Science.gov

Sample records for cervicothoracic junction case

  1. Migrated Disc at Cervicothoracic Junction Presenting as Acute Paraplegia

    PubMed Central

    Mahore, Amit; Agarwal, Monit; Tikeykar, Vishakha

    2015-01-01

    Herein, we report on an inferior migration of an intervertebral disc C6-7 to the cervicothoracic junction manifesting as acute paraplegia. The patient showed a remarkable recovery after the surgery. The diagnostic dilemma and management difficulties of such an entity are briefly discussed. PMID:26097662

  2. Migrated Disc at Cervicothoracic Junction Presenting as Acute Paraplegia.

    PubMed

    Mahore, Amit; Agarwal, Monit; Ramdasi, Raghvendra; Tikeykar, Vishakha

    2015-06-01

    Herein, we report on an inferior migration of an intervertebral disc C6-7 to the cervicothoracic junction manifesting as acute paraplegia. The patient showed a remarkable recovery after the surgery. The diagnostic dilemma and management difficulties of such an entity are briefly discussed. PMID:26097662

  3. Cervicothoracic junction thrust manipulation in the multimodal management of a patient with temporomandibular disorder.

    PubMed

    Jayaseelan, Dhinu J; Tow, Nancy S

    2016-05-01

    Temporomandibular disorder (TMD) is a common condition that can be difficult to manage in physical therapy. A number of interventions, such as manual therapy, therapeutic exercise, and patient education have typically been used in some combination. However, the evidence regarding thrust manipulation of not only the local but also adjacent segments is sparse. Specifically, the use of cervicothoracic (CT) junction thrust manipulation has not previously been described in the management of individuals with TMD. In this case report, CT junction thrust manipulation, in addition to locally directed manual therapy, exercise, and postural education, was associated with immediate improvements in neck and jaw symptoms and function in a complex patient with TMD. The patient was seen for seven visits over the course of 2 months and demonstrated clinically significant changes in the neck disability index (NDI), the numeric rating of pain scale (NPRS), and the global rating of change (GROC) scale. The purpose of this report is to describe the successful physical therapy management of a patient with TMD utilizing manual therapy, including CT junction thrust manipulation, education, and exercise. PMID:27559278

  4. Cervicothoracic Arachnoid Cyst Causing Cervical Myelopathy: A Case Report

    PubMed Central

    Kizilay, Zahir; Yilmaz, Ali; Ozkul, Ayca; Ismailoglu, Ozgur

    2015-01-01

    Several types of intraspinal cyst develop within the spinal canal from the craniovertebral junction to the sacrum. These lesions occur in both children and adults. Arachnoid cysts are one of them and are more frequent in the paediatric population, being a relatively uncommon lesion in adults. The arachnoid cyst may be located intradurally or extradurally. The intradural type may be congenital or from spinal trauma, infection or spondylosis. Although intradural arachnoid cysts are often asymptomatic, they may give early symptoms when they exist with synchronous pathologies constricting the spinal canal gradually as in cervical spondylosis. In this report, a 60-year-old man with an arachnoid cyst of the cervicothoracic spine is presented. His cyst remained undiagnosed because of the nonspecific nature of the symptoms. It was only when he developed right hemiparesis that a posterior fluid collection compressing the spinal cord was found in Magnetic resonance imaginig. An intradural extramedullary cyst was removed with successful surgery and cord compression and symptoms were reversed. We discuss radiological diagnosis and surgical treatment of an arachnoid cyst in this report. PMID:27275210

  5. Compressive Cervicothoracic Adhesive Arachnoiditis following Aneurysmal Subarachnoid Hemorrhage: A Case Report and Literature Review.

    PubMed

    Rahmathulla, Gazanfar; Kamian, Kambiz

    2014-08-01

    We present the case of a 55-year-old woman with diffuse adhesive arachnoiditis in the posterior fossa and cervicothoracic spine following posterior inferior cerebellar artery aneurysmal subarachnoid hemorrhage (SAH). She underwent aneurysm clipping with subsequent gradual neurologic decline associated with sensory disturbances, gait ataxia, and spastic paraparesis. Magnetic resonance imaging revealed diffuse adhesive arachnoiditis in the posterior fossa and cervicothoracic spine, syringobulbia, and multiple arachnoid cysts in the cervicothoracic spine along with syringohydromyelia. Early surgical intervention with microlysis of the adhesions and duraplasty at the clinically relevant levels resulted in clinical improvement. Although adhesive arachnoiditis, secondary arachnoid cysts, and cerebrospinal fluid flow abnormalities resulting in syrinx are rare following aneurysmal SAH, early recognition and appropriate intervention lead to good clinical outcomes. PMID:25083391

  6. Giant cell tumor of cervicothoracic region treated by triple corpectomy from posterior only approach: A case report with review of literature

    PubMed Central

    Mahajan, Rajat; Chhabra, Harvinder Singh; Tandon, Vikas; Venkatesh, Raghavendra

    2015-01-01

    Giant cell tumor (GCT) is a benign aggressive tumor, which affects axial as well as a peripheral skeleton. It affects epiphysis of long bones and can result in pathological fractures. GCT affects cervical spine rarely and has been known to affect almost all vertebra in the human body. It has a predilection for fixed spine, that is, sacrum though it can affect mobile spine as well. GCT of cervicothoracic region poses a challenge for the surgeon because of the difficulty in approaching this region anteriorly. This situation is further compounded when GCT involves multiple contiguous vertebral bodies in this region and has already spread beyond the confines of its capsule. We report a case of GCT involving three vertebral bodies C7, D1, and D2 at cervicothoracic region who presented to us and was treated with triple corpectomy from the posterior only approach. This is the first ever case report of triple corpectomy and anterior reconstruction by a posterior only approach for GCT at the cervicothoracic junction to the best of author's knowledge. PMID:26692702

  7. Large cervicothoracic myxoinflammatory fibroblastic sarcoma with brachial plexus invasion: A case report and literature review

    PubMed Central

    Jia, Xiaotian; Yang, Jianyun; Chen, Lin; Yu, Cong

    2016-01-01

    Myxoinflammatory fibroblastic sarcoma is a rare sarcoma that develops in patients of all ages, which usually presents as a slow-growing painless mass in the distal extremities. To date, myxoinflammatory fibroblastic sarcoma with invasion of the brachial plexus has rarely been reported in the literature. In this study, a case of large cervicothoracic sarcoma, which invaded the brachial plexus, is presented. The patient reported no sensory disturbance or dyskinesia. The tumor was completely resected without injury of the brachial plexus. The postoperative histological diagnosis was myxoinflammatory fibroblastic sarcoma. Follow-up examination performed 24 months after surgery revealed no tumor recurrence and no sensory disturbance or dyskinesia was reported. This study presents a rare case of large myxoinflammatory fibroblastic sarcoma with brachial plexus invasion that was successfully managed by surgery. PMID:27588121

  8. Traumatic spondyloptosis at the cervico-thoracic junction without neurological deficits

    PubMed Central

    Nguyen, Ha Son; Doan, Ninh; Lozen, Andrew; Gelsomino, Michael; Shabani, Saman; Kurpad, Shekar

    2016-01-01

    Background: There have been rare cases of traumatic cervical spondyloptosis without neurological compromise. We report another case and provide a review of the literature, with a focus on appropriate management. Case Description: A 60-year-old male rode his bicycle into a stationary semi-truck. He reported initial bilateral upper extremity paresthesias that resolved. Imaging demonstrated C7 on T1 spondyloptosis. Traction did not achieve reduction and a halo was applied. Subsequently, he underwent posterior decompression C6-T1, reduction via bilateral complete facetectomies at C7, and fixation from C4 to T2 fixation. Afterward, an anterior C7-T1 fixation occurred, where exposure was performed through a midline sternotomy. Postoperatively, he woke up with baseline motor and sensory examination in his extremities. He did exhibit voice hoarseness due to paralysis of the left vocal cords. He was discharged home 3 days after surgery. At 6 months follow-up, there was a progressive improvement of the left vocal cords to slight paresis; dynamic X-rays demonstrated no instability with good fusion progression. Conclusion: Traumatic cervical spondyloptosis without neurological compromise is a rare and challenging scenario. There is a concern for neurologic compromise with preoperative traction, but if specific posterior elements are fractured, the spinal canal may be wide enough where the concern for disc migration is minimal. For patients who have not been reduced preoperatively, a posterior approach with initial decompression to widen the canal, before reduction, appears safe. This scheme may avoid an initial anterior approach for decompression, necessitating a 3-stage procedure if circumferential stabilization is pursued. PMID:27274411

  9. Cervicothoracic cystic dysraphism.

    PubMed

    Valeur, Natalie S; Iyer, Ramesh S; Ishak, Gisele E

    2016-09-01

    Cystic dysraphism of the cervical and upper thoracic spine is very rare. It differs from the much more common lumbosacral dysraphism in appearance and structure, and usually portends a better prognosis due to lack of functional neurological tissue in the dysraphic sac and absent or less severe intracranial anomalies. There is ambiguity in the literature regarding terminology because of the paucity of cases. We present cases of the most common type of cervicothoracic cystic dysraphism and emphasize differences from lumbosacral myelomeningocele. Patient outcome depends on the presence of associated anomalies and whether complete surgical resection is performed. Imaging plays a critical role in surgical planning, screening the central nervous system for additional anomalies, and in the postoperative setting for evaluation of retethering. PMID:27147079

  10. Anaesthesia management of a case of Jervell and Lange-Nielsen syndrome for minimally invasive bilateral thoracoscopic cervicothoracic sympathectomy.

    PubMed

    Roy, Preety Mittal; Khanna, Sangeeta; Mehta, Yatin; Khan, Ali Z

    2016-06-01

    Long QT syndrome (LQTS) is an arrhythmogenic cardiac disorder resulting from the malfunction of cardiac ion channels. Patient with LQTS may present with syncope, seizures or sudden cardiac death secondary to polymorphic ventricular tachycardia (VT) or torsades de pointes. Patient may be asymptomatic in the pre-operative period but may develop VT for the first time in operation theatre. We are reporting anaesthetic management of a child with LQTS planned for bilateral thoracoscopic cervicothoracic sympathectomy. PMID:27330206

  11. Anaesthesia management of a case of Jervell and Lange-Nielsen syndrome for minimally invasive bilateral thoracoscopic cervicothoracic sympathectomy

    PubMed Central

    Roy, Preety Mittal; Khanna, Sangeeta; Mehta, Yatin; Khan, Ali Z

    2016-01-01

    Long QT syndrome (LQTS) is an arrhythmogenic cardiac disorder resulting from the malfunction of cardiac ion channels. Patient with LQTS may present with syncope, seizures or sudden cardiac death secondary to polymorphic ventricular tachycardia (VT) or torsades de pointes. Patient may be asymptomatic in the pre-operative period but may develop VT for the first time in operation theatre. We are reporting anaesthetic management of a child with LQTS planned for bilateral thoracoscopic cervicothoracic sympathectomy. PMID:27330206

  12. ECG-synchronized DSA exposure control: improved cervicothoracic image quality

    SciTech Connect

    Kelly, W.M.; Gould, R.; Norman, D.; Brant-Zawadzki, M.; Cox, L.

    1984-10-01

    An electrocardiogram (ECG)-synchronized x-ray exposure sequence was used to acquire digital subtraction angiographic (DSA) images during 13 arterial injection studies of the aortic arch or carotid bifurcations. These gated images were compared with matched ungated DSA images acquired using the same technical factors, contrast material volume, and patient positioning. Subjective assessments by five experienced observers of edge definition, vessel conspicuousness, and overall diagnostic quality showed overall preference for one of the two acquisition methods in 69% of cases studied. Of these, the ECG-synchronized exposure series were rated superior in 76%. These results, as well as the relatively simple and inexpensive modifications required, suggest that routine use of ECG exposure control can facilitate improved arterial DSA evaluations of suspected cervicothoracic vascular disease.

  13. Junction-to-Case Thermal Resistance of a Silicon Carbide Bipolar Junction Transistor Measured

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Junction temperature of a prototype SiC-based bipolar junction transistor (BJT) was estimated by using the base-emitter voltage (V(sub BE)) characteristic for thermometry. The V(sub BE) was measured as a function of the base current (I(sub B)) at selected temperatures (T), all at a fixed collector current (I(sub C)) and under very low duty cycle pulse conditions. Under such conditions, the average temperature of the chip was taken to be the same as that of the temperature-controlled case. At increased duty cycle such as to substantially heat the chip, but same I(sub C) pulse height, the chip temperature was identified by matching the V(sub BE) to the thermometry curves. From the measured average power, the chip-to-case thermal resistance could be estimated, giving a reasonable value. A tentative explanation for an observed bunching with increasing temperature of the calibration curves may relate to an increasing dopant atom ionization. A first-cut analysis, however, does not support this.

  14. Dorsolumbar junction spinal tuberculosis in an infant: case report.

    PubMed

    Tufan, Kadir; Dogulu, Fikret; Kardes, Ozgur; Oztanir, Namik; Baykaner, M Kemali

    2005-05-01

    The treatment of spinal tuberculosis is a challenging and controversial problem. The authors present the rare case of an 8-month-old infant with dorsolumbar junction tuberculosis. The child did not sit or stand and a hump was noted on his back. Radiological evaluations demonstrated destruction by a tuberculous abscess of the T-12 and L-1 vertebral bodies, extending into the psoas muscles and spinal canal. In addition to medical therapy, radical debridement and grafting were performed via an anterolateral approach. The follow-up period was 2 years. The difficulties in the management of spinal tuberculosis in infants are discussed. PMID:15926398

  15. A twelve-year survey of cervicothoracic vascular injuries.

    PubMed

    Bladergroen, M; Brockman, R; Luna, G; Kohler, T; Johansen, K

    1989-05-01

    This study of a large series of victims of trauma to the cervicothoracic great vessels confirms the lethal potential of these injuries: more than half of victims of such injuries died. The optimal management of patients potentially harboring such vascular damage appears to include skilled prehospital resuscitation and rapid transport to a trauma center, a high index of diagnostic suspicion, a low threshold for the performance of contrast arteriography, aggressive surveillance for associated neurologic and aerodigestive tract injuries, and timely technical repair, including liberal indications for sternotomy or thoracotomy to assure vascular control. PMID:2712204

  16. Huge cervico-thoracic thymic cyst.

    PubMed

    Sameh, Ibrahim Sersar; Ismaeil, Mohammed Fouad; Nasser, Mohammed Abdelhameed Fouda; Awadalla, Mohammed Mounir el-Saeid

    2003-09-01

    We present a case of a 6 year-old boy who presented with a huge mass in the right side of the neck and changes its size with respiration and with straining. Computed tomography of the chest and neck showed a huge mass that was thought to be cystic hygroma. It was excised by both median sternotomy and a right cervical incision. Pathology revealed a thymic cyst. PMID:17670062

  17. Utility of a 3-dimensional full-scale NaCl model for rib strut grafting for anterior fusion for cervicothoracic kyphosis

    PubMed Central

    Kobayashi, Kazuyoshi; Imagama, Shiro; Muramoto, Akio; Ito, Zenya; Ando, Kei; Yagi, Hideki; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Ishiguro, Naoki

    2015-01-01

    ABSTRACT In severe spinal deformity, pain and neurological disorder may be caused by spinal cord compression. Surgery for spinal reconstruction is desirable, but may be difficult in a case with severe deformity. Here, we show the utility of a 3D NaCl (salt) model in preoperative planning of anterior reconstruction using a rib strut in a 49-year-old male patient with cervicothoracic degenerative spondylosis. We performed surgery in two stages: a posterior approach with decompression and posterior instrumentation with a pedicle screw; followed by a second operation using an anterior approach, for which we created a 3D NaCl model including the cervicothoracic lesion, spinal deformity, and ribs for anterior reconstruction. The 3D NaCl model was easily scraped compared with a conventional plaster model and was useful for planning of resection and identification of a suitable rib for grafting in a preoperative simulation. Surgery was performed successfully with reference to the 3D NaCl model. We conclude that preoperative simulation with a 3D NaCl model contributes to performance of anterior reconstruction using a rib strut in a case of cervicothoracic deformity. PMID:26412901

  18. [Computed tomography imaging in ureteropelvic junction obstruction--case report].

    PubMed

    Pilch, Katarzyna; Jaźwiec, Przemysław; Truszkiewicz, Krystian; Gać, Paweł

    2016-01-01

    Ureteropelvic junction obstruction (UPJO) is defined as an impedance in the normal flow of urine from the renal pelvis into the proximal ureter. This leads to an increase urine pressure in the pelvicalyceal system and as a consequence cause hydronephrosis and damage of renal parenchyma. Presence of anomalous vessels crossing the ureter (crossing vessels) is one of the many reasons of UPJ obstruction. We report a case of 32-year-old female patient with chronic abdominal pain and recurrent episodes of pyelonephritis in the past. Contrast enhanced URO-CT was performed in order to determine the cause of complaints. This examination revealed right pelvicalyceal system dilatation and ipsilateral UPJ obstruction. After urological consultation patient was qualified for surgery, which aimed to decompress right pelvicalyceal system by changing anatomical conditions between the ureter and presumably crossing vessels. We demonstrate in the described case the value of contrast enhanced computed tomography URO-CT) in the diagnostic process of UPJ pathology. A multitude of information that we obtain from URO-CT examination allows the surgeon to reveal the cause of abnormal urine flow and choose the optimal operating method to minimize the risk of adverse events (such as intraoperative bleeding from mutilated crossing vessels). PMID:27120949

  19. MURCS (Müllerian duct aplasia–renal agenesis–cervicothoracic somite dysplasia): a rare cause of primary amenorrhoea

    PubMed Central

    Kumar, Sunil; Sharma, Shruti

    2016-01-01

    The agenesis of the Müllerian duct is the second most common cause of primary amenorrhoea after Turner syndrome. The abnormal development of Müllerian duct often associates with the urinary tract and skeletal abnormalities. MURCS (Müllerian duct aplasia–renal agenesis–cervicothoracic somite dysplasia) association is a unique and rare developmental disorder with four common features of uterine hypoplasia or aplasia, renal agenesis or ectopy, vertebral anomalies and short stature. We report a case of young female with primary amenorrhoea. She had well-developed secondary sexual characteristics along with multiple congenital developmental abnormalities such as the absence of uterus, ectopic kidney, cervical vertebral fusion, hemivertebrae, scoliosis, cervical rib, facial asymmetry and growth retardation. Our case highlights the rarity and clinical importance of this syndrome. For the evaluation of primary amenorrhoea in a female with well-developed secondary sexual characteristics, congenital anomalies should be ruled out before hormone and karyotype analyses. PMID:27099773

  20. MURCS (Müllerian duct aplasia-renal agenesis-cervicothoracic somite dysplasia): a rare cause of primary amenorrhoea.

    PubMed

    Kumar, Sunil; Sharma, Shruti

    2016-04-01

    The agenesis of the Müllerian duct is the second most common cause of primary amenorrhoea after Turner syndrome. The abnormal development of Müllerian duct often associates with the urinary tract and skeletal abnormalities. MURCS (Müllerian duct aplasia-renal agenesis-cervicothoracic somite dysplasia) association is a unique and rare developmental disorder with four common features of uterine hypoplasia or aplasia, renal agenesis or ectopy, vertebral anomalies and short stature. We report a case of young female with primary amenorrhoea. She had well-developed secondary sexual characteristics along with multiple congenital developmental abnormalities such as the absence of uterus, ectopic kidney, cervical vertebral fusion, hemivertebrae, scoliosis, cervical rib, facial asymmetry and growth retardation. Our case highlights the rarity and clinical importance of this syndrome. For the evaluation of primary amenorrhoea in a female with well-developed secondary sexual characteristics, congenital anomalies should be ruled out before hormone and karyotype analyses. PMID:27099773

  1. Distal ureteral atresia with ureteropelvic junction obstruction in a female child: a rare case

    PubMed Central

    Wu, Shuiqing; Xu, Ran; Zhu, Xuan; Zhao, Xiaokun

    2015-01-01

    This case report describes a distal ureteral atresia along with ureteropelvic junction obstruction which occurred in a 19-month-old female child. It is easily to be misdiagnosed as mere ureteropelvic junction obstruction and omitted the combined diagnosis of distal ureteral atresia. Dismembered pyeloplasty was done in local hospital after admission, however with the result of recurrent fever when clamp the left nephrostomy tube and Antegrade urography demonstrated distal ureteral atresia. After two months, boari flap reconstruction was performed for the patient in the Second Xiangya Hospital of Central South University, and the child had good rehabilitation in the end. To our knowledge, this is the first case report on distal ureteral atresia associated with ureteropelvic junction obstruction. PMID:25785157

  2. [A case of mixed adenoneuroendocrine carcinoma of the esophagogastric junction treated with neoadjuvant chemotherapy].

    PubMed

    Nakai, Makoto; Kawasaki, Hitoshi; Wajima, Naoki; Kimura, Akitoshi; Nakayama, Yoshihito; Muroya, Takahiro; Yonaiyama, Shinnosuke; Okano, Kensuke; Nagase, Hayato; Hakamada, Kenichi

    2013-11-01

    We present a case of a 63-year-old man who was admitted to another hospital because of abdominal distension and body weight loss. Gastric endoscopy revealed a type III tumor at the posterior wall of the upper gastric body. The tumor had invaded into the esophagogastric junction. On the basis of the pathology of the biopsy specimen, the tumor was diagnosed as neuroendocrine carcinoma of the esophagogastric junction. Computed tomography (CT) scans showed regional lymph node swelling. Cisplatin( CDDP) +irinotecan( CPT-11) therapy was selected and administered to the patient. After 2 courses, the patient received S-1+CDDP. He was considered to have stable disease. We performed partial resection of the lower esophagus, total gastrectomy, splenectomy, and cholecystectomy. On pathology, the tumor was immunohistochemically positive for chromogranin A, AE1/AE3, neural cell adhesion molecule (NCAM), neuron-specific enolase (NSE), and p53. The Ki-67 index was 80%. The tumor was diagnosed as a mixed adenoneuroendocrine carcinoma (MANEC) of the esophagogastric junction. The patient was treated with S-1 and CDDP. Neuroendocrine cell carcinoma of the esophagogastric junction is rare and usually has a very poor prognosis. We herein report a case of mixed adenoneuroendocrine carcinoma of the esophagogastric junction that was curatively resected and resulted in patient survival without recurrence. PMID:24394092

  3. [Pyelo-ureteral junction syndrome in horse-shoe kidney. Report of 13 cases].

    PubMed

    Sarf, I; Dahami, Z; Meziane, A; Dakir, M; Aboutaieb, R; el Moussaoui, A; Meziane, F

    2003-10-01

    The pelviureteral junction upon a horse shoe kidney remains a frequent congenital malformation. The authors report 13 cases collected during a period of 16 years and treated surgically. The review of literature permits to discuss the different therapeutic means. PMID:14606309

  4. Congenital anterior urethrocutaneous fistula at the penoscrotal junction with proximal penile megalourethra: A case report

    PubMed Central

    Cheng, Shih-Yao; Chen, Shyh-Jye; Lai, Hong-Shiee

    2016-01-01

    Congenital anterior urethrocutaneous fistula and megalourethra are both rare anomalies. These anomalies are commonly associated with other anorectal or genitourinary anomalies and evaluated with voiding cystourethrography. We examined a 34-month-old boy who presented with a fistula at the penoscrotal junction. A voiding cystourethrogram showed a jet of urine coming through the fistula and proximal saccular dilatation of the penile urethra. We present the imaging findings of the first case of an association between a congenital anterior urethrocutaneous fistula at the penoscrotal junction and a proximal penile megalourethra. We also discuss the etiology, management, and differential diagnosis of this entity, and review the literature. PMID:27200160

  5. Basilar artery aneurysm at a persistent trigeminal artery junction. A case report and literature review.

    PubMed

    Aguiar, G B; Conti, M L M; Veiga, J C E; Jory, M; Souza, R B

    2011-09-01

    The trigeminal artery is an anastomosis between the embryonic precursors of the vertebrobasilar and carotid systems, and may persist into adult life. The association of the persistent primitive trigeminal artery (PTA) with cerebral aneurysm is well documented in the literature and, in general, aneurysms are located in the anterior circulation. We describe a patient who presented with a panencephalic Fisher III subarachnoid hemorrhage due to rupture of an intracranial aneurysm. Digital arteriography showed a saccular aneurysm in the middle third of the basilar artery, adjacent to the junction with a persistent trigeminal artery. She was submitted to endovascular treatment with embolization of the basilar artery aneurysm with coils. Aneurysms at the PTA junction with the basilar artery are rare. This paper describes a case of PTA associated with an aneurysm in the basilar artery at PTA junction and briefly reviews the literature. PMID:22005697

  6. Clinical Features of Herniated Disc at Cervicothoracic Junction Level Treated by Anterior Approach

    PubMed Central

    Lee, Jun Gue; Kim, Hyeun Sung; Ju, Chang Il

    2016-01-01

    Objective The anterior approach for C7-T1 disc herniation may be challenging because of obstruction by the manubrium and the narrow operative field. This study aimed to investigate the clinical and neurological outcomes of anterior approach for C7-T1 disc herniation. Methods We retrospectively evaluated 13 patients who underwent the anterior approach for C7-T1 disc herniation by a single surgeon within a period of 11 years (2003-2014). The minimum follow-up duration was 6 months. We describe the clinical presentation, radiographic findings, neurological outcome, and related complications. Results Of 372 patients with single-level anterior discectomy and fusion or artificial disc replacement for cervical disc herniation, 13 (3.5%) had C7-T1 disc herniation. The main clinical presentation was unilateral motor weakness in intrinsic hand muscles (11 patients), along with numbness, pain, and tingling sensation that radiate down the arm to the little finger. Most of the patients improved after surgery via the anterior approach. Ten patients underwent successful anterior discectomy and fusion by the standard supramanubrial Smith-Robinson approach, but 2 needed additional manubriotomy and sternotomy. In 1 patient, we performed surgery at a wrong level because the correct level was difficult to identify intraoperatively. Two patients had transient vocal dysfunction, but none had major complications related to injuries of the great vessels such as the thoracic duct or esophagus. Conclusion For patients who require direct anterior decompression for C7-T1 disc herniation, the anterior approach is relatively feasible. However, care should be taken to overcome physical constraints by the manubrium and slope. PMID:27437013

  7. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    NASA Astrophysics Data System (ADS)

    Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon

    2011-08-01

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  8. Upper cervicothoracic sympathetic block increases blood supply of unipedicled TRAM flap.

    PubMed

    Tsoutsos, Dimosthenis; Kakagia, Despoina; Gravvanis, Andreas; Iconomou, Thomais; Tsagkarakis, Myron; Zogogiannis, Ioannis; Dimitriou, Vassilios

    2008-09-01

    A prospective clinical study was conducted to evaluate the impact of upper cervicothoracic sympathetic block (CTGB) on blood supply of the unipedicled transverse rectus abdominis musculocutaneous (TRAM) flap. The use of the technique is first reported herein, as a manipulation improving arterial blood flow within the flap in high-risk patients, thus reducing postoperative morbidity. From March 2003 to September 2006, 28 heavy smokers, who underwent delayed breast reconstruction with unipedicled TRAM flap, were included in the study. Intraoperative upper cervicothoracic block (ganglia C5,6,7 and T1,2) was performed in 16 patients (group A), while 12 patients, who did not consent to have the blockade (group B), were the control. Clinical evaluation and thermographic monitoring of skin temperature, using the Thermacam A40 (FLIR systems, Wilsonville, OR), was used in all patients and determined the blood flow within the flap. All patients were monitored for early and late complications. In all group A patients, CTGB resulted in TRAM flap temperature increase within 9.5 to 16 min. Flap temperature elevation was found to be significantly higher (P < 0.001) and hospital stay was significantly shorter (P = 0.004) in group A patients. No CTGB or TRAM flap complications were recorded in group A patients. However, in group B, major fat necrosis occurred in 2 patients and partial (1/3) flap necrosis in 1 patient. Upper cervicothoracic sympathetic block is a reliable, safe, and useful technique for increasing blood flow within TRAM flaps in high-risk patients, like heavy smokers, and it minimizes postoperative morbidity. PMID:18724121

  9. Vertebral artery anomalies at the craniovertebral junction: a case report and review of the literature.

    PubMed

    Abtahi, Amir M; Brodke, Darrel S; Lawrence, Brandon D

    2014-10-01

    Study Design Case report. Objective The objective of this study was to report a case of an unstable C1 burst fracture in the setting of a vertebral artery anomaly at the craniovertebral junction. Methods A 55-year-old man was admitted to the hospital with severe neck pain after falling approximately 15 feet and landing on his head. Computed tomography scan of the cervical spine revealed an unstable fracture of the C1 ring with magnetic resonance imaging evidence of a transverse ligament rupture as well as a congenital synchondrosis of the posterior arch of C1. He was neurologically intact. CT angiography (CTA) of the neck revealed an anomalous course of the right vertebral artery at the C1-C2 level. Results Surgical intervention consisted of occiput-C3 fusion, thus avoiding the placement of C1 lateral mass screws and risking vertebral artery injury. Conclusion We present a case of an unstable C1 burst fracture with an anomalous course of the right vertebral artery demonstrated by CTA. The presence of vertebral artery anomalies at the craniovertebral junction may prevent safe placement of C1 lateral mass screws and therefore influence the treatment options for upper cervical spine pathologies. To minimize the risk of vertebral artery injury, we elected to perform an occiput to C3 fusion. Thorough assessment of the vascular anatomy is recommended before operative intervention in the upper cervical spine to minimize the risk of complications. PMID:25364325

  10. Cervicothoracic Subcutaneous Emphysema and Pneumomediastinum After Third Molar Extraction.

    PubMed

    Picard, Maxime; Pham Dang, Nathalie; Mondie, Jean Michel; Barthelemy, Isabelle

    2015-12-01

    Third molar extraction is one of the most common interventions in dental and maxillofacial surgery. Complications are frequent and well documented, with swelling, pain, bleeding, infection, and lingual or alveolar nerve injury being the most common. This report describes a case of subcutaneous extensive emphysema and pneumomediastinum that occurred 4 days after extraction of an impacted right mandibular third molar. The management and etiology of this case and those reported in the literature are discussed. PMID:26341684

  11. Craniovertebral junction instability as an extension of cocaine-induced midline destructive lesions: case report.

    PubMed

    Brembilla, Carlo; Lanterna, Luigi Andrea; Risso, Andrea; Bombana, Enrico; Gritti, Paolo; Trezzi, Rosangela; Bonaldi, Giuseppe; Biroli, Francesco

    2015-08-01

    With the increasingly widespread illicit use of cocaine, a broad spectrum of clinical pathologies related to this form of drug abuse is emerging. The most frequently used method of administration of powdered cocaine is intranasal inhalation, or "snorting." Consequently, adverse effects of cocaine on the nasal tract are common. Habitual nasal insufflations of cocaine can cause mucosal lesions. If cocaine use becomes chronic and compulsive, progressive damage of the mucosa and perichondrium leads to ischemic necrosis of the septal cartilage and perforation of the nasal septum. Occasionally, cocaine-induced lesions cause extensive destruction of the osteocartilaginous structures of the nose, sinuses, and palate and can mimic other diseases such as tumors, infections, and immunological diseases. In the literature currently available, involvement of the craniovertebral junction in the cocaine-induced midline destructive lesions (CIMDLs) has never been reported. The present case concerns a 44-year-old man who presented with long-standing symptoms including nasal obstruction, epistaxis, dysphagia, nasal reflux, and severe neck pain. A diagnosis of CIMDL was made in light of the patient's history and the findings on physical and endoscopic examinations, imaging studies, and laboratory testing. Involvement of the craniovertebral junction in the destructive process was evident. For neurosurgical treatment, the authors considered the high grade of atlantoaxial instability, the poorly understood cocaine-induced lesions of the spine and their potential evolution overtime, as well as cocaine abusers' poor compliance. The patient underwent posterior craniovertebral fixation. Understanding, classifying, and treating cocaine-induced lesions involving the craniovertebral junction are a challenge. PMID:25955800

  12. Spontaneous epidural hematoma due to cervico-thoracic angiolipoma.

    PubMed

    Eap, C; Bannwarth, M; Jazeron, J-F; Kleber, J-C; Theret, É; Duntze, J; Litre, C-F

    2015-12-01

    Epidural angiolipomas are uncommon benign tumors of the spine. Their clinical presentation is usually a progressive spinal cord compression. We report the case of a 22-year-old patient who presented with an acute paraparesis and a spontaneous epidural hematoma, which revealed a epidural angiolipoma which extended from C7 to T3. The patient underwent a C7-T3 laminectomy, in emergency, with evacuation of the hematoma and extradural complete resection of a fibrous epidural tumor bleeding. The postoperative course was favorable with regression of neurological symptoms. Epidural angiolipomas can be revealed by spontaneous intratumoral hemorrhage without traumatism. The standard treatment is total removal by surgery. PMID:26597606

  13. True Cervicothoracic Meningocele: A Rare and Benign Condition

    PubMed Central

    Pessoa, Bruno L.; Lima, Yara

    2015-01-01

    Cervical meningoceles are rare spinal dysraphism, accounting for approximately 7% of all cystic spinal dysraphism. In spite of the rarity, the clinical course is most of the times benign. The surgical treatment includes resection of the lesion and untethering, when presented. We present a 14-day-old female child with true meningoceles who underwent to surgical excision and dura-mater repair. Retrospect analysis of the literature concerning true cervical meningocele is performed. By reporting this illustrative case, we focus on its classification and its differentiation from other types of cervical spinal dysraphism, such as myelocystocele and myelomeningocele. Although its course is benign, it is mandatory a continuum follow up with periodic magnetic resonance imaging of spinal cord, since late neurological deterioration has been described. PMID:26788266

  14. Singular layers for transmission problems in thin shallow shell theory: Elastic junction case

    NASA Astrophysics Data System (ADS)

    Merabet, Ismail; Chacha, D. A.; Nicaise, Serge

    2010-05-01

    In this Note we study two-dimensional transmission problems for the linear Koiter's model of an elastic multi-structure composed of two thin shallow shells with the same thickness ɛ≪1, in the elastic junction case. We suppose that the loading is singular, that the elastic coefficients are of different order on each part ( O(ɛ) and O(1) respectively) and that the elastic stiffness coefficient of the hinge is k=O(ɛ). The formal limit problem fails to give a solution satisfying all boundary and transmission conditions; it gives only the outer solution. We derive the inner limit problem which allows us to describe the transmission layer.

  15. [Surgical treatment for ureteropelvic junction syndrome in infants and children (report of 73 cases)].

    PubMed

    Michel, A; Monod, P; Descotes, J L; Rambeaud, J J; Bourdat, G; Faure, G

    1991-12-01

    between 1982 and 1990, 73 children were operated for pyeloureteric junction syndrome (76 pyeloplasties). The authors distinguish between a group of 45 infants operated before the age of 2 years and a group of 35 children operated after the age of 2 years. 40% of these cases had been detected antenatally, which modified the management and treatment of these infants, operated at about the age of 6 months (mean: 6.6 months). Treatment was conservative (one nephrectomy out of the 41 infants operated: 2.4%). Pyeloplasty was performed according to the Anderson-Hynes-Küss resection-anastomosis technique under an operating magnifying glass. Early surgery offers the best chance of recovery. Urinary tract drainage was not systematic in these infants (50% of cases) and did not affect the long term results. Early complications and surgical revisions (3.9%) were not more frequent in the infants operated earlier. The definitive results were good in 88.5% of cases, while 7.2% of cases required further surveillance. Renal parenchymal lesions (4.3%) were related more to pyelonephritis than to failure of surgery. Overall, a conservative surgical approach is recommended, except in minor syndromes which require rigorous surveillance. PMID:1844746

  16. Solitons in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Ustinov, A. V.

    1998-11-01

    Magnetic flux quanta in Josephson junctions, often called fluxons, in many cases behave as solitons. A review of recent experiments and modelling of fluxon dynamics in Josephson circuits is presented. Classic quasi-one-dimensional junctions, stacked junctions (Josephson superlattices), and discrete Josephson transmission lines (JTLs) are discussed. Applications of fluxon devices as high-frequency oscillators and digital circuits are also addressed.

  17. Traumatic Tear of the Latissimus Dorsi Myotendinous Junction: Case Report of a CrossFit-Related Injury.

    PubMed

    Friedman, Michael V; Stensby, J Derek; Hillen, Travis J; Demertzis, Jennifer L; Keener, Jay D

    2015-01-01

    A case of a latissimus dorsi myotendinous junction strain in an avid CrossFit athlete is presented. The patient developed acute onset right axillary burning and swelling and subsequent palpable pop with weakness while performing a "muscle up." Magnetic resonance imaging examination demonstrated a high-grade tear of the right latissimus dorsi myotendinous junction approximately 9 cm proximal to its intact humeral insertion. There were no other injuries to the adjacent shoulder girdle structures. Isolated strain of the latissimus dorsi myotendinous junction is a very rare injury with a scarcity of information available regarding its imaging appearance and preferred treatment. This patient was treated conservatively and was able to resume active CrossFit training within 3 months. At 6 months postinjury, he had only a mild residual functional deficit compared with his preinjury level. PMID:26502450

  18. Tumor Biology: Is It Time to Redefine Unresectability? An Extraordinary Case of Gastroesophageal Junctional Adenocarcinoma

    PubMed Central

    Giakoustidis, Alex; Winslet, Mark; Mudan, Satvinder

    2015-01-01

    Background: Disease assessment based on measurements of size and anatomic involvement have historically been central to surgical strategy. We propose this to be an outdated concept, which should be replaced by a deeper understanding of tumor biology and careful treatment planning. Report of case: A 34-year-old male was diagnosed with a Siewert Type 3 locally advanced cancer of the gastroesophageal junction, involving the coeliac axis and the superior mesenteric artery (SMA). He was treated with neoadjuvant chemotherapy, followed by chemoradiation, and then proceeded to surgery, at which time the tumor was judged unresectable. After extensive planning, a further surgery was attempted - an extended gastrectomy with distal esophagectomy, left hepatectomy, and splenectomy were performed. Additionally, the coeliac axis and the SMA were excised, followed by reconstruction of the hepatic artery and the SMA with grafts. Adjuvant chemotherapy was administered, and the patient is recurrence-free after five years follow-up. Conclusion: This case highlights the importance of the distinction between resectability and operability, and that patient treatment should be tailored and individualised based on the response to treatment, comorbidities, and underlying tumor biology. PMID:26835191

  19. Double Trouble: A Rare Case of Bilateral Upper Pole Ureteropelvic Junction Obstruction☆

    PubMed Central

    Peters, Craig A.; Pathak, Nirmal

    2014-01-01

    A 16-year-old girl presented with bilateral back pain caused by bilateral upper pole ureteropelvic junction obstructions; an extremely rare phenomenon. Bilateral robotically assisted upper pole pyeloplasties were preformed at the same setting with an excellent clinical response. Although rare, upper pole ureteropelvic junction obstruction is a defined entity that urologists should be aware of. PMID:26958473

  20. Role of laparoscopy in ureteropelvic junction obstruction with concomitant pathology: a case series study

    PubMed Central

    El-Fayoumi, Abdel-Rahman; Gakis, Georgios; Amend, Bastian; Khairul-Asri, Mohd Ghani; Stenzl, Arnulf; Schwentner, Christian

    2015-01-01

    Introduction Laparoscopic pyeloplasty is considered a standard treatment for ureteropelvic junction obstruction (UPJO). However, the presence of another pathology makes it a more challenging operation and guides the surgeon towards open conversion. In this study, we present our experience in difficult pyeloplasty cases managed by laparoscopy. Material and methods Six patients (4 females and 2 males) with an average age of 44 and a range of 27 to 60 years old, were diagnosed for UPJO. Three were on the left side and 3 on the right side. In addition to UPJO, 2 patients had renal stones, one patient had both renal ptosis and an umbilical hernia, 3 patients had a para-pelvic cyst, hepatomegaly and malrotated kidney, respectively. All patients had a preoperative ultrasound, CT or IVU, and a renal isotope scan. Laparoscopic pyeloplasty was performed according to the dismembered Anderson-Hynes technique with auxiliary maneuver, according to the pathology. Results All patients were treated successfully for UPJO and the concomitant pathologies, except hepatomegaly and malrotation. Mean operative time was 125 minutes and estimated blood loss was <50 ml. Conclusions Laparoscopic pyeloplasty can be performed in difficult situations provided that the surgeon has enough experience with laparoscopy. PMID:26855804

  1. Technical considerations in transforaminal endoscopic spine surgery at the thoracolumbar junction: report of 3 cases.

    PubMed

    Telfeian, Albert E; Jasper, Gabriele P; Oyelese, Adetokunbo A; Gokaslan, Ziya L

    2016-02-01

    OBJECTIVE In this study the authors describe the technical considerations and feasibility of transforaminal discectomy and foraminoplasty for the treatment of lumbar radiculopathy in patients who have herniated discs at the thoracolumbar junction. METHODS After institutional review board approval, charts from 3 consecutive patients with lumbar radiculopathy and T12-L1 herniated discs who underwent endoscopic procedures between 2006 and 2014 were reviewed. RESULTS Consecutive cases (n = 1316) were reviewed to determine the incidence and success of surgery performed at the T12-L1 level. Only 3 patients (0.23%) treated with endoscopic surgery for their herniated discs had T12-L1 herniated discs; the rest were lumbar or lumbosacral herniations. For patients with T12-L1 disc herniations, the average preoperative visual analog scale score was 8.3 (indicated in the questionnaire as describing severe and constant pain). The average 1-year postoperative visual analog scale score was 1.7 (indicated in the questionnaire as mild and intermittent pain). CONCLUSIONS Transforaminal endoscopic discectomy and foraminotomy can be used as a safe yet minimally invasive technique for the treatment of lumbar radiculopathy in the setting of a thoracolumbar disc herniation. PMID:26828890

  2. Complex sarcolemmal invaginations mimicking myotendinous junctions in a case of Laing early-onset distal myopathy.

    PubMed

    Reis, Gerald F; de la Motte, Grant; Gooding, Rebecca; Laing, Nigel G; Margeta, Marta

    2015-12-01

    Distal myopathies are a group of clinically and pathologically overlapping muscle diseases that are genetically complex and can represent a diagnostic challenge. Laing early-onset distal myopathy (MPD1) is a form of distal myopathy caused by mutations in the MYH7 gene, which encodes the beta myosin heavy chain protein expressed in type 1 skeletal muscle fibers and cardiac myocytes. Here, we present a case of genetically confirmed MPD1 with a typical clinical presentation but distinctive light microscopic and ultrastructural findings on muscle biopsy. A 39-year-old professional male cellist presented with a bilateral foot drop that developed by age 8; analysis of the family pedigree showed an autosomal dominant pattern of inheritance. The physical exam demonstrated bilateral weakness of ankle dorsiflexors, toe extensors and finger extensors; creatine kinase level was normal. Biopsy of the quadriceps femoris muscle showed predominance and hypotrophy of type 1 fibers, hybrid fibers with co-expression of slow and fast myosin proteins (both in highly atrophic and normal size range), moth-eaten fibers and mini-cores, lack of rimmed vacuoles and rare desmin-positive eosinophilic sarcoplasmic inclusions. In addition to these abnormalities often observed in MPD1, the biopsy demonstrated frequent clefted fibers with complex sarcolemmal invaginations; on ultrastructural examination, these structures closely mimicked myotendinous junctions but were present away from the tendon and were almost exclusively found in type 1 fibers. Sequencing analysis of the MYH7 gene in the index patient and other affected family members demonstrated a previously described heterozygous c.4522_4524delGAG (p.Glu1508del) mutation. This case widens the pathologic spectrum of MPD1 and highlights the pathologic and clinical variability that can accompany the same genetic mutation, suggesting a significant role for modifier genes in MPD1 pathogenesis. PMID:26094647

  3. The posterior pleural junction line in pneumoconiosis. A report of 3 cases with thickening.

    PubMed

    Thomas, R G; Sluis-Cremer, G K; Solomon, A

    1987-06-20

    Disease may change the position or cause thickening or distortion of the posterior pleural junction line. Pleural changes associated with silica or asbestos exposure may also result in radiologically recognisable thickening of the line. Three examples are presented. PMID:3603276

  4. Technology Solutions Case Study: New Insights for Improving the Designs of Flexible Duct Junction Boxes

    SciTech Connect

    2014-01-01

    In this project, IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance.

