Science.gov

Sample records for cerium titanium manganese

  1. Steric and electronic effects of 1,3-disubstituted cyclopentadienyl ligands on metallocene derivatives of Cerium, Titanium, Manganese, and Iron

    SciTech Connect

    Sofield, C.D.

    2000-05-19

    Sterically demanding 1,3-disubstituted cyclopentadienyl ligands were used to modify the physical properties of the corresponding metallocenes. Sterically demanding ligands provided kinetic stabilization for trivalent cerium compounds. Tris(di-t-butylcyclopentadienyl)cerium was prepared and anion competition between halides and cyclopentadienyl groups which had complicated synthesis of the tris(cyclopentadienyl)compound was qualitatively examined. Bis(di-t-butylcyclopentadienyl)cerium methyl was prepared and its rate of decomposition, by ligand redistribution, to tris(di-t-butylcyclopentadienyl)cerium was shown to be slower than the corresponding rate for less sterically demanding ligands. Asymmetrically substituted ligands provided a symmetry label for examination of chemical exchange processes. Tris[trimethylsilyl(t-butyl)cyclopentadienyl]cerium was prepared and the rate of interconversion between the C1 and C3 isomers was examined. The enthalpy difference between the two distereomers is 7.0 kJ/mol. The sterically demanding cyclopentadienyl ligands ansa-di-t-butylcyclopentadiene (Me2Si[(Me3C)2C5H3]2), ansa-bis(trimethylsilyl)cyclopentadiene (Me2Si[(Me3Si)2C5H3]2) and tetra-t-butylfulvalene and metallocene derivatives of the ligands were prepared and their structures were examined by single crystal X-ray crystallography. The effect that substituents on the cyclopentadienyl ring have on the pi-electron system of the ligand was examined through interaction between ligand and metal orbitals. A series of 1,3-disubstituted manganocenes was prepared and their electronic states were determined by solid-state magnetic susceptibility, electron paramagnetic resonance, X-ray crystallography, and variable temperature UV-vis spectroscopy. Spin-equilibria in [(Me3C)2C5H3]2Mn and [(Me3C)(Me3Si)C5H3]2Mn were examined and indicate an enthalpy difference of 15 kJ/mol between the high-spin and low-spin forms. Cyclopentadienyl groups resistant to intramolecular oxidative addition

  2. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  3. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, Carlos E.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  4. Mn-Ti-Zr (Manganese-Titanium-Zirconium)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C3 'Non-Ferrous Metal Systems. Part 3: Selected Soldering and Brazing Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Manganese-Titanium-Zirconium.

  5. Cerium

    SciTech Connect

    1992-11-01

    Cerium in the year 1803, three scientists (M.H. Laproth, J.J. Berzelius, and W. Hisinger) independently discovered cerium (Ce), the first lanthanide element to be isolated. The element`s name is derived from the asteroid Ceres, which was discovered just two years before cerium. The name {open_quotes}cerium{close_quotes} is especially appropriate since cerium, in its +4 ionic state, exhibits a {open_quotes}ceres,{close_quotes} or reddish-orange, color. Cerium has a very high crystal abundance of 46 ppm, similar to that of the very common gas, nitrogen, and abundant metal, copper. Of all the rare earth (RE) ores mined today, the average concentration of cerium in the ore is 46.4 percent, in terms of cerium oxide (CeO{sub 2}) content per total rare earth oxide (REO) by weight. Cerium is therefore the most abundant of all the rare earths, with concentrations as high as 50 percent CeO{sub 2}/REO in Chinese bastnasite and 52 percent in Russian loparites. Based on US Bureau of Mines statistics, CTC estimates that the world`s total mined production of cerium oxide in 1991 was about 24,000 metric tons-almost half of the total rare earth oxides produced.

  6. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  7. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2015-01-01

    The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth. PMID:25242526

  8. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  9. The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Hołyńska, Małgorzata; Shen, Jian-Ren; Allakhverdiev, Suleyman I; Allakhverdiev, Suleyman

    2015-12-01

    Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 (18) O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides. PMID:25701552

  10. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    SciTech Connect

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Besson, M.; Descorme, C.; Khrouz, L.

    2015-01-15

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol–gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated. - Graphical abstract: One-pot amorphous MnO{sub 2} supported on mesoporous anataseTiO{sub 2}. - Highlights: • Mesoporous manganese titanium oxides were synthesized using block copolymer. • Block copolymers form complexes with Mn{sup 2+} from MnCl{sub 2}. • With block copolymer, manganese oxide can be dispersed around the titania crystallites. • With Mn(acac){sub 2}, manganese is dispersed inside titania. • MnOOH crystallizes outside mesoporous titania during hydrothermal treatment.

  11. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    NASA Astrophysics Data System (ADS)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Besson, M.; Descorme, C.; Khrouz, L.

    2015-01-01

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol-gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated.

  12. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    SciTech Connect

    Rottkay, K. von; Richardson, T.; Rubin, M.; Slack, J.

    1997-07-01

    Cerium titanium oxide samples derived from a solution have been compared against sputtered films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture M{sub A}O{sub 2}-M{sub B}O{sub 2}. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO{sub 2} and TiO{sub 2}, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO{sub 2} and TiO{sub 2}. In order to investigate the performance as passive counter-electrode in Li{sup +} based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  13. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    NASA Astrophysics Data System (ADS)

    von Rottkay, Nik; Richardson, Terry J.; Rubin, Michael; Slack, J.; Masetti, Enrico; Dautzenberg, G.

    1997-10-01

    Cerium titanium oxide samples produced by sol-gel have been compared against sputtered and pulsed laser deposited films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture MAO2-MBO2. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO2 and TiO2, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO2 and TiO2. In order to investigate the performance as passive counter-electrode in Li+ based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  14. Changes in Physiological and Agronomical Parameters of Barley (Hordeum vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles

    PubMed Central

    Marchiol, Luca; Mattiello, Alessandro; Pošćić, Filip; Fellet, Guido; Zavalloni, Costanza; Carlino, Elvio; Musetti, Rita

    2016-01-01

    The aims of our experiment were to evaluate the uptake and translocation of cerium and titanium oxide nanoparticles and to verify their effects on the growth cycle of barley (Hordeum vulgare L.). Barley plants were grown to physiological maturity in soil enriched with either 0, 500 or 1000 mg·kg−1 cerium oxide nanoparticles (nCeO2) or titanium oxide nanoparticles (nTiO2) and their combination. The growth cycle of nCeO2 and nTiO2 treated plants was about 10 days longer than the controls. In nCeO2 treated plants the number of tillers, leaf area and the number of spikes per plant were reduced respectively by 35.5%, 28.3% and 30% (p ≤ 0.05). nTiO2 stimulated plant growth and compensated for the adverse effects of nCeO2. Concentrations of Ce and Ti in aboveground plant fractions were minute. The fate of nanomaterials within the plant tissues was different. Crystalline nTiO2 aggregates were detected within the leaf tissues of barley, whereas nCeO2 was not present in the form of nanoclusters. PMID:26999181

  15. Mesoporous titanium-manganese dioxide for sulphur mustard and soman decontamination

    SciTech Connect

    Stengl, Vaclav; Bludska, Jana; Oplustil, Frantisek; Nemec, Tomas

    2011-11-15

    Highlights: {yields} New nano-dispersive materials for warfare agents decontamination. {yields} 95% decontamination activities for sulphur mustard. {yields} New materials base on titanium and manganese oxides. -- Abstract: Titanium(IV)-manganese(IV) nano-dispersed oxides were prepared by a homogeneous hydrolysis of potassium permanganate and titanium(IV) oxo-sulphate with 2-chloroacetamide. Synthesised samples were characterised using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (HD or bis(2-chloroethyl)sulphide) and soman (GD or (3,3'-dimethylbutan-2-yl)-methylphosphonofluoridate). Mn{sup 4+} content affects the decontamination activity; with increasing Mn{sup 4+} content the activity increases for sulphur mustard and decreases for soman. The best decontamination activities for sulphur mustard and soman were observed for samples TiMn{sub 3}7 with 18.6 wt.% Mn and TiMn{sub 5} with 2.1 wt.% Mn, respectively.

  16. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    NASA Astrophysics Data System (ADS)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  17. Manganese

    MedlinePlus

    Manganese is a mineral that is found in several foods including nuts, legumes, seeds, tea, whole grains, and leafy green vegetables. It is ... manganese by mouth along with other vitamins and minerals can promote growth in children who have low ...

  18. Copper and cerium co-doped titanium dioxide on catalytic photo reduction of carbon dioxide with water: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Luo, Dongmei; Bi, Ye; Kan, Wei; Zhang, Ning; Hong, Sanguo

    2011-05-01

    The catalytic activities of copper and cerium co-doped titanium dioxide were studied experimentally and theoretically in the synthesis of methanol by the photo reduction of carbon dioxide with water firstly. Photo catalysts copper and cerium co-doped titanium dioxide were prepared via the equivalent-volume incipient wetness impregnation method. The catalysts were characterized by XRD, Raman, BET, and electrochemistry analyses. The catalytic properties were determined in the synthesis of methanol from CO 2 in the aqueous solution. The experimental results suggested that Cu/Ce-TiO 2 catalysts obviously enhanced the efficiency of the photocatalytic reduction of CO 2. The methanol yield could reach up to 180.3 μmol/g-cat rapidly. The different effects of copper and cerium on the surface of titanium dioxide have been calculated at the Becke's three-parameter hybrid exchange functional together with the Lee-Yang-Parr correlation functional (B3LYP) level. Our results revealed that Ce atoms affect the reaction more profoundly than Cu atoms do. Ce atoms activated H 2O and CO 2 molecules, while Cu atoms act as the channel of photoelectrons in real time and prevent the recombination of electrons and holes.

  19. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis.

    PubMed Central

    Kazantzis, G

    1981-01-01

    The possible carcinogenicity of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium is reviewed, taking into account epidemiological data, the results of animal experimental studies, data on mutagenic effects and on other in vitro test systems. Of the great variety of occupations where exposure to one of these metals may occur, only haematite mining has been clearly shown to involve an increased human cancer risk. While the possibility that haematite might in some way act as a carcinogen has to be taken into consideration it is more likely that other carcinogens are responsible. Certain platinum coordination complexes are used in cancer chemotherapy, are mutagenic, and likely to be carcinogenic. Cobalt, its oxide and sulfide, certain lead salts, one organomanganese, and one organotitanium compound have been shown to have a limited carcinogenic effect in experimental animal studies, and except for titanium appear to be mutagenic. Certain mercury compounds are mutagenic but none have been shown to be carcinogenic. The presently available data are inadequate to assess the possible carcinogenicity of selenium compounds, but a few observations suggest that selenium may suppress the effect of other carcinogens administered to experimental animals and may even be associated with lower cancer mortality rates in man. Epidemiological observations are essential for the assessment of a human cancer risk, but the difficulty in collecting past exposure data in occupational groups and the complexity of multiple occupational exposures with changes over time, limits the usefulness of retrospective epidemiological studies. PMID:7023929

  20. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R.; Vanderspurt, Thomas Henry; Tulyani, Sonia; Radhakrishnan, Rakesh; Opalka, Susanne Marie; Emerson, Sean C.

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  1. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels.

    PubMed

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO₂) and titanium oxide (nTiO₂) nanoparticles in soil at 0, 500 and 1000 mg·kg(-1) on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO₂ and nTiO₂ had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO₂·kg(-1). On the contrary Zn and Mn concentrations were improved by 500 mg nTiO₂·kg(-1), and Ca by both nTiO₂ treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO₂ while nTiO₂ can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  2. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles.

    PubMed

    Andersen, Christian P; King, George; Plocher, Milt; Storm, Marjorie; Pokhrel, Lok R; Johnson, Mark G; Rygiewicz, Paul T

    2016-09-01

    Ten agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs. Eight of 10 species responded to nTiO2 , and 5 species responded to nCeO2 . Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain the developmental effects of these 2 ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, with unknown effects at later stages of the life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Environ Toxicol Chem 2016;35:2223-2229. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26773270

  3. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels

    PubMed Central

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO2) and titanium oxide (nTiO2) nanoparticles in soil at 0, 500 and 1000 mg·kg−1 on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO2 and nTiO2 had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO2·kg−1. On the contrary Zn and Mn concentrations were improved by 500 mg nTiO2·kg−1, and Ca by both nTiO2 treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO2 while nTiO2 can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  4. Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee

    2011-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 μm thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.

  5. Variations in structure and electrochemistry of iron- and titanium-doped lithium nickel manganese oxyfluoride spinels

    NASA Astrophysics Data System (ADS)

    Höweling, Andres; Stenzel, David; Gesswein, Holger; Kaus, Maximilian; Indris, Sylvio; Bergfeldt, Thomas; Binder, Joachim R.

    2016-05-01

    Doping of cathode materials can considerably improve electrochemical performance and stability. Here, the high-voltage LiNi0.5Mn1.5O4 spinel is used as a candidate material. It is high-voltage cycling at a potential of approximately 4.7 V and the ability to host 2 eq. Li, thus leading to a theoretical capacity of 294 mAh g-1, that makes this material interesting. In order to improve stability and electronic conductivity, the spinel is doped with titanium and iron. Cycling in a voltage range of 2.0-5.0 V leads to a cooperative Jahn-Teller distortion accompanied by a phase transformation from cubic to tetragonal symmetry. This causes a severe capacity fade. To improve capacity retention, the as-prepared spinel is post-doped with fluorine. Influence of different fluorine amounts in LiNi0.5Mn1.4Fe0.1Ti0.027O4-xFx (x = 0-0.3) on the capacity and stability is analyzed. The initial capacities decrease with increasing fluorine content but the low voltage capacity is stabilized. Best electrochemical results are obtained with a fluorine content of x = 0.15. Furthermore, an additional redox couple is found. The intensity of this depends on the fluorine content. It is assumed that manganese, either in the tetrahedral sites or in octahedral sites, bound to fluorine lead to a higher voltage.

  6. Manganese

    MedlinePlus

    ... no RDAs for a nutrient, the Adequate Intake (AI) is used as a guide. The AI is the estimated amount of the nutrient that ... assumed to be adequate. The daily Adequate Intake (AI) levels for manganese are: infants birth to 6 ...

  7. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  8. Synthesis and characterization of nano-manganese dioxide and titanium dioxide

    NASA Astrophysics Data System (ADS)

    Peddi, Sasya

    Nano sized manganese dioxide was synthesized using hydrothermal and co-precipitation methods by the reduction of hydrogen peroxide and potassium permanganate in respective methods. The co-precipitation method of synthesis was expanded to synthesize nano sized Titanium Dioxide. Characterization of the synthesized material was carried out by Elemental Analysis, X-Ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA), Infra Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). SEM analysis showed that the MnO2 prepared by hydrothermal method is made of spherical nanoparticles with sizes ranging from 15 nm--30 nm and the MnO2 prepared by co-precipitation method showed nanospheres of 20 nm--100 nm with several nano disks incorporated in these sphere of about 5 nm--50 nm in diameter. X-ray revealed that the MnO2 prepared by hydrothermal shows two different transitions from amorphous MnO2 to crystalline Mn2O3 and Mn2O3- Mn2O 3 Bixbyte with substantial amount of unreacted PVP in it, which is lost when heated to higher temperatures which are supported by data from DTA and TGA. In co-precipitation only one transition is observed that is from amorphous MnO2 to crystalline Mn2O3 Bixbyte and traces of unreacted PVP. Titanium Dioxide synthesized using PVP led to uniform spherical nano particles of 20 nm--100 nm with some unreacted PVP. X-Ray analysis shows one transition from amorphous TiO2 to crystalline TiO 2 Anatase. The TiO2 prepared without PVP is poorly crystalline to X-rays and identified as Brookite when heated to higher temperature. The SEM micrographs of TiO2 without PVP did not show any uniformity in particle size and shape distribution and lost homogeneity. The results from our study suggest that the clean, uniform and homogeneous nanoparticles can be prepared using a simple, room temperature, non-expensive co-precipitation method using PVP.

  9. Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium.

    PubMed

    Huang, Yong; Ding, Qiongqiong; Han, Shuguang; Yan, Yajing; Pang, Xiaofeng

    2013-08-01

    This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm(-1), and a hydroxyl band at 3,571 cm(-1), which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating. PMID:23686354

  10. Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light

    PubMed Central

    Wang, Long; Mao, Jian; Zhang, Gao-Hua; Tu, Ming-Jing

    2007-01-01

    AIM: To investigate the apoptotic effect of photoexcited titanium dioxide (TiO2) nanoparticles in the presence of visible light on human hepatoma cell line (Bel 7402) and to study the underlying mechanism. METHODS: Cerium-element-doped titanium dioxide nanoparticles were prepared by impregnation method. Bel 7402 human hepatoma cells were cultured in RPMI 1640 medium in a humidified incubator with 50 mL/L CO2 at 37°C. A 15 W fluorescent lamp with continuous wavelength light was used as light source in the photocatalytic test. Fluorescence morphology and agarose gel eletrophoresis pattern were performed to analyze apoptotic cells. RESULTS: The Ce (IV)-doped TiO2 nanoparticles displayed their superiority. The adsorption edge shifted to the 400-450 nm region. With visible light illuminated for 10 min, 10 μg/cm3 Ce (IV)-doped TiO2 induced micronuclei and significant apoptosis in 4 and 24 h, respectively. Hochest 33 258 staining of the fixed cells revealed typical apoptotic structures (apoptotic bodies), agarose gel electrophoresis showed typical DNA ladder pattern in treated cells but not in untreated ones. CONCLUSION: Ce (IV) doped TiO2 nanoparticles can induce apoptosis of Bel 7402 human hepatoma cells in the presence of visible light. PMID:17663520

  11. CYTOTOXICITY AND PHOTOTOXICITY OF TITANIUM AND CERIUM DIOXIDE NANOPARTICLES IN HUMAN KERATINOCYTE HaCaT CELLS

    EPA Science Inventory

    The skin is a potential exposure site to metal oxide nanoparticles because of their use in commercial products such as sunscreens and potential release into the environment. This study assessed cytotoxicity and phototoxicity of titanium dioxide (size range 22 to 214 nm) and ceri...

  12. Titanium

    SciTech Connect

    Fox, G.J.

    1997-01-01

    The article contains a summary of factors pertinent to titanium use. Geology and exploitation, production processes, global production, titanium dioxide and alloy applications, and the titanium market are reviewed. Potential applications outlined are for oil and gas equipment and for the automotive industry. Titanium alloys were selected for drilling risers for North Sea oil and gas drilling platforms due to a high strength-to-weight ratio and corrosion resistance. These properties also make titanium alloys attractive for auto parts, although the cost is currently prohibitive.

  13. Cerium Oxide and Cerium Compounds

    Integrated Risk Information System (IRIS)

    Cerium oxide and cerium compounds ; CASRN 1306 - 38 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  14. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  15. Cerium metallofullerenes

    NASA Astrophysics Data System (ADS)

    Georgi, Petra; Kuran, Pavel; Dunsch, Lothar

    1999-09-01

    With respect to its redox state cerium is of high interest in metallofullerene research as its preferable redox states are 3+ and 4+. As representative structures of the cerium fullerene family both Ce2@C72 and Ce@C82 were prepared by the Krätschmer arc burning method. The metallofullerene Ce2@C72 was isolated for the first time using a two stage HPLC separation technique. The UV-Vis-NIR, IR and ESR spectra were compared with those of other C72 cage metallofullerenes. The existence and stability of the Ce2@C72 structure supports the assumption that the C72 carbon cage can be stabilised by metal ions. The endohedral fullerene Ce@C82 was also isolated by two stage HPLC and characterized by UV-Vis-NIR, IR and ESR spectroscopy for comparison with other endohedral C82 fullerenes. The redox properties of this metallofullerene structure were studied by cyclic voltammetry.

  16. Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds

    DOEpatents

    Bamberger, C.E.

    1980-04-24

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  17. Thermochemical cyclic system for decomposing H2O and/or CO2 by means of cerium-titanium-sodium-oxygen compounds

    SciTech Connect

    Bamberger, C.E.

    1982-02-02

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO2), titanium dioxide (TiO2) and sodium titanate (Na2TiO3) to form sodium cerous titanate (NaCeTi2O6) and oxygen. Sodium cerous titanate (NaCeTi2O6) reacted with sodium carbonate (Na2CO3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  18. Thermochemical cyclic system for decomposing H.sub.2 O and/or CO.sub.2 by means of cerium-titanium-sodium-oxygen compounds

    DOEpatents

    Bamberger, Carlos E.

    1982-01-01

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  19. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  20. Virus removal by biogenic cerium.

    PubMed

    De Gusseme, Bart; Du Laing, Gijs; Hennebel, Tom; Renard, Piet; Chidambaram, Dev; Fitts, Jeffrey P; Bruneel, Els; Van Driessche, Isabel; Verbeken, Kim; Boon, Nico; Verstraete, Willy

    2010-08-15

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal. PMID:20704235

  1. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  2. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  3. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    EPA Science Inventory

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  4. Multi-functional porous mix-valent manganese oxide nano-materials and ruthenium/titanium dioxide for magnetic, electronic, and catalytic applications

    NASA Astrophysics Data System (ADS)

    Shen, Xiongfei

    This thesis contains two parts: (1) development of porous mixed-valent manganese oxide octahedral molecular sieve (OMS) nano-materials with controlled tunnel structures and muilt-functionalities and (2) application of H 2 adsorption for metal particle size evaluation on TiO2 supported Ru Fischer-Tropsch catalysts. Manganese oxide OMS with different nano-scale tunnel sizes may result in various microporosities for different selective catalysis and separation applications. A hydrothermal method was developed to synthesize manganese oxide nano-materials with controlled nano-scale tunnel sizes by hydrothermal treatments of layered structure manganese oxides under different pH conditions. Manganese oxides with increasing tunnel sizes of 2.3 A x 2.3 A (1x1 tunnel structure), 4.6 A x 6.9 A (2x3 tunnel structure), and 4.6 A x 9.2 A (2x4 tunnel structure) were synthesized with increasing pH value from 1.0, 7.0, to 13.0, respectively. Phase transformation mechanism of layered precursors to tunnel structures was obtained by characterization of the materials during synthesis using in situ synchrotron X-ray diffraction. The obtained phase transformation mechanism was used for synthesis of better materials such as new lxl/1x2 tunnel structures and controlled BET surface areas. Most manganese oxide OMS materials show paramagnetism at temperatures from 100 to 350 K. A new method was established to measure the average oxidation state (AOS) of mix-valent manganese in OMS materials by describing their paramagnetic behavior using the Curie-Weiss law. Measurement results show a maximum 7% deviation error compared to the reference titration method for 10 different samples. Magnetism of OMS was further explored by doping Fe into KOMS-2 (a 2x2 tunnel structure manganese oxide) to create high temperature ferromagnetism. The possession of both semiconducting and high temperature ferromagnetism in the Fe-doped KOMS-2 created a highly promising new group of functional materials for

  5. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  6. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  7. The attack of titanium-6 wt% aluminium-4 wt% vanadium alloy by a molten uranium-5.7 wt% manganese alloy at 1015 °C

    NASA Astrophysics Data System (ADS)

    Moran, F. J.; Jarman, R. A.

    1991-06-01

    The liquid metal corrosion (LMC) resistance of the alloy Ti-6 wt% Al-4 wt% V (IMI 318) in contact with molten U-5.7 wt% Mn has been assessed. The uranium alloy was melted at 1015 °C under vacuum in hemispherical IMI 318 alloy crucibles. The attack rate of the molten alloy on the IMI 318, for times up to 3 h, was estimated from metallography and by chemical analysis of the resolidified uranium melt. The mechanism of the LMC process was examined with optical and electron microscopy allied with EDAX and microhardness tests. Melt saturation occurred after one hour and titanium-rich (approximately 80 wt% Ti) dendrites began to nucleate and grow in the uranium melt. This result was predicted by the relevant equilibrium phase diagrams. During the LMC reaction, an interface (diffusion) layer grew in IMI 318 alloy where it contacted the uranium alloy melt. The levels of Ti and U changed with test time and distance across this interface, with the Ti level falling at the melt/IMI 318 surface and the U increasing at the same point. The mean LMC rate was initially rapid, 1.45 mm/h after 15 min but fell to 0.3 mm/h at 3 h. The conclusions were that the LMC reaction was diffusion-controlled, with the slow self-diffusion of β-titanium most likely to be the rate determining step. The reaction probably follows parabolic rate-kinetics as do other diffusion-controlled processes. The attack front was generally uniform with no clear evidence of preferential attack.

  8. The sensitized luminescence of manganese-activated calcite

    USGS Publications Warehouse

    Schulman, J.H.; Evans, L.W.; Ginther, R.J.; Murata, K.J.

    1947-01-01

    Synthetic manganese-activated calcites are shown to be practically inert to ultraviolet excitation in the range 2000-3500A, while they are luminescent under cathode-ray excitation. The incorporation of small amounts of an auxiliary impurity along with the manganese produces the strong response to ultraviolet radiation hitherto ascribed to CaCO3:Mn itself. Three such impurities have been studied: lead, thallium, and cerium. The first two induce excitation in the neighborhood of the mercury resonance line, while the cerium introduces a response principally to longer wave ultraviolet. The strong response to 2537A excitation shown by some natural calcites is likewise found to be due to the presence of lead along with the manganese, rather than to the manganese alone. The data do not warrant ascribing the longer wave-length ultraviolet-excited luminescence of all natural calcites to the action of an auxiliary impurity. The essential identity of the cathode-ray excited luminescence spectra of CaCO 3:Mn, CaCO3: (Pb+Mn), CaCO3:(Tl+Mn), and CaCO3:(Ce+Mn) with the 2537A-excited spectra of the latter three is evidence that the luminescent center in all cases is the manganese ion or the MnO6 group. It is shown that a "cascade" mechanism for the action of the auxiliary impurities, lead, thallium, and cerium, is incorrect; and that the phenomenon must be considered as a case of sensitized luminescence. Owing to the nature of cathode-ray excitation, the manganese activator can be excited by this agent even in the absence of a second impurity. For optical excitation, however, an absorption band for the ultraviolet must be established by building into the CaCO3:Mn a second impurity or "sensitizer.".

  9. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (Interagency Science Discussion Draft)

    EPA Science Inventory

    On September 29, 2009, the IRIS Summary and Toxicological Review of Cerium Oxide and Cerium Compounds was finalized and loaded onto the IRIS database. The Toxicological Review of Cerium Oxide and Cerium Compounds was reviewed internally by EPA, by other federal agencies and Whit...

  10. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  11. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  12. Thermodynamic properties of cerium mononitride

    NASA Astrophysics Data System (ADS)

    Aristova, N. M.; Belov, G. V.

    2014-09-01

    Data on the thermodynamic properties of cerium mononitride CeN in the solid state are analyzed. Relations approximating the temperature dependence of the thermodynamic functions of CeN(cr.) in the temperature range of 298.15-2900 K are obtained. Using the relations of thermodynamics known for this temperature range, the thermodynamic functions of cerium mononitride (entropy, Gibbs energy, and enthalpy variation) are calculated. The resulting data is entered into the database of the IVTANTHERMO software package and is used to analyze the thermal stability of CeN(cr.), and to estimate its boiling point at atmospheric pressure.

  13. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  14. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database.

  15. Cerium oxide for sunscreen cosmetics

    NASA Astrophysics Data System (ADS)

    Yabe, Shinryo; Sato, Tsugio

    2003-02-01

    Ultrafine particles of Mn+ -doped ceria ( Mn+ =Mg 2+, Ca 2+, Sr 2+, Ba 2+, Y 3+, La 3+, Nd 3+, Sm 3+, Eu 3+, Tb 3+) for UV filter were prepared via soft solution chemical routes at 40°C. X-ray diffraction revealed that the prepared doped particles had the cubic fluorite structures although peak positions changed depending on the kind and amount of doped metal ion. Doping with 20 mol% Ca 2+ and 20 mol% Zn 2+ resulted in extremely decreasing the particle size (2-4 nm) and the catalytic activity of ceria for oxidation of castor oil. Ca 2+-doped cerium dioxide showed excellent UV absorbing effect and transparency in the visible ray region compared with undoped cerium dioxide.

