively. This suggests that nCeO2 could improve the radical scavenging potency of radish but it might introduce nCeO2 into the food chain with unknown consequences. PMID:25439500

  1. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  2. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  3. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  4. Evaluation of the role of oxidative stress, inflammation and apoptosis in the pulmonary and the hepatic toxicity induced by cerium oxide nanoparticles following intratracheal instillation in male Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Nalabotu, Siva Krishna

    The field of nanotechnology is rapidly progressing with potential applications in the automobile, healthcare, electronics, cosmetics, textiles, information technology, and environmental sectors. Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. With increased applications of nanotechnology, there are increased chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of engineered nanomaterials have given scientific and regulatory agencies concerns over the safety of nanomaterials. Specifically, the Organization for Economic Co-operation and Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work has proposed that oxidative stress may play an important role in the toxicity; however, the exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an increased lung weight to body weight ratio. Changes in lung weights were associated with the accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK. Our findings from the study evaluating the possible translocation of CeO2 nanoparticles from the lungs to the liver suggest that CeO 2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase

  5. Effects of oxidative treatments on human hair keratin films.

    PubMed

    Fujii, T; Ito, Y; Watanabe, T; Kawasoe, T

    2012-01-01

    The effects of hydrogen peroxide and commercial bleach on hair and human hair keratin films were examined by protein solubility, scanning electron microscopy (SEM), immunofluorescence microscopy, immunoblotting, and Fourier-transform infrared spectroscopy. Protein solubility in solutions containing urea decreased when the keratin films were treated with hydrogen peroxide or bleach. Oxidative treatments promoted the urea-dependent morphological change by turning films from opaque to transparent in appearance. Immunofluorescence microscopy and immunoblotting showed that the oxidation of amino acids and proteins occurred due to the oxidative treatments, and such occurrence was more evident in the bleach-treated films than in the hydrogen peroxide-treated films. Compared with hair samples, the formation of cysteic acid was more clearly observed in the keratin films after the oxidative treatments. PMID:22487448

  6. Effects of pH and fulvic acids concentration on the stability of fulvic acids--cerium (IV) oxide nanoparticle complexes.

    PubMed

    Oriekhova, Olena; Stoll, Serge

    2016-02-01

    The behavior of cerium (IV) oxide nanoparticles has been first investigated at different pH conditions. The point of zero charge was determined as well as the stability domains using dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. A baseline hydrodynamic diameter of 180 nm was obtained indicating that individual CeO2 nanoparticles are forming small aggregates. Then we analyzed the particle behavior at variable concentrations of fulvic acids for three different pH-electrostatic scenarios corresponding to positive, neutral and negative CeO2 surface charges. The presence of fulvic acids was found to play a key role on the CeO2 stability via the formation of electrostatic complexes. It was shown that a small amount of fulvic acids (2 mg L(-1)), representative of environmental fresh water concentrations, is sufficient to stabilize CeO2 nanoparticles (50 mg L(-1)). When electrostatic complexes are formed between negatively charged FAs and positively charged CeO2 NPs the stability of such complexes is obtained with time (up to 7 weeks) as well as in pH changing conditions. Based on zeta potential variations we also found that the fulvic acids are changing the CeO2 acid-base surface properties. Obtained results presented here constitute an important outcome in the domain of risk assessment, transformation and removal of engineered nanomaterials released into the environment. PMID:26347935

  7. Synchrotron radiation photoelectron spectroscopy study of metal-oxide thin film catalysts: Pt-CeO2 coated CNTs

    NASA Astrophysics Data System (ADS)

    Matolínová, I.; Fiala, R.; Khalakhan, I.; Vorokhta, M.; Sofer, Z.; Yoshikawa, H.; Kobayashi, K.; Matolín, V.

    2012-01-01

    The interaction of Pt with CeO2 layers was investigated by using high resolution hard X-ray photoelectron spectroscopy. Pt doped CeO2 layers were deposited simultaneously by rf-magnetron sputtering on a SiO2/Si substrate and carbon nanotubes (CNTs) grown on a carbon diffusion layer of a polymer membrane fuel cell. In the case of the CNT support photoelectron spectra showed the formation of ionic platinum rich cerium oxide with Pt2+,4+ species, and with the Pt2+/Pt4+ ratio strongly dependent on the amount of platinum. Ce reveals 4+/3+ mixed valent character with Ce3+ concentration increasing with Pt content. In the case of the SiO2/Si substrate the film revealed Ce4+ and Pt4+ species only.

  8. The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster.

    PubMed

    Wu, Bin; Zhang, Di; Wang, Dan; Qi, Chunyan; Li, Zongyun

    2012-10-01

    Due to the widespread application of cerium, a rare earth element, the risk of exposure to cerium has increased. Therefore, understanding the physiological effects of cerium is of great importance. Our previous work showed that cerium caused significant lifespan shortening accompanied by oxidative damage in Drosophila melanogaster, however, little is known about the detailed mechanism of cerium-induced cytotoxicity. Thus, we examined the developmental time during metamorphosis, and assessed the toxic effects of cerium by evaluating heat shock protein 70 (Hsp70), DNA damage markers and apoptosis in D. melanogaster. We found that cerium extended the developmental time of D. melanogaster and up-regulated the expression of Hsp70 when the concentration of cerium was increased (especially concentrations over 26.3 μg/g). Up-regulation of the cell cycle checkpoint p53 and cell signaling protein p38 were also observed when the concentration of cerium was over 104 μg/g. In addition, the activities of caspase-3 and caspase-9, markers of apoptosis, were significantly higher when the larvae were exposed to ceric sulfate. These results suggest that high concentrations of cerium may result in DNA damage and ultimately apoptosis in D. melanogaster, and strongly indicate that cerium should be applied with caution and the potential toxic effects in humans should also be taken into consideration. PMID:22707041

  9. Crystalline state and acoustic properties of zinc oxide films

    SciTech Connect

    Kal'naya, G.I.; Pryadko, I.F.; Yarovoi, Yu.A.

    1988-08-01

    We study the effect of the crystalline state of zinc oxide films, prepared by magnetron sputtering, on the efficiency of SAW transducers based on the layered system textured ZnO film-interdigital transducer (IDT)-fused quartz substrate. The crystalline perfection of the ZnO films was studied by the x-ray method using a DRON-2.0 diffractometer. The acoustic properties of the layered system fused quartz substrate-IDT-zinc oxide film were evaluated based on the squared electromechanical coupling constant K/sup 2/ for strip filters. It was found that K/sup 2/ depends on the magnitude of the mechanical stresses. When zinc oxide films are deposited by the method of magnetron deposition on fused quartz substrates, depending on the process conditions limitations can arise on the rate of deposition owing to mechanical stresses, which significantly degrade the efficiency of SAW transducers based on them, in the ZnO films.

  10. Resputtering of zinc oxide films prepared by radical assisted sputtering

    SciTech Connect

    Song Qiuming; Jiang Yousong; Song Yizhou

    2009-02-15

    Sputtering losses of zinc oxide films prepared by radical assisted sputtering were studied. It was found that the sputtering loss can be very severe in oxygenous sputtering processes of zinc oxide films. In general, resputtering caused by negative oxygen ions dominates the sputtering loss, while diffuse deposition plays a minor role. Resputtering is strongly correlated with the sputtering threshold energy of the deposited films and the concentration of O{sup -} in the sputtering zone. The balance between the oxygen concentration in the sputtering zone and the oxidation degree of the growing films depends on the sputtering rate. Our research suggests that a lower oxygen concentration in the sputtering zone and a higher oxidation degree of the growing films are favorable for reducing the resputtering losses. The sputtering loss mechanisms discussed in this work are also helpful for understanding the deposition processes of other magnetron sputtering systems.

  11. Amorphous tin-cadmium oxide films and the production thereof

    DOEpatents

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  12. Rapid Deposition of Titanium Oxide and Zinc Oxide Films by Solution Precursor Plasma Spray

    NASA Astrophysics Data System (ADS)

    Ando, Yasutaka

    In order to develop a high rate atmospheric film deposition process for functional films, as a basic study, deposition of titanium oxide film and zinc oxide film by solution precursor plasma spray (SPPS) was conducted in open air. Consequently, in the case of titanium oxide film deposition, anantase film and amorphous film as well as rutile film could be deposited by varying the deposition distance. In the case of anatase dominant film, photo-catalytic properties of the films could be confirmed by wettability test. In addition, the dye sensitized sollar cell (DSC) using the TiO2 film deposited by this SPPS technique as photo voltaic device generates 49mV in OCV. On the other hand, in the case of zinc oxide film deposition, it was proved that well crystallized ZnO films with photo catalytic properties could be deposited. From these results, this process was found to have high potential for high rate functional film deposition process conducted in the air.

  13. Mixed cerium-platinum oxides: Electronic structure of [CeO]Ptn (n = 1, 2) and [CeO2]Pt complex anions and neutrals

    NASA Astrophysics Data System (ADS)

    Ray, Manisha; Kafader, Jared O.; Topolski, Josey E.; Jarrold, Caroline Chick

    2016-07-01

    The electronic structures of several small Ce-Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt2 both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt2 complexes are therefore ionic, with electronic structures described qualitatively as [CeO+2]Pt-2 and [CeO+]Pt2-, respectively. The associated anions are described qualitatively as [CeO+]Pt-2 and [CeO+]Pt2-2, respectively. In both neutrals and anions, the most stable molecular structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt2 moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO2, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO2]Pt-. The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO2]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt-O-Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt- daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems.

  14. Mixed cerium-platinum oxides: Electronic structure of [CeO]Ptn (n = 1, 2) and [CeO2]Pt complex anions and neutrals.

    PubMed

    Ray, Manisha; Kafader, Jared O; Topolski, Josey E; Jarrold, Caroline Chick

    2016-07-28

    The electronic structures of several small Ce-Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt2 both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt2 complexes are therefore ionic, with electronic structures described qualitatively as [CeO(+2)]Pt(-2) and [CeO(+)]Pt2 (-), respectively. The associated anions are described qualitatively as [CeO(+)]Pt(-2) and [CeO(+)]Pt2 (-2), respectively. In both neutrals and anions, the most stable molecular structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt2 moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO2, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO2]Pt(-). The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO2]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt-O-Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt(-) daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems. PMID:27475371

  15. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation.

    PubMed

    Culcasi, Marcel; Benameur, Laila; Mercier, Anne; Lucchesi, Céline; Rahmouni, Hidayat; Asteian, Alice; Casano, Gilles; Botta, Alain; Kovacic, Hervé; Pietri, Sylvia

    2012-09-30

    To better understand the antioxidant (enzyme mimetic, free radical scavenger) versus oxidant and cytotoxic properties of the industrially used cerium oxide nanoparticles (nano-CeO(2)), we investigated their effects on reactive oxygen species formation and changes in the antioxidant pool of human dermal and murine 3T3 fibroblasts at doses relevant to chronic inhalation or contact with skin. Electron paramagnetic resonance (EPR) spin trapping with the nitrone DEPMPO showed that pretreatment of the cells with the nanoparticles dose-dependently triggered the release in the culture medium of superoxide dismutase- and catalase-inhibitable DEPMPO/hydroxyl radical adducts (DEPMPO-OH) and ascorbyl radical, a marker of ascorbate depletion. This DEPMPO-OH formation occurred 2 to 24 h following removal of the particles from the medium and paralleled with an increase of cell lipid peroxidation. These effects of internalized nano-CeO(2) on spin adduct formation were then investigated at the cellular level by using specific NADPH oxidase inhibitors, transfection techniques and a mitochondria-targeted antioxidant. When micromolar doses of nano-CeO(2) were used, weak DEPMPO-OH levels but no loss of cell viability were observed, suggesting that cell signaling mechanisms through protein synthesis and membrane NADPH oxidase activation occurred. Incubation of the cells with higher millimolar doses provoked a 25-60-fold higher DEPMPO-OH formation together with a decrease in cell viability, early apoptosis induction and antioxidant depletion. These cytotoxic effects could be due to activation of both the mitochondrial source and Nox2 and Nox4 dependent NADPH oxidase complex. Regarding possible mechanisms of nano-CeO(2)-induced free radical formation in cells, in vitro EPR and spectrophotometric studies suggest that, contrary to Fe(2+) ions, the Ce(3+) redox state at the surface of the particles is probably not an efficient catalyst of hydroxyl radical formation by a Fenton-like reaction

  16. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. PMID:26344323

  17. Weakly ionized cerium plasma radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Koorikawa, Yoshitake; Murakami, Kazunori; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-02-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod cerium target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of cerium ions and electrons, forms by target evaporating. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, weakly ionized cerium plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 500 ns, and the time-integrated x-ray intensity had a value of about 40 μC/kg at 1.0 m from x-ray source with a charging voltage of 55 kV. In the angiography, we employed a film-less computed radiography (CR) system and iodine-based microspheres. Because K-series characteristic x-rays are absorbed easily by the microspheres, high-contrast angiography has been performed.

  18. Characterization and stability of thin oxide films on plutonium surfaces

    NASA Astrophysics Data System (ADS)

    Flores, H. G. García; Roussel, P.; Moore, D. P.; Pugmire, D. L.

    2011-02-01

    X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed to study oxide films on plutonium metal surfaces. Measurements of the relative concentrations of oxygen and plutonium, as well as the resulting oxidation states of the plutonium (Pu) species in the near-surface region are presented. The oxide product of the auto-reduction (AR) of plutonium dioxide films is evaluated and found to be an oxide species which is reduced further than what is expected. The results of this study show a much greater than anticipated extent of auto-reduction and challenge the commonly held notion of the stoichiometric stability of Pu 2O 3 thin-films. The data indicates that a sub-stoichiometric plutonium oxide (Pu 2O 3 - y ) exists at the metal-oxide interface. The level of sub-stoichiometry is shown to depend, in part, on the carbidic contamination of the metal surface.

  19. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  20. Low reflectance sputtered vanadium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Esther, A. Carmel Mary; Dey, Arjun; Rangappa, Dinesh; Sharma, Anand Kumar

    2016-07-01

    Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100-700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200-2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.

  1. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  2. Virus removal by biogenic cerium.