  5. Occult Congenital Ureteropelvic Junction Obstruction in Two Adults Presenting with Collecting System Rupture After Blunt Renal Trauma: A Case Report Series

    PubMed Central

    Hoffner, Haley E.; Dagrosa, Lawrence M.; Pais, Vernon M.

    2015-01-01

    Abstract We report two adult cases of congenital ureteropelvic junction obstruction detected incidentally in the setting of blunt abdominal trauma. CT images are provided to describe the presentation, while review of the literature and management of renal trauma are discussed.

  6. Giant hydronephrosis due to ureteropelvic junction obstruction: A rare case report, and a review of the literature

    PubMed Central

    WANG, QI-FEI; ZENG, GUANG; ZHONG, LIN; LI, QUAN-LIN; CHE, XIANG-YU; JIANG, TAO; ZHANG, ZHI-WEI; ZHENG, WEI; TANG, QI-ZHEN; CHEN, FENG; WANG, KE-NAN

    2016-01-01

    The hydronephrotic kidney, resulting from a ureteropelvic junction obstruction (UPJO), presents commonly as a clinical condition, with the presence of usually no more than 1–2 liters in the collecting system, but a very small number of cases of giant hydronephroses (GHs) has been reported in adults. A GH is defined as the adult renal pelvis containing >1 liter of urine, or at least 1.5% of the body weight. In the majority of cases, the range of the hydronephrotic kidney remains restricted to the renal area. However, the patient described in the present case report had a range for the hydronephrotic kidney which occupied almost the entire abdominal cavity (~24 l), and cases such as these are rarely presented; therefore the aim of the present case study was to document a clear case of GH resulting from UPJO, also accompanied by a review of the current literature. PMID:27330757

  7. Josephson Current in a Gapped Graphene Superconductor/Barrier/Superconductor Junction: Case of Massive Electrons

    NASA Astrophysics Data System (ADS)

    Suwannasit, Tatnatchai; Tang, I.-Ming; Hoonsawat, Rassmidara; Soodchomshom, Bumned

    2011-10-01

    The Josephson effect in a gapped graphene-based superconductor/barrier/superconductor junction is studied. The superconductivity in gapped graphene may be achieved by depositing conventional superconductor on the top of the gapped graphene such as graphene grown on SiC substrate. In gapped graphene system, the carriers exhibit massive Dirac fermions. We focus on the effect of pseudo-Dirac-like mass on the supercurrent. In contrast to that in the gapless graphene superconductor/barrier/superconductor junction, we find that the supercurrent exhibits dependency of the Fermi energy. Also, the massive supercurrent anomalously oscillates as a function of the gate potential. This novel behavior is due to the effect of electrons acquiring mass in gapped graphene.

  8. A Rare Case of Concomitant Intramedullary Gangliocytoma at the Cervicomedullary Junction in Patient with Neuroendocrine Tumor of Lung

    PubMed Central

    Cekinmez, Melih; Kardes, Ozgur; Kayaselcuk, Fazilet

    2016-01-01

    Ganglion cell tumors (GCT) are divided into two subtypes : gangliocytoma and ganglioglioma. Intramedullary gangliocytomas are extremely rare. A 20-year-old male patient with pain of neck, who also had a previously known neuroendocrine tumor of lung, was operated for mass found in the cervicomedullary junction with a presumptive diagnosis of metastases. Only partial resection could be performed. Pathological diagnosis had been reported as gangliocytoma. Only ten cases of intramedullary gangliocytoma have been reported in the literature. Although association with scoliosis and Von Recklinghausen's disease were previously reported in the literature, no gangliocytoma case concomitant with endocrine tumor of lung have been published. Pathological study is the most important diagnostic method for gangliocytomas. Surgical excision is the primary treatment, but difficulty in total surgical tumor resection is the most important problem. PMID:26962423

  9. Cervicothoracic Manual Therapy Plus Exercise Therapy Versus Exercise Therapy Alone in the Management of Individuals With Shoulder Pain: A Multicenter Randomized Controlled Trial.

    PubMed

    Mintken, Paul E; McDevitt, Amy W; Cleland, Joshua A; Boyles, Robert E; Beardslee, Amber R; Burns, Scott A; Haberl, Matthew D; Hinrichs, Lauren A; Michener, Lori A

    2016-08-01

    Study Design Multicenter randomized controlled trial. Background Cervicothoracic manual therapy has been shown to improve pain and disability in individuals with shoulder pain, but the incremental effects of manual therapy in addition to exercise therapy have not been investigated in a randomized controlled trial. Objectives To compare the effects of cervicothoracic manual therapy and exercise therapy to those of exercise therapy alone in individuals with shoulder pain. Methods Individuals (n = 140) with shoulder pain were randomly assigned to receive 2 sessions of cervicothoracic range-of-motion exercises plus 6 sessions of exercise therapy, or 2 sessions of high-dose cervicothoracic manual therapy and range-of-motion exercises plus 6 sessions of exercise therapy (manual therapy plus exercise). Pain and disability were assessed at baseline, 1 week, 4 weeks, and 6 months. The primary aim (treatment group by time) was examined using linear mixed-model analyses and the repeated measure of time for the Shoulder Pain and Disability Index (SPADI), the numeric pain-rating scale, and the shortened version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH). Patient-perceived success was assessed and analyzed using the global rating of change (GROC) and the Patient Acceptable Symptom State (PASS), using chi-square tests of independence. Results There were no significant 2-way interactions of group by time or main effects by group for pain or disability. Both groups improved significantly on the SPADI, numeric pain-rating scale, and QuickDASH. Secondary outcomes of success on the GROC and PASS significantly favored the manual therapy-plus-exercise group at 4 weeks (P = .03 and P<.01, respectively) and on the GROC at 6 months (P = .04). Conclusion Adding 2 sessions of high-dose cervicothoracic manual therapy to an exercise program did not improve pain or disability in patients with shoulder pain, but did improve patient-perceived success at 4 weeks

  10. Laser etching causing fatigue fracture at the neck–shoulder junction of an uncemented femoral stem: A case report

    PubMed Central

    Jang, Bob; Kanawati, Andrew; Brazil, Declan; Bruce, Warwick

    2013-01-01

    Fatigue fracture of a femoral component in total hip arthroplasty is a rare occurrence but well documented in the literature. It is understood that proximal loosing of a femoral stem with a well fixed stem distally will result in cantilever bending and eventual fatigue fracture of the stem. Other factors which may potentiate a fatigue fracture are material design, implant positioning, and patient characteristics. More recently, laser etching on the femoral neck of an implant has resulted in fatigue fracture. We report a case of a fatigue fracture at the neck–shoulder junction in a well fixed, uncemented, femoral component due to laser etching in the region of high tensile stress. PMID:24403758

  11. Spontaneous retrograde migration of ureterovesical junction stone to the kidney; first ever reported case in the English literature in human.

    PubMed

    Khan, Ziauddin; Yaqoob, Alaeddin A; Bhatty, Tanweer A

    2016-01-01

    We present a case of spontaneous retrograde migration of ureterovesical junction stone to the kidney. A 26-year-old Bahraini male, diagnosed with left lower ureteric stone 7 months before this presentation. On his recent presentation, the stone has migrated down but not passed, confirmed on imaging. Operative removal was planned. X-ray kidney ureter bladder (KUB) in the morning of surgery did not reveal stone in the ureter, but the same shadow was seen in the kidney. An urgent computerized tomography-KUB was done, and this confirms the stone has migrated to the kidney. Surgery was canceled, and the stone was dealt with extracorporeal shockwave lithotripsy and was fragmented in the first session. This retrograde migration of lower ureteric stone to the kidney is not reported in the English literature in human before. PMID:27141199

  12. Spontaneous retrograde migration of ureterovesical junction stone to the kidney; first ever reported case in the English literature in human

    PubMed Central

    Khan, Ziauddin; Yaqoob, Alaeddin A.; Bhatty, Tanweer A.

    2016-01-01

    We present a case of spontaneous retrograde migration of ureterovesical junction stone to the kidney. A 26-year-old Bahraini male, diagnosed with left lower ureteric stone 7 months before this presentation. On his recent presentation, the stone has migrated down but not passed, confirmed on imaging. Operative removal was planned. X-ray kidney ureter bladder (KUB) in the morning of surgery did not reveal stone in the ureter, but the same shadow was seen in the kidney. An urgent computerized tomography-KUB was done, and this confirms the stone has migrated to the kidney. Surgery was canceled, and the stone was dealt with extracorporeal shockwave lithotripsy and was fragmented in the first session. This retrograde migration of lower ureteric stone to the kidney is not reported in the English literature in human before. PMID:27141199

  13. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  14. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  15. Giant prolactinoma causing cranio-cervical junction instability: a case report.

    PubMed

    Zaben, Malik J A; Harrisson, Stuart E; Mathad, N V

    2011-12-01

    Prolactinomas are common secretory pituitary tumours, usually managed with dopamine agonists. There have previously been case reports of rarer giant prolactinomas causing invasion of surrounding structures. We describe a case report of an exceptionally aggressive giant prolactinoma that eroded the occipital condyles causing cranio-cervical joint instability mandating surgical fixation. PMID:21344972

  16. Spontaneous large renal pelvis hematoma in ureteropelvic junction obstruction presenting as an acute abdomen: Rare case report.

    PubMed

    Sawant, Ajit; Kasat, Gaurav; Pawar, Prakash; Tamhankar, Ashwin

    2016-01-01

    Patients with ureteropelvic junction (UPJ) obstruction can present with flank pain or hematuria. We present 20-year-old male presenting with acute pain in lumbar and right fossa with tenderness and guarding, this case was clinically mimicking general surgical emergency. On computed tomography with urography and angiography, there was 15 cm × 11 cm × 10 cm size non-enhancing hyperdense lesion (average Hounsfield units - +64) in right renal pelvis suggestive of hematoma. Patient's diethylenetriaminepentaacetic acid diuretic renography was suggestive of right kidney glomerular function rate of 48.4 ml/min with the relative function of 43%, Peak to half peak was not achieved. The patient was managed by retrograde ureteropyelography and double J stenting. After 1 month, clot size decreased to 4 cm × 3 cm × 2 cm. The patient had undergone open reduction Anderson hynes dismembered pyeloplasty with the removal of pelvis clot after 6 weeks. We report the first case of UPJ obstruction presenting as an acute abdomen and spontaneous hematuria with large pelvis clot without rupture of the renal pelvis. PMID:27141202

  17. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  18. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  19. Bimetallic junctions

    NASA Technical Reports Server (NTRS)

    Arcella, F. G.; Lessmann, G. G.; Lindberg, R. A. (Inventor)

    1977-01-01

    The formation of voids through interdiffusion in bimetallic welded structures exposed to high operating temperatures is inhibited by utilizing an alloy of the parent materials in the junction of the parent materials or by preannealing the junction at an ultrahigh temperature. These methods are also used to reduce the concentration gradient of a hardening agent.

  20. Neuroarthropathy of the Wrist in Paraplegia: A Case Report

    PubMed Central

    Shem, Kazuko L

    2006-01-01

    Background/Objective: Neuroarthropathy, also known as Charcot joint, is most commonly seen in the spine and other weight-bearing joints in individuals with spinal cord injury (SCI). It is rarely seen in the joints of the upper extremities because the pathophysiology of the neuroarthropathy is thought to be significant repetitive trauma such as with weight bearing in an insensate joint. Methods: Case report of neuroarthropathy in the wrist of a 46-year-old man with a 30-year history of T4 paraplegia caused by ependymoma. Results: The patient recently developed a nonpainful swelling in the left wrist, which had decreased sensation since the time of his initial SCI. Radiological evaluation showed marked degenerative changes consistent with neuroarthropathy. A magnetic resonance image of the spine showed spinal cord atrophy at the cervicothoracic junction. Conclusions: This case shows an unusual presentation of a neuroarthropathy in a wrist in an individual with functional paraplegia. Because the treatment options for neuroarthropathy in the upper extremity in individuals with SCI are limited, early diagnosis is crucial to implement conservative management before significant destruction of the joint occurs. PMID:17044396

  1. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  2. Singular layers for transmission problems in thin shallow shell theory: Rigid junction case

    NASA Astrophysics Data System (ADS)

    Merabet, Ismail; Chacha, D. A.; Nicaise, S.

    2010-02-01

    In this Note we study two-dimensional transmission problems for the linear Koiter's model of an elastic multi-structure composed of two thin shallow shells. This work enters in the framework of singular perturbation of problems depending on a small parameter ɛ. The formal limit problem fails to give a solution satisfying all boundary and transmission conditions; it gives only the outer solution. Both in the case of regular or singular loadings, we derive a limit problem which allows us to determine the inner solution explicitly.

  3. Video-assisted treatment of thoracolumbar junction fractures using a specific distractor for reduction: prospective study of 50 cases.

    PubMed

    Le Huec, Jean-Charles; Tournier, C; Aunoble, S; Madi, K; Leijssen, Ph

    2010-03-01

    Posterior instrumentation allows good osteosynthesis for thoracolumbar junction fractures. However, in approximately 20% of cases, anterior bone defects may persist, leading to pseudoarthrosis and loss of reduction. Anterior approaches can circumvent this drawback, but they are considered aggressive with a high rate of complications. The advent of the endoscopic mini-invasive techniques has led to a reduction in the number of complications while maintaining the same consolidation rate. Nevertheless, poor restitution of anatomic curves is a reproach for this technique. This prospective study reports clinical and radiological result of 50 patients (19 women and 31 men) operated between April 2000 and March 2006 with a video-assisted anterior approach using an endodistractor for reduction and consequent insertion of the implant. There were A3 (n = 44), A2 (n = 2), A1 (n = 3) and C1 (n = 1) fractures (Magerl classification). The specific system for fracture reduction was used in the last 39 cases of this series. A Pyramesh cage (Medtronic, Memphis, USA) was used in 15 patients, a peek cage (Creaspine, Bordeaux, France) in 30 patients and a tricortical graft in 5 patients. Standard X-rays and CT scan were performed pre-operatively. Kyphosis, and angulations were measured pre-, per- and post-operatively. Mean immediate postoperative gain in localized kyphosis was 12.18 degrees and mean gain at last follow-up was 11.71 degrees. Mean immediate postoperative gain in RA was 13.24 degrees and remained identical at last follow-up. Five patients had a transient pulmonary atelectasia and there was one pulmonary infection. No neurological complication occurred. Fracture reduction is comparable to the best thoracotomy series while limiting approach-related complications. PMID:19701654

  4. Video-assisted treatment of thoracolumbar junction fractures using a specific distractor for reduction: prospective study of 50 cases

    PubMed Central

    Tournier, C.; Aunoble, S.; Madi, K.; Leijssen, Ph.

    2009-01-01

    Posterior instrumentation allows good osteosynthesis for thoracolumbar junction fractures. However, in approximately 20% of cases, anterior bone defects may persist, leading to pseudoarthrosis and loss of reduction. Anterior approaches can circumvent this drawback, but they are considered aggressive with a high rate of complications. The advent of the endoscopic mini-invasive techniques has led to a reduction in the number of complications while maintaining the same consolidation rate. Nevertheless, poor restitution of anatomic curves is a reproach for this technique. This prospective study reports clinical and radiological result of 50 patients (19 women and 31 men) operated between April 2000 and March 2006 with a video-assisted anterior approach using an endodistractor for reduction and consequent insertion of the implant. There were A3 (n = 44), A2 (n = 2), A1 (n = 3) and C1 (n = 1) fractures (Magerl classification). The specific system for fracture reduction was used in the last 39 cases of this series. A Pyramesh cage (Medtronic, Memphis, USA) was used in 15 patients, a peek cage (Creaspine, Bordeaux, France) in 30 patients and a tricortical graft in 5 patients. Standard X-rays and CT scan were performed pre-operatively. Kyphosis, and angulations were measured pre-, per- and post-operatively. Mean immediate postoperative gain in localized kyphosis was 12.18° and mean gain at last follow-up was 11.71°. Mean immediate postoperative gain in RA was 13.24° and remained identical at last follow-up. Five patients had a transient pulmonary atelectasia and there was one pulmonary infection. No neurological complication occurred. Fracture reduction is comparable to the best thoracotomy series while limiting approach-related complications. PMID:19701654

  5. [Two cases of lateral approach for thoraco-lumbar junctional lesions: experiment of Kaneda's device].

    PubMed

    Nishida, K; Ueda, S; Matsumoto, K; Okada, M

    1992-01-01

    Case 1: a 32-year-old woman was admitted to our hospital with major complaints of gait disturbance and urinary incontinence. The tendon reflex was markedly increased in the bilateral lower extremities, and both Babinski's reflex and clonus were strongly positive. Myelography revealed complete block in the 10th thoracic vertebral level. On April 15, 1989, a tumor in the vertebral region was exposed and excised via a right posterolateral approach. Kaneda's device was used for internal fixation. The tumor was diagnosed as myeloma histologically. The postoperative course was uneventful. Postoperatively, the patient became capable of walking by herself. Case 2: an 18-year-old woman was admitted because of burst fractures of the 1st and 2nd lumbar vertebrae due to a traffic accident in January of 1989. The fractured bones had been manually repositioned and fixed with plaster. However, the patient still had gait disturbance (intermittent claudication). Myelography revealed a complete block in the 2nd lumbar vertebral region. On May 7, the vertebral foramen was opened via a left anterolateral approach, and internal fixation was performed using Kaneda's device. Postoperatively, the patient recovered full ability to walk, and returned to normal social activity. From our experience, it is thought to be useful to employ a right posterolateral approach to the thoracic vertebrae, and a left anterolateral approach to the lumbar vertebrae. We used Kaneda's device for internal fixation, successfully. However, this device has the following disadvantages; (1) there are few plates designed for females, whose vertebrae are small, (2) it is difficult to preserve the arteries of Adamkiewicz and (3) postoperative MRI becomes impossible. PMID:1738429

  6. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires.

    PubMed

    Kaliginedi, Veerabhadrarao; Moreno-García, Pavel; Valkenier, Hennie; Hong, Wenjing; García-Suárez, Víctor M; Buiter, Petra; Otten, Jelmer L H; Hummelen, Jan C; Lambert, Colin J; Wandlowski, Thomas

    2012-03-21

    The charge transport characteristics of 11 tailor-made dithiol-terminated oligo(phenylene-ethynylene) (OPE)-type molecules attached to two gold electrodes were studied at a solid/liquid interface in a combined approach using an STM break junction (STM-BJ) and a mechanically controlled break junction (MCBJ) setup. We designed and characterized 11 structurally distinct dithiol-terminated OPE-type molecules with varied length and HOMO/LUMO energy. Increase of the molecular length and/or of the HOMO-LUMO gap leads to a decrease of the single-junction conductance of the linearly conjugate acenes. The experimental data and simulations suggest a nonresonant tunneling mechanism involving hole transport through the molecular HOMO, with a decay constant β = 3.4 ± 0.1 nm(-1) and a contact resistance R(c) = 40 kΩ per Au-S bond. The introduction of a cross-conjugated anthraquinone or a dihydroanthracene central unit results in lower conductance values, which are attributed to a destructive quantum interference phenomenon for the former and a broken π-conjugation for the latter. The statistical analysis of conductance-distance and current-voltage traces revealed details of evolution and breaking of molecular junctions. In particular, we explored the effect of stretching rate and junction stability. We compare our experimental results with DFT calculations using the ab initio code SMEAGOL and discuss how the structure of the molecular wires affects the conductance values. PMID:22352944

  7. Carbon nanotube intramolecular junctions

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Postma, Henk W. Ch.; Balents, Leon; Dekker, Cees

    1999-11-01

    The ultimate device miniaturization would be to use individual molecules as functional devices. Single-wall carbon nanotubes (SWNTs) are promising candidates for achieving this: depending on their diameter and chirality, they are either one-dimensional metals or semiconductors. Single-electron transistors employing metallic nanotubes and field-effect transistors employing semiconducting nanotubes have been demonstrated. Intramolecular devices have also been proposed which should display a range of other device functions. For example, by introducing a pentagon and a heptagon into the hexagonal carbon lattice, two tube segments with different atomic and electronic structures can be seamlessly fused together to create intramolecular metal-metal, metal-semiconductor, or semiconductor-semiconductor junctions. Here we report electrical transport measurements on SWNTs with intramolecular junctions. We find that a metal-semiconductor junction behaves like a rectifying diode with nonlinear transport characteristics that are strongly asymmetric with respect to bias polarity. In the case of a metal-metal junction, the conductance appears to be strongly suppressed and it displays a power-law dependence on temperatures and applied voltage, consistent with tunnelling between the ends of two Luttinger liquids. Our results emphasize the need to consider screening and electron interactions when designing and modelling molecular devices. Realization of carbon-based molecular electronics will require future efforts in the controlled production of these intramolecular nanotube junctions.

  8. The behavior of series resistance of a p-n junction: the diode and the solar cell cases

    NASA Astrophysics Data System (ADS)

    Bueno, Poliana H.; Costa, Diogo F.; Eick, Alexander; Carvalho, André; Monteiro, Davies W. L.

    2016-03-01

    This paper presents a comparison of the impact of the internal parasitic series resistance of a p-n junction, as seen from the microelectronics and photovoltaic communities. The elusive thermal behavior of the aforementioned resistance gave this work its origin. Each community uses a different approach to interpret the operational current-voltage behavior of a p-n junction, which might lead to confusion, since scientists and engineers of these two realms seldom interact. An improvement in the understanding of the different approaches will help one to better model the performance of devices based on p-n junctions and therefore it will favor the performance predictions of photovoltaic cells. For diodes, series resistance is usually determined from a specific forward-bias region of the I-V curve on a semi-logarithmic scale. However, in Photovoltaics this region is not commonly reported and therefore other methods to determine Rs are employed. We mathematically modeled an experimentally obtained I-V curve with various pairs of the ideality factor and Rs and found that more than one pair accurately synthesizes the measured curve. We can conclude that the reported series resistance not only depends on physical parameters, e.g. temperature or irradiance, but also on fitting parameters, i.e. the ideality factor. Generally the behavior of a p-n junction depends on its operating conditions and electrical modeling.

  9. Preventing proximal junctional failure in long segmental instrumented cases of adult degenerative scoliosis using a multilevel stabilization screw technique

    PubMed Central

    Sandquist, Lee; Carr, Daniel; Tong, Doris; Gonda, Roger; Soo, Teck M.

    2015-01-01

    Background: The authors sought to demonstrate the safety and effectiveness of the multilevel stabilization screw (MLSS) technique in decreasing the incidence of proximal junctional failure in long segmental instrumented fusions for adult degenerative scoliosis. Methods: Institutional review board approval was obtained and all patients with adult spinal deformity who underwent the MLSS technique were analyzed. A neuro-radiologist and spine-focused neurosurgeon not involved with the surgical treatment performed radiographic analysis. Proximal junctional angle was defined as the caudal endplate of the upper instrumented vertebra (UIV) to the cephalad endplate of two supradjacent vertebrae above the UIV. The UIV is defined as the most cephalad vertebra completed captured by the instrumentation. Abnormal proximal junctional kyphosis (PJK) was defined as proximal junctional sagittal Cobb angle >10 degrees and proximal junction sagittal Cobb angle at least 10 degrees greater than the preoperative measurement. The presence of both is criteria necessary to be considered abnormal. Results: Twenty patients with degenerative scoliosis underwent the MLSS technique with the upper-instrumented vertebrae in the proximal thoracic spine. Fifteen patients met inclusion criteria with greater than 12 months radiographic and clinical follow up. Three patients were excluded due to lack of follow up imaging and two patients were excluded due to the inability to measure the UIV. Age range was 44–84 years with a mean of 66. Eleven of the 15 patients were over the age of 60 at the time of surgery. The male-to-female ratio was 4:11. Body mass index (BMI) range was 24–44 with a mean of 31.5 units. The follow up period ranged from 14 to 58 months with an average follow up of 30 months. The mean change in Cobb angle at the proximal junction was 4.00 degrees with a range from -0.92 to 9.13 degrees. There were no fractures or instrumentation failures at or near the proximal junction. There was

  10. [A Case of HER2-Positive Esophagogastric Junction Cancer with Perforation Curatively Resected after Neoadjuvant Chemotherapy plus Trastuzumab].

    PubMed

    Toshima, Hirokazu; Hisamatsu, Atsushi; Shimada, Ken; Saito, Mitsuo; Suzuki, Michitaka; Matsukawa, Masaaki; Inoue, Haruhiro

    2016-06-01

    A 60-year-old man was diagnosed with adenocarcinoma of the esophagogastric junction with lymph node metastasis along the left gastric artery. The clinical stage was determined to be T4b, N1, M0, Stage IIIB, and a neoadjuvant chemotherapy (NAC)regimen of capecitabine/CDDP plus trastuzumab was selected for treatment. Before 3 courses of chemotherapy, the patient developed perforated gastric cancer. With conservative therapy, we were able to obtain closure of the perforation without affecting the curability of the cancer. We changed the chemotherapy regimen to S-1/CDDP plus trastuzumab, and the patient underwent curative resection. PMID:27306816

  11. [Concurrent association of reirradiation therapy with everolimus for lymph node metastasis of gastroesophageal junction cancer: a case report].

    PubMed

    Pernin, V; Beuzeboc, P; Peurien, D; Louvet, C; Kirova, Y

    2014-11-01

    Advanced gastric cancer or gastro-oesophageal junction cancer after a failure of first line chemotherapy have poor outcome. Hereby, we present the first patient treated by radiotherapy with concurrent everolimus, a mTor inhibitor, for a reirradiation of metastasis invading left axillary, infraclavicular and supraclavicular lymph nodes in progression despite several lines of chemotherapy. After 6 months of follow-up, this association provided a satisfactory anti-tumor efficiency and tolerance. Nevertheless, clinical trials are needed in order to confirm this strategy for the treatment of gastric cancer metastasis. PMID:24981410

  12. Spontaneous intracranial hypotension following epidural anesthesia: a case report.

    PubMed

    An, X; Wu, S; He, F; Li, C; Fang, X

    2016-05-01

    We report a case of refractory spontaneous intracranial hypotension (SIH) following epidural anesthesia. In this case, typical clinical symptoms and concomitant use of regional anesthesia led to the misdiagnosis of SIH as post-dural puncture headache (PDPH). A 56-year-old man received a successful appendectomy under epidural anesthesia performed at a T11-T12 intravertebral space. About 20 h later, the patient started complaining about orthostatic headache when getting up from his lying position, then a PDPH was diagnosed. However, the patient did not respond well to conservative treatment. Three months later, the first epidural blood patch was performed at the L3-L4 level, however, the patient still had an orthostatic headache. Five days later, spine magnetic resonance imaging showed multiple meningeal diverticulum in the cervicothoracic junction, and computerized tomography myelography demonstrated a C5-C6 spinal dural tear suggesting cerebrospinal fluid leaks. Finally, the patient was diagnosed as SIH and received a second epidural blood patch at the T2-T3 level and responded with improvements in symptomatology. The patient was then discharged, and at a 2-year follow-up, he had fully recovered except for some remaining neck stiffness. This case illustrates that SIH was misdiagnosed as PDPH because of the common clinical symptoms and potentially confounding events (epidural/spinal anesthesia and assumption that it was a case of PDPH). It is important to carefully observe patients in such conditions and promptly conduct suitable diagnostic tests. For a successful treatment of SIH, a timely epidural blood patch should be considered as soon as the diagnosis is established. PMID:26939569

  13. The. Thoma Ionescu - Victor Gomoiu Procedure: Cervicothoracic Sympathectomy for Angina Pectoris. The First Surgical Attempt to Treat the Coronary Heart Disease.

    PubMed

    Vasilescu, Cătălin; Salmen, Monica; Bobocea, Andrei

    2016-01-01

    Cervicothoracic Sympathectomy is a common indication in the treatment of Raynaud Syndrome, Palmer Hyperhidrosis or Acute Ischemia of the superior limb. Nonetheless, almost a century ago it represented one of the first innovative attempts in curing coronary heart disease. Nowadays, this indication is no more than a footnote in a volume on the History of Medicine, and a trivia fact for medical history enthusiasts. The operation's history is rather conflicting. A young Romaninan surgeon, Victor Gomoiu seems to have come up with the idea, in the early 20th century. However, his contribution remains unknown, after his successful collaboration with the famous surgeon and anatomist, Thoma Ionescu unfortunately turns into a dispute. This procedure was once thought cutting-edge. Furthermore it is the starting point for cardiovascular surgery. Whoever sparked the idea, gains an important place in the hall of fame of international surgery, that is why it is important to know its creator. PMID:27544937

  14. Intraoperative somatosensory evoked potential recovery following opening of the fourth ventricle during posterior fossa decompression in Chiari malformation: case report.

    PubMed

    Grossauer, Stefan; Koeck, Katharina; Vince, Giles H

    2015-03-01

    The most appropriate surgical technique for posterior fossa decompression in Chiari malformation (CM) remains a matter of debate. Intraoperative electrophysiological studies during posterior fossa decompression of Type I CM (CM-I) aim to shed light on the entity's pathomechanism as well as on the ideal extent of decompression. The existing reports on this issue state that significant improvement in conduction occurs after craniotomy in all cases, but additional durotomy contributes a further improvement in only a minority of cases. This implies that craniotomy alone might suffice for clinical improvement without the need of duraplasty or even subarachnoid manipulation at the level of the craniocervical junction. In contrast to published data, the authors describe the case of a 32-year-old woman who underwent surgery for CM associated with extensive cervicothoracic syringomyelia and whose intraoperative somatosensory evoked potentials (SSEPs) did not notably improve after craniotomy or following durotomy; rather, they only improved after opening of the fourth ventricle and restoration of CSF flow through the foramen of Magendie. Postoperatively, the patient recovered completely from her preoperative neurological deficits. To the authors' knowledge, this is the first report of significant SSEP recovery after opening the fourth ventricle in the decompression of a CM-I. The electrophysiological and operative techniques are described in detail and the findings are discussed in the light of available literature. The authors conclude that there might be a subset of CM-I patients who require subarachnoid dissection at the level of the craniocervical junction to benefit clinically. Prospective studies with detailed electrophysiological analyses seem warranted to answer the question regarding the best surgical approach in CM-I decompression. PMID:25526275

  15. Confocal Annular Josephson Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-04-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  16. Confocal Annular Josephson Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  17. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  18. Cervical Synovial Cyst Causing Cervical Radiculomyelopathy: Case Report and Review of the Literature.

    PubMed

    Corredor, José A; Quan, Gerald

    2015-08-01

    Study Design Case report. Objective Synovial cysts in the subaxial cervical spine are rare and are most commonly reported at the cervicothoracic junction. Only six cases of symptomatic C5-C6 synovial cysts have been reported in the literature; the condition is usually treated with decompressive laminectomy. We present a patient with a synovial cyst arising from the C5-C6 facet joint, associated with spondylolisthesis, and causing radiculomyelopathy. The patient was treated with a posterior excision of the cyst, decompressive laminectomy, and fusion. Methods A 67-year-old man had vertebral canal stenosis at C5-C6 secondary to a synovial cyst and spondylolisthesis with symptoms and signs of radiculopathy and myelopathy. Surgical management involved C5-C6 posterior decompressive laminectomy and excision of the cyst and C4-C6 instrumented fusion with lateral mass screws and rods. A literature review of symptomatic cervical synovial cysts is presented. Results The imaging studies identified grade I spondylolisthesis and a 3.3 × 4.3-mm extradural lentiform-like mass associated with focal compression of the spinal cord and exiting the C6 nerve root. After the surgery, the patient had an immediate full recovery and was asymptomatic by the 6-month examination. No operative complications were reported. The histologic report confirmed the presence of a synovial cyst. Conclusions C5-C6 is an unusual localization for symptomatic synovial cysts. Similar cases reported in the literature achieved excellent results after cyst excision and decompressive laminectomy. Because spondylolisthesis plus laminectomy are risk factors for segmental instability in the cervical spine, we report a case of a C5-C6 facet synovial cyst successfully treated with posterior laminectomy and C4-C6 fusion. PMID:26225291

  19. Cervical Synovial Cyst Causing Cervical Radiculomyelopathy: Case Report and Review of the Literature

    PubMed Central

    Corredor, José A.; Quan, Gerald

    2014-01-01

    Study Design Case report. Objective Synovial cysts in the subaxial cervical spine are rare and are most commonly reported at the cervicothoracic junction. Only six cases of symptomatic C5–C6 synovial cysts have been reported in the literature; the condition is usually treated with decompressive laminectomy. We present a patient with a synovial cyst arising from the C5–C6 facet joint, associated with spondylolisthesis, and causing radiculomyelopathy. The patient was treated with a posterior excision of the cyst, decompressive laminectomy, and fusion. Methods A 67-year-old man had vertebral canal stenosis at C5–C6 secondary to a synovial cyst and spondylolisthesis with symptoms and signs of radiculopathy and myelopathy. Surgical management involved C5–C6 posterior decompressive laminectomy and excision of the cyst and C4–C6 instrumented fusion with lateral mass screws and rods. A literature review of symptomatic cervical synovial cysts is presented. Results The imaging studies identified grade I spondylolisthesis and a 3.3 × 4.3-mm extradural lentiform-like mass associated with focal compression of the spinal cord and exiting the C6 nerve root. After the surgery, the patient had an immediate full recovery and was asymptomatic by the 6-month examination. No operative complications were reported. The histologic report confirmed the presence of a synovial cyst. Conclusions C5–C6 is an unusual localization for symptomatic synovial cysts. Similar cases reported in the literature achieved excellent results after cyst excision and decompressive laminectomy. Because spondylolisthesis plus laminectomy are risk factors for segmental instability in the cervical spine, we report a case of a C5–C6 facet synovial cyst successfully treated with posterior laminectomy and C4–C6 fusion. PMID:26225291

  20. A power balance model for converging and diverging flow junctions

    SciTech Connect

    Guffey, S.E. ); Fraser, D.A. )

    1989-01-01

    The authors propose that pressures across a junction of flows are best described by potential, kinetic, and dissipated (lost) power. It is demonstrated that differences in Bernoulli constants up- and downstream of junctions are not proportional to energy losses even in the trivial case of zero junction losses.

  1. Disordered graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Muñoz, W. A.; Covaci, L.; Peeters, F. M.

    2015-02-01

    A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.

  2. Ballistic bipolar junctions in chemically gated graphene ribbons

    PubMed Central

    Baringhaus, Jens; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich; Tegenkamp, Christoph

    2015-01-01

    The realization of ballistic graphene pn-junctions is an essential task in order to study Klein tunneling phenomena. Here we show that intercalation of Ge under the buffer layer of pre-structured SiC-samples succeeds to make truly nano-scaled pn-junctions. By means of local tunneling spectroscopy the junction width is found to be as narrow as 5 nm which is a hundred times smaller compared to electrically gated structures. The ballistic transmission across the junction is directly proven by systematic transport measurements with a 4-tip STM. Various npn- and pnp-junctions are studied with respect to the barrier length. The pn-junctions are shown to act as polarizer and analyzer with the second junction becoming transparent in case of a fully ballistic barrier. This can be attributed to the almost full suppression of electron transmission through the junction away from normal incidence. PMID:25898259

  3. Adeno-carcinoma of the pharyngo-oesophageal junction and cervical oesophagus in a patient with an oesophagus lined entirely by columnar epithelium report of a case treated by photodynamic therapy (PDT).

    PubMed

    Moghissi, K; Dixon, Kate; Campbell, Anne

    2008-09-01

    A case of adenocarcinoma in the pharyngo oesophageal junction extending to the upper cervical oesophagus is described. In this case the neo-plastic changes had occurred from columnar epithelium of gastric and intestinal type: Barrett's oesophagus. The Barrett's mucosa involved the whole length of the oesophagus. Because of the general condition of the patient and advanced stage of the tumour surgical treatment was considered inappropriate. Endoscopic Photofrin Photodynamic Therapy was used with good palliation of dysphagia. The patient survived for 9 months, dying form carcinomatosis and oesophago-airway fistula. As far as can be documented only one such case has been previously reported in the literature. PMID:19356659

  4. Osteopathia striata with cranial sclerosis (OSCS): review of the literature and case report demonstrating challenges of spinal fusion after trauma.

    PubMed

    Katsevman, Gennadiy A; Turner, Ryan C; Lucke-Wold, Brandon P; Sedney, Cara L; Bhatia, Sanjay

    2016-06-01

    Osteopathia striata with cranial sclerosis (OSCS) is a rare but well-described pathology characterized by abnormalities in bone deposition in the axial and cranial skeleton as well as other abnormalities and associated deficits. These skeletal abnormalities can lead to significant intra-operative challenges for the surgeon and influence outcomes for the patient. In this report, we present a case of a patient with OSCS who was involved in a traumatic motor vehicle crash and underwent posterior cervico-thoracic fusion for a T4 chance fracture. Bony abnormalities in the cervico-thoracic spine presented a significant operative challenge due to alterations in bony anatomy and bone architecture. This case serves as an example of the challenges that the spine surgeon faces when dealing with OSCS, and highlights the differences between OSCS and commoner skeletal hyperplasias such as osteopetrosis. PMID:27068044

  5. Extended generation profile - E.B.I.C model application in the case of a PN junction

    NASA Astrophysics Data System (ADS)

    Guermazi, S.; Toureille, A.; Grill, C.; El Jani, B.

    2000-01-01

    We have developed a model for the calculation of the induced current due to an electron beam with an extended generation profile. Added to the absorbed and diffuse electrons in the depth distribution, the generation profile takes into account the lateral diffusion. The analytical expression of the electron beam induced current (EBIC) is obtained by solving the continuity equation in permanent regime by the Green function method. The induced current profile, obtained in the case of a ternary component (Ga{0.7}Al{0.3}As:N^+/Ga{0.7}Al{0.3}As:P) sulfur doped and prepared by organometallic compounds phase vapor epitaxy method, is compared to the theoretical profiles whose analytical expressions are given by Van Roosbroeck and Bresse. The experimental current profile, measured by S.E.M provided us to calculate the diffusion length of the minority carriers: L_p=1 μm in the N region and L_n=1.80 μm in the P region of the ternaire component. The theoretical curve obtained from the proposed model is in good agreement with the experimental one for a surface recombination velocity of 10^6 cm s^{-1}. Our results are found to be consistent compared to those obtained by other experimental techniques using the same samples. Nous avons développé un modèle de calcul du courant induit par un faisceau d'électrons avec un profil de génération élargi. Le profil de génération prend en compte la répartition spatiale de la diffusion et de l'absorption des électrons. L'expression analytique du courant induit (E.B.I.C) est déterminée par résolution de l'équation de continuité en régime permanent par la méthode des fonctions de Green. Le profil de courant induit obtenu dans le cas d'une jonction PN (Ga{0,7}Al{0,3}As:N^+/Ga{0,7}Al{0,3}As:P) dopée par le soufre et préparée par épitaxie à phase vapeur organo-métallique, est comparé au profil de courant théorique dont l'expression analytique est explicitée par Van Roosbroeck et Bresse. Le profil expérimental de

  6. New Phenomena in Josephson SINIS Junctions

    NASA Astrophysics Data System (ADS)

    Volkov, A. F.

    1995-06-01

    We analyze the dc and ac Josephson effects in SaINISb junctions in which an additional bias current flows in the N layer. The case of low temperatures and voltages \\(eV, T<<Δ\\) is considered in the dirty limit. We show that the critical Josephson current may change sign, and the considered SINIS junction may become a π junction if the voltage drop across the N/Sa interface exceeds a certain value \\(eVN>Δ/2\\). The ac Josephson effect may arise even if the current flows only through the N/Sa interface, whereas the current through the Sb/N interface is absent.