  16. Grain Growth in Cerium Metal

    NASA Astrophysics Data System (ADS)

    Cooley, Jason; Katz, Martha; Mielke, Charles; Montalvo, Joel

    We report on grain growth in forged and rolled cerium plate for temperatures from 350 to 700 degrees C and times from 30 to 120 minutes. The cerium was made by arc-melting into a 25 mm deep by 80 mm diameter copper mold. The resulting disk was forged at room temperature to a 25% reduction of thickness four times with a 350 degree C strain relief heat treatment for 60 minutes between forging steps. The resulting 8 mm thick plate was clock rolled at room temperature to a 25% reduction of thickness three times with a 350 C strain relief heat treatment between steps resulting in a plate approximately 3 mm thick. 5 x 10 mm coupons were cut from the plate for the grain growth study.

  17. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  18. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    SciTech Connect

    Jin Yi; Zhu Yihua Yang Xiaoling; Li Chunzhong; Zhou Jinghong

    2007-01-15

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allows one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.

  19. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  20. Weakly ionized cerium plasma radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Koorikawa, Yoshitake; Murakami, Kazunori; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-02-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod cerium target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of cerium ions and electrons, forms by target evaporating. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, weakly ionized cerium plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 500 ns, and the time-integrated x-ray intensity had a value of about 40 μC/kg at 1.0 m from x-ray source with a charging voltage of 55 kV. In the angiography, we employed a film-less computed radiography (CR) system and iodine-based microspheres. Because K-series characteristic x-rays are absorbed easily by the microspheres, high-contrast angiography has been performed.

  1. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  2. Manganese laser using manganese chloride as lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.

    1974-01-01

    A manganese vapor laser utilizing manganese chloride as a lasant has been observed and investigated. Lasing is attained by means of two consecutive electrical discharges. The maximum laser output is obtained at a vapor pressure of about 3 torr, a temperature of 680 C, and a time delay between electrical discharges of 150 microsec. The maximum energy density is 1.3 microjoule per cu cm.

  3. Manganese uptake of imprinted polymers

    DOE Data Explorer

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  4. Cerium oxide nanoparticles in cancer

    PubMed Central

    Gao, Ying; Chen, Kan; Ma, Jin-lu; Gao, Fei

    2014-01-01

    With the development of many nanomedicines designed for tumor therapy, the diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat cancer. Research data have shown CONPs to be toxic to cancer cells, to inhibit invasion, and to sensitize cancer cells to radiation therapy and chemotherapy. CONPs also display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species generation. Differential cytotoxicity is important for anticancer drugs to distinguish effectively between tumor cells and normal cells. The antioxidant capabilities of CONPs, which enable cancer therapy protection, have also resulted in the exploration of these particles as a potential anticancer treatment. Taken together, CONPs might be a potential nanomedicine for cancer therapy and this review highlights the current research into CONPs as a novel therapeutic for the treatment of cancer. PMID:24920925

  5. Pharmacological potential of cerium oxidenanoparticles

    NASA Astrophysics Data System (ADS)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  6. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  7. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  8. The formation of light emitting cerium silicates in cerium-doped silicon oxides

    SciTech Connect

    Li Jing; Zalloum, Othman; Roschuk, Tyler; Heng Chenglin; Wojcik, Jacek; Mascher, Peter

    2009-01-05

    Cerium-doped silicon oxides with cerium concentrations of up to 0.9 at. % were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Bright cerium related photoluminescence, easily seen even under room lighting conditions, was observed from the films and found to be sensitive to film composition and annealing temperature. The film containing 0.9 at. % Ce subjected to anneal in N{sub 2} at 1200 deg. C for 3 h showed the most intense cerium-related emission, easily visible under bright room lighting conditions. This is attributed to the formation of cerium silicate [Ce{sub 2}Si{sub 2}O{sub 7} or Ce{sub 4.667} (SiO{sub 4}){sub 3}O], the presence of which was confirmed by high resolution transmission electron microscopy.

  9. BIOLOGICAL EFFECTS OF MANGANESE

    EPA Science Inventory

    The biological effects of manganese were studied in a town on the coast of Dalmatia in which a ferromanganese plant has been operating since before World War II. The study focused on the question of whether the exposure to manganese can cause a higher incidence of respiratory dis...

  10. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies. PMID:26239283

  11. α-Radioactivity of cerium-142

    USGS Publications Warehouse

    Senftle, F.E.; Stern, T.W.; Alekna, V.P.

    1959-01-01

    JOHNSON AND NIER1 have measured the atomic masses of some of the rare-earth isotopes and have shown that the mass difference cerium-142—(barium-138 + helium-4) is equivalent to 1.68 ± 0.10 MeV. Similar results for the naturally occurring samarium and neodymium isotopes show that the α-active isotope of each element is the one having the largest possible decay energy. Rasmussen and others2 suggest that the two or three neutrons just beyond the closed shell of 82 neutrons have decreased binding energies and hence the α-energy has a maximum about 84 neutrons. Johnson and Nier suggest that the α-decay of cerium-142 may take place with enough energy to be experimentally observable. Porschen and Riezler3 examined a sample of un-enriched cerium ammonium citrate using nuclear track plates sensitive to α-particles. No α-activity was observed after a 30-day exposure of 1.2 mgm. of the cerium salt. In 1957 Riezler and Kauw4 reported an alpha activity for an enriched sample of cerium-142. From their results they calculated a half-life of 5.1 × 1015 years with an uncertainty factor of 2.

  12. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. PMID:22382465

  13. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  14. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  15. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  16. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGESBeta

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  17. [Function and disease in manganese].

    PubMed

    Kimura, Mieko

    2016-07-01

    Manganese is a metal that has been known named a Greek word "Magnesia" meaning magnesia nigra from Roman Empire. Manganese provide the wide range of metablic function and the multiple abnomalities from its deficiency or toxicity. In 1931, the essentiality of manganese was demonstrated with the authoritative poor growth and declined reproduction in its deficiency. Manganese deficiency has been recognized in a number of species and its signs are impaired growth, impaired reproduction, ataxia, skeletal abnormalities and disorders in lipid and carbohydrate metabolism. Manganese toxicity is also acknowledged as health hazard for animals and humans. Here manganese nutrition, metabolism and metabolic function are summarized. PMID:27455810

  18. Texture Control in Cerium Oxide Films (Poster)

    SciTech Connect

    van Hest, M. F. A. M.; Leenheer, A. J.; Perkins, J. D.; Teplin, C. W.; Ginley, D. S.

    2006-05-01

    The conclusions are: (1) Texture control is possible in cerium oxide by epitaxial growth or adjusting the substrate angle; (2) Biaxial (111) texture emerges with inclined angle depositions on glass; and (3) Biaxial (200) texture emerges by epitaxial growth on YSZ.

  19. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  20. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    PubMed

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth. PMID:25531028

  1. Manganese biomining: A review.

    PubMed

    Das, A P; Sukla, L B; Pradhan, N; Nayak, S

    2011-08-01

    Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future. PMID:21632238

  2. Study of cerium phase transitions in shock wave experiments

    SciTech Connect

    Zhernokletov, M. V. Kovalev, A. E.; Komissarov, V. V.; Novikov, M. G.; Zocher, M. A. Cherne, F. J.

    2011-02-15

    Cerium has a complex phase diagram that is explained by the presence of structural phase transitions. Experiments to measure the sound velocities in cerium by two methods were carried out to determine the onset of cerium melting on the Hugoniot. In the pressure range 4-37 GPa, the sound velocity in cerium samples was measured by the counter release method using manganin-based piezoresistive gauges. In the pressure range 35-140 GPa, the sound velocity in cerium was measured by the overtaking release method using carbogal and tetrachloromethane indicator liquids. The samples were loaded with plane shock wave generators using powerful explosive charges. The onset of cerium melting on the Hugoniot at a pressure of about 13 GPa has been ascertained from the measured elastic longitudinal and bulk sound velocities.

  3. Gamma-alpha Isostructural Transition in Cerium

    SciTech Connect

    Lanata, Nicola; Yao, Yong-Xin; Wang, Cai-Zhuang; Ho, Kai-Ming; Schmalian, Jorg; Haule, Kristjan; Kotliar, Gabriel

    2013-11-05

    We present zero-temperature first-principles calculations of elemental cerium and we compute its pressure-volume phase diagram within a theoretical framework able to describe simultaneously both the α and the γ phases. A surprising result revealed by our study is the presence of a clear signature of the transition at zero temperature and that this signature can be observed if and only if the spin-orbit coupling is taken into account. Our calculations indicate that the transition line in the pressure-temperature phase diagram of this material has a low-T critical point at negative pressures, placed very close to zero temperature. This suggests that cerium is very close to being “quantum critical,” in agreement with recent experiments.

  4. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  5. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  6. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  7. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    SciTech Connect

    J Rygel; Y Chen; C Pantano; T Shibata; J Du; L Kokou; R Woodman; J Belcher

    2011-12-31

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP{sub 3}O{sub 9}-AlP{sub 3}O{sub 9} and CeP{sub 3}O{sub 9}-SiP{sub 2}O{sub 7}, was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, {>=}95% of cerium ions are Ce{sup 3+}. This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce{sup 3+}. Near the metaphosphate composition, cerium was found to have an average cerium coordination number of {approx}7.0 and an average cerium-oxygen bond length of 2.41 {angstrom}. The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing {>=}14 and {>=}15 mol% Ce{sub 2}O{sub 3} for the aluminophosphate and silicophosphate series, respectively.

  8. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  9. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  10. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  11. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    SciTech Connect

    Rygel, Jennifer L.; Chen, Yongsheng; Pantano, Carlo G.; Shibata, Tomohiro; Du, Jincheng; Kokou, Leopold; Woodman, Robert; Belcher, James

    2011-09-20

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP{sub 3}O{sub 9}-AlP{sub 3}O{sub 9} and CeP{sub 3}O{sub 9}-SiP{sub 2}O{sub 7}, was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, {>=}95% of cerium ions are Ce{sup 3+}. This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce{sup 3+}. Near the metaphosphate composition, cerium was found to have an average cerium coordination number of {approx}7.0 and an average cerium-oxygen bond length of 2.41 {angstrom}. The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing {>=}14 and {>=}15 mol% Ce{sub 2}O{sub 3} for the aluminophosphate and silicophosphate series, respectively.

  12. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  13. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cerium, hydroxy oleate propionate... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  14. RECOVERY OF Pu FROM CERIUM TRIFLUORIDE BY FLUORINATION

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1959-02-10

    An improved process is prcsented for selectively recovering plutonium from a solution containing fission products comprising precipitating cerium trifluoride in the solution for effccting carrier precipitation of plutonium. The resulting carrier precipitate is dried and subjected to fluorination at about 600 C. The plutonium forms a volatile fiuoridc and is so separated from the nonvolatile cerium fluoride.

  15. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  16. Ultrathin, epitaxial cerium dioxide on silicon

    SciTech Connect

    Flege, Jan Ingo Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens; Bertram, Florian; Wollschläger, Joachim

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  17. Cerium and yttrium oxide nanoparticles are neuroprotective

    SciTech Connect

    Schubert, David . E-mail: schubert@salk.edu; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-03-31

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.

  18. Opportunities in the electrowinning of molten titanium from titanium dioxide

    NASA Astrophysics Data System (ADS)

    van Vuuren, D. S.; Engelbrecht, A. D.; Hadley, T. D.

    2005-10-01

    The value chain of titanium products shows that the difference between the cost of titanium ingot and titanium dioxide is about 9/kg titanium. In contrast, the price of aluminum, which is produced in a similar way, is only about 1.7/kg. Electrowinning of molten titanium from titanium dioxide is therefore believed to have significant potential to reduce the cost of titanium products. The process is hampered by the high operating temperatures and sophisticated materials of construction required; the high affinity of titanium for carbon, oxygen, and nitrogen; and physical and chemical properties of the different titanium oxide species when reducing titanium from Ti4+ to metallic titanium.

  19. The surface chemistry of cerium oxide

    DOE PAGESBeta

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less

  20. Photodissociation of Cerium Oxide Nanocluster Cations.

    PubMed

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  1. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  2. The surface chemistry of cerium oxide

    SciTech Connect

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  3. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay

    SciTech Connect

    Moffett, J.W. )

    1994-01-01

    The oxidation kinetics of Ce(III) and Mn(II) were studied in Chesapeake Bay in March and July 1990 to establish the role of water column redox processes in contributing to Ce anomalies observed in this estuary (SHOLKOVITZ and ELDERFIELD, 1988; SHOLKOVITZ et al., 1992). Oxidation was measured by adding Mn(II) and Ce(III) to freshly collected water samples as radiotracers and measuring their uptake onto the ambient suspended particle assemblage. Mn(II) oxidation was measured by following the uptake of [sup 54]Mn(II) onto suspended particles and utilizing protocols established by other workers to distinguish oxidation from Mn(II) adsorption. The same protocols were applicable to Ce(III), using [sup 139]Ce(III), and were supported by the use of [sup 152]Eu(III) as a nonredox reactive control. Specific rates of Ce(III) and MN(II) oxidation measured at a station in the North Bay (depth = 4 m) in July were 2016% per day and 4032% per day, respectively. In March, at the same station, the specific rate of Mn(II) of oxidation was only 1-% per day, and Ce(III) oxidation was undetectable. Both Ce(III) and Mn(II) oxidation processes were inhibited by azide, indicating that they were microbially mediated. The seasonal differences probably reflect strong seasonal variation in the abundance of Mn oxidizing bacteria. No Ce(III) oxidation occured in samples collected below the oxic/anoxic interface in July. The specific rates of oxidation for both elements were over 1000 times higher than those measured in the Sargasso Sea. However, the specific rates for Ce(III) and Mn(II) were very similar to each other. This fact, coupled with similar spatial and temporal trends for specific oxidation rates, suggests a common mechanism of oxidation of both elements which may be significant in a wide range of marine environments.

  4. Cerium stable isotope ratios in ferromanganese deposits and their potential as a paleo-redox proxy

    NASA Astrophysics Data System (ADS)

    Nakada, Ryoichi; Takahashi, Yoshio; Tanimizu, Masaharu

    2016-05-01

    The cerium (Ce) anomaly observed in rare earth element (REE) patterns has been used to estimate the redox state of paleo-marine environments. Cerium is unique because it forms tetravalent cations under oxic conditions, in contrast to the other REEs that occur in a trivalent state. This characteristic leads to anomalously high or low Ce concentrations relative to neighboring REEs. However, the use of Ce anomaly as a paleo-redox proxy is not well calibrated. This study shows that coupling of the Ce anomaly and Ce stable isotope ratio (δ142Ce) is more quantitative redox proxy to distinguish suboxic and oxic redox conditions. Our results revealed a progressive enrichment in heavy Ce isotopes in consecutive formations of iron (Fe) and manganese (Mn) precipitate from hot spring water without any associated change in REE patterns. The δ142Ce values of Mn precipitates were approximately 0.35‰ heavier than those of the Fe precipitates, which was consistent with experiment-based predictions. The δ142Ce values of marine ferromanganese deposits with three different formation processes were hydrogenetic (+0.25‰) > diagenetic (+0.10‰) ⩾ hydrothermal (+0.05‰), which also reflects redox conditions of their formation environment. These observations suggest that the Ce stable isotope ratios yield more quantitative information regarding redox state than REE patterns alone. We thus suggest that this novel proxy can be successfully utilized to reconstruct marine redox states, particularly from slightly oxic to highly oxic conditions such as the Great Oxidation Event (GOE).

  5. Optical glass surfaces polishing by cerium oxide particles

    NASA Astrophysics Data System (ADS)

    Bouzid, D.; Belkhie, N.; Aliouane, T.

    2012-02-01

    The use of powders in metallic oxides as means of grinding and polishing of the optical glass components have seen recently a large application in optical industry. In fact, cerium oxide abrasive is more used in the optical glass polishing. It is used as grains abrasive in suspension or fixed abrasive (pellets); these pellets are manufactured from a mixture made of cerium oxide abrasive and a organic binder. The cerium oxide used in the experiments is made by (Logitech USA) of 99 % purity, the average grain size of the particle is 300 nm, the density being 6,74 g /cm3 and the specific surface is 3,3042 m2/g. In this study, we are interested in the surfaces quality of the optical glass borosilicate crown (BK7) polished by particles in cerium oxide bounded by epoxy. The surfaces of the optical glass treated are characterized by the roughness, the flatness by using the microscope Zygo and the SEM.

  6. Cerium migration during PEM fuel cell assembly and operation

    DOE PAGESBeta

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-10-02

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  7. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  8. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  9. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  10. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  11. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  12. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  13. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D.; Alman, David E.

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  14. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  15. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  16. The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster.

    PubMed

    Wu, Bin; Zhang, Di; Wang, Dan; Qi, Chunyan; Li, Zongyun

    2012-10-01

    Due to the widespread application of cerium, a rare earth element, the risk of exposure to cerium has increased. Therefore, understanding the physiological effects of cerium is of great importance. Our previous work showed that cerium caused significant lifespan shortening accompanied by oxidative damage in Drosophila melanogaster, however, little is known about the detailed mechanism of cerium-induced cytotoxicity. Thus, we examined the developmental time during metamorphosis, and assessed the toxic effects of cerium by evaluating heat shock protein 70 (Hsp70), DNA damage markers and apoptosis in D. melanogaster. We found that cerium extended the developmental time of D. melanogaster and up-regulated the expression of Hsp70 when the concentration of cerium was increased (especially concentrations over 26.3 μg/g). Up-regulation of the cell cycle checkpoint p53 and cell signaling protein p38 were also observed when the concentration of cerium was over 104 μg/g. In addition, the activities of caspase-3 and caspase-9, markers of apoptosis, were significantly higher when the larvae were exposed to ceric sulfate. These results suggest that high concentrations of cerium may result in DNA damage and ultimately apoptosis in D. melanogaster, and strongly indicate that cerium should be applied with caution and the potential toxic effects in humans should also be taken into consideration. PMID:22707041

  17. Extraction chromatography of quadrivalent titanium and zirconium from succinate solution

    SciTech Connect

    Shete, S.D.; Shinde, V.M.

    1982-01-01

    Liquid ion exchangers such as tri-n-octyl amine (TOA), tri-iso-octylamine (TIOA) and Aliquat 336 have been used in this laboratory for analytical separation of vanadium(V) and niobium(V), indium(III), thalium(III), thorium(IV), cerium(IV) from succinate solutions. Extension of this study has revealed that benzene solutions of TOA, TIOA and Aliquat 336 could be used for anion exchange extraction of quadrivalent titanium and zirconium from succinate solution. The metal ions from the organic phase are stripped and determined spectrophotometrically. Solvent extraction methods for titanium(IV) and zirconium(IV) have been reviewed by De et al. and Korkisch in their monographs. Diethylamine, tri-ethylamine and tributylamine have been used for extraction of titanium from thiocyanate and citrate solution. Similarly high molecular weight amines such as TOA and TIOA have been used for the extraction of zirconium from mineral acids, but systematic solvent extraction separation of titanium(IV) and zirconium(IV) is lacking. In this communication we propose a new method for selective extraction and separation of titaium(IV) and zirconium(IV) from metal ions such as Mn, Cr, Mo, V, U, La, Ta, Th and Hf. The proposed method is comparatively free from drawbacks such as pre-equilibration of phases, multiple scrubbing, multiple extraction and coextraction of a large number of cations and anions.

  18. Manganese oxidation model for rivers

    USGS Publications Warehouse

    Hess, Glen W.; Kim, Byung R.; Roberts, Philip J.W.

    1989-01-01

    The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.

  19. UV laser induced photochromic centers in cerium doped calcium fluoride

    SciTech Connect

    Pogatshnik, G.J.; Hamilton, D.S.

    1987-01-01

    The optical excitation of the lowest 4f to 5d transition in Ce/sup 3 +/:CaF/sub 2/ by the 308 mm output of a Xe-Cl excimer laser results in strong coloration. The centers created were found to be divalent cerium ions at cubic sites. The system exhibits photochromic properties; the crystal can be returned to the original transparent state by illuminating it with light which is absorbed by the divalent cerium ions. The creation process for these photochromic centers involves a resonant two-photon transition from the 4f ground state of the cerium ion to the conduction band of the CaF/sub 2/ host. The lowest 5d level of the cerium ion serves as the real intermediate state for this transition. The photoionized electron can be trapped by another trivalent cerium ion at a site of cubic symmetry. These impurity sites with O/sub h/ symmetry result when the charge compensator associated with the rare earth ion is somewhat removed from the cerium ion site. The charge compensator is needed to maintain charge neutrality in the crystal when a trivalent rare earth is substituted for a Ca ion in the host lattice. The absence of a local charge compensator at a Ce/sup 3 +/ site with O/sub h/ symmetry, provides a net positive Coulombic potential, which aids in the trapping of electrons from the conduction band. The capture of an electron by a cerium ion at cubic site, changes the valence state of the ion to Ce/sup 2 +/ which accounts for the coloration of the crystal after illumination with uv laser light. A model for the production of the photochromic centers is presented.

  20. On the system cerium-platinum-silicon

    SciTech Connect

    Gribanov, Alexander Grytsiv, Andriy; Royanian, Esmaeil; Rogl, Peter; Bauer, Ernst; Giester, Gerald; Seropegin, Yurii

    2008-11-15

    Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction, metallography, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) techniques on about 120 alloys, which were prepared by various methods employing arc-melting under argon or powder reaction sintering. Nineteen ternary compounds were observed. Atom order in the crystal structures of {tau}{sub 18}-Ce{sub 5}(Pt,Si){sub 4} (Pnma; a=0.77223(3) nm, b=1.53279(8) nm c=0.80054(5) nm), {tau}{sub 3}-Ce{sub 2}Pt{sub 7}Si{sub 4} (Pnma; a=1.96335(8) nm, b=0.40361(4) nm, c=1.12240(6) nm) and {tau}{sub 10}-CePtSi{sub 2} (Cmcm; a=0.42943(2) nm, b=1.67357(5) nm, c=0.42372(2) nm) was determined by direct methods from X-ray single-crystal CCD data and found to be isotypic with the Sm{sub 5}Ge{sub 4}-type, the Ce{sub 2}Pt{sub 7}Ge{sub 4}-type and the CeNiSi{sub 2}-type, respectively. Rietveld refinements established the atom arrangement in the structures of Pt{sub 3}Si (Pt{sub 3}Ge-type, C2/m, a=0.7724(2) nm, b=0.7767(2) nm, c=0.5390(2) nm, {beta}=133.86(2){sup o}), {tau}{sub 16}-Ce{sub 3}Pt{sub 5}Si (Ce{sub 3}Pd{sub 5}Si-type, Imma, a=0.74025(8) nm, b=1.2951(2) nm, c=0.7508(1) nm) and {tau}{sub 17}-Ce{sub 3}PtSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm, a=0.41065(5) nm, b=0.43221(5) nm, c=1.8375(3) nm). Phase equilibria in Ce-Pt-Si are characterised by the absence of cerium solubility in platinum silicides. Cerium silicides and cerium platinides, however, dissolve significant amounts of the third component, whereby random substitution of the almost equally sized atom species platinum and silicon is reflected in extended homogeneous regions at constant Ce content such as for {tau}{sub 13}-Ce(Pt{sub x}Si{sub 1-x}){sub 2}, {tau}{sub 6}-Ce{sub 2}Pt{sub 3+x}Si{sub 5-x} or {tau}{sub 7}-CePt{sub 2-x}Si{sub 2+x}. - Graphical abstract: Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal

  1. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  2. Extraction of manganese from electrolytic manganese residue by bioleaching.

    PubMed

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. PMID:21050747

  3. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-05-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  4. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS

    EPA Science Inventory

    Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...

  5. Potential for recovery of cerium contained in automotive catalytic converters

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  6. Mechanical and Thermophysical Properties of Cerium Monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {< }100{rangle }, {< }110{rangle } and {< }111{rangle } directions. The second- and third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born-Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young's moduli, bulk moduli, Breazeale's non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  7. Potentiometric analysis using solutions of cerium sulfates

    SciTech Connect

    Pugin., G.V.; Pisarevskii, A.M.; Polozova, I.P.; Shults, M.M.

    1986-06-01

    In a previous work the authors outlined the bases of a new method of instrumental determination of the chemical oxygen consumption (COC): The analysis is performed within the framework of the umpire analysis of COC, but the consumption of the oxidizing agent is continuously recorded according to the change in the emf of the galvanic cell (glass pH-metric electrode; cerium (IV,III) sulfates, potassium bichromate, 7.5 M H/sub 2/SO/sub 4/; and glass redoximetric electrode EO-021. The authors contend that potentiometric recording permits not only a simplication of the determination of COC but also the removal of the rigid limitations on the time of boiling of the sample. Additional information may be obtained on the corresponding and difficultly oxidized substances in the sample to be analyzed. It is noted after a discussion of main peculiarities of the cell that the selection of the conditions of analysis is dictated largely by the requirements set in the determinations of COC which permits a number of shortcomings of the potentiometric method to be determined.

  8. Characterization of cerium fluoride nanocomposite scintillators

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Brown, Leif O; Couture, Aaron J; Mckigney, Edward A; Muenchausen, Ross E; Del Sesto, Rico E; Gilbertson, Robert D; Mccleskey, T Mark; Reifarth, Rene

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  9. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    PubMed

    Dahle, Jessica T; Arai, Yuji

    2015-02-01

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  10. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    PubMed Central

    Dahle, Jessica T.; Arai, Yuji

    2015-01-01

    Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  11. Laser Gas Nitriding of Titanium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Dai, J. J.; Hou, S. Q.

    Titanium and titanium alloys are widely used in many fields due to some of their characteristics such as light density, high strength, and excellent corrosion resistance. However, poor mechanical performances limit their practical applications. Laser gas nitriding is a promising method used to improve the surface properties of components. Recent developments on laser gas nitriding of titanium and titanium alloys are reviewed. The processing parameters have important effects on the resulting characteristics of titanium and titanium alloys. The resulting microstructure and properties of laser gas nitrided specimens are presented. The problems to be solved and the prospects in the field of laser gas nitriding of titanium and titanium alloys are discussed.

  12. Dichloromethane photodegradation using titanium catalysts

    SciTech Connect

    Tanguay, J.F.; Suib, S.L.; Coughlin, R.W. )

    1989-06-01

    The use of titanium dioxide and titanium aluminosilicates in the photocatalytic destruction of chlorinated hydrocarbons is investigated. Titanium-exchanged clays, titanium-pillared clays, and titanium dioxide in the amorphous, anatase, and rutile forms are used to photocatalytically degrade dichloromethane to hydrochloric acid and carbon dioxide. Bentonite clays pillared by titanium dioxide are observed to be more catalytically active than titanium-exchanged clays. Clays pillared by titanium aluminum polymeric cations display about the same catalytic activity as that of titanium-exchanged clays. The rutile form of titanium dioxide is the most active catalyst studied for the dichloromethane degradation reaction. The anatase form of titanium dioxide supported on carbon felt was also used as a catalyst. This material is about five times more active than titanium dioxide-pillared clays. Degradation of dichloromethane using any of these catalysts can be enhanced by oxygen enrichment of the reaction solution or by preirradiating the catalyst with light.

  13. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  14. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  15. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  16. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  17. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  18. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  19. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  20. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  1. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  2. Controlled Synthesis of Hollow Manganese Oxide Nanocrystals.

    PubMed

    Nam, Ki Min; Oh, Kyung Hee; Ham, Kyung-Sik

    2016-02-01

    Carbon spheres have been prepared from glucose under hydrothermal conditions to facilitate the synthesis of hollow manganese oxides. The phases of manganese oxide are controlled by changing annealing temperature of the manganese monoxide on a carbon sphere template. The particles on the carbon surface get an agglomeration and make dense oxide shell during the calcination step, which result in typical hollow structures. The electrochemical properties of hollow manganese oxides have been investigated to elucidate their relative catalytic activities. PMID:27433689

  3. Elaboration and characterization of thin solid films containing cerium

    NASA Astrophysics Data System (ADS)

    Hamdi, S.; Guerfi, S.; Siab, R.