    PubMed

    De Gusseme, Bart; Du Laing, Gijs; Hennebel, Tom; Renard, Piet; Chidambaram, Dev; Fitts, Jeffrey P; Bruneel, Els; Van Driessche, Isabel; Verbeken, Kim; Boon, Nico; Verstraete, Willy

    2010-08-15

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal. PMID:20704235

  3. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  4. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  5. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  6. Influence of a Cerium Surface Treatment on the Oxidation Behavior of Cr2O3-Forming Alloys (title on slides varies: Oxidation Behavior of Cerium Surface Treated Chromia Forming Alloys)

    SciTech Connect

    Alman, D.E.; Holcomb, G.R.; Adler, T.A.; Jablonski, P.D.

    2007-04-01

    Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This temperature will require the construction of boiler and turbine components from austenitic stainless steels and nickel alloys. Many of the alloys being considered for use are primarily Cr2O3 forming alloys [1-4]. It is well known that the addition of a small amount of reactive elements, such as the rare earths elements Ce, La, and Y, can significantly improve the high temperature oxidation resistance of both iron- and nickel- base alloys. A list of the benefits of the reactive element effect include: (i) slowing scale growth, (ii) enhancing scale adhesion; and (iii) stabilizing Cr2O3 formation at lower Cr levels. The incorporation of the reactive element can be made in the melt or through a surface infusion or surface coating. Surface modifications allow for the concentration of the reactive element at the surface where it can provide the most benefit. This paper will detail a Ce surface treatment developed at NETL that improves the high temperature oxidation resistance of Cr2O3 forming alloys. The treatment consists of painting, dip coating, or spraying the alloy surface with a slurry containing CeO2 and a halide activator followed by a thermal treatment in a mild (x10-3 Torr) vacuum. During treatment the CeO2 reacts with the alloy to for a thin CrCeO3-type scale on the alloy surface. Upon subsequent oxidation, scale growth occurs at a reduced rate on alloys in the surface treated condition compared to those in the untreated condition.

  7. Unidirectional oxide hetero-interface thin-film diode

    NASA Astrophysics Data System (ADS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ˜105 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 102 Hz < f < 106 Hz, providing a high feasibility for practical applications.

  8. Unidirectional oxide hetero-interface thin-film diode

    SciTech Connect

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  9. Morphological instability leading to formation of porous anodic oxide films

    NASA Astrophysics Data System (ADS)

    Hebert, Kurt R.; Albu, Sergiu P.; Paramasivam, Indhumati; Schmuki, Patrik

    2012-02-01

    Electrochemical oxidation of metals, in solutions where the oxide is somewhat soluble, produces anodic oxides with highly regular arrangements of pores. Although porous aluminium and titanium oxides have found extensive use in functional nanostructures, pore initiation and self-ordering are not yet understood. Here we present an analysis that examines the roles of oxide dissolution and ionic conduction in the morphological stability of anodic films. We show that patterns of pores with a minimum spacing are possible only within a narrow range of the oxide formation efficiency (the fraction of oxidized metal atoms retained in the film), which should exist when the metal ion charge exceeds two. Experimentally measured efficiencies, over diverse anodizing conditions on both aluminium and titanium, lie within the different ranges predicted for each metal. On the basis of these results, the relationship between dissolution chemistry and the conditions for pore initiation can now be understood in quantitative terms.

  10. Morphological instability leading to formation of porous anodic oxide films.

    PubMed

    Hebert, Kurt R; Albu, Sergiu P; Paramasivam, Indhumati; Schmuki, Patrik

    2012-02-01

    Electrochemical oxidation of metals, in solutions where the oxide is somewhat soluble, produces anodic oxides with highly regular arrangements of pores. Although porous aluminium and titanium oxides have found extensive use in functional nanostructures, pore initiation and self-ordering are not yet understood. Here we present an analysis that examines the roles of oxide dissolution and ionic conduction in the morphological stability of anodic films. We show that patterns of pores with a minimum spacing are possible only within a narrow range of the oxide formation efficiency (the fraction of oxidized metal atoms retained in the film), which should exist when the metal ion charge exceeds two. Experimentally measured efficiencies, over diverse anodizing conditions on both aluminium and titanium, lie within the different ranges predicted for each metal. On the basis of these results, the relationship between dissolution chemistry and the conditions for pore initiation can now be understood in quantitative terms. PMID:22138790

  11. A cerium oxide nanoparticle-based device for the detection of chronic inflammation via optical and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kaittanis, Charalambos; Santra, Santimukul; Asati, Atul; Perez, J. Manuel

    2012-03-01

    Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration, distinguishing physiological from abnormal levels. As a result under physiological and transient inflammatory conditions, the device's fluorescence and magnetic resonance signals, emanating from multimodal iron oxide nanoparticles, were similar. However, under chronic inflammatory conditions that are usually associated with high local concentrations of reactive oxygen species and pH decrease, the device's output was considerably different. Specifically, the device's fluorescence emission significantly decreased, while the magnetic resonance signal T2 increased. Further studies identified that the changes in the device's output are attributed to inactivation of the sensing component's nanoceria that prevents it from successfully scavenging the generated free radicals. Interestingly, the buildup of free radical excess led to polymerization of the iron oxide nanoparticle's coating, with concomitant formation of micron size aggregates. Our studies indicate that a nanoceria-based device can be utilized for the monitoring of pro-inflammatory biomarkers, having important applications in the management of numerous ailments while eliminating nanoparticle toxicity issues.Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration

  12. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    PubMed

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-01

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides. PMID:27058299

  13. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures

    SciTech Connect

    Lad, Robert J.

    1999-12-14

    This project focused on three different aspects of oxide thin film systems: (1) Model metal/oxide and oxide/oxide interface studies were carried out by depositing ultra-thin metal (Al, K, Mg) and oxide (MgO, AlO{sub x}) films on TiO{sub 2}, NiO and {alpha}-Al{sub 2}O{sub 3} single crystal oxide substrates. (2) Electron cyclotron resonance (ECR) oxygen plasma deposition was used to fabricate AlO{sub 3} and ZrO{sub 2} films on sapphire substrates, and film growth mechanisms and structural characteristics were investigated. (3) The friction and wear characteristics of ZrO{sub 2} films on sapphire substrates in unlubricated sliding contact were studied and correlated with film microstructure. In these studies, thin film and interfacial regions were characterized using diffraction (RHEED, LEED, XRD), electron spectroscopies (XPS, UPS, AES), microscopy (AFM) and tribology instruments (pin-on-disk, friction microprobe, and scratch tester). By precise control of thin film microstructure, an increased understanding of the structural and chemical stability of interface regions and tribological performance of ultra-thin oxide films was achieved in these important ceramic systems.

  14. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    PubMed

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules. PMID:26566067

  15. Pharmacological potential of cerium oxidenanoparticles

    NASA Astrophysics Data System (ADS)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  16. Depression of melting point for protective aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Dreizin, E. L.; Allen, D. J.; Glumac, N. G.

    2015-01-01

    The protective aluminum oxide film naturally formed on a surface of aluminum has a thickness in the range of 3-5 nm. Its melting causes loss of its continuity, which may significantly affect the ignition and combustion processes and their relative time scales. Melting of the alumina film also plays an important role when aluminum powders are used to prepare composites and/or being sintered. This letter quantifies depression of the melting point of an alumina film based on its nano-meter thickness. A theoretical estimate is supported by experiments relying on a detected change in the optical properties of naturally oxidized aluminum particles heated in an inert environment.

  17. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  18. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    SciTech Connect

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  19. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  20. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis.

    PubMed

    Caputo, Fanny; De Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-10-14

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce(3+)/Ce(4+) redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields. PMID:26349675

  1. Lithium cobalt oxide thin film and its electrochromism

    NASA Astrophysics Data System (ADS)

    Wei, Guang; Haas, Terry E.; Goldner, Ronald B.

    1989-06-01

    Thin films of lithium cobalt oxide have been prepared by RF-sputtering from powdered LiCoO2. These films permit reversible electrolytic removal of lithium ions upon application of an anodic voltage in a propylene carbonate-lithium perchlorate electrolyte, the films changing in color from a pale amber transparent state to a dark brown. A polycrystalline columnar film structure was revealed with SEM and TEM. X ray examination of the films suggests that the layered rhombohedral LiCoO2 structure is the major crystalline phase present. Oxidation-reduction titration and atomic absorption were used for the determination of the film stoichiometry. The results show that the as deposited-films on glass slides are lithium deficient (relative to the starting material) and show a high average cobalt oxidation state near +3.5. The measurements of dc conductivity suggest a band to band conduction at high temperature (300 to 430 K) and hopping conduction in localized states at low temperature (4 to 270 K). The thermoelectric power data show that the films behave as p-type semiconductors. Transmission and reflectance measurements from 400 nm to 2500 nm show significant near-IR reflectivity.

  2. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  3. Understanding organic film behavior on alloy and metal oxides.

    PubMed

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash; Gawalt, Ellen S

    2010-02-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides, namely nickel, chromium, molybdenum, manganese, iron, and titanium, were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid, and octadecylsulfonic acid on these substrates were examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy, and matrix-assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  4. Structural characterization of impurified zinc oxide thin films

    SciTech Connect

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  5. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  6. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  7. High temperature coefficient of resistance molybdenum oxide and nickel oxide thin films for microbolometer applications

    NASA Astrophysics Data System (ADS)

    Jin, Yao O.; John, David Saint; Podraza, Nikolas J.; Jackson, Thomas N.; Horn, Mark W.

    2015-03-01

    Molybdenum oxide (MoOx) and nickel oxide (NiOx) thin films were deposited by reactive biased target ion beam deposition. MoOx thin film resistivity varied from 3 to 2000 Ω.cm with a temperature coefficient of resistance (TCR) from -1.7% to -3.2%/K, and NiOx thin film resistivity varied from 1 to 300 Ω.cm with a TCR from -2.2% to -3.3%/K, both easily controlled by varying the oxygen partial pressure. Biased target ion beam deposited high TCR MoOx and NiOx thin films are polycrystalline semiconductors and have good stability in air. Compared with commonly used vanadium oxide thin films, MoOx or NiOx thin films offer improved process control for resistive temperature sensors.

  8. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  9. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  10. NEXAFS Study of Air Oxidation for Mg Nanoparticle Thin Film

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S.

    2013-03-01

    The air oxidation reaction of Mg nanoparticle thin film has been investigated by Mg K-edge NEXAFS technique. It is revealed that MgO is formed on the Mg nanoparticle surfaces at the early stage of the air oxidation for Mg nanoparticle thin film. The simulation of NEXAFS spectrum using standard spectra indicates the existence of complex magnesium carbonates (x(MgCO3).yMg(OH2).z(H2O)) in addition to MgO at the early stage of the air oxidation.

  11. Comparison of the high-pressure behavior of the cerium oxides Ce2O3 and CeO2

    DOE PAGESBeta

    Lipp, M. J.; Jeffries, J. R.; Cynn, H.; Park Klepeis, J. -H.; Evans, W. J.; Mortensen, D. R.; Seidler, G. T.; Xiao, Y.; Chow, P.

    2016-02-09

    We studied the high-pressure behavior of Ce2O3 using angle-dispersive x-ray diffraction to 70 GPa and compared with that of CeO2. Up to the highest pressure Ce2O3 remains in the hexagonal phase (space group 164, P ¯32/m1) typical for the lanthanide sesquioxides. We did not observe a theoretically predicted phase instability for 30 GPa. The isothermal bulk modulus and its pressure derivative for the quasihydrostatic case are B0 = 111 ± 2 GPa, B'0 = 4.7 ± 0.3, and for the case without pressure-transmitting medium B0 = 104 ±4 GPa, B'0 = 6.5 ± 0.4. Starting from ambient-pressure magnetic susceptibility measurementsmore » for both oxides in highly purified form,we find that the Ce atom in Ce2O3 behaves like a trivalent Ce3+ ion (2.57μB per Ce atom) in contrast to previously published data. Since x-ray emission spectroscopy of the Lγ (4d3/2 → 2p1/2) transition is sensitive to the 4f -electron occupancy, we also followed the high-pressure dependence of this line for both oxides up to 50 GPa. We observed no change of the respective line shape, indicating that the 4f -electron configuration is stable for both materials. We posit from this data that the 4f electrons do not drive the volume collapse of CeO2 from the high-symmetry, low-pressure fluorite structure to the lower-symmetry orthorhombic phase.« less

  12. Comparison of the high-pressure behavior of the cerium oxides C e2O3 and Ce O2

    NASA Astrophysics Data System (ADS)

    Lipp, M. J.; Jeffries, J. R.; Cynn, H.; Park Klepeis, J.-H.; Evans, W. J.; Mortensen, D. R.; Seidler, G. T.; Xiao, Y.; Chow, P.

    2016-02-01

    The high-pressure behavior of C e2O3 was studied using angle-dispersive x-ray diffraction to 70 GPa and compared with that of Ce O2 . Up to the highest pressure C e2O3 remains in the hexagonal phase (space group 164, P 3 ¯2 /m 1 ) typical for the lanthanide sesquioxides. A theoretically predicted phase instability for 30 GPa is not observed. The isothermal bulk modulus and its pressure derivative for the quasihydrostatic case are B0=111 ±2 GPa ,B0'=4.7 ±0.3 , and for the case without pressure-transmitting medium B0=104 ±4 GPa ,B0'=6.5 ±0.4 . Starting from ambient-pressure magnetic susceptibility measurements for both oxides in highly purified form, we find that the Ce atom in C e2O3 behaves like a trivalent C e3 + ion (2.57 μB per Ce atom) in contrast to previously published data. Since x-ray emission spectroscopy of the L γ (4 d3 /2→2 p1 /2 ) transition is sensitive to the 4 f -electron occupancy, we also followed the high-pressure dependence of this line for both oxides up to 50 GPa. No change of the respective line shape was observed, indicating that the 4 f -electron configuration is stable for both materials. We posit from this data that the 4 f electrons do not drive the volume collapse of Ce O2 from the high-symmetry, low-pressure fluorite structure to the lower-symmetry orthorhombic phase.

  13. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    SciTech Connect

    Lee, Ching-Ting Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  14. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance gm change, threshold voltage VT change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  15. Growth of Epitaxial Oxide Thin Films on Graphene.

    PubMed

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M; Klein, Norbert; Alford, Neil M; Petrov, Peter K

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  16. Growth of Epitaxial Oxide Thin Films on Graphene

    PubMed Central

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K.