  7. Neuromuscular junctional disorders.

    PubMed

    Girija, A S; Ashraf, V V

    2008-07-01

    Neuromuscular junctional disorders (NMJ) in children are distinct entity. They may be acquired or hereditary. They pose problem in diagnosis because of the higher occurrence of sero negative Myasthenia Gravis (MG) cases in children. The identity of MusK antibody positivity in a good percentage of sero negative cases further adds to problems in diagnosis. The Congenital Myasthenic Syndrome (CMS) which are rare disorders of hereditary neuromuscular transmission (NMT) has to be differentiated because immunotherapy has no benefit in this group. Molecular genetic studies of these diseases helps to identify specific type of CMS which is important as other drugs like Fluoxetine, Quinidine are found to be effective in some. In infancy, all can manifest as floppy infant syndrome. The important key to diagnosis is by detailed electrophysiological studies including repetitive nerve stimulation at slow and high rates and its response to anticholinesterases and estimation of Acetyl choline receptor antibodies. Other causes of neuromuscular transmission defects viz. snake venom poisoning and that due to drugs are discussed. PMID:18716738

  8. Constraints on string networks with junctions

    NASA Astrophysics Data System (ADS)

    Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.

    2007-03-01

    We consider the constraints on string networks with junctions in which the strings may all be different, as may be found, for example, in a network of (p,q) cosmic superstrings. We concentrate on three aspects of junction dynamics. First we consider the propagation of small-amplitude waves across a static three-string junction. Then, generalizing our earlier work, we determine the kinematic constraints on two colliding strings with different tensions. As before, the important conclusion is that strings do not always reconnect with a third string; they can pass straight through one another (or in the case of non-Abelian strings become stuck in an X configuration), the constraint depending on the angle at which the strings meet, on their relative velocity, and on the ratios of the string tensions. For example, if the two colliding strings have equal tensions, then for ultrarelativistic initial velocities they pass through one another. However, if their tensions are sufficiently different they can reconnect. Finally, we consider the global properties of junctions and strings in a network. Assuming that, in a network, the incoming waves at a junction are independently randomly distributed, we determine the root-mean-square (r.m.s.) velocities of strings and calculate the average speed at which a junction moves along each of the three strings from which it is formed. Our findings suggest that junction dynamics may be such as to preferentially remove the heavy strings from the network leaving a network of predominantly light strings. Furthermore the r.m.s. velocity of strings in a network with junctions is smaller than 1/2, the result for conventional Nambu-Goto strings without junctions in Minkowski space-time.

  9. Constraints on string networks with junctions

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.

    2007-03-15

    We consider the constraints on string networks with junctions in which the strings may all be different, as may be found, for example, in a network of (p,q) cosmic superstrings. We concentrate on three aspects of junction dynamics. First we consider the propagation of small-amplitude waves across a static three-string junction. Then, generalizing our earlier work, we determine the kinematic constraints on two colliding strings with different tensions. As before, the important conclusion is that strings do not always reconnect with a third string; they can pass straight through one another (or in the case of non-Abelian strings become stuck in an X configuration), the constraint depending on the angle at which the strings meet, on their relative velocity, and on the ratios of the string tensions. For example, if the two colliding strings have equal tensions, then for ultrarelativistic initial velocities they pass through one another. However, if their tensions are sufficiently different they can reconnect. Finally, we consider the global properties of junctions and strings in a network. Assuming that, in a network, the incoming waves at a junction are independently randomly distributed, we determine the root-mean-square (r.m.s.) velocities of strings and calculate the average speed at which a junction moves along each of the three strings from which it is formed. Our findings suggest that junction dynamics may be such as to preferentially remove the heavy strings from the network leaving a network of predominantly light strings. Furthermore the r.m.s. velocity of strings in a network with junctions is smaller than 1/{radical}(2), the result for conventional Nambu-Goto strings without junctions in Minkowski space-time.

  10. Ureteropelvic junction disease: diagnostic imaging.

    PubMed

    Maresca, Giulia; Maggi, Fabio; Valentini, Viola

    2002-01-01

    Ureteropelvic junction disease is very frequent in pediatric age. Diagnosis is usually established on sonography; in most cases it is prenatal and confirmed at birth. On sonography, hydronephrosis and the site of obstruction is identified with morphofunctional information on renal parenchyma. In the past, urography was the reference examination for ureteropelvic junction disease, but its use is limited in pediatrics especially in prenatal study for radioprotection as well as for the limited glomerular filtration of neonatal kidney. CT and MRI as second level examinations do not find many indications, while angioscintigraphy is largely used to acquire functional data and, in combination with sonography, is basic for diagnosis as well as in follow-up of operated patients. PMID:12696256

  11. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J.

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  12. [A case of dural arteriovenous fistula at the craniocervical junction, which spinal MRI findings reveals increased intensity signal in Th3-medullary cone].

    PubMed

    Ueda, Masamichi; Ueda, Miki; Takeuchi, Yuko; Ochiai, Jun; Mabuchi, Chiyuki; Hattori, Shinnosuke

    2016-01-01

    A 60-year-old woman had transient weakness of the legs and urinary retention for six weeks. She presented with a gait disorder and was admitted to the hospital. She showed symptoms of paraplegia, tingling in the lower extremities, dysuria. She underwent an MRI, and T2-weighted images showed an enlargement of the thoracolumbar spinal cord and high intensity signal from Th3 to the medullary cone, and a contrast-enhanced T1-weighted image showed abnormal vessels anterior to the spine cord. Cervical and spinal angiography documented a dural arteriovenous fistula at the craniocervical junction that was fed by the right vertebral artery and the right ascending pharyngeal arteries and drained into the perimedullary veins. Surgical therapy improved her symptoms and MRI images. Craniocervical junction DAVF with thoracic-medullary cones lesion is rare. PMID:26616488

  13. Notalgia paresthetica associated with cervical spinal stenosis and cervicothoracic disk disease at C4 through C7.

    PubMed

    Alai, Nili N; Skinner, Harry B; Nabili, Siamak T; Jeffes, Edward; Shahrokni, Seyed; Saemi, Arash M

    2010-02-01

    Notalgia paresthetica (NP) is a common refractory, sensory, neuropathic syndrome with the hallmark symptom of localized pruritus of the unilateral infrascapular back. It generally is a chronic noncurable condition with periodic remissions and exacerbations. While the dermatologic syndrome may be multifactorial in etiology, a possible association with underlying cervical spine disease should be evaluated for proper treatment. Collaborative multispecialty evaluation by dermatology, radiology, orthopedic surgery, and neurology may be indicated for primary management of this condition. First-line therapy for NP with associated cervical disease may include nondermatologic noninvasive treatments such as spinal manipulation, physical therapy, massage, cervical traction, cervical muscle strengthening, and oral nonsteroidal anti-inflammatory drugs and muscle relaxants. Notalgia paresthetica may in fact be a cutaneous sign of an underlying degenerative cervical spine disease. We report a case of a patient with cervical spinal stenosis that corresponded directly with the clinical findings of NP. PMID:20349681

  14. The 'depletion layer' of amorphous p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1981-01-01

    It is shown that within reasonable approximations for the density of state distribution within the mobility gap of a:Si, a one-to-one correspondence exists between the electric field distribution in the transition region of an amorphous p-n junction and that in the depletion layer of a crystalline p-n junction. Thus it is inferred that the depletion layer approximation which leads to a parabolic potential distribution within the depletion layer of crystalline junctions also constitutes a fair approximation in the case of amorphous junctions. This fact greatly simplifies an analysis of solid-state electronic devices based on amorphous material (i.e., solar cells).

  15. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  16. Diencephalic-Mesencephalic Junction Dysplasia: A Novel Recessive Brain Malformation

    ERIC Educational Resources Information Center

    Zaki, Maha S.; Saleem, Sahar N.; Dobyns, William B.; Barkovich, A. James; Bartsch, Hauke; Dale, Anders M.; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G.; Grijalvo-Perez, Ana Maria

    2012-01-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic "butterfly"-like contour of the midbrain on…

  17. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. PMID:22881834

  18. Iniencephaly: Case Report

    PubMed Central

    Alvis-Miranda, Hernando R.; Bula-Anichiarico, Doris A.; Calderón-Miranda, Willem G.; Moscote-Salazar, Luis R.

    2015-01-01

    The iniencephaly involves a variable defect in the occipital bone, resulting in a large foramen magnum, partial or total absence of the cervical and thoracic vertebrae, accompanied by incomplete closure of arcs and/or vertebral bodies, significant shortening of the spinal column and hyperextension of the malformed cervicothoracic spine; the individual's face is deviated upward, the mandibular skin is directly continuous with anterior thorax due to the absence of neck. Its incidence is about 1:1000–1:2000 births, so this is a pretty rare neural tube defect. We present a case of iniencephaly in association with cardiovascular, spinal cord, and intracranial malformations that ended demonstrating the low survival of patients affected with this condition. PMID:26167231

  19. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  20. Electrostatic model of radial pn junction nanowires

    NASA Astrophysics Data System (ADS)

    Chia, A. C. E.; LaPierre, R. R.

    2013-08-01

    Poisson's equation is solved for a radial pn junction nanowire (NW) with surface depletion. This resulted in a model capable of giving radial energy band and electric field profiles for any arbitrary core/shell doping density, core/shell dimensions, and surface state density. Specific cases were analyzed to extract pertinent underlying physics, while the relationship between NW specifications and the depletion of the NW were examined to optimize the built-in potential across the junction. Additionally, the model results were compared with experimental results in literature to good agreement. Finally, an optimum device design is proposed to satisfy material, optical, and electrostatic constraints in high efficiency NW solar cells.

  1. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  2. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  3. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  4. T-Junction Benchmark

    SciTech Connect

    2010-01-01

    Part 1: Two different volume renderings of fluid temperatures in a turbulent T-junction mixing problem at Reynolds number Re=40,000. Part 2: Volume rendering of fluid temperatures in a turbulent T-junction mixing problem at Reynolds number Re=40,000, simulated using Nek5000 at three different resolutions. Part 3: Temperature distribution for a turbulent T-junction mixing problem at Reynolds number Re=40,000, simulated using Nek5000 with 89056 spectral elements of order N=9 (65 million grid points). Credits: Science: Aleks Obabko and Paul Fisher, Argonne National Laboratory
 Visualization: Hank Childs, Lawrence Berkeley National Laboratory

 This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357

  5. Proximal Junctional Kyphosis: Diagnosis, Pathogenesis, and Treatment

    PubMed Central

    Lee, Jaewon

    2016-01-01

    Proximal junctional kyphosis (PJK) is a common radiographic finding after long spinal fusion. A number of studies on the causes, risk factors, prevention, and treatment of PJK have been conducted. However, no clear definition of PJK has been established. In this paper, we aimed to clarify the diagnosis, prevention, and treatment of PJK by reviewing relevant papers that have been published to date. A literature search was conducted on PubMed using "proximal junctional", "proximal junctional kyphosis", and "proximal junctional failure" as search keywords. Only studies that were published in English were included in this study. The incidence of PJK ranges from 5% to 46%, and it has been reported that 66% of cases occur 3 months after surgery and approximately 80% occur within 18 months. A number of studies have reported that there is no significantly different clinical outcome between PJK patients and non-PJK patients. One study showed that PJK patients expressed more pain than non-PJK patients. However, recent studies focused on proximal junctional failure (PJF), which is accepted as a severe form of PJK. PJF showed significant adverse impact in clinical aspect such as pain, neurologic deficit, ambulatory difficulties, and social isolation. Numerous previous studies have identified various risk factors and reported on the treatment and prevention of PJK. Based on these studies, we determined the clinical significance and impact of PJK. In addition, it is important to find a strategic approach to the proper treatment of PJK. PMID:27340542

  6. Steady-state currents in p-n junction filaments or grains in case of large surface recombination velocities at lateral surfaces

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Lindholm, F. A.

    1985-01-01

    Recently it has been pointed out that the saturation current of a semiconductor filament which constitutes part of a p-n junction diverges when the surface recombination velocity at the faces become infinitely large. Here it is pointed out that this is to be expected on physical grounds since, whenever the carrier concentration is kept off equilibrium by an outside agent, and at the same time recombination lifetimes in the bulk or in surface layers tend to zero, concentration gradients tend to infinity. As also previously noted, the situation can be remedied by using realistic (finite) surface recombination velocities in model calculations. However, this procedure leads to mathematical complexities which have been circumvented recently by the introduction of a heuristic approach. It is the aim of this paper to assess the validity of the heuristic approach by means of detailed and exact calculations.

  7. A fluid flow in the pipe junction with 6,25 cross-section area ratio. the influence of the adjacent branch angle on the pipe junction characteristics

    NASA Astrophysics Data System (ADS)

    Štigler, J.; Šperka, O.; Klas, R.

    2012-11-01

    This article deals with a fluid flow in the pipe junction. The comparison of the pipe junction characteristics obtained from the experiment with the pipe junction characteristics obtained from the numerical modelling using the CFD software will be discussed in this article. All measurements are done for the case of 50 mm diameter of the straight pipe and 20 mm diameter of the adjacent branch with five different angles. There are six possible flow configurations for this pipe junction. Three of them are cases of the flow combination and three of them are cases of the flow division. Only results for the flow combination are presented in this paper.

  8. Victory Junction Gang Camp

    ERIC Educational Resources Information Center

    Shell, Ryan

    2007-01-01

    This article describes the Victory Junction Gang Camp, a not-for-profit, NASCAR-themed camp for children with chronic medical conditions that serves 24 different disease groups. The mission of the camp is to give children life-changing camping experiences that are exciting, fun, and empowering in a safe and medically sound environment. While doing…

  9. Josephson junction mixing.

    NASA Technical Reports Server (NTRS)

    Thompson, E. D.

    1973-01-01

    A theory is presented which, though too simple to explain quantitative details in the Josephson junction mixing response, is sufficient for explaining qualitatively the results observed. Crucial to the theory presented, and that which differentiates it from earlier ones, is the inclusion of harmonic voltages across the ideal Josephson element.

  10. Squeezable electron tunneling junctions

    NASA Astrophysics Data System (ADS)

    Moreland, J.; Alexander, S.; Cox, M.; Sonnenfeld, R.; Hansma, P. K.

    1983-09-01

    We report a versatile new technique for constructing electron tunneling junctions with mechanically-adjusted artificial barriers. I-V curves are presented for tunneling between Ag electrodes with vacuum, gas, liquid or solid in the barrier. An energy gap is apparent in the measured I-V curve when tunneling occurs between superconducting Pb electrodes.

  11. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  12. Brain barriers: Crosstalk between complex tight junctions and adherens junctions

    PubMed Central

    Tietz, Silvia

    2015-01-01

    Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of brain barrier integrity during development, normal physiology, and disease have focused on BBB and BCSFB tight junctions but not the corresponding endothelial and epithelial adherens junctions. The crosstalk between adherens junctions and tight junctions in maintaining barrier integrity is an understudied area that may represent a promising target for influencing brain barrier function. PMID:26008742

  13. Magic-T Junction using Microstrip/Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence

    2008-01-01

    An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances

  14. Simultaneous percutaneous nephrolithotomy and early endoscopic ureteric realignment for iatrogenic ureteropelvic junction avulsion during ureteroscopy

    PubMed Central

    Tayeb, Marawan El; Mellon, Matthew J.; Lingeman, James E.

    2015-01-01

    We present a case report of successful management of ureteropelvice junction avulsion during ureteroscopy successfully managed with simultaneous percutaneous nephrolithotomy and early endoscopic ureteral realignment. PMID:26834898

  15. Precordial junctional ST-segment depression with tall symmetric T-waves signifying proximal LAD occlusion, case reports of STEMI equivalence.

    PubMed

    de Winter, Ruben W; Adams, Rob; Verouden, Niels J W; de Winter, Robbert J

    2016-01-01

    Timely reperfusion therapy by means of primary percutaneous coronary intervention (PCI) is the preferred treatment for patients with ST-segment elevation myocardial infarction. A significant number of patients with large acute myocardial infarction, caused by occlusion of an epicardial coronary artery, do not show ST-elevation on the electrocardiogram. Other ECG abnormalities may be present, the so called STEMI-equivalents. One such STEMI equivalent, junctional ST-segment depression followed by tall symmetrical T-waves in the precordial leads, often in combination with slight ST-elevation in lead AVR, has been associated with proximal occlusion of the left anterior descending coronary artery. Recognition of this ECG pattern by ambulance staff, emergency physicians and interventional cardiologists envolved in STEMI networks, is important to ensure timely reperfusion therapy in these patients. In this paper we present three patients with typical symptoms of acute myocardial infarction and the ECG pattern with slight J-point depression combined with tall, symmetrical T-waves. PMID:26560436

  16. Wireless Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  17. Holliday Junction Resolvases

    PubMed Central

    Wyatt, Haley D.M.; West, Stephen C.

    2014-01-01

    Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes. PMID:25183833

  18. Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells

    SciTech Connect

    AIKEN,DANIEL J.

    1999-11-29

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

  19. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion. PMID:17303718

  20. Nonlinear microwave absorption in weak-link Josephson junctions

    SciTech Connect

    Xie, L.M.; Wosik, J.; Wolfe, J.C.

    1996-12-01

    A model, based on the resistively shunted junction theory, is developed and used to study microwave absorption in weak-link Josephson junctions in high-{ital T}{sub {ital c}} superconductors. Both linear and nonlinear cases of microwave absorption in Josephson junctions are analyzed. A comparison of the model with microwave absorption loop theory is presented along with a general condition for the applicability of both models. The nonlinear case was solved numerically and the threshold points of sharp microwave absorption are presented. At these points, a 2{pi} phase quantization takes place within each microwave cycle, leading to an onset of a sharp rise of absorption. Existence of the 2{pi} dynamic quantization is the key to the interpretation of nonlinear microwave absorption data. The nonlinear microwave absorption model is extended to the study of nonuniformly coupled junctions, and a general statement for the applicability of such a model is presented. {copyright} {ital 1996 The American Physical Society.}

  1. Suppression of Andreev conductance in a topological insulator-superconductor nanostep junction

    NASA Astrophysics Data System (ADS)

    Yi-Jie, Zheng; Jun-Tao, Song; Yu-Xian, Li

    2016-03-01

    When two three-dimensional topological insulators (TIs) are brought close to each other with their surfaces aligned, the surfaces form a line junction. Similarly, three TI surfaces, not lying in a single plane, can form an atomic-scale nanostep junction. In this paper, Andreev reflection in a TI-TI-superconductor nanostep junction is investigated theoretically. Because of the existence of edge states along each line junction, the conductance for a nanostep junction is suppressed. When the incident energy (ɛ) of an electron is larger than the superconductor gap (Δ), the Andreev conductance in a step junction is less than unity while for a plane junction it is unity. The Andreev conductance is found to depend on the height of the step junction. The Andreev conductance exhibits oscillatory behavior as a function of the junction height with the amplitude of the oscillations remaining unchanged when ɛ = 0, but decreasing for ɛ = Δ, which is different from the case of the plane junction. The height of the step is therefore an important parameter for Andreev reflection in nanostep junctions, and plays a role similar to that of the delta potential barrier in normal metal-superconductor plane junctions. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204065 and 11474085) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2013205168 and A2014205005).

  2. Successful treatment of a ruptured aneurysm at the vertebral artery-posterior inferior cerebellar artery junction and simultaneous treatment of the stenotic vertebral artery with a single flow-diverting stent: a case report

    PubMed Central

    2014-01-01

    Introduction This is the first report on the simultaneous successful treatment of a large ruptured saccular aneurysm and stenotic parent artery with a single flow-diverting stent. Case presentation We report the case of a 68-year-old Caucasian man with occlusion of the right vertebral artery and a ruptured aneurysm at the junction of the left posterior inferior cerebellar artery-left vertebral artery that was successfully treated by the deployment of a single flow-diverting stent in the stenotic left vertebral artery. Stent deployment was complicated by thrombotic occlusion of the basilar artery, which was successfully reopened. The patient recovered completely, and follow-up angiography at 4 months and 1 year showed patent vertebral artery with gradual shrinkage of the aneurysm. Conclusions This report contributes to the literature on treatment of large ruptured aneurysms localized in stenotic arteries and in areas of the endocranium where a mass of embolic material in the aneurysm (coils) might compromise the circulation in the parent blood vessel or compress vital brain structures. PMID:24886040

  3. An unusual cause of chronic abdominal pain after laparoscopic Roux en Y gastric bypass: Case report of a penetrating fish bone causing adhesions at the biliary-digestive junction resulting in partial obstruction and chronic symptoms

    PubMed Central

    Ochieng, Vincent; Hendrickx, Leo; Valk, Jody

    2016-01-01

    Background The management of chronic abdominal pain after laparoscopic Roux-en-Y gastric bypass (LRYGP) is complex and challenging. Foreign body intestinal perforation including that caused by fish bones has previously been reported in the literature and if clinically unrecognized, can cause significant morbidity and mortality. Fish bone perforation as a cause of chronic abdominal pain after LRYGP has rarely been reported. Summary The unusual case of a 54 year old female presenting with recurrent episodes of postprandial pain 2 years after LRYGP is reported. Previous radiological and endoscopic investigations did not reveal any abnormality and after the most recent clinical presentation, a laparoscopic exploration was performed. A protruding fish bone at the biliary-digestive junction was discovered intra-operatively and successfully extracted. Dense adhesions between the involved intestinal loops were lysed in an attempt to improve intestinal transit and subsequently relieve post-prandial pain. Conclusion This case highlights the possibility of a missed fish bone perforation causing chronic postprandial abdominal pain and discomfort in a patient with a Roux-en-Y gastric bypass anatomy. Foreign body perforation is a rare cause of abdominal pain after gastric bypass that should be considered when evaluating chronic abdominal pain symptoms after LRYGP. PMID:27107305

  4. A rare presentation of lipoma on mandibular mucogingival junction.

    PubMed

    Sharma, Gaurav; Jain, Kanu; Nagpal, Archna; Baiju, Chandrababu Sudha

    2016-01-01

    Lipoma is the most common tumor of mesenchymal tissues of body, but its occurrence in oral cavity is infrequent. Buccal mucosa is the most common intraoral site of lipoma followed by tongue, floor of the mouth, and buccal vestibule. The involvement of mucogingival junction is rare. We present a unique case report of oral lipoma occurring on mandibular mucogingival junction with review of literature which has emphasis on differential diagnosis. PMID:27143835

  5. A rare presentation of lipoma on mandibular mucogingival junction

    PubMed Central

    Sharma, Gaurav; Jain, Kanu; Nagpal, Archna; Baiju, Chandrababu Sudha

    2016-01-01

    Lipoma is the most common tumor of mesenchymal tissues of body, but its occurrence in oral cavity is infrequent. Buccal mucosa is the most common intraoral site of lipoma followed by tongue, floor of the mouth, and buccal vestibule. The involvement of mucogingival junction is rare. We present a unique case report of oral lipoma occurring on mandibular mucogingival junction with review of literature which has emphasis on differential diagnosis. PMID:27143835

  6. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  7. Gravitational radiation by cosmic strings in a junction

    SciTech Connect

    Brandenberger, R.; Karouby, J.; Firouzjahi, H.; Khosravi, S.

    2009-01-15

    The formalism for computing the gravitational power radiation from excitations on cosmic strings forming a junction is presented and applied to the simple case of co-planar strings at a junction when the excitations are generated along one string leg. The effects of polarization of the excitations and of the back-reaction of the gravitational radiation on the small scale structure of the strings are studied.

  8. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  9. [Gap junction and diabetic foot].

    PubMed

    Zou, Xiao-rong; Tao, Jian; Wang, Yun-kai

    2015-11-01

    Gap junctions play a critical role in electrical synchronization and exchange of small molecules between neighboring cells; connexins are a family of structurally related transmembrane proteins that assemble to form vertebrate gap junctions. Hyperglycemia changes the structure gap junction proteins and their expression, resulting in obstruction of neural regeneration, vascular function and wound healing, and also promoting vascular atherosclerosis. These pathogenic factors would cause diabetic foot ulcers. This article reviews the involvement of connexins in pathogenesis of diabetic foot. PMID:26822053

  10. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  11. Josephson junction simulation of neurons

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Schult, Dan; Segall, Ken

    2010-07-01

    With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present superconducting circuits containing Josephson junctions that model biologically realistic neurons. These “Josephson junction neurons” reproduce many characteristic behaviors of biological neurons such as action potentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical and chemical synapses. Using existing fabrication technologies, large interconnected networks of Josephson junction neurons would operate fully in parallel. They would be orders of magnitude faster than both traditional computer simulations and biological neural networks. Josephson junction neurons provide a new tool for exploring long-term large-scale dynamics for networks of neurons.

  12. Hormonal regulation of hepatocyte tight junctional permeability

    SciTech Connect

    Lowe, P.J.; Miyai, K.; Steinbach, J.H.; Hardison, W.G.M. Univ. of California, San Diego )

    1988-10-01

    The authors have investigated the effects of hormones on the permeability of the hepatocyte tight junction to two probes, ({sup 14}C)sucrose and horseradish peroxidase, using one-pass perfused rat livers. Using a single injection of horseradish peroxidase the authors have demonstrated that this probe can enter bile by two pathways that are kinetically distinct, a fast pathway, which corresponds to the passage of the probe through the hepatocyte tight junctions, and a slow pathway, which corresponds to the transcytotic entry into bile. The passage of horseradish peroxidase through the hepatocyte tight junctions was confirmed by electron microscopic histochemistry. Vasopressin, epinephrine, and angiotensin II, hormones that act in the hepatocyte through the intracellular mediators calcium, the inositol polyphosphates, and diacylglycerol, increased the bile-to-perfusion fluid ratio of ({sup 14}C)sucrose and the rapid entry of horseradish peroxidase into bile, indicating that the permeability of the tight junctions to these probes was increased. The effect of these hormones was dose dependent and in the cases of angiotensin II and epinephrine was inhibited by the specific inhibitors (Sar{sup 1},Thr{sup 8})angiotensin II and prazosin, respectively. Dibutyryl adenosine 3{prime},5{prime}-cyclic monophosphate did not affect the ({sup 14}C)sucrose bile-to-perfusion fluid ratio or the fast entry of horseradish peroxidase into bile. These results suggest that the hepatocyte tight junction can no longer be considered a static system of pores separating blood from bile. It is rather a dynamic barrier potentially capable of influencing the composition of the bile.

  13. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  14. Neuromuscular junction disorders.

    PubMed

    Verschuuren, Jan; Strijbos, Ellen; Vincent, Angela

    2016-01-01

    Diseases of the neuromuscular junction comprise a wide range of disorders. Antibodies, genetic mutations, specific drugs or toxins interfere with the number or function of one of the essential proteins that control signaling between the presynaptic nerve ending and the postsynaptic muscle membrane. Acquired autoimmune disorders of the neuromuscular junction are the most common and are described here. In myasthenia gravis, antibodies to acetylcholine receptors or to proteins involved in receptor clustering, particularly muscle-specific kinase, cause direct loss of acetylcholine receptors or interfere with the agrin-induced acetylcholine receptor clustering necessary for efficient neurotransmission. In the Lambert-Eaton myasthenic syndrome (LEMS), loss of the presynaptic voltage-gated calcium channels results in reduced release of the acetylcholine transmitter. The conditions are generally recognizable clinically and the diagnosis confirmed by serologic testing and electromyography. Screening for thymomas in myasthenia or small cell cancer in LEMS is important. Fortunately, a wide range of symptomatic treatments, immunosuppressive drugs, or other immunomodulating therapies is available. Future research is directed to understanding the pathogenesis, discovering new antigens, and trying to develop disease-specific treatments. PMID:27112691

  15. Tight Junctions Go Viral!

    PubMed Central

    Torres-Flores, Jesús M.; Arias, Carlos F.

    2015-01-01

    Tight junctions (TJs) are highly specialized membrane domains involved in many important cellular processes such as the regulation of the passage of ions and macromolecules across the paracellular space and the establishment of cell polarity in epithelial cells. Over the past few years there has been increasing evidence that different components of the TJs can be hijacked by viruses in order to complete their infectious cycle. Viruses from at least nine different families of DNA and RNA viruses have been reported to use TJ proteins in their benefit. For example, TJ proteins such as JAM-A or some members of the claudin family of proteins are used by members of the Reoviridae family and hepatitis C virus as receptors or co-receptors during their entry into their host cells. Reovirus, in addition, takes advantage of the TJ protein Junction Adhesion Molecule-A (JAM-A) to achieve its hematogenous dissemination. Some other viruses are capable of regulating the expression or the localization of TJ proteins to induce cell transformation or to improve the efficiency of their exit process. This review encompasses the importance of TJs for viral entry, replication, dissemination, and egress, and makes a clear statement of the importance of studying these proteins to gain a better understanding of the replication strategies used by viruses that infect epithelial and/or endothelial cells. PMID:26404354

  16. The influence of the instabilities in modelling arteriovenous junction haemodynamics.

    PubMed

    Broderick, Stephen P; Houston, J Graeme; Walsh, Michael T

    2015-10-15

    The arteriovenous junction is characterised by high flow rates, large pressure difference and typically a palpable thrill or audible bruit, associated with turbulent flow. However, the arteriovenous junction is frequently studied with the assumption of streamline flow. This assumption is based on the Reynolds number calculation, although other factors can contribute to turbulent generation. In this study, the presence of instabilities is examined and the influencing factors discussed. This was performed using a pseudo-realistic geometry with adapted graft angles, vein diameter, outflow split ratio and graft inlet velocity values. Correlation was performed between steady and unsteady averaged simulation cases with correlation performance ranked. Overall the arteriovenous junction is capable of possessing highly disturbed flows, in which strict modelling requirements are necessary to capture such instabilities and avoid erroneous conclusions. Vein diameter and flow split ratio contribute to turbulent generation, thus Reynolds number cannot be used as a sole turbulent criterion in the arteriovenous junction. PMID:26315920

  17. Effects of the environment on the switching current in graphene-based Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Borzenets, Ivan; Ke, Chung-Ting; Amet, Francois; Tso Wei, Ming; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb

    The nature of the switching current and hysteresis (difference between switching and retrapping currents) in graphene-based Josephson junctions depends greatly on the interaction with the environment. Conventional devices result in underdamped Josephson junctions making the true critical current inaccessible. On the other hand, heavily isolating the Josephson junctions places them in the microscopic quantum tunneling regime even at high temperatures, also masking the critical current. We study the critical current, and the switching statistics in graphene Josephson junctions while varying the effects of the environment. Proper isolation of graphene Josephson junctions is necessary to measure the true critical current, especially so for the cases of small currents around the Dirac point. This is true for the case of conventional diffusive as well as the novel ballistic Josephson junctions.

  18. Triple junctions and multi-directional extension of the lithosphere

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Burov, Evgenii

    2016-04-01

    new oceanic crust and lithosphere accretion. We document initial formation and destabilization of quadruple R-R-R-R junctions as initial plate rifting structures under bi-directional extension. In most cases, quadruple plate rifting junctions rapidly (typically within 1-2 Myr) evolve towards formation of two diverging triple oceanic spreading junctions connected by a linear spreading center lengthening with time. Asymmetric stretching results in various configurations, for example formation of "T-junctions" with trans-extensional components and combination of fast and slow spreading ridges. Numerical experiments also suggest that several existing oceanic spreading junctions form as the result of plate motions rearrangements after which only one of two plates spreading along the ridge becomes subjected to bi-directional spreading. Combined with plume impingement, this scenario evolves in realistic patterns closely resembling observed plate dynamics. In particular, opening of the Red Sea and of the Afar rift system find a logical explanation within a single model. We also demonstrate that the development of triple junctions should be an intrinsic feature of subduction and plate tectonics initiation triggered by plume-lithosphere interactions.

  19. Herlitz junctional epidermolysis bullosa.

    PubMed

    Laimer, Martin; Lanschuetzer, Christoph M; Diem, Anja; Bauer, Johann W

    2010-01-01

    Junctional epidermolysis bullosa type Herlitz (JEB-H) is the autosomal recessively inherited, more severe variant of "lucidolytic" JEB. Characterized by generalized, extensive mucocutaneous blistering at birth and early lethality, this devastating condition is most often caused by homozygous null mutations in the genes LAMA3, LAMB3, or LAMC2, each encoding for 1 of the 3 chains of the heterotrimer laminin-332. The JEB-H subtype usually presents as a severe and clinically diverse variant of the EB group of mechanobullous genodermatoses. This article outlines the epidemiology, presentation, and diagnosis of JEB-H. Morbidity and mortality are high, necessitating optimized protocols for early (including prenatal) diagnosis and palliative care. Gene therapy remains the most promising perspective. PMID:19945616

  20. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  1. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  2. ASSEMBLY AND CHARACTERIZATION OF 8-ARM AND 12-ARM DNA BRANCHED JUNCTIONS

    PubMed Central

    Wang, Xing

    2012-01-01

    Branched DNA molecules can be assembled into objects and networks directed by sticky-ended cohesion. The connectivity of these species is limited by the number of arms flanking the branch point. To date, the only branched junctions constructed contain six or fewer arms. We report the construction of DNA branched junctions that contain either 8 or 12 double helical arms surrounding a branch point. The design of the 8-arm junction expoits the limits of a previous approach to thwart branch migration, but the design of the 12-arm junction uses a new to principle achieve this end. The 8-arm junction is stable with 16 nucleotide pairs per arm, but the 12-arm junction has been stabilized by 24 nucleotide pairs per arm. Ferguson analysis of these junctions in combination with three, four, five, and six-arm junctions indicates a linear increase in friction constant as the number of arms increases; the four-arm junction migrates anomalously at 4°C., suggesting stacking of its domains. All strands in both the 8-arm and 12-arm junctions show similar responses to hydroxyl radical autofootprinting analysis, indicating that they lack any dominant stacking structures. The stability of the 12-arm junction demonstrates that the number of arms in a junction is not limited to the case of having adjacent identical base pairs flanking the junction. The ability to construct eight-arm and twelve-arm junctions increases the number of objects, graphs and networks that can be built from branched DNA components. In principle, the stick structure corresponding to cubic close packing is now a possible target for assembly by DNA nanotechnology. PMID:17564446

  3. Josephson junction in a thin film

    SciTech Connect

    Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

    2001-04-01

    The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

  4. Functional analysis of tight junction organization.

    PubMed

    DiBona, D R

    1985-01-01

    The functional basis of tight junction design has been examined from the point of view that this rate-limiting barrier to paracellular transport is a multicompartment system. Review of the osmotic sensitivity of these structures points to the need for this sort of analysis for meaningful correlation of structure and function under a range of conditions. A similar conclusion is drawn with respect to results from voltage-clamping protocols where reversal of spontaneous transmural potential difference elicits parallel changes in both structure and function in much the same way as does reversal of naturally occurring osmotic gradients. In each case, it becomes necessary to regard the junction as a functionally polarized structure to account for observations of its rectifying properties. Lastly, the details of experimentally-induced junction deformation are examined in light of current theories of its organization; arguments are presented in favor of the view that the primary components of intramembranous organization (as viewed with freeze-fracture techniques) are lipidic rather than proteinaceous. PMID:4088839

  5. Fermi edge singularity in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris

    2010-03-01

    We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)

  6. Thermopower measurements in molecular junctions.

    PubMed

    Rincón-García, Laura; Evangeli, Charalambos; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2016-08-01

    The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale. In this review, we discuss the recent advances in the study of the thermoelectric properties of molecular junctions. After presenting the theoretical background for thermoelectricity at the nanoscale, we review the experimental techniques for measuring the thermopower in these systems and discuss the main results. Finally, we consider the challenges in the application of molecular junctions in viable thermoelectric devices. PMID:27277330

  7. Electronic properties of nanotube junctions

    NASA Astrophysics Data System (ADS)

    Lambin, Ph.; Meunier, V.

    1998-08-01

    The possibility of realizing junctions between two different nanotubes has recently attracted a great interest, even though much remains to be done for putting this idea in concrete form. Pentagon-heptagon pair defects in the otherwise perfect graphitic network make such connections possible, with virtually infinite varieties. In this paper, the literature devoted to nanotube junctions is briefly reviewed. A special emphasize is put on the electronic properties of C nanotube junctions, together with an indication on how their current-voltage characteristics may look like.

  8. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  9. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  10. Thermal conductance of superlattice junctions

    SciTech Connect

    Lu, Simon; McGaughey, Alan J. H.

    2015-05-15

    We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

  11. Electronic thermometry in tunable tunnel junction

    DOEpatents

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  12. Efficacy of landiolol for the treatment of junctional ectopic tachycardia resulting from sepsis.

    PubMed

    Oka, Hideharu; Sugimoto, Masaya; Azuma, Hiroshi

    2016-01-01

    Junctional ectopic tachycardia, after surgery for CHD, is a serious arrhythmia that can cause increased morbidity and mortality. We report a case of junctional ectopic tachycardia, preceded by sepsis, in a 4-year-old girl, 31 months after open-heart surgery. She was successfully treated using low-dose landiolol hydrochloride. PMID:25785611

  13. Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation.

    PubMed

    Zaki, Maha S; Saleem, Sahar N; Dobyns, William B; Barkovich, A James; Bartsch, Hauke; Dale, Anders M; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G; Grijalvo-Perez, Ana Maria

    2012-08-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic 'butterfly'-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term 'diencephalic-mesencephalic junction dysplasia' to characterize this autosomal recessive malformation. PMID:22822038

  14. Octagonal Defects at Carbon Nanotube Junctions

    PubMed Central

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  15. Properties of planar Nb/{alpha}-Si/Nb Josephson junctions with various degrees of doping of the {alpha}-Si layer

    SciTech Connect

    Gudkov, A. L.; Kupriyanov, M. Yu.; Samus', A. N.

    2012-05-15

    The properties of Nb/{alpha}-Si/Nb planar Josephson junctions with various degrees of doping of the amorphous silicon layer are experimentally studied. Tungsten is used as a doping impurity. The properties of the Josephson junctions are shown to change substantially when the degree of doping of the {alpha}-Si layer changes: a current transport mechanism and the shape of the current-voltage characteristic of the junctions change. Josephson junctions with SNS-type conduction are formed in the case of a fully degenerate {alpha}-Si layer. The properties of such junctions are described by a classical resistive model. Josephson junctions with a resonance mechanism of current transport through impurity centers are formed at a lower degree of doping of the {alpha}-Si layer. The high-frequency properties of such junctions are shown to change. The experimental results demonstrate that these junctions are close to SINIS-type Josephson junctions.

  16. Joint measurement of current-phase relations and transport properties of hybrid junctions using a three junctions superconducting quantum interference device

    SciTech Connect

    Basset, J.; Delagrange, R.; Weil, R.; Kasumov, A.; Bouchiat, H.; Deblock, R.

    2014-07-14

    We propose a scheme to measure both the current-phase relation and differential conductance dI/dV of a superconducting junction, in the normal and the superconducting states. This is done using a dc Superconducting Quantum Interference Device with two Josephson junctions in parallel with the device under investigation and three contacts. As a demonstration, we measure the current-phase relation and dI/dV of a small Josephson junction and a carbon nanotube junction. In this latter case, in a regime where the nanotube is well conducting, we show that the non-sinusoidal current phase relation we find is consistent with the theory for a weak link, using the transmission extracted from the differential conductance in the normal state. This method holds great promise for future investigations of the current-phase relation of more exotic junctions.

  17. Computer-aided design of stripline ferrite junction circulators

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    A general design procedure is presented for stripline Y-junction circulators employing solid dielectric between ground planes. The resonator design and impedance matching are derived in a form suitable for computer evaluation. The procedure is applicable to cases where either the circulator bandwidth or the ground plane spacing is specified. An experimental S-band switching circulator design illustrates the technique.

  18. Junction problems for thin inclusions in elastic bodies

    NASA Astrophysics Data System (ADS)

    Khludnev, A. M.

    2016-06-01

    Equilibrium problems for a 2D elastic bodies with thin Euler-Bernoulli and Timoshenko elastic inclusions are considered. It is assumed that inclusions have a joint point, and a junction problem for these inclusions is analyzed. Existence of solutions is proved, and different equivalent formulations of problems are discussed. In particular, junction conditions at the joint point are found. A delamination of the elastic inclusions is also assumed. In this case, inequality type boundary conditions are imposed at the crack faces to prevent a mutual penetration between crack faces. A convergence to infinity of a rigidity parameter of the elastic inclusions is investigated. Limit problems are analyzed.

  19. Quantum phases in intrinsic Josephson junctions: Quantum magnetism analogy

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Kobayashi, Keita; Koyama, Tomio

    2013-08-01

    We explore quantum phases in intrinsic Josephson junction (IJJ) stacks, whose in-plane area is so small that the capacitive coupling has a dominant role in the superconducting phase dynamics. In such cases, the effective Hamiltonian for the superconducting phase can be mapped onto that of one-dimensional ferromagnetically-interacting spin model, whose spin length S depends on the magnitude of the on-site Coulomb repulsion. The ferromagnetic model for IJJ’s prefers synchronized quantum features in contrast to the antiferromagnetically-interacting model in the conventional Josephson junction arrays.

  20. Single intrinsic Josephson junction with double-sided fabrication technique

    NASA Astrophysics Data System (ADS)

    You, L. X.; Torstensson, M.; Yurgens, A.; Winkler, D.; Lin, C. T.; Liang, B.

    2006-05-01

    We make stacks of intrinsic Josephson junctions (IJJs) embedded in the bulk of very thin (d⩽100nm) Bi2Sr2CaCu2O8+x single crystals. By precisely controlling the etching depth during the double-sided fabrication process, the stacks can be reproducibly tailor-made to be of any microscopic height (0-9nmcase of a single junction. We discuss reproducible gaplike features in the current-voltage characteristics of the samples at high bias.

  1. Vortex depinning in Josephson-junction arrays

    NASA Astrophysics Data System (ADS)

    Dang, E. K. F.; Györffy, B. L.

