Science.gov

Sample records for cerium sulfates

  1. Potentiometric analysis using solutions of cerium sulfates

    SciTech Connect

    Pugin., G.V.; Pisarevskii, A.M.; Polozova, I.P.; Shults, M.M.

    1986-06-01

    In a previous work the authors outlined the bases of a new method of instrumental determination of the chemical oxygen consumption (COC): The analysis is performed within the framework of the umpire analysis of COC, but the consumption of the oxidizing agent is continuously recorded according to the change in the emf of the galvanic cell (glass pH-metric electrode; cerium (IV,III) sulfates, potassium bichromate, 7.5 M H/sub 2/SO/sub 4/; and glass redoximetric electrode EO-021. The authors contend that potentiometric recording permits not only a simplication of the determination of COC but also the removal of the rigid limitations on the time of boiling of the sample. Additional information may be obtained on the corresponding and difficultly oxidized substances in the sample to be analyzed. It is noted after a discussion of main peculiarities of the cell that the selection of the conditions of analysis is dictated largely by the requirements set in the determinations of COC which permits a number of shortcomings of the potentiometric method to be determined.

  2. Cerium

    SciTech Connect

    1992-11-01

    Cerium in the year 1803, three scientists (M.H. Laproth, J.J. Berzelius, and W. Hisinger) independently discovered cerium (Ce), the first lanthanide element to be isolated. The element`s name is derived from the asteroid Ceres, which was discovered just two years before cerium. The name {open_quotes}cerium{close_quotes} is especially appropriate since cerium, in its +4 ionic state, exhibits a {open_quotes}ceres,{close_quotes} or reddish-orange, color. Cerium has a very high crystal abundance of 46 ppm, similar to that of the very common gas, nitrogen, and abundant metal, copper. Of all the rare earth (RE) ores mined today, the average concentration of cerium in the ore is 46.4 percent, in terms of cerium oxide (CeO{sub 2}) content per total rare earth oxide (REO) by weight. Cerium is therefore the most abundant of all the rare earths, with concentrations as high as 50 percent CeO{sub 2}/REO in Chinese bastnasite and 52 percent in Russian loparites. Based on US Bureau of Mines statistics, CTC estimates that the world`s total mined production of cerium oxide in 1991 was about 24,000 metric tons-almost half of the total rare earth oxides produced.

  3. Adsorption of Magnesium Sulfate from Desulfurization Industrial Wastewater by Nano-Cerium Loaded Recycled Aggregates.

    PubMed

    Yoon, Hyung-Sun; Bak, Somi; Seo, Seong-Gyu; Choi, Jeongdong; Kim, Eun-Sik

    2016-02-01

    In this research, the recycled aggregates (RAs) from blast furnace were solidified with nano-cerium (Ce), and applied to reduce the ionic species (e.g., magnesium sulfate) in the desulfurization industrial wastewater. Static batch experiments were performed based on different loading of recycled aggregates. Sulfate sorption isotherm studies were performed by Langmuir adsorption model. The physical morphologies were determined using scanning electron microscope. The results presented that the partial ions were captured with the different loading of the recycled aggregates during the batch tests. It was observed that 8 hr batch reaction equilibrated the electrical conductivity reduction, and 13% mass loading was estimated an optimal dosage of adsorbent. This study showed the nano-Ce loaded RAs could reduce ionic species in wastewater, and expected to be an economical adsorbent for wastewater treatment process. PMID:27433701

  4. Optimization of a carbon-based hybrid energy storage device with cerium (III) sulfate as redox electrolyte

    NASA Astrophysics Data System (ADS)

    Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara

    2016-03-01

    The electrochemical performance of a carbon-based hybrid energy storage system, with Ce2(SO4)3/H2SO4 as inorganic redox electrolyte, was enhanced by optimizing several parameters of the device. A mass balance of the two electrodes forming the system together with the selection of a suitable activated carbon as negative electrode allowed the cell voltage to be increased up to 1.9 V. In addition, the use of a cation-exchange membrane significantly enhanced the electrochemical performance of the system by minimizing secondary reactions of cerium ions on the negative electrode. The optimized device reached energy and power density values up to ∼20 W h kg-1 and 524 W kg-1 respectively. Moreover, the system showed a good long-term electrochemical performance over 20,000 cycles.

  5. Cerium Oxide and Cerium Compounds

    Integrated Risk Information System (IRIS)

    Cerium oxide and cerium compounds ; CASRN 1306 - 38 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  6. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS

    EPA Science Inventory

    Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...

  7. Cerium metallofullerenes

    NASA Astrophysics Data System (ADS)

    Georgi, Petra; Kuran, Pavel; Dunsch, Lothar

    1999-09-01

    With respect to its redox state cerium is of high interest in metallofullerene research as its preferable redox states are 3+ and 4+. As representative structures of the cerium fullerene family both Ce2@C72 and Ce@C82 were prepared by the Krätschmer arc burning method. The metallofullerene Ce2@C72 was isolated for the first time using a two stage HPLC separation technique. The UV-Vis-NIR, IR and ESR spectra were compared with those of other C72 cage metallofullerenes. The existence and stability of the Ce2@C72 structure supports the assumption that the C72 carbon cage can be stabilised by metal ions. The endohedral fullerene Ce@C82 was also isolated by two stage HPLC and characterized by UV-Vis-NIR, IR and ESR spectroscopy for comparison with other endohedral C82 fullerenes. The redox properties of this metallofullerene structure were studied by cyclic voltammetry.

  8. The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster.

    PubMed

    Wu, Bin; Zhang, Di; Wang, Dan; Qi, Chunyan; Li, Zongyun

    2012-10-01

    Due to the widespread application of cerium, a rare earth element, the risk of exposure to cerium has increased. Therefore, understanding the physiological effects of cerium is of great importance. Our previous work showed that cerium caused significant lifespan shortening accompanied by oxidative damage in Drosophila melanogaster, however, little is known about the detailed mechanism of cerium-induced cytotoxicity. Thus, we examined the developmental time during metamorphosis, and assessed the toxic effects of cerium by evaluating heat shock protein 70 (Hsp70), DNA damage markers and apoptosis in D. melanogaster. We found that cerium extended the developmental time of D. melanogaster and up-regulated the expression of Hsp70 when the concentration of cerium was increased (especially concentrations over 26.3 μg/g). Up-regulation of the cell cycle checkpoint p53 and cell signaling protein p38 were also observed when the concentration of cerium was over 104 μg/g. In addition, the activities of caspase-3 and caspase-9, markers of apoptosis, were significantly higher when the larvae were exposed to ceric sulfate. These results suggest that high concentrations of cerium may result in DNA damage and ultimately apoptosis in D. melanogaster, and strongly indicate that cerium should be applied with caution and the potential toxic effects in humans should also be taken into consideration. PMID:22707041

  9. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  10. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  11. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  12. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis

    SciTech Connect

    Pei, L.Z. Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-15

    Highlights: • Cerium titanate nanorods have been synthesized by a simple hydrothermal process. • The size of the cerium titanate nanorods can be controlled by growth conditions. • Cerium titanate nanorods exhibit good photocatalytic activities for methyl blue. - Abstract: Cerium titanate nanorods have been prepared via a hydrothermal process using sodium dodecyl sulfate (SDS) as the surfactant. The cerium titanate nanorods have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and ultraviolet–visible (UV–vis) diffuse reflectance spectrum. XRD shows that the nanorods are composed of CeTi{sub 21}O{sub 38} phase. Electron microscopy observations indicate that the nanorods have good single crystalline nature. The diameter and length of the nanorods are about 50–200 nm and 1–2 μm, respectively. Cerium titanate nanorods have a band gap of 2.65 eV. The photocatalytic activities of the nanorods have been investigated by degrading methylene blue (MB) under visible light irradiation. MB solution with the concentration of 10 mg L{sup −1} can be degraded totally with the irradiation time increasing to 240 min. Cerium titanate nanorods exhibit great potential in photocatalytic degradation of MB under visible light irradiation.

  13. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (Interagency Science Discussion Draft)

    EPA Science Inventory

    On September 29, 2009, the IRIS Summary and Toxicological Review of Cerium Oxide and Cerium Compounds was finalized and loaded onto the IRIS database. The Toxicological Review of Cerium Oxide and Cerium Compounds was reviewed internally by EPA, by other federal agencies and Whit...

  14. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  15. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  16. Thermodynamic properties of cerium mononitride

    NASA Astrophysics Data System (ADS)

    Aristova, N. M.; Belov, G. V.

    2014-09-01

    Data on the thermodynamic properties of cerium mononitride CeN in the solid state are analyzed. Relations approximating the temperature dependence of the thermodynamic functions of CeN(cr.) in the temperature range of 298.15-2900 K are obtained. Using the relations of thermodynamics known for this temperature range, the thermodynamic functions of cerium mononitride (entropy, Gibbs energy, and enthalpy variation) are calculated. The resulting data is entered into the database of the IVTANTHERMO software package and is used to analyze the thermal stability of CeN(cr.), and to estimate its boiling point at atmospheric pressure.

  17. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  18. Glucosamine sulfate

    MedlinePlus

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  19. Chondroitin sulfate

    MedlinePlus

    ... If you have asthma, use chondroitin sulfate cautiously. Blood clotting disorders: In theory, administering chondroitin sulfate might increase the risk of bleeding in people with blood clotting disorders. Prostate cancer: Early research suggests that chondroitin ...

  20. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  1. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database.