    2009-11-01

    Cerium oxide films are widely studied as a promising alternative to Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electrodeposition of Cerium containing thin films was realised on TA6V substrates from a Ce(NO3)3, 6H2O and mixed water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity appears proportional to the quantity of electricity used, as indicated by the Faraday law. Subsequent thermal treatment lead to a CeO2 coating, expected to provide an increase of TA6V oxidation resistance at high temperatures. The deposits were characterized by differential scanning calorimetry (DSC), optical and scanning electron microscopies.

  4. Dehydrogenation of isopropanol on a cerium-nickel catalyst

    NASA Astrophysics Data System (ADS)

    Platonov, E. A.; Naumkin, A. V.; Maslakov, K. I.; Yagodovskii, V. D.

    2012-12-01

    The effect of a cerium additive on the catalytic activity of a 2 wt % Ni/SiO2 catalyst is studied. It found that under both flow and static conditions the activity of (2 wt % Ni + 0.2 wt % Ce)/SiO2 catalyst is higher than that of the original sample; the increase in activity results from a sharp increase in the number of active sites. A change in the composition of the surface layer of the catalysts is analyzed by X-ray photoelectron spectroscopy. It was found that the fraction of nickel decreases and the fraction of carbon increases in cerium-containing catalyst. An explanation of the change in the elemental composition of the catalytic active sites of a nickel catalyst in the presence of cerium is proposed on the basis of XPS data and previous quantum chemical calculations.

  5. Manganese depresses rat heart muscle respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has previously been reported that moderately high dietary manganese (Mn) in combination with marginal magnesium (Mg) resulted in ultrastructural damage to heart mitochondria. Manganese may replace Mg in biological functions, including the role of enzyme cofactor. Manganese may accumulate and subs...

  6. Determination of different valence forms of cerium in glasses using potentiometric titration

    SciTech Connect

    Chesnokova, S.M.; Danilova, I.Yu.; Andreev, P.A.

    1987-09-01

    This paper describes a potentiometric method for the quantitative determination of two cerium oxide forms--cerium dioxide and dicerium trioxide--in glasses where the oxides form a major constituent. The method uses hydroquinone as a reducing agent. Cerium valences are also determined. The sensitivity of the method is tested by analyzing known synthetic mixtures simulating the composition of the glasses. The method has been used to determine the total concentration of cerium and to monitor the redox regime in glass melting furnaces during the melting of cerium-containing glasses.

  7. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  8. In situ growth of epitaxial cerium tungstate (100) thin films.

    PubMed

    Skála, Tomáš; Tsud, Nataliya; Orti, Miguel Ángel Niño; Menteş, Tevfik Onur; Locatelli, Andrea; Prince, Kevin Charles; Matolín, Vladimír

    2011-04-21

    The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate. PMID:21399780

  9. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  10. Optical and electrical studies of cerium mixed oxides

    SciTech Connect

    Sherly, T. R.; Raveendran, R.

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  11. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  12. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  13. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  14. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  15. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  16. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S; Gianotto, Anita K; McIlwain, Michael E; Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  17. Properties of Cerium Containing Lead Free Solder

    NASA Astrophysics Data System (ADS)

    Xie, Huxiao

    With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.

  18. Sprayable titanium composition

    DOEpatents

    Tracy, Chester E.; Kern, Werner; Vibronek, Robert D.

    1980-01-01

    The addition of 2-ethyl-1-hexanol to an organometallic titanium compound dissolved in a diluent and optionally containing a lower aliphatic alcohol spreading modifier, produces a solution that can be sprayed onto a substrate and cured to form an antireflection titanium oxide coating having a refractive index of from about 2.0 to 2.2.

  19. Influence of essential elements on manganese intoxication

    SciTech Connect

    Khandelwal, S.; Ashquin, M.; Tandon, S.K.

    1984-01-01

    With a view to explore the influence of essential metals in manganese intoxication, the effect of calcium, iron or zinc supplementation on the uptake of manganese and on the activity of manganese sensitive enzymes, succinic dehydrogenase and cytochrome oxidase in brain and liver of rat was investigated. The choice of the two mitochondrial enzymes was based on the fact that the mitochondria are the chief site of manganese accumulation and their activity in brain, liver and blood of rats is significantly influenced by manganese.

  20. Hydrothermal preparation of fractal dendrites: Cerium carbonate hydroxide and cerium oxide

    SciTech Connect

    Wu Mingzai; Zhang Qihua; Liu Yanmei; Fang Qingqing; Liu Xiansong

    2009-06-03

    The surfactant-assisted hydrothermal route was used to prepare fractal dendrite cerium carbonate hydroxide (CeOHCO{sub 3}) microstructures. After annealing at 600 deg. C for 4 h, the products were transformed to CeO{sub 2}. The crystal structures of the two compounds were determined by X-ray diffraction (XRD). The morphologies and microstructures were characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Room temperature photoluminescence (PL) showed that a strong ultraviolet emission at 336 nm was observed for CeOHCO{sub 3}, and that centered at 415 nm for CeO{sub 2} microstructures. Both of these emission peaks are different from those reported for CeOHCO{sub 3} and CeO{sub 2} with other shapes. In addition, the possible growth mechanism of dendrite CeOHCO{sub 3} microstructures and the role of surfactant polyvinyl pyrrolidone (PVP) were also investigated in this paper.

  1. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  2. Cerium; Crystal Structure and Position in The Periodic Table

    PubMed Central

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-01-01

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized ⇌ delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table. PMID:25227991

  3. (Hydro)peroxide ligands on colloidal cerium oxide nanoparticles.

    PubMed

    Damatov, Delina; Mayer, James M

    2016-08-11

    Anhydrous H2O2 reacts with organic colloidal solutions of ceria nanoparticles to form a stable surface peroxo/hydroperoxo species with the release of oleate capping ligands into solution. A new optical spectroscopic signature was identified for cerium-peroxo/hydroperoxo species in solution and correlated with solid-state IR spectroscopy and chemical reactivity. PMID:27468991

  4. Ce-Cu-Si (Cerium-Copper-Silicon)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C2 'Non-Ferrous Metal Systems. Part 2: Selected Copper Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Cerium-Copper-Silicon.

  5. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  6. Toxicity assessment of Titanium Dioxide and Cerium Oxide nanoparticles in Arabidopsis thaliana L.

    EPA Science Inventory

    The production and applications of nanoparticles (NP) in diverse fields has steadily increased in recent decades; however, knowledge about risks of NP to human health and ecosystems is still scarce. In this study, we assessed potential toxicity of two commercially used engineere...

  7. The genotoxicity of titanium dioxide and cerium oxide nanoparticles in vitro

    EPA Science Inventory

    The use ofengineered nanoparticles in both current and future consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. Recently, particular emphasis has been placed on particle characterization and the...

  8. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  9. Cerium as a surrogate in the plutonium immobilization waste form

    NASA Astrophysics Data System (ADS)

    Marra, James Christopher

    In the aftermath of the Cold War, approximately 50 tonnes (MT) of weapons useable plutonium (Pu) has been identified as excess. The U.S. Department of Energy (DOE) has decided that at least a portion of this material will be immobilized in a titanate-based ceramic for final disposal in a geologic repository. The baseline formulation was designed to produce a ceramic consisting primarily of a highly substituted pyrochlore with minor amounts of brannerite and hafnia-substituted rutile. Since development studies with actual actinide materials is difficult, surrogates have been used to facilitate testing. Cerium has routinely been used as an actinide surrogate in actinide chemistry and processing studies. Although cerium appeared as an adequate physical surrogate for powder handling and general processing studies, cerium was found to act significantly different from a chemical perspective in the Pu ceramic form. The reduction of cerium at elevated temperatures caused different reaction paths toward densification of the respective forms resulting in different phase assemblages and microstructural features. Single-phase fabrication studies and cerium oxidation state analyses were performed to further quantify these behavioral differences. These studies indicated that the major phases in the final phase assemblages contained point defects likely leading to their stability. Additionally, thermochemical arguments predicted that the predominant pyrochlore phase in the ceramic was metastable. The apparent metastabilty associated with primary phase in the Pu ceramic form indicated that additional studies must be performed to evaluate the thermodynamic properties of these compounds. Moreover, the metastability of this predominant phase must be considered in assessment of long-term behavior (e.g. radiation stability) of this ceramic.

  10. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  11. [Preparation and Characterization of Manganese and Fluorine Co-Modified Hydroxyapatite Composite Coating].

    PubMed

    Zhang, Xue-jiao; Hao, Min; Qiao, Hai-xia; Zhang, Xiao-yun; Huang, Yong; Nian, Xiao-feng; Pang, Xiao-feng

    2016-03-01

    Titanium and titanium alloys have been widely used as orthopedic, dental implants and cardiovascular stents owing to their superior physical properties. However, titanium surface is inherently bio-inert, thus could not form efficient osseointegration with surrounding bone tissue. Therefore, to improve the surface property of titanium implant is significantly important in clinical application. Manganese and fluorine co-doped hydroxyapatite (FMnHAP) coatings were prepared on titanium substrate by electrochemical deposition technique. The as-prepared coatings were examined by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) tests. The results indicated that the FMnHAP coatings take the morphology of nanoscale-villous-like, the composite coating becomes more compact. The FTIR test indicated that the symmetry of bending vibration modes of hydroxyl changed, simulated body fluid immersion test proved that the FMnHAP coatings had induce carbonate-apatite formation, indicating that the composite coating possess excellent biocompatibility. In the electrochemical corrosion testing, the FMnHAP coatings showed stronger corrosion resistance than pure Ti. PMID:27400506

  12. Sorption of trivalent cerium by a mixture of microbial cells and manganese oxides: Effect of microbial cells on the oxidation of trivalent cerium

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Jiang, Mingyu; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian; Tanaka, Kazuya; Utsunomiya, Satoshi; Xia, Xiaobin; Yang, Ke; He, Jianhua

    2015-08-01

    Sorption of Ce by mixtures of synthetic Mn oxides and microbial cells of Pseudomonas fluorescens was investigated to elucidate the role of microorganisms on Ce(III) oxidative migration in the environment. The mixtures, upon which Ce was sorbed following exposure to solutions containing 1.0 × 10-4 or 1.0 × 10-5 mol L-1 Ce(III), were analyzed by scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS) and micro-X-ray fluorescence (micro-XRF) at synchrotron facilities. A Ce LIII-edge micro XANES spectra analysis was also performed to determine the oxidation states of Ce adsorbed to the Mn oxides and microbial cells in the mixtures. The distribution ratios (Kd) of Ce between the individual solids and solution increased with increasing pH of the solution, and was nearly the same in mixtures containing varying amounts of microbial cells. SEM-EDS and micro-XRF analyses showed that Ce was sorbed by both MnO2 and microbial cells (1.7 × 10-1 or 3.3 × 10-1 g L-1). In addition, nano-particles containing Ce and P developed on the surface of the microbial cells. XANES analysis showed that lower fractions of Ce(III) were oxidized to Ce(IV) in the mixtures containing greater amounts of microbial cells. Micro-XANES analysis revealed that Ce was present as Ce(III) on the microbial cells and as Ce(IV) on Mn oxides. These results strongly suggest that the association of Ce(III) with the microbial cell surface and the formation of Ce phosphate nano-particles are responsible for suppressing the oxidation of Ce(III) to Ce(IV) in the mixtures.

  13. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    SciTech Connect

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  14. [Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate].

    PubMed

    Hirakawa, K

    1983-02-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because of abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972-73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. PMID:6867381

  15. Material problems arising from impurity gettering of lithium by zirconium or titanium

    NASA Astrophysics Data System (ADS)

    Ulrich Borgstedt, Hans

    Hot trapping for purification of lithium is necessary to improve the compatibility of vanadium alloys with the blanket fluid. In hot traps operated at 973 K using titanium or zirconium as getter materials mass transfer between the structural materials, 18Cr-9Ni stainless steels, and the getter materials occurs. Mainly nickel and manganese migrate from the stainless steel housing to the getter foils. The leaching of nickel and manganese causes accelerated corrosion of the structural material. The deposition of nickel on the getter surfaces leads to the formation of crystalline surface layers or diffusion of this element into the foils forming alloys with titanium or zirconium. This second phenomenon may influence the efficiency of the gettering reactions.

  16. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  17. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  18. Environmental Controls of Biological Manganese Oxidation

    NASA Astrophysics Data System (ADS)

    Belz, A. P.; Ahn, C. C.; Nealson, K. H.

    2001-12-01

    Biological catalysis of manganese oxidation represents an important contribution to global manganese cycling; biological oxidation rates are several orders of magnitude higher than those of abiotic processes. Despite recent genetics advances, ongoing behavioral studies, and a large pool of knowledge regarding manganese chemistry, the links between biology and environmental chemistry remain unresolved. We have performed experiments on batch cultures of Leptothrix discophora SS-1 to explore the physiology of biological manganese oxidation. We have further conducted spectroscopic and microscopic studies of the mechanism as manganese proceeds from the soluble Mn2+ species to the insoluble Mn(III) and Mn(IV) phases. These investigations suggest roles for aqueous chemistry, mineralogy, and microbial physiology in controlling manganese fluxes in metal-rich environments.

  19. Titanium Allergy: A Literature Review

    PubMed Central

    Goutam, Manish; Giriyapura, Chandu; Mishra, Sunil Kumar; Gupta, Siddharth

    2014-01-01

    Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium. PMID:25484409

  20. Coupled isotopic systematics of surface cerium and neodymium in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tazoe, H.; Obata, H.; Gamo, T.

    2011-04-01

    Trace metals are known to be essential elements in marine ecosystems. Radiogenic isotopes of neodymium (Nd) have been used as tracers in many recent oceanic trace metal studies, although, among rare earth elements, cerium (Ce) isotopes might be an interesting complementary tracer for particle reactive and lithogenic metals such as manganese. This study determined the 138Ce/142Ce ratios in surface waters of the Pacific Ocean and its surrounding marginal seas: the Sulu Sea, the South China Sea, the East China Sea, and the South Australian Basin. The 138Ce/142Ce and 143Nd/144Nd data are discussed in terms of the sources of rare earth elements and elemental fractionation between Ce and Nd in the marine environment. In the Western North Pacific Central Water, East China Sea, and South China Sea, isotopic compositions of Ce (ɛCe = +0.7 to 1.4) are most affected by radiogenic Ce of continental origin. In contrast, less radiogenic isotopic compositions of Ce (ɛCe = -0.4 to +0.3) in the Pacific Equatorial Water were observed locally near volcanic islands such as New Guinea Island, suggesting the influence of mantle-derived Ce. Compared with Nd, the isotopic composition of Ce showed a heterogeneous distribution in a given surface water mass, reflecting the importance of local sources. Variations of isotopic compositions and concentrations of Ce in the western Equatorial Pacific and the East China Sea suggest that lithogenic Ce is supplied and scavenged by particle-dissolved interaction near the margins. Radiogenic Ce in the Western North Pacific Central Water, which is more continental-like than Nd isotopes, suggests direct input by atmospheric dust into the North Pacific Ocean. The isotopic distribution of Ce is sensitive to aeolian supply to the surface waters of the open ocean. This unique feature indicates that the 138Ce/142Ce ratio can be a useful chemical tracer for lithogenic trace elements such as iron and manganese, which have short oceanic residence time.

  1. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    NASA Astrophysics Data System (ADS)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  2. Titanium by design: TRIP titanium alloy

    NASA Astrophysics Data System (ADS)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  3. [Clinical cases of occupational chronic manganese intoxication].

    PubMed

    Konstantinova, T N; Lakhman, O L; Katamanova, E V; Kartapol'tseva, N V; Meshcheriagin, V A; Rusanova, D V; Andreeva, O K

    2009-01-01

    Classic symptoms of manganese intoxication are very rarely seen nowadays. Clinic in Angarsk Research Institute for Occupational medicine and Human ecology registered two cases of stage I and II chronic manganese intoxication over 10 years among electric welders. The cases were diagnosed with consideration of long length of exposure to manganese with the ambient air level exceeding the MAC 1.5 times, the disease manifestation at middle age, high manganese level in serum and urine, characteristic neurologic symptoms in association with organic psychopathologic defects and polyneuropathy of limbs. PMID:19278189

  4. Negative impact of manganese on honeybee foraging

    PubMed Central

    Søvik, Eirik; Perry, Clint J.; LaMora, Angie; Barron, Andrew B.; Ben-Shahar, Yehuda

    2015-01-01

    Anthropogenic accumulation of metals such as manganese is a well-established health risk factor for vertebrates. By contrast, the long-term impact of these contaminants on invertebrates is mostly unknown. Here, we demonstrate that manganese ingestion alters brain biogenic amine levels in honeybees and fruit flies. Furthermore, we show that manganese exposure negatively affects foraging behaviour in the honeybee, an economically important pollinator. Our findings indicate that in addition to its direct impact on human health, the common industrial contaminant manganese might also have indirect environmental and economical impacts via the modulation of neuronal and behavioural functions in economically important insects. PMID:25808001

  5. The photocatalytic and cytotoxic effects of titanium dioxide particles used in sunscreen

    NASA Astrophysics Data System (ADS)

    Rampaul, Ashti

    Titanium dioxide nanoparticles are used in sunscreens to reflect UV radiation from the skin. However, titanium dioxide as anatase and rutile crystal forms is a well-known photocatalyst. The nanoparticles are surface coated with inert inorganic oxides such as silica and alumina or organics such as organosilanes or silicone polymers and more recently, have been doped with manganese oxide. These modifications to the titanium dioxide particles are purported to prevent the production of harmful reactive oxygen species. A range of sunscreens was tested with crystal form and modification type identified via XRD, Raman Spectroscopy, XPS and SSNMR. The particle modification and crystal form determined whether the particles were inert or rapidly degraded methylene blue dye, and killed or protected cultured human epithelium cells. Novel solid state Electron Paramagnetic Resonance analysis showed that the greatest amount of superoxide anions was formed during UVA irradiation of the mixed anatase and rutile crystal forms coated with an organosilane. These particles also degraded methylene blue at a similar rate to Degussa P25, a standard uncoated titanium dioxide powder and produced an increase in UVA induced apoptosis of human keratinocytes. Double Stranded Breaks were observed extensively in cells exposed to UVA irradiated mixed anatase and rutile titanium dioxide with organosilane. A new apoptotic-like cell death mechanism may have been recognised during the UVA irradiation of animal and human cells in the presence of titanium dioxide. This research concludes that mixed anatase and rutile crystal forms of titanium dioxide coated with organosilane or dimethicone may not be safe to use in sunscreen lotions. A less harmful alternative for sunscreen formulations is the manganese doped rutile particles or the alumina coated rutile powders, both of which exhibited a protective effect on cultured epithelial cells.

  6. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  7. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  8. Shock wave experiments to examine the multiphase properties of cerium

    SciTech Connect

    Jensen, Brian James

    2009-01-01

    There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake method to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.

  9. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    PubMed

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating. PMID:18047150

  10. Isomorphic phase transformation in shocked cerium using molecular dynamics

    SciTech Connect

    Dupont, Virginie; Germann, Timothy C; Chen, Shao - Ping

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  11. Antioxidant activity of levan coated cerium oxide nanoparticles.

    PubMed

    Kim, Sun-Jung; Chung, Bong Hyun

    2016-10-01

    Levan coated cerium oxide nanoparticles (LCNPs) with the enhanced antioxidant activity were successfully synthesized and characterized. Levan and their derivatives are attractive for biomedical applications attributable to their antioxidant, anti-inflammation and anti-tumor properties. LCNPs were synthesized using the one-pot and green synthesis system with levan. For production of nanoparticles, levan plays a role as a stabilizing and reducing agent. Fourier transform infrared spectroscopy (FT-IR) analysis showed that LCNPs successfully synthesized. The morphology and size of nanoparticles were confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). LCNPs have good water solubility and stability. The conjugation of levan with cerium oxide nanoparticles improved antioxidant activity. Moreover the level of ROS was reduced after treatment of LCNPs to H2O2 stimulated NIH3T3 cells. These results demonstrate that the LCNPs are useful for applying of treatment of ROS induced diseases. PMID:27312651

  12. Monomers, Dimers, and Helices: Complexities of Cerium and Plutonium Phenanthrolinecarboxylates.

    PubMed

    Cary, Samantha K; Ferrier, Maryline G; Baumbach, Ryan E; Silver, Mark A; Lezama Pacheco, Juan; Kozimor, Stosh A; La Pierre, Henry S; Stein, Benjamin W; Arico, Alexandra A; Gray, Danielle L; Albrecht-Schmitt, Thomas E

    2016-05-01

    The reaction of Ce(III) or Pu(III) with 1,10-phenanthroline-2,9-dicarboxylic acid (PDAH2) results in the formation of new f-element coordination complexes. In the case of cerium, Ce(PDA)(H2O)2Cl·H2O (1) or [Ce(PDAH)(PDA)]2[Ce(PDAH)(PDA)] (2) was isolated depending on the Ce/ligand ratio in the reaction. The structure of 2 is composed of two distinct substructures that are constructed from the same monomer. This monomer is composed of a Ce(III) cation bound by one PDA(2-) dianionic ligand and one PDAH(-) monoanionic ligand, both of which are tetradentate. Bridging by the carboxylate moieties leads to either [Ce(PDAH)(PDA)]2 dimers or [Ce(PDAH)(PDA)]1∞ helical chains. For plutonium, Pu(PDA)2 (3) was the only product isolated regardless of the Pu/ligand ratio employed in the reaction. During the reaction of plutonium with PDAH2, Pu(III) is oxidized to Pu(IV), generating 3. This assignment is consistent with structural metrics and the optical absorption spectrum. Ambiguity in the assignment of the oxidation state of cerium in 1 and 2 from UV-vis-near-IR spectra invoked the use of Ce L3,2-edge X-ray absorption near-edge spectroscopy, magnetic susceptibility, and heat capacity measurements. These experiments support the assignment of Ce(III) in both compounds. The bond distances and coordination numbers are also consistent with these assignments. 3 contains 8-coordinate Pu(IV), whereas the cerium centers in 1 and 2 are 9- and/or 10-coordinate, which correlates with the increased size of Ce(III) versus Pu(IV). Taken together, these data provide an example of a system where the differences in the redox behavior between these f elements creates more complex chemistry with cerium than with plutonium. PMID:27070401

  13. Optical Response of Shocked Cerium-Doped Lutetium Oxyorthosilicate

    SciTech Connect

    G. D. Stevens

    2003-03-01

    Shock experiments were performed in order to characterize the triboluminescent signature of cerium-doped lutetium oxyorthosilicate (LSO:Ce). This material shows prompt, nano-second timescale light emission when driven by explosive detonation. When properly applied to a surface, it may be used as a shock arrival sensor, and also for imaging the propagation of a shock front. Triboluminescent rise times, spectral content, and spatial resolution measurements are presented.

  14. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    SciTech Connect

    Khan, Shadab Ali; Ahmad, Absar

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  15. Engineered cerium oxide nanoparticles: Effects on bacterial growth and viability

    SciTech Connect

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Allison, Martin R; Brown, Steven D; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear. Further, standardized methods for assessing such interactions are lacking. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. In this study the effects of cerium oxide nanoparticles on the growth and viability of Gram-negative Escherichia coli and Shewanella oneidensis, a metal-reducing bacteria, and Gram-positive Bacillus subtilis were examined relative to particle size, growth media, pH, and dosage. A hydrothermal based synthesis procedure was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined by minimum inhibitory concentration, colony forming units, disc diffusion tests and Live/Dead assays. In growth inhibition experiments involving E. coli and B. subtilis, a clear strain and size-dependent inhibition was observed. S. oneidensis appeared to be unaffected by the cerium oxide nanoparticles. Transmission electron microscopy along with microarray-based transcriptional profiling have been used to understand the response mechanism of the bacteria. The use of multiple analytical approaches adds confidence to toxicity assessments while the use of different bacterial systems highlights the potential wide-ranging effects of

  16. Jet formation in cerium metal to examine material strength

    SciTech Connect

    Jensen, B. J. Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  17. Enhancing cerium and plutonium solubility by reduction in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Cachia, J.-N.; Deschanels, X.; Den Auwer, C.; Pinet, O.; Phalippou, J.; Hennig, C.; Scheinost, A.

    2006-06-01

    High-level radioactive wastes produced by spent fuel reprocessing containing fission and activation products as well as actinides are incorporated in a borosilicate glass. To ensure optimum radionuclide containment, the resulting glass must be as homogeneous as possible. Microscopic heterogeneity can arise from various processes including the excess loading of an element above its solubility limit. The current actinide loading limit is 0.4 wt%. Work is in progress to assess the actinide solubility in these glasses, especially for plutonium. Initially the actinides were simulated by lanthanides and hafnium. The results show that trivalent elements (La, Gd) exhibit greater solubility than tetravalent elements (Pu, Hf). Cerium is an interesting element because its oxidation state varies from IV to III depending on the process conditions, such as the temperature and redox potential of the melt. In order to quantify the solubility increase, cerium-doped glass samples were melted under reducing conditions by adding a reducing agent. The solubility observed at 1473 K increased significantly from 0.95 to 13.00 wt%. Several reducing compounds have been tested. This paper deals with this study and the application to reduce Pu(IV) to Pu(III). The reduction state was characterized by X-ray absorption spectroscopy (XANES) for plutonium and by chemical analysis for cerium. The material homogeneity was verified by optical and scanning electron microscopy. Preliminary findings concerning the reduction of Pu-doped glasses fabricated in hot cells are also discussed.

  18. Jet formation in cerium metal to examine material strength

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Cherne, F. J.; Prime, M. B.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.

    2015-11-01

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2-3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  19. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  20. High-temperature oxidation of titanium silicide coatings on titanium

    SciTech Connect

    Abba, A.; Caillet, M.; Galerie, A.

    1982-02-01

    Coatings of Ti/sub 5/Si/sub 3/ on titanium have been prepared by means of decomposition of silane SiH/sub 4/ on heated titanium ribbons. Oxidation of the coated titanium specimens was much slower than that of the noncoated ones. Gravimetric and morphological experiments allowed to propose a mechanism describing the oxidation process.

  1. Titanium Cold Spray Coatings

    NASA Astrophysics Data System (ADS)

    Ajaja, Jihane; Goldbaum, Dina; Chromik, Richard; Yue, Stephen; Rezaeian, Ahmad; Wong, Wilson; Irissou, Eric; Legoux, Jean-Gabriel

    Titanium Cold Spray Coatings Cold Spray is an emerging technology used for the deposition of coatings for many industries including aerospace. This technique allows the deposition of metallic materials at low temper-atures below their melting point. The aim of this research was to develop a test technique that can measure the degree to which a cold spray coating achieves mechanical properties similar to a traditional bulk material. Vickers hardness testing and nanoindentation were used as micro-and nano-scale measurement techniques to characterize the mechanical properties of titanium coatings, deposited at different deposition conditions, and bulk Ti. The mechanical properties of bulk titanium and titanium coatings were measured over a range of length scales, with the indentation size effect examined with Meyer's law. Hardness measurements are shown to be affected by material porosity, microstructure and coating particle bonding mechanism. Hard-ness measurements showed that Ti coatings deposited at higher gas pressures and temperatures demonstrate an indentation load response similar to bulk Ti. Key words: titanium, cold spray, Vickers hardness, nanoindentation, indentation size effect, microstructure, mechanical properties

  2. Regulation of cellular manganese and manganese transport rates in the unicellular alga Chlamydomonas

    SciTech Connect

    Sunda, W.G.; Huntsman, S.A.

    1985-01-01

    The cellular accumulation and uptake kinetics of manganese by Chlamydomonas sp. were studied in model chelate buffer systems. Cellular manganese concentrations and uptake rates were related to the computed free manganese ion concentration and were independent of the total or chelated manganese concentration. Cellular manganese was constant at about 1 mmol liter/sup -1/ of cellular volume at free manganese ion concentrations of 10/sup -7/ /sup 6/-10/sup -6/ /sup 3/ mol liter/sup -1/ and decreased below this range. Manganese uptake rates followed saturation kinetics and V/sub max/, but not K/sub s/, varied with the free manganese ion concentration in the growth medium. V/sub max/ appeared to be under negative feedback control and increased with decreasing manganese ion concentration. Variations of up to 30-fold in this parameter seemed to be instrumental in limiting the variation in cellular manganese to a sixfold range despite a 1000-fold variation in free manganese ion concentration in the growth medium.