    1993-02-01

    On the basis of a simple model we study the supercurrent-carrying capacity of a planar array of Josephson junctions. In particular we investigate the zero-temperature vortex-depinning current iBc, which is the largest supercurrent in an array containing one extra vortex on top of the ground-state vortex superlattice induced by an external magnetic field f. In the zero-field, f=0, case our results support the tilted-sinusoidal vortex-potential description of previous workers. However, in the fully frustrated, f=1/2 case, a more careful interpretation is required. We find that on the application of a transport current, the resulting vortex motion is not that of the extra vortex moving over a rigid field-induced vortex background. Rather, a vortex belonging to the checkerboard ground-state pattern first crosses over a junction into a neighboring ``empty'' plaquette. Then, the ``extra'' vortex moves to take its place. Our interpretation is based on a linear stability analysis, with the onset of vortex motion being associated with the vanishing of one eigenvalue of the stability matrix. Further applications of the method are suggested.

  2. Dynamics of domain wall networks with junctions

    SciTech Connect

    Avelino, P. P.; Oliveira, J. C. R. E.; Martins, C. J. A. P.; Menezes, J.; Menezes, R.

    2008-11-15

    We use a combination of analytic tools and an extensive set of the largest and most accurate three-dimensional field theory numerical simulations to study the dynamics of domain wall networks with junctions. We build upon our previous work and consider a class of models which, in the limit of large number N of coupled scalar fields, approaches the so-called ''ideal'' model (in terms of its potential to lead to network frustration). We consider values of N between N=2 and N=20, and a range of cosmological epochs, and we also compare this class of models with other toy models used in the past. In all cases we find compelling evidence for a gradual approach to scaling, strongly supporting our no-frustration conjecture. We also discuss the various possible types of junctions (including cases where there is a hierarchy of them) and their roles in the dynamics of the network. Finally, we provide a cosmological Zel'dovich-type bound on the energy scale of this kind of defect network: it must be lower than 10 keV.

  3. Transport in Carbon Nanotube Junctions

    NASA Astrophysics Data System (ADS)

    Khoo, K. H.; Chelikowsky, James R.

    2008-03-01

    There is growing interest in the use of carbon nanotube thin films as transparent electrical conductors and thin-film transistors owing to their high optical transmittance, low sheet resistivity, and ease of fabrication. [1,2] A major contribution to the sheet resistivity originates at nanotube junctions, as electrical contact is typically poor between adjacent nanotubes. It is thus important to characterize carbon nanotube junctions in order to understand the conduction properties of nanotube thin films. To this end, we have performed ab initio density functional theory calculations to investigate the structural, electronic and transport properties of carbon nanotube junctions as a function of nanotube chirality and contact geometry [1] Z. Wu et al., Science 305, 1273 (2004) [2] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2003).

  4. Basilar Artery Aneurysm at a Persistent Trigeminal Artery Junction

    PubMed Central

    Aguiar, G.B.; Conti, M.L.M.; Veiga, J.C.E.; Jory, M.; Souza, R.B.

    2011-01-01

    Summary The trigeminal artery is an anastomosis between the embryonic precursors of the vertebrobasilar and carotid systems, and may persist into adult life. The association of the persistent primitive trigeminal artery (PTA) with cerebral aneurysm is well documented in the literature and, in general, aneurysms are located in the anterior circulation. We describe a patient who presented with a panencephalic Fisher III subarachnoid hemorrhage due to rupture of an intracranial aneurysm. Digital arteriography showed a saccular aneurysm in the middle third of the basilar artery, adjacent to the junction with a persistent trigeminal artery. She was submitted to endovascular treatment with embolization of the basilar artery aneurysm with coils. Aneurysms at the PTA junction with the basilar artery are rare. This paper describes a case of PTA associated with an aneurysm in the basilar artery at PTA junction and briefly reviews the literature. PMID:22005697

  5. Craniocervical junction tuberculosis: Usual pathology at an unusual site

    PubMed Central

    Nayak, Biswaranjan; Patnaik, Sanjeev; Sahoo, Prafulla Kumar; Biswal, Debabrata

    2015-01-01

    Background: Tuberculosis (TB) of the craniocervical junction is rare even where the condition is endemic. It poses problems in both diagnosis and management if not managed in time it may cause life-threatening complications. Case Description: An 18-year-old male patient presented with pain in the nape of the neck since 12 months duration which was not improving with medication. After magnetic resonance imaging of cervical spine, he was diagnosed as craniocervical junction TB. We did a transoral decompression of abscess with biopsy along with posterior decompression of cord and occipitocervical fusion. Biopsy of pathological material came as TB. He was advised for anti-tubercular therapy for 18 months. Conclusion: Although craniocervical junction TB is a rare disease, the outcome of treatment is good. Antituberculous drug therapy remains the mainstay of treatment after confirming the diagnosis. The surgical management options include transoral decompression with or without posterior fusion, depending upon the presence and persistence of atlantoaxial instability. PMID:26229730

  6. Length and energy gap dependences of thermoelectricity in nanostructured junctions.

    PubMed

    Asai, Yoshihiro

    2013-04-17

    The possibilities of an enhanced thermoelectric figure of merit value, ZT, in a nanostructured junction are examined for a wide range of parameter values in a theoretical model. Our research shows that the figure of merit can take a very large maximum, which depends both on the length and the energy gap values. The maximum of ZT is achieved when the Fermi level of the electrodes is aligned to the edge of the electronic transmission function of the junction, where both the conductance and the Seebeck constant are significantly enhanced. On the basis of our results, we conclude that nanowires and molecular junctions form a special class of systems where a large ZT can be expected in some cases. PMID:23528878

  7. Detection of noise-corrupted sinusoidal signals with Josephson junctions

    NASA Astrophysics Data System (ADS)

    Filatrella, Giovanni; Pierro, Vincenzo

    2010-10-01

    We investigate the possibility of exploiting the speed and low noise features of Josephson junctions for detecting sinusoidal signals masked by Gaussian noise. We show that the escape time from the static locked state of a Josephson junction is very sensitive to a small periodic signal embedded in the noise, and therefore the analysis of the escape times can be employed to reveal the presence of the sinusoidal component. We propose and characterize two detection strategies: in the first, the initial phase is supposedly unknown (incoherent strategy), while in the second, the signal phase remains unknown but is fixed (coherent strategy). Our proposals are both suboptimal, with the linear filter being the optimal detection strategy, but they present some remarkable features, such as resonant activation, that make detection through Josephson junctions appealing in some special cases.

  8. Theoretical exploration of Josephson Plasma Emission in Intrinsic Josephson Junctions

    SciTech Connect

    Tachiki, M.; Machida, M.

    2000-07-18

    In this paper, the authors theoretically predict the best efficient way for electromagnetic wave emission by Josephson plasma excitation in intrinsic Josephson junctions. First, they briefly derive basic equations describing dynamics of phase differences inside junction sites in intrinsic Josephson junctions, and review the nature of Josephson plasma excitation modes based on the equations. Especially, they make an attention to that Josephson plasma modes have much different dispersion relations depending on the propagating directions and their different modes can be recognized as N standing waves propagating along ah-plane in cases of finite stacked systems composed of N junctions. Second, they consider how to excite their modes and point out that excitations of in-phase mode with the highest propagation velocity among their N modes are the most efficient way for electromagnetic wave emissions. Finally, they clarify that in-phase excitations over all junctions are possible by using Josephson vortex flow states. They show simulation results of Josephson vortex flow states resonating with some Josephson plasma modes and predict that superradiance of electromagnetic field may occur in rectangular vortex flow state in which spatiotemporal oscillations of electromagnetic fields are perfectly in-phase.

  9. Lattice-pseudospin and spin-valley polarizations in dual ferromagnetic-gated silicene junction

    NASA Astrophysics Data System (ADS)

    Chantngarm, Peerasak; Yamada, Kou; Soodchomshom, Bumned

    2016-06-01

    We study spin-valley and lattice-pseudospin currents in a dual ferromagnetic-gated silicene-based junction. Silicene has buckled atomic structure which allows us to take sublattice-dependent ferromagnetism into account in the investigation. One of the study results show that transmission at the junctions exhibits anisotropic property only in anti-parallel cases. Interestingly, the studied junctions can be switched from a pure spin-polarizer to a pure valley-polarizer by reversing directions of exchange fields in the parallel junctions. The perfect control of spin-valley currents can be done only in the parallel cases and its resolution can be enhanced by increasing gate potential between the ferromagnetic barriers. The asymmetric barriers of anti-parallel junction is found to destroy both spin and valley filtering effects and yield a novel result, pure sub-lattice pseudospin polarization. The current in the anti-parallel junctions can be controlled to flow solely in either A or B sub-lattice, saying that the controllable lattice current in silicene is created in double ferromagnetic-gated junction. Our work reveals the potential of dual ferromagnetic-gated silicene junction which may be possible for applications in spin-valleytronics and lattice-pseudospintronics.

  10. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  11. Work fluctuations in bosonic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Lena, R. G.; Palma, G. M.; De Chiara, G.

    2016-05-01

    We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.

  12. GLIAL ANKYRINS FACILITATE PARANODAL AXOGLIAL JUNCTION ASSEMBLY

    PubMed Central

    Chang, Kae-Jiun; Zollinger, Daniel R.; Susuki, Keiichiro; Sherman, Diane L.; Makara, Michael A.; Brophy, Peter J.; Cooper, Edward C.; Bennett, Vann; Mohler, Peter J.; Rasband, Matthew N.

    2014-01-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions, and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, are essential for rapid saltatory conduction, and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and important for membrane domain establishment and maintenance in many cell types. Here, we show that ankyrinB, expressed by Schwann cells, and ankyrinG, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing central nervous system. PMID:25362471

  13. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  14. Glial ankyrins facilitate paranodal axoglial junction assembly.

    PubMed

    Chang, Kae-Jiun; Zollinger, Daniel R; Susuki, Keiichiro; Sherman, Diane L; Makara, Michael A; Brophy, Peter J; Cooper, Edward C; Bennett, Vann; Mohler, Peter J; Rasband, Matthew N

    2014-12-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na(+) channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS. PMID:25362471

  15. Extended cervico-thoracic metastasectomy for testicular non-seminomatous germ cell tumour masses through an inverse T and combined collar incision.

    PubMed

    Schweiger, Thomas; Hoetzenecker, Konrad; Taghavi, Shahrokh; Klepetko, Walter

    2015-05-01

    Non-seminomatous germ cell tumours (NSGCT) are the most common malignancy from testicular origin in young males. They are characterized by early formation of metastases along retroperitoneal and subsequent mediastinal lymph node stations. Following cisplatin-based induction chemotherapy, residual tumour masses should be removed surgically, although this implies the need for extended procedures. Such an approach can result in cure rates of over 70%. Herein, we report 2 cases of maximally extended surgery for metastatic malignant germ cell tumour of the testis. In both patients, diagnostic work-up revealed a NSGCT with retroperitoneal, mediastinal and cervical lymph node metastases. Multimodal protocols including induction chemotherapy and surgical removal of all primary and secondary tumour masses with curative intent were applied. An 'inverse T' incision in combination with a collar incision was chosen to approach the excessive supra-diaphragmatic tumour spread. This large-scaled surgical access offered an excellent exposure and allowed complete resection of all cervical and thoracic metastases in both patients. Abdominal tumour masses were resected through a standard median laparotomy. These 2 cases illustrate that complete tumour resection is feasible even in stages of NSGCT with generalized lymphatic spread. Metastasectomy should be offered to NSGCT patients despite the necessity of extended surgical approaches. PMID:24925077

  16. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  17. Measurement of tunnel junction resistance during formation

    SciTech Connect

    Barber, W.C.; Johnson, R.T.; Lee, J.S.; Laws, K.E.; Bland, R.W. )

    1993-11-01

    The authors have measured the characteristics of aluminum tunnel junctions during and immediately after the formation of the junction. This has permitted us to observe changes in the oxide barrier, in vacuum and in air. By observing the barrier resistance during sputtering, they were able to diagnose and correct problems due to plasma discharges which were damaging the junctions. They report preliminary results from junctions passivated with a silicon nitride cap layer.

  18. GAP JUNCTION FUNCTION AND CANCER

    EPA Science Inventory

    Gap Junctions (GJs) provide cell-to-cell communication (GJIC) of essential metabolites and ions. Js allow tissues to average responses, clear waste products, and minimize the effects of xenobiotics by dilution and allowing steady-state catabolism. any chemicals can adversely affe...

  19. The Yolla Bolly junction revisited

    SciTech Connect

    Blake, M.C.; Jayko, A.S. ); Jones, D.L. . Dept. of Geology and Geophysics); Engebretson, D.C. . Dept. of Geology)

    1993-04-01

    West of Red Bluff, California, rocks of the northern Coast Ranges, Klamath-Sierra Nevada, and Great Valley provinces come together at what has been called the Yolla Bolly junction. Mapping of the Red Bluff and Willows 1:100,000 quadrangles has greatly clarified the enigmatic features of this complex area. Terranes of the Klamath Mountains and their Cretaceous sedimentary cover have been thrust northwestward over the Elder Creek terrane and Franciscan rocks, north of the left-lateral Cold Fork fault zone. The Condrey Mountain window (Franciscan Pickett Peak terrane) provides a measure of the magnitude of this thrusting (ca 90 km). South of the Cold Fork fault zone, the Franciscan and Elder Creek terranes were driven southeastward as tectonic wedges onto Sierran-Klamath basement. Timing of this scissor-tectonics is not constrained near the junction, but further north in southwest Oregon, Lower Eocene strata were deformed by overthrusting of the Klamath block whereas Upper Eocene strata overlap the thrust, indicating that thrusting occurred between about 52 and 60 Ma. Plate reconstructions for this time interval indicate the close proximity of the Kula-Farallon-North America triple junction and that old (ca 100 m.y.) Farallon lithosphere was being subducted north of the junction whereas to the south, very young (ca 10 m.y.) Kula plate was presumably obducted onto North America.

  20. Improved Solar-Cell Tunnel Junction

    NASA Technical Reports Server (NTRS)

    Daud, T.; Kachare, A.

    1986-01-01

    Efficiency of multiple-junction silicon solar cells increased by inclusion of p+/n+ tunnel junctions of highly doped GaP between component cells. Relatively low recombination velocity at GaP junction principal reason for recommending this material. Relatively wide band gap also helps increase efficiency by reducing optical losses.

  1. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  2. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  3. Metallic Electrode: Semiconducting Nanotube Junction Model

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryon (Technical Monitor)

    2001-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.

  4. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions.

    PubMed

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter; Kronik, Leeor; Neaton, Jeffrey B; Natelson, Douglas

    2016-02-10

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrational Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C60 junctions. PMID:26814562

  5. Nonlocal supercurrent in mesoscopic multiterminal SNS Josephson junction in the low-temperature limit

    NASA Astrophysics Data System (ADS)

    Golikova, T. E.; Wolf, M. J.; Beckmann, D.; Batov, I. E.; Bobkova, I. V.; Bobkov, A. M.; Ryazanov, V. V.

    2014-03-01

    A nonlocal supercurrent was observed in mesoscopic planar SNS Josephson junctions with additional normal-metal electrodes, where nonequilibrium quasiparticles were injected from a normal-metal electrode into one of the superconducting banks of the Josephson junction in the absence of a net transport current through the junction. We claim that the observed effect is due to a supercurrent counterflow, appearing to compensate for the quasiparticle flow in the SNS weak link. We have measured the responses of SNS junctions for different distances between the quasiparticle injector and the SNS junction at temperatures far below the superconducting transition temperature. The charge-imbalance relaxation length was estimated by using a modified Kadin, Smith, and Skocpol scheme in the case of a planar geometry. The model developed allows us to describe the interplay of charge imbalance and Josephson effects in the nanoscale proximity system in detail.

  6. Dirac supercurrent in an asymmetric graphene-based SG 1/F B/SG 2 junction

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Tang, I.-Ming; Hoonsawat, Rassmidara

    2009-02-01

    The Josephson current in an asymmetric graphene-based SG 1/F B/SG 2 junction where SG 1,2 are graphene layers which have been induced into two superconducting states having order parameters Δ1 and Δ2 ( Δ1 ≠ Δ2) on the left and right sides of a ferromagnetic barrier F B of thickness d, respectively is studied. The presence of the exchange energy Eex and the gate potential VG in the barrier F B are taken into account. For the case of k///0, we find that the Josephson current depends on the exchange energy but is independent of the gate voltage. We find that increasing Δ2 can induce the junction to become a π-junction. This does not occur in the case of similar junctions having conventional superconductors in them. The critical current at zero temperature for Δ2 → ∞ has the form I(Δ2→∞)=2eΔ1/ℏ=2I(Δ2=Δ1). This behavior of the Josephson current in a graphene junction is quite different from that of the supercurrent in conventional asymmetric junctions. For those junctions, it is predicted that I∝Δ1Δ2, leading to IC → ∞ as Δ2 → ∞. A transition from a 0-junction to a π-junction is observed as χex ( χ∼2Ed/ℏv) is increased. In a 0-junction, the spin supercurrents arising from the spin dependent Andreev energy levels do not vanish. This leads to IS = I↑ + I↓ = 0 but with I↑ = - I↓ ≠ 0.

  7. Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yixing; Pratt, William P., Jr.; Birge, Norman O.

    2012-02-01

    Spin-triplet supercurrents in strong ferromagnetic Josephson junctions were reported by several groups in 2010. At the same time, the 0-π current-phase relationship of the spin-triplet supercurrent was predicted to be controllable by the magnetization orientations of different ferromagnetic layers. Our junctions contain a series of ferromagnetic layers consisting of a synthetic antiferromagnet Co/Ru/Co sandwiched between two thin magnetic layers such as PdNi or Ni [1]. When looking along the direction of current flow, one should obtain 0 junctions if the rotation direction of magnetizations is the same from one to the next, and π junctions when the opposite rotation direction is the case. Since our magnetic layers have multiple domains in the virgin state, we should expect 0 and π phases to alternate randomly in different locations in the junctions. The critical current in the virgin state should scale with the square-root of the junction area. After aligning the outer ferromagnetic layers in the same direction with an external field, the current-phase relation should be uniform across the whole junction area and the critical current should be proportional to the junction area. We will present data confirming this expectation for the magnetized state, whereas the situation for the virgin state is presently unclear. [4pt] [1] T.S. Khaire, M.A. Khasawneh, W.P. Pratt Jr and N.O. Birge, Phys. Rev. Lett. 104 137002 (2010).

  8. Molecular series-tunneling junctions.

    PubMed

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β. PMID:25871745

  9. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  10. Gap junctions as electrical synapses.

    PubMed

    Bennett, M V

    1997-06-01

    Gap junctions are the morphological substrate of one class of electrical synapse. The history of the debate on electrical vs. chemical transmission is instructive. One lesson is that Occam's razor sometimes cuts too deep; the nervous system does its operations in a number of different ways and a unitarian approach can lead one astray. Electrical synapses can do many things that chemical synapses can do, and do them just as slowly. More intriguing are the modulatory actions that chemical synapses can have on electrical synapses. Voltage dependence provides an important window on structure function relations of the connexins, even where the dependence may have no physiological role. The new molecular approaches will greatly advance our knowledge of where gap junctions occur and permit experimental manipulation with high specificity. PMID:9278865

  11. Josephson junctions and dark energy

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe; Straumann, Norbert

    2006-08-01

    In a recent paper Beck and Mackey [C. Beck, M.C. Mackey, astro-ph/0603397] argue that the argument we gave in our paper [Ph. Jetzer, N. Straumann, Phys. Lett. B 606 (2005) 77, astro-ph/0411034] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.

  12. Seebeck effect in molecular junctions.

    PubMed

    Zimbovskaya, Natalya A

    2016-05-11

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions. PMID:27073108

  13. Seebeck effect in molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron–phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  14. Thermoelectric efficiency of molecular junctions

    NASA Astrophysics Data System (ADS)

    Perroni, C. A.; Ninno, D.; Cataudella, V.

    2016-09-01

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron–vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  15. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions. PMID:27420149

  16. Modeling of Intrinsic Josephson Junctions in High Temperature Superconductors under External Radiation in the Breakpoint Region

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Rahmonov, I. R.; Plecenik, A.; Streltsova, O. I.; Zuev, M. I.; Ososkov, G. A.

    2016-02-01

    The current-voltage (IV) characteristics of the intrinsic Josephson junctions in high temperature superconductors under external electromagnetic radiation are calculated numerically in the parametric resonance region. We discuss a numerical method for calculation of the Shapiro step width on the amplitude of radiation. In order to accelerate computations we used parallelization by task parameter via Simple Linux Utility for Resource Management (SLURM) arrays and tested it in the case of a single junction. An analysis of the junction transitions between rotating and oscillating states in the branching region of IV-characteristics is presented.

  17. Fabrication and Tunneling Properties of Niobium/lead Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Celaschi, Sergio

    High quality Josephson tunneling junctions have been fabricated by the process of electron beam evaporation of the Nb base electrode. Thermal oxidation of Nb coated and uncoated surfaces was used in order to grow the oxide barrier at room temperature. Lead was used to complete the sandwich-type structure. The tunneling properties were profoundly sensitive to the surface properties of the Nb films. We found markedly improved Josephson tunneling characteristics by depositing much higher residual resistance ratio (>100) films which in this case seemed to be single crystal. One of the main deterrents for the practical use of high quality Nb/Nb:O(,X)/Pb Josephson junctions has been the high value of the specific capacitance of the native oxides which is drastically reduced by using single crystal Nb thin films. Some of the important parameters of the junctions can be modified by coating the Nb surface. We have demonstrated that Zr, Ti, and Al can be employed as oxidized barriers on single-crystal Nb films to produce high quality Josephson junctions which preserve the low values of the dielectric constant.

  18. Logical Gates Implemented by Solitons at the Junctions Between One-Dimensional Lattices

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Adamatzky, Andrew

    2016-06-01

    We study propagation of solitons on one-dimensional lattices of nodes with Morse interaction between the neighboring nodes. In numerical integration, we demonstrate that solitons colliding at junctions of two lattices can implement AND, OR and NOT Boolean logic gates. The gates are determined by the geometry of the junctions and phase difference of the colliding solitons. We evaluate the feasibility of casing gates in the design of NOR gate.

  19. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    Triple junctions are probably the most remarkable features of plate boundaries since their presence constitutes one of the major demonstrations of plate tectonics theory. Divergent (R-R-R) triple junctions (at 120° and T junctions) are particular ones since their stability depends on the exact values of the relative velocities of plate divergence and hence is strongly affected by plate rheology and processes of crustal accretion. The mechanisms of their formation and long-term steadiness are not well understood even though it is commonly accepted, generally based on common sense, that the geometry and stability of triple junctions should be related to the intuitively acceptable geometric considerations that 3-branch configurations should be "stable" over the time on a 3D Earth surface. That said, most plate boundaries are in fact 2D in terms that they involve only two plates, while junctions with 3 and more branches, if even mechanically not excluded, are generally short-lived and hence rarely observed at tectonic scale. Indeed, it has been long-time suggested that triple junctions result from evolution of short-lived quadruple junctions, yet, without providing a consistent mechanical explanation or experimental demonstration of this process, due to the rheological complexity of the lithosphere and that of strain localization and crustal accretion processes. For example, it is supposed that R-R-R junctions form as result of axisymmetric mantle upwellings. However, impingement of buoyant fluid on a non-pre-stressed lithosphere should result in multiple radial cracks, as is well known from previous analog and numerical experiments. In case of uni-directionally pre-stressed lithosphere, it has also shown that linear 2D rift structures should be formed. Therefore, a complete 3D thermos-mechanically consistent approach is needed to understand the processes of formation of multi-branch junctions. With this goal we here reproduce and study the processes of multi

  20. String junction as a baryonic constituent

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Yu. S.; Nefediev, A. V.

    1996-02-01

    We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.

  1. String junctions and holographic interfaces

    SciTech Connect

    Chiodaroli, Marco; Gutperle, Michael; Hung, Ling-Yan; Krym, Darya

    2011-01-15

    In this paper we study half-BPS type IIB supergravity solutions with multiple AdS{sub 3}xS{sup 3}xM{sub 4} asymptotic regions, where M{sub 4} is either T{sup 4} or K{sub 3}. These solutions were first constructed in [M. Chiodaroli, M. Gutperle, and D. Krym, J. High Energy Phys. 02 (2010) 066.] and have geometries given by the warped product of AdS{sub 2}xS{sup 2}xM{sub 4} over {Sigma}, where {Sigma} is a Riemann surface. We show that the holographic boundary has the structure of a star graph, i.e. n half-lines joined at a point. The attractor mechanism and the relation of the solutions to junctions of self-dual strings in six-dimensional supergravity are discussed. The solutions of [M. Chiodaroli, M. Gutperle, and D. Krym, J. High Energy Phys. 02 (2010) 066.] are constructed introducing two meromorphic and two harmonic functions defined on {Sigma}. We focus our analysis on solutions corresponding to junctions of three different conformal field theories and show that the conditions for having a solution charged only under Ramond-Ramond three-form fields reduce to relations involving the positions of the poles and the residues of the relevant harmonic and meromorphic functions. The degeneration limit in which some of the poles collide is analyzed in detail. Finally, we calculate the holographic boundary entropy for a junction of three CFTs and obtain a simple expression in terms of poles and residues.

  2. Role of the septate junction in the regulation of paracellular transepithelial flow.

    PubMed

    Lord, B A; DiBona, D R

    1976-12-01

    A comparison of the distribution of septate junctions in invertebrate epithelia and tight junctions in vertebrate systems suggests that these structures may be functionally analogous. This proposition is supported by the internal design of each junction which constitutes a serial arrangement of structures crossing the intercellular space between cells to effectively provide resistance to the paracellular flow of water and small molecules. We have tested the validity of such an analogy by examining whether the osmotic sensitivity of the septate junctions of planarian epidermis follow the rather striking pattern observed for the junctions of very tight vertebrate epithelia (e.g. toad urinary bladder). It has been found that the septate junctions in this system respond in similar fashion to their vertebrate counterparts, blistering with accumulated fluid when the medium outside the epidermis is made hypertonic with small, water-soluble molecules. We conclude that the two types of junction probably are functionally analogous and that, in each case, this rectified structural response to transepithelial osmotic gradients may be indicative of the role of such structures in the transport function of epithelia. PMID:993276

  3. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions. PMID:19072125

  4. Method for shallow junction formation

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  5. Method for shallow junction formation

    DOEpatents

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  6. An improved junction capacitance model for junction field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Liou, Juin J.; Cirba, Claude R.; Green, Keith

    2006-07-01

    A new junction capacitance model for the four-terminal junction field-effect transistor (JFET) is presented. With a single expression, the model, which is valid for different temperatures and a wide range of bias conditions, describes correctly the JFET junction capacitance behavior and capacitance drop-off phenomenon. The model has been verified using experimental data measured at Texas Instruments.

  7. Bilaterally obstructed ureteropelvic junction of the upper moieties in a complete duplex collecting system.

    PubMed

    Latayan, Michael Jonathan R; Dator, Jose Dante P; Torres, Carlos Ramon N

    2008-02-01

    Maternal ultrasound is a routine examination in prenatal evaluation. The number of fetal abnormalities detected has been increasing, and includes fetal hydronephrosis which is secondary to ureteropelvic junction obstruction in 80% of cases. We report a case of a 1-year-old female infant with hydronephrosis prenatally detected by ultrasound. After close postnatal follow-up and diagnosis, she eventually underwent a definitive reconstructive procedure. This is the first reported case of a bilateral ureteropelvic junction obstruction of the upper moieties of a duplex collecting system. PMID:18631901

  8. The Sinai triple junction revisited

    NASA Astrophysics Data System (ADS)

    Courtillot, Vincent; Armijo, Rolando; Tapponnier, Paul

    1987-09-01

    This paper is a summary of a more detailed analysis of the kinematics of the Sinai triple junction (Courtillot et al., 1987). Accurate kinematic data are lacking along the Red Sea and they can be supplemented by bathymetric, topographic and geological data pertaining to the three arms of the entirely continental Sinai triple junction. Motions across the northern Red Sea and along the Gulf of Elat are an order of magnitude larger than across the Gulf of Suez. The direction of motion there remains a major uncertainty. A possible kinematic model is highlighted, in which right-lateral strike-slip motion and small pull-apart basins occur along the Gulf of Suez, in agreement with recent field observations in Egypt. Early Miocene is marked by major geodynamical changes all along the northern boundaries of the African and Indian plates. We suggest that rifting in the Arabian Sea, Gulf of Aden, Red Sea and Gulf of Suez was initiated at the end of the first phase of continental extrusion of Indochina, when the Tibetan plateau began to rise and spreading in the South China Sea came to a halt.

  9. Electron transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.; Pederson, Mark R.

    2011-12-01

    At present, metal-molecular tunnel junctions are recognized as important active elements in molecular electronics. This gives a strong motivation to explore physical mechanisms controlling electron transport through molecules. In the last two decades, an unceasing progress in both experimental and theoretical studies of molecular conductance has been demonstrated. In the present work we give an overview of theoretical methods used to analyze the transport properties of metal-molecular junctions as well as some relevant experiments and applications. After a brief general description of the electron transport through molecules we introduce a Hamiltonian which can be used to analyze electron-electron, electron-phonon and spin-orbit interactions. Then we turn to description of the commonly used transport theory formalisms including the nonequilibrium Green’s functions based approach and the approach based on the “master” equations. We discuss the most important effects which could be manifested through molecules in electron transport phenomena such as Coulomb, spin and Frank-Condon blockades, Kondo peak in the molecular conductance, negative differential resistance and some others. Bearing in mind that first principles electronic structure calculations are recognized as the indispensable basis of the theory of electron transport through molecules, we briefly discuss the main equations and some relevant applications of the density functional theory which presently is often used to analyze important characteristics of molecules and molecular clusters. Finally, we discuss some kinds of nanoelectronic devices built using molecules and similar systems such as carbon nanotubes, various nanowires and quantum dots.

  10. Magnetoresistance in Boron Carbide junctions

    NASA Astrophysics Data System (ADS)

    Day, Ellen; Sokolov, A.; Baruth, A.; Robertson, B. W.; Adenwalla, S.

    2007-03-01

    The properties of thin insulator layers are crucial to the performance of magnetic tunnel junctions. Commercial requirements are a device with a high tunnel magnetoresistance (TMR) with low cost and high stability. At present the vast majority of barriers are made from amorphous Al2O3 and crystalline MgO. The TMR value depends not only on the spin-dependent electronic structure of the electrodes, but on the metal-insulator interface. Oxide-type barriers may suffer from local vacancies and other type of defects, resulting in oxygen diffusion, making the TMR value unstable with time. We present TMR results obtained on a non-oxide barrier, boron carbide (B10C2) for applications in magnetic tunnel junctions. This low Z inorganic material can be grown by plasma enhanced chemical vapor deposition (PECVD) without pinholes in the ultra thin film regime. PECVD grown boron carbide is an excellent dielectric with resistivities in the range of 10^7 ohm-cm, with a band gap that can be adjusted from 0.7 eV to 1.9 eV by altering the boron to carbon ratio and to band gap values well above 2.7 eV by adding phosphorus. This creates a unique opportunity for experimental study of a broad spectrum of phenomena, related to the dielectric properties of the barrier.

  11. Dermal eosinophilic infiltrate in junctional epidermolysis bullosa.

    PubMed

    Saraiya, Ami; Yang, Catherine S; Kim, Jinah; Bercovitch, Lionel; Robinson-Bostom, Leslie; Telang, Gladys

    2015-08-01

    Junctional epidermolysis bullosa (JEB) is a rare genodermatosis characterized by a split in the lamina lucida usually because of mutations in LAMA3, LAMB3 and LAMC2 resulting in absence or reduction of laminin-332. Rare subtypes of JEB have mutations in COL17A1, ITGB4, ITGA6 and ITGA3 leading to reduction or dysfunction of collagen XVII, integrin α6β4 and integrin α3. The classic finding under light microscopy is a paucicellular, subepidermal split. We describe the unusual presence of an eosinophilic infiltrate in the bullae and subjacent dermis in a neonate with JEB, generalized intermediate (formerly known as non-Herlitz-type JEB), discuss the histologic differential diagnosis for a subepidermal blister in a neonate, review the literature regarding cases of epidermolysis bullosa (EB) presenting with inflammatory infiltrates, and discuss mechanisms to explain these findings. This case highlights that eosinophils can rarely be seen in EB and should not mislead the dermatopathologist into diagnosing an autoimmune blistering disorder. PMID:25950805

  12. Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation

    PubMed Central

    Saleem, Sahar N.; Dobyns, William B.; Barkovich, A. James; Bartsch, Hauke; Dale, Anders M.; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G.; Grijalvo-Perez, Ana Maria

    2012-01-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation. PMID:22822038

  13. Determination of the dissipation in superconducting Josephson junctions

    SciTech Connect

    Mugnai, D. Ranfagni, A.; Cacciari, I.

    2015-02-07

    The results relative to macroscopic quantum tunneling rate, out of the metastable state of Josephson junctions, are examined in view of determining the effect of dissipation. We adopt a simple criterion in accordance to which the effect of dissipation can be evaluated by analyzing the shortening of the semiclassical traversal time of the barrier. In almost all the considered cases, especially those with relatively large capacitance values, the relative time shortening turns out to be about 20% and with a corresponding quality factor Q ≃ 5.5. However, beyond the specific cases here considered, still in the regime of moderate dissipation, the method is applicable also to different situations with different values of the quality factor. The method allows, within the error limits, for a reliable determination of the load resistance R{sub L}, the less accessible quantity in the framework of the resistively and capacitively shunted junction model, provided that the characteristics of the junction (intrinsic capacitance, critical current, and the ratio of the bias current to the critical one) are known with sufficient accuracy.

  14. First-principles study of interface doping in ferroelectric junctions

    PubMed Central

    Wang, Pin-Zhi; Cai, Tian-Yi; Ju, Sheng; Wu, Yin-Zhong

    2016-01-01

    Effect of atomic monolayer insertion on the performance of ferroelectric tunneling junction is investigated in SrRuO3/BaTiO3/SrRuO3 heterostrucutures. Based on first-principles calculations, the atomic displacement, orbital occupancy, and ferroelectric polarization are studied. It is found that the ferroelectricity is enhanced when a (AlO2)− monolayer is inserted between the electrode SRO and the barrier BTO, where the relatively high mobility of doped holes effectively screen ferroelectric polarization. On the other hand, for the case of (LaO)+ inserted layer, the doped electrons resides at the both sides of middle ferroelectric barrier, making the ferroelectricity unfavorable. Our findings provide an alternative avenue to improve the performance of ferroelectric tunneling junctions. PMID:27063704

  15. Surface and implantation effects on p-n junctions

    NASA Technical Reports Server (NTRS)

    Schacham, Samuel E.; Finkman, Eliezer

    1990-01-01

    The contribution of the graded region of implanted p-n junctions is analyzed using an exponential profile. Though previously neglected, it was recently shown that this contribution to the saturation current of HgCdTe diodes is significant. Assuming a dominant Auger recombination, an analytical solution to the continuity equation is obtained. An expression for the current generation by the graded region is presented for both ohmic and reflecting boundary conditions. A revised condition for a wide region is derived. When the region is narrow, the current differs drastically from that of the zero-gradient case. The effects of the junction depth and the substrate and surface concentrations on the current are investigated. It is shown that the reverse current does not saturate.

  16. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    SciTech Connect

    Zhou, Yuchun; Rahman, Samia N.; Hall, David; Lo, Yu-Hwa; Liu, Yu-Hsin; Sham, L. J.

    2015-01-19

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions of the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications.

  17. Robotic surgery for rectosigmoid junction tumor with ovarian metastases

    PubMed Central

    Bedirli, Abdulkadir; Salman, Bulent

    2015-01-01

    Isolated ovarian metastases from colorectal cancer (CRC) are rare disease presenting in approximately 3% of all patients undergoing colorectal resection. Most reports describe an open approach to the disease, but we report a case isolated ovarian metastases from CRC managed completely by robotic technique. A 54-year-old female, with a family history of CRC, was admitted for rectosigmoid junction cancer. Computed tomography scan demonstrated in rectosigmoid tumor and pelvic mass, presumed as teratoma. Robotic surgery discovered a 10-cm encapsulated tumor, attached to the left ovary, with no macroscopic peritoneal involvement. The pathologic diagnosis of the resected pelvic mass, ovarian metastases from CRC. Robotic anterior resection was performed. Operative time was lasted 165 min, considering 25 min for robotic system set up. This is the first report to describe robot-assisted anterior resection and oophorectomy in patient with isolated ovarian metastases from rectosigmoid junction cancer. PMID:25598608

  18. Josephson junctions with tunable current-phase relation

    NASA Astrophysics Data System (ADS)

    Lipman, A.; Mints, R. G.; Kleiner, R.; Koelle, D.; Goldobin, E.

    2014-11-01

    We consider 0-π Josephson junctions consisting of 0 and π regions of lengths L0 and Lπ with critical current densities jc 0 and jc π, respectively. The dependence of the Josephson current on the phase-shift averaged along the junction is derived. We show that these systems exhibit the main features of φ Josephson junctions—the ground state is doubly degenerate and the current-phase relation can be tuned in situ by applying magnetic field. In the limit of short and long 0 and π regions, the current phase relation is derived analytically. In the case of intermediate lengths of 0 and π regions, the current-phase relation is calculated numerically.

  19. Endoscopic surgery on the thoracolumbar junction of the spine

    PubMed Central

    2009-01-01

    The thoracolumbar junction is the section of the truncal spine most often affected by injuries. Acute instability with structural damage to the anterior load bearing spinal column and post-traumatic deformity represent the most frequent indications for surgery. In the past few years, endoscopic techniques for these indications have partially superseded the open procedures, which are associated with high access morbidity. The particular position of this section of the spine, which lies in the border area between the thoracic and abdominal cavities, makes it necessary in most cases to partially detach the diaphragm endoscopically in order to expose the operation site, and this also provides access to the retroperitoneal section of the thoracolumbar junction. A now standardised operating technique and instruments and implants specially developed for the endoscopic procedure, from angle stable plate and screw implants to endoscopically implantable vertebral body replacements, have gradually opened up the entire spectrum of anterior spine surgery to endoscopic techniques. PMID:19693549

  20. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1973-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.

  1. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  2. Living kidney donation following nephrectomy due to pelviureteric junction obstruction.

    PubMed

    Soukup, Benjamin; Vaidya, Anil; Cranston, David

    2015-01-01

    A 49-year-old man presented with a 15-year history of problematic pelviureteric junction obstruction of his left kidney. Surgical management had failed to sufficiently control his symptoms and he was keen to have the kidney removed. Following preoperative discussion, the patient consented to his kidney being used for transplant. Following a total nephrectomy, the kidney was successfully transplanted into a 61-year-old woman, with a cold ischaemic time of 3 h and 22 min. There was primary function in the transplanted kidney and creatinine at 6 weeks was 60. This case highlights the potential for using organs with pelviureteric junction obstruction for living donor transplant and thereby expanding the donor pool. PMID:26002670

  3. Inhibiting Klein Tunneling in a Graphene p-n Junction without an External Magnetic Field.

    PubMed

    Oh, Hyungju; Coh, Sinisa; Son, Young-Woo; Cohen, Marvin L

    2016-07-01

    We study by first-principles calculations a densely packed island of organic molecules (F_{4}TCNQ) adsorbed on graphene. We find that with electron doping the island naturally forms a p-n junction in the graphene sheet. For example, a doping level of ∼3×10^{13}  electrons per cm^{2} results in a p-n junction with an 800 meV electrostatic potential barrier. Unlike in a conventional p-n junction in graphene, in the case of the junction formed by an adsorbed organic molecular island we expect that the Klein tunneling is inhibited, even without an applied external magnetic field. Here Klein tunneling is inhibited by the ferromagnetic order that spontaneously occurs in the molecular island upon doping. We estimate that the magnetic barrier in the graphene sheet is around 10 mT. PMID:27419583

  4. Edge mixing dynamics in graphene p-n junctions in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-09-01

    Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p-n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p-n junction.

  5. Edge mixing dynamics in graphene p–n junctions in the quantum Hall regime

    PubMed Central

    Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-01-01

    Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p–n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p–n junction. PMID:26337445

  6. Inhibiting Klein Tunneling in a Graphene p -n Junction without an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Oh, Hyungju; Coh, Sinisa; Son, Young-Woo; Cohen, Marvin L.

    2016-07-01

    We study by first-principles calculations a densely packed island of organic molecules (F4TCNQ ) adsorbed on graphene. We find that with electron doping the island naturally forms a p -n junction in the graphene sheet. For example, a doping level of ˜3 ×1013 electrons per cm2 results in a p -n junction with an 800 meV electrostatic potential barrier. Unlike in a conventional p -n junction in graphene, in the case of the junction formed by an adsorbed organic molecular island we expect that the Klein tunneling is inhibited, even without an applied external magnetic field. Here Klein tunneling is inhibited by the ferromagnetic order that spontaneously occurs in the molecular island upon doping. We estimate that the magnetic barrier in the graphene sheet is around 10 mT.

  7. Solar Cells With Multiple Small Junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1985-01-01

    Concept for improving efficiency of photovoltaic solar cells based on decreasing p/n junction area in relation to total surface area of cell. Because of reduced junction area, surface leakage drops and saturation current density decreases. Surface passivation helps to ensure short-circuit current remains at high value and response of cells to blue light increases.