  2. Grain Growth in Cerium Metal

    NASA Astrophysics Data System (ADS)

    Cooley, Jason; Katz, Martha; Mielke, Charles; Montalvo, Joel

    We report on grain growth in forged and rolled cerium plate for temperatures from 350 to 700 degrees C and times from 30 to 120 minutes. The cerium was made by arc-melting into a 25 mm deep by 80 mm diameter copper mold. The resulting disk was forged at room temperature to a 25% reduction of thickness four times with a 350 degree C strain relief heat treatment for 60 minutes between forging steps. The resulting 8 mm thick plate was clock rolled at room temperature to a 25% reduction of thickness three times with a 350 C strain relief heat treatment between steps resulting in a plate approximately 3 mm thick. 5 x 10 mm coupons were cut from the plate for the grain growth study.

  3. Cerium oxide for sunscreen cosmetics

    NASA Astrophysics Data System (ADS)

    Yabe, Shinryo; Sato, Tsugio

    2003-02-01

    Ultrafine particles of Mn+ -doped ceria ( Mn+ =Mg 2+, Ca 2+, Sr 2+, Ba 2+, Y 3+, La 3+, Nd 3+, Sm 3+, Eu 3+, Tb 3+) for UV filter were prepared via soft solution chemical routes at 40°C. X-ray diffraction revealed that the prepared doped particles had the cubic fluorite structures although peak positions changed depending on the kind and amount of doped metal ion. Doping with 20 mol% Ca 2+ and 20 mol% Zn 2+ resulted in extremely decreasing the particle size (2-4 nm) and the catalytic activity of ceria for oxidation of castor oil. Ca 2+-doped cerium dioxide showed excellent UV absorbing effect and transparency in the visible ray region compared with undoped cerium dioxide.

  4. Glucosamine sulfate

    MedlinePlus

    ... 8 weeks. Glucosamine sulfate can cause some mild side effects including nausea, heartburn, diarrhea, and constipation. Uncommon side effects are drowsiness, skin reactions, and headache. These are ...

  5. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  6. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  7. Weakly ionized cerium plasma radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Koorikawa, Yoshitake; Murakami, Kazunori; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-02-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod cerium target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of cerium ions and electrons, forms by target evaporating. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, weakly ionized cerium plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 500 ns, and the time-integrated x-ray intensity had a value of about 40 μC/kg at 1.0 m from x-ray source with a charging voltage of 55 kV. In the angiography, we employed a film-less computed radiography (CR) system and iodine-based microspheres. Because K-series characteristic x-rays are absorbed easily by the microspheres, high-contrast angiography has been performed.

  8. Demonstration of enhanced K-edge angiography using a cerium target x-ray generator

    SciTech Connect

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Sato, Shigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-11-01

    The cerium target x-ray generator is useful in order to perform enhanced K-edge angiography using a cone beam because K-series characteristic x rays from the cerium target are absorbed effectively by iodine-based contrast mediums. The x-ray generator consists of a main controller, a unit with a Cockcroft-Walton circuit and a fixed anode x-ray tube, and a personal computer. The tube is a glass-enclosed diode with a cerium target and a 0.5-mm-thick beryllium window. The maximum tube voltage and current were 65 kV and 0.4 mA, respectively, and the focal-spot sizes were 1.0x1.3 mm. Cerium K{alpha} lines were left using a barium sulfate filter, and the x-ray intensity was 0.48 {mu}C/kg at 1.0 m from the source with a tube voltage of 60 kV, a current of 0.40 mA, and an exposure time of 1.0 s. Angiography was performed with a computed radiography system using iodine-based microspheres. In coronary angiography of nonliving animals, we observed fine blood vessels of approximately 100 {mu}m with high contrasts.

  9. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  10. Virus removal by biogenic cerium.

    PubMed

    De Gusseme, Bart; Du Laing, Gijs; Hennebel, Tom; Renard, Piet; Chidambaram, Dev; Fitts, Jeffrey P; Bruneel, Els; Van Driessche, Isabel; Verbeken, Kim; Boon, Nico; Verstraete, Willy

    2010-08-15

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal. PMID:20704235

  11. Corrosion Resistance of Electrogalvanized Steel Coated with PEG-Modified Ceria Layers in Chloride and Sulfate Media

    NASA Astrophysics Data System (ADS)

    Hamlaoui, Y.; Boudellioua, H.; Tifouti, L.; Pedraza, F.

    2015-12-01

    A comparative study of the corrosion resistance and corrosion products formed on polyethylene glycol (PEG)-modified and untreated cerium oxide-based coatings onto electrogalvanized steel substrate in chloride and sulfate media is presented. The corrosion monitoring was investigated through electrochemical impedance spectroscopy and d.c. polarization measurements. The corrosion products were analyzed by x-ray diffraction and Raman spectroscopy. In the absence of PEG, the corrosion resistance impaired by the cerium oxide coatings was lost after short immersion times in the chloride medium but not in the sulfate one. The cracks in the cerium oxide coatings were found to be responsible for their fast degradation with the formation of zinc hydroxides. However, the incorporation of PEG to the cerium oxide deposits displayed a perfect stability in both media, due to the disappearance of cracks in the coatings and to the formation of stable corrosion products.

  12. Pharmacological potential of cerium oxidenanoparticles

    NASA Astrophysics Data System (ADS)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  13. Cerium oxide nanoparticles in cancer

    PubMed Central

    Gao, Ying; Chen, Kan; Ma, Jin-lu; Gao, Fei

    2014-01-01

    With the development of many nanomedicines designed for tumor therapy, the diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat cancer. Research data have shown CONPs to be toxic to cancer cells, to inhibit invasion, and to sensitize cancer cells to radiation therapy and chemotherapy. CONPs also display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species generation. Differential cytotoxicity is important for anticancer drugs to distinguish effectively between tumor cells and normal cells. The antioxidant capabilities of CONPs, which enable cancer therapy protection, have also resulted in the exploration of these particles as a potential anticancer treatment. Taken together, CONPs might be a potential nanomedicine for cancer therapy and this review highlights the current research into CONPs as a novel therapeutic for the treatment of cancer. PMID:24920925

  14. The formation of light emitting cerium silicates in cerium-doped silicon oxides

    SciTech Connect

    Li Jing; Zalloum, Othman; Roschuk, Tyler; Heng Chenglin; Wojcik, Jacek; Mascher, Peter

    2009-01-05

    Cerium-doped silicon oxides with cerium concentrations of up to 0.9 at. % were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Bright cerium related photoluminescence, easily seen even under room lighting conditions, was observed from the films and found to be sensitive to film composition and annealing temperature. The film containing 0.9 at. % Ce subjected to anneal in N{sub 2} at 1200 deg. C for 3 h showed the most intense cerium-related emission, easily visible under bright room lighting conditions. This is attributed to the formation of cerium silicate [Ce{sub 2}Si{sub 2}O{sub 7} or Ce{sub 4.667} (SiO{sub 4}){sub 3}O], the presence of which was confirmed by high resolution transmission electron microscopy.

  15. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  16. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  17. Chondroitin sulfate

    MedlinePlus

    Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely ... The following doses have been studied in scientific research: BY MOUTH: ... dose of chondroitin sulfate is 800-2000 mg taken as a single dose or in two ...

  18. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies. PMID:26239283

  19. α-Radioactivity of cerium-142

    USGS Publications Warehouse

    Senftle, F.E.; Stern, T.W.; Alekna, V.P.

    1959-01-01

    JOHNSON AND NIER1 have measured the atomic masses of some of the rare-earth isotopes and have shown that the mass difference cerium-142—(barium-138 + helium-4) is equivalent to 1.68 ± 0.10 MeV. Similar results for the naturally occurring samarium and neodymium isotopes show that the α-active isotope of each element is the one having the largest possible decay energy. Rasmussen and others2 suggest that the two or three neutrons just beyond the closed shell of 82 neutrons have decreased binding energies and hence the α-energy has a maximum about 84 neutrons. Johnson and Nier suggest that the α-decay of cerium-142 may take place with enough energy to be experimentally observable. Porschen and Riezler3 examined a sample of un-enriched cerium ammonium citrate using nuclear track plates sensitive to α-particles. No α-activity was observed after a 30-day exposure of 1.2 mgm. of the cerium salt. In 1957 Riezler and Kauw4 reported an alpha activity for an enriched sample of cerium-142. From their results they calculated a half-life of 5.1 × 1015 years with an uncertainty factor of 2.

  20. Recoverable immobilization of transuranic elements in sulfate ash

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  1. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  2. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  3. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  4. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGESBeta

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  5. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    NASA Astrophysics Data System (ADS)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is <15%. However, the efficiency dramatically increases in the 2nd aeration cell, which is over 90%. Simultaneously, almost all of the hydrochemical properties, including EC, Ca, Mg, As Fe, Mn and other heavy metals, decrease while dissolve oxygen increases close to saturated level and aluminum is almost doubled in the exit of constructed wetland. However, the removal of sulfate and phosphate is very weak. It is worth to note that arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high

  6. A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.

    2015-01-01

    This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.

  7. Texture Control in Cerium Oxide Films (Poster)

    SciTech Connect

    van Hest, M. F. A. M.; Leenheer, A. J.; Perkins, J. D.; Teplin, C. W.; Ginley, D. S.

    2006-05-01

    The conclusions are: (1) Texture control is possible in cerium oxide by epitaxial growth or adjusting the substrate angle; (2) Biaxial (111) texture emerges with inclined angle depositions on glass; and (3) Biaxial (200) texture emerges by epitaxial growth on YSZ.

  8. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    PubMed

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth. PMID:25531028

  9. Study of cerium phase transitions in shock wave experiments

    SciTech Connect

    Zhernokletov, M. V. Kovalev, A. E.; Komissarov, V. V.; Novikov, M. G.; Zocher, M. A. Cherne, F. J.