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  17. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  18. Synthesis and Oxidation Resistance of h-BN Thin Films

    NASA Astrophysics Data System (ADS)

    Stewart, David; Meulenberg, Robert; Lad, Robert

    Hexagonal boron nitride (h-BN) is an exciting 2D material for use in sensors and other electronic devices that operate in harsh, high temperature environments. Not only is h-BN a wide band gap material with excellent wear resistance and high temperature stability, but recent reports indicate that h-BN can prevent metallic substrates from oxidizing above 600°C in low O2 pressures. However, the PVD of highly crystalline h-BN films required for this oxidation protection has proven challenging. In this work, we have explored the growth of h-BN thin films by reactive RF magnetron sputtering from an elemental B target in an Ar/N2 atmosphere. The film growth rate is extremely slow and the resulting films are atomically smooth and homogeneous. Using DC biasing during deposition and high temperature annealing treatments, the degree of film crystallinity can be controlled. The oxidation resistance of h-BN films deposited on inert sapphire and reactive metal substrates such as Zr and ZrB2 has been examined by techniques such as XPS, XRD, and SEM after oxidation between 600 and 1200°C under varying oxygen pressures. The success of h-BN as a passivation layer for metallic substrates in harsh environments is shown to depend greatly on its crystalline quality and defects. Supported by the NSF SusChEM program.

  19. Novel solid-state route to nanostructured tin, zinc and cerium oxides as potential materials for sensors.

    PubMed

    Diaz, C; Platoni, S; Molina, A; Valenzuela, M L; Geaney, H; O'Dwyer, C

    2014-09-01

    Solid-state sensor nanostructured materials (SnO2, ZnO and CeO2) have been prepared by pyrolysis of macromolecular complexes: PSP-co-4-PVP x (SnCl2)n, PSP-co-4-PVP x (ZnCl2)n and PSP-co-4-PVP x (Ce(NO3)3)n in several molar ratios under air at 800 degrees C. The as-prepared nanostructured SnO2 exhibits morphologies and particle sizes which are dependent upon the molar ratio of the SnCl2:PSP-co-4-PVP. When a larger weight fraction of the inorganic salt in the precursor mixture is used (1:10 > 1:5 > 1.1) larger crystalline crystals are found for each oxide. For ZnO and CeO2 agglomerates of morphologies from the respective hexagonal and cubic structures were observed with typical sizes of 30-50 nm in both cases for a precursor mixture ratio of 1:1. PMID:25924326

  20. Multi-wall carbon nanotubes as support of copper-cerium composite for preferential oxidation of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Zeng, Shanghong; Zhang, Lu; Jiang, Nan; Gao, Meiyi; Zhao, Xiaozhou; Yin, Yueling; Su, Haiquan

    2015-10-01

    The CuxO/MWCNTs, CeO2/MWCNTs and CuxO-CeO2/MWCNTs catalysts were synthesized by a simple impregnation method, and characterized via X-ray diffraction, N2 adsorption-desorption, Fourier transformed infrared spectroscopy, transmission electron microscopy, H2 temperature-programmed reduction and X-ray photoelectron spectra. The catalytic performance for preferential CO oxidation was carried out in the hydrogen-rich gasses. It is found that the hydrophilic functional groups of hydroxyl and carboxyl in the samples are favorable for the incorporation of CuxO and CeO2 into the tubes of the MWCNTs. Most of CuxO particles and CeO2 nanowires are filled in the tubes of MWCNTs, and a small amount of nanoparticles are deposited on the surface of MWCNTs. The MWCNTs have high BET surface area, which is helpful for the dispersion of CuxO and CeO2 to expose more active surface for CO-PROX reaction over the CuxO-CeO2/MWCNTs catalysts. The CuxO-CeO2/MWCNTs-C catalyst shows good catalytic activity and the temperature window of CO total conversion is from 135 °C to 175 °C. MWCNTs with high BET surface area weaken poisoning effect of H2O and CO2 after 135 °C.

  1. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.

  2. Growth control of the oxidation state in vanadium oxide thin films

    DOE PAGESBeta

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Lee, Ho Nyung

    2014-12-05

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research, but also technological applications that utilize the subtle change in the physical properties originating from the metalinsulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase puremore » epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V₂⁺²O₃, V⁺⁴O₂, and V₂⁺⁵O₅. A well pronounced MIT was only observed in VO₂ films grown in a very narrow range of oxygen partial pressure P(O₂). The films grown either in lower (< 10 mTorr) or higher P(O₂) (> 25 mTorr) result in V₂O₃ and V₂O₅ phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO₂ thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an 3 improved MIT behavior.« less

  3. Growth control of the oxidation state in vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Meyer, Tricia L.; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V2 + 3 O 3 , V + 4 O 2 , and V2 + 5 O 5 . A well pronounced MIT was only observed in VO2 films grown in a very narrow range of oxygen partial pressure P(O2). The films grown either in lower (<10 mTorr) or higher P(O2) (>25 mTorr) result in V2O3 and V2O5 phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO2 thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  4. Growth control of the oxidation state in vanadium oxide thin films

    SciTech Connect

    Lee, Shinbuhm; Meyer, Tricia L.; Lee, Ho Nyung; Park, Sungkyun; Egami, Takeshi

    2014-12-01

    Precise control of the chemical valence or oxidation state of vanadium in vanadium oxide thin films is highly desirable for not only fundamental research but also technological applications that utilize the subtle change in the physical properties originating from the metal-insulator transition (MIT) near room temperature. However, due to the multivalent nature of vanadium and the lack of a good understanding on growth control of the oxidation state, stabilization of phase pure vanadium oxides with a single oxidation state is extremely challenging. Here, we systematically varied the growth conditions to clearly map out the growth window for preparing phase pure epitaxial vanadium oxides by pulsed laser deposition for providing a guideline to grow high quality thin films with well-defined oxidation states of V{sub 2}{sup +3}O{sub 3}, V{sup +4}O{sub 2}, and V{sub 2}{sup +5}O{sub 5}. A well pronounced MIT was only observed in VO{sub 2} films grown in a very narrow range of oxygen partial pressure P(O{sub 2}). The films grown either in lower (<10 mTorr) or higher P(O{sub 2}) (>25 mTorr) result in V{sub 2}O{sub 3} and V{sub 2}O{sub 5} phases, respectively, thereby suppressing the MIT for both cases. We have also found that the resistivity ratio before and after the MIT of VO{sub 2} thin films can be further enhanced by one order of magnitude when the films are further oxidized by post-annealing at a well-controlled oxidizing ambient. This result indicates that stabilizing vanadium into a single valence state has to compromise with insufficient oxidation of an as grown thin film and, thereby, a subsequent oxidation is required for an improved MIT behavior.

  5. Assigning the Cerium Oxidation State for CH2CeF2 and OCeF2 Based on Multireference Wave Function Analysis.

    PubMed

    Mooßen, Oliver; Dolg, Michael

    2016-06-01

    The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce

  6. Continuous-flow IRMS technique for determining the 17O excess of CO2 using complete oxygen isotope exchange with cerium oxide

    NASA Astrophysics Data System (ADS)

    Mrozek, D. J.; van der Veen, C.; Kliphuis, M.; Kaiser, J.; Wiegel, A. A.; Röckmann, T.

    2014-07-01

    This paper presents an analytical system for analysis of all single substituted isotopologues (12C16O17O, 12C16O18O, 13C16O16O) in nanomolar quantities of CO2 extracted from atmospheric air samples. CO2 is separated from bulk air by gas chromatography and CO2 isotope ratio measurements (ion masses 45/44 and 46/44) are performed using isotope ratio mass spectrometry (IRMS). The 17O excess (Δ17O) is derived from isotope measurements on two different CO2 aliquots: unmodified CO2 and CO2 after complete oxygen isotope exchange with cerium oxide (CeO2) at 700 °C. Thus, a single measurement of the 17O excess requires two injections of 1 mL of air with a CO2 mole fraction of 390 μmol mol-1 at 293 K and 1 bar pressure (corresponding to 16 nmol CO2 each). The required sample air size (including flushing) is 2.7 mL of air. A single analysis (one pair of injections) takes 15 min. The analytical system is fully automated for unattended measurements over several days. The standard deviation of the 17O excess analysis is 1.7‰. Repeated analyses of an air sample reduce the measurement uncertainty, as expected for the statistical standard error. Thus, the uncertainty for a group of ten measurements is 0.58‰ for Δ17O in 2.5 h analysis. 270 repeat analyses of one air sample decrease the standard error to 0.20‰. The instrument performance was demonstrated by measuring CO2 on stratospheric air samples obtained during the EU project RECONCILE with the high-altitude aircraft Geophysica. The precision for RECONCILE data is 0.03‰ (1σ) for δ13C, 0.07‰ (1σ) for δ18O and 0.55‰ (1σ) for δ17O for sample of 10 measurements. The samples measured with our analytical technique agree with available data for stratospheric CO2.

  7. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS

    PubMed Central

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-01-01

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs (89Y, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001–1.000 μg∙L−1 with r2 > 0.997. The limits of detection and quantification for this method were in the range of 0.009–0.010 μg∙L−1 and 0.029–0.037 μg∙L−1, the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg∙L−1), Ce (1.492 ± 0.995 μg∙L−1), Nd (0.014 ± 0.009 μg∙L−1) and Gd (0.023 ± 0.010 μg∙L−1) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and the control subjects show a higher trend

  8. Continuous-flow IRMS technique for determining the 17O excess of CO2 using complete oxygen isotope exchange with cerium oxide

    NASA Astrophysics Data System (ADS)

    Mrozek, D. J.; van der Veen, C.; Kliphuis, M.; Kaiser, J.; Wiegel, A. A.; Röckmann, T.

    2015-02-01

    This paper presents an analytical system for analysis of all single substituted isotopologues (12C16O17O, 12C16O18O, 13C16O16O) in nanomolar quantities of CO2 extracted from stratospheric air samples. CO2 is separated from bulk air by gas chromatography and CO2 isotope ratio measurements (ion masses 45 / 44 and 46 / 44) are performed using isotope ratio mass spectrometry (IRMS). The 17O excess (Δ17O) is derived from isotope measurements on two different CO2 aliquots: unmodified CO2 and CO2 after complete oxygen isotope exchange with cerium oxide (CeO2) at 700 °C. Thus, a single measurement of Δ17O requires two injections of 1 mL of air with a CO2 mole fraction of 390 μmol mol-1 at 293 K and 1 bar pressure (corresponding to 16 nmol CO2 each). The required sample size (including flushing) is 2.7 mL of air. A single analysis (one pair of injections) takes 15 minutes. The analytical system is fully automated for unattended measurements over several days. The standard deviation of the 17O excess analysis is 1.7‰. Multiple measurements on an air sample reduce the measurement uncertainty, as expected for the statistical standard error. Thus, the uncertainty for a group of 10 measurements is 0.58‰ for Δ 17O in 2.5 h of analysis. 100 repeat analyses of one air sample decrease the standard error to 0.20‰. The instrument performance was demonstrated by measuring CO2 on stratospheric air samples obtained during the EU project RECONCILE with the high-altitude aircraft Geophysica. The precision for RECONCILE data is 0.03‰ (1σ) for δ13C, 0.07‰ (1σ) for δ18O and 0.55‰ (1σ) for δ17O for a sample of 10 measurements. This is sufficient to examine stratospheric enrichments, which at altitude 33 km go up to 12‰ for δ17O and up to 8‰ for δ18O with respect to tropospheric CO2 : δ17O ~ 21‰ Vienna Standard Mean Ocean Water (VSMOW), δ18O ~ 41‰ VSMOW (Lämmerzahl et al., 2002). The samples measured with our analytical technique agree with available data for

  9. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.

    PubMed

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-03-01

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs ((89)Y, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (157)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb and (175)Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001-1.000 μg ∙ L(-1) with r² > 0.997. The limits of detection and quantification for this method were in the range of 0.009-0.010 μg ∙ L(-1) and 0.029-0.037 μg ∙ L(-1), the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg ∙ L(-1)), Ce (1.492 ± 0.995 μg ∙ L(-1)), Nd (0.014 ± 0.009 μg ∙ L(-1)) and Gd (0.023 ± 0.010 μg ∙ L(-1)) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and

  10. Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films.

    PubMed

    Wang, Xiaohan; Kholmanov, Iskandar; Chou, Harry; Ruoff, Rodney S

    2015-09-22

    Here we report an electrochemical method to simultaneously reduce and delaminate graphene oxide (G-O) thin films deposited on metal (Al and Au) substrates. During the electrochemical reaction, interface charge transfer between the G-O thin film and the electrode surface was found to be important in eliminating oxygen-containing groups, yielding highly reduced graphene oxide (rG-O). In the meantime, hydrogen bubbles were electrochemically generated at the rG-O film/electrode interface, propagating the film delamination. Unlike other metal-based G-O reduction methods, the metal used here was either not etched at all (for Au) or etched a small amount (for Al), thus making it possible to reuse the substrate and lower production costs. The delaminated rG-O film exhibits a thickness-dependent degree of reduction: greater reduction is achieved in thinner films. The thin rG-O films having an optical transmittance of 90% (λ = 550 nm) had a sheet resistance of 6390 ± 447 Ω/□ (ohms per square). rG-O-based stretchable transparent conducting films were also demonstrated. PMID:26257072

  11. Stress and phase transformation phenomena in oxide films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J.

    1992-04-01

    In situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution- deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO{sub 2}) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm{sup +3}:Y{sub 3}Al{sub 5}O{sub 12}) or transition metal (Cr{sup +3}:Al{sub 2}O{sub 3}) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.

  12. Submicron fabrication by local anodic oxidation of germanium thin films

    NASA Astrophysics Data System (ADS)

    Oliveira, A. B.; Medeiros-Ribeiro, G.; Azevedo, A.

    2009-08-01

    Here we describe a lithography scheme based on the local anodic oxidation of germanium film by a scanning atomic force microscope in a humidity-controlled atmosphere. The oxidation kinetics of the Ge film were investigated by a tapping mode, in which a pulsed bias voltage was synchronized and applied with the resonance frequency of the cantilever, and by a contact mode, in which a continuous voltage was applied. In the tapping mode we clearly identified two regimes of oxidation as a function of the applied voltage: the trench width increased linearly during the vertical growth and increased exponentially during the lateral growth. Both regimes of growth were interpreted taking into consideration the Cabrera-Mott mechanism of oxidation applied to the oxide/Ge interface. We also show the feasibility of the bottom-up fabrication process presented in this work by showing a Cu nanowire fabricated on top of a silicon substrate.