  8. The tight junction: a multifunctional complex.

    PubMed

    Schneeberger, Eveline E; Lynch, Robert D

    2004-06-01

    Multicellular organisms are separated from the external environment by a layer of epithelial cells whose integrity is maintained by intercellular junctional complexes composed of tight junctions, adherens junctions, and desmosomes, whereas gap junctions provide for intercellular communication. The aim of this review is to present an updated overview of recent developments in the area of tight junction biology. In a relatively short time, our knowledge of the tight junction has evolved from a relatively simple view of it being a permeability barrier in the paracellular space and a fence in the plane of the plasma membrane to one of it acting as a multicomponent, multifunctional complex that is involved in regulating numerous and diverse cell functions. A group of integral membrane proteins-occludin, claudins, and junction adhesion molecules-interact with an increasingly complex array of tight junction plaque proteins not only to regulate paracellular solute and water flux but also to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, and cell polarity. PMID:15151915

  9. Bilateral multicystic renal dysplasia with potter sequence. A case with penile agenesis.

    PubMed

    Dursun, Ahmet; Ermis, Bahri; Numanoglu, Varim; Bahadir, Burak; Seckiner, Ilker

    2006-11-01

    Hereditary renal adysplasia (HRA) is a rare autosomal dominant condition. Patients have several other anomalies including Potter facies, thoracic, cardiac, and extremity deformities. The case present dysmorphic facial features such as hypertelorism, prominent epicanthic folds, a flat and broad nose, choanal stenosis, low-set ears, and a receding chin. He had femoral bowing, hypoplastic right tibia and agenesis of the right foot. He had rich and thick skin. He had also a dysplastic empty scrotum, penile agenesis, and anal atresia. The autopsy revealed pulmonary hypoplasia, ventricular septal defect, bilateral multicystic renal dysplasia, agenesis of both ureter and bladder, intraabdominal testicles, and a single umbilical artery. The penile agenesis was first reported, and including the consanguinity in the parents might further delineate the bilateral multicystic HRA. Vater/caudal regression anomalies, Mullerian duct/aplasia, unilateral renal agenesis, and cervicothoracic somite anomalies association, and Coloboma, heart anomaly, choanal atresia, retardation, genital and ear anomalies syndrome has been considered in differential diagnosis. PMID:17106555

  10. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  11. Design of immobile nucleic acid junctions.

    PubMed Central

    Seeman, N C; Kallenbach, N R

    1983-01-01

    Nucleic acids that interact to generate structures in which three or more double helices emanate from a single point are said to form a junction. Such structures arise naturally as intermediates in DNA replication and recombination. It has been proposed that stable junctions can be created by synthesizing sets of oligonucleotides of defined sequence that can associate by maximizing Watson-Crick complementarity (Seeman N. C., 1981, Biomolecular Stereodynamics. Adenine Press, New York. 1: 269-278; Seeman, N. C., 1982, J. Theor. Biol. 99:237-247.) To make it possible to design molecules that will form junctions of specific architecture, we present here an efficient algorithm for generating nucleic acid sequences that optimize two fundamental properties: fidelity and stability. Fidelity refers to the relative probability of forming the junction complex relative to all alternative paired structures. Calculations are described that permit approximate prediction of the melting curves for junction complexes. PMID:6197102

  12. Ureteropelvic junction obstruction and renal cell carcinoma in a patient with solitary functioning kidney

    PubMed Central

    Jeong, Young Beom; Ko, Oh Seok; Park, Hyung Sub; Cha, Jai Seong; Park, Seung Chol; Kim, Hyung Jin; Park, Jong Kwan; Shin, Yu Seob

    2016-01-01

    We present a case of ureteropelvic junction obstruction (UPJO) and renal cell carcinoma (RCC) in a solitary functioning kidney (SFK), managed by robot-assisted dismembered pyeloplasty with partial nephrectomy in a single stage. To our best knowledge, we report the first case of UPJO with RCC in a congenital SFK. PMID:27330578

  13. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    SciTech Connect

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.

  14. Electric field breakdown in single molecule junctions.

    PubMed

    Li, Haixing; Su, Timothy A; Zhang, Vivian; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2015-04-22

    Here we study the stability and rupture of molecular junctions under high voltage bias at the single molecule/single bond level using the scanning tunneling microscope-based break-junction technique. We synthesize carbon-, silicon-, and germanium-based molecular wires terminated by aurophilic linker groups and study how the molecular backbone and linker group affect the probability of voltage-induced junction rupture. First, we find that junctions formed with covalent S-Au bonds are robust under high voltage and their rupture does not demonstrate bias dependence within our bias range. In contrast, junctions formed through donor-acceptor bonds rupture more frequently, and their rupture probability demonstrates a strong bias dependence. Moreover, we find that the junction rupture probability increases significantly above ∼1 V in junctions formed from methylthiol-terminated disilanes and digermanes, indicating a voltage-induced rupture of individual Si-Si and Ge-Ge bonds. Finally, we compare the rupture probabilities of the thiol-terminated silane derivatives containing Si-Si, Si-C, and Si-O bonds and find that Si-C backbones have higher probabilities of sustaining the highest voltage. These results establish a new method for studying electric field breakdown phenomena at the single molecule level. PMID:25675085

  15. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions. PMID:25282046

  16. Coherently driven, ultrafast electron-phonon dynamics in transport junctions

    SciTech Connect

    Szekely, Joshua E.; Seideman, Tamar

    2014-07-28

    Although the vast majority of studies of transport via molecular-scale heterojunctions have been conducted in the (static) energy domain, experiments are currently beginning to apply time domain approaches to the nanoscale transport problem, combining spatial with temporal resolution. It is thus an opportune time for theory to develop models to explore both new phenomena in, and new potential applications of, time-domain, coherently driven molecular electronics. In this work, we study the interaction of a molecular phonon with an electronic wavepacket transmitted via a conductance junction within a time-domain model that treats the electron and phonon on equal footing and spans the weak to strong electron-phonon coupling strengths. We explore interference between two coherent energy pathways in the electronic subspace, thus complementing previous studies of coherent phenomena in conduction junctions, where the stationary framework was used to study interference between spatial pathways. Our model provides new insights into phase decoherence and population relaxation within the electronic subspace, which have been conventionally treated by density matrix approaches that often rely on phenomenological parameters. Although the specific case of a transport junction is explored, our results are general, applying also to other instances of coupled electron-phonon systems.

  17. Invariant submanifold for series arrays of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Marvel, Seth A.; Strogatz, Steven H.

    2009-03-01

    We study the nonlinear dynamics of series arrays of Josephson junctions in the large-N limit, where N is the number of junctions in the array. The junctions are assumed to be identical, overdamped, driven by a constant bias current, and globally coupled through a common load. Previous simulations of such arrays revealed that their dynamics are remarkably simple, hinting at the presence of some hidden symmetry or other structure. These observations were later explained by the discovery of N -3 constants of motion, the choice of which confines the resulting flow in phase space to a low-dimensional invariant manifold. Here we show that the dimensionality can be reduced further by restricting attention to a special family of states recently identified by Ott and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an invariant submanifold of dimension one less than that found earlier. We derive and analyze the flow on this submanifold for two special cases: an array with purely resistive loading and another with resistive-inductive-capacitive loading. Our results recover (and in some instances improve) earlier findings based on linearization arguments.

  18. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  19. The myoendothelial junction: breaking through the matrix?

    PubMed Central

    Heberlein, Katherine; Straub, Adam; Isakson, Brant E

    2009-01-01

    Within the vasculature, specialized cellular extensions from endothelium (and sometimes smooth muscle) protrude through the extracellular matrix where they interact with the opposing cell type. These structures, termed myoendothelial junctions, have been cited as a possible key element in the control of several vascular physiologies and pathologies. This review will discuss observations that have led to a focus on the myoendothelial junction as a cellular integration point in the vasculature for both homeostatic and pathological conditions and as a possible independent signaling entity. We will also highlight the need for novel approaches to studying the myoendothelial junction in order to comprehend the cellular biology associated with this structure. PMID:19330678

  20. Temperature dependence of thermopower in molecular junctions

    NASA Astrophysics Data System (ADS)

    Kim, Youngsang; Lenert, Andrej; Meyhofer, Edgar; Reddy, Pramod

    2016-07-01

    The thermoelectric properties of molecular junctions are of considerable interest due to their promise for efficient energy conversion. While the dependence of thermoelectric properties of junctions on molecular structure has been recently studied, their temperature dependence remains unexplored. Using a custom built variable temperature scanning tunneling microscope, we measured the thermopower and electrical conductance of individual benzenedithiol junctions over a range of temperatures (100 K-300 K). We find that while the electrical conductance is independent of temperature, the thermopower increases linearly with temperature, confirming the predictions of the Landauer theory.

  1. Palladium electrodes for molecular tunnel junctions.

    PubMed

    Chang, Shuai; Sen, Suman; Zhang, Peiming; Gyarfas, Brett; Ashcroft, Brian; Lefkowitz, Steven; Peng, Hongbo; Lindsay, Stuart

    2012-10-26

    Gold has been the metal of choice for research on molecular tunneling junctions, but it is incompatible with complementary metal-oxide-semiconductor fabrication because it forms deep level traps in silicon. Palladium electrodes do not contaminate silicon, and also give higher tunnel current signals in the molecular tunnel junctions that we have studied. The result is cleaner signals in a recognition-tunneling junction that recognizes the four natural DNA bases as well as 5-methyl cytosine, with no spurious background signals. More than 75% of all the recorded signal peaks indicate the base correctly. PMID:23037952

  2. Plasticity of single-atom Pb junctions

    NASA Astrophysics Data System (ADS)

    Müller, M.; Salgado, C.; Néel, N.; Palacios, J. J.; Kröger, J.

    2016-06-01

    A low-temperature scanning tunneling microscope was used to fabricate atomic contacts on Pb(111). Conductance characteristics of the junctions were simultaneously recorded with forming and subsequent breaking of the contacts. A pronounced hysteresis effect in conductance traces was observed from junctions comprising the clean Pb(111) surface. The hysteretic behavior was less profound in contacts to single Pb atoms adsorbed to Pb(111). Density-functional calculations reproduced the experimental results by performing a full ab initio modeling of plastic junction deformations. A comprehensive description of the experimental findings was achieved by considering different atomic tip apex geometries.

  3. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  4. Differences in expression of junctional adhesion molecule-A and beta-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology.

    PubMed

    Padden, Maureen; Leech, Susie; Craig, Beverly; Kirk, John; Brankin, Brenda; McQuaid, Stephen

    2007-02-01

    Previously we have employed antibodies to the tight junction (TJ)-associated proteins ZO-1 and occludin to describe endothelial tight junction abnormalities, in lesional and normal appearing white matter, in primary and secondary progressive multiple sclerosis (MS). This work is extended here by use of antibodies to the independent TJ-specific proteins and junctional adhesion molecule A & B (JAM-A, JAM-B). We have also assessed the expression in MS of beta-catenin, a protein specific to the TJ-associated adherens junction. Immunocytochemistry and semiquantitative confocal microscopy for JAM-A and beta-catenin was performed on snap-frozen sections from MS cases (n=11) and controls (n=6). Data on 1,443 blood vessels was acquired from active lesions (n=13), inactive lesions (n=13), NAWM (n=20) and control white matter (n=13). In MS abnormal JAM-A expression was found in active (46%) and inactive lesions (21%), comparable to previous data using ZO-1. However, a lower level of TJ abnormality was found in MS NAWM using JAM-A (3%) compared to ZO-1 (13%). JAM-B was strongly expressed on a small number of large blood vessels in control and MS tissues but at too low a level for quantitative analysis. By comparison with the high levels of abnormality observed with the TJ proteins, the adherens junction protein beta-catenin was normally expressed in all MS and control tissue categories. These results confirm, by use of the independent marker JAM-A, that TJ abnormalities are most frequent in active white matter lesions. Altered expression of JAM-A, in addition to affecting junctional tightness may also both reflect and affect leukocyte trafficking, with implications for immune status within the diseased CNS. Conversely, the adherens junction component of the TJ, as indicated by beta-catenin expression is normally expressed in all MS and control tissue categories. PMID:17024496

  5. Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture

    SciTech Connect

    Hybertsen M. S.

    2013-07-08

    Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond the specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.

  6. Effects of order parameter self-consistency in a s±-s junction

    NASA Astrophysics Data System (ADS)

    Rodríguez-Mota, Rosa; Berg, Erez; Pereg-Barnea, T.

    2016-06-01

    The properties of Josephson tunneling between a single-band s -wave superconductor and a two-band s± superconductor are studied, in relation to recent experiments involving iron-based superconductors. We study both a single junction and a loop consisting of two junctions. In both cases, the relative phase between the order parameters of the two superconductors is tuned and the energy of the system is calculated. In a single junction, we find four types of behaviors characterized by the location of minima in the energy/phase relations. These phases include a newly found double minimum junction, which appears only when the order parameters are treated self-consistently. We analyze the loop geometry setup in light of our results for a single junction, where the phase difference in the junctions is controlled by a threaded flux. We find four types of energy/flux relations. These include states for which the energy is minimized when the threaded flux is an integer or half-integer number of flux quanta, a time reversal broken state and a metastable state.

  7. Effective medium theory of the space-charge region electrostatics of arrays of nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Gurugubelli, Vijaya Kumar; Karmalkar, Shreepad

    2016-01-01

    We develop an Effective Medium Theory for the electrostatics of the Space-Charge Region (SCR) of Schottky and p-n junctions in arrays of nanofilms (NFs), nanowires (NWs), and nanotubes (NTs) in a dielectric ambient. The theory captures the effects of electric fields in both the semiconductor, i.e., NF/NW/NT, and the dielectric media of the array. It shows that the depletion width and the screening length characterizing the SCR tail in the array correspond to those in a bulk junction with an effective semiconductor medium, whose permittivity and doping are their weighted averages over the cross-sectional areas of the semiconductor and dielectric; the shapes of the cross-sections are immaterial. Further, the reverse bias 1 /C2 -V behavior of junctions in NF/NW/NT arrays is linear, as in bulk junctions, and is useful to extract from measurements the built-in potential, effective doping including the semiconductor-dielectric interface charge, and NF/NW/NT length. The theory is validated with numerical simulations, is useful for the experimentalist, and yields simple formulas for nano-device design which predict the following. In the limiting case of a single sheet-like NF, the junction depletion width variation with potential drop is linear rather than square-root (as in a bulk junction). In arrays of symmetric silicon p-n junctions in oxide dielectric where NF/NW thickness and separation are 5% and 100% of the bulk depletion width, respectively, the junction depletion width and the screening length are scaled up from their bulk values by the same factor of ˜2 for NF and ˜10 for NW array.

  8. A Model for the Behavior of Magnetic Tunnel Junctions

    SciTech Connect

    Bryan John Baker

    2003-08-05

    of states function, and has developed an exact analytic solution for the case of an electron band of finite width. The approach taken in this thesis easily allows extension to cases where the band structure is different on either side of the barrier (known as heterojunctions) which are of greater interest in real magnetic tunnel junction devices rather than the simple, identical band structure devices.

  9. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  10. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  11. Ferromagnetic planar Josephson junction with transparent interfaces: a φ junction proposal.

    PubMed

    Heim, D M; Pugach, N G; Kupriyanov, M Yu; Goldobin, E; Koelle, D; Kleiner, R

    2013-05-29

    We calculate the current-phase relation of a planar Josephson junction with a ferromagnetic weak link located on top of a thin normal metal film. Following experimental observations we assume transparent superconductor-ferromagnet interfaces. This provides the best interlayer coupling and a low suppression of the superconducting correlations penetrating from the superconducting electrodes into the ferromagnetic layer. We show that this Josephson junction is a promising candidate for experimental φ junction realization. PMID:23636963

  12. Gravitational wave bursts from cosmic superstrings with Y-junctions

    SciTech Connect

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2009-12-15

    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.

  13. Molecular junctions: Single-molecule contacts exposed

    NASA Astrophysics Data System (ADS)

    Nichols, Richard J.; Higgins, Simon J.

    2015-05-01

    Using a scanning tunnelling microscopy-based method it is now possible to get an atomistic-level description of the most probable binding and contact configuration for single-molecule electrical junctions.

  14. Computing Scattering Characteristics Of Waveguide Junctions

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Manshadi, Farzin

    1994-01-01

    Rectangular WaveGuide Junction SCATtering RWGSCAT computer program solves scattering properties of waveguide device. Modeled as assembly of rectangular waveguides of different cross sections. RWGSCAT written in FORTRAN 77.

  15. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  16. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  17. Current trends in salivary gland tight junctions.

    PubMed

    Baker, Olga J

    2016-01-01

    Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  18. Local Frame Junction Trees in SLAM

    NASA Astrophysics Data System (ADS)

    Kuehnel, Frank O.

    2005-11-01

    Junction trees (JT) is a general purpose tool for exact inference on graphical models. Many of the existing algorithms for building junction trees require a fixed static graphical model. The construction process is not unique, finding the one with the best computational structure (smallest clique size) is also a hard problem. For large scale inference problems, such as Geo-referencing using triangular geodetic networks or equivalent, the simultaneous localization and mapping (SLAM) problem in robotics pose some challenges to junction tree applications. Incremental junction tree techniques for dynamic graphical models prescribe heuristic methods for growing the tree structure, and are applicable to large scale graphical models. Of concern are the proliferative widening of the tree, which makes message passing expensive. In the context of SLAM we present a new apporach that exploits the local frame dependence of novel observation variables.

  19. Superconducting switch made of graphene nanoribbon junctions

    NASA Astrophysics Data System (ADS)

    Liang, Qifeng; Dong, Jinming

    2008-09-01

    The transmission of superconductor-graphene nanoribbon-superconductor junctions (SGS) has been studied by the non-equilibrium Green's function method. It is found that the on-site potential U in the center zigzag graphene nanoribbon (ZGNR) of the SGS junction plays an important role in the magnitude of the supercurrent Ic. As the effective Fermi energy μeff (μeff = μF-U) goes from negative to positive, the SGS junction would suddenly transform from an 'OFF' state to an 'ON' state. And, as μeff increases further, the Ic will continue to increase. This switching behavior of the SGS junction shares the same origin with the zigzag GNR valley-isospin valve (Rycerz et al 2007 Nat. Phys. 3 172). Besides the valley-isospin, the density of states will also have an effect on the suppression of Ic.

  20. Junction Plasmon-Induced Molecular Reorientation

    SciTech Connect

    El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.

    2013-10-17

    Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4’-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

  1. Spectroscopy Measurements of Magnesium Diboride Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Mlack, J. T.; Lambert, J. G.; Carabello, S. A.; Thrailkill, Z. E.; Galwaduge, P. T.; Ramos, R. C.

    2010-03-01

    MgB2 has the highest Tc of the conventional superconductors at 39K and exhibits two superconducting energy bands. This material is also inexpensive to produce and has been utilized in new designs for MRI, RF cavities, and Josephson junctions. We report results of recent spectroscopy and transport measurements of Josephson junctions made of MgB2 obtained from our collaborators. We investigate its transport characteristics at sub-kelvin temperatures as well as its responses to resonant microwave activation.

  2. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  3. Quantum Coherence in a Superfluid Josephson Junction

    SciTech Connect

    Narayana, Supradeep; Sato, Yuki

    2011-02-04

    We report a new kind of experiment in which we take an array of nanoscale apertures that form a superfluid {sup 4}He Josephson junction and apply quantum phase gradients directly along the array. We observe collective coherent behaviors from aperture elements, leading to quantum interference. Connections to superconducting and Bose-Einstein condensate Josephson junctions as well as phase coherence among the superfluid aperture array are discussed.

  4. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  5. Supercurrent switch in graphene pi junctions.

    PubMed

    Linder, Jacob; Yokoyama, Takehito; Huertas-Hernando, Daniel; Sudbø, Asle

    2008-05-01

    We study the supercurrent in a superconductor/ferromagnet/superconductor graphene junction. In contrast to its metallic counterpart, the oscillating critical current in our setup decays only weakly upon increasing the exchange field and junction width. We find an unusually large residual value of the supercurrent at the oscillatory cusps due to a strong deviation from a sinusoidal current-phase relationship. Our findings suggest a very efficient device for dissipationless supercurrent switching. PMID:18518411

  6. Supercurrent Switch in Graphene π Junctions

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Yokoyama, Takehito; Huertas-Hernando, Daniel; Sudbø, Asle

    2008-05-01

    We study the supercurrent in a superconductor/ferromagnet/superconductor graphene junction. In contrast to its metallic counterpart, the oscillating critical current in our setup decays only weakly upon increasing the exchange field and junction width. We find an unusually large residual value of the supercurrent at the oscillatory cusps due to a strong deviation from a sinusoidal current-phase relationship. Our findings suggest a very efficient device for dissipationless supercurrent switching.

  7. Shalbatana/Simud Vallis Junction

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The sinuous channels and streamlined islands at the junction of Shalbatana and Simud Vallis present an erosional history of the catastrophic floods that scoured the Martian surface hundreds of millions of years ago.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 16, Longitude 317.4 East (42.6 West). 19 meter/pixel resolution.

  8. Black diamonds at brane junctions

    NASA Astrophysics Data System (ADS)

    Chamblin, Andrew; Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-08-01

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron.

  9. Black diamonds at brane junctions

    SciTech Connect

    Chamblin, Andrew; Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Department of Physics, University of Wales Swansea, Swansea, SA2 8PP,

    2000-08-15

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron. (c) 2000 The American Physical Society.

  10. Long Josepshon Junction in a Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Tornes, Ivan

    2005-03-01

    We present a model for an underdamped long Josephson junction coupled to a single-mode electromagnetic cavity, and carry out numerical calculations using this model in various regimes. The coupling may occur through either the electric or the magnetic field of the cavity mode. When a current is injected into the junction, we find that the time-averaged voltage exhibits self-induced resonant steps due to coupling between the current in the junction and the electric field of the cavity mode. These steps are similar to those observed and calculated in small Josephson junctions. When a soliton is present in the junction (corresponding to a quantum of magnetic flux parallel to the junction plates), the SIRS's disappear if the electric field in the cavity is spatially uniform. If the cavity mode has a spatially varying electric field, there is a strong coupling between the soliton and the cavity mode. This coupling causes the soliton to become phase-locked to the cavity mode, and produces step-like anomalies on the soliton branch of the IV characteristics. If the coupling is strong enough, the frequency of the cavity mode is greatly red-shifted from its uncoupled value. We present simple geometrical arguments and a simple analytical model which account for this behavior. This work was supported by NSF grant DMR04-13395.

  11. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise. PMID:23134759

  12. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  13. Isolated Splenic Metastases of Her2+++ Gastroesophageal Junction Adenocarcinoma

    PubMed Central

    Sigrand, Julie; Bazin, Camille; Ewald, Jacques; Dermeche, Slimane; Ries, Pauline; Poizat, Flora; Guiramand, Jerome; Raoul, Jean-Luc

    2016-01-01

    Isolated metastases from gastric adenocarcinoma to the spleen are very infrequent. Usually, there are multiple metastases from gastric cancer, and isolated splenic metastases are very rare [Lam and Tang: Arch Pathol Lab Med 2000;124:526–530] because of certain anatomical and physiological characteristics (e.g., angulation between the splenic artery and celiac trunk, paucity of afferent lymph flow toward the spleen, contractility of the spleen and major immune content). Here, we report 2 cases of isolated splenic metastases from an adenocarcinoma of the gastroesophageal junction, both with long-term survival outcome and overexpression of Her2. PMID:27065846

  14. Isolated Splenic Metastases of Her2+++ Gastroesophageal Junction Adenocarcinoma.

    PubMed

    Sigrand, Julie; Bazin, Camille; Ewald, Jacques; Dermeche, Slimane; Ries, Pauline; Poizat, Flora; Guiramand, Jerome; Raoul, Jean-Luc

    2016-01-01

    Isolated metastases from gastric adenocarcinoma to the spleen are very infrequent. Usually, there are multiple metastases from gastric cancer, and isolated splenic metastases are very rare [Lam and Tang: Arch Pathol Lab Med 2000;124:526-530] because of certain anatomical and physiological characteristics (e.g., angulation between the splenic artery and celiac trunk, paucity of afferent lymph flow toward the spleen, contractility of the spleen and major immune content). Here, we report 2 cases of isolated splenic metastases from an adenocarcinoma of the gastroesophageal junction, both with long-term survival outcome and overexpression of Her2. PMID:27065846

  15. Current-induced phonon renormalization in molecular junctions

    NASA Astrophysics Data System (ADS)

    Bai, Meilin; Cucinotta, Clotilde S.; Jiang, Zhuoling; Wang, Hao; Wang, Yongfeng; Rungger, Ivan; Sanvito, Stefano; Hou, Shimin

    2016-07-01

    We explain how the electrical current flow in a molecular junction can modify the vibrational spectrum of the molecule by renormalizing its normal modes of oscillations. This is demonstrated with first-principles self-consistent transport theory, where the current-induced forces are evaluated from the expectation value of the ionic momentum operator. We explore here the case of H2 sandwiched between two Au electrodes and show that the current produces stiffening of the transverse translational and rotational modes and softening of the stretching modes along the current direction. Such behavior is understood in terms of charge redistribution, potential drop, and elasticity changes as a function of the current.

  16. Spectrum of Lesions Affecting the Renal Pelvis and Pelviureteric Junction: A 13-Year Retrospective Analysis

    PubMed Central

    Kini, Hema; Suresh, Pooja Kundapur; Guni, Laxman Prabhu Gurupur; Bhat, Shaila; Kini, Jyoti Ramanath

    2016-01-01

    Introduction Both, the renal pelvis and the ureter, are affected by developmental, reactive and neoplastic disorders, though rare in incidence. Aim This series of cases were analysed to study the clinicopathological characteristics of the common and comparatively rare lesions involving the renal pelvis and pelviureteric junction. Materials and Methods A retrospective collection of 476 nephrectomies and pelviureteric junction resections, received over a period of 13 years from 2001 to 2013 was done. The patients’ clinical details were obtained and the histopathological findings reviewed. The lesions were classified into non-neoplastic and neoplastic categories. Results Primary involvement of the renal pelvis and pelviureteric junction was seen in 105 of 476 specimens. The mean age was 54.5 years with a male to female ratio of 2.2:1. The non-neoplastic lesions accounted for 76.2% of cases with a majority being pelviureteric junction obstruction due to inflammation induced fibromuscular hypertrophy (68.6%) causing hydronephrosis. Urothelial carcinomas were encountered in 20% of the cases. A majority of the urothelial carcinomas were infiltrative (81%) and high grade (71%) tumours. Conclusion Renal pelvis, a conduit to propel urine, can be the site for numerous disorders. Non-neoplastic lesions were more common than neoplasms. Pelviureteric junction obstruction due to inflammation induced fibromuscular hypertrophy was the commonest lesion in our study. In the neoplastic category, urothelial carcinoma was most common. However, rare lesions such as hamartomatous fibroepithelial polyp, Von Brunn’s nests, flat urothelial hyperplasia and intramuscular haemangioma of upper ureter at the pelviureteric junction were encountered along with occasional cases of tuberculosis and squamous cell carcinomas. PMID:27042468

  17. A two isocenter IMRT technique with a controlled junction dose for long volume targets

    NASA Astrophysics Data System (ADS)

    Zeng, G. G.; Heaton, R. K.; Catton, C. N.; Chung, P. W.; O'Sullivan, B.; Lau, M.; Parent, A.; Jaffray, D. A.

    2007-07-01

    Most IMRT techniques have been designed to treat targets smaller than the field size of conventional linac accelerators. In order to overcome the field size restrictions in applying IMRT, we developed a two isocenter IMRT technique to treat long volume targets. The technique exploits an extended dose gradient throughout a junction region of 4-6 cm to minimize the impact of field match errors on a junction dose and manipulates the inverse planning and IMRT segments to fill in the dose gradient and achieve dose uniformity. Techniques for abutting both conventional fields with IMRT ('Static + IMRT') and IMRT fields ('IMRT + IMRT') using two separate isocenters have been developed. Five long volume sarcoma cases have been planned in Pinnacle (Philips, Madison, USA) using Elekta Synergy and Varian 2100EX linacs; two of the cases were clinically treated with this technique. Advantages were demonstrated with well-controlled junction target uniformity and tolerance to setup uncertainties. The junction target dose heterogeneity was controlled at a level of ±5% for 3 mm setup errors at the field edges, the junction target dose changed less than 5% and the dose sparing to organs at risk (OARs) was maintained. Film measurements confirmed the treatment planning results.

  18. The junctional complex in the intestine of Sagitta setosa (Chaetognatha): the paired septate junction.

    PubMed

    Duvert, M; Gros, D; Salat, C

    1980-04-01

    The junctional complex of the intestine of Sagitta setosa has been studied in tissues stained with uranyl acetate or after lanthanum impregnation, and by freeze-cleavage. All types of junctions have been characterized in both perpendicular and tangential planes. From the apex to the base of the cell the following junctions occur in this order: a zonula adhaerens; a septate junction where the septa occur in pairs; a pleated sheet septate junction; and numerous gap junctions of the A-type. From the upper part of the cells inwards to the septate junction, the membranes follow a relatively straight path. In the lower part of the cells the membranes are deeply interdigitating. At the intersection between 3 cells a very different junction is to be observed where small units, periodically disposed, bind the membranes of the 3 adjoining cells. Each unit is composed of 3 short segments which bind the cell membranes to a central ring 16.6 +/- 2.3 nm in outer diameter. The paired septate junction constitutes a new type. Its main features are that the septa are paired and occur in 2 formations, one the 'loose formation', with elements between the septa of each pair, and the other, a 'tight formation'. After lanthanum impregnation, the thickness of each septum is seen to be about 3 nm and the undulation period 12.6 +/- 1.6 nm. On freeze-fractures 10-nm particles are found on crests on the PF face and in furrows on the EF face. The possible significance of this type of junction is discussed. The junctional complex described is analogous to those found in various invertebrate epithelia. PMID:6105159

  19. [Panmedullary ependymoma with complete excision in several stages. Apropos of a case].

    PubMed

    Fuentes, J M; Benezech, J; Abounader, M; Lamur, M; Aubert, D; Marty, M

    1986-01-01

    Treatment of a panmedullary ependymoma involved a three-stage operation with total excision under microscopic control and the use of the Cavitron. The patient, a 22 year old woman, presented with a three-year history, with clinical onset of staged spinal pain and cervicobrachial neuralgia, of spasmodic paraparesis with sensory and sphincter disturbances. The extent of the lesion from C3 to L2 was determined from data from conventional myelography with Iopamiron, a CT scan with intrathecal contrast and nuclear magnetic resonance imaging of sagittal and frontal sections. The tumor, a grade I ependymoma, was treated by three-stage laminectomies (L2-T12, T12-T3, T3-C3), total excision being obtained by ultrasound fragmentation (Cavitron). Gross pathology showed a heterogeneous appearance with two cysts, one capping the tumor from the bulbospinal junction to C3, the other attached to the medullary cone. Hemorrhagic cavities were noted at cervicothoracic region and multiple microcysts in the dorsal expansion. The postoperative course was uneventful with recovery of walking wearing a bivalve acrylic corset, the most disturbing functional complication being the posterior cord syndrome responsible for an ataxia. PMID:3822026

  20. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support. PMID:21694407

  1. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    ERIC Educational Resources Information Center

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  2. Junctional Adhesion Molecule A Promotes Epithelial Tight Junction Assembly to Augment Lung Barrier Function

    PubMed Central

    Mitchell, Leslie A.; Ward, Christina; Kwon, Mike; Mitchell, Patrick O.; Quintero, David A.; Nusrat, Asma; Parkos, Charles A.; Koval, Michael

    2016-01-01

    Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased β1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A−/− mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A−/− mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton. PMID:25438062

  3. Esophagogastric junction distensibility in hiatus hernia.

    PubMed

    Lottrup, C; McMahon, B P; Ejstrud, P; Ostapiuk, M A; Funch-Jensen, P; Drewes, A M

    2016-07-01

    Hiatus hernia is known to be an important risk factor for developing gastroesophageal reflux disease. We aimed to use the endoscopic functional lumen imaging probe (EndoFLIP) to evaluate the functional properties of the esophagogastric junction. EndoFLIP assessments were made in 30 patients with hiatus hernia and Barrett's esophagus, and in 14 healthy controls. The EndoFLIP was placed straddling the esophagogastric junction and the bag distended stepwise to 50 mL. Cross-sectional areas of the bag and intra-bag pressures were recorded continuously. Measurements were made in the separate sphincter components and hiatus hernia cavity. EndoFLIP measured functional aspects such as sphincter distensibility and pressure of all esophagogastric junction components and visualized all hiatus hernia present at endoscopy. The lower esophageal sphincter in hiatus hernia patients had a lower pressure (e.g. 47.7 ± 13.0 vs. 61.4 ± 19.2 mm Hg at 50-mL distension volume) and was more distensible (all P < 0.001) than the common esophagogastric junction in controls. In hiatus hernia patients, the crural diaphragm had a lower pressure (e.g. 29.6 ± 10.1 vs. 47.7 ± 13.0 mm Hg at 50-mL distension volume) and was more distensible (all P < 0.001) than the lower esophageal sphincter. There was a significant association between symptom scores in patients and EndoFLIP assessment. Conclusively, EndoFLIP was a useful tool. To evaluate the presence of a hiatus hernia and to measure the functional properties of the esophagogastric junction. Furthermore, EndoFLIP distinguished the separate esophagogastric junction components in hiatus hernia patients, and may help us understand the biomechanics of the esophagogastric junction and the mechanisms behind hiatal herniation. PMID:25789842

  4. Shocks induced by junctions in totally asymmetric simple exclusion processes under periodic boundary condition

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyan; Xie, Yanbo; He, Zhiwei; Wang, Binghong

    2011-07-01

    This Letter investigates a totally asymmetric simple exclusion process (TASEP) with junctions in a one-dimensional transport system. Parallel update rules and periodic boundary condition are adopted. Two cases corresponding to different update rules are studied. The results show that the stationary states of system mainly depend on the selection behavior of particle at the bifurcation point.

  5. The antenatally detected pelvi-ureteric junction stenosis: advances in renography and strategy of management.

    PubMed

    Ismaili, Khalid; Piepsz, Amy

    2013-04-01

    This review includes an analysis of new developments in the field of renography, the predictive factors suggesting the need for pyeloplasty in cases of pelvi-utereric stenosis detected antenatally and integration of the pelvi-ureteric junction stenosis within the framework of antenatally detected hydronephrosis. PMID:23525768

  6. Clathrin and Cx43 gap junction plaque endoexocytosis

    SciTech Connect

    Nickel, Beth M.; DeFranco, B. Hewa; Gay, Vernon L.; Murray, Sandra A.

    2008-10-03

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.

  7. Role of gap junctions in the propagation of the cardiac action potential.

    PubMed

    Rohr, Stephan

    2004-05-01

    Gap junctions play a pivotal role for the velocity and the safety of impulse propagation in cardiac tissue. Under physiologic conditions, the specific subcellular distribution of gap junctions together with the tight packaging of the rod-shaped cardiomyocytes underlies anisotropic conduction, which is continuous at the macroscopic scale. However, when breaking down the three-dimensional network of cells into linear single cell chains, gap junctions can be shown to limit axial current flow and to induce 'saltatory' conduction at unchanged overall conduction velocities. In two- and three-dimensional tissue, these discontinuities disappear due to lateral averaging of depolarizing current flow at the activation wavefront. During gap junctional uncoupling, discontinuities reappear and are accompanied by slowed and meandering conduction. Critical gap junctional uncoupling reduces conduction velocities to a much larger extent than does a reduction of excitability, which suggests that the safety for conduction is higher at any given conduction velocity for gap junctional uncoupling. In uniformly structured tissue, gap junctional uncoupling is accompanied by a parallel decrease in conduction velocity. However, this is not necessarily the case for non-uniform structures like tissue expansion where partial uncoupling paradoxically increases conduction velocity and has the capacity to remove unidirectional conduction blocks. Whereas the impact of gap junctions on impulse conduction is generally assessed from the point of view of cell coupling among cardiomyocytes, it is possible that other cell types within the myocardium might be coupled to cardiomyocytes as well. In this context, it has been shown that fibroblasts establish successful conduction between sheets of cardiomyocytes over distances as long as 300 microm. This might not only explain electrical synchronization of heart transplants but might be of importance for cardiac diseases involving fibrosis. Finally, the

  8. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    SciTech Connect

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.

  9. Spontaneous thoracic epidural hematoma: a case report and literature review.

    PubMed

    Babayev, Rasim; Ekşi, Murat Şakir

    2016-01-01

    Spinal epidural hematoma is a rare neurosurgical emergency in respect of motor and sensory loss. Identifiable reasons for spontaneous hemorrhage are vascular malformations and hemophilias. We presented a case of spontaneous epidural hematoma in an 18-year-old female patient who had motor and sensory deficits that had been present for 1 day. On MRI, there was spinal epidural hematoma posterior to the T2-T3 spinal cord. The hematoma was evacuated with T2 hemilaminectomy and T3 laminectomy. Patient recovered immediately after the surgery. Literature review depicted 112 pediatric cases (including the presented one) of spinal epidural hematoma. The female/male ratio is 1.1:2. Average age at presentation is 7.09 years. Clinical presentations include loss of strength, sensory disturbance, bowel and bladder disturbances, neck pain, back pain, leg pain, abdominal pain, meningismus, respiratory difficulty, irritability, gait instability, and torticollis. Most common spinal level was cervicothoracic spine. Time interval from symptom onset to clinical diagnosis varied from immediate to 18 months. Spinal epidural hematoma happened spontaneously in 71.8 % of the cases, and hemophilia was the leading disorder (58 %) in the cases with a definable disorder. Partial or complete recovery is possible after surgical interventions and factor supplementations. PMID:26033378

  10. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  11. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  12. Segmental multicystic dysplasia and ureteropelvic junction obstruction in a nonduplicated kidney.

    PubMed

    Carmack, Adrienne J K; Castellan, Miguel; Perez-Brayfield, Marcos; Gosalbez, Rafael

    2006-04-01

    A 2-month-old child presented for evaluation of prenatal hydronephrosis. Imaging studies were consistent with a right duplex system with a dysplastic, nonfunctioning upper pole and lower pole ureteropelvic junction obstruction. We proceeded with removal of the upper pole and pyeloplasty and were surprised to find a single collecting system with a cystic, dysplastic upper pole segment and the absence of an upper pole pelvis or ureter. The rare diagnosis of a segmental multicystic dysplastic kidney with ipsilateral ureteropelvic junction obstruction was made. We present a review of the case and of previous literature on this topic. PMID:16567161

  13. First-principles study of the critical thickness in asymmetric ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cai, Meng-Qiu; Du, Yong; Huang, Bo-Yun

    2011-03-01

    The absent critical thickness of fully relaxed asymmetric ferroelectric tunnel junctions is investigated by first-principles calculations. The results show that PbTiO3 thin film between Pt and SrRuO3 electrodes can still retain a significant and stable polarization down to thicknesses as small as 0.8 nm, quite unlike the case of symmetric ferroelectric tunnel junctions. We trace this surprising result to the generation of a large electric field by the charge transfer between the electrodes caused by their different electronic environments, which acts against the depolarization field and enhances the ferroelectricity, leading to the reduction, or even complete elimination, for the critical thickness.

  14. Endoscopic Removal of a Nitinol Mesh Stent from the Ureteropelvic Junction after 15 Years

    PubMed Central

    Smrkolj, Tomaž; Šalinović, Domagoj

    2015-01-01

    We report a rare case of a patient with a large stone encrusted on a nitinol mesh stent in the ureteropelvic junction. The stent was inserted in the year 2000 after failure of two pyeloplasty procedures performed due to symptomatic ureteropelvic junction stenosis. By combining minimally invasive urinary stone therapies—extracorporeal shock wave lithotripsy, semirigid ureterorenoscopy with laser lithotripsy, and percutaneous nephrolithotomy—it was possible to completely remove the encrusted stone and nitinol mesh stent that was implanted for 15 years, rendering the patient symptom and obstruction free. PMID:26697258

  15. [Sonography of the uretero-vesical junction and the urinary bladder in children].

    PubMed

    Ponhold, W; Balzar, E; Zwiauer, K

    1984-03-01

    Sonography of the ureterovesical junction and of the urinary bladder is described on the basis of examinations of 41 children. This included all distended bladder walls, ureteral dilations, ureteroceles and a rhabdomyosarcoma. Sonographic imaging presents difficulties in visualising ureters less than 6 mm wide, and in case of normal uretero-vesical junctions. Sonography cannot assess a versicoureteral reflux. Sonography should not be used in the first diagnosis of nephrourological changes as an alternative to radiological methods, since this may result in overlooking relevant curable changes in children. Sonography is particularly valuable in clarifying renal insufficiency and in following up children with nephrourological disease. PMID:6713789

  16. Electromagnetic scattering from two-dimensional thick material junctions

    NASA Technical Reports Server (NTRS)

    Ricoy, M. A.; Volakis, John L.

    1990-01-01

    The problem of the plane wave diffraction is examined by an arbitrary symmetric two dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Generalized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs. GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate the GIBCs/GSTCs. The plane wave diffraction by a multilayer material slab recessed in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering Matrix Formulation (GDMF) in conjunction with the dual integral equation approach. Various scattering patterns are computed and validated with exact results where possible. The diffraction by a material discontinuity in a thick dielectric/ferrite slab is considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of unknown constants is obtained, and these constants are evaluated for the recessed slab geometry by comparison with the solution obtained therein. Several other simplified cases are also presented and discussed. An eigenfunction expansion method is introduced to determine the unknown solution constants in the general case. This procedure is applied to the non-unique solution in terms of unknown constants; and scattering patterns are presented for various slab junctions and compared with alternative results where possible.

  17. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-10-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case.

  18. Josephson-like spin current in junctions composed of antiferromagnets and ferromagnets

    NASA Astrophysics Data System (ADS)

    Moor, A.; Volkov, A. F.; Efetov, K. B.