    2011-02-15

    Cerium has a complex phase diagram that is explained by the presence of structural phase transitions. Experiments to measure the sound velocities in cerium by two methods were carried out to determine the onset of cerium melting on the Hugoniot. In the pressure range 4-37 GPa, the sound velocity in cerium samples was measured by the counter release method using manganin-based piezoresistive gauges. In the pressure range 35-140 GPa, the sound velocity in cerium was measured by the overtaking release method using carbogal and tetrachloromethane indicator liquids. The samples were loaded with plane shock wave generators using powerful explosive charges. The onset of cerium melting on the Hugoniot at a pressure of about 13 GPa has been ascertained from the measured elastic longitudinal and bulk sound velocities.

  10. Gamma-alpha Isostructural Transition in Cerium

    SciTech Connect

    Lanata, Nicola; Yao, Yong-Xin; Wang, Cai-Zhuang; Ho, Kai-Ming; Schmalian, Jorg; Haule, Kristjan; Kotliar, Gabriel

    2013-11-05

    We present zero-temperature first-principles calculations of elemental cerium and we compute its pressure-volume phase diagram within a theoretical framework able to describe simultaneously both the α and the γ phases. A surprising result revealed by our study is the presence of a clear signature of the transition at zero temperature and that this signature can be observed if and only if the spin-orbit coupling is taken into account. Our calculations indicate that the transition line in the pressure-temperature phase diagram of this material has a low-T critical point at negative pressures, placed very close to zero temperature. This suggests that cerium is very close to being “quantum critical,” in agreement with recent experiments.

  11. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  12. Keratan Sulfate Biosynthesis

    PubMed Central

    Funderburgh, James L.

    2010-01-01

    Summary Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis. PMID:12512857

  13. RECOVERY OF Pu FROM CERIUM TRIFLUORIDE BY FLUORINATION

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1959-02-10

    An improved process is prcsented for selectively recovering plutonium from a solution containing fission products comprising precipitating cerium trifluoride in the solution for effccting carrier precipitation of plutonium. The resulting carrier precipitate is dried and subjected to fluorination at about 600 C. The plutonium forms a volatile fiuoridc and is so separated from the nonvolatile cerium fluoride.

  14. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    SciTech Connect

    J Rygel; Y Chen; C Pantano; T Shibata; J Du; L Kokou; R Woodman; J Belcher

    2011-12-31

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP{sub 3}O{sub 9}-AlP{sub 3}O{sub 9} and CeP{sub 3}O{sub 9}-SiP{sub 2}O{sub 7}, was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, {>=}95% of cerium ions are Ce{sup 3+}. This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce{sup 3+}. Near the metaphosphate composition, cerium was found to have an average cerium coordination number of {approx}7.0 and an average cerium-oxygen bond length of 2.41 {angstrom}. The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing {>=}14 and {>=}15 mol% Ce{sub 2}O{sub 3} for the aluminophosphate and silicophosphate series, respectively.

  15. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  16. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  17. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  18. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    SciTech Connect

    Rygel, Jennifer L.; Chen, Yongsheng; Pantano, Carlo G.; Shibata, Tomohiro; Du, Jincheng; Kokou, Leopold; Woodman, Robert; Belcher, James

    2011-09-20

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP{sub 3}O{sub 9}-AlP{sub 3}O{sub 9} and CeP{sub 3}O{sub 9}-SiP{sub 2}O{sub 7}, was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, {>=}95% of cerium ions are Ce{sup 3+}. This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce{sup 3+}. Near the metaphosphate composition, cerium was found to have an average cerium coordination number of {approx}7.0 and an average cerium-oxygen bond length of 2.41 {angstrom}. The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing {>=}14 and {>=}15 mol% Ce{sub 2}O{sub 3} for the aluminophosphate and silicophosphate series, respectively.

  19. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  20. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  1. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  2. Ultrathin, epitaxial cerium dioxide on silicon

    SciTech Connect

    Flege, Jan Ingo Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens; Bertram, Florian; Wollschläger, Joachim

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  3. Cerium and yttrium oxide nanoparticles are neuroprotective

    SciTech Connect

    Schubert, David . E-mail: schubert@salk.edu; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-03-31

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.

  4. SOx removal by calcined MgAlFe hydrotalcite-like materials: effect of the chemical composition and the cerium incorporation method.

    PubMed

    Cantú, Manuel; López-Salinas, Esteban; Valente, Jaime S; Montiel, Ramon

    2005-12-15

    Sulfur oxides are one of the most hazardous atmospheric pollutants since they contribute directly to acid rain formation. Consequently, stringent environmental regulations limit atmospheric SOx emissions, motivating research on efficient ways to reduce them. To supply an alternative to reduce these emissions in fluid catalytic cracking units, this study discloses efficient SOx reducing materials based on calcined MgAlFe hydrotalcite-like compounds (HT's). Thus, HT materials were synthesized by several methods including cerium addition. The adsorption of SO2 was carried out by contacting the calcined solid with a mixture of SO2 (1%) in air at 650 degrees C. It was demonstrated that the isomorphic incorporation of iron increased its reduction capability which was reflected in higher reduction rates and metal sulfate reduction grade at 550 degrees C. Moreover, when cerium was present in the iron-containing materials the saturation rate was improved, because cerium oxide promotes the oxidation of SO2 to SO3. The way cerium is incorporated influences the SO2 adsorption capacity. PMID:16475357

  5. The surface chemistry of cerium oxide

    DOE PAGESBeta

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less

  6. Photodissociation of Cerium Oxide Nanocluster Cations.

    PubMed

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  7. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  8. The surface chemistry of cerium oxide

    SciTech Connect

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  9. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  10. Cerium migration during PEM fuel cell assembly and operation

    DOE PAGESBeta

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-10-02

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  11. Optical glass surfaces polishing by cerium oxide particles

    NASA Astrophysics Data System (ADS)

    Bouzid, D.; Belkhie, N.; Aliouane, T.

    2012-02-01

    The use of powders in metallic oxides as means of grinding and polishing of the optical glass components have seen recently a large application in optical industry. In fact, cerium oxide abrasive is more used in the optical glass polishing. It is used as grains abrasive in suspension or fixed abrasive (pellets); these pellets are manufactured from a mixture made of cerium oxide abrasive and a organic binder. The cerium oxide used in the experiments is made by (Logitech USA) of 99 % purity, the average grain size of the particle is 300 nm, the density being 6,74 g /cm3 and the specific surface is 3,3042 m2/g. In this study, we are interested in the surfaces quality of the optical glass borosilicate crown (BK7) polished by particles in cerium oxide bounded by epoxy. The surfaces of the optical glass treated are characterized by the roughness, the flatness by using the microscope Zygo and the SEM.

  12. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  13. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D.; Alman, David E.

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  14. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  15. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  16. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  17. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  18. Sulfate metabolism in mycobacteria.

    PubMed

    Schelle, Michael W; Bertozzi, Carolyn R

    2006-10-01

    Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy. PMID:16933356

  19. UV laser induced photochromic centers in cerium doped calcium fluoride

    SciTech Connect

    Pogatshnik, G.J.; Hamilton, D.S.

    1987-01-01

    The optical excitation of the lowest 4f to 5d transition in Ce/sup 3 +/:CaF/sub 2/ by the 308 mm output of a Xe-Cl excimer laser results in strong coloration. The centers created were found to be divalent cerium ions at cubic sites. The system exhibits photochromic properties; the crystal can be returned to the original transparent state by illuminating it with light which is absorbed by the divalent cerium ions. The creation process for these photochromic centers involves a resonant two-photon transition from the 4f ground state of the cerium ion to the conduction band of the CaF/sub 2/ host. The lowest 5d level of the cerium ion serves as the real intermediate state for this transition. The photoionized electron can be trapped by another trivalent cerium ion at a site of cubic symmetry. These impurity sites with O/sub h/ symmetry result when the charge compensator associated with the rare earth ion is somewhat removed from the cerium ion site. The charge compensator is needed to maintain charge neutrality in the crystal when a trivalent rare earth is substituted for a Ca ion in the host lattice. The absence of a local charge compensator at a Ce/sup 3 +/ site with O/sub h/ symmetry, provides a net positive Coulombic potential, which aids in the trapping of electrons from the conduction band. The capture of an electron by a cerium ion at cubic site, changes the valence state of the ion to Ce/sup 2 +/ which accounts for the coloration of the crystal after illumination with uv laser light. A model for the production of the photochromic centers is presented.