  3. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    SciTech Connect

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  4. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide. PMID:17778807

  5. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5461 Manganese sulfate....

  6. 21 CFR 582.5452 - Manganese gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5452 Manganese gluconate....

  7. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride....

  8. 21 CFR 582.5449 - Manganese citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5449 Manganese citrate....

  9. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  10. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  11. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive... less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics generally, including cosmetics applied to the area of the eye, in amounts consistent with good...

  12. Titanium metal: extraction to application

    SciTech Connect

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  13. Mineral of the month: titanium

    USGS Publications Warehouse

    Gambogi, Joseph

    2004-01-01

    From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.

  14. Weld-bonded titanium structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Creedon, J. F. (Inventor)

    1976-01-01

    Structurally stronger titanium articles are produced by a weld-bonding technique comprising fastening at least two plates of titanium together using spotwelding and curing an adhesive interspersed between the spot-weld nuggets. This weld-bonding may be employed to form lap joints or to stiffen titanium metal plates.

  15. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: Activation by manganese

    SciTech Connect

    Brown, J.A.; Alic, M. Gold, M.H. )

    1991-07-01

    The expression of manganese peroxidase in nitrogen-limited cultures of Phanerochaete chrysosporium is dependent on Mn, and initial work suggested that Mn regulates transcription of the mnp gene. In this study, using Northern (RNA) blot analysis of kinetic, dose-response, and inhibitor experiments, the authors demonstrate unequivocally that Mn regulates mnp gene transcription. The amount of mnp mRNA in cells of 4-day-old nitrogen-limited cultures is a direct function of the concentration of Mn in the culture medium up to a maximum of 180 {mu}M. Addition of Mn to nitrogen-limited Mn-deficient secondary metabolic (4-, 5-, and 6-day-old) cultures results in the appearance of mnp mRNA within 40 min. The appearance of this message is completely inhibited by the RNA synthesis inhibitor dactinomycin but not by the protein synthesis inhibitor cycloheximide. Furthermore, the amount of mnp mRNA produced is a direct function of the concentration of added Mn. In contrast, addition of Mn to low-nitrogen Mn-deficient 2- or 3-day-old cultures does not result in the appearance of mnp mRNA. Manganese peroxidase protein is detected by specific immunoprecipitation of the in vitro translation products of poly(A) RNA isolated from Mn-supplemented (but nor from Mn-deficient) cells. All of these results demonstrate that Mn, the substrate for the enzyme, regulates mnp gene transcription via a growth-stage-specific and concentration-dependent mechanism.

  16. Groundwater, iron and manganese an unwelcome trio

    SciTech Connect

    Kothari, N. )

    1988-02-01

    Iron and manganese are natural constituents of the earth's crust and both elements create serious aesthetic problems in drinking water supplies. The occurrence of iron and manganese in groundwater, and problems arising from their presence, are reviewed. Four commonly used methods for iron and manganese removal are direct oxidation, addition of oxidation agents, ion exchange, and stabilization. These methods are discussed, as well as factors affecting iron and manganese removal, such as temperature, pH, dissolved oxygen, alkalinity, and other ions present. The above factors affect the removal methods differently and for these reasons, laboratory testing and studies should be made to evaluate the treatability of a water supply for iron and manganese removal.

  17. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  18. Titanium alkoxide compound

    DOEpatents

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  19. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    PubMed

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity. PMID:26706928

  20. Manganese oxidation by Leptothrix discophora.

    PubMed

    Boogerd, F C; de Vrind, J P

    1987-02-01

    Cells of Leptothrix discophora SS1 released Mn2+-oxidizing factors into the medium during growth in batch culture. Manganese was optimally oxidized when the medium was buffered with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) at pH 7.5. Manganese-oxidizing activity in the culture medium in which this strain had been grown previously was sensitive to heat, phosphate, Tris, NaN3, HgCl2 NaCl, sodium dodecyl sulfate, and pronase; 0.5 mol of O2 was consumed per mol of MnO2 formed. During Mn2+ oxidation, protons were liberated. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two protein-containing bands were detected in the spent culture medium. One band had an apparent molecular weight of 110,000 and was predominant in Mn2+-oxidizing activity. The second product (Mr 85,000) was only detected in some cases and probably represents a proteolytic breakdown moiety of the 110,000-Mr protein. The Mn2+-oxidizing factors were associated with the MnO2 aggregates that had been formed in spent culture medium. After solubilization of this MnO2 with ascorbate, Mn2+-oxidizing activity could be recovered. PMID:3804969

  1. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    PubMed

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes. PMID:19443107

  2. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  3. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    SciTech Connect

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  4. Sorting Titanium Welding Rods

    NASA Technical Reports Server (NTRS)

    Ross, W. D., Jr.; Brown, R. L.

    1985-01-01

    Three types of titanium welding wires identified by their resistance to current flow. Welding-wire tester quickly identifies unknown titaniumalloy wire by touching wire with test probe, and comparing meter response with standard response. Before touching wire, tip of test probe dipped into an electrolyte.

  5. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  6. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants.

    PubMed

    Barrios, Ana Cecilia; Rico, Cyren M; Trujillo-Reyes, Jesica; Medina-Velo, Illya A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO2, CA+nCeO2) bulk cerium oxide (bCeO2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500mg/kg, both the uncoated and CA+nCeO2 increased shoot length by ~9 and ~13%, respectively, while bCeO2 and CeAc decreased shoot length by ~48 and ~26%, respectively, compared with MPW (p≤0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA+nCeO2 at 250mg/kg, but reduced by bCeO2 at 62.5mg/kg, compared with MPW. At 250 and 500mg/kg, nCeO2 increased Ce in roots by 10 and 7 times, compared to CA+nCeO2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO2 nor CA+nCeO2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO2 at 62.5mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO2 on tomato plants. PMID:26672385

  7. Identification of the Charge Carriers in Cerium Phosphate Ceramics

    SciTech Connect

    Ray, Hannah L.; Jonghe, Lutgard C. De

    2010-06-02

    The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.

  8. Luminescence of cerium-doped strontium barium niobate

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Kyun; Son, Chang-Won; Chung, Sun-Ju; Tak, Sung-Jun; Lim, Ki-Soo

    2000-10-01

    The broad photoluminescent emission from Ce:Sr0.6Ba0.4Nb2O6 has been observed at 550 nm with excitation in the blue. Photoluminescent excitation spectrum has revealed a trivalent cerium absorption band that is assumed to be a 4f-5d transition. Temperature dependence of the photoluminescence spectra and its lifetimes in 15 - 365 K showed the existence of two different trap centers in the material. We have also investigated the photoluminescence during two-wave mixing experiment to study trap centers.

  9. Study of Phase Transitions in Cerium by Pressure Gauge PVDF

    NASA Astrophysics Data System (ADS)

    Zhernokletov, Mikhail; Simakov, Vladimir; Borissenok, Valery; Bragunets, Viacheslav; Volgin, Vasily; Cherne, Frank; Zocher, Marvin

    2007-06-01

    This paper examines phase transitions in cerium during shock compression using PVDF gauges. A two-wave structure was observed with loading pressures of 4GPa - 12GPa. The wave structure consists of leading isentropic compression wave followed by a shock wave. This wave structure was formed as a result of the isomorphic (γ-α) phase transition. The wave profiles exhibited no peculiarities resulting from the polymorphic transition (α-ɛ) as predicted by Elkin et. al [Proceedings of the International Conference VII Khariton Readings, Sarov 2005, p. 116].

  10. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  11. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  12. Manganese concentrate usage in steelmaking

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhihina, I. D.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands. The paper describes experiments on effects of metal deoxidizer composition, component proportion, pelletizing mixture, particle size distribution of basic materials and flux on manganese recovering from oxides under direct melting.

  13. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. PMID:27343939

  14. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOEpatents

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  15. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture of... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and...

  16. A manganese oxidation model for rivers

    SciTech Connect

    Hess, G.W. ); Kim, Byung R. ); Roberts, P.J.W. )

    1989-04-01

    The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the los pH conditions, or their combinations.

  17. Influence of manganese on sintering processes in the Ti-Fe system. 1. Volume changes in sintering of Ti-Fe-Mn compacts

    SciTech Connect

    Kivalo, L.I.; Skorokhod, V.V.

    1986-05-01

    An investigation was made of the influence of manganese on the sintering processes in the titanium-iron system in the area of temperatures of existence of the first ternary eutectic point. Powders of titanium obtained by hydride-calcium reduction, ferromanganese, and types PZh4M2 and V3 iron were used. A figure presents data on the character of the volume changes in sintering of compacts of mixtures of titanium and iron powders with and without manganese. The x-ray analysis was made on a DRON-0.5 instrument. The profiles of intensities of the x-ray lines of Ti(Fe, Mn) phase present in specimens of mixture II are shown. With an increase in sintering temperature the line, which is diffuse at 1050 degrees C, gradually narrows, and at 1250 degrees C a doublet appears. At the time, the lattice parameter changes from 0.2976 for unalloyed TiFe to 0.2991 nm for Ti(Fe, Mn) obtained at 1250 degrees C. To obtain Ti(Fe, Mn) compounds of the required composition, it is necessary to take into account the amount of evaporated manganese.

  18. Adenocarcinoma cells isolated from patients in the presence of cerium and transferrin in vitro

    PubMed Central

    Zende-Del, A; Gholami, MR; Abdollahpour, F; Ahmadvand, H

    2015-01-01

    Aim: Cerium as a trace element in the periodic table is a member of the lanthanide group. Cerium ionic radius and its binding properties are similar to ferric ions, which may be bound to transferrin. So it can be considered as a competitive element to iron and can interfere with iron absorption. The aim of this study was to investigate the inhibitory effect of Cerium in presence of transferrin on gastric adenocarcinoma cells in vitro. Methods: The adenocarcinoma cells were obtained from patients after a pathological confirmation, then they were cultured in DMEM environment and cytotoxic effect of different concentrations of cerium were measured (0.1, 1, 10 and 100 µM) in the presence and absence of transferrin, on periods 24 and 48 hours by MTT and LDH cytotoxic assay. Results: The results of MTT and LDH measurements showed that Cerium itself has a cytotoxic effect on cancer cells isolated from the patient as well as it increases significantly in the presence of transferrin carrying a mortality rate of cancer cells (P <.05). Conclusion: Cerium is competitive element in the mechanism of iron absorption and can interfere and inhibit the growth of adenocarcinoma cancer cells; also, the use of Cerium and transferrin simultaneously may cause a greater inhibitory effect. PMID:26664465

  19. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    SciTech Connect

    Menaka; Patra, Rajkumar; Ghosh, Santanu; Ganguli, Ashok K.

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  20. An environmentally compliant cerium-based conversion coating for aluminum protection

    NASA Astrophysics Data System (ADS)

    Lin, Xuan

    Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.

  1. Influence of cerium additions on high-temperature-impact ductility and fracture behavior of iridium alloys

    SciTech Connect

    Gubbi, A.N.; Zee, R.H.; George, E.P.; Ohriner, E.K.

    1997-10-01

    Radioisotope thermoelectric generators (RTGs), used for supplying electric power to interplanetary space missions, utilize the energy liberated due to decay of the radioisotope fuel. The material used for cladding the fuel pellets is an iridium-based alloy developed at Oak Ridge National Laboratory, which contains nominally 0.3 wt pct W, 60 wppm Th, and 50 wppm Al, generally known as DOP-26. High-temperature tensile impact testing was carried out on Ir + 0.3 wt pct W alloys doped with cerium and thorium individually, and with cerium and thorium together. Impact ductility was evaluated as a function of grain size and test temperature. Cerium by itself was not as effective as thorium in improving the grain boundary cohesion, even though it segregated more strongly than thorium to the grain boundaries. This lower grain boundary cohesion was responsible for lower impact ductility and higher brittle-to-ductile transition temperature of cerium-doped alloys compared to those of the thorium- or thorium plus cerium-doped alloys. Reduction in thorium content by a factor of 5 (from 50 to 10 appm) in the bulk did not result in any significant reduction in high-temperature impact ductility or an increase in the brittle-to-ductile transition temperature as long as sufficient cerium was added to provide grain refinement. Grain boundary strengths of thorium- and thorium plus cerium-doped alloys were almost identical.

  2. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis

    SciTech Connect

    Pei, L.Z. Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-15

    Highlights: • Cerium titanate nanorods have been synthesized by a simple hydrothermal process. • The size of the cerium titanate nanorods can be controlled by growth conditions. • Cerium titanate nanorods exhibit good photocatalytic activities for methyl blue. - Abstract: Cerium titanate nanorods have been prepared via a hydrothermal process using sodium dodecyl sulfate (SDS) as the surfactant. The cerium titanate nanorods have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and ultraviolet–visible (UV–vis) diffuse reflectance spectrum. XRD shows that the nanorods are composed of CeTi{sub 21}O{sub 38} phase. Electron microscopy observations indicate that the nanorods have good single crystalline nature. The diameter and length of the nanorods are about 50–200 nm and 1–2 μm, respectively. Cerium titanate nanorods have a band gap of 2.65 eV. The photocatalytic activities of the nanorods have been investigated by degrading methylene blue (MB) under visible light irradiation. MB solution with the concentration of 10 mg L{sup −1} can be degraded totally with the irradiation time increasing to 240 min. Cerium titanate nanorods exhibit great potential in photocatalytic degradation of MB under visible light irradiation.

  3. Incorporation of Cerium and Neodymium in Uranyl Phases

    SciTech Connect

    Kim, C W.; Wronkiewicz, David J.; Finch, R J.; Buck, Edgar C.

    2006-07-15

    The potential for incorporating rare earth elements (REE) into/onto crystalline compounds has been evaluated by precipitating uranyl phases from aqueous solutions containing either cerium or neodymium. These REEs serve both as monitors for evaluating the potential repository behavior of REE radionuclides, and as surrogate elements for actinides (e.g., Ce4 and Nd3 for Pu4 and Am3, respectively). The present experiments examined the behavior of REE in the presence of ianthinite Formula Not Shown, becquerelite (Ca(UO2)6O4(OH)6(H2O)8), and other uranyl hydroxide compounds commonly noted as alteration products during the corrosion of UO2, spent nuclear fuel, and naturally occurring uraninite. The results of these experiments demonstrate that significant quantities of both cerium (Kd=1020) and neodymium (Kd=840) are incorporated within the uranium alteration phases and suggest that ionic substitution and/or adsorption to the uranyl phases can play a key role in the limiting the mobility of REE (and by analogy, actinide elements) in a nuclear waste repository.

  4. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  5. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration.

    PubMed

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N

    2015-08-01

    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer. PMID:26165149

  6. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.

    PubMed

    Kim, H; Johnson, J W

    1999-02-01

    Orthodontic wires containing nickel have been implicated in allergic reactions. The potential for orthodontic wires to cause allergic reactions is related to the pattern and mode of corrosion with subsequent release of metal ions, such as nickel, into the oral cavity. The purpose of this study was to determine if there is a significant difference in the corrosive potential of stainless steel, nickel titanium, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium orthodontic wires. At least two specimens of each wire were subjected to potentiostatic anodic dissolution in 0.9% NaCl solution with neutral pH at room temperature. Using a Wenking MP 95 potentiostat and an electrochemical corrosion cell, the breakdown potential of each wire was determined. Photographs were taken of the wire speci mens using a scanning electron microscope, and surface changes were qualitatively evaluated. The breakdown potentials of stainless steel, two nickel titanium wires, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium were 400 mV, 300 mV, 750 mV, 300 mV, 1800 mV, and >2000 mV, respectively. SEM photographs revealed that some nickel titanium and stainless steel wires were susceptible to pitting and localized corrosion. The results indicate that corrosion occurred readily in stainless steel. Variability in breakdown potential of nickel titanium alloy wires differed across vendors' wires. The nitride coating did not affect the corrosion of the alloy, but epoxy coating decreased corrosion. Titanium wires and epoxy-coated nickel titanium wires exhibited the least corrosive potential. For patients allergic to nickel, the use of titanium or epoxy-coated wires during orthodontic treatment is recommended. PMID:10022183

  7. Hydride precipitation in titanium

    SciTech Connect

    Numakura, H.; Kowia, M.

    1984-10-01

    The crystal structure and morphology of hydride (deuteride) precipitates are investigated on ..cap alpha..-titanium specimens containing 1-3 at.% H or D by transmission electron microscopy. The hydride is found to have a face-centered tetragonal structure (c/a = 1.09) with an ordered arrangement of hydrogen, being isomorphous to ..gamma..-zirconium hydride. Two types of precipitation mode are observed with the habit planes (0110) and near (0225).

  8. Titanium Honeycomb Panel Testing

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  9. Synthesis, characterization and photocatalytic study of graphene oxide and cerium co-doped in TiO2

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Quan; Zeng, Liping; He, Deliang

    2016-02-01

    The nanocomposite of titanium dioxide (TiO2) combined with graphene oxide (GO) and cerium (Ce) was successfully synthesized via sol-gel method followed by calcining at 300 °C for 2 h. The composite was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) under the irradiation of xenon lamp. This study demonstrated that GO and Ce co-doped in TiO2 could broaden absorption edge to the visible light and increase surface area of samples. SEM observation showed that addition of Ce could solve the problem of the agglomeration of GO under the same experimental conditions. Moreover, the MB photocatalytic degradation rate of the composite with GO doped for 0.2 % and Ce doped for 0.6 % (mass ratio) was up to 97.7 %, which was largely attributed to the synergistic effects in the GO, Ce and TiO2 system.

  10. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  11. Toenail, Blood and Urine as Biomarkers of Manganese Exposure

    PubMed Central

    Laohaudomchok, Wisanti; Lin, Xihong; Herrick, Robert F.; Fang, Shona C.; Cavallari, Jennifer M.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Objective This study examined the correlation between manganese exposure and manganese concentrations in different biomarkers. Methods Air measurement data and work histories were used to determine manganese exposure over a workshift and cumulative exposure. Toenail samples (n=49), as well as blood and urine before (n=27) and after (urine, n=26; blood, n=24) a workshift were collected. Results Toenail manganese, adjusted for age and dietary manganese, was significantly correlated with cumulative exposure in months 7-9, 10-12, and 7-12 before toenail clipping date, but not months 1-6. Manganese exposure over a work shift was not correlated with changes in blood nor urine manganese. Conclusions Toenails appeared to be a valid measure of cumulative manganese exposure 7 to 12 months earlier. Neither change in blood nor urine manganese appeared to be suitable indicators of exposure over a typical workshift. PMID:21494156

  12. Autonomic function in manganese alloy workers

    SciTech Connect

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A.; Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  13. Synthesis of cerium rich intermetallics using molten metal eutectics

    NASA Astrophysics Data System (ADS)

    Tucker, Patricia Christine

    Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4. Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K. Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was

  14. Manganese mineralogy and diagenesis in the sedimentary rock record

    NASA Astrophysics Data System (ADS)

    Johnson, Jena E.; Webb, Samuel M.; Ma, Chi; Fischer, Woodward W.

    2016-01-01

    Oxidation of manganese (II) to manganese (III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction is promoted by a variety of chemical species, these ancient manganese deposits are often significantly more reduced than modern environmental manganese-rich sediments. We document the impacts of manganese reduction and the mineral phases that form stable manganese deposits from seven sedimentary examples spanning from modern surface environments to rocks over 2 billion years old. Integrating redox and coordination information from synchrotron X-ray absorption spectroscopy and X-ray microprobe imaging with scanning electron microscopy and energy and wavelength-dispersive spectroscopy, we find that unlike the Mn(IV)-dominated modern manganese deposits, three manganese minerals dominate these representative ancient deposits: kutnohorite (CaMn(CO3)2), rhodochrosite (MnCO3), and braunite (Mn(III)6Mn(II)O8SiO4). Pairing these mineral and textural observations with previous studies of manganese geochemistry, we develop a paragenetic model of post-depositional manganese mineralization with kutnohorite and calcian rhodochrosite as the earliest diagenetic mineral phases, rhodochrosite and braunite forming secondarily, and later alteration forming Mn-silicates.

  15. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    PubMed

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected. PMID:12552889

  16. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    NASA Astrophysics Data System (ADS)

    Raj, S. Gokul; Mathivanan, V.; Kumar, G. Ramesh; Yathavan, S.; Mohan, R.

    2016-05-01

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr0.6B0.4Nb2O6) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce+ ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  17. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect

    2012-01-01

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  18. Coordination between manganese and nitrogen within the ligands in the manganese complexes facilitates the reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations.

    PubMed

    Li, Shuqin; Chen, Guiying; Han, Guangye; Ling, Lin; Huang, Deguang; Khorobrykh, A A; Zharmukhamedov, S K; Liu, Qiutian; Klimov, V V; Kuang, Tingyun

    2006-09-01

    The water-oxidizing complex (WOC) within photosystem II (PSII) can be reconstituted with synthetic manganese complexes by a process called photoactivation; however, the key factors affecting the efficiency of synthetic manganese complexes in reconstitution of electron transport and oxygen evolution activity in manganese-depleted PSII remain unclear. In the present study, four complexes with different manganese coordination environments were used to reconstitute the WOC, and an interesting relationship was found between the coordination environment of the manganese atom in the complexes and their efficiency in restoring electron transport and oxygen evolution. If Mn(II) is coordinated to nitrogen atoms within the ligand, it can restore significant rates of electron transport and oxygen evolution; however, if the manganese atom is coordinated only to oxygen atoms instead of nitrogen atoms, it has no capability to restore electron transport and oxygen evolution. So, our results demonstrate that the capability of manganese complexes to reconstitute the WOC is mainly determined by the coordination between nitrogen atoms from ligands and the manganese atom. It is suggested from our results that the ligation between the nitrogen atom and the manganese atom within the manganese complex facilitates the photoligation of the manganese atom to histidyl residues on the apo-protein in manganese-depleted PSII during photoactivation. PMID:16791637

  19. Titanium fasteners. [for aircraft industry

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  20. Titanium: light, strong, and white

    USGS Publications Warehouse

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  1. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 26. TITANIUM INDUSTRY

    EPA Science Inventory

    The titanium industry produces two principal products, titanium metal and titanium dioxide. For purposes of analyses, therefore, the industry is considered in two segments: titanium metal production and titanium dioxide production. Two industrial process flow diagrams and eleven ...

  2. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese

    NASA Technical Reports Server (NTRS)

    Aguilar, C.; Nealson, K. H.

    1998-01-01

    Oneida Lake, New York is a eutrophic freshwater lake known for its abundant manganese nodules and a dynamic manganese cycle. Temporal and spatial distribution of soluble and particulate manganese in the water column of the lake were analyzed over a 3-year period and correlated with other variables such as oxygen, pH, and temperature. Only data from 1988 are shown. Manganese is removed from the water column in the spring via conversion to particulate form and deposited in the bottom sediments. This removal is due to biological factors, as the lake Eh/pH conditions alone can not account for the oxidation of the soluble manganese Mn(II). During the summer months the manganese from microbial reduction moves from the sediments to the water column. In periods of stratification the soluble Mn(II) builds up to concentrations of 20 micromoles or more in the bottom waters. When mixing occurs, the soluble Mn(II) is rapidly removed via oxidation. This cycle occurs more than once during the summer, with each manganese atom probably being used several times for the oxidation of organic carbon. At the end of the fall, whole lake concentrations of manganese stabilize, and remain at about 1 micromole until the following summer, when the cycle begins again. Inputs and outflows from the lake indicate that the active Mn cycle is primarily internal, with a small accumulation each year into ferromanganese nodules located in the oxic zones of the lake.

  3. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future. PMID:26062467

  4. Study of high performance alloy electroforming. [nickel manganese and nickel cobalt manganese alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1984-01-01

    Nickel-manganese alloy electrodeposits from an electrolyte containing more manganese ion than previously used is being evaluated at two bath operating temperatures with a great variety of pulse plating conditions. Saccharine was added as a stress reducing agent for the electroforming of several of the samples with highest manganese content. All specimens for mechanical property testing have been produced but are not through the various heat treatments as yet. One of the heat treatment will be at 343 C (650 F), the temperature at which the MCC outer electroformed nickel shell is stress relieved. A number of retainer specimens from prior work have been tested for hardness before and after heat treatment. There appears to be a fairly good correlation between hardness and mechanical properties. Comparison of representative mechanical properties with hardnesses are made for nickel-manganese electrodeposits and nickel-cobalt-manganese deposits.

  5. Manganese-electrolysed slag treatment: bioleaching of manganese by Fusarium sp.

    PubMed

    Cao, Jian-Bing; Li, Xiao-Ming; Ouyang, Yu-Zhu; Zheng, Wei; Wang, Dong-Bo; Shen, Ting-Ting; Yue, Xiu; Yang, Qia

    2012-06-01

    A fungi strain named Fusarium sp. was isolated from manganese-electrolysed slag by using a gradient dilution spread plate method, identified by 26S RNA sequence analysis and phylogenetic tree analysis, and explored for the bioleaching capacity to manganese (II) from manganese-electrolysed slag in liquid mineral medium under different environmental conditions, including system temperature, incubator rotation speed and initial pH value. DNA sequence and phylogenetic analysis indicated the name of this fungi strain, that is, Fusarium sp., and higher bioleaching efficiencies (71.6%) of manganese by this fungi were observed when the bioleaching was carried out under the optimized conditions as follows: contact time: 72 h; system temperature: 28 degrees C; inoculums concentration: 2% (v/v); incubator rotation speed: 150 rpm; pH 4.0. Because of its low cost, environment friendliness and better efficiency, the bioleaching technique will have a significant impact on manganese-electrolysed slag pollution mitigation. PMID:22856303

  6. Titanium Optics for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.; Rawlin, Vincent K.

    1999-01-01

    Ion thruster total impulse capability is limited, in part, by accelerator grid sputter erosion. A development effort was initiated to identify a material with a lower accelerator grid volumetric sputter erosion rate than molybdenum, but that could utilize the present NSTAR thruster grid design and fabrication techniques to keep development costs low, and perform as well as molybdenum optics. After comparing the sputter erosion rates of several atomic materials to that of molybdenum at accelerator voltages, titanium was found to offer a 45% reduction in volumetric erosion rates. To ensure that screen grid sputter erosion rates are not higher at discharge chamber potentials, titanium and molybdenum sputter erosion rates were measured at these potentials. Preliminary results showed only a slightly higher volumetric erosion rate for titanium, so that screen grid erosion is insignificant. A number of material, thermal, and mechanical properties were also examined to identify any fabrication, launch environment, and thruster operation issues. Several titanium grid sets were successfully fabricated. A titanium grid set was mounted onto an NSTAR 30 cm engineering model ion thruster and tested to determine optics performance. The titanium optics operated successfully over the entire NSTAR power range of 0.5 to 2.3 kW. Differences in impingement-limited perveances and electron backstreaming limits were found to be due to a larger cold gap for the titanium optics. Discharge losses for titanium grids were lower than those for molybdenum, likely due to a slightly larger titanium screen grid open area fraction. Radial distributions of beam current density with titanium optics were very similar to those with molybdenum optics at all power levels. Temporal electron backstreaming limit measurements showed that titanium optics achieved thermal equilibrium faster than molybdenum optics.

  7. Reactive sputtering of titanium diboride and titanium disilicide

    SciTech Connect

    Maya, L.; Vallet, C.E.; Fiedor, J.N.