    2012-01-01

    We study Josephson-like junctions formed by materials with antiferromagnetic (AF) order parameters. As an antiferromagnet, we consider a two-band material in which a spin density wave (SDW) arises. This could be Fe-based pnictides in the temperature interval Tc≤T≤TN, where Tc and TN are the critical temperatures for the superconducting and antiferromagnetic transitions, respectively. The spin current jSp in AF/F/AF junctions with a ballistic ferromagnetic layer and in tunnel AF/I/AF junctions is calculated. It depends on the angle between the magnetization vectors in the AF leads in the same way as the Josephson current depends on the phase difference of the superconducting order parameters in S/I/S tunnel junctions. It turns out that in AF/F/AF junctions, two components of the SDW order parameter are induced in the F layer. One of them oscillates in space with a short period ξF,b˜ℏv/H, while the other decays monotonously from the interfaces over a long distance of the order ξN,b=ℏv/2πT (where v, H, and T are the Fermi velocity, the exchange energy, and the temperature, respectively; the subindex “b” denotes the ballistic case). This is a clear analogy with the case of Josephson S/F/S junctions with a nonhomogeneous magnetization where short- and long-range condensate components are induced in the F layer. However, in contrast to the charge Josephson current in S/F/S junctions, the spin current in AF/F/AF junctions is not constant in space, but oscillates in the ballistic F layer. We also calculate the dependence of jSp on the deviation from the ideal nesting in the AF/I/AF junctions. The spin current is maximal in the insulating phase of the AF and decreases in the metallic phase. It turns to zero at the Neel point when the amplitude of the SDW is zero and changes sign for certain values of the detuning parameter.

  19. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  20. Holographic Josephson junction from massive gravity

    NASA Astrophysics Data System (ADS)

    Hu, Ya-Peng; Li, Huai-Fan; Zeng, Hua-Bi; Zhang, Hai-Qing

    2016-05-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephson junction in de Rham-Gabadadze-Tolley massive gravity. If the boundary theory is independent of spatial directions, i.e., if the chemical potential is homogeneous in spatial directions, we find that the graviton mass parameter will make it more difficult for the normal metal-superconductor phase transition to take place. In the holographic model of the Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass parameter. Besides, the coherence length of the junction decreases as well with respect to the graviton mass parameter. If one interprets the graviton mass parameter as the effect of momentum dissipation in the boundary field theory, this indicates that the stronger the momentum dissipation is, the smaller the coherence length is.

  1. Silicon fiber with p-n junction

    SciTech Connect

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  2. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  3. Electronic Veselago lensing in graphene PN junctions

    NASA Astrophysics Data System (ADS)

    Dean, Cory

    Ballistic electrons in a uniform 2D electron gas (2DEG) behave in close analogy to light propagating through an optical medium. In the absence of impurity scattering, electrons follow straight-line trajectories, while the associated de Broglie wavelength can give rise to interference and diffraction. Here we present measurements of ballistic graphene devices in which a graphite gate is used to realize an atomically-smooth junction. We demonstrate unambiguous signatures of negative refraction across a PN junction, paving the way for electron optics inspired by Veselago lensing. Comparison with theoretical simulations reveals the importance of the junction profile towards this effort. Opportunities for future device designs that may take advantage of these effects will be discussed.

  4. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  5. Molecular organization of tricellular tight junctions.

    PubMed

    Furuse, Mikio; Izumi, Yasushi; Oda, Yukako; Higashi, Tomohito; Iwamoto, Noriko

    2014-01-01

    When the apicolateral border of epithelial cells is compared with a polygon, its sides correspond to the apical junctional complex, where cell adhesion molecules assemble from the plasma membranes of two adjacent cells. On the other hand, its vertices correspond to tricellular contacts, where the corners of three cells meet. Vertebrate tricellular contacts have specialized structures of tight junctions, termed tricellular tight junctions (tTJs). tTJs were identified by electron microscopic observations more than 40 years ago, but have been largely forgotten in epithelial cell biology since then. The identification of tricellulin and angulin family proteins as tTJ-associated membrane proteins has enabled us to study tTJs in terms of not only the paracellular barrier function but also unknown characteristics of epithelial cell corners via molecular biological approaches. PMID:25097825

  6. Synchronized Switching in a Josephson Junction Crystal

    NASA Astrophysics Data System (ADS)

    Leib, Martin; Hartmann, Michael J.

    2014-06-01

    We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted by a series of uniformly spaced Josephson junctions. The device forms an extended medium that is optically nonlinear on the single photon level with normal modes that inherit the full nonlinearity of the junctions but are nonetheless accessible via the resonator ports. For specific plasma frequencies of the junctions, a set of normal modes clusters in a narrow band and eventually becomes entirely degenerate. Upon increasing the intensity of a red detuned drive on these modes, we observe a sharp and synchronized switching from low-occupation quantum states to high-occupation classical fields, accompanied by a pronounced jump from low to high output intensity.

  7. Tunneling Magnetothermopower in Magnetic Tunnel Junction Nanopillars

    NASA Astrophysics Data System (ADS)

    Liebing, N.; Serrano-Guisan, S.; Rott, K.; Reiss, G.; Langer, J.; Ocker, B.; Schumacher, H. W.

    2011-10-01

    We study tunneling magnetothermopower (TMTP) in CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars. Thermal gradients across the junctions are generated by an electric heater line. Thermopower voltages up to a few tens of μV between the top and bottom contact of the nanopillars are measured which scale linearly with the applied heating power and hence the thermal gradient. The thermopower signal varies by up to 10μV upon reversal of the relative magnetic configuration of the two CoFeB layers from parallel to antiparallel. This signal change corresponds to a large spin-dependent Seebeck coefficient of the order of 100μV/K and a large TMTP change of the tunnel junction of up to 90%.

  8. Tunneling magnetothermopower in magnetic tunnel junction nanopillars.

    PubMed

    Liebing, N; Serrano-Guisan, S; Rott, K; Reiss, G; Langer, J; Ocker, B; Schumacher, H W

    2011-10-21

    We study tunneling magnetothermopower (TMTP) in CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars. Thermal gradients across the junctions are generated by an electric heater line. Thermopower voltages up to a few tens of μV between the top and bottom contact of the nanopillars are measured which scale linearly with the applied heating power and hence the thermal gradient. The thermopower signal varies by up to 10  μV upon reversal of the relative magnetic configuration of the two CoFeB layers from parallel to antiparallel. This signal change corresponds to a large spin-dependent Seebeck coefficient of the order of 100  μV/K and a large TMTP change of the tunnel junction of up to 90%. PMID:22107572

  9. Synchronized switching in a josephson junction crystal.

    PubMed

    Leib, Martin; Hartmann, Michael J

    2014-06-01

    We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted by a series of uniformly spaced Josephson junctions. The device forms an extended medium that is optically nonlinear on the single photon level with normal modes that inherit the full nonlinearity of the junctions but are nonetheless accessible via the resonator ports. For specific plasma frequencies of the junctions, a set of normal modes clusters in a narrow band and eventually becomes entirely degenerate. Upon increasing the intensity of a red detuned drive on these modes, we observe a sharp and synchronized switching from low-occupation quantum states to high-occupation classical fields, accompanied by a pronounced jump from low to high output intensity. PMID:24949766

  10. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  11. Oxidative Stress, Lens Gap Junctions, and Cataracts

    PubMed Central

    Beyer, Eric C.

    2009-01-01

    Abstract The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation. Antioxid. Redox Signal. 11, 339–353. PMID:18831679

  12. Phonon Josephson junction with nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Shabir; Vitali, David

    2016-03-01

    We study coherent phonon oscillations and tunneling between two coupled nonlinear nanomechanical resonators. We show that the coupling between two nanomechanical resonators creates an effective phonon Josephson junction, which exhibits two different dynamical behaviors: Josephson oscillation (phonon-Rabi oscillation) and macroscopic self-trapping (phonon blockade). Self-trapping originates from mechanical nonlinearities, meaning that when the nonlinearity exceeds its critical value, the energy exchange between the two resonators is suppressed, and phonon Josephson oscillations between them are completely blocked. An effective classical Hamiltonian for the phonon Josephson junction is derived and its mean-field dynamics is studied in phase space. Finally, we study the phonon-phonon coherence quantified by the mean fringe visibility, and show that the interaction between the two resonators may lead to the loss of coherence in the phononic junction.

  13. Defect junctions and domain wall dynamics

    SciTech Connect

    Avelino, P.P.; Oliveira, J.C.R.E.; Martins, C.J.A.P.; Menezes, J.; Menezes, R.

    2006-06-15

    We study a number of domain wall forming models where various types of defect junctions can exist. These illustrate some of the mechanisms that will determine the evolution of defect networks with junctions. Understanding these mechanisms is vital for a proper assessment of a number of cosmological scenarios: we will focus on the issue of whether or not cosmological frustrated domain wall networks can exist at all, but our results are also relevant for the dynamics of cosmic (super)strings, where junctions are expected to be ubiquitous. We also define and discuss the properties that would make up the ideal model in terms of hypothetical frustrated wall networks, and provide an explicit construction for such a model. We carry out a number of numerical simulations of the evolution of these networks, analyze and contrast their results, and discuss their implications for our no-frustration conjecture.

  14. Influence of grain boundaries on recombination in polysilicon pn-junction solar cells

    SciTech Connect

    Fossum, J.G.; Neugroschel, A.; Lindholm, F.A.; Mazer, J.A.

    1980-01-01

    The physics controlling recombination in polysilicon pn-junction cells is described. Analytic models characterizing this recombination, whose parameters can be related directly to experiment, are developed. The analysis reveals that, in general, the description of intra-grain and grain-boundary recombination in a polysilicon solar cell requires the solution of a nonlinear, three-dimensional boundary-value problem. Cases of practical interest for which this problem is tractable are discussed. The analysis predicts an exp(qV/2kT) dependence (the reciprocal slope factor is exactly two) for carrier recombination at a grain boundary within the junction space-charge region of a non-illuminated, forward-biased cell. This result, and others of the analysis, are shown to be consistent with measured current-voltage characteristics of pn junctions fabricated on polycrystalline silicon.

  15. Determination of IVC breakpoint for josephson junction stack. Non-periodic boundary conditions with γ = 1

    NASA Astrophysics Data System (ADS)

    Serdyukova, S. I.

    2014-07-01

    We prove that, in the case of non-periodic (with γ = 1) boundary conditions, the calculation of the current-voltage characteristic (IVC) for a stack of n intrinsic Josephson junctions reduces to solving a system of [( n + 1)/2] non-linear differential equations instead of the n original ones. The current voltage characteristic V( I) has the shape of a hysteresis loop. On the back branch of the loop V( I) decreases to zero rapidly near the breakpoint I b . We succeeded to derive an algorithm determining the approximate breakpoint location and to improve simultaneously the mixed numerical-analytical algorithm of IVC calculation for a stack of Josephson junctions developed by us before. The efficiency of the improved algorithm is shown by the calculations of IVC for stacks consisting of various numbers of intrinsic Josephson junctions.

  16. Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes.

    PubMed

    Lee, See Kei; Ohto, Tatsuhiko; Yamada, Ryo; Tada, Hirokazu

    2014-09-10

    We have performed thermoelectric measurements of benzenedithiol (BDT) and C60 molecules with Ni and Au electrodes using a home-built scanning tunneling microscope. The thermopower of C60 was negative for both Ni and Au electrodes, indicating the transport of carriers through the lowest unoccupied molecular orbital in both cases, as was expected from the work functions. On the other hand, the Ni-BDT-Ni junctions exhibited a negative thermopower, whereas the Au-BDT-Au junctions exhibited a positive thermopower. First-principle calculations revealed that the negative thermopower of Ni-BDT-Ni junctions is due to the spin-split hybridized states generated by the highest occupied molecular orbital of BDT coupled with s- and d-states of the Ni electrode. PMID:25141337

  17. AdS and dS Entropy from String Junctions or The Function of Junction Conjunctions

    SciTech Connect

    Silverstein, Eva M

    2003-09-09

    Flux compactifications of string theory exhibiting the possibility of discretely tuning the cosmological constant to small values have been constructed. The highly tuned vacua in this discretuum have curvature radii which scale as large powers of the flux quantum numbers, exponential in the number of cycles in the compactification. By the arguments of Susskind/Witten (in the AdS case) and Gibbons/Hawking (in the dS case), we expect correspondingly large entropies associated with these vacua. If they are to provide a dual description of these vacua on their Coulomb branch, branes traded for the flux need to account for this entropy at the appropriate energy scale. In this note, we argue that simple string junctions and webs ending on the branes can account for this large entropy, obtaining a rough estimate for junction entropy that agrees with the existing rough estimates for the spacing of the discretuum. In particular, the brane entropy can account for the (A)dS entropy far away from string scale correspondence limits.

  18. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    SciTech Connect

    Wu, Kunlin; Bai, Meilin; Hou, Shimin; Sanvito, Stefano

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules.

  19. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    NASA Astrophysics Data System (ADS)

    Vilan, Ayelet

    2016-01-01

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at the metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.

  20. Netrin and Frazzled regulate presynaptic gap junctions at a Drosophila giant synapse.

    PubMed

    Orr, Brian O; Borgen, Melissa A; Caruccio, Phyllis M; Murphey, Rodney K

    2014-04-16

    Netrin and its receptor, Frazzled, dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the presynaptic terminal. In Netrin mutant animals, the synaptic coupling between a giant interneuron and the "jump" motor neuron was weakened and dye coupling between these two neurons was severely compromised or absent. In cases in which Netrin mutants displayed apparently normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses and dye coupling between the giant fiber (GF) and the motor neuron was reduced or eliminated, suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap junctions with antibodies to Shaking-B (ShakB) Innexin, they were significantly decreased or absent in the presynaptic terminal of the mutant GF. Frazzled loss of function mutants exhibited similar defects in synaptic transmission, dye coupling, and gap junction localization. These data are the first to show that Netrin and Frazzled regulate the placement of gap junctions presynaptically at a synapse. PMID:24741033

  1. Numerical study of three-dimensional separation and flow control at a wing/body junction

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Lakshmanan, Balakrishnan

    1989-01-01

    The problem of three-dimensional separation and flow control at a wing/body junction has been investigated numerically using a three-dimensional Navier-Stokes code. The numerical code employs an algebraic grid generation technique for generating the grid for unmodified junction and an elliptic grid generation technique for filleted fin junction. The results for laminar flow past a blunt fin/flat plate junction demonstrate that after grid refinement, the computations agree with experiment and reveal a strong dependency of the number of vortices at the junction on Mach number and Reynolds number. The numerical results for pressure distribution, particle paths and limiting streamlines for turbulent flow past a swept fin show a decrease in the peak pressure and in the extent of the separated flow region compared to the laminar case. The results for a filleted juncture indicate that the streamline patterns lose much of their vortical character with proper filleting. Fillets with a radius of three and one-half times the fin leading edge diameter or two times the incoming boundary layer thickness, significantly weaken the usual necklace interaction vortex for the Mach number and Reynolds number considered in the present study.

  2. Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism

    PubMed Central

    Ding, Er-Xiong; Wang, Jing; Geng, Hong-Zhang; Wang, Wen-Yi; Wang, Yan; Zhang, Ze-Chen; Luo, Zhi-Jia; Yang, Hai-Jie; Zou, Cheng-Xiong; Kang, Jianli; Pan, Lujun

    2015-01-01

    Y-junction carbon nanocoils (Y-CNCs) were synthesized by thermal chemical vapor deposition using Ni catalyst prepared by spray-coating method. According to the emerging morphologies of Y-CNCs, several growth models were advanced to elucidate their formation mechanisms. Regarding the Y-CNCs without metal catalyst in the Y-junctions, fusing of contiguous CNCs and a tip-growth mechanism are considered to be responsible for their formation. However, as for the Y-CNCs with catalyst presence in the Y-junctions, the formation can be ascribed to nanoscale soldering/welding and bottom-growth mechanism. It is found that increasing spray-coating time for catalyst preparation generates agglomerated larger nanoparticles strongly adhering to the substrate, resulting in bottom-growth of CNCs and appearance of the metal catalyst in the Y-junctions. In the contrary case, CNCs catalyzed by isolated smaller nanoparticles develop Y-junctions with an absence of metal catalyst by virtue of weaker adhesion of catalyst with the substrate and tip-growth of CNCs. PMID:26063127

  3. Magnesium gating of cardiac gap junction channels.

    PubMed

    Matsuda, Hiroyuki; Kurata, Yasutaka; Oka, Chiaki; Matsuoka, Satoshi; Noma, Akinori

    2010-09-01

    We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam. The gap junction conductance (G(j)) was measured by clamping the membrane potential of the other cell using two-electrode voltage clamp method. The laser perforation immediately increased G(j), followed by slow G(j) change with time constant of 3.5 s at 10 mM Mg(2+). Mg(2+) more than 1.0 mM attenuated dose-dependently the gap junction conductance and lower Mg(2+) (0.6 mM) increased G(j) with a Hill coefficient of 3.4 and a half-maximum effective concentration of 0.6 mM. The time course of G(j) changes was fitted by single exponential function, and the relationship between the reciprocal of time constant and Mg(2+) concentration was almost linear. Based on the experimental data, a mathematical model of Mg(2+) gate with one open state and three closed states well reproduced experimental results. One-dimensional cable model of thirty ventricular myocytes connected to the Mg(2+) gate model suggested a pivotal role of the Mg(2+) gate of gap junction under pathological conditions. PMID:20553744

  4. Electronic Properties of Carbon Nanotubes and Junctions

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Han, Jie; Yang, Liu; Govindan, T. R.; Jaffe, R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Metallic and semiconducting Single Wall Carbon Nanotubes (CNT) have recently been characterized using scanning tunneling microscopy (STM) and the manipulation of individual CNT has been demonstrated. These developments make the prospect of using CNT as molecular wires and possibly as electronic devices an even more interesting one. We have been modeling various electronic properties such as the density of states and the transmission coefficient of CNT wires and junctions. These studies involve first calculating the stability of junctions using molecular dynamics simulations and then calculating the electronic properties using a pi-electron tight binding Hamiltonian. We have developed the expertise to calculate the electronic properties of both finite-sized CNT and CNT systems with semi-infinite boundary conditions. In this poster, we will present an overview of some of our results. The electronic application of CNT that is most promising at this time is their use as molecular wires. The conductance can however be greatly reduced because of reflection due to defects and contacts. We have modeled the transmission through CNT in the presence of two types of defects: weak uniform disorder and strong isolated scatterers. We find that the conductance is affected in significantly different manners due to these defects Junctions of CNT have also been imaged using STM. This makes it essential to derive rules for the formation of junctions between tubes of different chirality, study their relative energies and electronic properties. We have generalized the rules for connecting two different CNT and have calculated the transmission and density of states through CNT junctions. Metallic and semiconducting CNT can be joined to form a stable junction and their current versus voltage characteristics are asymmetric. CNT are deformed by the application of external forces including interactions with a substrate or other CNT. In many experiments, these deformation are expected to

  5. Safe, Effective and Easily Reproducible Fusion Technique for CV Junction Instability

    PubMed Central

    Sannegowda, Raghavendra Bakki

    2015-01-01

    Introduction: The Craniovertebral junction (CVJ) refers to a bony enclosure where the occipital bone surrounds the foramen magnum, the atlas and the axis vertebrae. Because of the complexity of structures, CVJ instability is associated with diagnostic and therapeutic problems. Posterior CV fusion procedures have evolved a lot over the last couple of decades. There has been a lookout for one such surgical procedure which is inherently safe, simple, easily reproducible and biomechanically sound. In our study, we present the initial experience the cases of CV junction instrumentation using O-C1-C2 screw & rod construct operated by the author. Aims and Objectives: The current study is a descriptive analysis of the cases of CVJ instability treated by us with instrumentation using O-C1-C2 screw and rod construct fusion technique. Materials and Methods: It is a retrospective, analytical study in which cases of CV junction instability operated by the author between January 2010 to March 2014 were analysed using various clinical, radiological and outcome parameters. Conclusion: CV junction instrumentation using O-C1-C2 screw and rod construct fusion technique proved to be safe, effective, easily reproducible and biomechanically sound technique which can be adopted by all surgeons who may be at any stage of their learning curve. PMID:25954660

  6. Junction between the great cerebral vein and the straight sinus: an anatomical, immunohistochemical, and ultrastructural study on 25 human brain cadaveric dissections.

    PubMed

    Dagain, A; Vignes, J R; Dulou, R; Dutertre, G; Delmas, J M; Guerin, J; Liguoro, D

    2008-07-01

    The cerebral venous system is poorly understood, and best appreciated under macroscopic anatomical considerations. We present an anatomical and immunohistochemical studies to better define the morphological characteristics of the junction between the great cerebral vein and the straight sinus. Twenty-five cadaveric specimens from the anatomy laboratory of the University Victor Segalen of Bordeaux were studied. The observation of the venous junctions with the straight sinus was performed under an operating microscope. The smooth muscular actin immunohistochemical staining was performed for 18 veno-sinosal junctions. Five venous junctions were observed using an electron microscope. We observed 3 different anatomic aspects: type 1 was a junction with a small elevation in its floor and a posterior thickening (14 cases); type 2 was a junction with an outgrowth on the floor like a cornice (7 cases); and type 3 was a junction presenting a nodule. Microscopic study of type 1 and 2 junctions showed a positive coloration to orceine attesting the presence of elastic fibers. Immunohistochemistry revealed the presence of smooth muscular actin and S 100 protein attesting the presence of smooth muscular fibers and nervous fibers. We observed in the ultrastructural study, a morphological progression of the endothelium. The venous orifice of the great cerebral vein into the straight sinus could be anatomically assimilated as a true "sphincter." Its function in the regulation of the cerebral blood flow needs further exploration. PMID:18470937

  7. Fluctuation of heat current in Josephson junctions

    SciTech Connect

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  8. Bursting behaviour in coupled Josephson junctions.

    PubMed

    Hongray, Thotreithem; Balakrishnan, J; Dana, Syamal K

    2015-12-01

    We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions. PMID:26723143

  9. Electronic properties of electrodeposited semiconductor junctions

    NASA Astrophysics Data System (ADS)

    Chatman, Shawn Michael Edward

    This thesis describes the synthesis, structural properties, optical properties, and electronic properties of semiconductor junctions based on electrochemically deposited ZnO and CU2O thin films. The first focus is characterizing the effect of deposition conditions (including applied potential and electrolyte composition) on the fundamental properties of these materials (including carrier concentration, band gap, and microstructure). Subsequent discussion addresses electrical conduction to and through ZnO/substrate junctions as a function of these deposition conditions. Finally, three device applications for these ZnO-based junction are explored: Schottky rectifiers, humidity sensors, and photovoltaic cells. Since electrical conduction to and through heterojunction interfaces is very important for maximizing the functionality of semiconductor devices, this thesis work is an essential step towards increasing the functionality of multi-layer ZnO-based heterojunction devices prepared by electrodeposition. Capacitive Mott-Schottky analyses showed that the carrier concentrations of our ZnO electrodeposits are dependent upon deposition potential, with higher net carrier concentration at more positive potentials. UV/Visible diffuse reflectance data indicates that band gap increases with more positive deposition potentials. Together, these results suggest that hydrogen is the dominant, yet unintentional, Moss-Burstein like dopant in our n-type ZnO. Furthermore, the range of carrier concentrations we can achieve (10 18 -- 1021 cm-3) is comparable to that obtained with intentional doping. This is significant because using deposition potential to change growth rate or morphology will simultaneously change electronic properties. The deposition potential studies evolved into a procedure for selective, one-step production of either ohmic or rectifying (Schottky) ZnO/metal junctions (Chatman et al., Appi.Phys.Lett., 2008, 92, 012103/1-3). Rectifying ratio and soft

  10. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  11. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  12. Alternating current driven instability in magnetic junctions.

    PubMed

    Epshtein, E M; Zilberman, P E

    2009-04-01

    An effect is considered of alternating (high-frequency) current on the spin-valve-type magnetic junction configuration. The stability with respect to small fluctuations is investigated in the macrospin approximation. When the current frequency is close to the eigenfrequency (precession frequency) of the free layer, parametric resonance occurs. Both collinear configurations, antiparallel and parallel, can become unstable under resonance conditions. The antiparallel configuration can also become unstable under non-resonant conditions. The threshold current density amplitude is of the order of the dc current density for switching of the magnetic junction. PMID:21825350

  13. Bursting behaviour in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hongray, Thotreithem; Balakrishnan, J.; Dana, Syamal K.

    2015-12-01

    We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions.

  14. Waiting times of entangled electrons in normal-superconducting junctions

    NASA Astrophysics Data System (ADS)

    Albert, M.; Chevallier, D.; Devillard, P.

    2016-02-01

    We consider a normal-superconducting junction in order to investigate the effect of new physical ingredients on waiting times. First, we study the interplay between Andreev and specular scattering at the interface on the distribution of waiting times of electrons or holes separately. In that case the distribution is not altered dramatically compared to the case of a single quantum channel with a quantum point contact since the interface acts as an Andreev mirror for holes. We then consider a fully entangled state originating from splitting of Cooper pairs at the interface and demonstrate a significant enhancement of the probability to detect two consecutive electrons in a short time interval. Finally, we discuss the electronic waiting time distribution in the more realistic situation of partial entanglement.

  15. Chaos and related nonlinear noise phenomena in Josephson tunnel junctions

    SciTech Connect

    Miracky, R.F.

    1984-07-01

    The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10/sup 6/ K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10/sup 3/ K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ..omega../sub p/ and a mode at the half harmonic ..omega../sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references.

  16. Counterintuitive issues in the charge transport through molecular junctions.

    PubMed

    Bâldea, Ioan

    2015-12-14

    Whether at phenomenological or microscopic levels, most theoretical approaches to charge transport through molecular junctions postulate or attempt to justify microscopically the existence of a dominant molecular orbital (MO). Within such single level descriptions, experimental current-voltage I-V curves are sometimes/often analyzed by using analytical formulas expressing the current as a cubic expansion in terms of the applied voltage V, and the possible V-driven shifts of the level energy offset relative to the metallic Fermi energy ε0 are related to the asymmetry of molecule-electrode couplings or an asymmetric location of the "center of gravity" of the MO with respect to electrodes. In this paper, we present results demonstrating the failure of these intuitive expectations. For example, we show how typical data processing based on cubic expansions yields a value of ε0 underestimated by a typical factor of about two. When compared to theoretical results of DFT approaches, which typically underestimate the HOMO-LUMO gap by a similar factor, this may create the false impression of "agreement" with experiments in situations where this is actually not the case. Furthermore, such cubic expansions yield model parameter values dependent on the bias range width employed for fitting, which is unacceptable physically. Finally, we present an example demonstrating that, counter-intuitively, the bias-induced change in the energy of an MO located much closer to an electrode can occur in a direction that is opposite to the change in the Fermi energy of that electrode. This is contrary to what one expects based on a "lever rule" argument, according to which the MO "feels" the local value of the electric potential, which is assumed to vary linearly across the junction and is closer to the potential of the closer electrode. This example emphasizes the fact that screening effects in molecular junctions can have a subtle character, contradicting common intuition. PMID:26549325

  17. Atomic-scaled characterization of graphene PN junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  18. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  19. Ballistic transport in InSb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Damasco, John Jeffrey; Gill, Stephen; Car, Diana; Bakkers, Erik; Mason, Nadya

    We present transport measurements on Josephson junctions consisting of InSb nanowires contacted by Al at various junction lengths. Junction behavior as a function of gate voltage, electric field, and magnetic field is discussed. We show that short junctions behave as 1D quantum wires, exhibiting quantized conductance steps. In addition, we show how Josephson behavior changes as transport evolves from ballistic to diffusive as a function of contact spacing.

  20. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  1. Radiation comb generation with extended Josephson junctions

    SciTech Connect

    Solinas, P.; Bosisio, R.; Giazotto, F.

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.

  2. Semiconductor liquid-junction solar cell

    SciTech Connect

    Parkinson, B.A.

    1982-10-29

    A semiconductor liquid junction photocell in which the photocell is in the configuration of a light concentrator and in which the electrolytic solution both conducts current and facilitates the concentration of incident solar radiation onto the semiconductor. The photocell may be in the configuration of a non-imaging concentrator such as a compound parabolic concentrator, or an imaging concentrator such as a lens.

  3. Supercurrent in van der Waals Josephson junction

    PubMed Central

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  4. PECAM-1: regulator of endothelial junctional integrity.

    PubMed

    Privratsky, Jamie R; Newman, Peter J

    2014-03-01

    PECAM-1 (also known as CD31) is a cellular adhesion and signaling receptor comprising six extracellular immunoglobulin (Ig)-like homology domains, a short transmembrane domain and a 118 amino acid cytoplasmic domain that becomes serine and tyrosine phosphorylated upon cellular activation. PECAM-1 expression is restricted to blood and vascular cells. In circulating platelets and leukocytes, PECAM-1 functions largely as an inhibitory receptor that, via regulated sequential phosphorylation of its cytoplasmic domain, limits cellular activation responses. PECAM-1 is also highly expressed at endothelial cell intercellular junctions, where it functions as a mechanosensor, as a regulator of leukocyte trafficking and in the maintenance of endothelial cell junctional integrity. In this review, we will describe (1) the functional domains of PECAM-1 and how they contribute to its barrier-enhancing properties, (2) how the physical properties of PECAM-1 influence its subcellular localization and its ability to influence endothelial cell barrier function, (3) various stimuli that initiate PECAM-1 signaling and/or function at the endothelial junction and (4) cross-talk of PECAM-1 with other junctional molecules, which can influence endothelial cell function. PMID:24435645

  5. Superfluid density through 2D superconductor junctions

    NASA Astrophysics Data System (ADS)

    Nam, Hyoungdo; Shih, Chih-Kang

    As S. Qin et al. reported, two monolayer (2 ML) lead film on a silicon (111) substrate has one of two different atomic structures on the silicon substrate: the unstrained 1x1 and the psedumorphically strained √3x √3 (i.e. the same lattice constant as the Si √3x √3 lattice). Most interestingly, although these two different regions show the same quantum well state features, they have different Tc's (5 K and 4 K). These two different regions of 2 ML film naturally form superconductor-superconductor (SS or SS') junctions along silicon step edges. Physical connection of the junction is only 1 ML thickness because of the step height difference of substrate. We will present this study of SS (or SS') junction system using scanning tunneling microscopy/spectroscopy and in-situ double-coil mutual inductance measurement. The transition of superconducting gaps across either SS or SS' junctions should show how to locally affect each other. Double coil measurement show a global Tc close to the lower Tc region with sizable superfluid density. We will discuss the phase rigidity and its relationship to the superfluid density in this ultra-thin Pb film that is only 2 ML thick.

  6. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  7. Costochondral junction osteomyelitis in 3 septic foals

    PubMed Central

    Cesarini, Carla; Macieira, Susana; Girard, Christiane; Drolet, Richard; d’Anjou, Marc-André; Jean, Daniel

    2011-01-01

    The costochondral junction constitutes a potential site of infection in septic foals and it could be favored by thoracic trauma. Standard radiographs and ultrasonography are useful tools for diagnosis of this condition and ultrasound-guided needle aspiration could permit the definitive confirmation of infection. PMID:22210943

  8. Axial p-n-junctions in nanowires.

    PubMed

    Fernandes, C; Shik, A; Byrne, K; Lynall, D; Blumin, M; Saveliev, I; Ruda, H E

    2015-02-27

    The charge distribution and potential profile of p-n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah-Noice-Shockley theory, the junction current-voltage characteristic was described by an alternative theory suitable for fast generation-recombination and slow diffusion-drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1 < η < 2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work. PMID:25656461

  9. Polyphosphonium-based ion bipolar junction transistors

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2014-01-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  10. Graphene-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cobas, Enrique

    2013-03-01

    Graphene's in-plane transport has been widely researched and has yielded extraordinary carrier mobilities of 105 cm2/Vs and spin diffusion lengths of exceeding 100 μm. These properties bode well for graphene in future electronics and spintronics technologies. Its out-of-plane transport has been far less studied, although its parent material, graphite, shows a large conductance anisotropy. Recent calculations show graphene's interaction with close-packed ferromagnetic metal surfaces should produce highly spin-polarized transport out-of-plane, an enabling breakthrough for spintronics technology. In this work, we fabricate and measure FM/graphene/FM magnetic tunnel junctions using CVD-grown single-layer graphene. The resulting juctions show non-linear current-voltage characteristics and a very weak temperature dependence consistent with charge tunneling transport. Furthermore, we study spin transport across the junction as a function of bias voltage and temperature. The tunneling magnetoresistance (TMR) peaks at two percent for single-layer graphene junctions and exhibits the expected bias asymmetry and a temperature dependence that fits well with established spin-polarized tunneling models. Results of mutli-layer graphene tunnel junctions will also be discussed.

  11. Miniaturized symmetrization optics for junction laser

    NASA Technical Reports Server (NTRS)

    Hammer, Jacob M. (Inventor); Kaiser, Charlie J. (Inventor); Neil, Clyde C. (Inventor)

    1982-01-01

    Miniaturized optics comprising transverse and lateral cylindrical lenses composed of millimeter-sized rods with diameters, indices-of-refraction and spacing such that substantially all the light emitted as an asymmetrical beam from the emitting junction of the laser is collected and translated to a symmetrical beam.

  12. Supercurrent in van der Waals Josephson junction

    NASA Astrophysics Data System (ADS)

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-02-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency.

  13. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  14. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  15. Overdamped Josephson junctions for digital applications

    NASA Astrophysics Data System (ADS)

    Febvre, P.; De Leo, N.; Fretto, M.; Sosso, A.; Belogolovskii, M.; Collot, R.; Lacquaniti, V.

    2013-01-01

    An interesting feature of Superconductor-Normal metal-Superconductor Josephson junctions for digital applications is due to their non-hysteretic current-voltage characteristics in a broad temperature range below Tc. This allows to design Single-Flux-Quantum (SFQ) cells without the need of external shunts. Two advantages can be drawn from this property: first the SFQ cells can be more compact which leads to a more integrated solution towards nano-devices and more complex circuits; second the absence of electrical parasitic elements associated with the wiring of resistors external to the Josephson junctions increases the performance of SFQ circuits, in particular regarding the ultimate speed of operation. For this purpose Superconductor-Normal metal-Insulator-Superconductor Nb/Al-AlOx/Nb Josephson junctions have been recently developed at INRiM with aluminum layer thicknesses between 30 and 100 nm. They exhibit non-hysteretic current-voltage characteristics with IcRn values higher than 0.5 mV in a broad temperature range and optimal Stewart McCumber parameters at 4.2 K for RSFQ applications. The main features of obtained SNIS junctions regarding digital applications are presented.

  16. Supercurrent in van der Waals Josephson junction.

    PubMed

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  17. Tight junction, selective permeability, and related diseases.

    PubMed

    Krug, Susanne M; Schulzke, Jörg D; Fromm, Michael

    2014-12-01

    The tight junction forms a barrier against unlimited paracellular passage but some of the tight junction proteins just do the opposite, they form extracellular channels zigzagging between lateral membranes of neighboring cells. All of these channel-forming proteins and even some of the barrier formers exhibit selectivity, which means that they prefer certain substances over others. All channel formers exhibit at least one of the three types of selectivity: for cations (claudin-2, -10b, -15), for anions (claudin-10a, -17) or for water (claudin-2). Also some, but not all, barrier-forming claudins are charge-selective (claudin-4, -8, -14). Moreover, occludin and tricellulin turned out to be relevant for barrier formation against macromolecule passage. Tight junction proteins are dysregulated or can be genetically defective in numerous diseases, which may lead to three effects: (i) impaired paracellular transport e.g. causing magnesium loss in the kidney, (ii) increased paracellular transport of solutes and water e.g. causing leak-flux diarrhea in the intestine, and (iii) increased permeability to large molecules e.g. unwanted intestinal pathogen uptake fueling inflammatory processes. This review gives an overview on the properties of tight junction proteins featuring selective permeability, and in this context explains how these proteins induce or aggravate diseases. PMID:25220018

  18. Electric Field Effect in Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  19. TOPICAL REVIEW: Intrinsic Josephson junctions: recent developments

    NASA Astrophysics Data System (ADS)

    Yurgens, A. A.

    2000-08-01

    Some recent developments in the fabrication of intrinsic Josephson junctions (IJJ) and their application for studying high-temperature superconductors are discussed. The major advantages of IJJ and unsolved problems are outlined. The feasibility of three-terminal devices based on the stacked IJJ is briefly evaluated.

  20. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Junction AVA is located in southern San Joaquin County, California. The boundaries are as follows: (1... the San Joaquin River levee, near Benchmark 35 in T3S/R6E; (2) Then in a southeasterly direction, follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a...

  1. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Junction AVA is located in southern San Joaquin County, California. The boundaries are as follows: (1... the San Joaquin River levee, near Benchmark 35 in T3S/R6E; (2) Then in a southeasterly direction, follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a...

  2. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Junction AVA is located in southern San Joaquin County, California. The boundaries are as follows: (1... the San Joaquin River levee, near Benchmark 35 in T3S/R6E; (2) Then in a southeasterly direction, follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a...

  3. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  4. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  5. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  6. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  7. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  8. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  9. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  10. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  11. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  12. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  13. Overview of the Grand Junction Office from Bluff east of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Grand Junction Office from Bluff east of facility. Note Buildings #35. #33 and #31A in lower left of photograph. VIEW WEST - Department of Energy, Grand Junction Office, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  14. Long Josephson tunnel junctions with doubly connected electrodes

    NASA Astrophysics Data System (ADS)

    Monaco, R.; Mygind, J.; Koshelets, V. P.

    2012-03-01

    In order to mimic the phase changes in the primordial Big Bang, several cosmological solid-state experiments have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors and superfluids cooled through their transition temperature. In one of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy. The theoretical findings are supported by measurements on a number of samples having different geometrical configuration. The experiments demonstrate that a very large signal-to-noise ratio can be achieved in the flux quanta detection.

  15. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  16. Retention time in multiple-tunnel junction memory device

    NASA Astrophysics Data System (ADS)

    Jalil, M. B. A.; Wagner, M.; Ahmed, H.

    1999-01-01

    A computationally inexpensive approximation is obtained for the retention time of charges stored on a memory node of a multiple-tunnel junction (MTJ) memory device, based on previous simplifying assumptions by Jensen and Martinis. The approximation takes into account both thermally assisted single electron tunneling and higher order processes, or cotunneling and is in good agreement with a full master equation simulation of the device up to a temperature T≈T0/10, where T0=e2/kBC. For the case of a memory device formed within a δ-doped layer in GaAs, it is predicted that leakage due to single tunneling starts to dominate over cotunneling at temperatures above T≈T0/60, and that a sharp reduction in retention time occurs above T≈T0/100. Our analysis also shows that with the typical dimensions of present devices, a memory lifetime of a year requires the stringent condition of an 11-junction MTJ operated at below 1 K.

  17. Fluid and particulate suspension flows at fracture junctions

    NASA Astrophysics Data System (ADS)

    Lo, Tak S.; Koplik, Joel

    2015-03-01

    Suspended particles can be a serious problem in geological contexts such as fluid recovery from reservoirs because they alter the rheology of the flowing liquids and may obstruct transport by narrowing flow channels due to deposition or gravitational sedimentation. In particular, the irregular geometry of the fracture walls can trap particles, induce jamming and cause unwanted channeling effects. We have investigated particle suspension flows in tight geological fractures using lattice Boltzmann method in the past. In this work we extend these studies to flows at a junction where two fractures intersect, an essential step towards a complete understanding of flows in fracture networks. The fracture walls are modeled as realistic self-affine fractal surfaces, and we focus on the case of tight fractures, where the wall roughness, the aperture and the particle size are all comparable. The simulations provide complete detail on the particle configurations and the fluid flow field, from which the stresses in the fluid and the forces acting on the bounding walls can be computed. With these information, phenomena such as particle mixing and dispersion, mechanical responses of the solid walls, possible jamming and release at junctions, and other situations of interest can be investigated. Work supported by NERSC and DOE.

  18. Ballistic Josephson junctions in edge-contacted graphene.

    PubMed

    Calado, V E; Goswami, S; Nanda, G; Diez, M; Akhmerov, A R; Watanabe, K; Taniguchi, T; Klapwijk, T M; Vandersypen, L M K

    2015-09-01

    Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest-quality graphene/superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here, we report graphene-based Josephson junctions with one-dimensional edge contacts of molybdenum rhenium. The contacts exhibit a well-defined, transparent interface to the graphene, have a critical magnetic field of 8 T at 4 K, and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase-coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-Pérot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 μm. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state. PMID:26214253

  19. Ballistic Josephson junctions in edge-contacted graphene

    NASA Astrophysics Data System (ADS)

    Calado, V. E.; Goswami, S.; Nanda, G.; Diez, M.; Akhmerov, A. R.; Watanabe, K.; Taniguchi, T.; Klapwijk, T. M.; Vandersypen, L. M. K.

    2015-09-01

    Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest-quality graphene/superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here, we report graphene-based Josephson junctions with one-dimensional edge contacts of molybdenum rhenium. The contacts exhibit a well-defined, transparent interface to the graphene, have a critical magnetic field of 8 T at 4 K, and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase-coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-Pérot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 μm. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.

  20. Generation and Detection of THz Radiation Using Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Irie, Akinobu; Oikawa, Dai; Oya, Gin-ichiro

    We present the generation and detection of terahertz radiation using intrinsic Josephson junctions (IJJs) in Bi2Sr2CaCu2Oy single crystals. This approach allows us to detect THz radiation from large stacks consisting of a few hundred intrinsic Josephson junctions. The lateral dimensions of the fabricated IJJ oscillator mesa range from 290×50 to 290×90 μm2 and the number of IJJs which constitute the mesas is between 100 and 450, while the small mesa with the lateral dimensions of 5 × 5 μm2 is used as the high sensitive THz detector. The largest emission is always observed when the oscillator is biased at the negative resistance region of the current-voltage characteristics. We find that the emission frequency cor-responds to the second harmonics of the in-phase cavity resonance mode. This is consistent with the emission condition of the case of thick IJJ stacks reported previously.

  1. Dependence of proximity-induced supercurrent on junction length in multilayer-graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kanda, A.; Sato, T.; Goto, H.; Tomori, H.; Takana, S.; Ootuka, Y.; Tsukagoshi, K.

    2010-11-01

    We report experimental observation of the proximity-induced supercurrent in superconductor-multilayer graphene-superconductor junctions. We find that the supercurrent is a linearly decreasing function of the junction length (separation of the superconducting electrodes), which is quite different from the usual behavior of exponential dependence. We suggest that this behavior originates from the intrinsic large contact resistance between the multilayer and the superconducting electrodes.