  20. On the system cerium-platinum-silicon

    SciTech Connect

    Gribanov, Alexander Grytsiv, Andriy; Royanian, Esmaeil; Rogl, Peter; Bauer, Ernst; Giester, Gerald; Seropegin, Yurii

    2008-11-15

    Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction, metallography, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) techniques on about 120 alloys, which were prepared by various methods employing arc-melting under argon or powder reaction sintering. Nineteen ternary compounds were observed. Atom order in the crystal structures of {tau}{sub 18}-Ce{sub 5}(Pt,Si){sub 4} (Pnma; a=0.77223(3) nm, b=1.53279(8) nm c=0.80054(5) nm), {tau}{sub 3}-Ce{sub 2}Pt{sub 7}Si{sub 4} (Pnma; a=1.96335(8) nm, b=0.40361(4) nm, c=1.12240(6) nm) and {tau}{sub 10}-CePtSi{sub 2} (Cmcm; a=0.42943(2) nm, b=1.67357(5) nm, c=0.42372(2) nm) was determined by direct methods from X-ray single-crystal CCD data and found to be isotypic with the Sm{sub 5}Ge{sub 4}-type, the Ce{sub 2}Pt{sub 7}Ge{sub 4}-type and the CeNiSi{sub 2}-type, respectively. Rietveld refinements established the atom arrangement in the structures of Pt{sub 3}Si (Pt{sub 3}Ge-type, C2/m, a=0.7724(2) nm, b=0.7767(2) nm, c=0.5390(2) nm, {beta}=133.86(2){sup o}), {tau}{sub 16}-Ce{sub 3}Pt{sub 5}Si (Ce{sub 3}Pd{sub 5}Si-type, Imma, a=0.74025(8) nm, b=1.2951(2) nm, c=0.7508(1) nm) and {tau}{sub 17}-Ce{sub 3}PtSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm, a=0.41065(5) nm, b=0.43221(5) nm, c=1.8375(3) nm). Phase equilibria in Ce-Pt-Si are characterised by the absence of cerium solubility in platinum silicides. Cerium silicides and cerium platinides, however, dissolve significant amounts of the third component, whereby random substitution of the almost equally sized atom species platinum and silicon is reflected in extended homogeneous regions at constant Ce content such as for {tau}{sub 13}-Ce(Pt{sub x}Si{sub 1-x}){sub 2}, {tau}{sub 6}-Ce{sub 2}Pt{sub 3+x}Si{sub 5-x} or {tau}{sub 7}-CePt{sub 2-x}Si{sub 2+x}. - Graphical abstract: Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal

  1. Potential for recovery of cerium contained in automotive catalytic converters

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  2. Mechanical and Thermophysical Properties of Cerium Monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {< }100{rangle }, {< }110{rangle } and {< }111{rangle } directions. The second- and third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born-Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young's moduli, bulk moduli, Breazeale's non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  3. Characterization of cerium fluoride nanocomposite scintillators

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Brown, Leif O; Couture, Aaron J; Mckigney, Edward A; Muenchausen, Ross E; Del Sesto, Rico E; Gilbertson, Robert D; Mccleskey, T Mark; Reifarth, Rene

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  4. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    PubMed

    Dahle, Jessica T; Arai, Yuji

    2015-02-01

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  5. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    PubMed Central

    Dahle, Jessica T.; Arai, Yuji

    2015-01-01

    Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  6. Dehydrogenation of isopropanol on a cerium-nickel catalyst

    NASA Astrophysics Data System (ADS)

    Platonov, E. A.; Naumkin, A. V.; Maslakov, K. I.; Yagodovskii, V. D.

    2012-12-01

    The effect of a cerium additive on the catalytic activity of a 2 wt % Ni/SiO2 catalyst is studied. It found that under both flow and static conditions the activity of (2 wt % Ni + 0.2 wt % Ce)/SiO2 catalyst is higher than that of the original sample; the increase in activity results from a sharp increase in the number of active sites. A change in the composition of the surface layer of the catalysts is analyzed by X-ray photoelectron spectroscopy. It was found that the fraction of nickel decreases and the fraction of carbon increases in cerium-containing catalyst. An explanation of the change in the elemental composition of the catalytic active sites of a nickel catalyst in the presence of cerium is proposed on the basis of XPS data and previous quantum chemical calculations.

  7. Elaboration and characterization of thin solid films containing cerium

    NASA Astrophysics Data System (ADS)

    Hamdi, S.; Guerfi, S.; Siab, R.

    2009-11-01

    Cerium oxide films are widely studied as a promising alternative to Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electrodeposition of Cerium containing thin films was realised on TA6V substrates from a Ce(NO3)3, 6H2O and mixed water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity appears proportional to the quantity of electricity used, as indicated by the Faraday law. Subsequent thermal treatment lead to a CeO2 coating, expected to provide an increase of TA6V oxidation resistance at high temperatures. The deposits were characterized by differential scanning calorimetry (DSC), optical and scanning electron microscopies.

  8. Hydrazine Sulfate (PDQ)

    MedlinePlus

    ... cells need to grow (see Question 3 ). In randomized clinical trials (a type of research study ), hydrazine ... make tumors shrink or go away. In some randomized trials, however, hydrazine sulfate was reported to be ...

  9. Determination of different valence forms of cerium in glasses using potentiometric titration

    SciTech Connect

    Chesnokova, S.M.; Danilova, I.Yu.; Andreev, P.A.

    1987-09-01

    This paper describes a potentiometric method for the quantitative determination of two cerium oxide forms--cerium dioxide and dicerium trioxide--in glasses where the oxides form a major constituent. The method uses hydroquinone as a reducing agent. Cerium valences are also determined. The sensitivity of the method is tested by analyzing known synthetic mixtures simulating the composition of the glasses. The method has been used to determine the total concentration of cerium and to monitor the redox regime in glass melting furnaces during the melting of cerium-containing glasses.

  10. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  11. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  12. In situ growth of epitaxial cerium tungstate (100) thin films.

    PubMed

    Skála, Tomáš; Tsud, Nataliya; Orti, Miguel Ángel Niño; Menteş, Tevfik Onur; Locatelli, Andrea; Prince, Kevin Charles; Matolín, Vladimír

    2011-04-21

    The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate. PMID:21399780

  13. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  14. Optical and electrical studies of cerium mixed oxides

    SciTech Connect

    Sherly, T. R.; Raveendran, R.

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  15. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  16. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S; Gianotto, Anita K; McIlwain, Michael E; Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  17. Properties of Cerium Containing Lead Free Solder

    NASA Astrophysics Data System (ADS)

    Xie, Huxiao

    With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.

  18. Hydrothermal preparation of fractal dendrites: Cerium carbonate hydroxide and cerium oxide

    SciTech Connect

    Wu Mingzai; Zhang Qihua; Liu Yanmei; Fang Qingqing; Liu Xiansong

    2009-06-03

    The surfactant-assisted hydrothermal route was used to prepare fractal dendrite cerium carbonate hydroxide (CeOHCO{sub 3}) microstructures. After annealing at 600 deg. C for 4 h, the products were transformed to CeO{sub 2}. The crystal structures of the two compounds were determined by X-ray diffraction (XRD). The morphologies and microstructures were characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Room temperature photoluminescence (PL) showed that a strong ultraviolet emission at 336 nm was observed for CeOHCO{sub 3}, and that centered at 415 nm for CeO{sub 2} microstructures. Both of these emission peaks are different from those reported for CeOHCO{sub 3} and CeO{sub 2} with other shapes. In addition, the possible growth mechanism of dendrite CeOHCO{sub 3} microstructures and the role of surfactant polyvinyl pyrrolidone (PVP) were also investigated in this paper.

  19. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  20. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  1. Cerium; Crystal Structure and Position in The Periodic Table

    PubMed Central

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-01-01

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized ⇌ delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table. PMID:25227991

  2. (Hydro)peroxide ligands on colloidal cerium oxide nanoparticles.

    PubMed

    Damatov, Delina; Mayer, James M

    2016-08-11

    Anhydrous H2O2 reacts with organic colloidal solutions of ceria nanoparticles to form a stable surface peroxo/hydroperoxo species with the release of oleate capping ligands into solution. A new optical spectroscopic signature was identified for cerium-peroxo/hydroperoxo species in solution and correlated with solid-state IR spectroscopy and chemical reactivity. PMID:27468991

  3. Ce-Cu-Si (Cerium-Copper-Silicon)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C2 'Non-Ferrous Metal Systems. Part 2: Selected Copper Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Cerium-Copper-Silicon.

  4. Sulfate attack expansion mechanisms

    SciTech Connect

    Müllauer, Wolfram Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  5. Cerium as a surrogate in the plutonium immobilization waste form

    NASA Astrophysics Data System (ADS)

    Marra, James Christopher

    In the aftermath of the Cold War, approximately 50 tonnes (MT) of weapons useable plutonium (Pu) has been identified as excess. The U.S. Department of Energy (DOE) has decided that at least a portion of this material will be immobilized in a titanate-based ceramic for final disposal in a geologic repository. The baseline formulation was designed to produce a ceramic consisting primarily of a highly substituted pyrochlore with minor amounts of brannerite and hafnia-substituted rutile. Since development studies with actual actinide materials is difficult, surrogates have been used to facilitate testing. Cerium has routinely been used as an actinide surrogate in actinide chemistry and processing studies. Although cerium appeared as an adequate physical surrogate for powder handling and general processing studies, cerium was found to act significantly different from a chemical perspective in the Pu ceramic form. The reduction of cerium at elevated temperatures caused different reaction paths toward densification of the respective forms resulting in different phase assemblages and microstructural features. Single-phase fabrication studies and cerium oxidation state analyses were performed to further quantify these behavioral differences. These studies indicated that the major phases in the final phase assemblages contained point defects likely leading to their stability. Additionally, thermochemical arguments predicted that the predominant pyrochlore phase in the ceramic was metastable. The apparent metastabilty associated with primary phase in the Pu ceramic form indicated that additional studies must be performed to evaluate the thermodynamic properties of these compounds. Moreover, the metastability of this predominant phase must be considered in assessment of long-term behavior (e.g. radiation stability) of this ceramic.

  6. [Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate].

    PubMed

    Hirakawa, K

    1983-02-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because of abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972-73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. PMID:6867381

  7. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  8. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  9. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  10. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  11. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    NASA Astrophysics Data System (ADS)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  12. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  13. Isomorphic phase transformation in shocked cerium using molecular dynamics

    SciTech Connect

    Dupont, Virginie; Germann, Timothy C; Chen, Shao - Ping

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  14. Antioxidant activity of levan coated cerium oxide nanoparticles.