    1997-07-01

    Nanocomposite films of titanium nitride in either boron nitride or silicon nitride matrices were prepared by reactive sputtering of titanium diboride or titanium disilicide targets in a nitrogen plasma. These films were expected to have high dielectric constants and in the case of the silicon nitride matrix high hardness. The films were characterized by a variety of physicochemical techniques including photoelectron spectroscopy, Rutherford backscattering spectroscopy, RBS, and transmission electron microscopy. The films derived from titanium diboride incorporated oxygen as an inadvertent impurity in the form of titanium monoxide and dioxide. A silicon oxynitride underlayer is suggested by the RBS analysis of the silicon nitride based film, apparently arising from exposure of the native oxide on silicon to the nitrogen plasma. Capacitance measurements of the films showed moderately high dielectric constants of about 30{endash}60 and a hardness of 11 GPa for the silicon nitride nanocomposite. {copyright} {ital 1997 American Vacuum Society.}

  8. The diagnosis of manganese-induced parkinsonism.

    PubMed

    Cersosimo, Maria G; Koller, William C

    2006-05-01

    Parkinsonism is a clinical syndrome consisting of tremor, bradykinesia, rigidity, gait, balance problems, in addition to various non-motor symptoms. There are many causes of parkinsonism such as neurodegenerative disease, drugs, vascular causes, structural lesions, infections, and toxicants. Parkinson's disease, or idiopathic parkinsonism, is the most common form of parkinsonism observed in the clinic. There is degeneration of the substantia nigra, pars compacta, which results in loss of striatal dopamine. Parkinson's disease is a slowly progressive condition in which there is a dramatic and sustained responsiveness to levodopa therapy. Manganese is an essential trace element that can be associated with neurotoxicity. Hypermanganism can occur in a variety of clinical settings. The clinical symptoms of manganese intoxication include non-specific complaints, neurobehavioral changes, parkinsonism, and dystonia. Although the globus pallidus is the main structure of damage, other basal ganglia areas can also be involved. MRI scans may show globus pallidus changes during (and for a short period after) exposure. Fluorodopa PET scans that assess the integrity of the substantia nigra dopaminergic system are abnormal in Parkinson's disease. However, these scans re-reported to be normal in a few cases studied with manganese-induced parkinsonism. The parkinsonism due to manganese may have some clinical features that occur less commonly in Parkinson's disease, such as kinetic tremor, dystonia, specific gait disturbances, and early mental, balance and speech changes. The clinical signs tend to be bilateral whereas Parkinson's disease begins on one side of the body. Patients with manganese-induced parkinsonism may be younger at the onset of the disease than with Parkinson's disease. Lastly, there appears to be a lack of response to levodopa therapy in manganese-induced parkinsonism. In summary it may be possible to differentiate manganese-induced parkinsonism from Parkinson

  9. Room-temperature ferromagnetism in cerium dioxide powders

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, R. M.; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-01

    Room-temperature ferromagnetism is detected in a CeO2 powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO2 sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  10. Room-temperature ferromagnetism in cerium dioxide powders

    SciTech Connect

    Rakhmatullin, R. M. Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  11. Cardiovascular Toxicities Upon Manganese Exposure

    PubMed Central

    Jiang, Yueming; Zheng, Wei

    2014-01-01

    Manganese (Mn)-induced Parkinsonism has been well documented; however, little attention has been devoted to Mn-induced cardiovascular dysfunction. This review summarizes literature data from both animal and human studies on Mn’s effect on cardiovascular function. Clinical and epidemiological evidence suggests that the incidence of abnormal electrocardiogram (ECG) is significantly higher in Mn-exposed workers than that in the control subjects. The main types of abnormal ECG include sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinister megacardia, and ST-T changes. The accelerated heartbeat and shortened P-R interval appear to be more prominent in female exposed workers than in their male counterparts. Mn-exposed workers display a mean diastolic blood pressure that is significantly lower than that of the control subjects, especially in the young and female exposed workers. Animal studies indicate that Mn is capable of quickly accumulating in heart tissue, resulting in acute or sub-acute cardiovascular disorders, such as acute cardiodepression and hypotension. These toxic outcomes appear to be associated with Mn-induced mitochondrial damage and interaction with the calcium channel in the cardiovascular system. PMID:16382172

  12. Titanium minerals of placer deposits as a source for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The

  13. Correction: Single-molecule magnet behaviour in polynuclear assembly of trivalent cerium ions with polyoxomolybdates.

    PubMed

    Khélifa, A Ben; Belkhiria, M Salah; Huang, G; Freslon, S; Guillou, O; Bernot, K

    2016-06-01

    Correction for 'Single-molecule magnet behaviour in polynuclear assembly of trivalent cerium ions with polyoxomolybdates' by A. Ben Khélifa, et al., Dalton Trans., 2015, 44, 16458-16464. PMID:27161299

  14. Recent advances (2010-2015) in studies of cerium oxide nanoparticles' health effects.

    PubMed

    Li, Yan; Li, Peng; Yu, Hua; Bian, Ying

    2016-06-01

    Cerium oxide nanoparticles, widespread applied in our life, have attracted much concern for their human health effects. However, most of the works addressing cerium oxide nanoparticles toxicity have only used in vitro models or in vivo intratracheal instillation methods. The toxicity studies have varied results and not all are conclusive. The information about risk assessments derived from epidemiology studies is severely lacking. The knowledge of occupational safety and health (OSH) for exposed workers is very little. Thus this review focuses on recent advances in studies of toxicokinetics, antioxidant activity and toxicity. Additionally, aim to extend previous health effects assessments of cerium oxide nanoparticles, we summarize the epidemiology studies of engineered cerium oxide nanoparticles used as automotive diesel fuel additive, aerosol particulate matter in air pollution, other industrial ultrafine and nanoparticles (e.g., fumes particles generated in welding and flame cutting processes). PMID:27088851

  15. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  16. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  17. Titanium minerals for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, O.; Ozhogina, E.; Ponaryadov, A.; Golubeva, I.

    2016-04-01

    The mineral composition of titanium minerals of modern coastal-marine placer in Stradbroke Island (Australia) and Pizhma paleoplacer in Middle Timan (Russia) has been presented. The physical features of titanium minerals and their modification methods were shown. Photocatalysts on the basis of the Pizhma leucoxene were developed for water purification.

  18. Interaction of Perchloroethylene with Cerium Oxide in Three-Way Catalysts

    PubMed Central

    Rupp, Erik C.; Betterton, Eric A.; Arnold, Robert G.

    2010-01-01

    The role of cerium oxide on direct oxidation of perchloroethylene (PCE) by a three-way catalyst was explored. In the absence of an external oxidizing agent, PCE was oxidized over an alumina supported Pt/Rh three-way catalyst. We hypothesize that the chlorine atoms in the adsorbed PCE interact with oxygen in CeO2, reducing the cerium to create CeCl3. PMID:21218178

  19. Construction of heterocyclic structures by trivalent cerium salts promoted bond forming reactions.

    PubMed

    Properzi, Roberta; Marcantoni, Enrico

    2014-02-01

    Cerium(III) salts have recently gained increasing attention in the synthetic community, owing to the powerful features that are reviewed in detail in this tutorial. This review reports significant examples of cerium(III) promoted synthesis of heterocyclic structures, initially dealing with the synthesis of five- and six-membered ring nitrogen containing heterocycles, then describing the preparation of their oxygenated analogues and finally discussing the achievement of seven-membered rings and mixed heterocyclic motifs. PMID:24217370

  20. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  1. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  2. Interplay of spin-orbit and entropic effects in cerium

    SciTech Connect

    Lanata, Nicola; Yao, Yong-Xin; Wang, Cai-Zhuang; Ho, Kai-Ming; Kotliar, Gabriel

    2014-10-01

    We perform first-principles calculations of elemental cerium and compute its pressure-temperature phase diagram, finding good quantitative agreement with the experiments. Our calculations indicate that, while a signature of the volume-collapse transition appears in the free energy already at low temperatures, at higher temperatures this signature is enhanced because of the entropic effects, and originates an actual thermodynamical instability. Furthermore, we find that the catalyst determining this feature is—in all temperature regimes—a pressure-induced effective reduction of the f-level degeneracy due to the spin-orbit coupling. Our analysis suggests also that the lattice vibrations might be crucial in order to capture the behavior of the pressure-temperature transition line at large temperatures.

  3. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    SciTech Connect

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  4. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  5. Static and dynamic high pressure experiments on cerium

    SciTech Connect

    Jensen, Brian J; Velisavljevic, Nenad; Cherne, Frank J; Stevens, Gerald; Tschauner, Oliver

    2011-01-25

    There is a scientific need to obtain dynamic data to develop and validate multi phase equation-of-state (EOS) models for metals. Experiments are needed to examine the relevant pure phases, to locate phase boundaries and the associated transition kinetics, and other material properties such as strength. Cerium is an ideal material for such work because it exhibits a complex multiphase diagram at relatively moderate pressures readily accessible using standard shock wave methods. In the current work, shock wave (dynamic) and diamond anvil cell (static) experiments were performed to examine the high pressure, low temperature region of the phase diagram to obtain EOS data and to search for the {alpha}-{var_epsilon} boundary. Past work examining the shock-melt transition and the low-pressure {gamma}-{alpha} transition will be presented in brief followed by details of recent results obtained from DAC and double-shock experiments.

  6. Theoretical studies of the high pressure phases in cerium

    SciTech Connect

    Wills, J.M.; Eriksson, O.; Boring, A.M. )

    1991-10-14

    We present full potential linear-muffin-tin-orbital calculations based on the local-density approximation, which reproduce the {ital T}=0 phase diagram of cerium (Ce), including the volumes and transition pressures for both the {alpha}{r arrow}{alpha}{prime}, and the {alpha}{prime}{r arrow}bct transitions. The {alpha}{r arrow}{alpha}{prime} transition is largely determined by a balance of two competing terms: a Madelung term and a 4{ital f} one-electron term. The {alpha}{prime}{r arrow}bct transition is driven by both 4{ital f} and 5{ital d} partial-wave contributions. This is the first successful, {ital ab} {ital initio} calculation of a crystallographic ({ital T}=0) phase diagram of an {ital f}-electron system.

  7. Deposition and investigation of lanthanum cerium hexaboride thin films

    NASA Astrophysics Data System (ADS)

    Kuzanyan, A. S.; Harutyunyan, S. R.; Vardanyan, V. O.; Badalyan, G. R.; Petrosyan, V. A.; Kuzanyan, V. S.; Petrosyan, S. I.; Karapetyan, V. E.; Wood, K. S.; Wu, H.-D.; Gulian, A. M.

    2006-09-01

    Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 °C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ( T) and S( T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed.

  8. A tetravalent cerium complex containing a Ce=O bond.

    PubMed

    So, Yat-Ming; Wang, Guo-Cang; Li, Yang; Sung, Herman H-Y; Williams, Ian D; Lin, Zhenyang; Leung, Wa-Hung

    2014-02-01

    Whereas terminal oxo complexes of transition and actinide elements are well documented, analogous lanthanide complexes have not been reported to date. Herein, we report the synthesis and structure of a cerium(IV) oxo complex, [CeO(LOEt )2 (H2 O)]⋅MeC(O)NH2 (1; LOEt (-) =[Co(η(5) -C5 H5 ){P(O)(OEt)2 }3 ](-) ), featuring a short CeO bond (1.857(3) Å). DFT calculations indicate that the hydrogen bond to cocrystallized acetamide plays a key role in stabilizing the CeO moiety of 1 in the solid state. Complex 1 exhibits oxidizing and nucleophilic reactivity. PMID:24403106

  9. EPDM composite membranes modified with cerium doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  10. An Alkali Metal-Capped Cerium(IV) Imido Complex.

    PubMed

    Solola, Lukman A; Zabula, Alexander V; Dorfner, Walter L; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-06-01

    Structurally authenticated, terminal lanthanide-ligand multiple bonds are rare and expected to be highly reactive. Even capped with an alkali metal cation, poor orbital energy matching and overlap of metal and ligand valence orbitals should result in strong charge polarization within such bonds. We expand on a new strategy for isolating terminal lanthanide-ligand multiple bonds using cerium(IV) complexes. In the current case, our tailored tris(hydroxylaminato) ligand framework, TriNOx(3-), provides steric protection against ligand scrambling and metal complex oligomerization and electronic protection against reduction. This strategy culminates in isolation of the first formal Ce═N bonded moiety in the complex [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)], whose Ce═N bond is the shortest known at 2.119(3) Å. PMID:27163651

  11. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    PubMed Central

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects. PMID:22613087

  12. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    SciTech Connect

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-15

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 deg. C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 deg. C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles. - Graphical abstract: The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated using small angle X-ray scattering, dynamic light scattering and high-resolution transmission electron microscopy. Catalytic activity of ceria nanoparticles was tested in soot combustion reaction indicating size-dependent reactivity.

  13. Widespread distribution of ability to oxidize manganese among freshwater bacteria.

    PubMed

    Gregory, E; Staley, J T

    1982-08-01

    Manganese-oxidizing heterotrophic bacteria were found to comprise a significant proportion of the bacterial community of Lake Washington (Seattle, Wash.) and Lake Virginia (Winter Park, Fla.). Identification of these freshwater bacteria showed that members of a variety of genera are capable of oxidizing manganese. Isolates maintained in the laboratory spontaneously lost the ability to oxidize manganese. A direct correlation was found between the presence of plasmid DNA and the ability of the organism to oxidize manganese. PMID:16346084

  14. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata. PMID:27018915

  15. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  16. Electrorotation of titanium microspheres.

    PubMed

    Arcenegui, Juan J; Ramos, Antonio; García-Sánchez, Pablo; Morgan, Hywel

    2013-04-01

    Electrorotation (ROT) data for solid titanium micrometer-sized spheres in an electrolyte are presented for three different ionic conductivities, over the frequency range of 10 Hz to 100 kHz. The direction of rotation was found to be opposite to the direction of rotation of the electric field vector (counterfield electrorotation), with a single rotation peak. The maximum rotation rate occurs at a frequency of the order of the reciprocal RC time constant for charging the particle double layer capacitance through the resistor of the electrolyte bulk. A model for the electrical torque acting on a metallic sphere is presented, using a constant phase element impedance to describe the metal/electrolyte interface. The titanium spheres are much denser than the electrolyte and rest on the bottom substrate. Therefore, the electrical and viscous torques near a wall are considered in the analysis. Good agreement is found between the predicted and measured rotational speed as a function of frequency. Theory shows that there is no effect of induced charge electroosmotic flow on the ROT, as observed experimentally. PMID:23348799

  17. Biocompatibility of Titanium

    NASA Astrophysics Data System (ADS)

    Namavar, Fereydoon; Sabirianov, Renat; Marton, Denes; Rubinstein, Alexander; Garvin, Kevin

    2012-02-01

    Titanium is the material of choice for orthopaedic applications because of its known biocompatibility. In order to enhance osteogenic properties of the Ti implants, it is necessary to understand the origin of its biocompatibility. We addresses the origin of Ti biocompatibility through (1) theoretical modeling, (2) the precise determination of Ti surface chemistry by X-ray photoelectron spectroscopy (XPS), (3) and the study of fibronectin adsorption as a function of Ti (near) surface chemistry by Enzyme-linked immunosorbent assay (ELISA). We compare the protein adsorption on Ti with the native oxide layer and the one coated by TiO2 in anatase phase using ion beam assisted deposition (IBAD). We show that the thin native sub-stoichiometric titanium oxide layer is crucial for biocompatibility of Ti surface. This is due to the enhancement of the non-specific adsorption of proteins which mediate cell adhesion. Improving the surface oxide quality, i.e. fabricating stoichiometric TiO2 (using IBAD) as well as nanoengineering the surface topology that matches its dimensions to that of adhesive proteins, is crucial for increased protein adsorption and, as a result, further increases biocompatibility of Ti implant materials.

  18. Titanium in 1980

    NASA Astrophysics Data System (ADS)

    Minkler, Ward W.

    1981-04-01

    Much attention is being focused on the availability and use of non-fuel minerals in the United States. Because of the rapid increase in demand since 1978, titanium has been one of the much-publicized metals in this group. Sponge producers are now expanding sponge manufacturing plants to meet this greater demand, and it now appears that there could be a surplus of sponge in 1981. A delay in airplane purchases caused by severe operating losses of the airlines could have a significant effect on mill product shipments in 1981. However, there is no reason to believe that titanium has reached maturity as a structural aerospace or industrial metal. While it is unreasonable to anticipate that demand will continue to grow at the same rate experienced between 1978 and 1980, new greenfield capacity will nevertheless be required in the early 1980s. Two basic issues must be resolved before such ventures become reality: 1) choice of process; and 2) method for financing, either public or private. Both will be the subject of study and debate in 1981.

  19. Essentiality, Toxicity and Uncertainty in the Risk Assessment of Manganese

    EPA Science Inventory

    Risk assessments of manganese by inhalation or oral routes of exposure typically acknowledge the duality of manganese as an essential element at low doses and a toxic metal at high doses. Previously, however, risk assessors were unable to describe manganese pharmacokinetics quant...

  20. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  1. Manganese transport in Brevibacterium ammoniagenes ATCC 6872.

    PubMed Central

    Schmid, J; Auling, G

    1987-01-01

    Uptake of manganese by Brevibacterium ammoniagenes ATCC 6872 was energy dependent and obeyed saturation kinetics (Km = 0.65 microM; Vmax = 0.12 mumol/min per g [dry weight]). Uptake showed optima at 27 degrees C and pH 9.5. 54Mn2+ accumulated by the cells was released by treatment with toluene or by exchange for unlabeled manganese ions, via an energy-dependent process. Co2+, Fe2+, Cd2+, and Zn2+ inhibited manganese uptake. Inhibition by Cd2+ and Zn2+ was competitive (Ki = 0.15 microM Cd2+ and 1.2 microM Zn2+). Experiments with 65Zn2+ provided no evidence for Zn2+ uptake via the Mn2+ transport system. PMID:3597325

  2. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  3. Cerium(IV) Hexanuclear Clusters from Cerium(III) Precursors: Molecular Models for Oxidative Growth of Ceria Nanoparticles.

    PubMed

    Mathey, Laurent; Paul, Mitali; Copéret, Christophe; Tsurugi, Hayato; Mashima, Kazushi

    2015-09-14

    Reactions of cerium(III) nitrate, Ce(NO3 )3 ⋅6 H2 O, with different carboxylic acids, such as pivalic acid, benzoic acid, and 4-methoxybenzoic acid, in the presence of a tridentate N,N,N-donor ligand, diethylenetriamine (L(1) ), under aerobic conditions yielded the corresponding cerium hexamers Ce6 O8 (O2 CtBu)8 (L(1) )4 (1), Ce6 O8 (O2 CC6 H5 )8 (L(1) )4 (2), and Ce6 O8 (O2 CC6 H4 -4-OCH3 )8 (L(1) )4 (3). Hexamers 1, 2, and 3 contain the same octahedral Ce(IV) 6 O8 core, in which all interstitial oxygen atoms are connected by μ3 -oxo bridging ligands. In contrast, treatment of the Ce(IV) precursor (NH4 )2 Ce(NO3 )6 (CAN) with pivalic acid and the ligand L(1) under the same conditions afforded Ce6 O4 (OH)4 (O2 CtBu)12 (L(1) )2 (4), exhibiting a deformed octahedral Ce(IV) 6 O4 (OH)4 core containing μ3 -oxo and μ3 -hydroxo moieties in defined positions. In contrast to the formation of 1-3, the use of N-methyldiethanolamine (L) in the reaction with Ce(NO3 )3 ⋅6 H2 O and pivalic acid afforded a previously reported Ce(III) dinuclear cluster, Ce2 (O2 CtBu)6 L2 , even in the presence of dioxygen. ESI-MS analysis of the reaction mixture clearly indicated the importance of the ligand L(1) in promoting oxidation of the Ce(III) aggregates, [Cen (O2 CtBu)3n (L(1) )2 ], which is necessary for the formation of Ce(IV) hexamers. PMID:26236034

  4. Metal Uptake by Manganese Superoxide Dismutase

    PubMed Central

    Whittaker, James W.

    2009-01-01

    Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro. PMID:19699328

  5. Beta titanium alloys and their role in the titanium industry

    NASA Astrophysics Data System (ADS)

    Bania, Paul J.

    1994-07-01

    The class of titanium alloys generically referred to as the beta alloys is arguably the most versatile in the titanium family. Since these alloys offer the highest strength-to-weight ratios and deepest hardenability of all titanium alloys, one might expect them to compete favorably for a variety of aerospace applications. To the contrary, however, except for one very successful application (Ti-13V-11Cr-3Al on the SR-71), the beta alloys have remained a very small segment of the industry. As a perspective on this situation, this article reviews some past and present applications of titanium alloys. It also descibes some unique new alloys and applications that promise to reverse historical trends.

  6. Descaling and cleaning titanium and titanium alloy surfaces

    SciTech Connect

    Not Available

    1981-01-01

    The recommended practice covers a cleaning and descaling procedure useful to producers, users, and fabricators of titanium and titanium alloys for the removal of ordinary shop soils, oxides, and scales resulting from heat treatment operations and foreign substances present as surface contaminants. The procedures are not mandatory for removal of the indicated soils but rather serve as a guide when titanium and titanium alloys are being processed in the wrought, cast, or fabricated form. The soils should be removed prior to chemical milling, joining, plating, fabrication, and in any situation where foreign substances interfere with the corrosion resistance, stability, and quality of the finished product. The recommended practice discusses processing soil removal, blast cleaning, pickling, descaling, and inspection. (JMT)

  7. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.

    PubMed

    Ishizaki, Takahiro; Saito, Naobumi

    2010-06-15

    We have developed a facile, simple, time-saving method of creating a superhydrophobic surface on a magnesium alloy by a simple immersion process at room temperature. First, a crystalline CeO(2) film was vertically formed on the magnesium alloy by immersion in a cerium nitrate aqueous solution for 20 min. The density of the crystals vertically with respect to the magnesium alloy increased with increasing immersion time. Next, the film were covered with fluoroalkylsilane (FAS: CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3)) molecules within 30 min by immersion in a toluene solution containing FAS and tetrakis(trimethylsiloxy)titanium (TTST: (CH(3))(3)SiO)(4)Ti). TTST was used as a catalyst to promote the hydrolysis and/or polymerization of FAS molecules. The FAS-coated CeO(2) film had a static contact angle of more than 150 degrees, that is, a superhydrophobic property. The shortest processing time for the fabrication of the superhydrophobic surface was 40 min. The contact angle hysteresis decreased with an increase in the immersion time in the cerium nitrate aqueous solution. The chemical stability of the superhydrophobic surface on magnesium alloy AZ31 was investigated. The average static water contact angles of the superhydrophobic surfaces after immersion in the solutions at pH 4, 7, and 10 for 24 h were found to be 139.7 +/- 2, 140.0 +/- 2, and 145.7 +/- 2 degrees, respectively. In addition, the chemical stability of the superhydrophobic surface in the solutions at pH ranging from 1 to 14 was also examined. The superhydrophobic surfaces had static contact angles of more than 142 degrees in the solutions at pH ranging from 1 to 14, showing that our superhydrophobic surface had a high chemical stability. Moreover, the corrosion resistance of the superhydrophobic surface on the magnesium alloy was investigated using electrochemical measurements. PMID:20377219

  8. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens

    SciTech Connect

    Perie, F.; Gold, M.H. )

    1991-08-01

    Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of {sup 14}C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanero-chaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen.

  9. Advanced titanium processing

    SciTech Connect

    Hartman, Alan D.; Gerdemann, Stephen J.; Schrems, Karol K.; Holcomb, Gordon R.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2001-01-01

    The Albany Research Center of the U.S. Department of Energy has been investigating a means to form useful wrought products by direct and continuous casting of titanium bars using cold-wall induction melting rather than current batch practices such as vacuum arc remelting. Continuous ingots produced by cold-wall induction melting, utilizing a bottomless water-cooled copper crucible, without slag (CaF2) additions had minor defects in the surface such as ''hot tears''. Slag additions as low as 0.5 weight percent were used to improve the surface finish. Therefore, a slag melted experimental Ti-6Al-4V alloy ingot was compared to a commercial Ti-6Al-4V alloy ingot in the areas of physical, chemical, mechanical, and corrosion attributes to address the question, ''Are any detrimental effects caused by slag addition''?

  10. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  11. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  12. Competition for Manganese at the Host-Pathogen Interface.

    PubMed

    Kelliher, J L; Kehl-Fie, T E

    2016-01-01

    Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria. PMID:27571690

  13. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  14. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  15. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  16. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. PMID:25284800

  17. Health assessment document for manganese. Final report

    SciTech Connect

    Bilinski, H.; Bruins, R.J.F.; Erdreich, L.; Fugas, M.; Kello, D.

    1984-08-01

    The document evaluates data on occurrence, sources, and transport of manganese in the environment and data on metabolism, pharmacokinetics, laboratory toxicological and epidemiologic studies to determine the nature and dose response relationship of potential health effects on humans. Nationwide air sampling data indicate that mean manganese concentrations have declined from 0.11 micrograms per cu. m. in 1953-1957 to 0.033 micrograms per cu. m. in 1982. The effects of major concern to humans exposed to manganese are on neurological and on pulmonary function. The CNS effects have been observed in humans at exposure levels above 5 mg/cu. m. and are incapacitating and generally irreversible. Data are equivocal between 1 and 5 mg/cu. m. but suggest decreased prevalence. There are no reports of these effects below 0.3 mg/cu. m. exposure. Pneumonia and chronic bronchitis occur at levels which are associated with neurological effects. Reduced lung function has been reported in children exposed to an estimated 3-11 micrograms per cu. m. from emission of a ferromanganese plant. However, studies of workers exposed to 40 micrograms per cu. m. did not show respiratory symptoms. Animal studies qualitatively support pulmonary effects of manganese exposure. Respiratory symptoms occur at lower levels than neurological symptoms and are therefore considered to be the critical effect based on available data.

  18. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  19. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5455...

  20. 21 CFR 582.5458 - Manganese hypophosphite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5458...

  1. Geology of the manganese deposits of Cuba

    USGS Publications Warehouse

    Simons, Frank S.; Straczek, John A.

    1958-01-01

    Deposits of manganese ore have been found in five of the six provinces of Cuba and have been reported from the sixth.  Only Oriente and Pinar del Rio provinces have more than a few known deposits and only the deposits of Oriente have yielded any appreciable amount of ore.

  2. The Products of Manganese (II) Oxidation

    SciTech Connect

    Perkins, A.

    2004-09-03

    Manganese, the second most abundant transition metal in the earth's crust, exists in a number of oxidation states, among which the II, III, and IV oxidation states are of greatest environmental importance. Produced through microbial activity, manganese oxides help to mediate redox reactions with organic and inorganic compounds and help to sequester a variety of metals. The mechanism by which Manganese (II) is oxidized to Manganese (IV) is a biologically catalyzed process. There are at least three different pathways by which Mn(II) can be bacterially oxidized to Mn(IV); the first in which states that Mn(II) can be oxidized to mixed Mn(III, IV), and Mn(IV) oxides and oxyhydroxides. The second of these pathways is that Mn(II) can be directly oxidized to Mn(IV) and the last of these pathways is that Mn(II) follows an enzymatic bond with a Mn(III) intermediate in which Mn(II) oxidizes to Mn(III) and then to Mn(IV). The pathways of focus for this research are the latter two pathways.

  3. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  4. ADVERSE HEALTH EFFECTS FROM ENVIRONMENTAL MANGANESE EXPOSURE.

    EPA Science Inventory

    The ubiquitous element, manganese (Mn), is an essential nutrient, but toxic at excessive exposure levels. Therefore, the US EPA set guideline levels for Mn exposure through inhalation (reference concentration-RfC=0.05 ?g/m3) and ingestion (reference dose-RfD=0.14 mg/kg/day (10 mg...

  5. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  6. Manganese homeostasis in the nervous system.