  13. Multifunctional oxide thin films for magnetoelectric and electromechanical applications

    NASA Astrophysics Data System (ADS)

    Baek, Seung Hyub

    Epitaxial multifunctional oxide thin films have been extensively researched to understand and exploit a variety of their physical properties. In order to integrate such versatile properties into real devices, there are several critical issues: (1) high-quality thin film growth, (2) fundamental understanding on reliable performance, and (3) device fabrication process preserving functionality of oxides. We have investigated all these issues, employing two different materials: multiferroic BiFeO3 and piezoelectric Pb(Mg1/3 Nb2/3)O3-PbTiO3 (PMN-PT) epitaxial thin films. For the high-quality thin film growth, we have chosen both BiFeO 3 and PMN-PT thin films as a model system. Bi2O3and PbO are the volatile species in these oxides, which makes it hard to grow phase-pure stoichiometric thin films. Because the properties of oxides are sensitive to stoichiometry and defects, it is highly required to fix such volatile elements during thin film growth. We have grown high-quality epitaxial thin films using a fast-rate off-axis sputtering method and vicinal substrates. In addition, we were able to control domain structures of BiFeO3 thin films using vicinal substrates. For the study on the reliability issues in oxides, we have used BiFeO 3 thin films within the framework of magnetoelectric device applications. For reliable magnetoelectric performance of BiFeO3, polarization switching path has to be (1) deterministic, and to be retained along with (2) time---retention, and (3) cycles--- fatigue. We have used monodomain BiFeO3 thin films as a model system. Based on theoretical predictions, we have studied polarization switching paths, and achieved both selective polarization switching and retention problems using island BiFeO3 structure. We have also investigated polarization fatigue, dependent on switching path. For the demonstration of working devices preserving the original functionality of oxides, we have fabricated micro-cantilevers using PMN-PT heterostructure on Si. The

  14. Thermal stability of sputtered iridium oxide films

    SciTech Connect

    Sanjines, R.; Aruchamy, A.; Levy, F. )

    1989-06-01

    Dry and partially hydrated films of IrO/sub 2/ were prepared by reactive sputtering. The authors discuss their thermal stability investigated by means of XPS, x-ray diffraction, and resistivity measurements. Dry films decomposed at about 400{sup 0}C iin air and at 200{sup 0}C in vacuum (10/sup -2/ Pa), whereas partially hydrated films decomposed at 350{sup 0} and 150{sup 0}C, respectively. After electrochemical treatments of the films mounted as electrochromic electrodes in an electrolytic cell, the decomposition occurred at different temperatures. In particular, the bleached state was found to have the relatively low decomposition temperature of about 100{sup 0}C in air.

  15. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  16. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  17. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    SciTech Connect

    A Meyer; I Flege; S Senanayake; B Kaemena; R Rettew; F Alamgir; J Falta

    2011-12-31

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  18. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  19. Electrochromic behavior in CVD grown tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Gogova, D.; Iossifova, A.; Ivanova, T.; Dimitrova, Zl; Gesheva, K.

    1999-03-01

    Solid state electrochemical devices (ECDs) for smart windows, large area displays and automobile rearview mirrors are of considerable technological and commercial interest. In this paper, we studied the electrochromic properties of amorphous and polycrystalline CVD carbonyl tungsten oxide films and the possibility for sol-gel thin TiO 2 film to play the role of passive electrode in an electrochromic window with solid polymer electrolyte.

  20. Review of solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Yoon, Seokhyun; Kim, Hyun Jae

    2014-02-01

    In this review, we summarize solution-processed oxide thin-film transistors (TFTs) researches based on our fulfillments. We describe the fundamental studies of precursor composition effects at the beginning in order to figure out the role of each component in oxide semiconductors, and then present low temperature process for the adoption of flexible devices. Moreover, channel engineering for high performance and reliability of solution-processed oxide TFTs and various coating methods: spin-coating, inkjet printing, and gravure printing are also presented. The last topic of this review is an overview of multi-functional solution-processed oxide TFTs for various applications such as photodetector, biosensor, and memory.

  1. Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors.

    PubMed

    Rembert, Thomas; Battaglia, Corsin; Anders, André; Javey, Ali

    2015-10-28

    A room temperature cathodic arc deposition technique is used to produce high-mobility ZnO thin films for low voltage thin-film transistors (TFTs) and digital logic inverters. All-oxide, fully transparent devices are fabricated on alkali-free glass and flexible polyimide foil, exhibiting high performance. This provides a practical materials platform for the low-temperature fabrication of all-oxide TFTs on virtually any substrate. PMID:26455916

  2. Mechanisms of polarization switching in graphene oxides and poly(vinylidene fluoride)-graphene oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zheng, Guangping; Zhan, Ke; Han, Zhuo; Wang, Hao

    2016-04-01

    Polarization switching in graphene oxides (GOs) and poly(vinylidene fluoride) (PVDF)-GO nanocomposite is investigated by piezoelectric force microscopy (PFM). The dynamical switching results reveal that GO films exhibit ferroelectric and piezoelectric properties with two-dimensional characteristics. Abnormal polarization switching is observed in PVDF-GO films, which is promising for electronic applications.

  3. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  4. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  5. Large and pristine films of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-12-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost.

  6. Large and pristine films of reduced graphene oxide

    PubMed Central

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-01-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost. PMID:26689267

  7. Enhanced optical constants of nanocrystalline yttrium oxide thin films

    SciTech Connect

    Ramana, C. V.; Mudavakkat, V. H.; Bharathi, K. Kamala; Atuchin, V. V.; Pokrovsky, L. D.; Kruchinin, V. N.

    2011-01-17

    Yttrium oxide (Y{sub 2}O{sub 3}) films with an average crystallite-size (L) ranging from 5 to 40 nm were grown by sputter-deposition onto Si(100) substrates. The optical properties of grown Y{sub 2}O{sub 3} films were evaluated using spectroscopic ellipsometry measurements. The size-effects were significant on the optical constants and their dispersion profiles of Y{sub 2}O{sub 3} films. A significant enhancement in the index of refraction (n) is observed in well-defined Y{sub 2}O{sub 3} nanocrystalline films compared to that of amorphous Y{sub 2}O{sub 3}. A direct, linear L-n relationship found for Y{sub 2}O{sub 3} films suggests that tuning optical properties for desired applications can be achieved by controlling the size at the nanoscale dimensions.

  8. Comparison of topotactic fluorination methods for complex oxide films

    SciTech Connect

    Moon, E. J. Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J.; Barbash, D.

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  9. Combinatorial measurements of Hall effect and resistivity in oxide films.

    PubMed

    Clayhold, J A; Kerns, B M; Schroer, M D; Rench, D W; Logvenov, G; Bollinger, A T; Bozovic, I

    2008-03-01

    A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m3/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect. PMID:18377026

  10. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  11. Characterization of reliability of printed indium tin oxide thin films.

    PubMed

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments. PMID:24245331

  12. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  13. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  14. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    SciTech Connect

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-04

    Tungsten oxide (WO{sub x}) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 Multiplication-Sign 10{sup -4} S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO{sub x}-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 Multiplication-Sign 10{sup 6}, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm{sup 2}/V s was realized. Our results demonstrated that WO{sub x}-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  15. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-01

    Tungsten oxide (WOx) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10-4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WOx-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 106, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm2/V s was realized. Our results demonstrated that WOx-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  16. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  17. Tungsten oxide nanowire synthesis from amorphous-like tungsten films.

    PubMed

    Seelaboyina, Raghunandan

    2016-03-18

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis. PMID:26871521

  18. Ambient-Temperature Sputtering Of Composite Oxide Films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1992-01-01

    Technique for deposition of homogeneous films of multicomponent oxides on substrates at ambient temperature based on sequential sputter deposition of individual metal components, as alternating ultra-thin layers, from multiple targets. Substrates rotated over sputtering targets of lead, zirconium, and titanium. Dc-magnetron sputtering of constituent metals in reactive ambient of argon and oxygen leads to formation of the respective metal oxides intermixed on extremely fine scale in desired composition. Compatible with low-temperature microelectronic processing.

  19. Tungsten oxide nanowire synthesis from amorphous-like tungsten films

    NASA Astrophysics Data System (ADS)

    Seelaboyina, Raghunandan

    2016-03-01

    A synthesis technique which can lead to direct integration of tungsten oxide nanowires onto silicon chips is essential for preparing various devices. The conversion of amorphous tungsten films deposited on silicon chips by pulsed layer deposition to nanowires by annealing is an apt method in that direction. This perspective discusses the ingenious features of the technique reported by Dellasega et al on the various aspects of tungsten oxide nanowire synthesis.

  20. Manganese oxide nanowires, films, and membranes and methods of making

    SciTech Connect

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  1. Effects of the polarizability and packing density of transparent oxide films on water vapor permeation.

    PubMed

    Koo, Won Hoe; Jeong, Soon Moon; Choi, Sang Hun; Kim, Woo Jin; Baik, Hong Koo; Lee, Sung Man; Lee, Se Jong

    2005-06-01

    The tin oxide and silicon oxide films have been deposited on polycarbonate substrates as gas barrier films, using a thermal evaporation and ion beam assisted deposition process. The oxide films deposited by ion beam assisted deposition show a much lower water vapor transmission rate than those by thermal evaporation. The tin oxide films show a similar water vapor transmission rate to the silicon oxide films in thermal evaporation but a lower water vapor transmission rate in IBAD. These results are related to the fact that the permeation of water vapor with a large dipole moment is affected by the chemistry of oxides and the packing density of the oxide films. The permeation mechanism of water vapor through the oxide films is discussed in terms of the chemical interaction with water vapor and the microstructure of the oxide films. The chemical interaction of water vapor with oxide films has been investigated by the refractive index from ellipsometry and the OH group peak from X-ray photoelectron spectroscopy, and the microstructure of the composite oxide films was characterized using atomic force microscopy and a transmission electron microscope. The activation energy for water vapor permeation through the oxide films has also been measured in relation to the permeation mechanism of water vapor. The diffusivity of water vapor for the tin oxide films has been calculated from the time lag plot, and its implications are discussed. PMID:16852387

  2. New fabrication of zinc oxide nanostructure thin film gas sensors

    NASA Astrophysics Data System (ADS)

    Hendi, A. A.; Alorainy, R. H.

    2014-02-01

    The copper doped zinc oxide thin films have been prepared by sol-gel spin coating method. The structural and morphology properties of the Cu doped films were characterized by X-ray diffraction and atomic force microscope. XRD studies confirm the chemical structure of the ZnO films. The optical spectra method were used to determined optical constants and dispersion energy parameters of Cu doped Zno thin films. The optical band gap of undoped ZnO was found to be 3.16 eV. The Eg values of the films were changed with Cu doping. The refractive index dispersion of Cu doped ZnO films obeys the single oscillator model. The dispersion energy and oscillator energy values of the ZnO films were changed with Cu doping. The Cu doped ZnO nanofiber-based NH3 gas sensors were fabricated. The sensor response of the sensors was from 464.98 to 484.61 when the concentration of NH3 is changed 6600-13,300 ppm. The obtained results indicate that the response of the ZnO film based ammonia gas sensors can be controlled by copper content.

  3. Correlation between density and oxidation temperature for pyrolytic-gas passivated ultrathin silicon oxide films

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi

    2004-01-01

    Pyrolytic-gas passivation (PGP) with a small amount nitrogen gas enhances the breakdown reliability of silicon oxide gate films. To clarify the reliability retention of the PGP-grown films oxidized at low temperature, densities (ρox's) of the 3.5-6.5-nm-thick PGP-grown films on Si(100) oxidized at 700-900 °C were investigated. Since ρox's correlate well with the reliability and are useful as an index of the intrinsic structural characteristics of the films. Moreover, changes in ρox and nitrogen content corresponding to oxidation temperature are similar to those in breakdown reliability and interface state density (Dit), respectively. In addition, ρox's of the 700 °C-grown PGP films do not deteriorate as much when compared with those of the films grown by normal ultradry oxidation at 800 °C and their Dit's are less than about 6×1010/eV cm2. This suggests that PGP probably improves the reliability by generating the higher-ρox microscopic structure with few Si dangling bonds and effective passivation. .

  4. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  5. Growth of ultrathin vanadium oxide films on Ag(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuya; Sugizaki, Yuichi; Ishida, Shuhei; Edamoto, Kazuyuki; Ozawa, Kenichi

    2016-07-01

    Vanadium oxide films were grown on Ag(100) by vanadium deposition in O2 and subsequent annealing at 450 °C. It was found that at least three types of ordered V oxide films, which showed (1 × 1), hexagonal, and (4 × 1) LEED patterns, were formed on Ag(100) depending on the O2 pressure during deposition and conditions during postannealing. The films with the hexagonal and (1 × 1) periodicities were characterized by photoelectron spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The film with the (1 × 1) periodicity was ascribed to a VO(100) film. On the other hand, the film with the hexagonal periodicity was found to be composed of V2O3, and the analysis of the LEED pattern revealed that the lattice parameter of the hexagonal lattice is 0.50 nm, which is very close to that of corundum V2O3(0001) (0.495 nm).

  6. Nanostructured zinc oxide thin film by simple vapor transport deposition

    NASA Astrophysics Data System (ADS)

    Athma, P. V.; Martinez, Arturo I.; Johns, N.; Safeera, T. A.; Reshmi, R.; Anila, E. I.

    2015-09-01

    Zinc oxide (ZnO) nanostructures find applications in optoelectronic devices, photo voltaic displays and sensors. In this work zinc oxide nanostructures in different forms like nanorods, tripods and tetrapods have been synthesized by thermal evaporation of zinc metal and subsequent deposition on a glass substrate by vapor transport in the presence of oxygen. It is a comparatively simpler and environment friendly technique for the preparation of thin films. The structure, morphology and optical properties of the synthesized nanostructured thin film were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL). The film exhibited bluish white emission with Commission International d'Eclairage (CIE) coordinates x = 0.22, y = 0.31.