    PubMed

    Kim, Sun-Jung; Chung, Bong Hyun

    2016-10-01

    Levan coated cerium oxide nanoparticles (LCNPs) with the enhanced antioxidant activity were successfully synthesized and characterized. Levan and their derivatives are attractive for biomedical applications attributable to their antioxidant, anti-inflammation and anti-tumor properties. LCNPs were synthesized using the one-pot and green synthesis system with levan. For production of nanoparticles, levan plays a role as a stabilizing and reducing agent. Fourier transform infrared spectroscopy (FT-IR) analysis showed that LCNPs successfully synthesized. The morphology and size of nanoparticles were confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). LCNPs have good water solubility and stability. The conjugation of levan with cerium oxide nanoparticles improved antioxidant activity. Moreover the level of ROS was reduced after treatment of LCNPs to H2O2 stimulated NIH3T3 cells. These results demonstrate that the LCNPs are useful for applying of treatment of ROS induced diseases. PMID:27312651

  15. Shock wave experiments to examine the multiphase properties of cerium

    SciTech Connect

    Jensen, Brian James

    2009-01-01

    There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake method to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.

  16. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    PubMed

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating. PMID:18047150

  17. Engineered cerium oxide nanoparticles: Effects on bacterial growth and viability

    SciTech Connect

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Allison, Martin R; Brown, Steven D; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear. Further, standardized methods for assessing such interactions are lacking. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. In this study the effects of cerium oxide nanoparticles on the growth and viability of Gram-negative Escherichia coli and Shewanella oneidensis, a metal-reducing bacteria, and Gram-positive Bacillus subtilis were examined relative to particle size, growth media, pH, and dosage. A hydrothermal based synthesis procedure was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined by minimum inhibitory concentration, colony forming units, disc diffusion tests and Live/Dead assays. In growth inhibition experiments involving E. coli and B. subtilis, a clear strain and size-dependent inhibition was observed. S. oneidensis appeared to be unaffected by the cerium oxide nanoparticles. Transmission electron microscopy along with microarray-based transcriptional profiling have been used to understand the response mechanism of the bacteria. The use of multiple analytical approaches adds confidence to toxicity assessments while the use of different bacterial systems highlights the potential wide-ranging effects of

  18. Optical Response of Shocked Cerium-Doped Lutetium Oxyorthosilicate

    SciTech Connect

    G. D. Stevens

    2003-03-01

    Shock experiments were performed in order to characterize the triboluminescent signature of cerium-doped lutetium oxyorthosilicate (LSO:Ce). This material shows prompt, nano-second timescale light emission when driven by explosive detonation. When properly applied to a surface, it may be used as a shock arrival sensor, and also for imaging the propagation of a shock front. Triboluminescent rise times, spectral content, and spatial resolution measurements are presented.

  19. Monomers, Dimers, and Helices: Complexities of Cerium and Plutonium Phenanthrolinecarboxylates.

    PubMed

    Cary, Samantha K; Ferrier, Maryline G; Baumbach, Ryan E; Silver, Mark A; Lezama Pacheco, Juan; Kozimor, Stosh A; La Pierre, Henry S; Stein, Benjamin W; Arico, Alexandra A; Gray, Danielle L; Albrecht-Schmitt, Thomas E

    2016-05-01

    The reaction of Ce(III) or Pu(III) with 1,10-phenanthroline-2,9-dicarboxylic acid (PDAH2) results in the formation of new f-element coordination complexes. In the case of cerium, Ce(PDA)(H2O)2Cl·H2O (1) or [Ce(PDAH)(PDA)]2[Ce(PDAH)(PDA)] (2) was isolated depending on the Ce/ligand ratio in the reaction. The structure of 2 is composed of two distinct substructures that are constructed from the same monomer. This monomer is composed of a Ce(III) cation bound by one PDA(2-) dianionic ligand and one PDAH(-) monoanionic ligand, both of which are tetradentate. Bridging by the carboxylate moieties leads to either [Ce(PDAH)(PDA)]2 dimers or [Ce(PDAH)(PDA)]1∞ helical chains. For plutonium, Pu(PDA)2 (3) was the only product isolated regardless of the Pu/ligand ratio employed in the reaction. During the reaction of plutonium with PDAH2, Pu(III) is oxidized to Pu(IV), generating 3. This assignment is consistent with structural metrics and the optical absorption spectrum. Ambiguity in the assignment of the oxidation state of cerium in 1 and 2 from UV-vis-near-IR spectra invoked the use of Ce L3,2-edge X-ray absorption near-edge spectroscopy, magnetic susceptibility, and heat capacity measurements. These experiments support the assignment of Ce(III) in both compounds. The bond distances and coordination numbers are also consistent with these assignments. 3 contains 8-coordinate Pu(IV), whereas the cerium centers in 1 and 2 are 9- and/or 10-coordinate, which correlates with the increased size of Ce(III) versus Pu(IV). Taken together, these data provide an example of a system where the differences in the redox behavior between these f elements creates more complex chemistry with cerium than with plutonium. PMID:27070401

  20. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    SciTech Connect

    Khan, Shadab Ali; Ahmad, Absar

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  1. Jet formation in cerium metal to examine material strength

    SciTech Connect

    Jensen, B. J. Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  2. Enhancing cerium and plutonium solubility by reduction in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Cachia, J.-N.; Deschanels, X.; Den Auwer, C.; Pinet, O.; Phalippou, J.; Hennig, C.; Scheinost, A.

    2006-06-01

    High-level radioactive wastes produced by spent fuel reprocessing containing fission and activation products as well as actinides are incorporated in a borosilicate glass. To ensure optimum radionuclide containment, the resulting glass must be as homogeneous as possible. Microscopic heterogeneity can arise from various processes including the excess loading of an element above its solubility limit. The current actinide loading limit is 0.4 wt%. Work is in progress to assess the actinide solubility in these glasses, especially for plutonium. Initially the actinides were simulated by lanthanides and hafnium. The results show that trivalent elements (La, Gd) exhibit greater solubility than tetravalent elements (Pu, Hf). Cerium is an interesting element because its oxidation state varies from IV to III depending on the process conditions, such as the temperature and redox potential of the melt. In order to quantify the solubility increase, cerium-doped glass samples were melted under reducing conditions by adding a reducing agent. The solubility observed at 1473 K increased significantly from 0.95 to 13.00 wt%. Several reducing compounds have been tested. This paper deals with this study and the application to reduce Pu(IV) to Pu(III). The reduction state was characterized by X-ray absorption spectroscopy (XANES) for plutonium and by chemical analysis for cerium. The material homogeneity was verified by optical and scanning electron microscopy. Preliminary findings concerning the reduction of Pu-doped glasses fabricated in hot cells are also discussed.

  3. Jet formation in cerium metal to examine material strength

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Cherne, F. J.; Prime, M. B.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.

    2015-11-01

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2-3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  4. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  5. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    SciTech Connect

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  6. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems.

    PubMed

    Sugumaran, G; Silbert, J E

    1988-04-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent. These results indicate that the intact microsomal system was not accessible to the larger

  7. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    PubMed

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity. PMID:26706928

  8. Sulfate scale dissolution

    SciTech Connect

    Morris, R.L.; Paul, J.M.

    1992-01-28

    This patent describes a method for removing barium sulfate scale. It comprises contacting the scale with an aqueous solution having a pH of about 8 to about 14 and consisting essentially of a chelating agent comprising a polyaminopolycarboxylic acid or salt of such an acid in a concentration of 0.1 to 1.0 M, and anions of a monocarboxylic acid selected form mercaptoacetic acid, hydroxyacetic acid, aminoacetic acid, or salicyclic acid in a concentration of 0.1 to 1.0 M and which is soluble in the solution under the selected pH conditions, to dissolve the scale.

  9. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  10. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    SciTech Connect

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  11. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  12. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants.

    PubMed

    Barrios, Ana Cecilia; Rico, Cyren M; Trujillo-Reyes, Jesica; Medina-Velo, Illya A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO2, CA+nCeO2) bulk cerium oxide (bCeO2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500mg/kg, both the uncoated and CA+nCeO2 increased shoot length by ~9 and ~13%, respectively, while bCeO2 and CeAc decreased shoot length by ~48 and ~26%, respectively, compared with MPW (p≤0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA+nCeO2 at 250mg/kg, but reduced by bCeO2 at 62.5mg/kg, compared with MPW. At 250 and 500mg/kg, nCeO2 increased Ce in roots by 10 and 7 times, compared to CA+nCeO2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO2 nor CA+nCeO2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO2 at 62.5mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO2 on tomato plants. PMID:26672385

  13. Luminescence of cerium-doped strontium barium niobate

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Kyun; Son, Chang-Won; Chung, Sun-Ju; Tak, Sung-Jun; Lim, Ki-Soo

    2000-10-01

    The broad photoluminescent emission from Ce:Sr0.6Ba0.4Nb2O6 has been observed at 550 nm with excitation in the blue. Photoluminescent excitation spectrum has revealed a trivalent cerium absorption band that is assumed to be a 4f-5d transition. Temperature dependence of the photoluminescence spectra and its lifetimes in 15 - 365 K showed the existence of two different trap centers in the material. We have also investigated the photoluminescence during two-wave mixing experiment to study trap centers.

  14. Identification of the Charge Carriers in Cerium Phosphate Ceramics

    SciTech Connect

    Ray, Hannah L.; Jonghe, Lutgard C. De

    2010-06-02

    The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.