  2. 75 FR 6094 - Modification of Class E Airspace; Grand Junction, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Federal Register a notice of proposed rulemaking to amend Class E airspace at Grand Junction, CO (74 FR... Junction, CO Grand Junction Regional, Grand Junction, CO (Lat. 39 07'21'' N., long. 108 31'36'' W.) Grand Junction VORTAC (Lat. 39 03'34'' N., long. 108 47'33'' W.) Grand Junction Localizer (Lat. 39 07'04''...

  3. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  4. The effects of junction depth and impurity concentration on ion-implanted, junction solar cells

    SciTech Connect

    Neville, R.C.

    1980-12-01

    This paper presents data resulting from tests on the experimental optimization of the ion-implanted region of horizontal junction, silicon, ion-implanted P+N and N+P solar cells. The experimental data are compared to theoretical predictions based on a simple model and to data obtained with diffused junction solar cells (1). Optimum junction depth and average ion-implanted layer concentration for ion-implanted, silicon, PN junction solar cells under non-concentrated sunlight (approximately AMI conditions) appear to be 0.5..mu..m and 5X10/sup 18/ atoms/cm/sup 3/, respectively. Variation in solar cell efficiency with junction depth is rapid between 0.1 and 0.5..mu..m. Variations of efficiency in response to changes in concentration are minimal over the range tested. Experiments under various illumination conditions indicate increasing efficiency as insolation increases from 83mw/cm/sup 2/ to 100 mw/cm/sup 2/. Comparison with diffused junction, silicon solar cells indicates a potentially greater efficiency for ion-implanted solar cells. However, variation in efficiency between individual solar cells is sufficiently great to warrant further experimentation before reaching any final conclusions.

  5. Thermopower measurements of atomic and molecular junctions using microheater-embedded mechanically-controllable break junctions

    NASA Astrophysics Data System (ADS)

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2015-03-01

    There has been growing interest in developing high-performance thermoelectric materials for realizing thermoelectric power generation. Quantum confinement effects in low-dimensional structures are expected to provide high electronic density of states for enhanced thermopower, and thus considered as a promising approach for achieving a high figure of merit (M. S. Dresselhaus et al., Adv. Mat. 19 (2007) 1043-1053). From this respect, it is interesting to study thermoelectric properties of atomic and molecular junctions and evaluate their potential as a thermoelectric material. Recently, we have developed a heater-embedded micro-fabricated mechanically-controllable break junction (MCBJ) for investigating the thermoelectric transport in single-atom and -molecule junctions. Using the MCBJ devices, we could repeatedly form stable junctions at room temperatures via a self-breaking mechanism with one side being heated by the adjacent microheater. In my presentation, I will show the results of simultaneous measurements of the thermoelectric voltage and the electrical conductance of atom-sized Au junctions and Au-benzenedithiol-Au junctions and discuss on the geometrical dependence of thermoelectric transport.

  6. Model building to facilitate understanding of holliday junction and heteroduplex formation, and holliday junction resolution.

    PubMed

    Selvarajah, Geeta; Selvarajah, Susila

    2016-07-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and computer-animated video, we included a model building activity using pipe cleaners. Biotechnology undergraduates (n = 108) used the model to simulate Holliday junction and heteroduplex formation, and Holliday junction resolution. Based on student perception, an average of 12.85 and 78.35% students claimed that they completely and partially understood the two concepts, respectively. A test conducted to ascertain their understanding about the two concepts showed that 66.1% of the students provided the correct response to the three multiple choice questions. A majority of the 108 students attributed the inclusion of model building to their better understanding of Holliday junction and heteroduplex formation, and Holliday junction resolution. This underlines the importance of incorporating model building, particularly in concepts that require spatial visualization. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):381-390, 2016. PMID:26899144

  7. Transperitoneal laparoscopic pyeloplasty in the treatment of ureteropelvic junction obstruction

    PubMed Central

    Gregorio, Sergio Alonso y; Eastmond, María A. Portilla; Gómez, Angel Tabernero; Ledo, Jesús Cisneros; Togores, Luis Hidalgo; Barthel, Jesús Javier de la Peña

    2013-01-01

    Introduction Laparoscopic pyeloplasty was first described by Schuessler. During the last decade, this technique has been developed in order to achieve the same results as open surgery, with lower rates of morbidity and complications. In this study we review our experience using laparoscopic pyeloplasty as the gold standard for the treatment of the ureteropelvic junction obstruction (UPJO). Material and methods We performed a retrospective review of 62 laparoscopic pyeloplasties carried out at our center. In the last 2 years we used 3 mm and 5 mm ports in order to achieve better cosmetics results. Demographic data is described and the functionality of the affected kidney and surgical data, among others were analyzed statistically. In the case of bilateral statistical tests were considered significant as those with p values <0.05. Results The most frequent reason for consultation was ureteral pain. Patients mean age was 40 years and 94% of them had preoperative renogram showing a full or partial obstructive pattern. The right side was affected in 61% of cases and the left in the remaining 39%. The presence of stones was observed in 12 patients and crossing vessels in 58% of cases. The average stay was 3.72 days. Post–surgery complications were observed in two patients. The operative time was 178 minutes. Mean follow–up was 45 months and a success was achieved in 91%. Conclusions The transperitoneal laparoscopic pyeloplasty has become the gold standard for the treatment of ureteropelvic junction stenosis in our center because of high success rate, shorter postoperative stay, and low intra and postoperative complications. PMID:24707387

  8. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis.

    PubMed

    Plumb, Jonnie; McQuaid, Stephen; Mirakhur, Meenakshi; Kirk, John

    2002-04-01

    Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing-remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil-red-O-positive active plaques but less frequent in NAWM (15%), and in normal (< 2%) and neurological controls (6%). Putatively "open" junctions were seen in vessels in active lesions and in microscopically inflamed vessels in NAWM. Dual fluorescence revealed abnormal TJs in vessels with pre-mortem serum protein leakage. Abnormal or open TJs, associated with inflammation may contribute to BBB leakage in enhancing MRI lesions and may also be involved in subtle leakage in non-enhancing focal and diffuse lesions in NAWM. BBB disruption due to tight junctional pathology should be regarded as a significant form of tissue injury in MS, alongside demyelination and axonopathy. PMID:11958369

  9. Endoscopic Transnasal Approach for Urgent Decompression of the Craniocervical Junction in Acute Skull Base Osteomyelitis

    PubMed Central

    Burns, Terry C.; Mindea, Stefan A.; Pendharkar, Arjun V.; Lapustea, Nicolae B.; Irime, Ioana; Nayak, Jayakar V.

    2015-01-01

    Ventral epidural abscess with osteomyelitis at the craniocervical junction is a rare occurrence that typically mandates spinal cord decompression via a transoral approach. However, given the potential for morbidity with transoral surgery, especially in the setting of immunosuppression, together with the advent of extended endonasal techniques, the transnasal approach could be attractive for selected patients. We present two cases of ventral epidural abscess and osteomyelitis at the craniocervical junction involving C1/C2 that were successfully treated via the endoscopic transnasal approach. Both were treated in staged procedures involving posterior cervical fusion followed by endoscopic transnasal resection of the ventral C1 arch and odontoid process for decompression of the ventral spinal cord and medulla. Dural repairs were successfully performed using multilayered, onlay techniques where required. Both patients tolerated surgery exceedingly well, had brief postoperative hospital stays, and recovered uneventfully to their neurologic baselines. Postoperative magnetic resonance imaging confirmed complete decompression of the foramen magnum and upper C-spine. These cases illustrate the advantages and low morbidity of the endonasal endoscopic approach to the craniocervical junction in the setting of frank skull base infection and immunosuppression, representing to our knowledge a unique application of this technique to osteomyelitis and epidural abscess at the craniocervical junction. PMID:26251807

  10. A model of dopant diffusion through a strongly correlated p-n junction

    NASA Astrophysics Data System (ADS)

    Wieteska, Jedrzej; Brierley, Richard; Guzman-Verri, Gian; Moller, Gunnar; Littlewood, Peter; Littlewood group Collaboration

    The diffusion of charged ions in a solid depends on an equation of state that balances diffusive and screened electrostatic forces, and is well understood in the case of conventional semiconductors and metals. In the case of a strongly-correlated material, the physics is different, and expected to be relevant, for example, in Li-ion battery cathodes. We propose a model of dopant ion motion through a strongly correlated p-n junction. Our approach is to consider diffusive (Nernst-Planck) dynamics of dopants under screened electrostatic interactions computed within a mean-field (Thomas-Fermi) approximation. Dopant profiles as function of time are calculated for a p-n junction held at constant voltage. In the case where filling levels are near a correlation-induced gap, Mott insulating regions can form at the p-n interface and their dynamics is studied.

  11. Connexin26 regulates assembly and maintenance of cochlear gap junction macromolecular complex for normal hearing

    NASA Astrophysics Data System (ADS)

    Kamiya, Kazusaku; Fukunaga, Ichiro; Hatakeyama, Kaori; Ikeda, Katsuhisa

    2015-12-01

    Hereditary deafness affects about 1 in 2000 children and GJB2 gene mutation is most frequent cause for this disease in the world. GJB2 encodes connexin26 (Cx26), a component in cochlear gap junction. Recently, we found macromolecular change of gap junction plaques with two different types of Cx26 mutation as major classification of clinical case, one is a model of dominant negative type, Cx26R75W+ and the other is conditional gene deficient mouse, Cx26f/fP0Cre as a model for insufficiency of gap junction protein [6]. Gap junction composed mainly of Cx26 and Cx30 in wild type mice formed large planar gap junction plaques (GJP). In contrast, Cx26R75W+ and Cx26f/fP0Cre showed fragmented small round GJPs around the cell border. In Cx26f/fP0Cre, some of the cells with Cx26 expression due to their cellular mosaicism showed normal large GJP with Cx26 and Cx30 only at the cell junction site between two Cx26 positive cells. These indicate that bilateral Cx26 expressions from both adjacent cells are essential for the formation of the cochlear linear GJP, and it is not compensated by other cochlear Connexins such as Connexin30. In the present study, we demonstrated a new molecular pathology in most common hereditary deafness with different types of Connexin26 mutations, and this machinery can be a new target for drag design of hereditary deafness.

  12. The critical current of point symmetric Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-06-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  13. Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions.

    PubMed

    Ozden, Sehmus; Yang, Yang; Tiwary, Chandra Sekhar; Bhowmick, Sanjit; Asif, Syed; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M

    2016-01-13

    Here we report a unique method to locally determine the mechanical response of individual covalent junctions between carbon nanotubes (CNTs), in various configurations such as "X", "Y", and "Λ"-like. The setup is based on in situ indentation using a picoindenter integrated within a scanning electron microscope. This allows for precise mapping between junction geometry and mechanical behavior and uncovers geometry-regulated junction stiffening. Molecular dynamics simulations reveal that the dominant contribution to the nanoindentation response is due to the CNT walls stretching at the junction. Targeted synthesis of desired junction geometries can therefore provide a "structural alphabet" for construction of macroscopic CNT networks with tunable mechanical response. PMID:26618517

  14. Effect of disorder on longitudinal resistance of a graphene p-n junction in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Chai; Yeung, T. C. Au; Sun, Qing-Feng

    2010-06-01

    The longitudinal resistances of a six-terminal graphene p-n junction under a perpendicular magnetic field are investigated. Because of the chirality of the Hall edge states, the longitudinal resistances on top and bottom edges of the graphene ribbon are not equal. In the presence of suitable disorder, the top-edge and bottom-edge resistances well show the plateau structures in the both unipolar and bipolar regimes, and the plateau values are determined by the Landau filling factors only. These plateau structures are in excellent agreement with the recent experiment. For the unipolar junction, the resistance plateaus emerge in the absence of impurity and they are destroyed by strong disorder. But for the bipolar junction, the resistances are very large without the plateau structures in the clean junction. The disorder can strongly reduce the resistances and leads the formation of the resistance plateaus due to the mixture of the Hall edge states in virtue of the disorder. In addition, the size effect of the junction on the resistances is studied and some extra resistance plateaus are found in the long graphene junction case. This is explained by the fact that only part of the edge states participate in the full mixing.

  15. Solitary Psoas Muscle Metastasis of Gastroesphageal Junction Adenocarcinoma

    PubMed Central

    Azadeh, Payam; Yaghobi Joybari, Ali; Sarbaz, Samaneh; Ghiasi, Hosein Ali; Farasatinasab, Maryam

    2016-01-01

    Metastasis of gastroesphageal junction (GEJ) adenocarcinoma in skeletal muscle is rare and primary sites for skeletal muscle metastases are usually lung, renal and colorectal cancer. We have encountered with the first case report of solitary psoas muscle metastasis of GEJ adenocarcinoma. Here we describe a 65 years old man was diagnosed with GEJ adenocarcinoma in Gastroenterology Department, Imam Hussein Hospital, Tehran, Iran in February 2014. We were not able to use PET techniques due to lack of access. Staging CT scans demonstrated a small mass lateral to right psoas muscle. A CT-guided core needle biopsy of right psoas muscle was performed that supported a diagnosis of adenocarcinoma consistent with primary adenocarcinoma of the GEJ. Distant metastasis to skeletal muscle rarely occurs in patients with GEJ adenocarcinoma, but heightened awareness to these soft tissue lesions is warranted. CT or MR imaging could show findings suggestive of metastatic disease, although PET is preferable modality. PMID:26870148

  16. High-performance passive microwave survey on Josephson junctions

    SciTech Connect

    Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M.

    1994-12-31

    The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.

  17. Cranio-vertebral junction anomaly: atlanto-occipital assimilation.

    PubMed

    Pooja Jain, -; Khursheed Raza, -; Chiman Kumari, -; Manisha Hansda, -; Sb Ray, -

    2016-01-01

    Cranio-vertebral junction is a pivot which holds the globe of the head. Bony anomalies at this point are particularly significant because they lodge the spinal cord and lower part of the brain stem. Clinically fusion of the atlas with the lower part of the occiput is known as Atlanto-occipital assimilation or atlas occipitalization, which can be either partial or complete depending upon the extent of fusion. It can present as totally asymptomatic accidental finding or can be a cause behind major neuro-vascular compression. The present case study is an endeavor to explain occipitalization of atlas bone on the basis of embryology and explain its clinical relevance. PMID:27424507

  18. Cascade of parametric resonances in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Rahmonov, I. R.; Botha, A. E.

    2016-06-01

    We found that the coupled system of Josephson junctions under external electromagnetic radiation demonstrates a cascade of parametric instabilities. These instabilities appear along the IV characteristics within bias current intervals corresponding to Shapiro step subharmonics and lead to charging in the superconducting layers. The amplitudes of the charge oscillations increase with increasing external radiation power. We demonstrate the existence of longitudinal plasma waves at the corresponding bias current values. An essential advantage of the parametric instabilities in the case of subharmonics is the lower amplitude of radiation that is needed for the creation of the longitudinal plasma wave. This fact gives a unique possibility to create and control longitudinal plasma waves in layered superconductors. We propose a novel experiment for studying parametric instabilities and the charging of superconducting layers based on the simultaneous variation of the bias current and radiation amplitude.

  19. Scattering to different vortex polarity in coupled long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Osborn, Kevin D.

    We theoretically study the motion of flux vortices (fluxons) in structures made from discrete long Josephson junctions (DLJJs) which may have applications in the fields of reversible and low-power computing. We investigate the scattering of fluxons at specially designed interfaces where multiple DLJJs meet. Once fluxons approach the interface, flux oscillations at the interface can be temporarily excited before the fluxons continue along to another DLJJ. Under some conditions the fluxons will change their polarity (to antifluxons) and in other cases the fluxon continues without a change in polarity. We explain the dynamics through the resonant interaction of the soliton with bound states at the interface. We also study a controlled polarity gate, where the polarity of the target fluxon depends on a control fluxon which enters and exits the interface through separate DLJJs.

  20. Stereoelectronic switching in single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Li, Haixing; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2015-03-01

    A new intersection between reaction chemistry and electronic circuitry is emerging from the ultraminiaturization of electronic devices. Over decades chemists have developed a nuanced understanding of stereoelectronics to establish how the electronic properties of molecules relate to their conformation; the recent advent of single-molecule break-junction techniques provides the means to alter this conformation with a level of control previously unimagined. Here we unite these ideas by demonstrating the first single-molecule switch that operates through a stereoelectronic effect. We demonstrate this behaviour in permethyloligosilanes with methylthiomethyl electrode linkers. The strong σ conjugation in the oligosilane backbone couples the stereoelectronic properties of the sulfur-methylene σ bonds that terminate the molecule. Theoretical calculations support the existence of three distinct dihedral conformations that differ drastically in their electronic character. We can shift between these three species by simply lengthening or compressing the molecular junction, and, in doing so, we can switch conductance digitally between two states.

  1. Fabrication and characterization of graphene PN junctions

    NASA Astrophysics Data System (ADS)

    Wang, Dennis; Zhou, Xiaodong; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark; Ross, Frances; Pasupathy, Abhay

    Theoretical predictions of relativistic Klein tunneling and Veselago lensing in graphene have inspired efforts to fabricate graphene p-n junctions where such phenomena could be realized and studied via electronic transport or scanning tunneling microscopy (STM). Here we will discuss the interplay between device geometry and our measurements in a 4-probe STM, which allows for simultaneous back gating, biasing, and scanning of a micromechanically exfoliated graphene sample. A sharp p-n junction is essential to the manifestation of these aforementioned effects, and we examine the benefits and drawbacks of several routes toward this goal from a fabrication standpoint. These methods include lithographically pre-patterned substrates and the stacking of vertical heterostructures. Finally, we will describe our subsequent characterization results for each, including information about topography and spatial mapping of the density of states. This work is supported by NSF IGERT (DGE-1069240).

  2. Junction conditions in extended Teleparallel gravities

    SciTech Connect

    De la Cruz-Dombriz, Álvaro; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  3. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  4. Magnetoamplification in a Bipolar Magnetic Junction Transistor

    NASA Astrophysics Data System (ADS)

    Rangaraju, N.; Peters, J. A.; Wessels, B. W.

    2010-09-01

    We have demonstrated the first bipolar magnetic junction transistor using a dilute magnetic semiconductor. For an InMnAs p-n-p transistor magnetoamplification is observed at room temperature. The observed magnetoamplification is attributed to the magnetoresistance of the magnetic semiconductor InMnAs heterojunction. The magnetic field dependence of the transistor characteristics confirm that the magnetoamplification results from the junction magnetoresistance. To describe the experimentally observed transistor characteristics, we propose a modified Ebers-Moll model that includes a series magnetoresistance attributed to spin-selective conduction. The capability of magnetic field control of the amplification in an all-semiconductor transistor at room temperature potentially enables the creation of new computer logic architecture where the spin of the carriers is utilized.

  5. Laminin 332 in junctional epidermolysis bullosa.

    PubMed

    Kiritsi, Dimitra; Has, Cristina; Bruckner-Tuderman, Leena

    2013-01-01

    Laminin 332 is an essential component of the dermal-epidermal junction, a highly specialized basement membrane zone that attaches the epidermis to the dermis and thereby provides skin integrity and resistance to external mechanical forces. Mutations in the LAMA3, LAMB3 and LAMC2 genes that encode the three constituent polypeptide chains, α3, β3 and γ2, abrogate or perturb the functions of laminin 332. The phenotypic consequences are diminished dermal-epidermal adhesion and, as clinical symptoms, skin fragility and mechanically induced blistering. The disorder is designated as junctional epidermolysis bullosa (JEB). This article delineates the signs and symptoms of the different forms of JEB, the mutational spectrum, genotype-phenotype correlations as well as perspectives for future molecular therapies. PMID:23076207

  6. Dissipation and traversal time in Josephson junctions

    SciTech Connect

    Cacciari, Ilaria; Ranfagni, Anedio; Moretti, Paolo

    2010-05-01

    The various ways of evaluating dissipative effects in macroscopic quantum tunneling are re-examined. The results obtained by using functional integration, while confirming those of previously given treatments, enable a comparison with available experimental results relative to Josephson junctions. A criterion based on the shortening of the semiclassical traversal time tau of the barrier with regard to dissipation can be established, according to which DELTAtau/tau > or approx. N/Q, where Q is the quality factor of the junction and N is a numerical constant of order unity. The best agreement with the experiments is obtained for N=1.11, as it results from a semiempirical analysis based on an increase in the potential barrier caused by dissipative effects.

  7. Vibrational Heat Transport in Molecular Junctions.

    PubMed

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules. PMID:27215814

  8. Cusps on cosmic superstrings with junctions

    SciTech Connect

    Davis, Anne-Christine; Rajamanoharan, Senthooran; Nelson, William; Sakellariadou, Mairi E-mail: william.nelson@kcl.ac.uk E-mail: mairi.sakellariadou@kcl.ac.uk

    2008-11-15

    The existence of cusps on non-periodic strings ending on D-branes is demonstrated and the conditions for which such cusps are generic are derived. The dynamics of F-strings, D-strings and FD-string junctions are investigated. It is shown that pairs of FD-string junctions, such as would form after intercommutations of F-strings and D-strings, generically contain cusps. This new feature of cosmic superstrings opens up the possibility of extra channels of energy loss from a string network. The phenomenology of cusps on such cosmic superstring networks is compared to that of cusps formed on networks of their field theory analogues, the standard cosmic strings.

  9. Boson Josephson Junction with Trapped Atoms

    NASA Astrophysics Data System (ADS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates at T=0 in a double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. Analytic elliptic function solutions are obtained for the time evolution of the inter-well fractional population imbalance z(t) (related to the condensate phase difference) of the Boson Josephson junction (BJJ). Surprisingly, the neutral-atom BJJ shows (non-sinusoidal generalizations of) effects seen in charged-electron superconductor Josephson junctions (SJJ). The BJJ elliptic-function behavior has a singular dependence on a GPE parameter ratio Λ at a critical ratio Λ=Λc, beyond which a novel 'macroscopic quantum self-trapping' effect sets in with a non-zero time-averaged imbalance ≠0.

  10. Laminin 332 in junctional epidermolysis bullosa

    PubMed Central

    Kiritsi, Dimitra; Has, Cristina; Bruckner-Tuderman, Leena

    2013-01-01

    Laminin 332 is an essential component of the dermal-epidermal junction, a highly specialized basement membrane zone that attaches the epidermis to the dermis and thereby provides skin integrity and resistance to external mechanical forces. Mutations in the LAMA3, LAMB3 and LAMC2 genes that encode the three constituent polypeptide chains, α3, β3 and γ2, abrogate or perturb the functions of laminin 332. The phenotypic consequences are diminished dermal-epidermal adhesion and, as clinical symptoms, skin fragility and mechanically induced blistering. The disorder is designated as junctional epidermolysis bullosa (JEB). This article delineates the signs and symptoms of the different forms of JEB, the mutational spectrum, genotype-phenotype correlations as well as perspectives for future molecular therapies. PMID:23076207

  11. Lycopene oxidation product enhances gap junctional communication.

    PubMed

    Aust, O; Ale-Agha, N; Zhang, L; Wollersen, H; Sies, H; Stahl, W

    2003-10-01

    Carotenoids as well as their metabolites and oxidation products stimulate gap junctional communication (GJC) between cells, which is thought to be one of the protective mechanisms related to cancer-preventive activities of these compounds. Increased intake of lycopene by consumption of tomatoes or tomato products has been epidemiologically associated with a diminished risk of prostate cancer. Here, we report a stimulatory effect of a lycopene oxidation product on GJC in rat liver epithelial WB-F344 cells. The active compound was obtained by complete in vitro oxidation of lycopene with hydrogen peroxide/osmium tetroxide. For structural analysis high performance liquid chromatography, gas chromatography coupled with mass spectrometry, ultraviolet/visible-, and infrared spectrophotometry were applied. The biologically active oxidation product was identified as 2,7,11-trimethyl-tetradecahexaene-1,14-dial. The present data indicate a potential role of lycopene degradation products in cell signaling enhancing cell-to-cell communication via gap junctions. PMID:12909274

  12. Spinal subdural hematoma revealing hemophilia A in a child: A case report

    PubMed Central

    Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Bakhtiari, Abbas; Mostajabi, Pardis

    2003-01-01

    Background Intraspinal bleeding especially in the form of subdural hematoma is rare in hemophiliacs. In the present case, we report a neglected hemophilic A child with such a problem and discuss its management options. Case Presentation A 9-year old hemophilic A boy presented with quadriparesis, confusion and meningismus after a fall 4 days previously. There was no sign of direct trauma to his back. His CT Scan and MRI showed spinal extramedullary hematoma extended from C5 to L2. We corrected the factor VIII level, but two days later, the patient's lower limbs weakened to 1/5 proximally as well as distally. We performed a laminectomy from T11 to L2, according to the level of the maximal neurological deficit and recent deterioration course. The subdural hematoma was evacuated. The hematoma in other spinal levels was managed conservatively. In the week following the operation, the patient's neurological status approached normal. Conclusion This case calls attention to the clinical manifestation, radiological features and management options of the rarely reported intraspinal hematoma in hemophilic children. Although this case has been managed operatively for its hematoma in the thoracolumbar region, at the same time it can be considered a successful case of conservative management of intraspinal hematoma in the cervicothoracic region. Both conservative and surgical management could be an option in managing these patients considering their neurological course. PMID:12904268

  13. Spinal subdural hematoma revealing hemophilia A in a child: A case report.

    PubMed

    Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Bakhtiari, Abbas; Mostajabi, Pardis

    2003-08-01

    BACKGROUND: Intraspinal bleeding especially in the form of subdural hematoma is rare in hemophiliacs. In the present case, we report a neglected hemophilic A child with such a problem and discuss its management options. CASE PRESENTATION: A 9-year old hemophilic A boy presented with quadriparesis, confusion and meningismus after a fall 4 days previously. There was no sign of direct trauma to his back. His CT Scan and MRI showed spinal extramedullary hematoma extended from C5 to L2. We corrected the factor VIII level, but two days later, the patient's lower limbs weakened to 1/5 proximally as well as distally. We performed a laminectomy from T11 to L2, according to the level of the maximal neurological deficit and recent deterioration course. The subdural hematoma was evacuated. The hematoma in other spinal levels was managed conservatively. In the week following the operation, the patient's neurological status approached normal. CONCLUSION: This case calls attention to the clinical manifestation, radiological features and management options of the rarely reported intraspinal hematoma in hemophilic children. Although this case has been managed operatively for its hematoma in the thoracolumbar region, at the same time it can be considered a successful case of conservative management of intraspinal hematoma in the cervicothoracic region. Both conservative and surgical management could be an option in managing these patients considering their neurological course. PMID:12904268

  14. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect

    Beach, Robert; Prahl, Duncan; Lange, Rich

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  15. Josephson Junctions Help Measure Resonance And Dispersion

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid H. S.; Mcgrath, William R.; Bumble, Bruce; Leduc, Henry G.

    1994-01-01

    Electrical characteristics of superconducting microstrip transmission lines measured at millimeter and submillimeter wavelengths. Submicron Josephson (super-conductor/insulator/superconductor) junctions used as both voltage-controlled oscillators and detectors to measure frequencies (in range of hundreds of gigahertz) of high-order resonant electromagnetic modes of superconducting microstrip transmission-line resonators. This oscillator/detector approach similar to vacuum-tube grid dip meters and transistor dip meters used to probe resonances at much lower frequencies.

  16. Electron irradiation of tandem junction solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.; Scott-Monck, J. A.

    1979-01-01

    The electrical behavior of 100 micron thick tandem junction solar cells manufactured by Texas Instruments was studied as a function of 1 MeV electron fluence, photon irradiation, and 60 C annealing. These cells are found to degrade rapidly with radiation, the most serious loss occurring in the blue end of the cell's spectral response. No photon degradation was found to occur, but the cells did anneal a small amount at 60 C.

  17. Peltier Junction heats and cools car seat

    SciTech Connect

    Gottschalk, M.A.

    1994-10-10

    Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

  18. Semiconductor junction formation by directed heat

    DOEpatents

    Campbell, Robert B.

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  19. Electronic and optical spectroscopy of molecular junctions

    NASA Astrophysics Data System (ADS)

    Preiner, Michael J.

    Electronic transport through molecules has been intensively studied in recent years, due to scientific interest in fundamental questions about charge transport and the technological promise of nanoscale circuitry. A wide range of range of experimental platforms have been developed to electronically probe both single molecules and molecular monolayers. However, it remains challenging to fabricate reliable electronic contacts to molecules, and the vast majority of molecular electronic architectures are not amenable to standard characterization techniques, such as optical spectroscopy. Thus the field of molecular electronics has been hampered with problems of reproducibility, and many fundamental questions about electronic transport remain unanswered. This thesis describes four significant contributions towards the fabrication and characterization of molecular electronic devices: (1) The development of a new method for creating robust, large area junctions where the electronic transport is through a single monolayer of molecules. This method utilizes atomic layer deposition (ALD) to grow an ultrathin oxide layer on top of a molecular monolayer, which protects the molecules against subsequent processing. (2) A new method for rapid imaging and analysis of single defects in molecular monolayers. This method also electrically passivates defects as it labels them. (3) Hot carrier spectroscopy of molecular junctions. Using optically excited hot carriers, we demonstrate the ability to probe the energy level lineup inside buried molecular junctions. (4) Efficient coupling of optical fields to metal-insulator-metal (MIM) surface plasmon modes. We show both theoretical and experimental work illustrating the ability to create very intense optical fields inside MIM systems. The intense fields generated in this manner have natural extensions to a variety of applications, such as photon assisted tunneling in molecular junctions, optical modulators, and ultrafast optoelectronic

  20. An epitaxial ferroelectric tunnel junction on silicon.

    PubMed

    Li, Zhipeng; Guo, Xiao; Lu, Hui-Bin; Zhang, Zaoli; Song, Dongsheng; Cheng, Shaobo; Bosman, Michel; Zhu, Jing; Dong, Zhili; Zhu, Weiguang

    2014-11-12

    Epitaxially grown functional perovskites on silicon (001) and the ferroelectricity of a 3.2 nm thick BaTiO3 barrier layer are demonstrated. The polarization-switching-induced change in tunneling resistance is measured to be two orders of magnitude. The obtained results suggest the possibility of integrating ferroelectric tunnel junctions as binary data storage media in non-volatile memory cells on a silicon platform. PMID:25200550

  1. Quantum dynamics in the bosonic Josephson junction

    SciTech Connect

    Chuchem, Maya; Cohen, Doron; Smith-Mannschott, Katrina; Hiller, Moritz; Kottos, Tsampikos; Vardi, Amichay

    2010-11-15

    We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.

  2. Cancer of the oesophagus and gastroesophageal junction – a difficult clinical problem

    PubMed Central

    Kot, Marta; Kotucha, Bartłomiej; Stępień, Renata; Kozieł, Dorota

    2014-01-01

    Introduction Cancer located in the oesophagus and gastroesophageal junction is a complex clinical problem and the results of its treatment still remain unsatisfactory. The objective of the study was the clinical analysis of a group of patients with cancer of the oesophagus or gastroesophageal junction, who received combined medical and surgical treatment. Material and methods The analysis was performed on a group of 128 patients with the diagnosis of oesophageal cancer or cancer of the gastroesophageal junction. Analysis of medical records and follow-up examinations were used in the research procedure. Results From among 128 patients with a diagnosis of oesophageal or gastroesophageal junction cancer, 50 (38.5%) received surgical resections. The surgery most frequently performed (n = 15) was sub-total oesophageal resection according to Akiyama procedure by right-sided thoracotomy (oesophageal anastomosis in the neck). The largest group were patients (n = 26) with stage T3N1M0 of advancement of the disease. In all cases of cancer located in the lower third of the oesophagus, an adenocarcinoma pattern was diagnosed in the histopathological examination, whereas in the case of cancers located in the middle third and upper third of the thoracic oesophagus a carcinoma planoepitheliale pattern was seen. Anastomotic leaks occurred in seven patients (14%). Six patients died during the post-operative period (12%). The mean survival time in the group of analysed patients was two years. Conclusions Cancer of the oesophagus or gastroesophageal junction is associated with low resectability, high risk of complications after surgery, and poor oncologic outcome. It is necessary to seek new methods of treatment. PMID:25477759

  3. Single-molecule junctions beyond electronic transport

    NASA Astrophysics Data System (ADS)

    Aradhya, Sriharsha V.; Venkataraman, Latha

    2013-06-01

    The idea of using individual molecules as active electronic components provided the impetus to develop a variety of experimental platforms to probe their electronic transport properties. Among these, single-molecule junctions in a metal-molecule-metal motif have contributed significantly to our fundamental understanding of the principles required to realize molecular-scale electronic components from resistive wires to reversible switches. The success of these techniques and the growing interest of other disciplines in single-molecule-level characterization are prompting new approaches to investigate metal-molecule-metal junctions with multiple probes. Going beyond electronic transport characterization, these new studies are highlighting both the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the atomic and molecular scales. Furthermore, experimental demonstrations of quantum interference and manipulation of electronic and nuclear spins in single-molecule circuits are heralding new device concepts with no classical analogues. In this Review, we present the emerging methods being used to interrogate multiple properties in single molecule-based devices, detail how these measurements have advanced our understanding of the structure-function relationships in molecular junctions, and discuss the potential for future research and applications.

  4. Radial pn Junction, Wire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Kayes, Brendan Melville

    Radial pn junctions are potentially of interest in photovoltaics as a way to decouple light absorption from minority carrier collection. In a traditional planar design these occur in the same dimension, and this sets a lower limit on absorber material quality, as cells must both be thick enough to effectively absorb the solar spectrum while also having minority-carrier diffusion lengths long enough to allow for efficient collection of the photo-generated carriers. Therefore, highly efficient photovoltaic devices currently require highly pure materials and expensive processing techniques, while low cost devices generally operate at relatively low efficiency. The radial pn junction design sets the direction of light absorption perpendicular to the direction of minority-carrier transport, allowing the cell to be thick enough for effective light absorption, while also providing a short pathway for carrier collection. This is achieved by increasing the junction area, in order to decrease the path length any photogenerated minority carrier must travel, to be less than its minority carrier diffusion length. Realizing this geometry in an array of semiconducting wires, by for example depositing a single-crystalline inorganic semiconducting absorber layer at high deposition rates from the gas phase by the vapor-liquid-solid (VLS) mechanism, allows for a "bottom up" approach to device fabrication, which can in principle dramatically reduce the materials costs associated with a cell.

  5. Very large thermophase in ferromagnetic Josephson junctions.

    PubMed

    Giazotto, F; Heikkilä, T T; Bergeret, F S

    2015-02-13

    The concept of thermophase refers to the appearance of a phase gradient inside a superconductor originating from the presence of an applied temperature bias across it. The resulting supercurrent flow may, in suitable conditions, fully counterbalance the temperature-bias-induced quasiparticle current therefore preventing the formation of any voltage drop, i.e., a thermovoltage, across the superconductor. Yet, the appearance of a thermophase is expected to occur in Josephson-coupled superconductors as well. Here, we theoretically investigate the thermoelectric response of a thermally biased Josephson junction based on a ferromagnetic insulator. In particular, we predict the occurrence of a very large thermophase that can reach π/2 across the contact for suitable temperatures and structure parameters; i.e., the quasiparticle thermal current can reach the critical current. Such a thermophase can be several orders of magnitude larger than that predicted to occur in conventional Josephson tunnel junctions. In order to assess experimentally the predicted very large thermophase, we propose a realistic setup realizable with state-of-the-art nanofabrication techniques and well-established materials, based on a superconducting quantum interference device. This effect could be of strong relevance in several low-temperature applications, for example, for revealing tiny temperature differences generated by coupling the electromagnetic radiation to one of the superconductors forming the junction. PMID:25723238

  6. Josephson Effect in SFNS Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Karminskaya, T. Yu.; Kupriyanov, M. Yu.; Golubov, A. A.; Sidorenko, A. S.

    The critical current, I C, of Josephson junctions both in ramp-type (S-FN-S) and in overlap (SNF-FN-FNS, SN-FN-NS, SNF-N-FNS) geometries has been calculated in the frame of linearized Usadel equations (S-superconductor, F-ferromagnetic, N-normal metal). For the ramp-type structures, in which S electrodes contact directly the end walls of FN bilayer, it is shown that I C may exhibit damping oscillations as a function of both the distance L between superconductors and thicknesses d F,N of ferromagnetic and normal layers. The conditions have been determined under which the decay length and period of oscillation of I C(L) at fixed d F are of the order of decay length of superconducting correlations in the N metal, ξN, that is much larger than in F film. In overlap configurations, in which S films are placed on the top of NF bilayer, the studied junctions have complex SNF or SN electrodes (N or NF bilayer are situated under a superconductor). We demonstrate that in these geometries the critical current can exceed that in ramp-type junctions. Based on these results, the choice of the most practically applicable geometry is discussed.

  7. Primary thermometry with nanoscale tunnel junctions

    SciTech Connect

    Hirvi, K.P.; Kauppinen, J.P.; Paalanen, M.A.; Pekola, J.P.

    1995-10-01

    We have found current-voltage (I-V) and conductance (dI/dV) characteristics of arrays of nanoscale tunnel junctions between normal metal electrodes to exhibit suitable features for primary thermometry. The current through a uniform array depends on the ratio of the thermal energy k{sub B}T and the electrostatic charging energy E{sub c} of the islands between the junctions and is completely blocked by Coulomb repulsion at T=0 and at small voltages eV/2 {<=} Ec. In the opposite limit, k{sub B}T {much_gt} E{sub c}, the width of the conductance minimum scales linearly and universally with T and N, the number of tunnel junctions, and qualifies as a primary thermometer. The zero bias drop in the conductance is proportional to T{sup -1} and can be used as a secondary thermometer. We will show with Monte Carlo simulations how background charge and nonuniformities of the array will affect the thermometer.

  8. Immunohistochemical analysis of the skin in junctional epidermolysis bullosa using laminin 5 chain specific antibodies is of limited value in predicting the underlying gene mutation.

    PubMed

    McMillan, J R; McGrath, J A; Pulkkinen, L; Kon, A; Burgeson, R E; Ortonne, J P; Meneguzzi, G; Uitto, J; Eady, R A

    1997-06-01

    The anchoring filament protein laminin 5 is composed of three polypeptide chains (alpha 3, beta 3 and gamma 2) each encoded by separate genes (LAMA3, LAMB3 and LAMC2, respectively). Mutations in any of these three genes may give rise to the autosomal recessive blistering skin disease, junctional epidermolysis bullosa. At present, there is no easy way of predicting which of these three genes might harbour the pathogenetic laminin 5 mutations in a case of junctional epidermolysis bullosa. In this study, we assessed whether immunohistochemistry might be helpful in this regard. We performed immunohistochemical labelling of the dermal-epidermal junction using alpha 3, beta 3 and gamma 2 chain-specific antibodies in 11 patients with junctional epidermolysis bullosa, in whom the laminin 5 mutations had been previously delineated. Although, labelling for the laminin 5 chain bearing the mutations was attenuated or undetectable in all cases, a complete absence of labelling or a reduction in the staining intensity for the other two chains was also seen in all cases. The results showed that immunohistochemical labelling of the dermal-epidermal junction using alpha 3, beta 3 and gamma 2 chain-specific antibodies is not a specific indicator for which of the laminin 5 chain genes contains the pathogenetic mutations, and is therefore unreliable in screening for individual laminin 5 gene mutations in cases of junctional epidermolysis bullosa. PMID:9217810

  9. Fermionic approach to junctions of multiple quantum wires attached to Tomonaga-Luttinger liquid leads

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Affleck, Ian

    2016-07-01

    Junctions of multiple one-dimensional quantum wires of interacting electrons have received considerable theoretical attention as a basic constituent of quantum circuits. While results have been obtained on these models using bosonization and density-matrix renormalization-group (DMRG) methods, another powerful technique is based on direct perturbation theory in the bulk interactions combined with the renormalization group. This technique has so far only been applied to the case in which finite-length interacting wires are attached to noninteracting Fermi liquid leads. We extend this method to cover the case of infinite-length interacting leads, obtaining results on two- and three-lead junctions in good agreement with previous bosonization and DMRG results.

  10. Quantum critical points in tunneling junction of topological superconductor and topological insulator

    NASA Astrophysics Data System (ADS)

    Zuo, Zheng-Wei; Kang, Da-wei; Wang, Zhao-Wu; Li, Liben

    2016-08-01

    The tunneling junction between one-dimensional topological superconductor and integer (fractional) topological insulator (TI), realized via point contact, is investigated theoretically with bosonization technology and renormalization group methods. For the integer TI case, in a finite range of edge interaction parameter, there is a non-trivial stable fixed point which corresponds to the physical picture that the edge of TI breaks up into two sections at the junction, with one side coupling strongly to the Majorana fermion and exhibiting perfect Andreev reflection, while the other side decouples, exhibiting perfect normal reflection at low energies. This fixed point can be used as a signature of the Majorana fermion and tested by nowadays experiment techniques. For the fractional TI case, the universal low-energy transport properties are described by perfect normal reflection, perfect Andreev reflection, or perfect insulating fixed points dependent on the filling fraction and edge interaction parameter of fractional TI.

  11. Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization

    NASA Astrophysics Data System (ADS)

    Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng

    With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.

  12. Gate-Controlled P-I-N Junction Switching Device with Graphene Nanoribbon

    NASA Astrophysics Data System (ADS)

    Nakaharai, Shu; Iijima, Tomohiko; Ogawa, Shinichi; Miyazaki, Hisao; Li, Songlin; Tsukagoshi, Kazuhito; Sato, Shintaro; Yokoyama, Naoki

    2012-02-01

    The concept of a novel graphene P-I-N junction switching device with a nanoribbon is proposed, and its basic operation is demonstrated in an experiment. The concept aims to optimize the operation scheme for graphene transistors toward a superior on-off property. The device has two bulk graphene regions where the carrier type is electrostatically controlled by a top-gate, and these two regions are separated by a nanoribbon which works as insulator. As a result, the device forms a (P or N)-I-(P or N) junction. The off state is obtained by lifting the band of the bulk graphene of the source side and lowering that of the drain side, so that the device forms a P-I-N junction. In this configuration, the leakage current is reduced more effectively than the conventional single gate transistors due to a high barrier height and a long tunneling length in the nanoribbon. The on state is obtained by flipping the polarity of the bias of either top-gate to form a P-I-P or N-I-N junction. An experiment showed that the drain current was suppressed in the cases of P-I-N and N-I-P compared to P-I-P and N-I-N, and all of the behaviors were consistent with what was expected from the device operation model. This research is granted by JSPS through FIRST Program initiated by CSTP.