  7. Magnetic Transparent Conducting Oxide Film And Method Of Making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2006-03-14

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  8. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  9. Impact of Rh-CeOx interaction on CO oxidation mechanisms

    NASA Astrophysics Data System (ADS)

    Ševčíková, Klára; Kolářová, Tatiana; Skála, Tomáš; Tsud, Nataliya; Václavů, Michal; Lykhach, Yaroslava; Matolín, Vladimír; Nehasil, Václav

    2015-03-01

    We have investigated the impact of electronic metal-support interaction on catalytic properties of Rh/CeOx system, i.e. its capacity for the reverse and direct oxygen spillover, in the context of CO oxidation. The studies were carried out on two types of samples consisting of Rh particles supported on polycrystalline nearly stoichiometric and partially reduced cerium oxide films using temperature programmed reaction, temperature programmed desorption, and conventional X-ray and resonant photoelectron spectroscopies. We have found that the electronic Rh-CeOx interaction leads to a buildup of a net positive charge on Rh particles supported on stoichiometric cerium oxide, and a net negative charge on Rh particles on reduced cerium oxide. The effect of the Rh-CeOx interaction is manifested in suppression of the reverse and direct oxygen spillover on Rh particles supported on partially reduced ceria.

  10. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  11. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  12. Optical properties of thin In-Sn oxide films

    NASA Astrophysics Data System (ADS)

    Christian, K. D. J.; Shatynski, S. R.

    Indium-tin oxide (ITO) films were produced by evaporating an alloy of In-5wt%Sn in vacuum (1 × 10 -7 Torr) or in an oxygen partial pressure of 1 × 10 -4 Torr on soda-lime glass. After evaporation, these films were annealed in air at 95°C for 22 h. The films were examined using a ratio recording spectrophotometer to determine the transmission of both the visible and infra-red radiation. Further analysis of the samples was performed using SEM and EDAX analysis. Excellent optical properties were obtained for ITO films on soda-lime glass by evaporating 250 Å of In-5wt%Sn in an oxygen environment of 1 × 10 -4 Torr on a substrate held at 50°C and annealing at 95°C for 22 h.

  13. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  14. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness

    NASA Astrophysics Data System (ADS)

    Park, Bong-Ok; Lokhande, C. D.; Park, Hyung-Sang; Jung, Kwang-Deog; Joo, Oh-Shim

    Thin-film ruthenium oxide electrodes are prepared by cathodic electrodeposition on a titanium substrate. Different deposition periods are used to obtain different film thicknesses. The electrodes are used to form a supercapacitor with a 0.5 M H 2SO 4 electrolyte. The specific capacitance and charge-discharge periods are found to be dependent on the electrode thickness. A maximum specific capacitance of 788 F g -1 is achieved with an electrode thickness of 0.0014 g cm -2. These results are explained by considering the morphological changes that take place with increasing film thickness.

  15. Epitaxial Zinc Oxide Semiconductor Film deposited on Gallium Nitride Substrate

    NASA Astrophysics Data System (ADS)

    McMaster, Michael; Oder, Tom

    2011-04-01

    Zinc oxide (ZnO) is a wide bandgap semiconductor which is very promising for making efficient electronic and optical devices. The goal of this research was to produce high quality ZnO film on gallium nitride (GaN) substrate by optimizing the substrate temperature. The GaN substrates were chemically cleaned and mounted on a ceramic heater and loaded into a vacuum deposition chamber that was pumped down to a base pressure of 3 x 10-7 Torr. The film deposition was preceded by a 30 minute thermal desorption carried in vacuum at 500 ^oC. The ZnO thin film was then sputter-deposited using an O2/Ar gas mixture onto GaN substrates heated at temperatures varying from 20 ^oC to 500 ^oC. Post-deposition annealing was done in a rapid thermal processor at 900 ^oC for 5 min in an ultrapure N2 ambient to improve the crystal quality of the films. The films were then optically characterized using photoluminescence (PL) measurement with a UV laser excitation. Our measurements reveal that ZnO films deposited on GaN substrate held at 200 ^oC gave the best film with the highest luminous intensity, with a peak energy of 3.28 eV and a full width half maximum of 87.4 nm. Results from low temperature (10 K) PL measurements and from x-ray diffraction will also be presented.

  16. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices. PMID:24867286

  17. Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol

    NASA Astrophysics Data System (ADS)

    Roy, B.; Leclerc, C. A.

    2015-12-01

    The effect of preparation method and oxidation state of the active metal on the catalytic activity of Ni-Ce-O catalysts was studied for aqueous phase reforming of ethanol. A sol-gel (SG) route and a solution combustion synthesis (SCS) method were used for the preparation of 10 wt% Ni loaded catalysts. The catalytic activity of three groups of catalysts; reduced at 425 °C (HR, metallic Ni), reduced at 1000 °C (FR, metallic Ni), and not reduced (NR, as NiO) were tested at different operating conditions. The difference in the metal particle sizes, governed by the preparation method, affects the catalytic efficiency most, not the reduced or oxidized state of Ni. The SG samples were superior for ethanol conversion and selectivity for H2 and CO2 compared to the SCS samples. The X-ray photoelectron spectroscopy (XPS) analysis of the samples demonstrated that the relative ratio of Ce2O3 to CeO2 increased inside the reactor. While Ni doping increases oxygen mobility in the Ce-O lattice, Ce3+ converts Ni2+ to metallic Ni inside the reactor. This can explain why the reduction stage for Ni-Ce-O system in APR is irrelevant. Higher oxygen mobility through the support helps oxidation of CO to CO2 leading to improved catalytic performance.

  18. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  19. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  20. Zinc oxide doped graphene oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.

    2016-05-01

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  1. Changes in the Young Modulus of hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Vargas, André Luís Marin; de Araújo Ribeiro, Fabiana; Hübler, Roberto

    2015-12-01

    Hafnium-oxide (HfO2)-based materials have been extensively researched due to their excellent optical and electrical properties. However, the literature data on the mechanical properties of these materials and its preparation for heavy machinery application is very limited. The aim of this work is to deposit hafnium oxide thin films by DC reactive magnetron sputtering with different Young's Modulus from the Ar/O2 concentration variation in the deposition chamber. The thin films were deposited by DC reactive magnetron sputtering with different Ar/O2 gas concentrations in plasma. After deposition, HfOx thin films were characterized through XRD, AFM, RBS and XRF. In this regard, it was observed that the as-deposited HfO2 films were mostly amorphous in the lower Ar/O2 gas ratio and transformed to polycrystalline with monoclinic structure as the Ar/O2 gas ratios grows. RBS technique shows good compromise between the experimental data and the simulated ones. It was possible to tailored the Young Modulus of the films by alter the Ar/O2 content on the deposition chamber without thermal treatment.

  2. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1991-08-01

    The objective of the project is to develop TiO{sub 2}-based photocatalysts for the solar assisted oxidative dissolution of oil slicks. In a TiO{sub 2} crystal, absorption of a photon generates an electron-hole pair. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds, usually via an intermediate OH radical. Since the density of TiO{sub 2} (3.8g/cc for anatase, 4.3 g/cc for rutile) is greater than that of either oil or seawater, TiO{sub 2} crystals are attached to inexpensive, engineered hollow glass microspheres to ensure flotation on the oil slick surface. Portions of the microsphere surface not covered by TiO{sub 2} are made oleophilic so that the microbeads will be preferentially attracted to the oil-air interface.

  3. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  4. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  5. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  6. Investigation and characterization of oxidized cellulose and cellulose nanofiber films

    NASA Astrophysics Data System (ADS)

    Yang, Han

    Over the last two decades, a large amount of research has focused on natural cellulose fibers, since they are "green" and renewable raw materials. Recently, nanomaterials science has attracted wide attention due to the large surface area and unique properties of nanoparticles. Cellulose certainly is becoming an important material in nanomaterials science, with the increasing demand of environmentally friendly materials. In this work, a novel method of preparing cellulose nanofibers (CNF) is being presented. This method contains up to three oxidation steps: periodate, chlorite and TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation. The first two oxidation steps are investigated in the first part of this work. Cellulose pulp was oxidized to various extents by a two step-oxidation with sodium periodate, followed by sodium chlorite. The oxidized products can be separated into three different fractions. The mass ratio and charge content of each fraction were determined. The morphology, size distribution and crystallinity index of each fraction were measured by AFM, DLS and XRD, respectively. In the second part of this work, CNF were prepared and modified under various conditions, including (1) the introduction of various amounts of aldehyde groups onto CNF by periodate oxidation; (2) the carboxyl groups in sodium form on CNF were converted to acid form by treated with an acid type ion-exchange resin; (3) CNF were cross-linked in two different ways by employing adipic dihydrazide (ADH) as cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide (EDC) as carboxyl-activating agent. Films were fabricated with these modified CNF suspensions by vacuum filtration. The optical, mechanical and thermo-stability properties of these films were investigated by UV-visible spectrometry, tensile test and thermogravimetric analysis (TGA). Water vapor transmission rates (WVTR) and water contact angle (WCA) of these films were also studied.

  7. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film.

    PubMed

    Lin, Ziyin; Liu, Yan; Wong, Ching-ping

    2010-10-19

    We demonstrated a facile strategy of producing superhydrophobic octadecylamine (ODA)-functionalized graphite oxide (GO) films. ODA was chemically grafted on GO sheets by the nucleophilic substitution reaction of amine groups with epoxy groups. The long hydrocarbon chain in ODA reduces the surface energy of the GO sheet. The fabricated ODA-functionalized GO film exhibited a high contact angle (163.2°) and low hysteresis (3.1°). This method is promising in terms of low-cost and large-scale superhydrophobic coatings and has potential applications for surface modification of GO paper or other GO-based composite materials. PMID:20857962

  8. Vapor-gel processing and applications in oxide film depositions

    SciTech Connect

    Chour, K.W.; Xu, R.; Takada, T.

    1995-12-31

    The Vapor-gel processing of oxide films is discussed for the prototypic system of LiTa(OBut{sup n}){sub 6}-LiTaO{sub 3}. It is found that the hydrolysis-polycondensation reaction scheme, commonly used in Sol-gel processing, can be used in a vapor deposition environment. High quality films can be deposited at low temperatures. We present some initial results regarding this deposition method and discuss its advantages and disadvantages as compared with Sol-gel processing and typical MOCVD.

  9. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.

    PubMed

    Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju

    2012-02-01

    Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate. PMID:22630013

  10. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J.

    Direct current reactive sputtering deposition of ruthenium oxide thin films (bottom and top electrodes) at 400°C are performed to produce a solid-state thin-film supercapacitor (TFSC). The supercapacitor has a cell structure of RuO 2/Li 2.94PO 2.37N 0.75 (Lipon)/RuO 2/Pt. Radio frequency, reactive sputtering deposition of an Li 2.94PO 2.37N 0.75 electrolyte film is performed on the bottom RuO 2 film at room temperature to separate the bottom and top RuO 2 electrodes electrically. The stoichiometry of the RuO 2 thin film is investigated by Rutherford back-scattering spectrometry (RBS). X-ray diffraction (XRD) shows that the as-deposited RuO 2 thin film is an amorphous phase. Scanning electron microscopy (SEM) measurements reveal that the RuO 2/Lipon/RuO 2 hetero-interfaces have no inter-diffusion problems. Charge-discharge measurements with constant current at room temperature clearly reveal typical supercapacitor behaviour for a RuO 2/Lipon/RuO 2/Pt cell structure. Since the electrolyte thin film has low ionic mobility, the capacity and cycle performance are inferior to those of a bulk type of supercapacitor. These results indicate that a high performance, TFSC can be fabricated by a solid electrolyte thin film with high ionic conductivity.

  11. Formation of zinc oxide films using submicron zinc particle dispersions

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Varga, Tamas; Kovarik, Libor; Sanghavi, Rahul P.; Shutthanandan, V.; Thevuthasan, Suntharampillai; Han, Seungyeol; Chang, Chih-hung; Herman, Gregory S.

    2012-07-27

    The thermal oxidation of submicron metallic Zn particles was studied as a method to form nanostructured ZnO films. The particles used for this work were characterized by electron microscopy, x-ray diffraction and thermal analysis to evaluate the Zn-ZnO core shell structure, surface morphology, and oxidation characteristics. Significant nanostructural changes were observed for films annealed to 400 °C or higher, where nanoflakes, nanoribbons, nanoneedles and nanorods were formed as a result of stress induced fractures arising in the ZnO outer shell due to differential thermal expansion between the metallic Zn core and the ZnO shell. Mass transport occurs through these defects due to the high vapor pressure for metallic Zn at temperatures above 230 °C, whereupon the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. The Zn particles were also incorporated into zinc indium oxide precursor solutions to form thin film transistor test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing.

  12. rf plasma oxidation of Ni thin films sputter deposited to generate thin nickel oxide layers

    NASA Astrophysics Data System (ADS)

    Hoey, Megan L.; Carlson, J. B.; Osgood, R. M.; Kimball, B.; Buchwald, W.

    2010-10-01

    Nickel oxide (NiO) layers were formed on silicon (Si) substrates by plasma oxidation of nickel (Ni) film lines. This ultrathin NiO layer acted as a barrier layer to conduction, and was an integral part of a metal-insulator-metal (MIM) diode, completed by depositing gold (Au) on top of the oxide. The electrical and structural properties of the NiO thin film were examined using resistivity calculations, current-voltage (I-V) measurements and cross-sectional transmission electron microscopy (XTEM) imaging. The flow rate of the oxygen gas, chamber pressure, power, and exposure time and their influence on the characteristics of the NiO thin film were studied.

  13. A comparative analysis of graphene oxide films as proton conductors

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Denisov, N. N.; Dremova, N. N.; Vol'fkovich, Y. M.; Rychagov, A. Y.; Sosenkin, V. E.; Belay, K. G.; Gutsev, G. L.; Shulga, N. Yu.; Shulga, Y. M.

    2014-12-01

    The electrical conductivity of graphene oxide (GO) films in vapors of water and acid solutions is found to be close to the conductivity of a film formed after drying the solution of phenol-2,4-disulfonic acid in polyvinyl alcohol, which is known to be a proton conductor. We found that the conductivity of a GO film in vapors of the H2O-H2SO4 electrolyte possesses a sharp maximum at ~1 % by weight of sulfuric acid. The highest conductivity of GO films can be expected when placing the films over acid vapors where the acid concentration is essentially lower than in the acid solutions at their maximum conductivity. Since the conductivity of the H2O-H2SO4 electrolyte itself has a maximum at ~30 % by weight of sulfuric acid, the use of intermediate concentrations of H2SO4 is recommended in practical applications. The GO films permeated with water or acid solution in water are expected to possess the proton-exchange properties similar to those of other proton-exchanging membranes.