  15. Study of Phase Transitions in Cerium by Pressure Gauge PVDF

    NASA Astrophysics Data System (ADS)

    Zhernokletov, Mikhail; Simakov, Vladimir; Borissenok, Valery; Bragunets, Viacheslav; Volgin, Vasily; Cherne, Frank; Zocher, Marvin

    2007-06-01

    This paper examines phase transitions in cerium during shock compression using PVDF gauges. A two-wave structure was observed with loading pressures of 4GPa - 12GPa. The wave structure consists of leading isentropic compression wave followed by a shock wave. This wave structure was formed as a result of the isomorphic (γ-α) phase transition. The wave profiles exhibited no peculiarities resulting from the polymorphic transition (α-ɛ) as predicted by Elkin et. al [Proceedings of the International Conference VII Khariton Readings, Sarov 2005, p. 116].

  16. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. PMID:27343939

  17. Influence of cerium additions on high-temperature-impact ductility and fracture behavior of iridium alloys

    SciTech Connect

    Gubbi, A.N.; Zee, R.H.; George, E.P.; Ohriner, E.K.

    1997-10-01

    Radioisotope thermoelectric generators (RTGs), used for supplying electric power to interplanetary space missions, utilize the energy liberated due to decay of the radioisotope fuel. The material used for cladding the fuel pellets is an iridium-based alloy developed at Oak Ridge National Laboratory, which contains nominally 0.3 wt pct W, 60 wppm Th, and 50 wppm Al, generally known as DOP-26. High-temperature tensile impact testing was carried out on Ir + 0.3 wt pct W alloys doped with cerium and thorium individually, and with cerium and thorium together. Impact ductility was evaluated as a function of grain size and test temperature. Cerium by itself was not as effective as thorium in improving the grain boundary cohesion, even though it segregated more strongly than thorium to the grain boundaries. This lower grain boundary cohesion was responsible for lower impact ductility and higher brittle-to-ductile transition temperature of cerium-doped alloys compared to those of the thorium- or thorium plus cerium-doped alloys. Reduction in thorium content by a factor of 5 (from 50 to 10 appm) in the bulk did not result in any significant reduction in high-temperature impact ductility or an increase in the brittle-to-ductile transition temperature as long as sufficient cerium was added to provide grain refinement. Grain boundary strengths of thorium- and thorium plus cerium-doped alloys were almost identical.

  18. Adenocarcinoma cells isolated from patients in the presence of cerium and transferrin in vitro

    PubMed Central

    Zende-Del, A; Gholami, MR; Abdollahpour, F; Ahmadvand, H

    2015-01-01

    Aim: Cerium as a trace element in the periodic table is a member of the lanthanide group. Cerium ionic radius and its binding properties are similar to ferric ions, which may be bound to transferrin. So it can be considered as a competitive element to iron and can interfere with iron absorption. The aim of this study was to investigate the inhibitory effect of Cerium in presence of transferrin on gastric adenocarcinoma cells in vitro. Methods: The adenocarcinoma cells were obtained from patients after a pathological confirmation, then they were cultured in DMEM environment and cytotoxic effect of different concentrations of cerium were measured (0.1, 1, 10 and 100 µM) in the presence and absence of transferrin, on periods 24 and 48 hours by MTT and LDH cytotoxic assay. Results: The results of MTT and LDH measurements showed that Cerium itself has a cytotoxic effect on cancer cells isolated from the patient as well as it increases significantly in the presence of transferrin carrying a mortality rate of cancer cells (P <.05). Conclusion: Cerium is competitive element in the mechanism of iron absorption and can interfere and inhibit the growth of adenocarcinoma cancer cells; also, the use of Cerium and transferrin simultaneously may cause a greater inhibitory effect. PMID:26664465

  19. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    SciTech Connect

    Menaka; Patra, Rajkumar; Ghosh, Santanu; Ganguli, Ashok K.

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  20. An environmentally compliant cerium-based conversion coating for aluminum protection

    NASA Astrophysics Data System (ADS)

    Lin, Xuan

    Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.

  1. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration.

    PubMed

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N

    2015-08-01

    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer. PMID:26165149

  2. Incorporation of Cerium and Neodymium in Uranyl Phases

    SciTech Connect

    Kim, C W.; Wronkiewicz, David J.; Finch, R J.; Buck, Edgar C.

    2006-07-15

    The potential for incorporating rare earth elements (REE) into/onto crystalline compounds has been evaluated by precipitating uranyl phases from aqueous solutions containing either cerium or neodymium. These REEs serve both as monitors for evaluating the potential repository behavior of REE radionuclides, and as surrogate elements for actinides (e.g., Ce4 and Nd3 for Pu4 and Am3, respectively). The present experiments examined the behavior of REE in the presence of ianthinite Formula Not Shown, becquerelite (Ca(UO2)6O4(OH)6(H2O)8), and other uranyl hydroxide compounds commonly noted as alteration products during the corrosion of UO2, spent nuclear fuel, and naturally occurring uraninite. The results of these experiments demonstrate that significant quantities of both cerium (Kd=1020) and neodymium (Kd=840) are incorporated within the uranium alteration phases and suggest that ionic substitution and/or adsorption to the uranyl phases can play a key role in the limiting the mobility of REE (and by analogy, actinide elements) in a nuclear waste repository.

  3. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  4. Liberation of sulfate from sulfate esters by soils.

    PubMed Central

    Houghton, C; Rose, R A

    1976-01-01

    When incubated with acid, alkaline, and neutral soils, a variety of synthetic sulfate esters representing the various classes of these compounds was hydrolyzed by enzymes, probably of microbial origin. The appearance of sulfate in the soil water occurred immediately after introduction into the soils with some esters, whereas with others it occurred only after lag periods. Heat treatment destroyed the hydrolytic acitivity in the soils. The ester sulfate groups present in humic acid extracted from the soil appeared to be resistant to hydrolysis by a variety of sulfohydrolases extracted from bacteria and other organisms. Images PMID:938044

  5. Synthesis of cerium rich intermetallics using molten metal eutectics

    NASA Astrophysics Data System (ADS)

    Tucker, Patricia Christine

    Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4. Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K. Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was

  6. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    PubMed

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected. PMID:12552889

  7. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect

    2012-01-01

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  8. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    NASA Astrophysics Data System (ADS)

    Raj, S. Gokul; Mathivanan, V.; Kumar, G. Ramesh; Yathavan, S.; Mohan, R.

    2016-05-01

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr0.6B0.4Nb2O6) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce+ ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  9. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  10. Correction: Single-molecule magnet behaviour in polynuclear assembly of trivalent cerium ions with polyoxomolybdates.

    PubMed

    Khélifa, A Ben; Belkhiria, M Salah; Huang, G; Freslon, S; Guillou, O; Bernot, K

    2016-06-01

    Correction for 'Single-molecule magnet behaviour in polynuclear assembly of trivalent cerium ions with polyoxomolybdates' by A. Ben Khélifa, et al., Dalton Trans., 2015, 44, 16458-16464. PMID:27161299

  11. Recent advances (2010-2015) in studies of cerium oxide nanoparticles' health effects.

    PubMed

    Li, Yan; Li, Peng; Yu, Hua; Bian, Ying

    2016-06-01

    Cerium oxide nanoparticles, widespread applied in our life, have attracted much concern for their human health effects. However, most of the works addressing cerium oxide nanoparticles toxicity have only used in vitro models or in vivo intratracheal instillation methods. The toxicity studies have varied results and not all are conclusive. The information about risk assessments derived from epidemiology studies is severely lacking. The knowledge of occupational safety and health (OSH) for exposed workers is very little. Thus this review focuses on recent advances in studies of toxicokinetics, antioxidant activity and toxicity. Additionally, aim to extend previous health effects assessments of cerium oxide nanoparticles, we summarize the epidemiology studies of engineered cerium oxide nanoparticles used as automotive diesel fuel additive, aerosol particulate matter in air pollution, other industrial ultrafine and nanoparticles (e.g., fumes particles generated in welding and flame cutting processes). PMID:27088851

  12. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  13. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  14. Sulfated compounds from marine organisms.

    PubMed

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  15. Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template.

    PubMed

    Yamaguchi, Ippei; Watanabe, Mitsuru; Shinagawa, Tsutomu; Chigane, Masaya; Inaba, Minoru; Tasaka, Akimasa; Izaki, Masanobu

    2009-05-01

    Core/shell nanostructures of polystyrene (PS)/CeO2 have been prepared on conductive glass substrates by using a novel electrochemical route consisting of (i) the electrophoretic deposition of a PS sphere monolayer on the substrate and (ii) the following potentiostatic electrodeposition of CeO2 on the PS sphere template in Ce(NO3)3 aqueous solutions. The structural morphologies of the deposit changed drastically depending on the Ce(NO3)3 concentration; i.e., spherical and needlelike shells were deposited. The deposit was formed only on the PS sphere surface because of an interaction between cationic cerium species and a sulfate group that was immobilized on the PS sphere surface. The spherical shell layer was assigned as CeO2, and the needlelike shells were composed of Ce(OH)3 needles formed on the CeO2 layer surface, indicating that the deposit species changes from CeO2 to Ce(OH)3 during electrodeposition only in a 1 mM Ce3+ solution. Deposition of Ce(OH)3 would begin when electrogenerated hydrogen peroxide was consumed by decomposition under reductive conditions and could no longer oxidize Ce3+ ions. The corresponding CeO2 hollow shells were obtained by thermal elimination of the PS sphere core and transformation of Ce(OH)3 into CeO2 while keeping their original shapes. PMID:20355893

  16. Construction of heterocyclic structures by trivalent cerium salts promoted bond forming reactions.

    PubMed

    Properzi, Roberta; Marcantoni, Enrico

    2014-02-01

    Cerium(III) salts have recently gained increasing attention in the synthetic community, owing to the powerful features that are reviewed in detail in this tutorial. This review reports significant examples of cerium(III) promoted synthesis of heterocyclic structures, initially dealing with the synthesis of five- and six-membered ring nitrogen containing heterocycles, then describing the preparation of their oxygenated analogues and finally discussing the achievement of seven-membered rings and mixed heterocyclic motifs. PMID:24217370

  17. Interaction of Perchloroethylene with Cerium Oxide in Three-Way Catalysts

    PubMed Central

    Rupp, Erik C.; Betterton, Eric A.; Arnold, Robert G.