    PubMed

    Chen, Pan; Chakraborty, Sudipta; Mukhopadhyay, Somshuvra; Lee, Eunsook; Paoliello, Monica M B; Bowman, Aaron B; Aschner, Michael

    2015-08-01

    Manganese (Mn) is an essential heavy metal that is naturally found in the environment. Daily intake through dietary sources provides the necessary amount required for several key physiological processes, including antioxidant defense, energy metabolism, immune function and others. However, overexposure from environmental sources can result in a condition known as manganism that features symptomatology similar to Parkinson's disease (PD). This disorder presents with debilitating motor and cognitive deficits that arise from a neurodegenerative process. In order to maintain a balance between its essentiality and neurotoxicity, several mechanisms exist to properly buffer cellular Mn levels. These include transporters involved in Mn uptake, and newly discovered Mn efflux mechanisms. This review will focus on current studies related to mechanisms underlying Mn import and export, primarily the Mn transporters, and their function and roles in Mn-induced neurotoxicity. Though and essential metal, overexposure to manganese may result in neurodegenerative disease analogous to Parkinson's disease. Manganese homeostasis is tightly regulated by transporters, including transmembrane importers (divalent metal transporter 1, transferrin and its receptor, zinc transporters ZIP8 and Zip14, dopamine transporter, calcium channels, choline transporters and citrate transporters) and exporters (ferroportin and SLC30A10), as well as the intracellular trafficking proteins (SPCA1 and ATP12A2). A manganese-specific sensor, GPP130, has been identified, which affords means for monitoring intracellular levels of this metal. PMID:25982296

  7. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., and crystallized. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  8. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  9. Analysis of the world distribution of metal-rich subsea manganese nodules

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Wright, Nancy A.; Bowen, Roger W.

    1983-01-01

    principal metals present, but the three metal types described above do not include the maximum reported values for several other elements, such as titanium (8.9 percent), vanadium (0.5), zinc (9.0), and lead (0.75). It seems possible, therefore, that there may be other kinds of metal-rich types, some of which may have p6tential economic value. Many of the variations in nodule composition are in large part a function of variations in mineral composition, to which many factors contribute. Some of the regional variations can be broadly related to oceanic circulation, basin morphology, and depth, but a better understanding of ocean processes and regional oceanography and geology is needed to explain all the variations observed in the composition of manganese nodules.

  10. Thermochemical Modeling of the Uranium-Cerium-Oxygen System

    SciTech Connect

    Voit, Stewart L; Besmann, Theodore M

    2010-10-01

    with actinide materials, fundamental studies with uranium are performed using surrogate materials as stand-ins for transuranic elements. In most cases, cerium can be used as a suitable substitute for plutonium when performing O:M and sintering kinetics studies because of identical valence states. Differences exist between the magnitude of reported thermodynamic data of (U,Pu)O{sub x} and (U,Ce)O{sub x}, however the change in oxygen potential versus O:M follows the same trend for both systems. Cerium is also a major fission product element, and thus understanding its behavior in fuel is an important issue as well.

  11. Titanium/gold process characterization

    SciTech Connect

    Fajardo, L.S.

    1991-11-01

    Characterization of the titanium/gold (Ti/Au) deposition process used at the Allied-Signal Inc., Albuquerque Microelectronics Operation (AMO) was performed. Tests were conducted to set up evaporation parameters, correlate titanium and gold thicknesses to sheet resistance, improve thickness uniformity, and reduce frontside contamination of deposit material on product wafers. The Ti/Au process is the final step in the production of integrated circuits (ICs) at the AMO wafer fabrication facility. 3 figs.

  12. Soil Manganese Enrichment from Industrial Inputs: A Gastropod Perspective

    PubMed Central

    Bordean, Despina-Maria; Nica, Dragos V.; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I.

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems. PMID:24454856

  13. Continuous production of titanium powder

    SciTech Connect

    Gerdemann, Stephen J.; Oden, Laurence L.; White, Jack C.

    1997-01-01

    Although incremental improvements have been made to the Kroll process since its inception in 1948, the process in use today remains essentially the same batch process developed by Dr. Kroll and perfected by the U.S. Bureau of Mines. In this process, titanium tetrachloride (TiCl4) is reduced by magnesium to produce titanium metal. There are two major limitations to the Kroll process: (1) it is a batch process; and (2) the reduction of TiCl4 proceeds so rapidly that the sponge formed is an interlocking dendritic mass with inclusions of magnesium, magnesium salts and titanium subchloride that must undergo several purification steps before the metal is suitable for use. The Albany Research Center (ARC), formerly the U.S. Bureau of Mines, has investigated a new, continuous titanium metal production process in which a titanium powder is produced in a bath of molten salt. In this process, the rate of the reduction reaction was slowed and controlled by diluting the reactants with molten chloride salts. The diluted reactant streams were combined in a continuous stirred tank reactor, operated much like a crystallizer. New titanium metal forms on the already present small Ti particles. When the Ti particles become too large to remain suspended in solution, they fall to the bottom of the reactor and are removed. Initial experiments show promise but problems remain in obtaining the required purity and uniform particle size.

  14. Low cost titanium--myth or reality

    SciTech Connect

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  15. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems.

    PubMed

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan; Grass, Gregor; Rensing, Christopher

    2016-06-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake systems relevant for growth in defined medium. Based on these results an exit strategy enabling the cell to cope with iron depletion and use of manganese as an alternative for iron could be shown. Such a strategy would also explain why E. coli harbors some iron- or manganese-dependent iso-enzymes such as superoxide dismutases or ribonucleotide reductases. The benefits for gaining a means for survival would be bought with the cost of less efficient metabolism as indicated in our experiments by lower cell densities with manganese than with iron. In addition, this strain was extremely sensitive to the metalloid gallium but this gallium toxicity can be alleviated by low concentrations of manganese. PMID:27003826

  16. Coupled redox transformations of catechol and cerium at the surface of a cerium(III) phosphate mineral

    NASA Astrophysics Data System (ADS)

    Cervini-Silva, Javiera; Gilbert, Benjamin; Fakra, Sirine; Friedlich, Stephan; Banfield, Jillian

    2008-05-01

    Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic-anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π∗ resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ∗ region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent

  17. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-01

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 °C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 °C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles.

  18. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    PubMed

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns. PMID:27231888

  19. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  20. Omega phase formation in titanium and titanium alloys

    SciTech Connect

    Gray, G.T. III; Morris, C.E.; Lawson, A.C.

    1992-05-01

    Although the response of titanium alloys to dynamic loading is receiving increased attention in the literature (particularly in the area of shear-band formation), a more limited experimental database exists concerning the detailed structure/property relationships of titanium alloys subjected to shock loading. In this study, preliminary results concerning the influence of alloy chemistry on the property of omega-phase formation and its structure in three titanium alloys are presented. The influence of shock-wave deformation on the phase stability and substructure evolution of high-purity (low-interstitial) titanium, A-70 (3700 ppm oxygen) titanium, and Ti-6Al-4V were probed utilizing real-time velocity interferometry (VISAR) and ``soft`` shock-recovery techniques. VISAR wave profiles of shock-loaded high-purity titanium revealed the omega-phase pressure-induced transition to occur at approximately 10.4 GPa. Wave profile measurements on A-70 Ti shocked to pressures up to 35 GPa and Ti-6Al-4V shocked to pressures up to 25 GPa exhibited no evidence of a three-wave structure indicative of a pressure-induced phase transition. Neutron and X-ray diffractometry and TEM analysis confirmed the presence of retained {omega}-phase in the electrolytic-Ti and the absence of {omega}-phase in the shock-recovered A-70 Ti and Ti-6Al-4V. Suppression of the {alpha}-{omega} phase transition in A-70 Ti, containing a high interstitial oxygen content, is seen to simultaneously correlate with suppression of deformation twinning. Neutron diffraction was used to measure the in-situ bulk lattice constants and volume fraction of the {alpha} and {omega} phases in the recovered high-purity titanium samples that were shock loaded. The influence of alloy content on the kinetics of formation/retention of {omega}-phase and substructure evolution is discussed and contrasted in light of previous literature studies.

  1. Electrosynthesis of cerium hexaboride by the molten salt technique

    NASA Astrophysics Data System (ADS)

    Amalajyothi, K.; Berchmans, L. John; Angappan, S.; Visuvasam, A.

    2008-07-01

    Molten salts are well thought-out as the incredibly promising medium for chemical and electrochemical synthesis of compounds. Hence a stab has been made on the electrochemical synthesis of CeB 6 using molten salt technique. The electrolyte consisted of lithium fluoride (LiF), boron trioxide (B 2O 3) and cerium chloride (CeCl 3). Electrochemical experiments were carried out in an inconal reactor in an argon atmosphere. Electrolysis was executed in a high-density graphite crucible, which doles out as the electrolyte clutching vessel as well as the anode. The cathode was made up of a molybdenum rod. The electrolysis was carried out at 900 °C at different current densities intended for the synthesis of CeB 6 crystals. After the electrolysis, the cathode product was removed and cleaned using dilute HCl solution. The crystals were scrutinized by X-ray diffraction (XRD) to make out the phase and the purity. It has been observed that CeB 6 crystals are synthesized at all current densities and the product has traces of impurities.

  2. Electron inelastic mean free paths in cerium dioxide

    NASA Astrophysics Data System (ADS)

    Krawczyk, M.; Holdynski, M.; Lisowski, W.; Sobczak, J. W.; Jablonski, A.

    2015-06-01

    Electron transport properties in CeO2 powder samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the CeO2 sample surface was pre-sputtered by 0.5 keV Ar ion etching. As a result, an altered layer with thickness of 1.3 nm was created. X-ray photoelectron spectroscopy (XPS) analysis revealed two chemical states of cerium Ce4+ (68%) and Ce3+ (32%) at the surface region of CeO2 sample after such treatment. The inelastic mean free path (IMFP), characterizing electron transport, was evaluated as a function of energy within the 0.5-2 keV range. Experimental IMFPs were corrected for surface excitations and approximated by the simple function λ = kEp, where λ was the IMFP, E denoted the energy (in eV), and k = 0.207 and p = 0.6343 were the fitted parameters. The IMFPs measured here were compared with IMFPs resulting from the TPP-2M predictive equation for the measured composition of oxide surface. The measured IMFPs were found to be from 3.1% to 20.3% smaller than the IMFPs obtained from the predictive formula in the energy range of 0.5-2 keV. The EPES IMFP value at 500 eV was related to the altered layer of sputtered CeO2 samples.

  3. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  4. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    PubMed Central

    Nelson, Bryant C.; Johnson, Monique E.; Walker, Marlon L.; Riley, Kathryn R.; Sims, Christopher M.

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  5. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine.

    PubMed

    Nelson, Bryant C; Johnson, Monique E; Walker, Marlon L; Riley, Kathryn R; Sims, Christopher M

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  6. Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine.

    PubMed

    Zholobak, Nadezhda M; Mironenko, Alla P; Shcherbakov, Alexander B; Shydlovska, Olga A; Spivak, Mykola Ya; Radchenko, Larysa V; Marinin, Andrey I; Ivanova, Olga S; Baranchikov, Alexander E; Ivanov, Vladimir K

    2016-03-01

    We have demonstrated the influence of cerium dioxide nanoparticles on the immunogenicity of the influenza vaccine on an example of liquid split inactivated Vaxigrip vaccine. Antibody titers were analyzed using the hemagglutination inhibition (HI) assay. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. The effect of nano-ceria surface stabilizer on the enhancement of immunogenicity was shown. The vaccine modified by citrate-stabilized nano-ceria, in contrast to a non-modified Vaxigrip vaccine, did not provide an adequate level of seroprotection, and seroconversion after vaccination was 66.7% on days 49-63 for virus strain А(H1N1) and 100% on day 49 for virus strain B/Yamagata. For the low immunogenic influenza B virus, the rise in antibody titers (GMT/IF) was 24.38/3.28 after the first injection and 50.40/6.79 on day 49. For the vaccine modified by non-stabilized nano-ceria, for all virus strains under study, on day 63, upon immunization notable levels of seroprotection, seroconversion and GMT/IF were registered (higher than for the non-modified Vaxigrip vaccine). The successful attempt to modify the influenza vaccine demonstrates the possible ways of increasing the specific activity of vaccines using nano-ceria. PMID:26769398

  7. Antioxidant Cerium Oxide Nanoparticle Hydrogels for Cellular Encapsulation

    PubMed Central

    Weaver, Jessica D; Stabler, Cherie L

    2015-01-01

    Oxidative stress and the resulting radical by-products cause significant toxicity and graft loss in cellular transplantation. Here, the engineering of an auto-catalytic, antioxidant, self-renewing cerium oxide nanoparticle (CONP)-composite hydrogel is reported. This enzyme-mimetic material ubiquitously scavenges ambient free radicals, with the potential to provide indefinite antioxidant protection. Here, we evaluated the potential of this system to enhance the protection of encapsulated beta cells. Co-incubation of CONPs, free in solution with beta cells, demonstrated potent cytoprotection from superoxide exposure; however, phagocytosis of the CONPs by the beta cells resulted in cytotoxicity at concentrations as low as 1 mM. When CONPs were embedded within alginate hydrogels, the composite hydrogel provided cytoprotection to encapsulated beta cells from free radical attack without cytotoxicity, even up to 10 mM concentrations. This nanocomposite hydrogel has wide applicability in cellular transplantation, with the unique advantage of localization of these potent antioxidant CONPs and their capacity for sustained, long-term scavenging. PMID:25620795

  8. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles

    PubMed Central

    Walkey, Carl; Das, Soumen; Seal, Sudipta; Erlichman, Joseph; Heckman, Karin; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William T.

    2014-01-01

    Cerium oxide nanoparticles (Nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of Nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of Nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of Nanoceria in animal studies? 2) What are the considerations to develop Nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials? PMID:26207185

  9. Investigations of nano-particle toxicity and uptake of Cerium oxide and Titanium dioxide in Arabidopsis thaliana (L.)

    EPA Science Inventory

    The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. In ...

  10. A simple route to synthesize manganese germanate nanorods

    SciTech Connect

    Pei, L.Z. Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-06-15

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: {yields} Manganese germanate nanorods have been synthesized by simple hydrothermal process. {yields} The formation of manganese germanate nanorods can be controlled by growth conditions. {yields} Manganese germanate nanorods exhibit good PL emission ability for optical device.

  11. Localization of Hydrogen Peroxide Production in Pisum sativum L. Using Epi-Polarization Microscopy to Follow Cerium Perhydroxide Deposition.

    PubMed Central

    Liu, L.; Eriksson, KEL.; Dean, JFD.

    1995-01-01

    Cerium is becoming an increasingly popular reagent for histochemical localization of oxidases and phosphatases because it combines directly with reaction products to form fine precipitates of electron-dense materials that can be easily detected using transmission electron microscopy or laser confocal scanning microscopy. We used epi-polarization microscopy to detect cerium perhydroxide deposits formed when H2O2 was produced by diamine oxidase in pea (Pisum sativum L.) epicotyls exposed to exogenous putrescine. Diamine oxidase activity was abundant in cortical cell walls but showed little, if any, association with vascular tissues. Maps of cerium deposition generated using scanning electron microscopy/x-ray microanalysis verified these observations. This study demonstrates the use of epi-polarization microscopy to follow cerium deposition, and the ready accessibility of this microscopy technique should facilitate more widespread use of cerium for plant histochemistry and cytochemistry. PMID:12228377

  12. Cell response of anodized nanotubes on titanium and titanium alloys.

    PubMed

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells. PMID:23436766

  13. Titanium nanostructures for biomedical applications.

    PubMed

    Kulkarni, M; Mazare, A; Gongadze, E; Perutkova, Š; Kralj-Iglič, V; Milošev, I; Schmuki, P; A Iglič; Mozetič, M

    2015-02-13

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. PMID:25611515

  14. Titanium nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  15. Manganese oxide cathodes for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Im, Dongmin

    Manganese oxides are considered as promising cathodes for rechargeable batteries due to their low cost and low toxicity as well as the abundant natural resources. In this dissertation, manganese oxides have been investigated as cathodes for both rechargeable lithium and alkaline batteries. Nanostructured lithium manganese oxides designed for rechargeable lithium cells have been synthesized by reducing lithium permanganate with methanol or hydrogen in various solvents followed by firing at moderate temperatures. The samples have been characterized by wet-chemical analyses, thermal methods, spectroscopic methods, and electron microscopy. It has been found that chemical residues in the oxides such as carboxylates and hydroxyl groups, which could be controlled by varying the reaction medium, reducing agents, and additives, make a significant influence on the electrochemical properties. The Li/Mn ratio in the material has also been found to be a critical factor in determining the rechargeability of the cathodes. The optimized samples exhibit a high capacity of close to 300 mAh/g with good cyclability and charge efficiency. The high capacity with a lower discharge voltage may make these nanostructured oxides particularly attractive for lithium polymer batteries. The research on the manganese oxide cathodes for alkaline batteries is focused on an analysis of the reaction products generated during the charge/discharge processes or by some designed chemical reactions mimicking the electrochemical processes. The factors influencing the formation of Mn3O4 in the two-electron redox process of delta-MnO2 have been studied with linear sweep voltammetry combined with X-ray diffraction. The presence of bismuth, the discharge rate, and the microstructure of the electrodes are found to affect the formation of Mn3O4, which is known to be electrochemically inactive. A faster voltage sweep and a more intimate mixing of the manganese oxide and carbon in the cathode are found to suppress

  16. Magnetic ordering in the static intermediate-valent cerium compound Ce2RuZn4

    NASA Astrophysics Data System (ADS)

    Eyert, Volker; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang; Hermes, Wilfried; Pöttgen, Rainer

    2008-12-01

    The low-temperature behavior of Ce2RuZn4 has been investigated. Specific-heat and magnetic-susceptibility data reveal an antiferromagnetic transition at a Néel temperature of 2 K. Ce2RuZn4 is a static intermediate-valent compound with two crystallographically independent cerium atoms. The magnetic data clearly show that only one cerium site is magnetic (Ce3+) , while the second one carries no magnetic moment. The experimental data are interpreted with the help of first-principles electronic structure calculations using density-functional theory and the augmented spherical wave method. The calculations reveal the occurrence of two different cerium sites, which are characterized by strongly localized magnetic moments and strong Ce-Ru bonding.

  17. Sulfurization behavior of cerium doped uranium oxides by CS{sub 2}

    SciTech Connect

    Sato, Nobuaki; Kato, Shintaro; Kirishima, Akira; Tochiyama, Osamu

    2007-07-01

    For the recovery of nuclear materials from the spent nuclear fuel, the sulfide process has been proposed and the voloxidation of spent fuel and selective sulfurization rare-earth elements has been proposed. In this paper, cerium was used as a stand-in of plutonium and sulfurization behavior of cerium doped uranium dioxide by CS{sub 2} was studied. UO{sub 2} was oxidized to U{sub 3}O{sub 8} in air, while the Ce doped UO{sub 2} solid solution was formed in the presence of CeO{sub 2} by the heat treatment in air. The effect of heating time, temperature and the ratio of uranium to cerium on the formation of solid solution was analyzed. The results were also compared with those of thermodynamic consideration. (authors)

  18. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    PubMed

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. PMID:25303462

  19. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  20. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  1. A novel method for the modification of zinc powder by ultrasonic impregnation in cerium nitrate solution.

    PubMed

    Zhu, Liqun; Zhang, Hui

    2008-04-01

    This work is devoted to an extensive study of cerium deposits distributed directly on zinc particles by simple impregnation or ultrasonic impregnation for the modification of zinc powder. Meantime, the characterization of modified zinc powder and the influence of ultrasound parameters in the modification process upon the dendritic growth, the corrosion behavior and the cyclic performance of zinc are investigated using scanning electron microscopy, energy dispersion spectrometry, potentiostatic polarization, potentiodynamic polarization and cyclic voltammetry. Compared with simple impregnation, the assistance of ultrasonic irradiation is found to have a significant effect on the sedimentary state and favorable properties of cerium deposits in a protective way. Besides the cyclic voltammetry measurements display that the application of ultrasound also improves the cyclic performance of zinc electrode containing modified zinc powder mainly because the cerium deposits formed under ultrasonic irradiation can greatly hinder the dissolution and diffusion of the oxidation product of zinc in the electrolyte and effectively favor the capacity maintenance of zinc electrode. PMID:18024152

  2. Development of graphene-nanometre-sized cerium oxide-incorporated aluminium and its electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Ashraf, P. Muhamed; Thomas, Saly N.; Edwin, Leela

    2016-02-01

    Graphene-nanometre-sized cerium oxide-incorporated aluminium was prepared and its electrochemical and surface morphological characteristics were studied. The atomic force micrographs and scanning electron micrographs evaluation highlighted that the graphene and nanometre-sized cerium oxide in aluminium had decreased the surface roughness and improved the surface morphological characteristics. The graphene: nanometre-sized cerium oxide (ratios 1:2 or 2:1) with lesser amounts of particle in the matrix showed excellent corrosion resistance in the marine environment as evidenced by linear polarization, electrochemical impedance and weight loss studies. Introduction of graphene in the aluminium matrix showed a barrier separation between the outermost layer and inner layer, increased roughness and increased corrosion. The material is found to be a potential candidate for use in marine environment.

  3. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  4. Synthesis and photocatalytic activity of mesoporous cerium doped TiO{sub 2} as visible light sensitive photocatalyst

    SciTech Connect

    Aman, Noor; Satapathy, P.K.; Mishra, T.; Mahato, M.; Das, N.N.

    2012-02-15

    Graphical abstract: Cerium doped titania having optimum 5 wt% of cerium can decompose methylene blue and reduce selenium (IV) efficiently under visible light. Highlights: Black-Right-Pointing-Pointer Effect of cerium doping on the surface properties and visible light mediated photocatalytic reaction is studied. Black-Right-Pointing-Pointer Cerium doping increases the anatase phase stability, surface area (up to 137 m{sup 2}/g) and visible light absorption. Black-Right-Pointing-Pointer Importance of Ce{sup 3+}/Ce{sup 4+}, oxygen vacancy, surface area and crystallinity is correlated with improved catalytic activity. Black-Right-Pointing-Pointer Material with 5 wt% Ce is found to be most active photocatalyst for methylene blue decomposition and Se (IV) reduction. -- Abstract: Cerium doped titania materials were synthesized varying the cerium concentration from 0 to 10 wt%. Materials are characterised by XRD, TEM, XPS and N{sub 2} adsorption desorption method. Surface area and visible light absorption substantially increases and crystallite size decreases with the increasing cerium content. Cerium doping stabilizes the anatase phase and surface area even at 600 Degree-Sign C calcination. Photocatalytic activity towards methylene blue decomposition and selenium (IV) reduction is found to increase with the cerium content up to 5 wt% and then decreases. Materials calcined at 600 Degree-Sign C shows better activity than that calcined at 400 Degree-Sign C, even though surface area decreases. Anatase crystallinity mostly decides the photocatalytic activity rather than only surface area. It can be concluded that the optimum visible light absorption and oxygen vacancy with 5% cerium doping enhances the photocatalytic activity. In addition photocatalytic performance is found to depend on the presence of Ce{sup 4+}/Ce{sup 3+} rather than only visible light absorption.

  5. Plasma quench production of titanium from titanium tetrachloride

    SciTech Connect

    Sears, J.W.

    1994-10-01

    This project, Plasma Quench Production of Titanium from Titanium Tetrachloride, centers on developing a technique for rapidly quenching the high temperature metal species and preventing back reactions with the halide. The quenching technique chosen uses the temperature drop produced in a converging/diverging supersonic nozzle. The rapid quench provided by this nozzle prevents the back reaction of the halide and metal. The nature of the process produces nanosized particles (10 to 100 nm). The powders are collected by cyclone separators, the hydrogen flared, and the acid scrubbed. Aluminum and titanium powders have been produced in the laboratory-scale device at 1 gram per hour. Efforts to date to scale up this process have not been successful.

  6. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    NASA Astrophysics Data System (ADS)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  7. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    SciTech Connect

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  8. Titanium pigmentation. An electron probe microanalysis study

    SciTech Connect

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-05-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.

  9. Method for Surface Texturing Titanium Products

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1998-01-01

    The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.

  10. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    NASA Astrophysics Data System (ADS)

    Tang, Junlei; Han, Zhongzhi; Zuo, Yu; Tang, Yuming

    2011-01-01

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  11. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  12. Systematic variation of rare-earth elements in cerium-earth minerals

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J., Jr.; Carron, M.K.; Glass, J.J.

    1957-01-01

    In a continuation of a study reported previously, rare-earth elements and thorium have been determined in monazite, allanite, cerite, bastnaesite, and a number of miscellaneous cerium-earth minerals. A quantity called sigma (???), which is the sum of the atomic percentages of La, Ce, and Pr, is proposed as an index of composition of all cerium-earth minerals with respect to the rare-earth elements. The value of ??? for all of the minerals analysed falls between 58 and 92 atomic per cent. Monazites, allanites, and cerites cover the entire observed range, whereas bastnaesites are sharply restricted to the range between 80 and 92 atomic per cent. The minimum value of ??? for a cerium-earth mineral corresponds to the smallest possible unit-cell size of the mineral. In monazite, this structurally controlled minimum value of ??? is estimated to be around 30 atomic per cent. Neodymium, because of its abundance, and yttrium, because of its small size, have dominant roles in contraction of the structure. In the other direction, the limit of variation in composition will be reached when lanthanum becomes the sole rare-earth element in a cerium-earth mineral. Cerium-earth minerals from alkalic rocks are all characterized by values of ??? greater than 80 atomic per cent, indicating that the processes that formed these rocks were unusually efficient in fractionating the rare-earth elements-efficient in the sense that a highly selected assemblage is produced without eliminating the bulk of these elements. Analyses of inner and outer parts of two large crystals of monazite from different deposits show no difference in ??? in one crystal and a slightly smaller value of ??? in the outer part of the other crystal compared to the inner part. The ??? of monazites from pegmatites that intrude genetically related granitic rocks in North Carolina is found to be either higher or lower than the ??? of monazites in the intruded host rock. These results indicate that the fractionation of the

  13. [Laser resonance ionization spectroscopy of even-parity autoionization states of cerium atom].

    PubMed

    Li, Zhi-ming; Zhu, Feng-rong; Zhang, Zi-bin; Ren, Xiang-jun; Deng, Hu; Zhai, Li-hua; Zhang, Li-xing

    2004-12-01

    This paper describes the investigation of even-parity autoionization states of cerium atoms by three-step three-color resonance ionization spectroscopy (RIS). Twenty-seven odd-parity highly excited levels, whose transition probability is high, were used in this research. One hundred and forty-one autoionization states were found by these channels with the third-step laser scanning in the wavelength range of 634-670 nm. The ionization probabilities of different channels, which had higher cross sections, were compared. On the basis of this, eight optimal photoionization schemes of cerium atom have been given. PMID:15828309

  14. Synthesis and characterization of two dimensional metal organic framework of cerium with tetraaza macrocyclic

    SciTech Connect

    Bt Safiin, Nurul Atikah; Yarmo, Ambar; Yamin, Bohari M.

    2013-11-27

    A two dimensional metal organic framework containing cerium sufate layers and ethylenediaminium between layers was obtained by refluxing the mixture of cerium sulphate and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7, 14-diene bromide. The complex was characterized by infrared spectroscopy and microelemental analysis. X-ray study showed that the complex adopts eleven coordination environments about the central atom. Thermogravimetric study showed the removal of water molecules at about 70°C followed by a gradual mass loss until the whole structure collapsed at about 400°C.

  15. Importance of effective dimensionality in manganese pnictides

    NASA Astrophysics Data System (ADS)

    Zingl, Manuel; Assmann, Elias; Seth, Priyanka; Krivenko, Igor; Aichhorn, Markus

    2016-07-01

    In this paper we investigate the two manganese pnictides BaMn2As2 and LaMnAsO, using fully charge self-consistent density functional plus dynamical mean-field theory calculations. These systems have a nominally half-filled d shell, and as a consequence, electronic correlations are strong, placing these compounds at the verge of a metal-insulator transition. Although their crystal structure is composed of similar building blocks, our analysis shows that the two materials exhibit a very different effective dimensionality, LaMnAsO being a quasi-two-dimensional material in contrast to the much more three-dimensional BaMn2As2 . We demonstrate that the experimentally observed differences in the Néel temperature, the band gap, and the optical properties of the manganese compounds under consideration can be traced back to exactly this effective dimensionality. Our calculations show excellent agreement with measured optical spectra.