  14. Electrochromism Properties of Palladium Doped Tungsten-Oxide Thin Films Prepared with RF Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Yabumoto, Taihei; Iwai, Yuki; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    Palladium doped tungsten oxide thin films were prepared by RF reactive sputtering in a mixture of argon and oxygen at room temperature. XRD patterns indicated that these films were amorphous. SEM imaging indicated a smaller grain size of palladium doped thin film compared with that of undoped tungsten oxide thin film. With electrochromism, palladium doped tungsten oxide exhibited a reverse optical modulation with respect to the applied potential.

  15. Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Li, Yan; Zhang, Changxing; Dong, Xuelin; Feng, Xue

    2016-09-01

    Scanning probe microscopy (SPM) equipped in high temperature nanoindentation instrument is adopted to in situ characterize the oxide film growth on Ni-base single crystal at nanoscale. SPM images reveal a transition of oxide film configuration that the originally flat surface roughens during oxidation. Based on the stress-diffusion coupling effect during oxidation, the stress evolution in the oxide film and the evolution of surface configuration are analyzed. A new method to infer the critical stress in the oxide film at the transition point is proposed by measuring the undulated surface wavelength based on the surface morphology obtained by SPM.

  16. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1990-10-01

    The objective of the project is to develop a method for the solar assisted oxidation of oil slicks. A semiconducting photocatalyst, titanium dioxide, is used. Upon absorbing a photon, an electron-hole pair is generated in the TiO{sub 2} microcrystal. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds. Titanium dioxide is denser than either oil or seawater; the density of its anatase phase is 3.8 and that of its rutile phase is 4.3. In order to keep the titanium dioxide at the air/oil interface, it is attached to a low density, floating material. The particles of the latter are sufficiently small to make the system economical. Specifically, the photocatalyst particles are attached to inexpensive hollow glass microbeads of about 100{mu}m diameter. Those areas of the microbeads that are not covered by photocatalyst are made oleophilic, so that the microbeads will follow the oil slick and not migrate to either the air/water or the water/oil interface.

  17. An environmentally compliant cerium-based conversion coating for aluminum protection

    NASA Astrophysics Data System (ADS)

    Lin, Xuan

    Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.

  18. Vanadium oxide thin film with improved sheet resistance uniformity

    NASA Astrophysics Data System (ADS)

    Généreux, Francis; Provençal, Francis; Tremblay, Bruno; Boucher, Marc-André; Julien, Christian; Alain, Christine

    2014-06-01

    This paper reports on the deposition of vanadium oxide thin films with sheet resistance uniformity better than 2.5% over a 150 mm wafer. The resistance uniformity within the array is estimated to be less than 1%, which is comparable with the value reported for amorphous silicon-based microbolometer arrays. In addition, this paper also shows that the resistivity of vanadium oxide, like amorphous silicon, can be modeled by Arrhenius' equation. This result is expected to significantly ease the computation of the correction table required for TEC-less operation of VOx-based microbolometer arrays.

  19. Genesis of a Cerium Oxide-Supported Gold Catalyst for CO Oxidation: Transformation of Mononuclear Gold Complexes into Clusters as Characterized by X-Ray Absorption Spectroscopy

    SciTech Connect

    Aguilar-Guerrero, V.; Lobo-Lapidus, R; Gates, B

    2009-01-01

    CeO{sub 2}-supported mononuclear gold species synthesized from Au(CH{sub 3}){sub 2}(acac) catalyzed CO oxidation at 353 K, with a turnover frequency of 6.5 x 10{sup -3} molecules of CO (Au atom s){sup -1} at CO and O{sub 2} partial pressures of 1.0 and 0.5 kPa, respectively. As the catalyst functioned in a flow reactor, the activity increased markedly so that within about 10 h the conversion of CO had increased from about 1% to almost 100%. Activated catalyst samples were characterized by X-ray absorption spectroscopy and found to incorporate clusters of gold, which increased in size, undergoing reduction, with increasing time of operation. The X-ray absorption near-edge structure spectrum of the catalyst used for the longest period was indistinguishable from that characterizing gold foil. Extended X-ray absorption fine structure data characterizing the catalyst after the longest period of operation indicated the presence of clusters of approximately 30 Au atoms each, on average. The evidence that the catalytic activity increased as the clusters grew is contrasted with earlier reports pointing to increasing activity of supported gold clusters as they were made smallerin a cluster size range largely exceeding ours.

  20. Preparation and Evaluation of Nitrogen Doped Tungsten Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Nakagawa, Koichi; Miura, Noboru; Matsumoto, Setsuko; Nakano, Ryotaro; Matsumoto, Hironaga

    Nitrogen doped tungsten oxide thin films were prepared by RF reactive sputtering in a gas mixture of argon, oxygen and nitrogen at room temperature. As a result of X-ray photoelectron spectroscopy, it was thought that the doped nitrogen in the films is bonding to tungsten of WO3 bonding states as anion and exits in substitution sites in WO3. The optical absorption edge was shifted to lower energy region with nitrogen doping. The nitrogen doped thin films exhibit a coloration to black from transparent yellow by electrochromism. Additionally, a new peak at 2.3 eV related to nitrogen doping is observed in the spectra of color center at bleaching process.

  1. Reversible superconductivity in electrochromic indium-tin oxide films

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.; Xiong, Ka; Cho, Kyeongjae; Salamon, M. B.

    2012-12-01

    Transparent conductive indium tin oxide (ITO) thin films, electrochemically intercalated with sodium or other cations, show tunable superconducting transitions with a maximum Tc at 5 K. The transition temperature and the density of states, D(EF) (extracted from the measured Pauli susceptibility χp) exhibit the same dome shaped behavior as a function of electron density. Optimally intercalated samples have an upper critical field ≈ 4 T and Δ/kBTc ≈ 2.0. Accompanying the development of superconductivity, the films show a reversible electrochromic change from transparent to colored and are partially transparent (orange) at the peak of the superconducting dome. This reversible intercalation of alkali and alkali earth ions into thin ITO films opens diverse opportunities for tunable, optically transparent superconductors.

  2. Infrared spectroscopic study of sputtered tungsten oxide films

    SciTech Connect

    Paul, J.L.; Lassegues, J.C. )

    1993-10-01

    Recent infrared and Raman spectroscopic studies of various tungsten oxide films concluded either the formation of W=O terminal bonds or the transformation of such bonds into W-OH groups upon proton insertion. The infrared transmission and reflection spectra of bleached and colored sputtered films were reinvestigated in order to resolve the previous contradictory interpretations and for better insight into the mechanism of electrochromism at the molecular level. The new results confirm the first interpretation and allow us to show that H[sup +] or Li[sup +] insertion creates shorter ([approximately]1.7[angstrom]) and longer ([approximately]2 [angstrom]) W-O bonds around the W[sup 5+] centers. These results are in agreement with the concepts of small polaron and of intervalence charge transfer mechanism. They illustrate the local lattice distortion around a W[sup 5+] site. Aging of the initial films has also been followed and characterized by H/D in situ isotopic exchange.

  3. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  4. Tungsten oxide nanowires grown on amorphous-like tungsten films.

    PubMed

    Dellasega, D; Pietralunga, S M; Pezzoli, A; Russo, V; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A; Passoni, M

    2015-09-11

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500-710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W18O49-Magneli phase to monoclinic WO3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. PMID:26292084

  5. Combinatorial study of zinc tin oxide thin-film transistors

    SciTech Connect

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-07

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO:SnO{sub 2} ratio of the film varies as a function of position on the sample, from pure ZnO to SnO{sub 2}, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2 to 12 cm{sup 2}/V s, with two peaks in mobility in devices at ZnO fractions of 0.80{+-}0.03 and 0.25{+-}0.05, and on/off ratios as high as 10{sup 7}. Transistors composed predominantly of SnO{sub 2} were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  6. Investigation of tungsten doped tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Meng, Ting; Yang, Zhao; Cui, Can; Zhang, Qun

    2015-11-01

    Tungsten doped tin oxide thin film transistors (TWO-TFTs) were fabricated by radio frequency magnetron sputtering. With TWO thin films as the channel layers, the TFTs show lower off-current and positive shift turn-on voltage than the intrinsic tin oxide TFTs, which can be explained by the reason that W doping is conducive to suppress the carrier concentration of the TWO channel layer. It is important to elect an appropriate channel thickness for improving the TFT performance. The optimum TFT performance in enhancement mode is achieved at W doping content of 2.7 at% and channel thickness of 12 nm, with the saturation mobility, turn-on voltage, subthreshold swing value and on-off current ratio of 5 cm2 V-1 s-1, 0.4 V, 0.4 V/decade and 2.4  ×  106, respectively.

  7. Photocatalytic oxide films in the built environment

    NASA Astrophysics Data System (ADS)

    Österlund, Lars; Topalian, Zareh

    2014-11-01

    The possibility to increase human comfort in buildings is a powerful driving force for the introduction of new technology. Among other things our sense of comfort depends on air quality, temperature, lighting level, and the possibility of having visual contact between indoors and outdoors. Indeed there is an intimate connection between energy, comfort, and health issues in the built environment, leading to a need for intelligent building materials and green architecture. Photocatalytic materials can be applied as coatings, filters, and be embedded in building materials to provide self-cleaning, antibacterial, air cleaning, deodorizing, and water cleaning functions utilizing either solar light or artificial illumination sources - either already present in buildings, or by purposefully designed luminaries. Huge improvements in indoor comfort can thus be made, and also alleviate negative health effects associated with buildings, such as the sick-house syndrome. At the same time huge cost savings can be made by reducing maintenance costs. Photocatalytic oxides can be chemically modified by changing their acid-base surface properties, which can be used to overcome deactivation problems commonly encountered for TiO2 in air cleaning applications. In addition, the wetting properties of oxides can be tailored by surface chemical modifications and thus be made e.g. oleophobic and water repellent. Here we show results of surface acid modified TiO2 coatings on various substrates by means of photo-fixation of surface sulfate species by a method invented in our group. In particular, we show that such surface treatments of photocatalytic concrete made by mixing TiO2 nanoparticles in reactive concrete powders result in concrete surfaces with beneficial self-cleaning properties. We propose that such approaches are feasible for a number of applications in the built environment, including glass, tiles, sheet metals, plastics, etc.

  8. Oxidative stability of LARC (tm)-TPI films

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.

    1992-01-01

    The oxidative aging of 50-micron-thick films of LARC-TPI was studied using conventional thermogravimetric techniques and measurements of plane-stress fracture toughness. It was shown that at high temperature, most of the toughness loss occurred very early relative to the weight loss. The difficulties of interpreting TGA results in this regime and the problems of extrapolations to long times are discussed.

  9. Laser micromachining of oxygen reduced graphene-oxide films

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2014-03-01

    Non-conductive graphene-oxide (GO) inks can be synthesized from inexpensive graphite powders and deposited on functionalized flexible substrates using inkjet printing technology. Once deposited, the electrical conductivity of the GO film can be restored through laser assisted thermal reduction. Unfortunately, the inkjet nozzle diameter (~40μm) places a limit on the printed feature size. In contrast, a tightly focused femtosecond pulsed laser can create precise micro features with dimensions in the order of 2 to 3 μm. The smallest feature size produced by laser microfabrication is a function of the laser beam diameter, power level, feed rate, material characteristics and spatial resolution of the micropositioning system. Laser micromachining can also remove excess GO film material adjacent to the electrode traces and passive electronic components. Excess material removal is essential for creating stable oxygen-reduced graphene-oxide (rGO) printed circuits because electron buildup along the feature edges will alter the conductivity of the non-functional film. A study on the impact of laser ablation on the GO film and the substrate are performed using a 775nm, 120fs pulsed laser. The average laser power was 25mW at a spot size of ~ 5μm, and the feed rate was 1000-1500mm/min. Several simple microtraces were fabricated and characterized in terms of electrical resistance and surface topology.

  10. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

    PubMed

    Figueroa, A I; van der Laan, G; Harrison, S E; Cibin, G; Hesjedal, T

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  11. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  12. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    PubMed Central

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  13. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-03-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state.

  14. Mixed metal oxide films as pH sensing materials

    NASA Astrophysics Data System (ADS)

    Arshak, Khalil; Gill, Edric; Korostynska, Olga; Arshak, Arousian

    2007-05-01

    Due to the demand for accurate, reliable and highly sensitive pH sensors, research is being pursued to find novel materials to achieve this goal. Semiconducting metal oxides, such as TiO, SnO and SnO II and insulating oxides such as Nb IIO 5 and Bi IIO 3, and their mixtures in different proportions are being investigated for this purpose. The films of these materials mixtures are used in conjunction with an interdigitated electrode pattern to produce a conductimetric/capacitive pH sensor. The advantages of this approach include straightforward manufacturing, versatility and cost-effectiveness. It was noted that upon contact with a solution, the electrical parameters of the films, such as resistance etc., change. The correlation of these changes with pH values is the basis for the proposed system development. The ultimate goal is to find materials composition, which would have the highest sensitivity towards the pH level of the solutions. It was found that the materials that produced the highest sensitivity either had a long response time or were unstable over a wide pH range. Those exhibiting lower sensitivities were found to be more stable over a wide pH range. All oxide films tested demonstrated a change in electrical parameters upon contact with buffers of known pH value.

  15. Oxidation of electrodeposited black chrome selective solar absorber films

    SciTech Connect

    Holloway, P.H.; Shanker, K.; Pettit, R.B.; Sowell, R.R.

    1980-01-01

    X-ray photoelectron and Auger electron spectroscopies have been used to study the composition and oxidation of electrodeposited black chrome films. The outer layer of the film is Cr/sub 2/O/sub 3/ with the inner layer being a continuously changing mixture of Cr + Cr/sub 2/O/sub 3/. Initially, approximately 40% by volume of the film is combined as Cr/sub 2/O/sub 3/, and the volume percentage of Cr/sub 2/O/sub 3/ increases to greater than 60% after only 136 hours at 250/sup 0/C. After approximately 3600 hours at 400/sup 0/C, the volume percentage of Cr/sub 2/O/sub 3/ increased to as high as 80%. The thermal emittance decreased approximately linearly with increasing oxide content, while the solar absorptance remained constant until the percentage of Cr/sub 2/O/sub 3/ exceeded approximately 70%. Oxidation was slower when the Cr/sup +3/ concentration in the plating bath was reduced from 16 g/l to 8 g/l, and when black chrome was deposited on stainless steel rather than sulfamate nickel.

  16. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  17. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    SciTech Connect

    Menaka; Patra, Rajkumar; Ghosh, Santanu; Ganguli, Ashok K.