  13. Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions

    NASA Astrophysics Data System (ADS)

    Fidkowski, Lukasz; Alicea, Jason; Lindner, Netanel H.; Lutchyn, Roman M.; Fisher, Matthew P. A.

    2012-06-01

    One of the most promising proposals for engineering topological superconductivity and Majorana fermions employs a spin-orbit coupled nanowire subjected to a magnetic field and proximate to an s-wave superconductor. When only part of the wire's length contacts to the superconductor, the remaining conducting portion serves as a natural lead that can be used to probe these Majorana modes via tunneling. The enhanced role of interactions in one dimension dictates that this configuration should be viewed as a superconductor-Luttinger liquid junction. We investigate such junctions between both helical and spinful Luttinger liquids, and topological as well as nontopological superconductors. We determine the phase diagram for each case and show that universal low-energy transport in these systems is governed by fixed points describing either perfect normal reflection or perfect Andreev reflection. In addition to capturing (in some instances) the familiar Majorana-mediated “zero-bias anomaly” in a new framework, we show that interactions yield dramatic consequences in certain regimes. Indeed, we establish that strong repulsion removes this conductance anomaly altogether while strong attraction produces dynamically generated effective Majorana modes even in a junction with a trivial superconductor. Interactions further lead to striking signatures in the local density of states and the line shape of the conductance peak at finite voltage, and also are essential for establishing smoking-gun transport signatures of Majorana fermions in spinful Luttinger liquid junctions.

  14. Tracking the motion trajectories of junction structures in 4D CT images of the lung

    NASA Astrophysics Data System (ADS)

    Xiong, Guanglei; Chen, Chuangzhen; Chen, Jianzhou; Xie, Yaoqin; Xing, Lei

    2012-08-01

    Respiratory motion poses a major challenge in lung radiotherapy. Based on 4D CT images, a variety of intensity-based deformable registration techniques have been proposed to study the pulmonary motion. However, the accuracy achievable with these approaches can be sub-optimal because the deformation is defined globally in space. Therefore, the accuracy of the alignment of local structures may be compromised. In this work, we propose a novel method to detect a large collection of natural junction structures in the lung and use them as the reliable markers to track the lung motion. Specifically, detection of the junction centers and sizes is achieved by analysis of local shape profiles on one segmented image. To track the temporal trajectory of a junction, the image intensities within a small region of interest surrounding the center are selected as its signature. Under the assumption of the cyclic motion, we describe the trajectory by a closed B-spline curve and search for the control points by maximizing a metric of combined correlation coefficients. Local extrema are suppressed by improving the initial conditions using random walks from pair-wise optimizations. Several descriptors are introduced to analyze the motion trajectories. Our method was applied to 13 real 4D CT images. More than 700 junctions in each case are detected with an average positive predictive value of greater than 90%. The average tracking error between automated and manual tracking is sub-voxel and smaller than the published results using the same set of data.

  15. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  16. Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    McCann, Edward; Fal'Ko, Vladimir I.

    2002-10-01

    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower SAP depends on the difference between the size Π↑,↓ of the majority- and minority-band Fermi surfaces and it is proportional to a temperature-dependent factor (kBT/ωD)3/2 where ωD is the magnon Debye energy. The latter factor reflects the fractional change in the net magnetization of the reservoirs due to thermal magnons at temperature T (Bloch's T3/2 law). In contrast, the contribution of magnon-assisted tunneling to the thermopower SP of a junction with parallel polarizations is negligible. As the relative polarizations of ferromagnetic layers can be manipulated by an external magnetic field, a large difference ΔS=SAP-SP~SAP~- (kB/e)f(Π↑,Π↓)(kBT/ωD)3/2 results in a magnetothermopower effect. This magnetothermopower effect becomes giant in the extreme case of a junction between two half-metallic ferromagnets, ΔS~-kB/e.

  17. Josephson junction on one edge of a two dimensional topological insulator affected by magnetic impurity.

    PubMed

    Zhang, Shu-Feng; Zhu, Wei; Sun, Qing-Feng

    2013-07-24

    The current-phase relation in a Josephson junction formed by putting two s-wave superconductors on the same edge of a two dimensional topological insulator is investigated. We consider the case in which the junction length is finite and magnetic impurity exists. The similarities and differences with respect to a conventional Josephson junction are discussed. Both the 2π- and 4π-period current-phase relations (I2π(ϕ),I4π(ϕ)) are studied. There is a sharp jump at ϕ = π and ϕ = 2π for I2π and I4π, respectively, in the clean junction. For I2π, the sharp jump is robust against the impurity strength and distribution. However, for I4π, an impurity makes the jump at ϕ = 2π smooth. The critical (maximum) current Ic,2π of I2π is given and we find it will be increased by an asymmetrical distribution of the impurity. PMID:23807764

  18. Endoscopic Repair of a Gluteus Medius Tear at the Musculotendinous Junction

    PubMed Central

    Yanke, Adam B.; Hart, Michael A.; McCormick, Frank; Nho, Shane J.

    2013-01-01

    Abductor tendon tears are an increasingly recognized clinical entity in patients with lateral thigh pain and weakness. These “rotator cuff tears of the hip” typically result from chronic, nontraumatic rupture of the anterior fibers of the gluteus medius. Although the abductor tendon typically tears from the osseous insertion, the case discussed here ruptured at the musculotendinous junction. This is the first report of this abductor tear subtype and its endoscopic repair. PMID:23875152

  19. Determination of IVC breakpoint for Josephson junction stack. Periodic and nonperiodic (with γ = 0) boundary conditions

    NASA Astrophysics Data System (ADS)

    Serdyukova, S. I.

    2013-05-01

    We prove that in the case of periodic and nonperiodic (with γ = 0) boundary conditions, the calculation of the current-voltage characteristic for a stack of n intrinsic Josephson junctions reduces to solving a unique equation. The current-voltage characteristic V( I) has the shape of a hysteresis loop. On the back branch of the loop, V( I) rapidly decreases to zero near the breakpoint I b . We succeeded to derive an equation determining the approximate breakpoint location.

  20. Transaortic aortomitral junction reconstruction and mitral valve leaflet repair for recurrent endocarditis.

    PubMed

    Chiu, Peter; Allen, Jeremiah G; Woo, Y Joseph

    2015-03-01

    Transaortic interventions on the mitral valve are rarely performed, but offer advantages over traditional approaches in certain circumstances, including either extensive involvement of the aortomitral junction with endocarditis or the patient requiring reoperation for aortic and mitral disease. Herein is presented a case of recurrent endocarditis involving aortomitral continuity, reconstructed using a transaortic mitral valve repair and reconstruction of the aortic and mitral annuli with a pericardial patch, followed by aortic root replacement. PMID:26204680

  1. Surgical resection of subependymoma of the cervical spinal cord.

    PubMed

    Tan, Lee A; Kasliwal, Manish K; Mhanna, Nakhle; Fontes, Ricardo B V; Traynelis, Vincent C

    2014-09-01

    Subependymomas can rarely occur in the spinal cord, and account for about 2% of symptomatic spinal cord tumors. It most often occurs in the cervical spinal cord, followed by cervicothoracic junction, thoracic cord and conus medullaris. It often has an eccentric location in the spinal cord and lacks gadolinium enhancement on magnetic resonance imaging. We present a rare case of symptomatic subependymoma of the cervical spinal cord, which underwent successful gross total resection. Surgical pearls and nuances are discussed to help surgeons to avoid potential complications. The video can be found here: http://youtu.be/Rsm9KxZX7Yo. PMID:25175581

  2. Single P-N junction tandem photovoltaic device

    SciTech Connect

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  3. Scanning SQUID microscopy of SFS π-Josephson junction arrays

    NASA Astrophysics Data System (ADS)

    Stoutimore, M. J. A.; Oboznov, V. A.

    2005-03-01

    We use a Scanning SQUID Microscope to image the magnetic flux distribution in arrays of SFS (superconductor-ferromagnet-superconductor) Josephson junctions. The junctions are fabricated with barrier thickness such that they undergo a transition to a π-junction state at a temperature Tπ 2-4 K. In arrays with cells that have an odd number of π-junctions, we observe spontaneously generated magnetic flux in zero applied magnetic field. We image both fully-frustrated arrays and arrays with non-uniform frustration created by varying the number of π-junctions in the cells. By monitoring the onset of spontaneous flux as a function of temperature near Tπ,^ we estimate the uniformity of the junction critical currents.

  4. Single P-N junction tandem photovoltaic device

    SciTech Connect

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  5. Gap distance and interactions in a molecular tunnel junction.

    PubMed

    Chang, Shuai; He, Jin; Zhang, Peiming; Gyarfas, Brett; Lindsay, Stuart

    2011-09-14

    The distance between electrodes in a tunnel junction cannot be determined from the external movement applied to the electrodes because of interfacial forces that distort the electrode geometry at the nanoscale. These distortions become particularly complex when molecules are present in the junction, as demonstrated here by measurements of the AC response of a molecular junction over a range of conductivities from microsiemens to picosiemens. Specific chemical interactions within the junction lead to distinct features in break-junction data, and these have been used to determine the electrode separation in a junction functionalized with 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, a reagent developed for reading DNA sequences. PMID:21838292

  6. The critical power to maintain thermally stable molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Xu, Zhiping

    2014-07-01

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 109 kW-1. Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  7. The critical power to maintain thermally stable molecular junctions.

    PubMed

    Wang, Yanlei; Xu, Zhiping

    2014-01-01

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 10(9) kW(-1). Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design. PMID:25005801

  8. Junction conditions in quadratic gravity: thin shells and double layers

    NASA Astrophysics Data System (ADS)

    Reina, Borja; Senovilla, José M. M.; Vera, Raül

    2016-05-01

    The junction conditions for the most general gravitational theory with a Lagrangian containing terms quadratic in the curvature are derived. We include the cases with a possible concentration of matter on the joining hypersurface—termed as thin shells, domain walls or braneworlds in the literature—as well as the proper matching conditions where only finite jumps of the energy-momentum tensor are allowed. In the latter case we prove that the matching conditions are more demanding than in general relativity. In the former case, we show that generically the shells/domain walls are of a new kind because they possess, in addition to the standard energy-momentum tensor, a double layer energy-momentum contribution which actually induces an external energy flux vector and an external scalar pressure/tension on the shell. We prove that all these contributions are necessary to make the entire energy-momentum tensor divergence-free, and we present the field equations satisfied by these energy-momentum quantities. The consequences of all these results are briefly analyzed.

  9. Selective plating for junction delineation in silicon nanowires.

    PubMed

    Eichfeld, Chad M; Wood, Carolyn; Liu, Bangzhi; Eichfeld, Sarah M; Redwing, Joan M; Mohney, Suzanne E

    2007-09-01

    The in situ growth of p-n junctions in silicon nanowires enables the fabrication of a variety of nanoscale electronic devices. We have developed a method for selective coating of Au onto n-type segments of silicon nanowire p-n junctions. Selective plating allows for quick verification of the position of p-n junctions along the nanowire using electron microscopy and allows for measurement of segment length. PMID:17696558

  10. The SNS Josephson junction with a third terminal

    NASA Technical Reports Server (NTRS)

    Prans, G. P.; Meissner, H.

    1974-01-01

    Discussion of the operating characteristics of a three-terminal thin-film SNS Josephson junction whose diameter is much greater than the electron pair coherence length in the N metal. It is shown that a junction of this type is essentially a two-terminal device even though the third terminal of the junction supplies the control current. The mechanism underlying this finding is discussed.

  11. Definitive evidence for the existence of tight junctions in invertebrates.

    PubMed

    Lane, N J; Chandler, H J

    1980-09-01

    Extensive and unequivocal tight junctions are here reported between the lateral borders of the cellular layer that circumscribes the arachnid (spider) central nervous system. This account details the features of these structures, which form a beltlike reticulum that is more complex than the simple linear tight junctions hitherto found in invertebrate tissues and which bear many of the characteristics of vertebrate zonulae occludentes. We also provide evidence that these junctions form the basis of a permeability barrier to exogenous compounds. In thin sections, the tight junctions are identifiable as punctate points of membrane apposition; they are seen to exclude the stain and appear as election- lucent moniliform strands along the lines of membrane fusion in en face views of uranyl-calcium-treated tissues. In freeze-fracture replicas, the regions of close membrane apposition exhibit P-face (PF) ridges and complementary E-face (EF) furrows that are coincident across face transitions, although slightly offset with respect to one another. The free inward diffusion of both ionic and colloidal lanthanum is inhibited by these punctate tight junctions so that they appear to form the basis of a circumferential blood-brain barrier. These results support the contention that tight junctions exist in the tissues of the invertebrata in spite of earlier suggestions that (a) they are unique to vertebrates and (b) septate junctions are the equivalent invertebrate occluding structure. The component tight junctional 8- to 10-nm-particulate PF ridges are intimately intercalated with, but clearly distinct from, inverted gap junctions possessing the 13-nm EF particles typical of arthropods. Hence, no confusion can occur as to which particles belong to each of the two junctional types, as commonly happens with vertebrate tissues, especially in the analysis of developing junctions. Indeed, their coexistance in this way supports the idea, over which there has been some controversy, that

  12. Topological phase transition of a Josephson junction and its dynamics

    NASA Astrophysics Data System (ADS)

    Hutasoit, Jimmy; Marciani, Marco; Tarasinski, Brian; Beenakker, Carlo

    A Josephson junction formed by a superconducting ring interrupted by a semiconductor nanowire can realize a zero-dimensional class D topological superconductor. By coupling the Josephson junction to a ballistic wire and altering the strength of the coupling, one can drive this topological superconductor through a topological phase transition. We study the compressibility of the junction as a probe of the topological phase transition. We also study the dynamics of the phase transition by studying the current pulse injected into the wire.

  13. Macroscopic quantum effects in intrinsic Josephson junction stacks

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Machida, M.

    2008-09-01

    A macroscopic quantum theory for the capacitively-coupled intrinsic Josephson junctions (IJJ’s) is constructed. We clarify the multi-junction effect for the macroscopic quantum tunneling (MQT) to the first resistive branch. It is shown that the escape rate is greatly enhanced by the capacitive coupling between junctions. We also discuss the origin of the N2-enhancement in the escape rate observed in the uniformly switching in Bi-2212 IJJ’s.

  14. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  15. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions

    PubMed Central

    Ting, Lucas H.; Jahn, Jessica R.; Jung, Joon I.; Shuman, Benjamin R.; Feghhi, Shirin; Han, Sangyoon J.; Rodriguez, Marita L.

    2012-01-01

    Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions. PMID:22447948

  16. Direct experimental determination of voltage across high-low junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Lindholm, F. A.

    1986-01-01

    High-low (HL) junctions form a part of many semiconductor devices, including back surface field solar cells. A first experimental determination and interpretation of the voltage across the HL junction under low- and high-injection conditions is presented as a function of the voltage across a nearby p/n junction. Theoretical analysis from first principles is shown to bear well on the experimental results. In addition, a test structure is proposed for measurement of the effective surface recombination velocity at the HL junctions.

  17. Naturally formed graded junction for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shao, Yan; Yang, Yang

    2003-09-01

    In this letter, we report naturally-formed graded junctions (NFGJ) for organic light-emitting diodes (OLEDs). These junctions are fabricated using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. Upon heating, materials sublimate sequentially according to their vaporizing temperatures forming the graded junction. Two kinds of graded structures, sharp and shallow graded junctions, can be formed based on the thermal properties of the selected materials. The NFGJ OLEDs have shown excellent performance in both brightness and lifetime compared with heterojunction devices.

  18. Josephson junction through a disordered topological insulator with helical magnetization

    NASA Astrophysics Data System (ADS)

    Zyuzin, Alexander; Alidoust, Mohammad; Loss, Daniel

    2016-06-01

    We study supercurrent and proximity vortices in a Josephson junction made of disordered surface states of a three-dimensional topological insulator with a proximity induced in-plane helical magnetization. In a regime where the rotation period of helical magnetization is larger than the junction width, we find supercurrent 0 -π crossovers as a function of junction thickness, magnetization strength, and parameters inherent to the helical modulation and surface states. The supercurrent reversals are associated with proximity induced vortices, nucleated along the junction width, where the number of vortices and their locations can be manipulated by means of the superconducting phase difference and the parameters mentioned above.

  19. Craniovertebral Junction Instability: A Review of Facts about Facets

    PubMed Central

    2015-01-01

    Craniovertebral junction surgery involves an appropriate philosophical, biomechanical and anatomical understanding apart from high degree of technical skill and ability of controlling venous and arterial bleeding. The author presents his 30-year experience with treating complex craniovertebral junction instability related surgical issues. The facets of atlas and axis form the primary site of movements at the craniovertebral junction. All craniovertebral junction instability is essentially localized to the atlantoaxial facet joint. Direct manipulation and fixation of the facets forms the basis of treatment for instability. PMID:26240728

  20. Josephson Current and Multiple Andreev Reflections in Graphene SNS Junctions

    NASA Astrophysics Data System (ADS)

    Skachko, Ivan; Du, Xu; Andrei, Eva Y.

    2008-03-01

    The Josephson Effect and Superconducting Proximity Effect were observed in Superconductor-Graphene-Superconductor (SGS) Josephson junctions with coherence lengths comparable to the distance between the superconducting leads. By comparing the measured temperature and gate dependence of the supercurrent and the proximity induced sub-gap features (multiple Andreev reflections) to theoretical predictions, we find that the diffusive junction model yields close quantitative agreement with the results. This is consistent with the fact that the measured mean free paths in these junctions, 10 ˜ 30 nm, are significantly shorter than the lead separation. We show that all SGS devices reported so far fall in the diffusive junction category.

  1. Electrical and Spectroscopic Characterization of Metal-Molecule-Metal Junctions

    NASA Astrophysics Data System (ADS)

    Mayer, Theresa

    2005-03-01

    Considerable attention has been devoted to developing an understanding of the mechanisms that dominate electrical transport in metal- molecule-metal junctions comprised of single and small ensembles of molecules. In this talk, we will present an overview of recent research on the electrical and spectroscopic characterization of molecular junctions inserted along the length of sub-40-nm diameter Au and Pd metal nanowires (i.e., in-wire junctions) fabricated by template-directed synthesis. In particular, we will show results that investigate the relationship between the temperature dependent (10 -- 300 K) current-voltage (I-V) characteristics and the vibrational spectra measured by inelastic electron tunneling (IET) spectroscopy for candidate molecular wires and bistable switching molecules. The two types of molecular wire junctions that were studied incorporate a self assembled monolayer of dithiolated oligo(phenylene- ethynylene) (OPE) molecules or their -NO2 derivatives. The I-V of these junctions are stable and reproducible between +/-1V. Temperature independent I-V are measured for both types of junctions, which is indicative of coherent tunneling transport. Moreover, strong vibrations associated with υ(18b) and υ(19a) ring modes were observed in both junctions. In contrast, measurements of molecular junctions that incorporate SAMs based on aniline derivatives show reproducible bistable switching with an on-off ratio of >10:1 at 1V. Differences are observed in the vibrational spectra that depend on the state of the junction.

  2. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions.

    PubMed

    Nicholson, B J; Takemoto, L J; Hunkapiller, M W; Hood, L E; Revel, J P

    1983-03-01

    Liver gap junctions and gap-junction-like structures from eye lenses are each comprised of a single major protein (Mr 28,000 and 26,000, respectively). These proteins display different two-dimensional peptide fingerprints, distinct amino acid compositions, nonhomologous N-terminal amino acid sequences and different sensitivities to proteases when part of the intact junction. However, the junctional protein of each tissue is well conserved between species, as demonstrated previously for lens and now for liver in several mammalian species. The possiblity of tissue-specific gap junction proteins is discussed in the light of data suggesting that rat heart gap junctions are comprised of yet a third protein. PMID:6299583

  3. Evidence for differential changes of junctional complex proteins in murine neurocysticerosis dependent upon CNS vasculature

    PubMed Central

    Alvarez, Jorge I.; Teale, Judy M.

    2009-01-01

    The delicate balance required to maintain homeostasis of the central nervous system (CNS) is controlled by the blood brain barrier (BBB). Upon injury, the BBB is disrupted compromising the CNS. BBB disruption has been represented as a uniform event. However, our group has shown in a murine model of neurocysticercosis (NCC) that BBB disruption varies depending upon the anatomical site/vascular bed analyzed. In this study further understanding of the mechanisms of BBB disruption were explored in blood vessels located in leptomeninges (pial vessels) and brain parenchyma (parenchymal vessels) by examining the expression of junctional complex proteins in murine brain infected with Mesocestoides corti. Both pial and parenchymal vessels from mock infected animals showed significant colocalization of junctional proteins and displayed an organized architecture. Upon infection, the patterned organization was disrupted and in some cases, particular tight junction and adherens junction proteins were undetectable or appeared to be undergoing proteolysis. The extent and timing of these changes differed between both types of vessels (pial vessel disruption within days versus weeks for parenchymal vessels). To approach potential mechanisms, the expression and activity of matrix metalloproteinase-9 (MMP-9) was evaluated by in situ zymography. The results indicated an increase in MMP-9 activity at sites of BBB disruption exhibiting leukocyte infiltration. Moreover, the timing of MMP activity in pial and parenchymal vessels correlated with the timing of permeability disruption. Thus, breakdown of the BBB is a mutable process despite the similar structure of the junctional complex between pial and parenchymal vessels and involvement of MMP activity. PMID:17686468

  4. Lack of EGFR mutations benefiting gefitinib treatment in adenocarcinoma of esophagogastric junction

    PubMed Central

    2012-01-01

    Background The epidermal growth factor receptor (EGFR) inhibitor, gefitinib, has been reported to successfully treat advanced non-small cell lung cancer patients with genetic mutations in EGFR. The aim of this study was to investigate the existence of EGFR mutations in carcinoma of esophagogastric junction, and also to explore the possibility of treating carcinoma of esophagogastric junction using gefitinib. Methods From Aug. 2009 to Jun. 2010, 65 patients with carcinoma of esophagogastric junction underwent surgical resection. The tumor tissue and corresponding blood specimens were collected from all cases. The DNA was extracted and PCR amplification was accomplished based on designed primers for exons 18, 19, 20, and 21. EGFR exons 18, 19, 20 and 21 of both cancer cell and white blood cell were finally successfully sequenced. Results In exon 20, a variant from CAG to CAA at codon 787 (2361G-> A) was identified in 19 patients, which was a genomic variation of EGFR since it was found in both cancer tissue and white blood cells. This EGFR alteration was a synonymous single nucleotide polymorphism (SNP) since CAA and CAG were encoding the same amino-acid of Glutamine (Q787Q, NCBI database 162093G > A, SNP ID: rs10251977). No genetic alteration was found in exons 18, 19 or 21. Conclusions Adenocarcinoma of esophagogastric junction rarely presents EGFR mutation, especially gefitinib-associated mutations such as L858R, or delE746-A750. This means that the gefitinib-based gene target therapy should not be recommended for treating carcinoma of esophagogastric junction. PMID:22252115

  5. Epithelial tight junctions in intestinal inflammation.

    PubMed

    Schulzke, Joerg D; Ploeger, Svenja; Amasheh, Maren; Fromm, Anja; Zeissig, Sebastian; Troeger, Hanno; Richter, Jan; Bojarski, Christian; Schumann, Michael; Fromm, Michael

    2009-05-01

    The epithelium in inflamed intestinal segments of patients with Crohn's disease is characterized by a reduction of tight junction strands, strand breaks, and alterations of tight junction protein content and composition. In ulcerative colitis, epithelial leaks appear early due to micro-erosions resulting from upregulated epithelial apoptosis and in addition to a prominent increase of claudin-2. Th1-cytokine effects by interferon-gamma in combination with TNFalpha are important for epithelial damage in Crohn's disease, while interleukin-13 (IL-13) is the key effector cytokine in ulcerative colitis stimulating apoptosis and upregulation of claudin-2 expression. Focal lesions caused by apoptotic epithelial cells contribute to barrier disturbance in IBD by their own conductivity and by confluence toward apoptotic foci or erosions. Another type of intestinal barrier defect can arise from alpha-hemolysin harboring E. coli strains among the physiological flora, which can gain pathologic relevance in combination with proinflammatory cytokines under inflammatory conditions. On the other hand, intestinal barrier impairment can also result from transcellular antigen translocation via an initial endocytotic uptake into early endosomes, and this is intensified by proinflammatory cytokines as interferon-gamma and may thus play a relevant role in the onset of IBD. Taken together, barrier defects contribute to diarrhea by a leak flux mechanism (e.g., in IBD) and can cause mucosal inflammation by luminal antigen uptake. Immune regulation of epithelial functions by cytokines may cause barrier dysfunction not only by tight junction impairments but also by apoptotic leaks, transcytotic mechanisms, and mucosal gross lesions. PMID:19538319

  6. Characterization of the reliability and uniformity of an anodization-free fabrication process for high-quality Nb/Al-AlOx/Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Ferring, A.; Fleischmann, A.; Gastaldo, L.; Enss, C.

    2013-06-01

    We have developed a reliable and reproducible fabrication process for high-quality Nb/Al-AlOx/Nb Josephson junctions that completely avoids anodization techniques, that are typically used to define the junction area, to electrically insulate the base electrode as well as the sidewalls of the counter-electrode and to protect the tunnel barrier. Hence, this process is well suited for the fabrication of electrically floating junction-based devices such as non-hysteretic rf-SQUIDs. Josephson junctions of various sizes have been produced and characterized at 4.2 K. We found that our junctions have a high quality, which is confirmed by measured gap voltages Vg and Ic Rn products up to 2.9 and 1.8 mV and on-wafer average values of the resistance ratio Rsg/Rn above 30 in most cases. Here, Rsg and Rn denote the subgap and the normal state resistance of a Josephson junction. Although the uniformity of the properties of the Josephson junctions across a wafer is high, we observe some systematic variations of the critical current density and the gap voltage over an entire wafer. These variations are most likely to be attributed to residual stress in the Nb films as well as the surface roughness of the Nb base electrode.

  7. Progress in the Development of Metamorphic Multi-Junction III-V Space-Solar Cells at Essential Research Incorporated

    NASA Technical Reports Server (NTRS)

    Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.

    2002-01-01

    Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.

  8. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  9. Creating Spin Switches and Junctions on Surfaces

    NASA Astrophysics Data System (ADS)

    Mills, Eric; Stamp, Philip

    2010-03-01

    Inspired by the work of Hirjibehedin et al, (Science 317 1199) creating Heisenberg spin chains on an insulating surface, we examine geometries in which excitations down a spin chain are either blocked or transmitted depending on the state of a central junction, made from a spin dimer. The dimer state can be controlled by excitations down an additional chain, creating a spin switch. In addition to the technological applications of such a switch, the theoretical language developed has application to certain quantum computation schemes.

  10. On Chip Josephson Junction Microwave Switch

    NASA Astrophysics Data System (ADS)

    Naaman, Ofer; Abutaleb, Mohamed; Kirby, Chris; Rennie, Michael

    We report on the design and measurement of a reflective single-pole single-throw microwave switch based on a superconducting circuit containing a single Josephson junction. The device has no internal power dissipation, minimal insertion loss, and is controlled by Φ0-level base-band signals. The data demonstrates the device operation with 2 GHz instantaneous bandwidth centered at 10 GHz and better than 20 dB on/off ratio for input powers up to -100 dBm.

  11. On-chip Josephson junction microwave switch

    NASA Astrophysics Data System (ADS)

    Naaman, O.; Abutaleb, M. O.; Kirby, C.; Rennie, M.

    2016-03-01

    The authors report on the design and measurement of a reflective single-pole single-throw microwave switch with no internal power dissipation, based on a superconducting circuit containing a single Josephson junction. The data demonstrate the switch operation with 2 GHz instantaneous bandwidth centered at 10 GHz, low insertion loss, and better than 20 dB on/off ratio. The switch's measured performance agrees well with simulations for input powers up to -100 dBm. An extension of the demonstrated circuit to implement a single-pole double-throw switch is shown in simulation.

  12. Phonon interference effects in molecular junctions

    SciTech Connect

    Markussen, Troels

    2013-12-28

    We study coherent phonon transport through organic, π-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.

  13. Junctional angle of a bihanded helix.

    PubMed

    Yang, Jing; Wolgemuth, Charles W; Huber, Greg

    2014-10-01

    Helical filaments having sections of reversed chirality are common phenomena in the biological realm. The apparent angle between the two sections of opposite handedness provides information about the geometry and elasticity of the junctional region. In this paper, the governing differential equations for the local helical axis are developed, and asymptotic solutions of the governing equations are solved by perturbation theory. The asymptotic solutions are compared with the corresponding numerical solutions, and the relative error at second order is found to be less than 1.5% over a range of biologically relevant curvature and torsion values from 0 to 1/2 in dimensionless units. PMID:25375538

  14. Atrioventricular Junction Ablation for Atrial Fibrillation.

    PubMed

    Patel, Dilesh; Daoud, Emile G

    2016-04-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:26968669

  15. Atrioventricular junction ablation for atrial fibrillation.

    PubMed

    Patel, Dilesh; Daoud, Emile G

    2014-11-01

    Atrioventricular junction (AVJ) ablation is an effective therapy in patients with symptomatic atrial fibrillation who are intolerant to or unsuccessfully managed with rhythm control or medical rate control strategies. A drawback is that the procedure mandates a pacing system. Overall, the safety and efficacy of AVJ ablation is high with a majority of the patients reporting significant improvement in symptoms and quality-of-life measures. Risk of sudden cardiac death after device implantation is low, especially with an appropriate postprocedure pacing rate. Mortality benefit with AVJ ablation has been shown in patients with heart failure and cardiac resynchronization therapy devices. PMID:25443238

  16. Elasticity of a soap film junction

    NASA Astrophysics Data System (ADS)

    Elias, F.; Janiaud, E.; Bacri, J.-C.; Andreotti, B.

    2014-03-01

    We investigate the elasticity of an isolated, threefold junction of soap films (Plateau border), which displays static undulations when liquid rapidly flows into it. By analyzing the shape of the Plateau border (thickness R and transverse displacement) as a function of the liquid flow rate Q, we show experimentally and theoretically that the elasticity of the Plateau border is dominated by the bending of the soap films pulling on the Plateau border. In this asymptotic regime, the undulation wavelength obeys the scaling law ˜Q2 R-2 and the decay length ˜Q2 R-4.

  17. Collisions of strings with Y junctions.

    PubMed

    Copeland, E J; Kibble, T W B; Steer, D A

    2006-07-14

    We study the dynamics of Nambu-Goto strings with junctions at which three strings meet. In particular, we exhibit one simple exact solution and examine the process of intercommuting of two straight strings in which they exchange partners but become joined by a third string. We show that there are important kinematical constraints on this process. The exchange cannot occur if the strings meet with very large relative velocity. This may have important implications for the evolution of cosmic superstring networks and non-Abelian string networks. PMID:16907431

  18. Spin blockade qubit in a superconducting junction

    NASA Astrophysics Data System (ADS)

    Padurariu, C.; Nazarov, Yu. V.

    2012-12-01

    We interpret a recent pioneering experiment (Zgirski M. et al., Phys. Rev. Lett., 106 (2011) 257003) on quasiparticle manipulation in a superconducting break junction in terms of spin blockade drawing analogy with spin qubits. We propose a novel qubit design that exploits the spin state of two trapped quasiparticles. We detail the coherent control of all four spin states by resonant quantum manipulation and compute the corresponding Rabi frequencies. The read-out technique is based on the spin blockade that inhibits quasiparticle recombination in triplet states. We provide extensive microscopic estimations of the parameters of our model.

  19. Photoresponse in arrays of thermoelectric nanowire junctions

    NASA Astrophysics Data System (ADS)

    Huber, T. E.; Scott, R.; Johnson, S.; Brower, T.; Belk, J. H.; Hunt, J. H.

    2013-07-01

    We report the first demonstration of optical detection by thermoelectric nanowire junctions. We employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by thermoelectric effects considering cooling rates given by heat diffusion through the array. In addition, under visible illumination, we observe a photovoltaic response.

  20. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  1. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    NASA Astrophysics Data System (ADS)

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  2. A more efficient computational procedure for calculating the critical current of a multi-junction superconducting interferometer

    NASA Astrophysics Data System (ADS)

    Lutes, C. L.; Gershenson, M.; Schneider, R. J.

    1985-03-01

    The textbook procedure for the solution of the critical current of an N-junction superconducting interferometer is a 2N-1 dimensional steepest descent problem. A solution by this procedure is complicated by the existence of multiple local minima. The equations are reformulated to reduce the problem to a three-dimensional steepest descent problem. From this reduced equation set, a non-steepest-descent procedure is developed. This technique produces a solution by adjusting a trial critical current value until tangency between a straight line and a special error function is achieved. For a 10-junction test case, an 80-to-1 reduction in computer time was achieved.

  3. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  4. Compound heterozygosity for nonsense ans missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa.

    PubMed

    McGarth, J A; Christiano, A M; Pulkkinen, L; Eady, R A; Uitto, J

    1996-05-01

    Mutations in the genes encoding laminin 5 (LAMA3, LAMB3, and LAMC2) have been delineated in the autosomal recessive blistering skin disorder, junctional epidermolysis bullosa, particularly in the lethal (Herlitz) variant. In this study, we searched for mutations in these genes in two patients with nonlethal forms of junctional epidermolysis bullosa using polymerase chain reaction amplification of genomic DA, followed by heteroduplex analysis and direct automated nucleotide sequencing. Both patients were found to be compound heterozygotes for the same nonsense mutation on one LAMB3 allele, and different missense mutations on the other LAMB3 allele. The combination of a nonsense and a missense mutation in the LAMB3 gene appears to be important in determining the milder clinical phenotype in some cases of the nonlethal forms of junctional epidermolysis bullosa involving abnormalities in laminin 5. PMID:8618058

  5. Compound heterozygosity for nonsense and missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa.

    PubMed

    Christiano, A M; Pulkkinen, L; Eady, R A; Uitto, J

    1996-04-01

    Mutations in the genes encoding laminin 5 (LAMA3, LAMB3, and LAMC2) have been delineated in the autosomal recessive blistering skin disorder, junctional epidermolysis bullosa, particularly in the lethal (Herlitz) variant. In this study, we searched for mutations in these genes in two patients with nonlethal forms of junctional epidermolysis bullosa using polymerase chain reaction amplification of genomic DNA, followed by heteroduplex analysis and direct automated nucleotide sequencing. Both patients were found to be compound heterozygotes for the same nonsense mutation on one LAMB3 allele, and different missense mutations on the other LAMB3 allele. The combination of nonsense and a missense mutation in the LAMB3 gene appears to be important in determining the milder clinical phenotype in some cases of the nonlethal forms of junctional epidermolysis bullosa involving abnormalities in laminin 5. PMID:8618020

  6. Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy

    NASA Astrophysics Data System (ADS)

    Buchs, Gilles; Barkelid, Maria; Bagiante, Salvatore; Steele, Gary A.; Zwiller, Val

    2011-10-01

    We use scanning photocurrent microscopy (SPCM) to investigate individual suspended semiconducting carbon nanotube devices where the potential profile is engineered by means of local gates. In situ tunable p-n junctions can be generated at any position along the nanotube axis. Combining SPCM with transport measurements allows a detailed microscopic study of the evolution of the band profiles as a function of the gates voltage. Here we study the emergence of a p-n and a n-p junctions out of a n-type transistor channel using two local gates. In both cases the I - V curves recorded for gate configurations corresponding to the formation of the p-n or n-p junction in the SPCM measurements reveal a clear transition from resistive to rectification regimes. The rectification curves can be fitted well to the Shockley diode model with a series resistor and reveal a clear ideal diode behavior.

  7. Impact of boron-interstitial clusters on Hall scattering factor in high-dose boron-implanted ultrashallow junctions

    SciTech Connect

    Severac, Fabrice; Cristiano, Fuccio; Bedel-Pereira, Elena; Fazzini, Pier Francesco; Lerch, Wilfried; Paul, Silke; Hebras, Xavier; Giannazzo, Filippo

    2009-02-15

    The Hall scattering factor r{sub H} has been determined for holes in high-dose boron-implanted ultrashallow junctions containing high concentrations of boron-interstitial clusters (BICs), combining scanning capacitance microscopy, nanospreading resistance, Hall effect, and secondary ion mass spectroscopy measurements. A value of r{sub H}=0.74{+-}0.1 has been found in reference defect-free fully activated junctions, in good agreement with the existing literature. In the case of junctions containing high concentrations of immobile and electrically inactive BICs, and independently of the implant or the annealing process, the r{sub H} value has been found to be equal to 0.95{+-}0.1. The increase in the r{sub H} value is explained in terms of the additional scattering centers associated to the presence of high concentrations of BICs.

  8. Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects.

    PubMed

    Dady, Alwyn; Havis, Emmanuelle; Escriou, Virginie; Catala, Martin; Duband, Jean-Loup

    2014-09-24

    In higher vertebrates, the primordium of the nervous system, the neural tube, is shaped along the rostrocaudal axis through two consecutive, radically different processes referred to as primary and secondary neurulation. Failures in neurulation lead to severe anomalies of the nervous system, called neural tube defects (NTDs), which are among the most common congenital malformations in humans. Mechanisms causing NTDs in humans remain ill-defined. Of particular interest, the thoracolumbar region, which encompasses many NTD cases in the spine, corresponds to the junction between primary and secondary neurulations. Elucidating which developmental processes operate during neurulation in this region is therefore pivotal to unraveling the etiology of NTDs. Here, using the chick embryo as a model, we show that, at the junction, the neural tube is elaborated by a unique developmental program involving concerted movements of elevation and folding combined with local cell ingression and accretion. This process ensures the topological continuity between the primary and secondary neural tubes while supplying all neural progenitors of both the junctional and secondary neural tubes. Because it is distinct from the other neurulation events, we term this phenomenon junctional neurulation. Moreover, the planar-cell-polarity member, Prickle-1, is recruited specifically during junctional neurulation and its misexpression within a limited time period suffices to cause anomalies that phenocopy lower spine NTDs in human. Our study thus provides a molecular and cellular basis for understanding the causality of NTD prevalence in humans and ascribes to Prickle-1 a critical role in lower spinal cord formation. PMID:25253865

  9. Feasibility of esophagogastric junction distensibility measurement during Nissen fundoplication.

    PubMed

    Ilczyszyn, A; Botha, A J

    2014-01-01

    repair, and fundoplication at 40 mL balloon distension. Two individual cases in the series highlight the utility of the system in potentially changing the operation. After fundoplication, patient 7 recorded a DI of 0.47 mm(2) /mmHg, the lowest in our series, and subsequently required reoperation because of significant symptoms of dysphagia. Patient 12 had a fundoplication that appeared visually too tight and was converted intraoperatively to a Lind 270° wrap resulting in a change in the DI from 0.65 to 0.89 mm(2) /mmHg. Laparoscopic Nissen fundoplication results in a significant reduction in the distensibility of the esophagogastric junction. The EndoFLIP system is able to demonstrate significant changes during the operation and may help guide intraoperative modification. Larger multicenter studies with long-term follow up would be beneficial to develop a target range of distensibility associated with good outcome. PMID:24033477

  10. Fractional Solitons in Excitonic Josephson Junctions

    PubMed Central

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 – until ϕ0 > π – then the alternative group of solitons with Q = ϕ0/2π − 1 takes place and switches the polarity of CPR. PMID:26511770

  11. Electrophysiological study in neuromuscular junction disorders.

    PubMed

    Cherian, Ajith; Baheti, Neeraj N; Iype, Thomas

    2013-01-01

    This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS), congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG) helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS). SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation. PMID:23661960

  12. Functional ferroelectric tunnel junctions on silicon

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando; Chen, Jingsheng

    2015-07-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories.

  13. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  14. Communication Through Gap Junctions in the Endothelium.

    PubMed

    Schmidt, K; Windler, R; de Wit, C

    2016-01-01

    A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney. PMID:27451099

  15. Fractional Solitons in Excitonic Josephson Junctions.

    PubMed

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR. PMID:26511770

  16. Fabrication of Niobium Nanobridge Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Tachiki, T.; Horiguchi, K.; Uchida, T.

    2014-05-01

    To realize antenna-coupled Josephson detectors for microwave and millimeter-wave radiation, planar-type Nb nanobridge Josephson junctions were fabricated. Nb thin films whose thickness, the root mean square roughness and the critical temperature were 20.0 nm, 0.109 nm and 8.4 K, respectively were deposited using a DC magnetron sputtering at a substrate temperature of 700°C. Nanobridges were obtained from the film using 80-kV electron beam lithography and reactive ion-beam etching in CF4 (90%) + O2 (10%) gases. The minimum bridge area was 65 nm wide and 60 nm long. For the nanobridge whose width and length were less than 110 nm, an I-V characteristic showed resistively-shunted-junction behaviour near the critical temperature. Moreover, Shapiro steps were observed in the nanobridge with microwave irradiation at a frequency of 6 - 30 GHz. The Nb nanobridges can be used as detectors in the antenna-coupled devices.

  17. Functional ferroelectric tunnel junctions on silicon

    PubMed Central

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando, A; Chen, Jingsheng

    2015-01-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories. PMID:26215429

  18. Tricellular Tight Junctions in the Inner Ear

    PubMed Central

    2016-01-01

    Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs. PMID:27195292

  19. Tricellular Tight Junctions in the Inner Ear.

    PubMed

    Kitajiri, Shin-Ichiro; Katsuno, Tatsuya

    2016-01-01

    Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs. PMID:27195292

  20. GAP junctional communication in brain secondary organizers.

    PubMed

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. PMID:27273333