  16. Dietary manganese requirement of P. Vannamei

    NASA Astrophysics Data System (ADS)

    Liu, Fa-Yi; Lawrence, A. L.

    1997-06-01

    Graded levels of manganese were supplemented to a semi-purified diet containing 45% crude protein, to provide six levels of manganese (i. e. containing 5, 25, 50, 70, 140 and 210×10-6, respectively) for two experiments with these experimental diets. The initial weight of shrimp used in the 35 day experiment I was 0.30±0.04 g, and that in the 70 day Experiment II was more than one gram. The results showed that optimum content in the semi-purified diet for the more than 1 gram shrimp ranged from 70 ×10-6, to 140×10-6, but supplementation of Mn was not necessary for the small shrimp.

  17. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    PubMed

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future. PMID:25980320

  18. Lightweight Protective Coatings For Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  19. Process for reproducibly preparing titanium subhydride

    SciTech Connect

    Carlson, R.S.

    1982-01-05

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium hydrogen composition.

  20. Process for reproducibly preparing titanium subhydride

    DOEpatents

    Carlson, Richard S.

    1982-01-01

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.

  1. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

    SciTech Connect

    Mullins, David R; Albrecht, Peter M; Calaza, Florencia C

    2013-01-01

    Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

  2. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction

    PubMed Central

    Asano, Shinichi; Arvapalli, Ravikumar; Manne, Nandini DPK; Maheshwari, Mani; Ma, Bing; Rice, Kevin M; Selvaraj, Vellaisamy; Blough, Eric R

    2015-01-01

    The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (Po) function (sham: 25.6±1.6 N/cm2 vs CeO2: 23.4±0.8 N/cm2 vs Sep: 15.9±1.0 N/cm2 vs Sep+CeO2: 20.0±1.0 N/cm2, P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat. PMID:26491293

  3. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    NASA Astrophysics Data System (ADS)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  4. Manganese oxide nanowires, films, and membranes and methods of making

    SciTech Connect

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  5. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. PMID:26409148

  6. Addition of Titanium Oxide Inclusions into Liquid Steel to Control Nonmetallic Inclusions

    NASA Astrophysics Data System (ADS)

    Kiviö, Miia; Holappa, Lauri

    2012-04-01

    Titanium oxide inclusions in steel are well known to inhibit grain growth and act as nucleation sites for acicular ferrite because of absorbing manganese from the surrounding steel resulting in a manganese depleted zone around the inclusion. In this article, the inclusions resulting from TiO2 additions to low-alloyed C-Mn-Cr steel were studied. Different types of TiO2 containing materials were added to liquid steel before or during casting to get small titanium-oxide-rich inclusions in steel. The main goals were to find out what happens to TiO2 in liquid steel after addition and during cooling and to study further what type of inclusions are formed in the steel as a result of the TiO2 addition. Based on the thermodynamic calculations and the results of scanning electron microscope (SEM)-energy dispersive spectroscope (EDS) and SEM-electron backscatter diffraction (EBSD) analysis, TiO2 is first reduced to Ti3O5 in liquid steel at high temperatures and then to Ti2O3 during cooling at around 1573 K (1300 °C). Both reactions liberate oxygen, which reacts with Ti, Mn, and Al forming complex Ti2O3-rich inclusions. The results also show that TiO2 additions result in more TiOx + MnO inclusions compared with experiments with Ti addition and that the absolute amount of manganese present in the inclusions is much higher in experiments with TiO2 addition than in experiments with Ti additions.

  7. Mechanical properties of titanium connectors.

    PubMed

    Neo, T K; Chai, J; Gilbert, J L; Wozniak, W T; Engelman, M J

    1996-01-01

    The tensile mechanical properties of welded titanium joints were studied, and intact titanium was used as controls. Welded joints were fabricated with either a stereographic laser-welding technique or a gas tungsten arc welding technique. The effect of heat treatment following a simulated porcelain application was also investigated. Heat-treated laser welds had significantly lower ultimate tensile strengths. Heat treatment had no effect on the modulus of elasticity or elongation, but generally significantly decreased the yield strength of the titanium specimens. The gas tungsten are welding specimens had significantly higher yield strengths and elastic moduli than the other two groups. The elongation of the control specimens was significantly greater than the elongation of the gas tungsten arc welding specimens, which was in turn significantly higher than that of the laser-welded specimens. PMID:8957877

  8. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  9. Adaptive mesh refinement in titanium

    SciTech Connect

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  10. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  11. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  12. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide (CAS Reg. No. 13463-67-7) is exempted from the requirement of...

  13. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  14. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  15. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  16. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  17. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  18. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  19. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  20. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  1. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  2. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide (CAS Reg. No. 13463-67-7) is exempted from the requirement of...

  3. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  4. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  5. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  6. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  7. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  8. 21 CFR 73.1575 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the...

  9. 21 CFR 73.2575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  10. Deposition of manganese in a drinking water distribution system.

    PubMed Central

    Sly, L I; Hodgkinson, M C; Arunpairojana, V

    1990-01-01

    The deposition of manganese in a water distribution system with manganese-related "dirty water" problems was studied over a 1-year period. Four monitoring laboratories with Robbins biofilm sampling devices fitted to the water mains were used to correlate the relationship among manganese deposition, the level of manganese in the water, and the chlorination conditions. Manganese deposition occurred by both chemical and microbial processes. Chemical deposition occurred when Mn(II) not removed during water treatment penetrated the filters and entered the distribution system, where it was oxidized by chlorine and chlorine dioxide used for disinfection. Microbial deposition occurred in areas with insufficient chlorination to control the growth of manganese-depositing biofilm. At 0.05 mg of Mn(II) per liter, the chemical deposition rate was much greater than microbial deposition. Significant deposition occurred at 0.03 mg of manganese per liter, and dirty water complaints were not eliminated until manganese levels were continuously less than 0.02 mg/liter and chlorination levels were greater than 0.2 mg/liter. A guideline level of 0.01 mg of manganese per liter is recommended. Images PMID:2317040

  11. Manganese-enhanced magnetic resonance microscopy of mineralization

    USGS Publications Warehouse

    Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.

    2007-01-01

    Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.

  12. A biokinetic model for manganese for use in radiation protection

    SciTech Connect

    Leggett, Richard Wayne

    2011-01-01

    The ICRP is updating its recommendations regarding occupational exposure to radionuclides including the biokinetic models used to derive dose coefficients and assess bioassay data for internally deposited radionuclides. This report reviews biokinetic data for manganese and proposes a biokinetic model for systemic manganese consistent with the current database. The model provides a more detailed and biologically realistic description of the movement of absorbed manganese in the body than the model currently recommended by the International Commission on Radiological Protection (ICRP). The proposed model and current ICRP model yield broadly similar estimates of dose per unit activity of inhaled or ingested radio-manganese but differ substantially with regard to interpretation of bioassay data.

  13. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. PMID:25044528

  14. [Early Detection of Manganese Intoxication Based on Occupational History and T1-weighted MRI].

    PubMed

    Fukutake, Toshio; Yano, Hajime; Kushida, Ryutaro; Sunada, Yoshihide

    2016-02-01

    Manganese regulates many enzymes and is essential for normal cell function. Chronic manganese intoxication has an insidious and progressive course terminating to atypical parkinsonism with little therapeutic efficacy. For subjects with chronic manganese exposure such as welders, manganese intoxication can be detected early based on the presence of hyperintensity in the globus pallidus on T(1)-weighted MRI and abnormally high urinary excretion of manganese with a chelating agent even in cases of normal serum/urine level of manganese. PMID:26873238

  15. Thermal Stir Welds in Titanium

    NASA Astrophysics Data System (ADS)

    Fonda, Richard W.; Knipling, Keith E.; Pilchak, Adam L.

    2016-01-01

    Although conventional friction stir welding (FSW) has proven unsuccessful in joining thick sections of alpha and near-alpha titanium alloys, thermal stir welding, a variant of the FSW process in which an external heat source is used to preheat the workpiece, is demonstrated to be able to reliably join 12.3-mm-thick plates of CP titanium. This paper describes the microstructures and textures that develop in these thermal stir welds. The observed microstructure was used to reconstruct the high-temperature microstructure and texture present during the welding process and therefore reveal the genesis of the welding structures.

  16. Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI.

    PubMed

    Grünecker, B; Kaltwasser, S F; Zappe, A C; Bedenk, B T; Bicker, Y; Spoormaker, V I; Wotjak, C T; Czisch, M

    2013-05-01

    Manganese-enhanced MRI has recently become a valuable tool for the assessment of in vivo functional cerebral activity in animal models. As a result of the toxicity of manganese at higher dosages, fractionated application schemes have been proposed to reduce the toxic side effects by using lower concentrations per injection. Here, we present data on regional-specific manganese accumulation during a fractionated application scheme over 8 days of 30 mg/kg MnCl2 , as well as on the clearance of manganese chloride over the course of several weeks after the termination of the whole application protocol supplying an accumulative dose of 240 mg/kg MnCl2 . Our data show most rapid accumulation in the superior and inferior colliculi, amygdala, bed nucleus of the stria terminalis, cornu ammonis of the hippocampus and globus pallidus. The data suggest that no ceiling effects occur in any region using the proposed application protocol. Therefore, a comparison of basal neuronal activity differences in different animal groups based on locally specific manganese accumulation is possible using fractionated application. Half-life times of manganese clearance varied between 5 and 7 days, and were longest in the periaqueductal gray, amygdala and entorhinal cortex. As the hippocampal formation shows one of the highest T1 -weighted signal intensities after manganese application, and manganese-induced memory impairment has been suggested, we assessed hippocampus-dependent learning as well as possible manganese-induced atrophy of the hippocampal volume. No interference of manganese application on learning was detected after 4 days of Mn(2+) application or 2 weeks after the application protocol. In addition, no volumetric changes induced by manganese application were found for the hippocampus at any of the measured time points. For longitudinal measurements (i.e. repeated manganese applications), a minimum of at least 8 weeks should be considered using the proposed protocol to allow for

  17. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  18. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.

    PubMed

    Ma, Xingmao; Wang, Qiang; Rossi, Lorenzo; Zhang, Weilan

    2016-07-01

    Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants. PMID:26691446

  19. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    SciTech Connect

    Cardillo, Dean; Konstantinov, Konstantin; Devers, Thierry

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  20. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  1. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  2. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  3. Studies of Some Cerium Doped Strontium Stannate Synthesized by Solid State Route

    SciTech Connect

    Kurre, Rakesh; Bajpai, P. K.

    2011-11-22

    Cerium doped ceramic compositions SrSn{sub 1-x}Ce{sub x}O{sub 3} (x = 0.00 ,0.01, 0.02, 0.04) have been synthesized by solid state reaction route and structurally characterized using x-ray diffraction. X-ray diffraction confirms the formation of single phase compositions having orthorhombic perovskite structure for all compositions. The lattice parameters change with cerium doping. Percentage experimental density decreases from 87.9% in undoped composition to 72.6%, 70.6%, 66.5% respectively with increase in cerium doping indicating that cerium is going to Sr site. The temperature dependent dielectric behavior shows low frequency dielectric dispersion at higher temperature and a weak dielectric anomaly emerging in the temperature range around 250 deg. C. D.C. and A.C. electrical conductivity variation with temperature and frequency show that the d.c. conductivity of the sample in lower temperature region is few orders of magnitude less than the a.c. conductivity and its variation with temperature is also different. The activation energy barriers for a.c. and d.c. conduction is also different.

  4. SENSITIVE BIOCHEMICAL AND BEHAVIORAL INDICATORS OF TRACE SUBSTANCE EXPOSURE. PART 1. CERIUM

    EPA Science Inventory

    At various times after exposure of the adult mouse to single or repeated (multiple) doses of Cerium (Ce) citrate, the tissue/organ distribution and effects of Ce on selected behavioral parameters (ambutations and rearings in the open field, hole-in-board exploratory behavior, pas...

  5. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal.

    SciTech Connect

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-11-16

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L{sub III} edge and XANES from the cerium L{sub II} edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO{sub 2}, with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations.

  6. Synthesis, electrical and dielectric characterization of cerium doped nano copper ferrites

    SciTech Connect

    Malana, Muhammad Aslam Qureshi, Raheela Beenish; Ashiq, Muhammad Naeem; Zafar, Zafar Iqbal

    2013-11-15

    Graphical abstract: Lattice constant (a) and activation energy (Ea) as a function of Ce (cerium) content. - Highlights: • The simple and economic method has been adopted for the synthesis of nanoferrites. • The electrical resistivity increases with cerium concentration. • DC electrical resistivity of these materials favours their use in microwave devices. • Dielectric measurements show semiconductor nature of the synthesized ferrites. - Abstract: The nanosized CuFe{sub 2−x}Ce{sub x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8) ferrites doped with cerium are synthesized by chemical co-precipitation method. The synthesized materials are characterized by XRD, FTIR, TGA and SEM. XRD analysis of cerium substituted copper ferrites confirms the cubic spinel structure. The average crystallite size calculated by using Scherrer's formula ranges from 37 to 53 nm. The values of cell constant and cell volume vary with the dopant concentration. These variations can be explained in terms of their ionic radii. The DC electrical resistivity, measured by two point probe method, increases with increase in dopant concentration while it decreases with rise in temperature exhibiting semiconductor behaviour. Energy of activation of these ferrites is calculated by using Arrhenius type resistivity plots. Dielectric measurements of the synthesized compounds show exponential decrease in dielectric constant and dielectric loss factor with increase in frequency. This indicates the normal dielectric behaviour of ferrites.

  7. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    Sun, Yongfu; Liu, Qinghua; Gao, Shan; Cheng, Hao; Lei, Fengcai; Sun, Zhihu; Jiang, Yong; Su, Haibin; Wei, Shiqiang; Xie, Yi

    2013-11-01

    Finding ideal material models for studying the role of catalytic active sites remains a great challenge. Here we propose pits confined in an atomically thin sheet as a platform to evaluate carbon monoxide catalytic oxidation at various sites. The artificial three-atomic-layer thin cerium(IV) oxide sheet with approximately 20% pits occupancy possesses abundant pit-surrounding cerium sites having average coordination numbers of 4.6 as revealed by X-ray absorption spectroscopy. Density-functional calculations disclose that the four- and five-fold coordinated pit-surrounding cerium sites assume their respective role in carbon monoxide adsorption and oxygen activation, which lowers the activation barrier and avoids catalytic poisoning. Moreover, the presence of coordination-unsaturated cerium sites increases the carrier density and facilitates carbon monoxide diffusion along the two-dimensional conducting channels of surface pits. The atomically thin sheet with surface-confined pits exhibits lower apparent activation energy than the bulk material (61.7 versus 122.9 kJ mol-1), leading to reduced conversion temperature and enhanced carbon monoxide catalytic ability.

  8. Demonstration of enhanced K-edge angiography using a cerium target x-ray generator

    SciTech Connect

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Sato, Shigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-11-01

    The cerium target x-ray generator is useful in order to perform enhanced K-edge angiography using a cone beam because K-series characteristic x rays from the cerium target are absorbed effectively by iodine-based contrast mediums. The x-ray generator consists of a main controller, a unit with a Cockcroft-Walton circuit and a fixed anode x-ray tube, and a personal computer. The tube is a glass-enclosed diode with a cerium target and a 0.5-mm-thick beryllium window. The maximum tube voltage and current were 65 kV and 0.4 mA, respectively, and the focal-spot sizes were 1.0x1.3 mm. Cerium K{alpha} lines were left using a barium sulfate filter, and the x-ray intensity was 0.48 {mu}C/kg at 1.0 m from the source with a tube voltage of 60 kV, a current of 0.40 mA, and an exposure time of 1.0 s. Angiography was performed with a computed radiography system using iodine-based microspheres. In coronary angiography of nonliving animals, we observed fine blood vessels of approximately 100 {mu}m with high contrasts.

  9. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis.

    PubMed

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankenhanel, Erin; Ma, J Y; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-09-01

    The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of cerium oxide nanoparticle treatments ability to prevent the LPS induced sepsis associated changes in physiological, blood cell count, inflammatory protein and growth factors in vivo. In vitro assays investigation the treated of macrophages cells with different concentrations of cerium oxide nanoparticle demonstrate that concentration of cerium oxide nanoparticles below 1 µg/ml did not significantly influence cell survival as determined by the MTT assay. PMID:26217772

  10. Influences of the main anodic electroplating parameters on cerium oxide films

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu; Zhang, Zhao; Zhang, Jianqing

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  11. Photochemical precipitation of thorium and cerium and their separation from other ions in aqueous solution.

    PubMed

    Das, M; Heyn, A H; Hoffman, M Z; Agarwal, R P

    1970-10-01

    Thorium was precipitated from homogeneous solution by exposing solutions of thorium and periodate in dilute perchloric acid to 253.7 nm radiation from a low-pressure mercury lamp. Periodate is reduced photochemically to iodate which causes the formation of a dense precipitate of the basic iodate of thorium(IV). The precipitate was redissolved, the iodate reduced, the thorium precipitated first as the hydroxide, then as the oxalate and ignited to the dioxide for weighing. Thorium(IV) solutions containing 8-200 mg of ThO(2) gave quantitative results with a standard deviation (s) of 0.2 mg. Separations from 25 mg each of iron, calcium, magnesium, 50 mg of yttrium and up to 500 mg of uranium(VI) were quantitative (s = 0.25 mg). Separations from rare earths, except cerium, were accomplished by using hexamethylenetetramine rather than ammonia for the precipitation of the hydroxide. Cerium(III) was similarly precipitated and converted into CeO(2) for weighing. Quantitative results were obtained for 13-150 mg of CeO(2) with a standard deviation of 0.2 mg. Separations from 200 mg of uranium were quantitative. Other rare earths and yttrium interfered seriously. The precipitates of the basic cerium(IV) and thorium iodates obtained are more compact than those obtained by direct precipitation and can be handled easily. Attempts to duplicate Suzuki's method for separating cerium from neodymium and yttrium were not successful. PMID:18960820

  12. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    SciTech Connect

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  13. Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode.

    PubMed

    Silveira, Gustavo; de Morais, Andréia; Villis, Paulo César Mendes; Maroneze, Camila Marchetti; Gushikem, Yoshitaka; Lucho, Alzira Maria Serpa; Pissetti, Fábio Luiz

    2012-03-01

    A silica-cerium mixed oxide (SiCe) was prepared by the sol-gel process, using tetraethylorthosilicate and cerium nitrate as precursors and obtained as an amorphous solid possessing a specific surface area of 459 m(2) g(-1). Infrared spectroscopy of the SiCe material showed the formation of the Si-O-Ce linkage in the mixed oxide. Scanning electron microscopy/energy dispersive spectroscopy indicated that the cerium oxide particles were homogenously dispersed on the matrix surface. X-ray diffraction and (29)Si solid-state nuclear magnetic resonance implied non-crystalline silica matrices with chemical environments that are typical for silica-based mixed oxides. X-ray photoelectron spectroscopy showed that Ce was present in approximately equal amounts of both the 3+ and 4+ oxidation states. Cyclic voltammetry data of electrode prepared from the silica-cerium mixed oxide showed a peak for oxidation of Ce(3+)/Ce(4+) at 0.76 V and electrochemical impedance spectroscopy equivalent circuit indicated a porous structure with low charge transfer resistance. In the presence of nitrite, the SiCe electrode shows an anodic oxidation peak at 0.76 V with a linear response as the concentration of the analyte increases from 3×10(-5) at 3.9×10(-3) mol L(-1). PMID:22192596

  14. Preparation and properties of double borates of scandium and REE of the cerium subgroup

    SciTech Connect

    Magunov, I.R.; Efryushina, N.P.; Voevudskaya, S.V.; Zhikhareva, E.A.; Zhirnova, A.P.

    1986-02-01

    The authors prepare double borates of scandium and cerium subgroup rare earths with the general formula RSc/sub 3/ (BO/sub 3/)/sub 4/ (R = Ce, Pr, Nd, Sm). It has been shown that these compounds have the structure of the carbonate mineral huntite. Their IR and luminescence spectra have been studied.

  15. Long range ordered alloys modified by addition of niobium and cerium

    DOEpatents

    Liu, Chain T.

    1987-01-01

    Long range ordered alloys are described having the nominal composition (Fe,Ni,Co).sub.3 (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to drammatically enhance the creep properties of the resulting alloys.

  16. Long range ordered alloys modified by addition of niobium and cerium

    DOEpatents

    Liu, C.T.

    1984-08-22

    Long range ordered alloys are described having the nominal composition (Fe,Ni,Co)/sub 3/ (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to dramatically enhance the creep properties of the resulting alloys.

  17. Resonant photoemission study of the 4f spectral function of cerium in Ce/Fe(100) interfaces

    SciTech Connect

    Witkowski, N.; Bertran, F.; Gourieux, T.; Kierren, B.; Malterre, D.; Panaccione, G. |

    1997-11-01

    In this paper, we present a resonant photoemission study of the cerium 4f spectral function in Ce/Fe(100) interfaces. By covering cerium ultrathin films with lanthanum, we completely suppress the surface contribution of the spectra. Then we show that the cerium atoms at the interface are in an intermediate valent state, whereas the f{sup 1} configuration is stabilized in the top layer. This method allows us to obtain the genuine 4f spectral function of the interface, and could be extended to a study of Ce-based compounds. {copyright} {ital 1997} {ital The American Physical Society}

  18. Two-Phase ({gamma},{alpha}) Equation of State for Cerium and Features of its Dynamic Compression

    SciTech Connect

    Yelkin, V. M.; Kozlov, E. A.; Kakshina, E. V.; Moreva, Yu. S.

    2006-07-28

    The unusual thermodynamic properties of cerium result from features in the narrow 4f-zone whose electrons are subdivided into localized and delocalized subsystems. In this paper the model of pseudo-binary solid solutions allowing for two different electronic states is applied to construct the thermodynamically complete two-phase equation of state for cerium. The parameters of the model were fitted to describe the thermodynamic data obtained in the static experiments with high-purity cerium. This equation of state was used to analyze wave structures realized under dynamic compression with regard to the equilibrium ({gamma},{alpha}) phase transition.

  19. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  20. Fatigue behavior of titanium alloys

    SciTech Connect

    Boyer, R.R.; Eylon, D.; Luetjering, G.

    1999-07-01

    This symposium was international in nature, with leaders in the fields of fatigue technology and the metallurgy of titanium from the US, Europe and Asia. It covered basic research, development, applications and modeling--life predictions and design of both fatigue crack initiation and propagation of titanium alloys. There were presentations on the full range of titanium alloy systems, from commercially pure and {alpha}-alloys, {alpha}/{beta}- and {beta}-alloys to the gamma titanium aluminides. The effects of processing/heat treatment/microstructure on the fatigue properties were discussed, and models proposed to correlate the microstructures to the observed fatigue performance. Test environments reported on included hard vacuum (and the effect of vacuum level), vacuums with partial pressures of miscellaneous gases, lab air and aqueous media. A session was devoted to the effects of environment and fatigue enhancement via surface treatments using techniques such as shot peening and roller burnishing. The effects of dwell on both S-N and crack growth rate behavior were covered. It was a very comprehensive symposium with presentations from academia, government laboratories and industry, with industrial participants ranging from the petroleum industry to medical and aerospace interests. This book has been separated into four sections, representing the technology areas covered in various sessions, namely Mechanisms of Fatigue crack Initiation and Propagation of Conventional Alloys, Fatigue in Intermetallics, Environmental and Surface Aspects of Fatigue, and Application, Life Prediction and Design. Separate abstracts were prepared for most papers in this volume.

  1. Lactobacillusassisted synthesis of titanium nanoparticles

    PubMed Central

    2007-01-01

    An eco-friendlylactobacillussp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  2. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  3. Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form.

    SciTech Connect

    Lewis, M. A.; Lexa, D.; Morss, L. R.; Richmann, M. K.

    1999-09-03

    Glass-bonded sodalite is being developed as a ceramic waste form (CWF) to immobilize radioactive fission products, actinides, and salt residues from electrometallurgical treatment of spent nuclear reactor fuel. The CWF consists of about 75 mass % sodalite, 25 mass % glass, and small amounts of other phases. This paper presents some results and interpretation of physical measurements to characterize the CWF structure, and dissolution tests to measure the release of matrix components and radionuclides from the waste form. Tests have been carried out with specimens of the CWF that contain rare earths at concentrations similar to those expected in the waste form. Parallel tests have been carried out on specimens that have uranium or plutonium as well as the rare earths at concentrations similar to those expected in the waste forms; in these specimens UCl{sub 3} forms UO{sub 2} and PuCl{sub 3} forms PuO{sub 2}. The normalized releases of rare earths in dissolution tests were found to be much lower than those of matrix elements (B, Si, Al, Na). When there is no uranium in the CWF, the release of cerium is two to ten times lower than the release of the other rare earths. The low release of cerium may be due to its tetravalent state in uranium-free CWF. However, when there is uranium in the CWF, the release of cerium is similar to that of the other rare earths. This trivalent behavior of cerium is attributed to charge transfer or covalent interactions among cerium, uranium, and oxygen in (U,Ce)O{sub 2}.

  4. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  5. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  6. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  7. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  8. 40 CFR 721.10003 - Manganese heterocyclic tetraamine complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complex (generic). 721.10003 Section 721.10003 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10003 Manganese heterocyclic tetraamine complex (generic). (a) Chemical... as manganese heterocyclic tetraamine complex (PMNs P-98-625/626/627/628/629 and P-00-614/617)...

  9. Manganese encrustation of zygospores of a chlamydomonas (chlorophyta: volvocales).

    PubMed

    Schulz-Baldes, M; Lewin, R A

    1975-06-13

    In media containing normal trace-element supplements, but not in manganese-deficient media, zygospores of a new species of Chlamydomonas (isolated from soil) become encrusted with a dark brown mineral coating. Staining with benzidine indicates that the encrustation is rich in manganese. This has been confirmed by x-ray analysis in combination with a scanning electron microscope. PMID:17798436

  10. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  11. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  13. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  14. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  15. Ambient Concentrations of Manganese Compounds in EPA Region 5

    EPA Science Inventory

    This indicator presents trends in ambient concentrations of manganese in EPA Region 5 from 2000 to 2009. This information shows how concentrations of manganese, a hazardous air pollutant that can harm human health in exposed populations, have changed in the last 10 years in a ...

  16. 64 FR 23675 - Electrolytic Manganese Dioxide From Greece and Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-05-03

    ... orders on imports of electrolytic manganese dioxide from Greece and Japan (54 FR 15243). The Commission..., including the text of subpart F of part 207, are published at 63 FR 30599, June 5, 1998, and may be... COMMISSION Electrolytic Manganese Dioxide From Greece and Japan AGENCY: United States International...

  17. Photosynthetic water oxidation: insights from manganese model chemistry.

    PubMed

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond

  18. Small Titanium Oxo Clusters: Primary Structures of Titanium(IV) in Water.

    PubMed

    Zhang, Guanyun; Hou, Jie; Tung, Chen-Ho; Wang, Yifeng

    2016-04-01

    For sol-gel synthesis of titanium oxide, the titanium(IV) precursors are dissolved in water to form clear solutions. However, the solution status of titanium(IV) remains unclear. Herein three new and rare types of titanium oxo clusters are isolated from aqueous solutions of TiOSO4 and TiCl4 without using organic ligands. Our results indicate that titanium(IV) is readily hydrolyzed into oxo oligomers even in highly acidic solutions. The present clusters provide precise structural information for future characterization of the solution species and structural evolution of titanium(IV) in water and, meanwhile, are new molecular materials for photocatalysis. PMID:26990885

  19. Oxidation state of marine manganese nodules

    USGS Publications Warehouse

    Piper, D.Z.; Basler, J.R.; Bischoff, J.L.

    1984-01-01

    Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.

  20. AM1* parameters for manganese and iron.

    PubMed

    Kayi, Hakan; Clark, Timothy

    2010-06-01

    We report the parameterization of AM1* for the elements manganese and iron. The basis sets for both metals contain one set each of s-, p- and d-orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, I and Au. The performance and typical errors of AM1* are discussed for Mn and Fe, and are compared with available NDDO Hamiltonians. PMID:19937261

  1. [Characterization of manganese oxidation by Pseudomonas sp. QJX-1].