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  18. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  19. Electrical properties of vanadium tungsten oxide thin films

    SciTech Connect

    Nam, Sung-Pill; Noh, Hyun-Ji; Lee, Sung-Gap; Lee, Young-Hie

    2010-03-15

    The vanadium tungsten oxide thin films deposited on Pt/Ti/SiO{sub 2}/Si substrates by RF sputtering exhibited good TCR and dielectric properties. The dependence of crystallization and electrical properties are related to the grain size of V{sub 1.85}W{sub 0.15}O{sub 5} thin films with different annealing temperatures. It was found that the dielectric properties and TCR properties of V{sub 1.85}W{sub 0.15}O{sub 5} thin films were strongly dependent upon the annealing temperature. The dielectric constants of the V{sub 1.85}W{sub 0.15}O{sub 5} thin films annealed at 400 {sup o}C were 44, with a dielectric loss of 0.83%. The TCR values of the V{sub 1.85}W{sub 0.15}O{sub 5} thin films annealed at 400 {sup o}C were about -3.45%/K.

  20. Investigation of optical loss mechanisms in oxide thin films

    SciTech Connect

    Chow, A.F.; Kingon, A.I.; Auciello, O.; Poker, D.B.

    1995-05-01

    KNbO{sub 3}, K(Ta,Nb)O{sub 3}, KTaO{sub 3}, and Ta{sub 2}O{sub 5} thin films have been grown by ion-beam sputter deposition. KNbO{sub 3} has excellent nonlinear properties for second harmonic generation; however, high optical losses are still characteristic of these films. Several loss mechanisms, such as, high angle grain boundaries, twin domains, interface and surface scattering, and oxygen vacancies can all contribute to the high losses. In order to isolate the various mechanisms, amorphous Ta{sub 2}O{sub 5} films, epitaxial cubic KTaO{sub 3} and tetragonal K(Ta,Nb)O{sub 3} films were grown on MgO and Al{sub 2}O{sub 3} substrates subjected to post-deposition annealing treatments and various oxygen pressure conditions. The optical losses and refractive indices were observed to differ depending on the substrate surface and annealing treatments. Resonant scattering experiments were performed to analyze the oxygen composition. The optical properties of these oxide thin film systems are reported and the breakdown of the loss mechanisms is addressed.

  1. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  2. Electrical characterization of hydrogenated amorphous silicon oxide films

    NASA Astrophysics Data System (ADS)

    Itoh, Takashi; Katayama, Ryuichi; Yamakawa, Koki; Matsui, Kento; Saito, Masaru; Sugiyama, Shuhichiroh; Sichanugrist, Porponth; Nonomura, Shuichi; Konagai, Makoto

    2015-08-01

    The electrical characterization of hydrogenated amorphous silicon oxide (a-SiOx:H) films was performed by electron spin resonance (ESR) and electrical conductivity measurements. In the ESR spectra of the a-SiOx:H films, two ESR peaks with g-values of 2.005 and 2.013 were observed. The ESR peak with the g-value of 2.013 was not observed in the ESR spectra of a-Si:H films. The photoconductivity of the a-SiOx:H films decreased with increasing spin density estimated from the ESR peak with the g-value of 2.005. On the other hand, photoconductivity was independent of spin density estimated from the ESR peak with the g-value of 2.013. The optical absorption coefficient spectra of the a-SiOx:H films were also measured. The spin density estimated from the ESR peak with the g-value of 2.005 increased proportionally with increasing optical absorption owing to the gap-state defect.

  3. Synthesis and tribology of doped carbon films and oxide multilayers

    NASA Astrophysics Data System (ADS)

    Freyman, Christina A.

    The focus of this research is to synthesize thin films coatings by reactive magnetron sputtering with properties that will result in energy savings. Tailoring of hydrogenated carbon film properties to minimize environment effects on friction is accomplished by sulfur doping. Synthesis results in smooth surfaces and mid-range hardness. The stabilization of ultra-low friction in humid air can be attributed to the reduction of water adsorption on the surface, which is verified by results of quartz crystal microbalance and temperature-programmed desorption experiments. Even at 90% relative humidity, sulfur-doped films have less than one monolayer of water adsorbed on the surface. This reduction in water coverage is due to the decrease in residence time of water on the surface, which is related to the strength of the bonding between water molecules and the sulfur-doped surface. These results indicate that sulfur doping results in weaker bonding between water and the film surface due to a reduction in the polar nature of the surface. Metal nitrides, carbides, and borides are widely used as protective coatings due to their high hardness, but are not stable above 600°C due to coating oxidation. Hardness enhancement techniques have been applied to thermally stable oxide multilayers for use at high temperatures. Amorphous Al2 O3 and crystalline TiO2 nanoscale layers have been deposited using reactive d.c. magnetron sputtering at different partial pressures of oxygen. Hardness enhancement of twice the rule of mixtures has been observed in oxide multilayers for the first time due to clear interfaces and large difference in modulus between amorphous Al2O3 and crystalline TiO2 layers. Multilayer films with majority bilayer component of Al2O3 showed greater resistance to wear due to increased elastic recovery and H/E ratio over monolithic films and TiO2 majority phase multilayers. Multilayer films retain their high hardness up to ˜800°C in air; some hardness enhancement in the

  4. Potential for recovery of cerium contained in automotive catalytic converters

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  5. Aqueous sol-gel routes to conducting films of indium oxide and indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Perry, Carole C.; McGiveron, J. K.; Harrison, Philip G.

    2000-05-01

    Thin films of indium tin oxide (ITO) are of interest because of their high transparency and low electrical resistivity. Applications include use as electrodes for liquid crystal display and as heat mirrors for solar energy devices. We have developed totally aqueous routes to indium oxide (IO) and ITO materials because, (1) the particulate sols afford a longer shelf life than for alkoxyide derived materials, (2) organics do not have to be removed from the films by baking, and (3) the starting materials are cheaper than the corresponding alkoxides. Indium and mixed indium/tin sols have been prepared form inorganic solutions and treated with alkali to produce white thixotropic sols ca. 0.64 in Mz+ ions. This films were prepared by spinning on low iron or pure silica slides previously cleaned with DECON and washed with distilled water. Films were subsequently heated at 773K in air, or 1173K in air or nitrogen. The film with the lowest resistivity contained ca. 5 percent Sn and had an average optical transmittance between 400 and 600nm of 95 percent. The film was non-porous, smooth in texture, approximately 300nm thick and had a band gap energy of 3.22eV.

  6. Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition.

    SciTech Connect

    Comstock, D. J.; Christensen, S. T.; Elam, J. W.; Pellin, M. J.; Hersam, M. C.

    2010-08-01

    Iridium oxide (IrOx) has been widely studied due to its applications in electrochromic devices, pH sensing, and neural stimulation. Previous work has demonstrated that both Ir and IrOx films with porous morphologies prepared by sputtering exhibit significantly enhanced charge storage capacities. However, sputtering provides only limited control over film porosity. In this work, we demonstrate an alternative scheme for synthesizing nanoporous Ir and activated IrOx films (AIROFs). This scheme utilizes atomic layer deposition to deposit a thin conformal Ir film within a nanoporous anodized aluminum oxide template. The Ir film is then activated by potential cycling in 0.1 M H{sub 2}SO{sub 4} to form a nanoporous AIROF. The morphologies and electrochemical properties of the films are characterized by scanning electron microscopy and cyclic voltammetry, respectively. The resulting nanoporous AIROFs exhibit a nanoporous morphology and enhanced cathodal charge storage capacities as large as 311 mC/cm{sup 2}.

  7. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect

    Wang, Liang; Rhee, Hongjoo; Felicelli, Sergio D.; Sabau, Adrian S; Berry, John T.

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  8. Electrochemical deposition of conducting ruthenium oxide films from solution

    SciTech Connect

    Anderson, D.P.; Warren, L.F.

    1984-02-01

    In the last decade, ruthenium oxide, RuO /sub x/ (x less than or equal to 2), has been used extensively as the active anode electrocatalyst constituent for Cl/sub 2/ and O/sub 2/ evolution reactions, in chlorate production, and in metal electrowinning from mixed chloride-sulfate solutions. More recently, this material has been incorporated in several light-induced water electrolysis schemes and apparently possesses the ability to inhibit CdS photocorrosion by acting as a hole scavenger. The numerous applications for this catalyst material certainly warrant further studies of its electrochemical properties on a variety of substrates, e.g., semiconductors. The lack of a simple technique for controlled deposition of ruthenium oxide onto conducting substrates prompted us to investigate an electrochemical approach to this problem. We describe here a new way to electrochemically deposit conducting films of hydrated ruthenium oxide from an aqueous solution of the benzeneruthenium (II)aqua complex. The films slowly dissolve in aqueous electrolytes upon potential cycling, yet appear to be catalytic with regards to water oxidation.

  9. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors

    SciTech Connect

    Gao, Xu E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Mitoma, Nobuhiko; Lin, Meng-Fang; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-07-14

    Oxide thin film transistor employing copper source/drain electrodes shows a small turn on voltage and reduced hysteresis. Cross-sectional high-resolution transmission electron microscopy image confirmed the formation of ∼4 nm CuO{sub x} related interlayer. The lower bond-dissociation energy of Cu-O compared to Si-O and In-O suggests that the interlayer was formed by adsorbing oxygen molecules from surrounding environment instead of getting oxygen atoms from the semiconductor film. The formation of CuO{sub x} interlayer acting as an acceptor could suppress the carrier concentration in the transistor channel, which would be utilized to control the turn on voltage shifts in oxide thin film transistors.

  10. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    NASA Astrophysics Data System (ADS)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  11. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    PubMed

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity. PMID:26706928

  12. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  13. Magnetic transparent conducting oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  14. Electrical and Optical Properties of Copper Oxide Thin Films by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Shariffudin, S. S.; Saad, P. S. M.; Ridah, H. A. M.

    2015-11-01

    Copper oxide were prepared by sol-gel technique and deposited onto quartz substrates as thin films using spin coating method. The aim of this research was to study the effects of different spin coating speeds of copper oxide thin films on the electrical and optical properties of the thin films. Five samples of copper oxide thin films with different spin coating speeds of 1000, 1500, 2000, 2500 and 3000 rpm were annealed at 600°C for 30 minutes. UV-Vis spectrophotometer and two-point probe technique were used to characterize the optical and electrical properties of the deposited films. Based on the results obtained, it revealed that the electrical conductivity of the copper oxide thin films reduce as the spin coating speeds increase. The calculated optical band gap and the resistivity of the copper oxide thin films also decrease when the spin coating speeds are increased.

  15. CSA doped polypyrrole-zinc oxide thin film sensor

    NASA Astrophysics Data System (ADS)

    Chougule, M. A.; Jundale, D. M.; Raut, B. T.; Sen, Shashwati; Patil, V. B.

    2013-02-01

    The polypyrrole-zinc oxide (PPy-ZnO) hybrid sensor doped with different weight ratios of camphor sulphonic acid (CSA) were prepared by spin coating technique. These CSA doped PPy-ZnO hybrids were characterized by field emission scanning electron microscope (FESEM) and fourier transform infrared (FTIR) which proved the formation of polypyrrole, PPy-ZnO and the interaction between polypyrrole - ZnO (PPy-ZnO) hybrid with CSA doping. The gas sensing properties of the PPy-ZnO hybrid films doped with CSA have been studied for oxidizing (NO2) as well as reducing (H2S, NH3, CH4OH and CH3OH) gases at room temperature. We demonstrate that CSA doped PPy-ZnO hybrid films are highly selective to NO2 along with high-sensitivity at low concentration (80% to 100 ppm) and better stability, which suggested that the CSA doped PPy-ZnO hybrid films are potential candidate for NO2 detection at room temperature.

  16. Solution-Processed Indium Oxide Based Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Xu, Wangying

    Oxide thin-film transistors (TFTs) have attracted considerable attention over the past decade due to their high carrier mobility and excellent uniformity. However, most of these oxide TFTs are usually fabricated using costly vacuum-based techniques. Recently, the solution processes have been developed due to the possibility of low-cost and large-area fabrication. In this thesis, we have carried out a detailed and systematic study of solution-processed oxide thin films and TFTs. At first, we demonstrated a passivation method to overcome the water susceptibility of solution-processed InZnO TFTs by utilizing octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs). The unpassivated InZnO TFTs exhibited large hysteresis in their electrical characteristics due to the adsorbed water at the semiconductor surface. Formation of a SAM of ODPA on the top of InZnO removed water molecules weakly absorbed at the back channel and prevented water diffusion from the surroundings. Therefore the passivated devices exhibited significantly reduced hysteretic characteristics. Secondly, we developed a simple spin-coating approach for high- k dielectrics (Al2O3, ZrO2, Y 2O3 and TiO2). These materials were used as gate dielectrics for solution-processed In2O3 or InZnO TFTs. Among the high-k dielectrics, the Al2O3-based devices showed the best performance, which is attributed to the smooth dielectric/semiconductor interface and the low interface trap density besides its good insulating property. Thirdly, the formation and properties of Al2O3 thin films under various annealing temperatures were intensively studied, revealing that the sol-gel-derived Al2O3 thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide. Besides, the Al2O 3 film was used as gate dielectric for solution-processed oxide TFTs, resulting in high mobility and low operating voltage. Finally, we proposed a green route for

  17. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    NASA Astrophysics Data System (ADS)

    Denayer, Jessica; Bister, Geoffroy; Simonis, Priscilla; Colson, Pierre; Maho, Anthony; Aubry, Philippe; Vertruyen, Bénédicte; Henrist, Catherine; Lardot, Véronique; Cambier, Francis; Cloots, Rudi

    2014-12-01

    Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  18. Highly conductive grain boundaries in copper oxide thin films

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  19. Rapid thermal chemical vapor deposition of thin silicon oxide films using silane and nitrous oxide

    NASA Astrophysics Data System (ADS)

    Xu, X. L.; Kuehn, R. T.; Wortman, J. J.; Öztürk, M. C.

    1992-06-01

    Thin (80-200 Å) silicon dioxide (SiO2) films have been deposited by low pressure rapid thermal chemical vapor deposition (RTCVD), using silane (SiH4) and nitrous oxide (N2O) as the reactive gases for the first time. A deposition rate of 55 Å/min has been achieved at 800 °C with a SiH4/N2O flow rate ratio of 2%. Auger electron spectroscopy (AES) and Rutherford back scattering spectroscopy (RBS) have shown a uniform and stoichiometric composition throughout the deposited oxide films. Electrical characterization of the films have shown an average catastrophic breakdown field of 13 MV/cm and a midgap interface trap density (Dit) of equal to or less than 5×1010 eV-1 cm-2. The results suggest that the deposited RTCVD SiO2 films using SiH4-N2O gas system may have the potential to be used as the gate dielectric in future low-temperature metal oxide semiconductor (MOS) device processes for ultralarge scale integration (ULSI).