    2010-01-01

    The role of cerium oxide on direct oxidation of perchloroethylene (PCE) by a three-way catalyst was explored. In the absence of an external oxidizing agent, PCE was oxidized over an alumina supported Pt/Rh three-way catalyst. We hypothesize that the chlorine atoms in the adsorbed PCE interact with oxygen in CeO2, reducing the cerium to create CeCl3. PMID:21218178

  18. Deposition and investigation of lanthanum cerium hexaboride thin films

    NASA Astrophysics Data System (ADS)

    Kuzanyan, A. S.; Harutyunyan, S. R.; Vardanyan, V. O.; Badalyan, G. R.; Petrosyan, V. A.; Kuzanyan, V. S.; Petrosyan, S. I.; Karapetyan, V. E.; Wood, K. S.; Wu, H.-D.; Gulian, A. M.

    2006-09-01

    Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 °C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ( T) and S( T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed.

  19. A tetravalent cerium complex containing a Ce=O bond.

    PubMed

    So, Yat-Ming; Wang, Guo-Cang; Li, Yang; Sung, Herman H-Y; Williams, Ian D; Lin, Zhenyang; Leung, Wa-Hung

    2014-02-01

    Whereas terminal oxo complexes of transition and actinide elements are well documented, analogous lanthanide complexes have not been reported to date. Herein, we report the synthesis and structure of a cerium(IV) oxo complex, [CeO(LOEt )2 (H2 O)]⋅MeC(O)NH2 (1; LOEt (-) =[Co(η(5) -C5 H5 ){P(O)(OEt)2 }3 ](-) ), featuring a short CeO bond (1.857(3) Å). DFT calculations indicate that the hydrogen bond to cocrystallized acetamide plays a key role in stabilizing the CeO moiety of 1 in the solid state. Complex 1 exhibits oxidizing and nucleophilic reactivity. PMID:24403106

  20. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  1. Interplay of spin-orbit and entropic effects in cerium

    SciTech Connect

    Lanata, Nicola; Yao, Yong-Xin; Wang, Cai-Zhuang; Ho, Kai-Ming; Kotliar, Gabriel

    2014-10-01

    We perform first-principles calculations of elemental cerium and compute its pressure-temperature phase diagram, finding good quantitative agreement with the experiments. Our calculations indicate that, while a signature of the volume-collapse transition appears in the free energy already at low temperatures, at higher temperatures this signature is enhanced because of the entropic effects, and originates an actual thermodynamical instability. Furthermore, we find that the catalyst determining this feature is—in all temperature regimes—a pressure-induced effective reduction of the f-level degeneracy due to the spin-orbit coupling. Our analysis suggests also that the lattice vibrations might be crucial in order to capture the behavior of the pressure-temperature transition line at large temperatures.

  2. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    SciTech Connect

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  3. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  4. Static and dynamic high pressure experiments on cerium

    SciTech Connect

    Jensen, Brian J; Velisavljevic, Nenad; Cherne, Frank J; Stevens, Gerald; Tschauner, Oliver

    2011-01-25

    There is a scientific need to obtain dynamic data to develop and validate multi phase equation-of-state (EOS) models for metals. Experiments are needed to examine the relevant pure phases, to locate phase boundaries and the associated transition kinetics, and other material properties such as strength. Cerium is an ideal material for such work because it exhibits a complex multiphase diagram at relatively moderate pressures readily accessible using standard shock wave methods. In the current work, shock wave (dynamic) and diamond anvil cell (static) experiments were performed to examine the high pressure, low temperature region of the phase diagram to obtain EOS data and to search for the {alpha}-{var_epsilon} boundary. Past work examining the shock-melt transition and the low-pressure {gamma}-{alpha} transition will be presented in brief followed by details of recent results obtained from DAC and double-shock experiments.

  5. Theoretical studies of the high pressure phases in cerium

    SciTech Connect

    Wills, J.M.; Eriksson, O.; Boring, A.M. )

    1991-10-14

    We present full potential linear-muffin-tin-orbital calculations based on the local-density approximation, which reproduce the {ital T}=0 phase diagram of cerium (Ce), including the volumes and transition pressures for both the {alpha}{r arrow}{alpha}{prime}, and the {alpha}{prime}{r arrow}bct transitions. The {alpha}{r arrow}{alpha}{prime} transition is largely determined by a balance of two competing terms: a Madelung term and a 4{ital f} one-electron term. The {alpha}{prime}{r arrow}bct transition is driven by both 4{ital f} and 5{ital d} partial-wave contributions. This is the first successful, {ital ab} {ital initio} calculation of a crystallographic ({ital T}=0) phase diagram of an {ital f}-electron system.

  6. An Alkali Metal-Capped Cerium(IV) Imido Complex.

    PubMed

    Solola, Lukman A; Zabula, Alexander V; Dorfner, Walter L; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-06-01

    Structurally authenticated, terminal lanthanide-ligand multiple bonds are rare and expected to be highly reactive. Even capped with an alkali metal cation, poor orbital energy matching and overlap of metal and ligand valence orbitals should result in strong charge polarization within such bonds. We expand on a new strategy for isolating terminal lanthanide-ligand multiple bonds using cerium(IV) complexes. In the current case, our tailored tris(hydroxylaminato) ligand framework, TriNOx(3-), provides steric protection against ligand scrambling and metal complex oligomerization and electronic protection against reduction. This strategy culminates in isolation of the first formal Ce═N bonded moiety in the complex [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)], whose Ce═N bond is the shortest known at 2.119(3) Å. PMID:27163651

  7. EPDM composite membranes modified with cerium doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  8. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    PubMed Central

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects. PMID:22613087

  9. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    SciTech Connect

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-15

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 deg. C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 deg. C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles. - Graphical abstract: The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated using small angle X-ray scattering, dynamic light scattering and high-resolution transmission electron microscopy. Catalytic activity of ceria nanoparticles was tested in soot combustion reaction indicating size-dependent reactivity.

  10. Cerium(IV) Hexanuclear Clusters from Cerium(III) Precursors: Molecular Models for Oxidative Growth of Ceria Nanoparticles.

    PubMed

    Mathey, Laurent; Paul, Mitali; Copéret, Christophe; Tsurugi, Hayato; Mashima, Kazushi

    2015-09-14

    Reactions of cerium(III) nitrate, Ce(NO3 )3 ⋅6 H2 O, with different carboxylic acids, such as pivalic acid, benzoic acid, and 4-methoxybenzoic acid, in the presence of a tridentate N,N,N-donor ligand, diethylenetriamine (L(1) ), under aerobic conditions yielded the corresponding cerium hexamers Ce6 O8 (O2 CtBu)8 (L(1) )4 (1), Ce6 O8 (O2 CC6 H5 )8 (L(1) )4 (2), and Ce6 O8 (O2 CC6 H4 -4-OCH3 )8 (L(1) )4 (3). Hexamers 1, 2, and 3 contain the same octahedral Ce(IV) 6 O8 core, in which all interstitial oxygen atoms are connected by μ3 -oxo bridging ligands. In contrast, treatment of the Ce(IV) precursor (NH4 )2 Ce(NO3 )6 (CAN) with pivalic acid and the ligand L(1) under the same conditions afforded Ce6 O4 (OH)4 (O2 CtBu)12 (L(1) )2 (4), exhibiting a deformed octahedral Ce(IV) 6 O4 (OH)4 core containing μ3 -oxo and μ3 -hydroxo moieties in defined positions. In contrast to the formation of 1-3, the use of N-methyldiethanolamine (L) in the reaction with Ce(NO3 )3 ⋅6 H2 O and pivalic acid afforded a previously reported Ce(III) dinuclear cluster, Ce2 (O2 CtBu)6 L2 , even in the presence of dioxygen. ESI-MS analysis of the reaction mixture clearly indicated the importance of the ligand L(1) in promoting oxidation of the Ce(III) aggregates, [Cen (O2 CtBu)3n (L(1) )2 ], which is necessary for the formation of Ce(IV) hexamers. PMID:26236034

  11. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  12. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  13. A procoagulant chemically sulfated mannan.

    PubMed

    Gracher, Ana Helena P; Santana, Aline G; Cipriani, Thales R; Iacomini, Marcello

    2016-01-20

    Disorders of hemostasis can produce innumerous problems. Polysaccharides have been studied both as anticoagulant and as procoagulant agents. A mannan with a main chain of α-(1 → 6)-linked-Manp units, branched at O-2 mainly by side-chains of 2-O-linked-α-Manp units was chemically sulfated, structurally characterized by NMR and GC-MS (methylation, desulfation and methylation with trideuterated iodomethane), and tested in vitro and in vivo on blood coagulation models. Chemical analyses indicate a high degree of substitution on the sulfated polysaccharide. This polymer acted as a procoagulant agent, increasing blood coagulation in normal and hemophilic plasma, activated platelet aggregation and also decreased ex vivo aPTT. Polymers such as the sulfated mannan could be a helpful source of hemostatic agents to prevent hemorrhagic states. PMID:26572344

  14. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  15. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  16. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  17. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  18. Thermochemical Modeling of the Uranium-Cerium-Oxygen System

    SciTech Connect

    Voit, Stewart L; Besmann, Theodore M

    2010-10-01

    with actinide materials, fundamental studies with uranium are performed using surrogate materials as stand-ins for transuranic elements. In most cases, cerium can be used as a suitable substitute for plutonium when performing O:M and sintering kinetics studies because of identical valence states. Differences exist between the magnitude of reported thermodynamic data of (U,Pu)O{sub x} and (U,Ce)O{sub x}, however the change in oxygen potential versus O:M follows the same trend for both systems. Cerium is also a major fission product element, and thus understanding its behavior in fuel is an important issue as well.