    PubMed

    Zhou, Na-Na; Bai, Yao-Hui; Liang, Jin-Song; Luo, Jin-Ming; Liu, Rui-Ping; Hu, Cheng-Zhi; Yuan, Lin-Jiang

    2014-02-01

    A manganese-oxidizing bacteria (QJX-1) was isolated from the soil of a manganese mine. It was identified as Pseudomonas sp. QJX-1 by 16S rDNA sequencing. Experimental results showed that the Pseudomonas sp. QJX-1 has a multi-copper oxidase gene CumA, which is an essential component for manganese oxidation by Pseudomonas sp. Under the condition of low initial inoculum level (D600, 0.020), 5.05 mg x L(-1 Mn2+ could be oxidized by QJX-1 within 48 h with a conversion rate of as high as 99.4%. In comparison with the eutrophic conditions, the oligotrophic condition dramatically increased the biological manganese oxidation rate. Biofilm formation by employing the quartz sand could further improve the oxidation rate of Mn2+. Based on these results, it is speculated that biological manganese oxidation in underground water treatment is comparatively high. PMID:24812972

  2. Treatability of manganese by sodium silicate and chlorine

    SciTech Connect

    Robinson, F.B.; Ronk, S.K. )

    1987-11-01

    Manganese sequestering by nearly simultaneous additions of sodium silicate and sodium hypochlorite was studied in laboratory-prepared waters. Under conditions of near-neutral pH and 150-250 mg/liter of alkalinity as CaCO{sub 3}, 1-2 mg manganese/liter could be sequestered for up to one day. Less effective manganese treatability was found at pH 8 than at pH 7. Additionally, at pH 7 the best results were obtained when neither silicate nor hypochlorite was added because of the slow manganese oxidation rate by oxygen alone. Aging of diluted stock silicate solutions prior to dosing also resulted in poor treatment; the presence of background silica increased the treatment effectiveness only slightly. Overall, manganese was less treatable by this method than iron under the same treatment conditions.

  3. Manganese consumption and recycling flow model. Information circular/1995

    SciTech Connect

    Gabler, R.C.

    1995-04-01

    The report follows the flow of manganese through its metallurgical and chemical applications and highlights areas where significant losses occur owing to downgrading, export, or disposal. The study indicates that materials containing 695,000 short tons (st) of manganese were consumed domestically in 1990. Scrap recovery specifically for manganese recycling was insignificant. However, considerable manganese was recycled through processing operations as a minor component of ferrous and nonferrous scrap and steel slag. The major loss category is manganese lost in steel processing, 323,156 st or 46 pct of the 1990 apparent consumption. Most of this loss reports to steelmaking slags. Recovery from slags is technically feasible, but is not economically feasible.

  4. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  5. Development of Lymantria dispar affected by manganese in food.

    PubMed

    Kula, Emanuel; Martinek, Petr; Chromcová, Lucie; Hedbávný, Josef

    2014-10-01

    We studied the response of gypsy moth (Lymantria dispar (Linnaeus) (Lepidoptera: Lymantriidae)) to the content of manganese in food in the laboratory breeding of caterpillars. The food of the caterpillars {Betula pendula Roth (Fagales: Betulaceae) leaves} was contaminated by dipping in the solution of MnCl2 · 4H2O with manganese concentrations of 0, 0.5, 5 and 10 mg ml(-1), by which differentiated manganese contents (307; 632; 4,087 and 8,124 mg kg(-1)) were reached. Parameters recorded during the rearing were as follows: effect of manganese on food consumption, mortality and length of the development of caterpillars, pupation and hatching of imagoes. At the same time, manganese concentrations were determined in the offered and unconsumed food, excrements, and exuviae of the caterpillars, pupal cases and imagoes by using the AAS method. As compared with the control, high manganese contents in the food of gypsy moth caterpillars affected the process of development particularly by increased mortality of the first instar caterpillars (8 % mortality for caterpillars with no Mn contamination (T0) and 62 % mortality for subjects with the highest contamination by manganese (T3)), by prolonged development of the first-third instar (18.7 days (T0) and 27.8 days (T3)) and by increased food consumption of the first-third instar {0.185 g of leaf dry matter (T0) and 0.483 g of leaf dry matter (T3)}. The main defence strategy of the caterpillars to prevent contamination by the increased manganese content in food is the translocation of manganese into frass and exuviae castoff in the process of ecdysis. In the process of development, the content of manganese was reduced by excretion in imagoes to 0.5 % of the intake level even at its maximum inputs in food. PMID:25028315

  6. Essentiality, toxicity, and uncertainty in the risk assessment of manganese.

    PubMed

    Boyes, William K

    2010-01-01

    Risk assessments of manganese by inhalation or oral routes of exposure typically acknowledge the duality of manganese as an essential element at low doses and a toxic metal at high doses. Previously, however, risk assessors were unable to describe manganese pharmacokinetics quantitatively across dose levels and routes of exposure, to account for mass balance, and to incorporate this information into a quantitative risk assessment. In addition, the prior risk assessment of inhaled manganese conducted by the U.S. Environmental Protection Agency (EPA) identified a number of specific factors that contributed to uncertainty in the risk assessment. In response to a petition regarding the use of a fuel additive containing manganese, methylcyclopentadienyl manganese tricarbonyl (MMT), the U.S. EPA developed a test rule under the U.S. Clean Air Act that required, among other things, the generation of pharmacokinetic information. This information was intended not only to aid in the design of health outcome studies, but also to help address uncertainties in the risk assessment of manganese. To date, the work conducted in response to the test rule has yielded substantial pharmacokinetic data. This information will enable the generation of physiologically based pharmacokinetic (PBPK) models capable of making quantitative predictions of tissue manganese concentrations following inhalation and oral exposure, across dose levels, and accounting for factors such as duration of exposure, different species of manganese, and changes of age, gender, and reproductive status. The work accomplished in response to the test rule, in combination with other scientific evidence, will enable future manganese risk assessments to consider tissue dosimetry more comprehensively than was previously possible. PMID:20077286

  7. Effect of quantity and route of administration of manganese monoxide on feed intake and serum manganese in ruminants

    SciTech Connect

    Black, J.R.; Ammerman, C.B.; Henry, P.R.

    1985-02-01

    The experiment investigated effects of high quantities of manganese and route of administration (diet versus capsule-dosed) on feed intake and blood characteristics in sheep. Twenty-four Florida native or Florida native by St. Croix crossbred wethers, 47 kg initially, were assigned randomly to eight treatments including basal diet supplemented with 0, 3000, 6000, or 9000 ppm manganese as a reagent grade manganese monoxide or basal diet plus gelatin capsules containing the equivalent of 0, 3000, 6000, or 9000 ppm manganese based on intake of the previous day. Three sheep per treatment were provided feed and tap water for ad libitum intake. Sheep were fed basal diet for 7 days followed by a 21-day experimental period, then placed back on the basal diet for 7 days. Average daily feed intake was reduced by increasing supplemental manganese, regardless of route. Animals dosed by capsule consumed less feed than those administered manganese in the diet. Serum manganese increased as manganese supplementation increased, but route of administration had no effect.

  8. THE STATE OF MANGANESE IN THE PHOTOSYNTHETIC APPARATUS. II. X-RAY ABSORPTION EDGE STUDIES ON MANGANESE IN PHOTOSYNTHETIC MEMBRANES

    SciTech Connect

    Kirby, J. A.; Goodin, D. B.; Wydrzynski, T.; Robertson, A. S.; Klein, M. P.

    1980-11-01

    X-ray absorption spectra at the Manganese K-edge are presented for spinach chloroplasts, and chloroplasts which have been Tris-treated and hence unable to evolve oxygen. A significant change in the electronic environment of manganese is observed and is attributed to the release of manganese from the thylakoid membranes with a concomitant change in oxidation state. A correlation of the K-edge energy, defined as the energy at the first inflection point, with coordination charge has been established for a number of manganese compounds of known structure and oxidation state. Comparison of the manganese K-edge energies of the chloroplast samples with the reference compounds places the average oxidation state of the chloroplasts between +2 and +3. Using the edge spectra for Tris-treated membranes which were osmotically shocked to remove the released manganese, difference edge spectra were synthesized to approximate the active pool of manganese. Coordination charge predictions for this fraction are consistent with an average resting oxidation state higher than +2. The shape at the edge is also indicative of heterogeneity of the manganese site, of low symmetry, or both.

  9. Equation of state measurements by radiography provide evidence for a liquid-liquid phase transition in cerium

    NASA Astrophysics Data System (ADS)

    Lipp, M. J.; Jenei, Zs; Ruddle, D.; Aracne-Ruddle, C.; Cynn, H.; Evans, W. J.; Kono, Y.; Kenney-Benson, C.; Park, C.

    2014-05-01

    A pressure-volume isotherm in cerium metal at 1100 K was measured in a large volume press of the Paris-Edinburgh type up to 6 GPa. The volume was determined by imaging a rectangular shape of the sample via white X-ray radiography. Energy dispersive x-ray diffraction spectra were recorded to ensure that the highly reactive cerium in the cell assembly remained pure at this temperature. Even at 1100 K the p-V equation of state of liquid cerium shows a pronounced decrease of the bulk modulus above the y-phase region similar to the 775 K isotherm in the solid that also shows an inflection point between y- and a-type cerium. The inflection point in the 1100 K isotherm indicating the minimum in the bulk modulus separating the γ- from the α-type liquid is located at approximately 3.5 GPa.

  10. Radioactive waste forms stabilized by ChemChar gasification: characterization and leaching behavior of cerium, thorium, protactinium, uranium, and neptunium.

    PubMed

    Marrero, T W; Morris, J S; Manahan, S E

    2004-02-01

    The uses of a thermally reductive gasification process in conjunction with vitrification and cementation for the long-term disposal of low level radioactive materials have been investigated. gamma-ray spectroscopy was used for analysis of carrier-free protactinium-233 and neptunium-239 and a stoichiometric amount of cerium (observed cerium-141) subsequent to gasification and leaching, up to 48 days. High resolution ICP-MS was used to analyze the cerium, thorium, and uranium from 46 to 438 days of leaching. Leaching procedures followed the guidance of ASTM Procedure C 1220-92, Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste. The combination of the thermally reductive pretreatment, vitrification and cementation produced a highly non-leachable form suitable for long-term disposal of cerium, thorium, protactinium, uranium, and neptunium. PMID:14637345

  11. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    USGS Publications Warehouse

    Rose, H.J., Jr.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  12. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  13. Manganese removal during bench-scale biofiltration.

    PubMed

    Burger, Mark S; Mercer, Stephen S; Shupe, Gordon D; Gagnon, Graham A

    2008-12-01

    As biological manganese (Mn) removal becomes a more popular water treatment technology, there is still a large gap in understanding the key mechanisms and range of operational characteristics. This research aimed to expand on previous bench-scale experiments by directly comparing small filtration columns inoculated with indigenous biofilms from a Mn filtration plant and filtration columns inoculated with a liquid suspension of Leptothrix discophora SP-6. Batch tests found that in the absence of manganese oxidizing bacteria Mn was not removed by air alone, whereas a mixed population and Leptothrix strain achieved greater than 90% removal of Mn. The bench-scale biofiltration experiments found that biological filters can be inoculated with a pure culture of L. discophora SP-6 and achieve a similar removal of indigenous biofilm. While Mn oxidizing bacteria (MOB) seem to be necessary for the auto-catalytic nature of these biological filters, Mn removal is achieved with a combination of adsorption to Mn oxides and biological oxidation. Additionally, it was demonstrated that biological Mn removal is possible over a broader "field of activity" (e.g., Mn removal occurred at a pH level as low as 6.5) than has previously been reported. The ability of this treatment technology to work over a broader range of influent conditions allows for more communities to consider biological treatment as an option to remove Mn from their drinking water. PMID:18809196

  14. THE MANGANESE MERCURY STAR π1 BOOTIS

    PubMed Central

    Montgomery, John Wm.; Aller, Lawrence H.

    1969-01-01

    High-dispersion plates secured with the Coudé spectrograph of the Lick 120 inch telescope have been used to analyze the peculiar A star π1 Bootis. Spectral-energy distribution measurements are combined with line-intensity data for iron and manganese in two stages of ionization to obtain a fit with model atmospheres for Teff = 13,000°K and log g = 4. The influence of adopted T and g on the derived abundances is discussed. Although C, O, Mg, Si, Ti, Cr, and Fe appear to have nearly normal (i.e., solar) abundances, strontium appears to be enhanced in abundance by an order of magnitude, and scandium is about 50 times overabundant, while manganese and yttrium appear to be two orders of magnitude overabundant. If the identification of gallium is correct, this element is overabundant by a factor approaching 100,000; while if λ3983.90 is to be attributed to HgII, as Bidelman suggests, the overabundance of this element is many orders of magnitude. PMID:16578698

  15. Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    PubMed Central

    Massaad, Cynthia A.; Pautler, Robia G.

    2012-01-01

    The use of manganese ions (Mn2+) as an MRI contrast agent was introduced over 20 years ago in studies of Mn2+ toxicity in anesthetized rats (1). Manganese-enhanced MRI (MEMRI) evolved in the late nineties when Koretsky and associates pioneered the use of MEMRI for brain activity measurements (2) as well as neuronal tract tracing (3). Currently, MEMRI has three primary applications in biological systems: (1) contrast enhancement for anatomical detail, (2) activity-dependent assessment and (3) tracing of neuronal connections or tract tracing. MEMRI relies upon the following three main properties of Mn2+: (1) it is a paramagnetic ion that shortens the spin lattice relaxation time constant (T1) of tissues, where it accumulates and hence functions as an excellent T1 contrast agent; (2) it is a calcium (Ca2+) analog that can enter excitable cells, such as neurons and cardiac cells via voltage-gated Ca2+ channels; and (3) once in the cells Mn2+ can be transported along axons by microtubule-dependent axonal transport and can also cross synapses trans-synaptically to neighboring neurons. This chapter will emphasize the methodological approaches towards the use of MEMRI in biological systems. PMID:21279601

  16. Thermochemistry of iron manganese oxide spinels

    SciTech Connect

    Guillemet-Fritsch, Sophie; Navrotsky, Alexandra . E-mail: anavrotsky@ucdavis.edu; Tailhades, Philippe; Coradin, Herve; Wang Miaojun

    2005-01-15

    Oxide melt solution calorimetry has been performed on iron manganese oxide spinels prepared at high temperature. The enthalpy of formation of (Mn{sub x}Fe{sub 1-x}){sub 3}O{sub 4} at 298K from the oxides, tetragonal Mn{sub 3}O{sub 4} (hausmannite) and cubic Fe{sub 3}O{sub 4} (magnetite), is negative from x=0 to x=0.67 and becomes slightly positive for 0.670.6) spinels of intermediate compositions. The enthalpies of formation are discussed in terms of three factors: oxidation-reduction relative to the end-members, cation distribution, and tetragonality. A combination of measured enthalpies and Gibbs free energies of formation in the literature provides entropies of mixing. {delta}S{sub mix}, consistent with a cation distribution in which all trivalent manganese is octahedral and all other ions are randomly distributed for x>0.5, but the entropy of mixing appears to be smaller than these predicted values for x<0.4.

  17. Stabilisation of carbonyl free amidinato-manganese(II) hydride complexes: "masked" sources of manganese(I) in organometallic synthesis.

    PubMed

    Fohlmeister, Lea; Jones, Cameron

    2016-01-28

    Reaction of the amidinato-manganese(ii) bromide complex, [{(κ(2)-N,N'-Piso)Mn(μ-Br)}3(THF)2] (Piso = [(DipN)2CBu(t)](-), Dip = 2,6-diisopropylphenyl), with K[BHEt3] affords the first example of a structurally authenticated amidinato-manganese(ii) hydride complex, [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2], via a process which involves a change in the amidinate coordination mode. Treatment of the bulkier precursor complex, [{(Piso'')Mn(μ-Br)}n] (Piso'' = [(Dip''N)2CBu(t)](-), Dip'' = C6H2Pr(i)2(CPh3)-2,6,4), with K[BHEt3] did not lead to an isolable manganese hydride complex, but its reaction with the magnesium(i) complex, [{((Mes)Nacnac)Mg}2] ((Mes)Nacnac = [(MesNCMe)2CH](-), Mes = mesityl), did. This reaction presumably proceeds via a reactive manganese(i) intermediate, which abstracts hydrogen from a reaction component to give [{(κ(2)-N,N'-Piso'')Mn(μ-H)}3]. A comparison of the reactivities of [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2] and the isomorphous manganese(i) complex, [{(N-,η(3)-arene-Piso)Mn}2], toward CO, O2 and N2O was carried out. Reactions with the manganese(i) and manganese(ii) species gave identical results, namely the formation of the manganese(i) carbonyl complex, [(κ(2)-N,N'-Piso)Mn(CO)4] (reactions with CO), and the manganese(iii)-μ-oxo complex, [{(κ(2)-N,N'-Piso)Mn(μ-O)}2] (reactions with O2 and N2O). These results indicate that [{(N-,η(3)-arene-Piso)Mn(μ-H)2}2] can act as a "masked" source of an amidinato-manganese(i) fragment in synthetic transformations. PMID:26674008

  18. Influence of cerium on the pulsed UV nanosecond laser processing of photostructurable glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Adams, P. M.; Helvajian, H.

    2005-07-01

    Photostructurable glass ceramic (PSGC) materials contain a sensitizer that is used to facilitate the optical exposure process. The primary role of the sensitizer is to absorb incident radiation and generate photoelectrons. With thermal treatment, these photoelectrons can then interact with nascent metal ions to induce the formation of metallic clusters and the precipitation of a soluble crystalline phase in the glass matrix. The photo-ionization efficiency of the sensitizer species is strongly dependent on its spectral absorption and oxidation state in the base glass. Stabilizing compounds are typically added to the glass matrix to maintain the photo-active oxidation state and promote efficient exposure. To investigate the effectiveness of the photo-initiator, we have conducted experiments in which sample coupons of a commercial PSGC material (Foturan™, Schott Corp., Germany) were carefully exposed to various photon doses by pulsed UV nanosecond lasers at λ = 266 nm and 355 nm. Foturan is a lithium aluminosilicate glass that contains trace amounts of cerium as the photosensitive agent (0.01-0.04 wt.% admixture Ce 2O 3). The photo-initiator efficiency was investigated by using samples with cerium and without cerium. The irradiation wavelengths were selected because they lie above and below the primary absorption band of the cerium photo-initiator. Optical transmission spectroscopy (OTS) was employed to identify and monitor the population density of the photo-induced trapped electron state as a function of incident laser irradiance. The irradiated samples were thermally processed and then analyzed again with OTS to measure the quenching of the trapped electron state and the concurrent growth of a spectral band associated with the formation of nanometer-scale metallic clusters. The growth of metallic clusters signifies the "fixing" of the exposure and permanent image formation in the glass. The OTS results reveal that for λ = 266 nm laser irradiation, at least two

  19. Photo-catalytic Degradation and Sorption of Radio-cobalt from EDTA-Co Complexes Using Manganese Oxide Materials - 12220

    SciTech Connect

    Koivula, Risto; Harjula, Risto; Tusa, Esko

    2012-07-01

    very promising for the treatment of EDTA complexed Co solutions. The better performance values and cheaper production cost of manganese oxide, compared to titanium dioxide, is so big driving force that further studies on the material are evident. The possibilities for continuous treatment, instead of the fluidized bed -type batch experiment are investigated and the effects of other compounds affecting the de-complexation of Co-EDTA are further studied. (authors)

  20. Controlled release of manganese into water from coated experimental fertilizers: laboratory characterization.

    PubMed

    Novillo, J; Rico, M I; Alvarez, J M

    2001-03-01

    The release of manganese into water from controlled-release formulations containing manganese EDTA or manganese lignosulfonate was studied. These fertilizers were obtained in the laboratory by adhering the source of manganese over urea pellets and by adding a coating. The materials used as adhesives and coatings were mixtures of rosins plus tricalcium phosphate. With regard to the chemical composition, these formulations conformed to national and international standards for commercial fertilizers. The rate of release of manganese was a function of both the source of manganese used and the coating thickness. Under the same conditions the release of manganese was greater for formulations with manganese EDTA than with manganese lignosulfonate. To predict the kinetic behaviors of the two series of formulations, mathematical equations were established. The manganese source plus rosin coatings improved the handling and storage characteristics of the commercial urea pellets. The study of the rosin coatings using scanning electron microscopy showed that they were compact and homogeneous. PMID:11312854

  1. Metallographic preparation of titanium diboride coatings

    SciTech Connect

    McAllaster, M.E.

    1980-03-01

    A method is described for preparing metallographic cross sections of thin, hard, chemically vapor deposited titanium diboride coatings on various softer substrates. Standard metallographic preparation techniques were found to result in fracturing and edge rounding of the coatings. It is shown that these problems can be avoided by unidirectional grinding on worn 600 grit silicon carbide abrasive paper. Typical photomicrographs of chemically vapor deposited titanium diboride coatings are shown along with photomicrographs of intermediate phases that form at the titanium diboride - substrate interfaces.

  2. Production of titanium from ilmenite: a review

    SciTech Connect

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  3. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  4. Selection and Use of Manganese Dioxide by Neanderthals

    PubMed Central

    Heyes, Peter J.; Anastasakis, Konstantinos; de Jong, Wiebren; van Hoesel, Annelies; Roebroeks, Wil; Soressi, Marie

    2016-01-01

    Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these ‘manganese oxides’ were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l’Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood’s auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l’Azé I used manganese dioxide in fire-making and produced fire on demand. PMID:26922901

  5. Manganese carbonates as possible biogenic relics in Archean settings

    NASA Astrophysics Data System (ADS)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  6. Critical Aspects of Alloying of Sintered Steels with Manganese

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Dudrova, Eva; Nyborg, Lars

    2010-11-01

    This study examines the sintering behavior and properties of Fe-0.8Mn-0.5C manganese powder metallurgy steels. The study focuses on the influence of mode of alloying—admixing using either high-purity electrolytic manganese or medium carbon ferromanganese as well as the fully prealloying of water-atomized powder. Three main aspects were studied during the whole sintering process—microstructure development, interparticle necks evolution, and changes in the behavior of manganese carrier particles during both heating and sintering stages. The prealloyed powder shows considerable improvement in carbon homogenization and interparticle neck development in comparison with admixed materials. The first indication of pearlite for the fully prealloyed material was registered at ~1013 K (740 °C) in comparison with ~1098 K (825 °C) in the case of the admixed systems. The negative effect of the oxidized residuals of manganese carrier particles and high microstructure inhomogeneity, which is a characteristic feature of admixed systems, is reflected in the lower values of the mechanical properties. The worst results in this respect were obtained for the system admixed with electrolytic manganese because of more intensive manganese sublimation and resulting oxidation at lower temperatures. According to the results of X-ray photoelectron spectroscopy and high-resolution scanning electron microscopy and energy dispersive X-ray analyses, the observed high brittleness of admixed materials is connected with intergranular decohesion failure associated with manganese oxide formation on the grain boundaries.

  7. Selection and Use of Manganese Dioxide by Neanderthals.

    PubMed

    Heyes, Peter J; Anastasakis, Konstantinos; de Jong, Wiebren; van Hoesel, Annelies; Roebroeks, Wil; Soressi, Marie

    2016-01-01

    Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these 'manganese oxides' were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l'Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood's auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l'Azé I used manganese dioxide in fire-making and produced fire on demand. PMID:26922901

  8. Methanogenesis from wastewater stimulated by addition of elemental manganese

    PubMed Central

    Qiao, Sen; Tian, Tian; Qi, Benyu; Zhou, Jiti

    2015-01-01

    This study presents a novel procedure for accelerating methanogenesis from wastewater by adding elemental manganese into the anaerobic digestion system. The results indicated that elemental manganese effectively enhanced both the methane yield and the production rate. Compared to the control test without elemental manganese, the total methane yield and production rate with 4 g/L manganese addition increased 3.4-fold (from 0.89 ± 0.03 to 2.99 ± 0.37 M/gVSS within 120 h) and 4.4-fold (from 6.2 ± 0.1 to 27.2 ± 2.2 mM/gVSS/h), respectively. Besides, more acetate consumption and less propionate generation were observed during the methanogenesis with manganese. Further studies demonstrated that the elemental manganese served as electron donors for the methanogenesis from carbon dioxide, and the final proportion of methane in the total generated gas with 4 g/L manganese addition reached 96.9%, which was 2.1-fold than that of the control (46.6%). PMID:26244609

  9. Selection and Use of Manganese Dioxide by Neanderthals

    NASA Astrophysics Data System (ADS)

    Heyes, Peter J.; Anastasakis, Konstantinos; de Jong, Wiebren; van Hoesel, Annelies; Roebroeks, Wil; Soressi, Marie

    2016-02-01

    Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these ‘manganese oxides’ were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l’Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood’s auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l’Azé I used manganese dioxide in fire-making and produced fire on demand.

  10. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  11. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This annual topical report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  12. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  13. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  14. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  15. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  16. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    SciTech Connect

    Gerdemann, S.J.; White, J.C.

    1999-10-19

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  17. The effects of hydrogen embrittlement of titanium

    NASA Technical Reports Server (NTRS)

    Taylor, Delbert J.

    1989-01-01

    Titanium alloys, by virtue of their attractive strength to density ratio, fatigue, fracture toughness and corrosion resistance are now commonly used in various aerospace and marine applications. The cost, once very expensive, has been reduced, making titanium even more of a competitive material today. Titanium and titanium alloys have a great affinity to several elements. Hydrogen, even in small amounts, can cause embrittlement, which in turn causes a reduction in strength and ductility. The reduction of strength and ductility is the subject of this investigation.

  18. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  19. Kinetic patterns in the formation of nanosized manganese-manganese oxide systems

    NASA Astrophysics Data System (ADS)

    Surovoi, E. P.; Bugerko, L. N.; Surovaya, V. E.; Zaikonnikova, T. M.

    2016-03-01

    Transformations in nanosized manganese films are studied by means of optical spectroscopy, microscopy, and gravimetry at different film thicknesses ( d = 4-108 nm) and temperatures of heat treatment ( T = 373-673 K). It is found that the kinetic curves of conversion are satisfactorily described in the terms of linear, inverse logarithmic, cubic, and logarithmic laws. The contact potential difference is measured for Mn and MnO films, and photo EMF is measured for Mn-MnO systems. An energy band diagram is constructed for Mn-MnO systems. A model for the thermal transformation of Mn films is proposed that includes stages of oxygen adsorption, the redistribution of charge carriers in the contact field of Mn-MnO, and manganese(II) oxide formation.

  20. Manganese cycles and the origin of manganese nodules, Oneida Lake, New York, U.S.A.

    USGS Publications Warehouse

    Dean, W.E.; Moore, W.S.; Nealson, K.H.

    1981-01-01

    Oneida Lake is a large shallow lake in central New York that is characterized by high algal productivity and concentrated deposits of freshwater manganese nodules. Budgets for Mn in the lake and its tributaries show a net loss of 23 metric tons of manganese within the lake per year with ???95% deposited in manganese nodules and the rest incorporated in the sediments. Erosion of nodules in the shallow well-oxygenated central part of the lake produces fragments of nodules as well as Mn-coated sand grains that are transported to adjacent deeper, more reducing parts of the lake where they sink into the anoxic sediments and MnO2 is reduced to Mn2+. This produces a high concentration of Mn2+ in the pore waters of these sediments and Mn2+ diffuses back into the water column. Growth of manganese nodules in Oneida Lake is characterized by periods of rapid accretion (> 1 mm 100 yr.) alternating with periods of no-growth or erosion. Rapid growth of nodules may be aided by the stripping of Mn from the water column by algae and bacteria. In addition, the high algal productivity of Oneida Lake produces a high-pH high-oxygen environment during the summer months that is maintained throughout the water column in the central part of the lake by almost continuous wind mixing. Thus, the cycle of Mn within the lake involves an interaction of the weather, the biota, the sediments, the nodules, and Mn dissolved in the lake and interstitial waters. ?? 1981.