  20. Oxide Film Aging on Alloy 22 in Halide Containing Solutions

    SciTech Connect

    Rodriguez, Martin A.; Carranza, Ricardo M.; Rebak, Raul B.

    2007-07-01

    Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

  1. Studies on nickel-tungsten oxide thin films

    SciTech Connect

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  2. Studies on nickel-tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-01

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm-1 and 1100 cm-1 correspond to Ni-O vibration and the peak at 860 cm-1 can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  3. High angular sensitivity thin film tin oxide sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Madaan, Divya; Sharma, V. K.; Kapoor, A.

    2016-05-01

    We present theoretical anlaysis of a thin film SnO2 (Tin Oxide) sensor for the measurement of variation in the refractive index of the bulk media. It is based on lossy mode resonance between the absorbing thin film lossy modes and the evanescent wave. Also the addition of low index dielectric matching layer between the prism and the lossy waveguiding layer future increase the angular sensitivity and produce an efficient refractive index sensor. The angular interrogation is done and obtained sensitivity is 110 degree/RIU. Theoretical analysis of the proposed sensor based on Fresnel reflection coefficients is presented. This enhanced sensitivity will further improve the monitoring of biomolecular interactions and the higher sensitivity of the proposed configurations makes it to be a much better option to be employed for biosensing applications.

  4. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  5. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  6. Electrochemical glucose oxidation on dendritic cuprous oxide film fabricated by PSS-assisted electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Jin, Xiaoqi; Huang, Qiao

    2011-02-01

    Cuprous oxides (Cu 2O) with different morphologies were deposited on F-doped tin oxide (FTO) covered glass substrates by potentiostatic deposition. The as-deposited samples were characterized by XRD, BET surface area and SEM. The effects of Poly(styrene sulfonic acid) sodium salt (PSS) on the crystal morphologies of Cu 2O were studied. Different crystal morphologies of Cu 2O can be obtained by varying the concentrations of PSS in the electrolytes. The formation of dendritic microstructure in Cu 2O film depends on the concentration of PSS in the electrolyte. Dendritic Cu 2O crystals formed gradually with the increase of the concentration of PSS in the electrolyte from 0 to 4 g L -1. More symmetrical Cu 2O crystals appear when the concentration of PSS is changed from 4 to 8 g L -1. However, the Cu 2O nanoparticles formed instead of dendritic Cu 2O crystals if the concentration of PSS reaches to 12 g L -1, which is due to the slower diffusion rate of reactive species in high concentration of PSS. The as-deposited Cu 2O thin films with different morphologies all exhibit the electrochemical glucose oxidation properties. The improved performance of glucose oxidation is achieved on the dendritic Cu 2O film electrode. The result indicates that the dendritic microstructure is beneficial for decreasing the resistance and improving transportation and diffusion of reactants and products.

  7. Vibrational spectra of CO adsorbed on oxide thin films: A tool to probe the surface defects and phase changes of oxide thin films

    SciTech Connect

    Savara, Aditya

    2014-03-15

    Thin films of iron oxide were grown on Pt(111) single crystals using cycles of physical vapor deposition of iron followed by oxidative annealing in an ultrahigh vacuum apparatus. Two procedures were utilized for film growth of ∼15–30 ML thick films, where both procedures involved sequential deposition+oxidation cycles. In procedure 1, the iron oxide film was fully grown via sequential deposition+oxidation cycles, and then the fully grown film was exposed to a CO flux equivalent to 8 × 10{sup −7} millibars, and a vibrational spectrum of adsorbed CO was obtained using infrared reflection-absorption spectroscopy. The vibrational spectra of adsorbed CO from multiple preparations using procedure 1 show changes in the film termination structure and/or chemical nature of the surface defects—some of which are correlated with another phase that forms (“phase B”), even before enough of phase B has formed to be easily detected using low energy electron diffraction (LEED). During procedure 2, CO vibrational spectra were obtained between deposition+oxidation cycles, and these spectra show that the film termination structure and/or chemical nature of the surface defects changed as a function of sequential deposition+oxidation cycles. The authors conclude that measurement of vibrational spectra of adsorbed CO on oxide thin films provides a sensitive tool to probe chemical changes of defects on the surface and can thus complement LEED techniques by probing changes not visible by LEED. Increased use of vibrational spectra of adsorbed CO on thin films would enable better comparisons between films grown with different procedures and by different groups.

  8. Deposition of transparent, conductive tin oxide films on glass using a radio-frequency induction heater.

    PubMed

    Solano, I; Schwoebel, P R

    2009-12-01

    Tin oxide films are often used as transparent, conductive coatings on glass in the scientific research setting. The standard approach of depositing these films in an oven leads to poor visibility of the substrate and thus inhibits the ready formation of uniform, low resistivity films. In this note we describe a simple tin oxide film deposition technique using a radio-frequency induction heater that allows for in situ visualization of the deposition process and resulting film. Uniform films having resistivities as low as 2 mohm cm with transmittances of approximately 85% in the visible light spectrum were readily deposited. PMID:20059179

  9. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    PubMed

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures. PMID:27070754

  10. High temperature nitrogen oxides sensing enabled by indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Kannan, Srinivasan

    Generation of power using fossil fuel combustion invariably results in formation of undesirable gas species (NOx, SOx, CO, CO2, etc.) at high-temperatures which are harmful to the environment. Thus, there is a continual need to develop sensitive, responsive, stable, selective, robust and low-cost sensor systems and sensor materials for combustion monitoring. This work investigates the viability of microfabricated NO x sensors based on sputtered indium oxide (In2O3) utilizing microhotplate structures. The material becomes resistive when exposed to oxidizing gases like NOx, with its conductivity dependent upon the temperature, partial pressure of the test gas and morphological structure. We believe this device would help increase efficiency and decrease emissions through improved combustion process control, leading to a comparably economic and responsive sensor. In this work, more than 600 sensors were fabricated and tested, including RF and pulsed-DC sputtered films. About 50 unique sensor conditions were characterized and related to the gas sensor response. The sensor conditions included deposition parameters (power, pressure, time, etc.) and postdeposition processes (anneals, promoter layers, etc.). In2O3 thin films were RF sputter deposited on microhotplate structures with different thickness (40 to 300 nm) in pure Ar. Additionally, a combination of reactive and RF sputtering of In2O3 material was-deposited in Ar and O2 (10% and 25%) mixture. In2O3 films without promoter layers and with gold or TiOx promoter layers (~ 3 nm) were investigated for NOx sensing. Selectivity, stability and repeatability of indium oxide (In2O3) thin film sensor to detect NOx (25 ppm) in presence of other exhaust gas pollutants including H2, NH3 and CO2 at high operating temperatures (greater than 350 °C) was investigated in N2 carrier gas. In2O 3 films (150nm thick) deposited in Ar and O2 (25% O 2) presented the highest response (S ~ 50) to 25 ppm NOx at 500 °C when compared to films

  11. Rate of organic film formation and oxidation on aqueous drops

    NASA Astrophysics Data System (ADS)

    Aumann, E.; Tabazadeh, A.

    2008-12-01

    Previous studies suggest that saturated fatty acids or other lipids, which are known to be strong film-forming agents, form condensed films on aqueous drops. Specifically, stearic acid (SA) has been used in laboratory and modeling studies to mimic the surface composition of some particles in the atmosphere. In this study, laboratory measurements were used to determine the rate of SA spreading from a solid on aqueous surfaces,ranging in composition from ammonium sulfate to highly acidic sulfuric acid. Maximum spreading rates were measured on neutral electrolyte solutions, while spreading was not observed on aqueous sulfuric and hydrochloric acids (pH < 0). Also, the spreading rates on water and electrolyte surfaces declined sharply as the solution pH was lowered from 7 to 3. Spreading rates are reported with a dependence on the length of solid-aqueous-air boundary (triple interface perimeter). Spreading rates measured on bulk solutions were modeled on atmospheric particles to determine the time constant of organic film formation on aqueous drops. The time required for a saturated fatty acid to spread and coat a submicron salt particle or a cloud drop is on the order of seconds to minutes or minutes to hours, respectively. In conclusion, lipid coatings can form quickly on neutral or slightly acidic salt drops if a sufficient amount of lipid is present in the drop and the lipid is in direct contact with the aqueous solution surface. Rapid film formation and fast heterogeneous oxidation can provide an efficient way of converting water-insoluble organic films into more water-soluble components in aerosols or cloud drops.

  12. Absorption of ac fields in amorphous indium-oxide films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2014-08-01

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (InxO) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In2O3-x) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  13. Effect of Oxidation Condition on Growth of N: ZnO Prepared by Oxidizing Sputtering Zn-N Film

    NASA Astrophysics Data System (ADS)

    Qin, Xuesi; Li, Guojian; Xiao, Lin; Chen, Guozhen; Wang, Kai; Wang, Qiang

    2016-06-01

    Nitrogen-doped zinc oxide (N: ZnO) films have been prepared by oxidizing reactive RF magnetron-sputtering zinc nitride (Zn-N) films. The effect of oxidation temperature and oxidation time on the growth, transmittance, and electrical properties of the film has been explored. The results show that both long oxidation time and high oxidation temperature can obtain the film with a good transmittance (over 80 % for visible and infrared light) and a high carrier concentration. The N: ZnO film exhibits a special growth model with the oxidation time and is first to form a N: ZnO particle on the surface, then to become a N: ZnO layer, and followed by the inside Zn-N segregating to the surface to oxidize N: ZnO. The surface particle oxidized more adequately than the inside. However, the X-ray photoemission spectroscopy results show that the lower N concentration results in the lower N substitution in the O lattice (No). This leads to the formation of n-type N: ZnO and the decrease of carrier concentration. Thus, this method can be used to tune the microstructure, optical transmittance, and electrical properties of the N: ZnO film.

  14. Effect of Oxidation Condition on Growth of N: ZnO Prepared by Oxidizing Sputtering Zn-N Film.

    PubMed

    Qin, Xuesi; Li, Guojian; Xiao, Lin; Chen, Guozhen; Wang, Kai; Wang, Qiang

    2016-12-01

    Nitrogen-doped zinc oxide (N: ZnO) films have been prepared by oxidizing reactive RF magnetron-sputtering zinc nitride (Zn-N) films. The effect of oxidation temperature and oxidation time on the growth, transmittance, and electrical properties of the film has been explored. The results show that both long oxidation time and high oxidation temperature can obtain the film with a good transmittance (over 80 % for visible and infrared light) and a high carrier concentration. The N: ZnO film exhibits a special growth model with the oxidation time and is first to form a N: ZnO particle on the surface, then to become a N: ZnO layer, and followed by the inside Zn-N segregating to the surface to oxidize N: ZnO. The surface particle oxidized more adequately than the inside. However, the X-ray photoemission spectroscopy results show that the lower N concentration results in the lower N substitution in the O lattice (No). This leads to the formation of n-type N: ZnO and the decrease of carrier concentration. Thus, this method can be used to tune the microstructure, optical transmittance, and electrical properties of the N: ZnO film. PMID:27251324

  15. Defect Mediated Ferromagnetism in Zinc Oxide Thin Film Heterostructures

    NASA Astrophysics Data System (ADS)

    Mal, Siddhartha

    Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. Since zinc oxide (ZnO) posits a promising player, it is important to elucidate the critical issues regarding the origin and nature of magnetism in ZnO thin film heterostructures. Another critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial thin films on the existing technology based on Si (100) substrates, which requires appropriate substrate templates. The present research work is focused on the study of room temperature ferromagnetism (RTFM) caused by intrinsic defects and precise control of RTFM using thermal treatments and laser and ion irradiation. We performed a systematic study of the structural, chemical, electrical, optical and magnetic properties of undoped ZnO films grown under different conditions as well as the films that were annealed in various environments. Oxygen annealed films displayed a sequential transition from ferromagnetism to diamagnetism as a function of the annealing temperature. An increase in the green band intensity has been observed in oxygen annealed ZnO films. Reversible switching of room-temperature ferromagnetism and n-type conductivity have been demonstrated by oxygen and vacuum annealing. Detailed electron energy loss spectroscopy and secondary ion mass spectroscopy studies have been presented to rule out the possibility of external source of magnetism. Electron-Paramagnetic Resonance (EPR) measurements indicate the presence of a broad peak at g=2.01. This would be most consistent with the magnetic moment arising from the oxygen vacancies (g=1.996), although the possible contribution from Zn vacancies (g=2.013) cannot be entirely ruled out. The magnetic moment in these films may arise from the

  16. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  17. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  18. Nanoscale reduction of graphene oxide thin films and its characterization

    NASA Astrophysics Data System (ADS)

    Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, Francesc; Mescola, A.; Torre, B.

    2015-07-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  19. Transient laser annealing of zinc oxide nanoparticle inks to fabricate zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Willemann, Michael

    Display technology, which relies exclusively on amorphous silicon as the active material for driver electronics, has reached multiple impasses that limit future progress. In order to deliver higher resolutions, higher refresh rates, new display technologies, and innovative form factors, driver electronics must transition to higher performance materials like amorphous oxide semiconductors (AOSs). Transient laser annealing offers an attractive means to maximize performance while minimizing thermal budget, making it compatible with flexible back plane materials and roll-to-roll processing. This research investigates the deposition and annealing of zinc oxide nanoparticle inks to form fully densified crystalline and amorphous zinc oxide films. Processing routes for nanoparticle annealing, including ligand removal, calcining, and excimer pulse laser sintering on the nanosecond time scale, will be introduced that minimize defect formation and suppress the anomalous n-conductivity which is a major challenge to zinc oxide processing. Resistivities as high as 6 x 107 O-cm have been demonstrated. Laser processing on longer millisecond time scales can control defect formation to produce ZnO films without extrinsic doping which have low resistivity for intrinsic oxides, in the range of 10-1 - 10-2 O-cm. Finally, a viable process for the production of backgated ZnO transistors with promising characteristics is presented and the future implications for AOSs and transient thermal processing will be discussed.

  20. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    NASA Astrophysics Data System (ADS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn3O4, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20-30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 - 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9-10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.