  19. Coupled redox transformations of catechol and cerium at the surface of a cerium(III) phosphate mineral

    NASA Astrophysics Data System (ADS)

    Cervini-Silva, Javiera; Gilbert, Benjamin; Fakra, Sirine; Friedlich, Stephan; Banfield, Jillian

    2008-05-01

    Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic-anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π∗ resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ∗ region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent

  20. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    NASA Astrophysics Data System (ADS)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  1. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  2. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-01

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 °C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 °C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles.

  3. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    PubMed

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns. PMID:27231888

  4. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  5. Status of copper sulfate - 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish – February 2004. This includes human intestinal microflora issues,...

  6. Microbial sulfation of 8-prenylnaringenin.

    PubMed

    Bartmańska, Agnieszka; Tronina, Tomasz; Huszcza, Ewa

    2013-01-01

    Out of 24 fungal strains tested for their ability to transform 8-prenylnaringenin, Syncephalastrum racemosum was found to convert this phytoestrogen to a sulfate derivative. The conjugation with sulfuric acid observed in this study is paralleled in mammals indicating that microbes can be used to mimic mammalian metabolism. PMID:23923620

  7. Status of Copper Sulfate - 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish - February 2004. This includes human intestinal microflora issues,...

  8. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    PubMed Central

    Nelson, Bryant C.; Johnson, Monique E.; Walker, Marlon L.; Riley, Kathryn R.; Sims, Christopher M.

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  9. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine.

    PubMed

    Nelson, Bryant C; Johnson, Monique E; Walker, Marlon L; Riley, Kathryn R; Sims, Christopher M

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  10. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles

    PubMed Central

    Walkey, Carl; Das, Soumen; Seal, Sudipta; Erlichman, Joseph; Heckman, Karin; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William T.

    2014-01-01

    Cerium oxide nanoparticles (Nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of Nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of Nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of Nanoceria in animal studies? 2) What are the considerations to develop Nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials? PMID:26207185

  11. Electrosynthesis of cerium hexaboride by the molten salt technique

    NASA Astrophysics Data System (ADS)

    Amalajyothi, K.; Berchmans, L. John; Angappan, S.; Visuvasam, A.

    2008-07-01

    Molten salts are well thought-out as the incredibly promising medium for chemical and electrochemical synthesis of compounds. Hence a stab has been made on the electrochemical synthesis of CeB 6 using molten salt technique. The electrolyte consisted of lithium fluoride (LiF), boron trioxide (B 2O 3) and cerium chloride (CeCl 3). Electrochemical experiments were carried out in an inconal reactor in an argon atmosphere. Electrolysis was executed in a high-density graphite crucible, which doles out as the electrolyte clutching vessel as well as the anode. The cathode was made up of a molybdenum rod. The electrolysis was carried out at 900 °C at different current densities intended for the synthesis of CeB 6 crystals. After the electrolysis, the cathode product was removed and cleaned using dilute HCl solution. The crystals were scrutinized by X-ray diffraction (XRD) to make out the phase and the purity. It has been observed that CeB 6 crystals are synthesized at all current densities and the product has traces of impurities.

  12. Electron inelastic mean free paths in cerium dioxide

    NASA Astrophysics Data System (ADS)

    Krawczyk, M.; Holdynski, M.; Lisowski, W.; Sobczak, J. W.; Jablonski, A.

    2015-06-01

    Electron transport properties in CeO2 powder samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the CeO2 sample surface was pre-sputtered by 0.5 keV Ar ion etching. As a result, an altered layer with thickness of 1.3 nm was created. X-ray photoelectron spectroscopy (XPS) analysis revealed two chemical states of cerium Ce4+ (68%) and Ce3+ (32%) at the surface region of CeO2 sample after such treatment. The inelastic mean free path (IMFP), characterizing electron transport, was evaluated as a function of energy within the 0.5-2 keV range. Experimental IMFPs were corrected for surface excitations and approximated by the simple function λ = kEp, where λ was the IMFP, E denoted the energy (in eV), and k = 0.207 and p = 0.6343 were the fitted parameters. The IMFPs measured here were compared with IMFPs resulting from the TPP-2M predictive equation for the measured composition of oxide surface. The measured IMFPs were found to be from 3.1% to 20.3% smaller than the IMFPs obtained from the predictive formula in the energy range of 0.5-2 keV. The EPES IMFP value at 500 eV was related to the altered layer of sputtered CeO2 samples.

  13. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  14. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine.

    PubMed

    Zholobak, Nadezhda M; Mironenko, Alla P; Shcherbakov, Alexander B; Shydlovska, Olga A; Spivak, Mykola Ya; Radchenko, Larysa V; Marinin, Andrey I; Ivanova, Olga S; Baranchikov, Alexander E; Ivanov, Vladimir K

    2016-03-01

    We have demonstrated the influence of cerium dioxide nanoparticles on the immunogenicity of the influenza vaccine on an example of liquid split inactivated Vaxigrip vaccine. Antibody titers were analyzed using the hemagglutination inhibition (HI) assay. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. The effect of nano-ceria surface stabilizer on the enhancement of immunogenicity was shown. The vaccine modified by citrate-stabilized nano-ceria, in contrast to a non-modified Vaxigrip vaccine, did not provide an adequate level of seroprotection, and seroconversion after vaccination was 66.7% on days 49-63 for virus strain А(H1N1) and 100% on day 49 for virus strain B/Yamagata. For the low immunogenic influenza B virus, the rise in antibody titers (GMT/IF) was 24.38/3.28 after the first injection and 50.40/6.79 on day 49. For the vaccine modified by non-stabilized nano-ceria, for all virus strains under study, on day 63, upon immunization notable levels of seroprotection, seroconversion and GMT/IF were registered (higher than for the non-modified Vaxigrip vaccine). The successful attempt to modify the influenza vaccine demonstrates the possible ways of increasing the specific activity of vaccines using nano-ceria. PMID:26769398

  15. Antioxidant Cerium Oxide Nanoparticle Hydrogels for Cellular Encapsulation

    PubMed Central

    Weaver, Jessica D; Stabler, Cherie L

    2015-01-01

    Oxidative stress and the resulting radical by-products cause significant toxicity and graft loss in cellular transplantation. Here, the engineering of an auto-catalytic, antioxidant, self-renewing cerium oxide nanoparticle (CONP)-composite hydrogel is reported. This enzyme-mimetic material ubiquitously scavenges ambient free radicals, with the potential to provide indefinite antioxidant protection. Here, we evaluated the potential of this system to enhance the protection of encapsulated beta cells. Co-incubation of CONPs, free in solution with beta cells, demonstrated potent cytoprotection from superoxide exposure; however, phagocytosis of the CONPs by the beta cells resulted in cytotoxicity at concentrations as low as 1 mM. When CONPs were embedded within alginate hydrogels, the composite hydrogel provided cytoprotection to encapsulated beta cells from free radical attack without cytotoxicity, even up to 10 mM concentrations. This nanocomposite hydrogel has wide applicability in cellular transplantation, with the unique advantage of localization of these potent antioxidant CONPs and their capacity for sustained, long-term scavenging. PMID:25620795

  16. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  17. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  18. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This...

  19. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  20. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  1. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  2. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  3. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and....1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS Reg. No. 7758-99-8) usually... sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a purity suitable...

  4. Sulfate reduction and methanogenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  5. Localization of Hydrogen Peroxide Production in Pisum sativum L. Using Epi-Polarization Microscopy to Follow Cerium Perhydroxide Deposition.

    PubMed Central

    Liu, L.; Eriksson, KEL.; Dean, JFD.

    1995-01-01

    Cerium is becoming an increasingly popular reagent for histochemical localization of oxidases and phosphatases because it combines directly with reaction products to form fine precipitates of electron-dense materials that can be easily detected using transmission electron microscopy or laser confocal scanning microscopy. We used epi-polarization microscopy to detect cerium perhydroxide deposits formed when H2O2 was produced by diamine oxidase in pea (Pisum sativum L.) epicotyls exposed to exogenous putrescine. Diamine oxidase activity was abundant in cortical cell walls but showed little, if any, association with vascular tissues. Maps of cerium deposition generated using scanning electron microscopy/x-ray microanalysis verified these observations. This study demonstrates the use of epi-polarization microscopy to follow cerium deposition, and the ready accessibility of this microscopy technique should facilitate more widespread use of cerium for plant histochemistry and cytochemistry. PMID:12228377

  6. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  7. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  8. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  9. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  10. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  11. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  12. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  13. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  14. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  15. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  16. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  17. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  19. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  20. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used...

  1. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient...

  2. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  3. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  4. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  5. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food... GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg. No. 7783-20-2) occurs... neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets the specifications of the...

  6. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient...

  7. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  8. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  9. 21 CFR 184.1230 - Calcium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium sulfate. 184.1230 Section 184.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1230 Calcium sulfate. (a) Calcium sulfate (CaSO4, CAS Reg. No. 7778-18-9...

  10. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  11. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  12. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  13. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  14. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  15. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  16. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium...

  17. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  18. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  19. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  20. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  1. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  2. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used...

  3. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used...

  5. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used...

  6. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used...

  7. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  8. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...

  9. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions...

  10. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance...