Reacciones de intercambio de carga
NASA Astrophysics Data System (ADS)
Errea, L. F.
Se discute la validez de diversas metodologías y su aplicación al estudio de procesos de intercambio de carga electrónico entre iones y blancos atómicos y moleculares. Para energías de impacto entre 0.05 y 5 eV / amu se emplea el método cuántico de la Coordenada de Reacción Común (CRC). A mayores energías, se utiliza el método semiclásico iconal con un desarrollo de la función de onda dinámica en estados moleculares adiabáticos, modificados con un factor de traslación común (FTC). Estos estados pueden obtenerse con cálculos ab initio o empleando potenciales modelo. Cuando la ionización compite con la transferencia de carga, la inclusión de pseudoestados en estos desarrollos permite calcular simultáneamente las secciones eficaces de ambos procesos. Otra técnica utilizada es el método estadístico CTMC. En el tratamiento de colisiones ión-molécula (diatómica) contrastamos la aplicabilidad de distintos métodos, desde la llamada aproximación Franck-Condon hasta un desarrollo en estados vibrónicos, pasando por la aproximación súbita vibro-rotacional, obteniéndose secciones eficaces de captura electrónica total y a estados individuales, así como secciones de excitación vibracional a estados ligados y del continuo (disociación). En todos los casos es necesario calcular superficies de energía y los correspondientes acoplamientos dinámicos entre los estados. La aplicación de estos métodos permite determinar el grado de contaminación de los haces por estados metaestables en un experimento dado, el cambio en los resultados con diferentes isótopos, la importancia de procesos de doble captura, seguida de explosión culombiana, todo ello con precisión comparable a la de medidas experimentales, para sistemas de interés en distintos tipos de plasmas.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Hafez, Mohamed M.; Moin, Parviz
1992-01-01
The part that universities should play in the future development of CFD, which must be evaluated in light of CFD's pacing elements and challenges, is discussed. Attention is given to CFD pacing items that must be in place before routine aerodynamic simulation can be performed including grid generation and geometry surface definition, solution adaptive meshing, more efficient time-accurate simulation, modeling of real-gas effects, multiple relative body motion, and prediction of transition and turbulence modeling. As universities have contributed to research in CFD from its inception, this research should continue to enhance and motivate teaching, improve CFD as a discipline, and stimulate faculty and students.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1990-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1991-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
CFD applications: The Lockheed perspective
NASA Technical Reports Server (NTRS)
Miranda, Luis R.
1987-01-01
The Numerical Aerodynamic Simulator (NAS) epitomizes the coming of age of supercomputing and opens exciting horizons in the world of numerical simulation. An overview of supercomputing at Lockheed Corporation in the area of Computational Fluid Dynamics (CFD) is presented. This overview will focus on developments and applications of CFD as an aircraft design tool and will attempt to present an assessment, withing this context, of the state-of-the-art in CFD methodology.
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Simon, Horst D.
1992-01-01
We are surveying current projects in the area of parallel supercomputers. The machines considered here will become commercially available in the 1990 - 1992 time frame. All are suitable for exploring the critical issues in applying parallel processors to large scale scientific computations, in particular CFD calculations. This chapter presents an overview of the surveyed machines, and a detailed analysis of the various architectural and technology approaches taken. Particular emphasis is placed on the feasibility of a Teraflops capability following the paths proposed by various developers.
NASA Astrophysics Data System (ADS)
Suatean, Bogdan; Colidiuc, Alexandra; Galetuse, Slelian
2012-11-01
The purpose of this paper is to present different CFD models used to determine the aerodynamic performance of horizontal axis wind turbine (HAWT). The models presented have various levels of complexity to calculate the aerodynamic performances of HAWT, starting with a simple model, the actuator line method, and ending with a CFD approach.
NASA Technical Reports Server (NTRS)
Perrell, Eric R.
2005-01-01
level-two design tools for PARSEC. The "CFD Multiphysics Tool" will be the propulsive element of the tool set. The name acknowledges that space propulsion performance assessment is primarily a fluid mechanics problem. At the core of the CFD Multiphysics Tool is an open-source CFD code, HYP, under development at ERAU. ERAU is renowned for its undergraduate degree program in Aerospace Engineering the largest in the nation. The strength of the program is its applications-oriented curriculum, which culminates in one of three two-course Engineering Design sequences: Aerospace Propulsion, Spacecraft, or Aircraft. This same philosophy applies to the HYP Project, albeit with fluid physics modeling commensurate with graduate research. HYP s purpose, like the Multiphysics Tool s, is to enable calculations of real (three-dimensional; geometrically complex; intended for hardware development) applications of high speed and propulsive fluid flows.
Lee, S.
2011-05-05
The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and
CFD propels NASP propulsion progress
NASA Astrophysics Data System (ADS)
Povinelli, Louis A.; Dwoyer, Douglas L.; Green, Michael J.
1990-07-01
The most complex aerothermodynamics encountered in the National Aerospace Plane (NASP) propulsion system are associated with the fuel-mixing and combustion-reaction flows of its combustor section; adequate CFD tools must be developed to model shock-wave systems, turbulent hydrogen/air mixing, flow separation, and combustion. Improvements to existing CFD codes have involved extension from two dimensions to three, as well as the addition of finite-rate hydrogen-air chemistry. A novel CFD code for the treatment of reacting flows throughout the NASP, designated GASP, uses the most advanced upwind-differencing technology.
CFD analysis of turbopump volutes
NASA Technical Reports Server (NTRS)
Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken
1993-01-01
An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.
Characteristic of the Pepper CaRGA2 Gene in Defense Responses against Phytophthora capsici Leonian
Zhang, Ying-Li; Jia, Qing-Li; Li, Da-Wei; Wang, Jun-E; Yin, Yan-Xu; Gong, Zhen-Hui
2013-01-01
The most significant threat to pepper production worldwide is the Phytophthora blight, which is caused by the oomycete pathogen, Phytophthora capsici Leonian. In an effort to help control this disease, we isolated and characterized a P. capsici resistance gene, CaRGA2, from a high resistant pepper (C. annuum CM334) and analyzed its function by the method of real-time PCR and virus-induced gene silencing (VIGS). The CaRGA2 has a full-length cDNA of 3,018 bp with 2,874 bp open reading frame (ORF) and encodes a 957-aa protein. The protein has a predicted molecular weight of 108.6 kDa, and the isoelectric point is 8.106. Quantitative real-time PCR indicated that CaRGA2 expression was rapidly induced by P. capsici. The gene expression pattern was different between the resistant and susceptible cultivars. CaRGA2 was quickly expressed in the resistant cultivar, CM334, and reached to a peak at 24 h after inoculation with P. capsici, five-fold higher than that of susceptible cultivar. Our results suggest that CaRGA2 has a distinct pattern of expression and plays a critical role in P. capsici stress tolerance. When the CaRGA2 gene was silenced via VIGS, the resistance level was clearly suppressed, an observation that was supported by semi-quantitative RT-PCR and detached leave inoculation. VIGS analysis revealed their importance in the surveillance to P. capsici in pepper. Our results support the idea that the CaRGA2 gene may show their response in resistance against P. capsici. These analyses will aid in an effort towards breeding for broad and durable resistance in economically important pepper cultivars. PMID:23698759
Propellant Chemistry for CFD Applications
NASA Technical Reports Server (NTRS)
Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.
1996-01-01
Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.
Unstructured mesh methods for CFD
NASA Technical Reports Server (NTRS)
Peraire, J.; Morgan, K.; Peiro, J.
1990-01-01
Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.
Unstructured mesh methods for CFD
NASA Astrophysics Data System (ADS)
Peraire, J.; Morgan, K.; Peiro, J.
Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.
Toward Supersonic Retropropulsion CFD Validation
NASA Technical Reports Server (NTRS)
Kleb, Bil; Schauerhamer, D. Guy; Trumble, Kerry; Sozer, Emre; Barnhardt, Michael; Carlson, Jan-Renee; Edquist, Karl
2011-01-01
This paper begins the process of verifying and validating computational fluid dynamics (CFD) codes for supersonic retropropulsive flows. Four CFD codes (DPLR, FUN3D, OVERFLOW, and US3D) are used to perform various numerical and physical modeling studies toward the goal of comparing predictions with a wind tunnel experiment specifically designed to support CFD validation. Numerical studies run the gamut in rigor from code-to-code comparisons to observed order-of-accuracy tests. Results indicate that this complex flowfield, involving time-dependent shocks and vortex shedding, design order of accuracy is not clearly evident. Also explored is the extent of physical modeling necessary to predict the salient flowfield features found in high-speed Schlieren images and surface pressure measurements taken during the validation experiment. Physical modeling studies include geometric items such as wind tunnel wall and sting mount interference, as well as turbulence modeling that ranges from a RANS (Reynolds-Averaged Navier-Stokes) 2-equation model to DES (Detached Eddy Simulation) models. These studies indicate that tunnel wall interference is minimal for the cases investigated; model mounting hardware effects are confined to the aft end of the model; and sparse grid resolution and turbulence modeling can damp or entirely dissipate the unsteadiness of this self-excited flow.
CFD Script for Rapid TPS Damage Assessment
NASA Technical Reports Server (NTRS)
McCloud, Peter
2013-01-01
This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.
CFD lends the government a hand
NASA Technical Reports Server (NTRS)
Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.
1992-01-01
The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
CFD Techniques for Propulsion Applications
NASA Technical Reports Server (NTRS)
1992-01-01
The symposium was composed of the following sessions: turbomachinery computations and validations; flow in ducts, intakes, and nozzles; and reacting flows. Forty papers were presented, and they covered full 3-D code validation and numerical techniques; multidimensional reacting flow; and unsteady viscous flow for the entire spectrum of propulsion system components. The capabilities of the various numerical techniques were assessed and significant new developments were identified. The technical evaluation spells out where progress has been made and concludes that the present state of the art has almost reached the level necessary to tackle the comprehensive topic of computational fluid dynamics (CFD) validation for propulsion.
Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Rai, Man Mohan (Technical Monitor)
1994-01-01
This lecture attempts to illustrate the basic ideas of how the recent advances in nonlinear dynamical systems theory (dynamics) can provide new insights into the understanding of numerical algorithms used in solving nonlinear differential equations (DEs). Examples will be given of the use of dynamics to explain unusual phenomena that occur in numerics. The inadequacy of the use of linearized analysis for the understanding of long time behavior of nonlinear problems will be illustrated, and the role of dynamics in studying the nonlinear stability, accuracy, convergence property and efficiency of using time- dependent approaches to obtaining steady-state numerical solutions in computational fluid dynamics (CFD) will briefly be explained.
CFD in design - A government perspective
NASA Technical Reports Server (NTRS)
Kutler, Paul; Gross, Anthony R.
1989-01-01
Some of the research programs involving the use of CFD in the aerodynamic design process at government laboratories around the United States are presented. Technology transfer issues and future directions in the discipline or CFD are addressed. The major challengers in the aerosciences as well as other disciplines that will require high-performance computing resources such as massively parallel computers are examined.
2nd NASA CFD Validation Workshop
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose of the workshop was to review NASA's progress in CFD validation since the first workshop (held at Ames in 1987) and to affirm the future direction of the NASA CFD validation program. The first session consisted of overviews of CFD validation research at each of the three OAET research centers and at Marshall Space Flight Center. The second session consisted of in-depth technical presentations of the best examples of CFD validation work at each center (including Marshall). On the second day the workshop divided into three working groups to discuss CFD validation progress and needs in the subsonic, high-speed, and hypersonic speed ranges. The emphasis of the working groups was on propulsion.
Turbomachinery CFD on parallel computers
NASA Technical Reports Server (NTRS)
Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.
1992-01-01
The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.
Nonlinear dynamics and numerical uncertainties in CFD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.
CFD Modeling For Urban Air Quality Studies
Lee, R L; Lucas, L J; Humphreys, T D; Chan, S T
2003-10-27
The computational fluid dynamics (CFD) approach has been increasingly applied to many atmospheric applications, including flow over buildings and complex terrain, and dispersion of hazardous releases. However there has been much less activity on the coupling of CFD with atmospheric chemistry. Most of the atmospheric chemistry applications have been focused on the modeling of chemistry on larger spatial scales, such as global or urban airshed scale. However, the increased attentions to terrorism threats have stimulated the need of much more detailed simulations involving chemical releases within urban areas. This motivated us to develop a new CFD/coupled-chemistry capability as part of our modeling effort.
CFD Research, Parallel Computation and Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1995-01-01
During the last five years, CFD has matured substantially. Pure CFD research remains to be done, but much of the focus has shifted to integration of CFD into the design process. The work under these cooperative agreements reflects this trend. The recent work, and work which is planned, is designed to enhance the competitiveness of the US aerospace industry. CFD and optimization approaches are being developed and tested, so that the industry can better choose which methods to adopt in their design processes. The range of computer architectures has been dramatically broadened, as the assumption that only huge vector supercomputers could be useful has faded. Today, researchers and industry can trade off time, cost, and availability, choosing vector supercomputers, scalable parallel architectures, networked workstations, or heterogenous combinations of these to complete required computations efficiently.
Impact of CGNS on CFD Workflow
NASA Technical Reports Server (NTRS)
Poinot, M.; Rumsey, C. L.; Mani, M.
2004-01-01
CFD tools are an integral part of industrial and research processes, for which the amount of data is increasing at a high rate. These data are used in a multi-disciplinary fluid dynamics environment, including structural, thermal, chemical or even electrical topics. We show that the data specification is an important challenge that must be tackled to achieve an efficient workflow for use in this environment. We compare the process with other software techniques, such as network or database type, where past experiences showed how difficult it was to bridge the gap between completely general specifications and dedicated specific applications. We show two aspects of the use of CFD General Notation System (CGNS) that impact CFD workflow: as a data specification framework and as a data storage means. Then, we give examples of projects involving CFD workflows where the use of the CGNS standard leads to a useful method either for data specification, exchange, or storage.
Liquid rocket propulsion impeller CFD modeling
NASA Technical Reports Server (NTRS)
Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.
1993-01-01
Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.
Applied Aeroscience and CFD Branch Overview
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Kirk, Benjamin S.
2014-01-01
The principal mission of NASA Johnson Space Center is Human Spaceflight. In support of the mission the Applied Aeroscience and CFD Branch has several technical competencies that include aerodynamic characterization, aerothermodynamic heating, rarefied gas dynamics, and decelerator (parachute) systems.
CFD studies on biomass thermochemical conversion.
Wang, Yiqun; Yan, Lifeng
2008-06-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
CFD calculations of S809 aerodynamic characteristics
Wolfe, W.P.; Ochs, S.S.
1997-01-01
Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.
CFD Studies on Biomass Thermochemical Conversion
Wang, Yiqun; Yan, Lifeng
2008-01-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
CFD Modeling of Launch Vehicle Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.
2011-01-01
The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications
CFD simulation of coaxial injectors
NASA Technical Reports Server (NTRS)
Landrum, D. Brian
1993-01-01
The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single
Gasificaton Transport: A Multiphase CFD Approach & Measurements
Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan
2009-02-14
The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.
Perspectives on the Future of CFD
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.
Arbitrary Shape Deformation in CFD Design
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
CFD validation experiments for internal flows
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1988-01-01
Computational Fluid Dynamics (CFD) validation experiments at NASA Lewis Research Center are described. The material presented summarizes the research in three areas: Inlets, Ducts and Nozzles; Turbomachinery; and Chemically Reacting Flows. The specific validation activities are concerned with shock-boundary layer interactions, vortex generator effects, large low speed centrifugal compressor measurements, transonic fan shock structure, rotor/stator kinetic energy distributions, stator wake shedding characteristics, boundary layer transition, multiphase flow and reacting shear layers. These experiments are intended to provide CFD validation data for the internal flow fields within aerospace propulsion system components.
CFD validation experiments for internal flows
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1988-01-01
Computational Fluid Dynamics (CFD) validation experiments at NASA Lewis are described. The material presented summarized the research in 3 areas: Inlets, ducts and nozzles; Turbomachinery; and Chemically reacting flows. The specific validation activities are concerned with shock boundary layer interactions, vortex generator effects, large low speed centrifugal compressor measurements, transonic fan shock structure, rotor/stator kinetic energy distributions, stator wake shedding characteristics, boundary layer transition, multiphase flow and reacting shear layers. These experiments are intended to provide CFD validation data for the internal flow fields within aerospace propulsion system components.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
An introduction to chaos theory in CFD
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
1990-01-01
The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.
CFD Computations on Multi-GPU Configurations.
NASA Astrophysics Data System (ADS)
Menon, Sandeep; Perot, Blair
2007-11-01
Programmable graphics processors have shown favorable potential for use in practical CFD simulations -- often delivering a speed-up factor between 3 to 5 times over conventional CPUs. In recent times, most PCs are supplied with the option of installing multiple GPUs on a single motherboard, thereby providing the option of a parallel GPU configuration in a shared-memory paradigm. We demonstrate our implementation of an unstructured CFD solver using a set up which is configured to run two GPUs in parallel, and discuss its performance details.
CFD Process Automation Using Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; George, Michael W. (Technical Monitor)
1995-01-01
This talk summarizes three applications of the overset grid method for CFD using some level of automated grid generation, flow solution and post-processing. These applications are 2D high-lift airfoil analysis (INS2D code), turbomachinery applications (ROTOR2/3 codes), and subsonic transport wing/body configurations (OVERFLOW code). These examples provide a forum for discussing the advantages and disadvantages of overset gridding for use in an automated CFD process. The goals and benefits of the automation incorporated in each application will be described, as well as the shortcomings of the approaches.
Emerging CFD Capabilities and Outlook: A NASA Langley Perspective
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Pao, S. Paul; Thomas, James L.
2004-01-01
COMSAC goals include increasing the acceptance of CFD as a viable tool for S&C predictions, as well as to focus CFD development and improvement towards the needs of the S&C community. We view this as a symbiotic relationship, with increasing improvement of CFD promoting increasing acceptance by the S&C community, and increasing acceptance spurring further improvements. In this presentation we want to provide an overview for the non CFD expert of current CFD strengths and weaknesses, as well as to highlight a few emerging capabilities that we feel will lead toward increased usefulness in S&C applications.
CFD modeling of pharmaceutical isolators with experimental verification of airflow.
Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P
2007-01-01
Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators. PMID:17933207
Task Assignment Heuristics for Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, N.; Djomehri, M. J.; Biswas, R.; Biegel, Bryan (Technical Monitor)
2001-01-01
CFD applications require high-performance computational platforms: 1. Complex physics and domain configuration demand strongly coupled solutions; 2. Applications are CPU and memory intensive; and 3. Huge resource requirements can only be satisfied by teraflop-scale machines or distributed computing.
Current CFD Practices in Launch Vehicle Applications
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2012-01-01
The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.
The MAX facility for CFD code validation
Lomperski, S.; Merzari, E.; Obabko, A.; Pointer, W. D.; Fischer, P.
2012-07-01
ANL has recently completed construction of a fluid dynamics test facility devised to provide validation data for CFD simulation tools used to evaluate various aspects of nuclear power plant design and safety. Experiments with the facility involve mixing air jets within a 1x1x1.7m long glass tank at atmospheric pressure. A particle image velocimetry system measures flow velocity and turbulence quantities within the tank while a high-speed infrared camera records temperatures across the tank lid. The tandem of high fidelity thermal and turbulence data is particularly useful for benchmarking transient heat transfer phenomena such as thermal striping. This paper describes the MAX facility, preliminary data obtained during shakedown tests, and the results of companion CFD calculations employing RANS-based Star-CCM+ and large eddy simulations with Nek 5000. (authors)
CFD analysis of pump consortium impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Williams, R. W.
1992-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.
CFD Data Generation Process for Nonlinear Loads
NASA Technical Reports Server (NTRS)
Arslan, Alan; Magee, Todd; Unger, Eric; Hartwich, Peter; Agrawal, Shreekant; Giesing, Joseph; Bharadvaj, Bala; Chaderjian, Neal; Murman, Scott
1999-01-01
This paper discusses the development of a process to generate a CFD database for the non-linear loads process capability for critical loads evaluation at Boeing Long Beach. The CFD simulations were performed for wing/body configurations at high angles of attack and Reynolds numbers with transonic and elastic deflection effects. Convergence criteria had to be tailored for loads applications rather than the usual drag performance. The time-accurate approach was subsequently adopted in order to improve convergence and model possible unsteadiness in the flowfield. In addition, uncertainty issues relating to the turbulence model and grid resolution in areas of high vortical flows were addressed and investigated for one of the cases.
Visualization and Tracking of Parallel CFD Simulations
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kremenetsky, Mark
1995-01-01
We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.
CFD Simulations of Tiltrotor Configurations in Hover
NASA Technical Reports Server (NTRS)
Potsdam, Mark a.; Strawn, Roger C.
2002-01-01
Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.
CFD code evaluation for internal flow modeling
NASA Technical Reports Server (NTRS)
Chung, T. J.
1990-01-01
Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.
CFD Modeling for Active Flow Control
NASA Technical Reports Server (NTRS)
Buning, Pieter G.
2001-01-01
This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.
CFD analysis of coverplate receiver flow
Popp, O.; Zimmermann, H.; Kutz, J.
1998-01-01
The flow field in a preswirled cooling air supply to a turbine rotor has been investigated by means of CFD simulations. Coefficients for system efficiency are derived. The influences of various geometric parameters for different configurations have been correlated with the help of appropriate coefficients. For some of the most important geometric parameters of the coverplate receiver, design recommendations have been made. For the preswirl nozzles, the potential of efficiency improvement by contour design is highlighted.
CFD Code Survey for Thrust Chamber Application
NASA Technical Reports Server (NTRS)
Gross, Klaus W.
1990-01-01
In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.
Combustion Devices CFD Simulation Capability Roadmap
NASA Technical Reports Server (NTRS)
West, Jeff; Tucker, P. Kevin; Williams, Robert W.
2003-01-01
The objective of this roadmap is to enable the use of CFD for simulation of pre-burners, ducting, thrust chamber assembly and supporting infrastructure in terms of performance, life, and stability so as to affect the design process in a timely fashion. To enable flange to exit analysis of real(3D) propulsion hardware within the last 5 years (2008). To meet this objective all model problems must be sufficiently mastered.
Applications of CFD and visualization techniques
NASA Technical Reports Server (NTRS)
Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.
1992-01-01
In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.
Combustion Devices CFD Team Analyses Review
NASA Technical Reports Server (NTRS)
Rocker, Marvin
2008-01-01
A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.
CFD for wastewater treatment: an overview.
Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J
2016-01-01
Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics. PMID:27508360
Static load balancing for CFD distributed simulations
Chronopoulos, A T; Grosu, D; Wissink, A; Benche, M
2001-01-26
The cost/performance ratio of networks of workstations has been constantly improving. This trend is expected to continue in the near future. The aggregate peak rate of such systems often matches or exceeds the peak rate offered by the fastest parallel computers. This has motivated research towards using a network of computers, interconnected via a fast network (cluster system) or a simple Local Area Network (LAN) (distributed system), for high performance concurrent computations. Some of the important research issues arise such as (1) Optimal problem partitioning and virtual interconnection topology mapping; (2) Optimal execution scheduling and load balancing. CFD codes have been efficiently implemented on homogeneous parallel systems in the past. In particular, the helicopter aerodynamics CFD code TURNS has been implemented with MPI on the IBM SP with parallel relaxation and Krylov iterative methods used in place of more traditional recursive algorithms to enhance performance. In this implementation the space domain is divided into equal subdomain which are mapped to the processors. We consider the implementation of TURNS on a LAN of heterogeneous workstations. In order to deal with the problem of load balancing due to the different processor speeds we propose a suboptimal algorithm of dividing the space domain into unequal subdomains and assign them to the different computers. The algorithm can apply to other CFD applications. We used our algorithm to schedule TURNS on a network of workstations and obtained significantly better results.
The role of computational fluid dynamics (CFD) in aircraft design
Tinoco, E.N. )
1990-01-01
The application of CFD to aircraft design configurations and its influence on the aircraft development and support process is analyzed. Results indicate that combining CFD and the wind tunnel can achieve design solutions that otherwise would not be found, and can also significantly reduce the length of the design cycle. It is concluded that CFD provides for a better understanding of flow physics, achievement of design solutions that are otherwise unobtainable, and reduction of development flowtime.
Parallel CFD Supporting NASA's Space Operations Mission Directorate
NASA Technical Reports Server (NTRS)
Gomez, Reynaldo J., III
2008-01-01
This slide presentation reviews the use of parallel Computational Fluid Dynamics (CFD) in support of NASA's space operations. Particular attention was devoted to the development of the Space Shuttle, and the use of CFD in designing the shuttle and the work after the Columbia accident. The presentation ends with a discussion of the reasons for CFD and the use of parallel computers in the design and testing of spacecraft.
The Role of CFD Simulation in Rocket Propulsion Support Activities
NASA Technical Reports Server (NTRS)
West, Jeff
2011-01-01
Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
Detailed Experimental Data for CFD Code Validation
NASA Technical Reports Server (NTRS)
Santoro, Robert J.
1998-01-01
Recent interest in low cost, reliable access to space has generated increased interest in advanced technology approaches to space transportation systems. A key to the success of such programs lies in the development of advanced propulsion systems capable of achieving the performance and operations goals required for the next generation of space vehicles. One extremely promising approach involves the combination of rocket and air-breathing engines into a rocket-based combined-cycle engine (RBCC). A key element of that engine is the rocket ejector that is utilized in the zero to Mach two operating regime. Studies of RBCC engine concepts are not new and studies dating back thirty years are well documented in the literature. However, studies focused on the rocket ejector mode of the RBCC cycle are lacking. The present investigation utilizes an integrated experimental and computation fluid dynamics (CFD) approach to examine critical rocket ejector performance issues. In particular, the development of a predictive methodology capable of performance prediction is a key objective in order to analyze thermal choking and its control, primary/secondary pressure matching considerations, and effects of nozzle expansion ratio. To achieve this objective, the present study emphasizes obtaining new data using advanced optical diagnostics such as Schlieren photography and Raman spectroscopy, and CFD techniques to investigate mixing in the rocket ejector mode. A new research facility for the study of the rocket ejector mode has been developed. In the last milestone report, the operational capabilities of this research facility were described. In this milestone report, the experimentally obtained measurements for CFD code validation are presented and discussed.
Wind modelling over complex terrain using CFD
NASA Astrophysics Data System (ADS)
Avila, Matias; Owen, Herbert; Folch, Arnau; Prieto, Luis; Cosculluela, Luis
2015-04-01
The present work deals with the numerical CFD modelling of onshore wind farms in the context of High Performance Computing (HPC). The CFD model involves the numerical solution of the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-É turbulence model and the energy equation, specially designed for Atmospheric Boundary Layer (ABL) flows. The aim is to predict the wind velocity distribution over complex terrain, using a model that includes meteorological data assimilation, thermal coupling, forested canopy and Coriolis effects. The modelling strategy involves automatic mesh generation, terrain data assimilation and generation of boundary conditions for the inflow wind flow distribution up to the geostrophic height. The CFD model has been implemented in Alya, a HPC multi physics parallel solver able to run with thousands of processors with an optimal scalability, developed in Barcelona Supercomputing Center. The implemented thermal stability and canopy physical model was developed by Sogachev in 2012. The k-É equations are of non-linear convection diffusion reaction type. The implemented numerical scheme consists on a stabilized finite element formulation based on the variational multiscale method, that is known to be stable for this kind of turbulence equations. We present a numerical formulation that stresses on the robustness of the solution method, tackling common problems that produce instability. The iterative strategy and linearization scheme is discussed. It intends to avoid the possibility of having negative values of diffusion during the iterative process, which may lead to divergence of the scheme. These problems are addressed by acting on the coefficients of the reaction and diffusion terms and on the turbulent variables themselves. The k-É equations are highly nonlinear. Complex terrain induces transient flow instabilities that may preclude the convergence of computer flow simulations based on steady state formulation of the
Modeling Pulse Tube Cryocoolers with CFD
NASA Astrophysics Data System (ADS)
Flake, Barrett; Razani, Arsalan
2004-06-01
A commercial computational fluid dynamics (CFD) software package is used to model the oscillating flow inside a pulse tube cryocooler. Capabilities for modeling pulse tubes are demonstrated with preliminary case studies and the results presented. The 2D axi-symmetric simulations demonstrate the time varying temperature and velocity fields in the tube along with computation of the heat fluxes at the hot and cold heat exchangers. The only externally imposed boundary conditions are a cyclically moving piston wall at one end of the tube and constant temperature or heat flux boundaries at the external walls of the hot and cold heat exchangers.
Requirements for effective use of CFD in aerospace design
NASA Technical Reports Server (NTRS)
Raj, Pradeep
1995-01-01
This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.
CFD Modeling Activities at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Allgood, Daniel
2007-01-01
A viewgraph presentation on NASA Stennis Space Center's Computational Fluid Dynamics (CFD) Modeling activities is shown. The topics include: 1) Overview of NASA Stennis Space Center; 2) Role of Computational Modeling at NASA-SSC; 3) Computational Modeling Tools and Resources; and 4) CFD Modeling Applications.
RotCFD Software Validation - Computational and Experimental Data Comparison
NASA Technical Reports Server (NTRS)
Fernandez, Ovidio Montalvo
2014-01-01
RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.
Use of HART-II Measured Motion in CFD
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2008-01-01
This presentation examines the use of HART-II measured rotor blade motion in computational fluid dynamics (CFD). Historically, comprehensive analyses were used for input to acoustic calculations. These analyses focused on lifting line aerodynamics and beam models. However, there is a a need to evolve lifting line aerodynamics to first principles, notably the use of CFD instead of lifting line. The current analysis focuses on CFD and computational structural dynamics (CSD) coupling. Beam models are still very good (CSD is typically from comprehensive analysis), but generally CFD replaced aerodynamics in comprehensive analysis. This presentation examines both CFD and CSD individually and includes predictions using measured motion as well as predictions using measured motion versus coupled motion and calculations of "correct" airloads, noise and vibration.
Propellant Sloshing Parameter Extraction from CFD Analysis
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2010-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicle. The sloshing dynamics is typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the sloshing, sloshing mass, sloshing mass center coordinates, and critical damping coefficient. During the 1960 s US space program, these parameters were either computed from analytical solution for simple geometry or by experimental testing for the sub-scaled configurations. The purpose of this work is to demonstrate the soundness of a CFD approach in modeling the detailed fluid dynamics of tank sloshing and the excellent accuracy in extracting mechanical properties for different tank configurations and at different fill levels. The validation studies included straight cylinder against analytical solution, and sub-scaled Centaur LOX and LH2 tanks with and without baffles against experimental results. This effort shows that CFD technology can provide accurate mechanical parameters for any tank configuration, and is especially valuable to the future design of propellant tanks, as there is no previous experimental data available for the same size and configuration.
On spurious behavior of CFD simulations
NASA Technical Reports Server (NTRS)
Yee, H.C.; Torczynski, J. R.; Morton, S. A.; Visbal, M. R.; Sweby, P. K.
1997-01-01
Spurious behavior in underresolved grids and/or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed nonequilibrium model, (b) the direct numerical simulation (DNS) of 2-D incompressible flow over a backward facing step, (c) a loosely-coupled approach for a 2-D fluid-structure interaction, and (d) a 3-D compressible unsteady flow simulation of vortex breakdown in delta wings. Using knowledge from dynamical systems theory, various types of spurious behaviors that are numerical artifacts were systematically identified. These studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by the available computing power. In large scale computations underresolved grids, semi-implicit procedures, loosely-coupled implicit procedures, and insufficiently long time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the nonlinear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD.
On spurious behavior of CFD simulations
Yee, H.C.; Torczynski, J.R.; Morton, S.A.; Visbal, M.R.; Sweby, P.K.
1997-05-01
Spurious behavior in underresolved grids and/or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed nonequilibrium model, (b) the direct numerical simulation (DNS) of 2-D incompressible flow over a backward facing step, (c) a loosely-coupled approach for a 2-D fluid-structure interaction, and (d) a 3-D compressible unsteady flow simulation of vortex breakdown in delta wings. Using knowledge from dynamical systems theory, various types of spurious behaviors that are numerical artifacts were systematically identified. These studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by the available computing power. In large scale computations underresolved grids, semi-implicit procedures, loosely-coupled implicit procedures, and insufficiently long time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the nonlinear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD.
Free-Flowing Solutions for CFD
NASA Technical Reports Server (NTRS)
2003-01-01
Licensed to over 1,500 customers worldwide, an advanced computational fluid dynamics (CFD) post-processor with a quick learning curve is consistently providing engineering solutions, with just the right balance of visual insight and hard data. FIELDVIEW is the premier product of JMSI, Inc., d.b.a. Intelligent Light, a woman-owned, small business founded in 1994 and located in Lyndhurst, New Jersey. In the early 1990s, Intelligent Light entered into a joint development contract with a research based company to commercialize the post-processing FIELDVIEW code. As Intelligent Light established itself, it purchased the exclusive rights to the code, and structured its business solely around the software technology. As a result, it is enjoying profits and growing at a rate of 25 to 30 percent per year. Advancements made from the earliest commercial launch of FIELDVIEW, all the way up to the recently released versions 8 and 8.2 of the program, have been backed by research collaboration with NASA's Langley Research Center, where some of the world's most progressive work in transient (also known as time-varying) CFD takes place.
METC CFD simulations of hot gas filtration
O`Brien, T.J.
1995-06-01
Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.
CFD Computation of Broadband Fan Interaction Noise
NASA Technical Reports Server (NTRS)
Grace, Sheryl M.; Sondak, Douglas L.; Dorney, Daniel J.
2007-01-01
In this study, a 3-D, unsteady, Reynolds Averaged Navier Stokes CFD code coupled to an acoustic calculation is used to predict the contribution of the exit guide vanes to broadband fan noise. The configuration investigated is that corresponding to the NASA Source Diagnostic Test (SDT) 22-in fan rig. Then an acoustic model introduced by Nallasamy which is based on 2-D strip theory is used to compute the broadband rotor-stator interaction noise. One configuration from the SDT matrix is considered here: the fan speed correlating to approach, and outlet guide vane count designed for cut-off of the blade passage frequency. Thus, in the chosen configuration, there are 22 rotor blades and 54 stator blades. The stators are located 2.5 tip chords downstream of the rotor trailing edge. The RANS computations are used to obtain the spectra of the unsteady surface pressure on the exit guide vanes. This surface pressure is then integrated together with the Green's function for and infinite cylindrical duct to obtain the acoustic field. The results from this investigation validate the use of the CFD code along with the acoustic model for broadband fan noise predictions. The validation enables future investigations such as the determination of rotor tip clearance and stator solidity effects on fan rotor-stator interaction noise.
A supportive architecture for CFD-based design optimisation
NASA Astrophysics Data System (ADS)
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture
CFD Simulation of Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by
CFD Modeling of Water Flow through Sudden Contraction and Expansion in a Horizontal Pipe
ERIC Educational Resources Information Center
Kaushik, V. V. R.; Ghosh, S.; Das, G.; Das, P. K.
2011-01-01
This paper deals with the use of commercial CFD software in teaching graduate level computational fluid dynamics. FLUENT 6.3.26 was chosen as the CFD software to teach students the entire CFD process in a single course. The course objective is to help students to learn CFD, use it in some practical problems and analyze as well as validate the…
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
The Role of CFD in Undergraduate Fluid Mechanics Education
NASA Astrophysics Data System (ADS)
Cimbala, John
2006-11-01
Instruction of undergraduate fluid mechanics is greatly enhanced through integration of computational fluid dynamics (CFD) into fluid mechanics courses and labs. Specifically, students are able to visualize fluid flows with CFD and are better able to understand those flows by performing parametric studies. At Penn State, CFD has been carefully integrated into our introductory junior-level fluid mechanics course, yet displaces only about one class period. The key is to show demonstrations and assign homework that use CFD as a tool that helps students learn the basic concepts of fluid mechanics. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. This is done through use of short, pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice. More templates are being developed that emphasize the first objective. The flow of fluid between two concentric rotating cylinders is a good example of a problem that is solved approximately, analytically, and with CFD, and the results are compared to enhance learning.
User Interface Developed for Controls/CFD Interdisciplinary Research
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; Murayama, Mitsuhiro
2008-01-01
Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.
CFD research, parallel computation and aerodynamic optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1995-01-01
Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.
Recent developments in FEM-CFD
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O. C.
1985-01-01
The current status of CFD with regard to unstructured grids employing finite element methods and Eulerian frames is reviewed. Algorithms suitable for the computation of large three-dimensional problems involving flow past arbitrary geometries are developed. Adaptive mesh refinement strategy is reviewed, and domain splitting or local time-stepping are briefly addressed. The development of search algorithms of optimal order, variable time-stepping Jacobi smoothers for elliptic problems, and transport concepts for hyperbolics to help achieve good performance for unstructured multigrid processes is discussed. As examples, transient supersonic flow in a channel, regular shock reflection of a wall, viscous flow past a protruberance, potential flow past a cylinder, and Burgers equation are considered.
CFD simulation of mixing in anaerobic digesters.
Terashima, Mitsuharu; Goel, Rajeev; Komatsu, Kazuya; Yasui, Hidenari; Takahashi, Hiroshi; Li, Y Y; Noike, Tatsuya
2009-04-01
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance. PMID:19081247
A CFD study of tilt rotor flowfields
NASA Technical Reports Server (NTRS)
Fejtek, Ian; Roberts, Leonard
1989-01-01
The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.
A Hybrid Parallel Preconditioning Algorithm For CFD
NASA Technical Reports Server (NTRS)
Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)
1995-01-01
A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.
The Application of CFD to Ventilation Calculations at Yucca Mountain
Danko, G.; Bahrami, D.
2002-02-27
This paper presents the results of the application of CFD to ventilation calculations at Yucca Mountain using MULTIFLUX. Seven cases were selected to study the effect of the heat transport coefficient on the drift wall temperature distribution. It was concluded that variable heat transport coefficients such as those given by the differential-parameter CFD used in MULTIFLUX are considered the most appropriate approach of all cases presented. This CFD model agrees well with FLUENT results and produces the lowest temperature results, which is favorable to ventilation performance.
CFD Analysis of Core Bypass Phenomena
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2010-03-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary
CFD Analysis of Core Bypass Phenomena
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2009-11-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary
Bonneville Project: CFD of the Spillway Tailrace
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Romero Gomez, Pedro DJ
2012-11-19
US Army Corps of Engineers, Portland District (CENWP) operates the Bonneville Lock and Dam Project on the Columbia River. High spill flows that occurred during 2011 moved a large volume of rock from downstream of the spillway apron to the stilling basin and apron. Although 400 cubic yards of rocks were removed from the stilling basin, there are still large volumes of rock downstream of the apron that could, under certain flow conditions, move upstream into the stilling basin. CENWP is investigating operational changes that could be implemented to minimize future movement of rock into the stilling basin. A key analysis tool to develop these operational changes is a computational fluid dynamics (CFD) model of the spillway. A free-surface CFD model of the Bonneville spillway tailrace was developed and applied for four flow scenarios. These scenarios looked at the impact of flow volume and flow distribution on tailrace hydraulics. The simulation results showed that areas of upstream flow existed near the river bed downstream of the apron, on the apron, and within the stilling basin for all flows. For spill flows of 300 kcfs, the cross-stream and downstream extent of the recirculation zones along Cascade and Bradford Island was very dependent on the spill pattern. The center-loaded pattern had much larger recirculation zones than the flat or bi-modal pattern. The lower flow (200 kcfs) with a flat pattern had a very large recirculation zone that extended half way across the channel near the river bed. A single flow scenario (300 kcfs of flow in a relatively flat spill pattern) was further interrogated using Lagrangian particle tracking. The tracked particles (with size and mass) showed the upstream movement of sediments onto the concrete apron and against the vertical wall between the apron and the stilling basin from seed locations downstream of the apron and on the apron.
Correlation of Puma airfoils - Evaluation of CFD prediction methods
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA heilcopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
Correlation of Puma airloads: Evaluation of CFD prediction methods
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA helicopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
CFD Modeling of Free-Piston Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.
2001-01-01
NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.
Best Practices for Reduction of Uncertainty in CFD Results
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Childs, Robert E.; Morrison, Joseph H.
2003-01-01
This paper describes a proposed best-practices system that will present expert knowledge in the use of CFD. The best-practices system will include specific guidelines to assist the user in problem definition, input preparation, grid generation, code selection, parameter specification, and results interpretation. The goal of the system is to assist all CFD users in obtaining high quality CFD solutions with reduced uncertainty and at lower cost for a wide range of flow problems. The best-practices system will be implemented as a software product which includes an expert system made up of knowledge databases of expert information with specific guidelines for individual codes and algorithms. The process of acquiring expert knowledge is discussed, and help from the CFD community is solicited. Benefits and challenges associated with this project are examined.
Recent Updates to the CFD General Notation System (CGNS)
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Wedan, Bruce; Hauser, Thomas; Poinot, Marc
2012-01-01
The CFD General Notation System (CGNS) - a general, portable, and extensible standard for the storage and retrieval of computational fluid dynamics (CFD) analysis data has been in existence for more than a decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which added significant capabilities. This paper describes these recent enhancements and highlights the continued usefulness of the CGNS methodology.
Computational Fluid Dynamics (CFD) simulation of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Haehn, N. S.; Forest, C. B.; Weber, C. R.; Kendrick, R. D.; Taylor, N. Z.; Oakley, J. G.; Bonazza, R.; Spence, Erik
2007-11-01
The Madison Dynamo Experiment is designed to study a self-generated magnetic field called a dynamo. The flow characteristics of a water experiment that is dimensionally similar to the liquid sodium experiment has been modeled using the Computational Fluid Dynamics (CFD) software Fluent. Results from the CFD simulations are used to confirm flow characteristics measured experimentally by both Laser Doppler Velocimetry (LDV) and Particle Imaging Velocimetry (PIV). Simulations can also give insight into the flow characteristics in regions of the experiment which are not accessible via the LDV and PIV systems. The results from the simulations are also used as input for a MHD code to predict the threshold for Dynamo onset. The CFD simulations -- in conjunction with the MHD dynamo prediction code -- can be used to design modifications to the experiment to minimize costly changes. The CFD code has shown that the addition of an equatorial baffle along with several poloidal baffles can lower the threshold for Dynamo onset.
The industrial use of CFD in the design of turbomachinery
NASA Astrophysics Data System (ADS)
Casey, M. V.
1994-05-01
The numerical simulation of the internal flowfield now plays a major role in all turbomachinery aerodynamic designs, from aero-engines to hydraulic turbines and pumps. With the help of CFD codes an experienced designer is able to produce more adventurous, better engineered and more clearly understood designs more rapidly at lower cost. This paper reviews the use of CFD as an engineering tool in modern turbomachinery design from the standpoint of a turbomachinery designer. Particular attention is given to the current limitations with regard to performance prediction. The necessary engineering criteria used by turbomachinery designers to overcome these limitations and to assess the weak points of their designs using CFD flowfield computations are discussed. Examples of the application of these general aerodynamic design criteria to most classes of turbomachines using a variety of different CFD codes are given.
Angelucci, A.; Barbieri, M.; Brodtkorb, A.; Ciccacci, S.; Civitelli, G.; De Barrio, R.; Di, Filippo M.; Fredi, P.; Friedman, I.; Lombardi, S.; Schalamuk, A.I.; Toro, B.
1996-01-01
A multidisciplinary study of the Gran Bajo del Gualicho area (Rio Negro - Argentina) was carried out; the aim was to delineate its geological and geomorphological evolution and to estabilish the genesis of salts filling the depression. Climatic conditions were analized first to individuate their role in the present morphogenetic processes; moreover the main morphological features of present landscape were examined as well as the stratigraphy of the outcropping formations, and of the Gran Bajo del Gualicho Formation in particular. Finally, a possible geomorphological evolution of the studied area was traced. Geophysical analyses allowed to estabilish that the paleosurface shaped on the crystalline basement is strongly uneven and shows evidence of the strong tectonic phases it underwent. The result of isotope analyses confirmed that the salt deposits on the Gran Bajo del Gualicho bottom were produced by fresh water evaporation, while strontium isotope ratio suggested that such waters were responsible for solubilization of more ancient evaporitic deposits.
Organization of IGCC processes with reduced order CFD models
Lang, Y.; Zitney, S.; Biegler, L.
2011-01-01
Integrated gasificationcombinedcycle(IGCC)plantshavesignificantadvantagesforefficientpowergen- eration withcarboncapture.Moreover,withthedevelopmentofaccurateCFDmodelsforgasificationand combined cyclecombustion,keyunitsoftheseprocessescannowbemodeledmoreaccurately.However, the integrationofCFDmodelswithinsteady-stateprocesssimulators,andsubsequentoptimizationof the integratedsystem,stillpresentssignificantchallenges.Thisstudydescribesthedevelopmentand demonstration ofareducedordermodeling(ROM)frameworkforthesetasks.Theapproachbuildson the conceptsofco-simulationandROMdevelopmentforprocessunitsdescribedinearlierstudies.Here we showhowtheROMsderivedfrombothgasificationandcombustionunitscanbeintegratedwithin an equation-orientedsimulationenvironmentfortheoveralloptimizationofanIGCCprocess.Inaddi- tion toasystematicapproachtoROMdevelopment,theapproachincludesvalidationtasksfortheCFD model aswellasclosed-looptestsfortheintegratedflowsheet.Thisapproachallowstheapplicationof equation-based nonlinearprogrammingalgorithmsandleadstofastoptimizationofCFD-basedprocess flowsheets. TheapproachisillustratedontwoflowsheetsbasedonIGCCtechnology.
Anisotropic adaptive mesh generation in two dimensions for CFD
Borouchaki, H.; Castro-Diaz, M.J.; George, P.L.; Hecht, F.; Mohammadi, B.
1996-12-31
This paper describes the extension of the classical Delaunay method in the case where anisotropic meshes are required such as in CFD when the modelized physic is strongly directional. The way in which such a mesh generation method can be incorporated in an adaptative loop of CFD as well as the case of multicriterium adaptation are discussed. Several concrete application examples are provided to illustrate the capabilities of the proposed method.
Feasibility of patient specific aortic blood flow CFD simulation.
Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts
2006-01-01
Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data. PMID:17354898
CFD Technology for Rotorcraft Gearbox Windage Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Handschuh, Robert; Hill, Matthew; Kunz, Robert; Long, Lyle; Morris, Philip; Noack, Ralph
2009-01-01
A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses. Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss. Turbulence modeling choices, the relative importance of viscous and pressure torques with gear speed and the physics of the complex 3-D unsteady flow field in the vicinity of the gear teeth are studied.
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
CFD Parametric Study of Consortium Impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
CFD parametric study of consortium impeller
NASA Astrophysics Data System (ADS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-07-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
CFD Modeling for Mercury Control Technology
Madsen, J.I.
2006-12-01
Compliance with the Clean Air Mercury Rule will require implementation of dedicated mercury control solutions at a significant portion of the U.S. coal-fired utility fleet. Activated Carbon Injection (ACI) upstream of a particulate control device (ESP or baghouse) remains one of the most promising near-term mercury control technologies. The DOE/NETL field testing program has advanced the understanding of mercury control by ACI, but a persistent need remains to develop predictive models that may improve the understanding and practical implementation of this technology. This presentation describes the development of an advanced model of in-flight mercury capture based on Computational Fluid Dynamics (CFD). The model makes detailed predictions of the induct spatial distribution and residence time of sorbent, as well as predictions of mercury capture efficiency for particular sorbent flow rates and injection grid configurations. Hence, CFD enables cost efficient optimization of sorbent injection systems for mercury control to a degree that would otherwise be impractical both for new and existing plants. In this way, modeling tools may directly address the main cost component of operating an ACI system – the sorbent expense. A typical 300 MW system is expected to require between $1 and $2 million of sorbent per year, and so even modest reductions (say 10-20%) in necessary sorbent feed injection rates will quickly make any optimization effort very worthwhile. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, zero velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which is based on first principles and includes mass transfer processes occurring at multiple scales, ranging from the large-scale transport in the duct to transport within the porous structure of a sorbent particle. In principle any single one of these processes
Development of Tripropellant CFD Design Code
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.
1998-01-01
A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.
CFD analyses for advanced pump design
NASA Technical Reports Server (NTRS)
Dejong, F. J.; Choi, S.-K.; Govindan, T. R.
1994-01-01
As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.
Grid generation and surface modeling for CFD
NASA Technical Reports Server (NTRS)
Connell, Stuart D.; Sober, Janet S.; Lamson, Scott H.
1995-01-01
When computing the flow around complex three dimensional configurations, the generation of the mesh is the most time consuming part of any calculation. With some meshing technologies this can take of the order of a man month or more. The requirement for a number of design iterations coupled with ever decreasing time allocated for design leads to the need for a significant acceleration of this process. Of the two competing approaches, block-structured and unstructured, only the unstructured approach will allow fully automatic mesh generation directly from a CAD model. Using this approach coupled with the techniques described in this paper, it is possible to reduce the mesh generation time from man months to a few hours on a workstation. The desire to closely couple a CFD code with a design or optimization algorithm requires that the changes to the geometry be performed quickly and in a smooth manner. This need for smoothness necessitates the use of Bezier polynomials in place of the more usual NURBS or cubic splines. A two dimensional Bezier polynomial based design system is described.
SSME HPOTP impeller backcavity CFD analysis
NASA Technical Reports Server (NTRS)
Hsu, W. W.; Lin, S. J.
1992-01-01
The ball bearings behind the Space Shuttle Main Engine (SSME) HPOTP preburner pump have a history of premature wear requiring their replacement. Extensive tests have been conducted in an attempt to identify the operating factors that contribute to the wear. It has been conjectured that the coolant inflow velocity swirl pattern can aid bearing operation by matching ball orbit speed and thus affect bearing life. However, control of the velocity distribution up to now could only be achieved by trial and error following hardware testing. Observation of hardware from recent flight and development operation led to the hypothesis that certain assemblies with more extensive grinding patterns on the backwall of the impeller for rotor balancing correlated with improved bearing wear. To analytically evaluate the effect of cavity configuration on the flowfield, 3-D computational fluid dynamics (CFD) analyses of various geometries was successfully executed using REACT3D. Height of the anti-vortex ribs on the stationary wall was varied, as was the configuration of the rotating wall, from smooth to simulations of various grindout patterns. The results obtained indicate the effects of the various geometries and provide valuable guidelines for cavity modification to optimize bearing cooling.
Utilizing GPUs to Accelerate Turbomachinery CFD Codes
NASA Technical Reports Server (NTRS)
MacCalla, Weylin; Kulkarni, Sameer
2016-01-01
GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.
SSME HPOTP impeller backcavity CFD analysis
NASA Astrophysics Data System (ADS)
Hsu, W. W.; Lin, S. J.
1992-07-01
The ball bearings behind the Space Shuttle Main Engine (SSME) HPOTP preburner pump have a history of premature wear requiring their replacement. Extensive tests have been conducted in an attempt to identify the operating factors that contribute to the wear. It has been conjectured that the coolant inflow velocity swirl pattern can aid bearing operation by matching ball orbit speed and thus affect bearing life. However, control of the velocity distribution up to now could only be achieved by trial and error following hardware testing. Observation of hardware from recent flight and development operation led to the hypothesis that certain assemblies with more extensive grinding patterns on the backwall of the impeller for rotor balancing correlated with improved bearing wear. To analytically evaluate the effect of cavity configuration on the flowfield, 3-D computational fluid dynamics (CFD) analyses of various geometries was successfully executed using REACT3D. Height of the anti-vortex ribs on the stationary wall was varied, as was the configuration of the rotating wall, from smooth to simulations of various grindout patterns. The results obtained indicate the effects of the various geometries and provide valuable guidelines for cavity modification to optimize bearing cooling.
Emerging CFD technologies and aerospace vehicle design
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.
1995-01-01
With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.
CFD simulation of pulse combustion's performance
NASA Astrophysics Data System (ADS)
Rahmatika, Annie Mufyda; Widiyastuti, W.; Winardi, Sugeng; Nurtono, Tantular; Machmudah, Siti; Kusdianto, Joni, I. Made
2016-02-01
This study aims to show changes in the performance of combustion using pulse combustion at specified intervals using simulation. Simulations is performed using Computational Fluid Dynamics analysis (CFD) software Ansys Fluent 15.0. Analysis used 2D illustration axisymmetric with k-ɛ turbulence models. Propane was selected as fuel at a flow rate of 15 L/min. Air with flow rate of 375 L/min is used as oxidizer. To investigate the advantages of using pulse combustion, the simulated pulse combustion is compared to normal combustion without a pulse. This is done by displaying descriptions of the phenomenon, mechanisms and results output gas combustor. From the analysis of simulation results showed that in 1 minute burning time, burning fuel without requiring pulse as much as 15 L while the pulse combustion requires half of the fuel which is 12.5 L. However, the higher average of temperature was generated by pulse combustion and the amounts of unburned fuel that comes out of the combustor less than without the use of pulse combustion. So, it can be concluded that the pulse combustion is more efficient than combustion without a pulse.
The Dalles Dam, Columbia River: Spillway Improvement CFD Study
Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.
2006-06-01
This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model
CFD simulation of flow through heart: a perspective review.
Khalafvand, S S; Ng, E Y K; Zhong, L
2011-01-01
The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework. PMID:21271418
CFD model of an aerating hydrofoil
NASA Astrophysics Data System (ADS)
Scott, D.; Sabourin, M.; Beaulieu, S.; Papillon, B.; Ellis, C.
2014-03-01
Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used.
CFD Modeling of Superheated Fuel Sprays
NASA Technical Reports Server (NTRS)
Raju, M. S.
2008-01-01
An understanding of fuel atomization and vaporization behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA aeronautics initiative, we have undertaken an assessment study to establish baseline accuracy of existing CFD models used in the evaluation of a ashing jet. In a first attempt towards attaining this goal, we have incorporated an existing superheat vaporization model into our spray solution procedure but made some improvements to combine the existing models valid at superheated conditions with the models valid at stable (non-superheat) evaporating conditions. Also, the paper reports some validation results based on the experimental data obtained from the literature for a superheated spray generated by the sudden release of pressurized R134A from a cylindrical nozzle. The predicted profiles for both gas and droplet velocities show a reasonable agreement with the measured data and exhibit a self-similar pattern similar to the correlation reported in the literature. Because of the uncertainty involved in the specification of the initial conditions, we have investigated the effect of initial droplet size distribution on the validation results. The predicted results were found to be sensitive to the initial conditions used for the droplet size specification. However, it was shown that decent droplet size comparisons could be achieved with properly selected initial conditions, For the case considered, it is reasonable to assume that the present vaporization models are capable of providing a reasonable qualitative description for the two-phase jet characteristics generated by a ashing jet. However, there remains some uncertainty with regard to the specification of certain initial spray conditions and there is a need for experimental data on separate gas and liquid temperatures in order to validate the vaporization models based on the Adachi correlation for a liquid involving R134A.
Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.
Meroney, Robert N; Sheker, Robert E
2016-05-01
Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data. PMID:27131307
Introducing CFD in the optical simulation of linear Fresnel collectors
NASA Astrophysics Data System (ADS)
Moghimi, M. A.; Rungasamy, A.; Craig, K. J.; Meyer, J. P.
2016-05-01
This paper seeks to determine whether the Finite Volume method within a commercially available Computational Fluid Dynamics (CFD) solver (ANSYS Fluent) can model radiation with comparable accuracy to a Monte Carlo ray-tracing software package (SolTrace). A detailed investigation was performed into modeling techniques that can be used to significantly reduce the optical errors traditionally associated with CFD modeling of radiation false scattering and ray effect using a simple optical test case. The strategies formulated in the first part of this paper were used to model a variety of Linear Fresnel Collector Concentrating Solar Power Plants. This paper shows that commercial CFD packages yield accurate results for line focusing concentrating solar applications and simple geometries, validating its use in an integrated environment where both optical and thermal performance of these plants can be simulated and optimized.
Development of a CFD code for casting simulation
NASA Technical Reports Server (NTRS)
Murph, Jesse E.
1992-01-01
The task of developing a computational fluid dynamics (CFD) code to accurately model the mold filling phase of a casting operation was accomplished in a systematic manner. First the state-of-the-art was determined through a literature search, a code search, and participation with casting industry personnel involved in consortium startups. From this material and inputs from industry personnel, an evaluation of the currently available codes was made. It was determined that a few of the codes already contained sophisticated CFD algorithms and further validation of one of these codes could preclude the development of a new CFD code for this purpose. With industry concurrence, ProCAST was chosen for further evaluation. Two benchmark cases were used to evaluate the code's performance using a Silicon Graphics Personal Iris system. The results of these limited evaluations (because of machine and time constraints) are presented along with discussions of possible improvements and recommendations for further evaluation.
Estimating Flow-Through Balance Momentum Tares with CFD
NASA Technical Reports Server (NTRS)
Melton, John E.; James, Kevin D.; Long, Kurtis R.; Flamm, Jeffrey D.
2016-01-01
This paper describes the process used for estimating flow-through balance momentum tares. The interaction of jet engine exhausts on the BOEINGERA Hybrid Wing Body (HWB) was simulated in the NFAC 40x80 wind tunnel at NASA Ames using a pair of turbine powered simulators (TPS). High-pressure air was passed through a flow-through balance and manifold before being delivered to the TPS units. The force and moment tares that result from the internal shear and pressure distribution were estimated using CFD. Validation of the CFD simulations for these complex internal flows is a challenge, given limited experimental data due to the complications of the internal geometry. Two CFD validation efforts are documented, and comparisons with experimental data from the final model installation are provided.
Study of tip loss corrections using CFD rotor computations
NASA Astrophysics Data System (ADS)
Shen, W. Z.; Zhu, W. J.; Sørensen, J. N.
2014-12-01
Tip loss correction is known to play an important role for engineering prediction of wind turbine performance. There are two different types of tip loss corrections: tip corrections on momentum theory and tip corrections on airfoil data. In this paper, we study the latter using detailed CFD computations for wind turbines with sharp tip. Using the technique of determination of angle of attack and the CFD results for a NordTank 500 kW rotor, airfoil data are extracted and a new tip loss function on airfoil data is derived. To validate, BEM computations with the new tip loss function are carried out and compared with CFD results for the NordTank 500 kW turbine and the NREL 5 MW turbine. Comparisons show that BEM with the new tip loss function can predict correctly the loading near the blade tip.
Role of CFD in propulsion design - Government perspective
NASA Technical Reports Server (NTRS)
Schutzenhofer, L. A.; Mcconnaughey, H. V.; Mcconnaughey, P. K.
1990-01-01
Various aspects of computational fluid dynamics (CFD), as it relates to design applications in rocket propulsion activities from the government perspective, are discussed. Specific examples are given that demonstrate the application of CFD to support hardware development activities, such as Space Shuttle Main Engine flight issues, and the associated teaming strategy used for solving such problems. In addition, select examples that delineate the motivation, methods of approach, goals and key milestones for several space flight progams are cited. An approach is described toward applying CFD in the design environment from the government perspective. A discussion of benchmark validation, advanced technology hardware concepts, accomplishments, needs, future applications, and near-term expectations from the flight-center perspective is presented.
The role of CFD in the design process
NASA Astrophysics Data System (ADS)
Jennions, Ian K.
1994-05-01
Over the last decade the role played by CFD codes in turbomachinery design has changed remarkably. While convergence/stability or even the existence of unique solutions was discussed fervently ten years ago, CFD codes now form a valuable part of an overall integrated design system and have caused us to re-think much of what we do. The geometric and physical complexities addressed have also evolved, as have the number of software houses competing with in-house developers to provide solutions to daily design problems. This paper reviews how GE Aircraft Engines (GEAE) uses CFD in the turbomachinery design process and examines many of the issues faced in successful code implementation.
CFD Aided Design and Production of Hydraulic Turbines
NASA Astrophysics Data System (ADS)
Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team
2014-11-01
Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.
Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.; Hyatt, Andrew J.
2010-01-01
Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.
Synthetic Jet Flow Field Database for CFD Validation
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome
2004-01-01
An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.
A CFD/CSD interaction methodology for aircraft wings
Bhardwaj, M.K.; Kapania, R.K.; Reichenbach, E.; Guruswamy, G.P.
1998-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can significantly impact the design of these aircraft, there is a strong need in the aerospace industry to predict these interactions computationally. Such an analysis in the transonic regime requires high fidelity computational fluid dynamics (CFD) analysis tools, due to the nonlinear behavior of the aerodynamics in the transonic regime and also high fidelity computational structural dynamics (CSD) analysis tools. Also, there is a need to be able to use a wide variety of CFD and CSD methods to predict aeroelastic effects. Since source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed to determine the static aeroelastic response of aircraft wings using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code. The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data.
Performance Study and CFD Predictions of a Ducted Fan System
NASA Technical Reports Server (NTRS)
Abrego, Anita I.; Chang, I-Chung; Bulaga, Robert W.; Rutkowski, Michael (Technical Monitor)
2002-01-01
An experimental investigation was completed in the NASA Ames 7 by 10-Foot Wind Tunnel to study the performance characteristics of a ducted fan. The goal of this effort is to study the effect of ducted fan geometry and utilize Computational Fluid Dynamics (CFD) analysis to provide a baseline for correlation. A 38-inch diameter, 10-inch chord duct with a five-bladed fixed-pitch fan was tested. Duct performance data were obtained in hover, vertical climb, and forward flight test conditions. This paper will present a description of the test, duct performance results and correlation with CFD predictions.
CFD modeling of high temperature gas cooled reactors
Janse van Rensburg, J.J.; Viljoen, C.; Van Staden, M.P.
2006-07-01
This paper presents an overview of how CFD has been applied to model the gas flow and heat transfer within the PBMR (Pebble Bed Modular reactor) with the aim of providing valuable design and safety information. The thermo-hydraulic calculations are performed using the STAR-CD [1] Computational Fluid Dynamics (CFD) code and the neutronic calculations are performed using VSOP [2]. Results are presented for steady-state normal operation and for a transient De-pressurized Loss Of Forced Cooling event (DLOFC). (authors)
Rapid Euler CFD for High-Performance Aircraft Design
NASA Technical Reports Server (NTRS)
Charlton, Eric F.
2004-01-01
The goal here was to present one approach to rapid CFD for S&C using an unstructured inviscid method, in order to eventually assess S&C properties as early in the design process as possible. Specific results are presented regarding time, accuracy (as compared to a baseline wind tunnel database) and simplicity for the user. For COMSAC, it s more important to talk about the "specifications" required by Advanced Design and S&C, as well as how the CFD results can be combined for envelope evaluation.
NASA and CFD - Making investments for the future
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.; Richardson, P. F.
1992-01-01
From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.
DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS SUPPORTING URBAN AIR QUALITY AND HOMELAND SECURITY
Prior to September 11, 2001 developments of Computational Fluid Dynamics (CFD) were begun to support air quality applications. CFD models are emerging as a promising technology for such assessments, in part due to the advancing power of computational hardware and software. CFD si...
Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.
1990-01-01
A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.
CFD validation experiments at McDonnell Aircraft Company
NASA Technical Reports Server (NTRS)
Verhoff, August
1987-01-01
Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at McDonnell Aircraft Company. Topics covered include a high speed research model, a supersonic persistence fighter model, a generic fighter wing model, surface grids, force and moment predictions, surface pressure predictions, forebody models with 65 degree clipped delta wings, and the low aspect ratio wing/body experiment.
Efficient Cfd/csd Coupling Methods for Aeroelastic Applications
NASA Astrophysics Data System (ADS)
Chen, Long; Xu, Tianhao; Xie, Jing
2016-06-01
A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.
Force Balance Determination of a Film Riding Seal Using CFD
NASA Technical Reports Server (NTRS)
Justak, John
2007-01-01
CFD analysis provides a means of discerning H-seal functionality. H-Seal geometry can be modified to provide smaller or larger operational gap. H-Seal can be installed with large cold clearance and maintain a small operational effective clearance.
Optimization of a Centrifugal Impeller Design Through CFD Analysis
NASA Technical Reports Server (NTRS)
Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto
1993-01-01
This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.
Multi-CFD Timing Estimators for PET Block Detectors
Ullisch, Marcus G.; Moses, William W.
2006-05-05
In a conventional PET system with block detectors, a timing estimator is created by generating the analog sum of the signals from the four photomultiplier tubes (PMT) in a module and discriminating the sum with a single constant fraction discriminator (CFD). The differences in the propagation time between the PMTs in the module can potentially degrade the timing resolution of the module. While this degradation is probably too small to affect performance in conventional PET imaging, it may impact the timing inaccuracy for time-of-flight PET systems (which have higher timing resolution requirements). Using a separate CFD for each PMT would allow for propagation time differences to be removed through calibration and correction in software. In this paper we investigate and quantify the timing resolution achievable when the signal from each of the 4 PMTs is digitized by a separate CFD. Several methods are explored for both obtaining values for the propagation time differences between the PMTs and combining the four arrival times to form a single timing estimator. We find that the propagation time correction factors are best derived through an exhaustive search, and that the ''weighted average'' method provides the best timing estimator. Using these methods, the timing resolution achieved with 4 CFDs (1052 {+-} 82 ps) is equivalent to the timing resolution with the conventional single CFD setup (1067 {+-} 158 ps).
Aerothermal Anchoring of CBAERO Using High Fidelity CFD
NASA Technical Reports Server (NTRS)
Kinney, David J.
2007-01-01
The Configuration Based Aerodynamics (CBAERO) software package is used to predict the convective and radiative heating environments for the Crew Exploration Vehicle (CEV). A limited number of high fidelity CFD solutions are used to "anchor" the engineering level estimates obtained using CBAERO.
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
A CFD/CSD interaction methodology for aircraft wings
NASA Astrophysics Data System (ADS)
Bhardwaj, Manoj Kumar
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as a part of this research). The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data. Parallel computing power is used to investigate parallel static aeroelastic analysis because obtaining an aeroelastic solution using CFD/CSD methods is computationally intensive. A
CFD modeling of turbulent duct flows for coolant channel analysis
NASA Astrophysics Data System (ADS)
Ungewitter, Ronald J.; Chan, Daniel C.
1993-07-01
The design of modern liquid rocket engines requires the analysis of chamber coolant channels to maximize the heat transfer while minimizing the coolant flow. Coolant channels often do not remain at a constant cross section or at uniform curvature. New designs require higher aspect ratio coolant channels than previously used. To broaden the analysis capability and to complement standard analysis tools an investigation on the accuracy of CFD predictions for coolant channel flow has been initiated. Validation of CFD capabilities for coolant channel analysis will enhance the capabilities for optimizing design parameters without resorting to extensive experimental testing. The eventual goal is to use CFD to determine the flow fields of unique coolant channel designs and therefore determine critical heat transfer coefficients. In this presentation the accuracy of a particular CFD code is evaluated for turbulent flows. The first part of the presentation is a comparison of numerical results to existing cold flow data for square curved ducts (NASA CR-3367, 'Measurements of Laminar and Turbulent Flow in a Curved Duct with Thin Inlet Boundary Layers'). The results of this comparison show good agreement with the relatively coarse experimental data. The second part of the presentation compares two cases of higher aspect ratio channels (AR=2.5,10) to show changes in axial and secondary flow strength. These cases match experimental work presently in progress and will be used for future validation. The comparison shows increased secondary flow strength of the higher aspect ratio case due to the change in radius of curvature. The presentation includes a test case with a heated wall to demonstrate the program's capability. The presentation concludes with an outline of the procedure used to validate the CFD code for future design analysis.
The application of CFD to rotary wing flow problems
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1990-01-01
Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed
Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD
Smith, Thomas Michael; Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy Michael
2014-01-01
This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.
Considering value of information when using CFD in design
Misra, John Satprim
2009-01-01
This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.
Task Assignment Heuristics for Parallel and Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, Noe; Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper proposes a task graph (TG) model to represent a single discrete step of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is then used to not only balance the computational workload across the overset grids but also to reduce inter-grid communication costs. We have developed a set of task assignment heuristics based on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest task first (STF) and the largest task first (LTF), are first presented. They are then systematically costs. To predict the performance of the proposed task assignment heuristics, extensive performance evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid points is also used as a test case.
Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD
Wolfe, W.P.; Ochs, S.S.
1997-09-01
An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.
Designing high power targets with computational fluid dynamics (CFD)
Covrig, S. D.
2013-11-07
High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.
Designing high power targets with computational fluid dynamics (CFD)
Covrig, Silviu D.
2013-11-01
High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 {micro}A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 {micro}A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.
CFD Investigation on Long-Haul Passenger Bus
NASA Astrophysics Data System (ADS)
Tan, C. F.; Tee, B. T.; Law, H. C.; Lim, T. L.
2015-09-01
Air flow distribution is one of the important factors that will influence the bus passenger comfort during long haul travel. Poor air flow distribution not only cause discomfort to the bus passenger but also influence their travel mode as well. The main purpose of this study is to investigate the air flow performance of the bus air-conditioning system through CFD simulation approach. A 3D CAD model of air ducts was drawn and hence analysed by using CFD software, namely ANSYS Fluent, to determine the airflow rate for every outlets of the air-conditioning system. The simulated result was then validated with experimental data obtained from prototype model of air duct. Based on the findings, new design concepts is proposed with the aim to meet the industry requirement as well as to improve the bus passenger comfort during long haul travel.
Design and Analysis of Missile Systems through CFD Simulations
NASA Astrophysics Data System (ADS)
Chakraborty, Debasis
2010-10-01
Development of indigenous CFD codes and their applications for complex aerodynamic and propulsive flow problems pertaining to DRDO missiles are presented. Grid generators, 3D Euler and Navier Stokes solvers are developed in-house using state of art numerical techniques and physical models. These softwares are used extensively for aerodynamic characterization of missiles over a wide range of Mach number, angle of attack, control surface deflection and store separation studies. Significant contributions are made in the design of high speed propulsion systems of various ongoing and future missiles through CFD analysis internal flow field. Important design modifications were suggested and the propulsion system performances were optimized. Capabilities have been developed for many advanced topics including computational aeroelasticity, coupled Euler Boltzmann solver, etc.
Design of ETO Propulsion Turbine Using CFD Analyses
NASA Technical Reports Server (NTRS)
Dejong, F. J.; Chan, Y. T.; Gibeling, H. J.
1995-01-01
As one of the activities of the NASA/MSFC Turbine Technology Team, the present effort focused on using CFD in the design and analysis of high performance rocket engine pumps. A three-dimensional Navier-Stokes code was used for various turbine flow field calculations, with emphasis on the tip clearance flow and the associated losses. Both a baseline geometry and an advanced-concept geometry (with a mini-shroud at the blade tip) were studied at several tip clearances. The calculations performed under the present effort demonstrate that a state-of-the-art CFD code can be applied successfully to turbine design and the development of advanced hardware concepts.
CFD Data Sets on the WWW for Education and Testing
NASA Technical Reports Server (NTRS)
Globus, Al; Lasinski, T. A. (Technical Monitor)
1995-01-01
The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center has begun the development of a Computational Fluid Dynamics (CFD) data set archive on the World Wide Web (WWW) at URL http://www.nas.nasa.gov/NAS/DataSets/. Data sets are integrated with related information such as research papers, metadata, visualizations, etc. In this paper, four classes of users are identified and discussed: students, visualization developers, CFD practitioners, and management. Bandwidth and security issues are briefly reviewed and the status of the archive as of May 1995 is examined. Routine network distribution of data sets is likely to have profound implications for the conduct of science. The exact nature of these changes is subject to speculation, but the ability for anyone to examine the data, in addition to the investigator's analysis, may well play an important role in the future.
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
NASA Technical Reports Server (NTRS)
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
CFD Analysis for Flow of Liquids in Coils
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-04-01
The effects of liquid flow rate, coil diameter, pseudo plasticity of the liquids on the frictional pressure drop for the flow through helical coils have been reported through experimental investigation. Numerical modeling is carried using Fluent 6.3 software to find its applicability in the flow system. The Computational Fluid Dynamics (CFD) simulations are carried out using laminar non-Newtonian pseudo plastic power law model for laminar flow and k-ɛ model for turbulent flow for water. Water and dilute solution of Sodium Carboxy Methyl Cellulose (SCMC) as a non-Newtonian pseudo plastic fluid used for the study. Both hexahedral and tetrahedral grids are used for this simulation. The CFD results show the very good agreement with the experimental values. The comparison of the non-Newtonian liquid flow and water are also reported.
Accuracy requirements and benchmark experiments for CFD validation
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1988-01-01
The role of experiment in the development of Computation Fluid Dynamics (CFD) for aerodynamic flow prediction is discussed. The CFD verification is a concept that depends on closely coordinated planning between computational and experimental disciplines. Because code applications are becoming more complex and their potential for design more feasible, it no longer suffices to use experimental data from surface or integral measurements alone to provide the required verification. Flow physics and modeling, flow field, and boundary condition measurements are emerging as critical data. Four types of experiments are introduced and examples given that meet the challenge of validation: flow physics experiments; flow modeling experiments; calibration experiments; and verification experiments. Measurement and accuracy requirements for each of these differ and are discussed. A comprehensive program of validation is described, some examples given, and it is concluded that the future prospects are encouraging.
Indoor Airflow Simulation inside Lecture Room: A CFD Approach
NASA Astrophysics Data System (ADS)
Lin, S.; Tee, B. T.; Tan, C. F.
2015-09-01
Indoor air flow distribution is important as it will affect the productivity of the occupants. Poor air flow distribution not only cause discomfort to the occupants but also influence their ability to conduct their activities. The main purpose of this study is to investigate the indoor air flow inside lecture rooms through CFD simulation approach. Two types of air-conditioning configuration system in lecture rooms have been selected for this study which includes the split unit and centralized system. The air flow distribution between these two systems are analyzed and compared. Physical measurement is conducted using a velocity meter for validation purpose. CFD simulation is developed by using ANSYS Fluent software. The results specifically the air velocity and temperature data are compared and validated. Based on the findings, design recommendation is proposed with the aim to improve on the current air flow distribution in the lecture rooms.
The legacy and future of CFD at Los Alamos
Johnson, N.L.
1996-06-01
The early history is presented of the prolific development of CFD methods in the Fluid Dynamics Group (T-3) at Los Alamos National Laboratory in the years from 1958 to the late 1960`s. Many of the currently used numerical methods--PIC, MAC, vorticity-stream-function, ICE, ALE methods and the {kappa}-{var_epsilon} method for turbulence--originated during this time. The rest of the paper summarizes the current research in T-3 for CFD, turbulence and solids modeling. The research areas include reactive flows, multimaterial flows, multiphase flows and flows with spatial discontinuities. Also summarized are modern particle methods and techniques developed for large scale computing on massively parallel computing platforms and distributed processors.
Gasification CFD Modeling for Advanced Power Plant Simulations
Zitney, S.E.; Guenther, C.P.
2005-09-01
In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.
CFD Simulations of Joint Urban Atmospheric Dispersion Field Study
Lee, R; Humphreys III, T; Chan, S
2004-06-17
The application of Computational Fluid Dynamics (CFD) to the understanding of urban wind flow and dispersion processes has gained increasing attention over recent years. While many of the simpler dispersion models are based on a set of prescribed meteorology to calculate dispersion, the CFD approach has the ability of coupling the wind field to dispersion processes. This has distinct advantages when very detailed results are required, such as for the case where the releases occur around buildings and within urban areas. CFD also has great flexibility as a testbed for turbulence models, which has important implications for atmospheric dispersion problems. In the spring of 2003, a series of dispersion field experiments (Joint Urban 2003) were conducted at Oklahoma City (Allwine, et. al, 2004). These experiments were complimentary to the URBAN 2000 field studies at Salt Lake City (Shinn, et. al, 2000) in that they will provide a second set of comprehensive field data for evaluation of CFD as well as for other dispersion models. In contrast to the URBAN 2000 experiments that were conducted entirely at night, these new field studies took place during both daytime and nighttime thus including the possibility of convective as well as stable atmospheric conditions. Initially several CFD modeling studies were performed to provide guidance for the experimental team in the selection of release sites and in the deployment of wind and concentration sensors. Also, while meteorological and concentration measurements were taken over the greater Oklahoma City urban area, our CFD calculations were focused on the near field of the release point. The proximity of the source to a large commercial building and to the neighboring buildings several of which have multistories, present a significant challenge even for CFD calculations involving grid resolutions as fine as 1 meter. A total of 10 Intensive Observations Periods (IOP's) were conducted within the 2003 field experiments. SF6
CFD Results for an Axisymmetric Isentropic Relaxed Compression Inlet
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Tacina, Kathleen M.; Conners, Timothy R.; Merret, Jason M.; Howe, Donald C.
2008-01-01
The OVERFLOW code was used to calculate the flow field for a family of five relaxed compression inlets, which were part of a screening study to determine a configuration most suited to the application of microscale flow control technology as a replacement for bleed. Comparisons are made to experimental data collected for each of the inlets in the 1- by 1-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center (GRC) to help determine the suitability of computational fluid dynamics (CFD) as a tool for future studies of these inlets with flow control devices. Effects on the wind tunnel results of the struts present in a high subsonic flow region accounted for most of the inconsistency between the results. Based on the level of agreement in the present study, it is expected that CFD can be used as a tool to aid in the design of a study of this class of inlets with flow control.
Evaluating two process scale chromatography column header designs using CFD.
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. PMID:24616438
Intelligent Computational Systems. Opening Remarks: CFD Application Process Workshop
NASA Technical Reports Server (NTRS)
VanDalsem, William R.
1994-01-01
This discussion will include a short review of the challenges that must be overcome if computational physics technology is to have a larger impact on the design cycles of U.S. aerospace companies. Some of the potential solutions to these challenges may come from the information sciences fields. A few examples of potential computational physics/information sciences synergy will be presented, as motivation and inspiration for the Improving The CFD Applications Process Workshop.
CFD validation experiments at the Lockheed-Georgia Company
NASA Technical Reports Server (NTRS)
Malone, John B.; Thomas, Andrew S. W.
1987-01-01
Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at the Lockheed-Georgia Company. Topics covered include validation experiments on a generic fighter configuration, a transport configuration, and a generic hypersonic vehicle configuration; computational procedures; surface and pressure measurements on wings; laser velocimeter measurements of a multi-element airfoil system; the flowfield around a stiffened airfoil; laser velocimeter surveys of a circulation control wing; circulation control for high lift; and high angle of attack aerodynamic evaluations.
Experimental and CFD Analysis of Advanced Convective Cooling Systems
Hassan, Yassin A; Ugaz, Victor M
2012-06-27
The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power
CFD simulation of vented explosion and turbulent flame propagation
NASA Astrophysics Data System (ADS)
Tulach, Aleš; Mynarz, Miroslav; Kozubková, Milada
2015-05-01
Very rapid physical and chemical processes during the explosion require both quality and quantity of detection devices. CFD numerical simulations are suitable instruments for more detailed determination of explosion parameters. The paper deals with mathematical modelling of vented explosion and turbulent flame spread with use of ANSYS Fluent software. The paper is focused on verification of preciseness of calculations comparing calculated data with the results obtained in realised experiments in the explosion chamber.
Automatic Data Distribution for CFD Applications on Structured Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry; Saini, Subhash (Technical Monitor)
1999-01-01
Development of HPF versions of NPB and ARC3D showed that HPF has potential to be a high level language for parallelization of CFD applications. The use of HPF requires an intimate knowledge of the applications and a detailed analysis of data affinity, data movement and data granularity. Since HPF hides data movement from the user even with this knowledge it is easy to overlook pieces of the code causing low performance of the application. In order to simplify and accelerate the task of developing HPF versions of existing CFD applications we have designed and partially implemented ADAPT (Automatic Data Distribution and Placement Tool). The ADAPT analyzes a CFD application working on a single structured grid and generates HPF TEMPLATE, (RE)DISTRIBUTION, ALIGNMENT and INDEPENDENT directives. The directives can be generated on the nest level, subroutine level, application level or inter application level. ADAPT is designed to annotate existing CFD FORTRAN application performing computations on single or multiple grids. On each grid the application can considered as a sequence of operators each applied to a set of variables defined in a particular grid domain. The operators can be classified as implicit, having data dependences, and explicit, without data dependences. In order to parallelize an explicit operator it is sufficient to create a template for the domain of the operator, align arrays used in the operator with the template, distribute the template, and declare the loops over the distributed dimensions as INDEPENDENT. In order to parallelize an implicit operator, the distribution of the operator's domain should be consistent with the operator's dependences. Any dependence between sections distributed on different processors would preclude parallelization if compiler does not have an ability to pipeline computations. If a data distribution is "orthogonal" to the dependences of an implicit operator then the loop which implements the operator can be declared as
The development of an efficient turbomachinery CFD analysis procedure
NASA Astrophysics Data System (ADS)
Thomas, Matthew E.; Shimp, Nancy R.; Raw, Michael J.; Galpin, Paul F.; Raithby, George D.
1989-07-01
A three-dimensional Navier-Stokes CFD code has been developed for application to the turbomachinery design process within liquid propulsion systems. Accuracy, robustness, efficiency, convenient grid generation, and user friendly integration into the turbomachinery analysis and design procedure have been emphasized. This paper documents the progress made to date including code description, grid generation and integration into the design process. Three test cases are presented: a turbine cascade, a pump impeller, and a volute.
CFD Analysis of Bubbling Fluidized Bed Using Rice Husk
NASA Astrophysics Data System (ADS)
Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.
Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.
Surface modeling and grid generation for aeropropulsion CFD
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Loellbach, James; Lee, Jinho
1995-01-01
The efforts in geometry modeling and grid generation at the NASA Lewis Research Center, as applied to the computational fluid dynamic (CFD) analysis of aeropropulsion systems, are presented. The efforts are mainly characterized by a focus on the analysis of components of an aeropropulsion system, which involve turbulent viscous flow with heat transfer and chemistry. Thus, this discussion will follow that characterization and will sequence through the components of typical propulsion systems consisting of inlets, compressors, combustors, turbines, and nozzles. For each component, some applications of CFD analysis will be presented to show how CFD is used to compute the desired performance information, how geometry modeling and grid generation are performed, and what issues have developed related to geometry modeling and grid generation. The discussion will illustrate the following needs related to geometry modeling and grid generation as observed in aeropropulsion analysis: (1) accurate and efficient resolution of turbulent viscous and chemically-reacting flowfields; (2) easy-to-use interfaces with CAD data for automated grid generation about complex geometries; and (3) automated batch grid generation software for use with design and optimization software.
Preliminary tests of a damaged ship for CFD validation
NASA Astrophysics Data System (ADS)
Lee, Sungkyun; You, Ji-Myoung; Lee, Hyun-Ho; Lim, Taegu; Rhee, Shin Hyung; Rhee, Key-Pyo
2012-06-01
One of the most critical issues in naval architecture these days is the operational safety. Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions is the first to ensure for both commercial and military vessels. Unlike the intact stability cases, the assessment of the damaged ship stability is very complicated physical phenomena. Therefore it is widely acknowledged that computational fluid dynamics (CFD) methods are one of most feasible approaches. In order to develop better CFD methods for damaged ship stability assessment, it is essential to perform well-designed model tests and to build a database for CFD validation. In the present study, free roll decay tests in calm water with both intact and damaged ships were performed and six degree-of-freedom (6DOF) motion responses of intact ship in regular waves were measured. Through the free roll decay tests, the effects of the flooding water on the roll decay motion of a ship were investigated. Through the model tests in regular waves, the database that provides 6DOF motion responses of intact ship was established
Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements
NASA Technical Reports Server (NTRS)
Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.
1997-01-01
The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
A CFD Model for Simulating Urban Flow and Dispersion.
NASA Astrophysics Data System (ADS)
Baik, Jong-Jin; Kim, Jae-Jin; Fernando, Harindra J. S.
2003-11-01
A three-dimensional computational fluid dynamics (CFD) model is developed to simulate urban flow and dispersion, to understand fluid dynamical processes therein, and to provide practical solutions to some emerging problems of urban air pollution. The governing equations are the Reynolds-averaged equations of momentum, mass continuity, heat, and other scalar (here, passive pollutant) under the Boussinesq approximation. The Reynolds stresses and turbulent fluxes are parameterized using the eddy diffusivity approach. The turbulent diffusivities of momentum, heat, and pollutant concentration are calculated using the prognostic equations of turbulent kinetic energy and its dissipation rate. The set of governing equations is solved numerically on a staggered, nonuniform grid system using a finite-volume method with the semi-implicit method for pressure-linked equation (SIMPLE) algorithm. The CFD model is tested for three different building configurations: infinitely long canyon, long canyon of finite length, and orthogonally intersecting canyons. In each case, the CFD model is shown to simulate urban street-canyon flow and pollutant dispersion well.
Blood flow quantification using 1D CFD parameter identification
NASA Astrophysics Data System (ADS)
Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir
2014-03-01
Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.
EXAMINATION OF A PROPOSED VALIDATION DATA SET USING CFD CALCULATIONS
Richard W. Johnson
2009-08-01
The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 ºC to perhaps 1000 ºC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for such for future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present article presents new results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1997-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1996-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
CFD Extraction Tool for TecPlot From DPLR Solutions
NASA Technical Reports Server (NTRS)
Norman, David
2013-01-01
This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.
Efficient parallel CFD-DEM simulations using OpenMP
NASA Astrophysics Data System (ADS)
Amritkar, Amit; Deb, Surya; Tafti, Danesh
2014-01-01
The paper describes parallelization strategies for the Discrete Element Method (DEM) used for simulating dense particulate systems coupled to Computational Fluid Dynamics (CFD). While the field equations of CFD are best parallelized by spatial domain decomposition techniques, the N-body particulate phase is best parallelized over the number of particles. When the two are coupled together, both modes are needed for efficient parallelization. It is shown that under these requirements, OpenMP thread based parallelization has advantages over MPI processes. Two representative examples, fairly typical of dense fluid-particulate systems are investigated, including the validation of the DEM-CFD and thermal-DEM implementation with experiments. Fluidized bed calculations are performed on beds with uniform particle loading, parallelized with MPI and OpenMP. It is shown that as the number of processing cores and the number of particles increase, the communication overhead of building ghost particle lists at processor boundaries dominates time to solution, and OpenMP which does not require this step is about twice as fast as MPI. In rotary kiln heat transfer calculations, which are characterized by spatially non-uniform particle distributions, the low overhead of switching the parallelization mode in OpenMP eliminates the load imbalances, but introduces increased overheads in fetching non-local data. In spite of this, it is shown that OpenMP is between 50-90% faster than MPI.
Aerofoil characteristics from 3D CFD rotor computations
NASA Astrophysics Data System (ADS)
Johansen, Jeppe; Sørensen, Niels N.
2004-10-01
This article describes a method for extracting aerofoil characteristics from 3D computational fluid dynamics (CFD) rotor computations. Based on the knowledge of the detailed flow in the rotor plane, the average sectional axial induction is determined for each wind speed. Based on this, the local angle of attack is determined when knowing the rotational speed and the local blade twist angle. The local aerofoil characteristics, i.e. Cl and Cd, are then computed from the forces acting on the blade. The extracted Cl and Cd are used in a standard blade element momentum (BEM) code, where no corrections are made for the rotational augmentation of forces or for the tip effect, since these are directly included in the aerofoil characteristics. Three stall-regulated wind turbine rotors are used as test cases. The computed mechanical power is overpredicted at high wind speeds using steady Reynolds-averaged Navier-Stokes computations, but using advanced turbulence models, e.g. detached eddy simulation, or a transition prediction model improves the computations. The agreement between the mechanical power (or low-speed shaft torque) predicted by CFD and BEM is good, even though a small but consistent difference in induction prediction is present. With the proposed method and a sufficiently accurate CFD computation it is possible to obtain aerofoil characteristics from a given wind turbine design without using empirical stall corrections models. Alternatively, new correction models can be derived using the extracted aerofoil characteristics. Copyright
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
CFD simulation research on residential indoor air quality.
Yang, Li; Ye, Miao; He, Bao-Jie
2014-02-15
Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. PMID:24365517
CFD simulation of mixing for high-solids anaerobic digestion.
Wu, Binxin
2012-08-01
A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included. PMID:22422446
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-05-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design
NASA Astrophysics Data System (ADS)
McConnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.
1993-11-01
Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.
Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.
1993-01-01
Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
Hoi, Yiemeng; Woodward, Scott H.; Kim, Minsuok; Taulbee, Dale B.; Meng, Hui
2009-01-01
Background Computational fluid dynamics (CFD) simulations using medical-image-based anatomical vascular geometry are now gaining clinical relevance. This study aimed at validating the CFD methodology for studying cerebral aneurysms by using particle image velocimetry (PIV) measurements, with a focus on the effects of small geometric variations in aneurysm models on the flow dynamics obtained with CFD. Method of Approach. An experimental phantom was fabricated out of silicone elastomer to best mimic a spherical aneurysm model. PIV measurements were obtained from the phantom and compared with the CFD results from an ideal spherical aneurysm model (S1). These measurements were also compared with CFD results, based on the geometry reconstructed from three-dimensional images of the experimental phantom. We further performed CFD analysis on two geometric variations, S2 and S3, of the phantom to investigate the effects of small geometric variations on the aneurysmal flow field. Results. We found poor agreement between the CFD results from the ideal spherical aneurysm model and the PIV measurements from the phantom, including inconsistent secondary flow patterns. The CFD results based on the actual phantom geometry, however, matched well with the PIV measurements. CFD of models S2 and S3 produced qualitatively similar flow fields to that of the phantom but quantitatively significant changes in key hemodynamic parameters such as vorticity, positive circulation, and wall shear stress. Conclusion. CFD simulation results can closely match experimental measurements as long as both are performed on the same model geometry. Small geometric variations on the aneurysm model can significantly alter the flow-field and key hemodynamic parameters. Since medical images are subjected to geometric uncertainties, image-based patient-specific CFD results must be carefully scrutinized before providing clinical feedback. PMID:17154684
Characterization of the Space Shuttle Ascent Debris using CFD Methods
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.
2005-01-01
After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.
Development and application of computational fluid dynamics (CFD) simulations are being advanced through case studies for simulating air pollutant concentrations from sources within open fields and within complex urban building environments. CFD applications have been under deve...
Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...
Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...
RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD
NASA Technical Reports Server (NTRS)
Nesman, Tom; Stewart, Eric
1996-01-01
Space Shuttle solid rocket motor low frequency internal pressure oscillations have been observed since early testing. The same type of oscillations also are present in the redesigned solid rocket motor (RSRM). The oscillations, which occur during RSRM burn, are predominantly at the first three motor cavity longitudinal acoustic mode frequencies. Broadband flow and combustion noise provide the energy to excite these modes at low levels throughout motor burn, however, at certain times during burn the fluctuating pressure amplitude increases significantly. The increased fluctuations at these times suggests an additional excitation mechanism. The RSRM has inhibitors on the propellant forward facing surface of each motor segment. The inhibitors are in a slot at the segment field joints to prevent burning at that surface. The aft facing segment surface at a field joint slot burns and forms a cavity of time varying size. Initially the inhibitor is recessed in the field joint cavity. As propellant burns away the inhibitor begins to protrude into the bore flow. Two mechanisms (transit time models) that are considered potential pressure oscillation excitations are cavity-edge tones, and inhibitor hole-tones. Estimates of frequency variation with time of longitudinal acoustic modes, cavity edge-tones, and hole-tones compare favorably with frequencies measured during motor hot firing. It is believed that the highest oscillation amplitudes occur when vortex shedding frequencies coincide with motor longitudinal acoustic modes. A time accurate computational fluid dynamic (CFD) analysis was made to replicate the observations from motor firings and to observe the transit time mechanisms in detail. FDNS is the flow solver used to detail the time varying aspects of the flow. The fluid is approximated as a single-phase ideal gas. The CFD model was an axisymmetric representation of the RSRM at 80 seconds into burn.Deformation of the inhibitors by the internal flow was determined
CFD spinoff - Computational electromagnetics for radar cross section (RCS) studies
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Mohammadian, Alireza H.; Hall, William F.; Erickson, Roy
1990-01-01
A finite-volume discretization procedure derived from proven CFD methods is used to solve the conservation form of the time-domain Maxwell's equations, in order to compute EM scattering from layered objects. This time-domain approach handles both single-frequency/continuous wave and broadband-frequency/pulse incident excitation. Arbitrarily shaped objects are modeled by means of a body-fitted coordinate transformation; complex internal/external structures with many material layers are treated through the implementation of a multizone framework capable of handling any type of zonal boundary condition. Results are presented for various two- and three-dimensional problems.
Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Rallabhandi, Sriram K.
2010-01-01
A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.
Scaling studies and conceptual experiment designs for NGNP CFD assessment
D. M. McEligot; G. E. McCreery
2004-11-01
The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary
Inverse design and CFD investigation of blood pump impeller.
Li, H; Chan, W K
2000-01-01
In this paper, a three-dimensional inverse design method using mean swirl specification is applied to the design of centrifugal blood pump impeller blades. CFD investigation of the passage flows is carried out to analyze the flow field and pressure generated across the blade. The results show that the possibility of blood cells' damage may not be increased when the pressure developed is increased. This technique can provide designers valuable insight on the development of efficient blood pump with reduced risk of blood traumatization. PMID:10999368
Automation of the CFD Process on Distributed Computing Systems
NASA Technical Reports Server (NTRS)
Tejnil, Ed; Gee, Ken; Rizk, Yehia M.
2000-01-01
A script system was developed to automate and streamline portions of the CFD process. The system was designed to facilitate the use of CFD flow solvers on supercomputer and workstation platforms within a parametric design event. Integrating solver pre- and postprocessing phases, the fully automated ADTT script system marshalled the required input data, submitted the jobs to available computational resources, and processed the resulting output data. A number of codes were incorporated into the script system, which itself was part of a larger integrated design environment software package. The IDE and scripts were used in a design event involving a wind tunnel test. This experience highlighted the need for efficient data and resource management in all parts of the CFD process. To facilitate the use of CFD methods to perform parametric design studies, the script system was developed using UNIX shell and Perl languages. The goal of the work was to minimize the user interaction required to generate the data necessary to fill a parametric design space. The scripts wrote out the required input files for the user-specified flow solver, transferred all necessary input files to the computational resource, submitted and tracked the jobs using the resource queuing structure, and retrieved and post-processed the resulting dataset. For computational resources that did not run queueing software, the script system established its own simple first-in-first-out queueing structure to manage the workload. A variety of flow solvers were incorporated in the script system, including INS2D, PMARC, TIGER and GASP. Adapting the script system to a new flow solver was made easier through the use of object-oriented programming methods. The script system was incorporated into an ADTT integrated design environment and evaluated as part of a wind tunnel experiment. The system successfully generated the data required to fill the desired parametric design space. This stressed the computational
Unsteady wind loads for TMT: replacing parametric models with CFD
NASA Astrophysics Data System (ADS)
MacMartin, Douglas G.; Vogiatzis, Konstantinos
2014-08-01
Unsteady wind loads due to turbulence inside the telescope enclosure result in image jitter and higher-order image degradation due to M1 segment motion. Advances in computational fluid dynamics (CFD) allow unsteady simulations of the flow around realistic telescope geometry, in order to compute the unsteady forces due to wind turbulence. These simulations can then be used to understand the characteristics of the wind loads. Previous estimates used a parametric model based on a number of assumptions about the wind characteristics, such as a von Karman spectrum and frozen-flow turbulence across M1, and relied on CFD only to estimate parameters such as mean wind speed and turbulent kinetic energy. Using the CFD-computed forces avoids the need for assumptions regarding the flow. We discuss here both the loads on the telescope that lead to image jitter, and the spatially-varying force distribution across the primary mirror, using simulations with the Thirty Meter Telescope (TMT) geometry. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are all estimated; these are then used to compute the resulting image motion and degradation. There are several key differences relative to our earlier parametric model. First, the TMT enclosure provides sufficient wind reduction at the top end (near M2) to render the larger cross-sectional structural areas further inside the enclosure (including M1) significant in determining the overall image jitter. Second, the temporal spectrum is not von Karman as the turbulence is not fully developed; this applies both in predicting image jitter and M1 segment motion. And third, for loads on M1, the spatial characteristics are not consistent with propagating a frozen-flow turbulence screen across the mirror: Frozen flow would result in a relationship between temporal frequency content and spatial frequency content that does not hold in the CFD predictions. Incorporating the new estimates of wind load characteristics
CFD Simulations Of Sonic Booms In Near And Mid Fields
NASA Technical Reports Server (NTRS)
Cheung, Samson H.; Edwards, Thomas A.; Lawrence, Scott L.
1992-01-01
Report discusses computational fluid dynamics (CFD) to simulate generation and propagation of sonic booms in near- and mid-field regions of supersonic flows about simplified bodies representative of advanced airplanes. Parabolized Navier-Stokes equations integrated by implicit, approximate-factorization, finite-volume algorithm in which crossflow inviscid fluxes evaluated by Roe's flux-difference-splitting scheme. Near-field solutions obtained by applying algorithm to flows immediately surrounding bodies. Solutions transferred to computer codes based on Whitham"s F-function theory for extrapolation to far-field.
Prediction of Hyper-X Stage Separation Aerodynamics Using CFD
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.
2000-01-01
The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.
CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott
1996-01-01
A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are
Transient CFD simulation of a Francis turbine startup
NASA Astrophysics Data System (ADS)
Nicolle, J.; Morissette, J. F.; Giroux, A. M.
2012-11-01
To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.
Lessons Learned from CFD Validation Study of Protuberance Heating
NASA Technical Reports Server (NTRS)
Oliver, Brandon; Blaisdell, Greogory
2011-01-01
The objectives of this presentation are: (1) Share lessons learned from a recent exercise in CFD validation of protuberance heating (2) Impact of experimental data reduction assumptions and techniques on validation activity (3) Advanced data reduction techniques may provide useful data from non-typical test methods (4) Significance of the recovery factor for high-speed flows (5) Show typical results of the Lag turbulence model on protuberances (6) Introduce and inform the listener of a protuberance heating dataset which will soon be available for comparison
A novel CFD/structural analysis of a cross parachute
LaFarge, R.A.; Nelsen, J.M.; Gwinn, K.W.
1993-12-31
A novel CFD/structural analysis was performed to predict functionality of a cross parachute under loadings near the structural limits of the parachute. The determination of parachute functionality was based on the computed structural integrity of the canopy and suspension lines. In addition to the standard aerodynamic pressure loading on the canopy, the structural analysis considered the reduction in fabric strength due to the computed aerodynamic heating. The intent was to illustrate the feasibility of such an analysis with the commercially available software PATRAN.
Sources of error in CEMRA-based CFD simulations of the common carotid artery
NASA Astrophysics Data System (ADS)
Khan, Muhammad Owais; Wasserman, Bruce A.; Steinman, David A.
2013-03-01
Magnetic resonance imaging is often used as a source for reconstructing vascular anatomy for the purpose of computational fluid dynamics (CFD) analysis. We recently observed large discrepancies in such "image-based" CFD models of the normal common carotid artery (CCA) derived from contrast enhanced MR angiography (CEMRA), when compared to phase contrast MR imaging (PCMRI) of the same subjects. A novel quantitative comparison of velocity profile shape of N=20 cases revealed an average 25% overestimation of velocities by CFD, attributed to a corresponding underestimation of lumen area in the CEMRA-derived geometries. We hypothesized that this was due to blurring of edges in the images caused by dilution of contrast agent during the relatively long elliptic centric CEMRA acquisitions, and confirmed this with MRI simulations. Rescaling of CFD models to account for the lumen underestimation improved agreement with the velocity levels seen in the corresponding PCMRI images, but discrepancies in velocity profile shape remained, with CFD tending to over-predict velocity profile skewing. CFD simulations incorporating realistic inlet velocity profiles and non-Newtonian rheology had a negligible effect on velocity profile skewing, suggesting a role for other sources of error or modeling assumptions. In summary, our findings suggest that caution should be exercised when using elliptic-centric CEMRA data as a basis for image-based CFD modeling, and emphasize the importance of comparing image-based CFD models against in vivo data whenever possible.
NASA Technical Reports Server (NTRS)
Ziebarth, John P.; Meyer, Doug
1992-01-01
The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.
Numerical CFD Simulation and Test Correlation in a Flight Project Environment
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.
2015-01-01
This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.
There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
NASA Astrophysics Data System (ADS)
Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku
2014-06-01
As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.
2010-01-01
Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.
Development of a CFD Analysis Plan for the first VHTR Standard Problem
Richard W. Johnson
2008-09-01
Data from a scaled model of a portion of the lower plenum of the helium-cooled very high temperature reactor (VHTR) are under consideration for acceptance as a computational fluid dynamics (CFD) validation data set or standard problem. A CFD analysis will help determine if the scaled model is a suitable geometry for validation data. The present article describes the development of an analysis plan for the CFD model. The plan examines the boundary conditions that should be used, the extent of the computational domain that should be included and which turbulence models need not be examined against the data. Calculations are made for a closely related 2D geometry to address these issues. It was found that a CFD model that includes only the inside of the scaled model in its computational domain is adequate for CFD calculations. The realizable k~e model was found not to be suitable for this problem because it did not predict vortex-shedding.
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.
Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger
2011-01-01
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.
CFD modeling of water spray interaction with dense gas plumes
NASA Astrophysics Data System (ADS)
Meroney, Robert N.
2012-07-01
Numerical calculations are performed to reproduce the transport and dispersion of the continuous release of dense gases over flat homogeneous surfaces with and without the mitigating influence of a downwind water curtain. Frequently such plumes are released as a result of a chemical manufacturing, storage or gas transportation accident resulting in a ground-level hazard due to gas flammability or toxicity. A field situation in which cold carbon dioxide was released upwind of water curtains (Moodie et al., 1981) was simulated using the open-source software FDS (Fire Dynamic Simulator) a full 3-d CFD model. Only water-spray enhancement of dispersion was considered; hence, no chemical removal or reactions were present or simulated. Wind-tunnel measurements for a 1:28.9 scale replication of the Moodie experiments are also compared with the 3-d CFD results. Concentration distributions, percent dilution and forced diffusion parameters were compared in scatter diagrams. Concentration field contours with and without active spray curtains are also presented.
Automatic differentiation of advanced CFD codes for multidisciplinary design
NASA Technical Reports Server (NTRS)
Bischof, C.; Corliss, G.; Green, L.; Griewank, A.; Haigler, K.; Newman, P.
1992-01-01
Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that by using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g., O(man-week) not O(man-year).
Modelling reacting localized air pollution using Computational Fluid Dynamics (CFD)
NASA Astrophysics Data System (ADS)
Karim, A. A.; Nolan, P. F.
2011-02-01
A Computational Fluid Dynamics (CFD) approach is used to model reacting NO 2 dispersion of vehicle pollutants released from a dual carriageway in Maidstone, UK. The simulations are carried out over the course of one full day during January, 2008. The developed CFD model utilizes a modified k- ɛ turbulence model and Arrhenius reaction kinetics with source terms for the reactions which include a photo-stationary set with peroxy radicals. An approach is taken whereby the reactions are solved specific to the rush hour period corresponding to the availability of certain hydrocarbons released from the vehicles. The results of the simulation are compared with field measurements taken at the site which is made up of several, different sized buildings on varying terrain in Maidstone UK. The predictions and field measurements are considered over a 12 h period with averaged hourly results. It was found that the reactive pollutant approach greatly improves the predictions as compared to the experiments. Furthermore the effect of peroxy radicals during rush hour periods is found to be a major disturbance to the photo-stationary set and its inclusion improved the predictions further.
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Cars Thermometry in a Supersonic Combustor for CFD Code Validation
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Danehy, P. M.; Springer, R. R.; DeLoach, R.; Capriotti, D. P.
2002-01-01
An experiment has been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The primary measurement technique is coherent anti-Stokes Raman spectroscopy (CARS), although surface pressures and temperatures have also been acquired. Modern- design- of-experiment techniques have been used to maximize the quality of the data set (for the given level of effort) and minimize systematic errors. The combustor consists of a diverging duct with single downstream- angled wall injector. Nominal entrance Mach number is 2 and enthalpy nominally corresponds to Mach 7 flight. Temperature maps are obtained at several planes in the flow for two cases: in one case the combustor is piloted by injecting fuel upstream of the main injector, the second is not. Boundary conditions and uncertainties are adequately characterized. Accurate CFD calculation of the flow will ultimately require accurate modeling of the chemical kinetics and turbulence-chemistry interactions as well as accurate modeling of the turbulent mixing
CFD analysis of jet mixing in low NOx flametube combustors
NASA Technical Reports Server (NTRS)
Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.
1991-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.
Fluorescence Imaging of Underexpanded Jets and Comparison with CFD
NASA Technical Reports Server (NTRS)
Wilkes, Jennifer A.; Glass, Christopher E.; Danehy, Paul M.; Nowak, Robert J.
2006-01-01
An experimental study of underexpanded and highly underexpanded axisymmetric nitrogen free jets seeded with 0.5% nitric oxide (NO) and issuing from a sonic orifice was conducted at NASA Langley Research Center. Reynolds numbers based on nozzle exit conditions ranged from 770 to 35,700, and nozzle exit-to-ambient jet pressure ratios ranged from 2 to 35. These flows were non-intrusively visualized with a spatial resolution of approximately 0.14 mm x 0.14 mm x 1 mm thick and a temporal resolution of 1 s using planar laser-induced fluorescence (PLIF) of NO, with the laser tuned to the strongly-fluorescing UV absorption bands of the Q1 band head near 226.256 nm. Three laminar cases were selected for comparison with computational fluid dynamics (CFD). The cases were run using GASP (General Aerodynamic Simulation Program) Version 4. Comparisons of the fundamental wavelength of the jet flow showed good agreement between CFD and experiment for all three test cases, while comparisons of Mach disk location and Mach disk diameter showed good agreement at lower jet pressure ratios, with a tendency to slightly underpredict these parameters with increasing jet pressure ratio.
Automated CFD Parameter Studies on Distributed Parallel Computers
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Aftosmis, Michael; Pandya, Shishir; Tejnil, Edward; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
The objective of the current work is to build a prototype software system which will automated the process of running CFD jobs on Information Power Grid (IPG) resources. This system should remove the need for user monitoring and intervention of every single CFD job. It should enable the use of many different computers to populate a massive run matrix in the shortest time possible. Such a software system has been developed, and is known as the AeroDB script system. The approach taken for the development of AeroDB was to build several discrete modules. These include a database, a job-launcher module, a run-manager module to monitor each individual job, and a web-based user portal for monitoring of the progress of the parameter study. The details of the design of AeroDB are presented in the following section. The following section provides the results of a parameter study which was performed using AeroDB for the analysis of a reusable launch vehicle (RLV). The paper concludes with a section on the lessons learned in this effort, and ideas for future work in this area.
Recent CFD Simulations of Shuttle Orbiter Contingency Abort Aerodynamics
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, Ethiraj; Wersinski, Paul; Gomez, Reynaldo; Arnold, Jim (Technical Monitor)
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20-60 degrees, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). While approximately 40 cases have been computed, only a sampling of the results is presented here. The computed results, in general, are in good agreement with the Orbiter Operational Aerodynamic Data Book (OADB) data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects.
Automatic differentiation of advanced CFD codes for multidisciplinary design
Bischof, C.; Corliss, G.; Griewank, A. ); Green, L.; Haigler, K.; Newman, P. . Langley Research Center)
1992-01-01
Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown here that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g. O(man-week) not O(man-year).
Automatic differentiation of advanced CFD codes for multidisciplinary design
Bischof, C.; Corliss, G.; Griewank, A.; Green, L.; Haigler, K.; Newman, P.
1992-12-31
Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown here that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g. O(man-week) not O(man-year).
CFD analysis on a turbulence generator of medium consistency pump
NASA Astrophysics Data System (ADS)
Ma, X. D.; Wu, D. Z.; Huang, D. S.; Yu, H.; Wang, L. Q.
2013-12-01
Medium concentration paper suspension is a water-air-fibre three phase suspension. It has complicated physical features. When concentration exceeds 7%, it stops flowing and acts like a solid. A generator suspension is installed before the impeller to disturb the flocs and networks to make it start to flow. In this paper, CFD method is adopted to study the effects of the turbulence generator. As there is not a mature model to describe the characteristic of pulp suspension, Newtonian fluid is used to get the general property of the turbulence generator. In the CFD simulation, apparent viscosity of the pulp suspension is used to characterize the mixture. Firstly, numerical method is applied to get the turbulence generator properties in different rotational speed and different viscosity. From another point of view, air contained in the suspension is separate initially by means of centrifugal force. As it is difficult to describe a practical model of pulp suspension, it is simplified to be a water-air two-phase mixture. Several air contents are simulated to study the air distribution in the turbulence generator. The results show that there are three main effects of turbulence generator. Firstly, it has an entrainment effect of the suspension to make it into the pump. Secondly, it stirs the pulp suspension to bring it into flowing. Last, air is centralized in the shaft centre and pre-separated in the turbulence generator. So, the turbulence generator can pre-treat the pulp suspension to make the MC pump transport suspension successfully.
Displaying CFD Solution Parameters on Arbitrary Cut Planes
NASA Technical Reports Server (NTRS)
Pao, S. Paul
2008-01-01
USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.
Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.
2006-01-01
Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.
From Spintronics to CFD/ContractForDifferences
NASA Astrophysics Data System (ADS)
Maksoed, W. H.
2015-11-01
Involve the CFD/Computational Fluid Dynamics & HCCI/Homogeneous Charge Compression Ignition - Marcine Frackowiak, dissertation, 2009, for CFD/Contract For Differences accompanied by ``One Man's Crusade to Exonerate Hydrogen for Hindenburg Disaster'' of Addison BAIN, APS News, v. 9, n.7 (July 2000) concludes ``ignition of the blaze'' are responsible to those May, 1937 Accidents. Spintronics their selves include active control & manipulation of spin degree of freedom ever denotes: the nano-obelisk of scanning electron microscopy of galliumnitride/GaN nanostructures-Yong-Hon Cho et al.:``Novel Photonic Device using core-shell nanostructures'', SPIE-newsroom,10.1117/2.1201503.005864. Herewith commercial activated carbon/C can be imaged directly using abberation-corrected transmission electron microscopy[PJF Harris et al.: ``Imaging the Atomic Structures of activated C'', J. Phys. Condens. Matt, 20 (2008) in fig b & c- images networks of hexagonal rings can be clearly be seen depicts equal etchings of 340 px Akhenaten, Nefertiti & their childrens. Incredible acknowledgments to Minister of Education & Culture RI 1998-1999 HE. Mr. Prof. Ir. WIRANTO ARISMUNANDAR, MSME.
Error estimation for CFD aeroheating prediction under rarefied flow condition
NASA Astrophysics Data System (ADS)
Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2014-12-01
Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended
Convergence Acceleration and Documentation of CFD Codes for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Marquart, Jed E.
2005-01-01
The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the
NASA Technical Reports Server (NTRS)
Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.
2016-01-01
Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.
Computational Methods for HSCT-Inlet Controls/CFD Interdisciplinary Research
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; Chung, Joongkee
1994-01-01
A program aimed at facilitating the use of computational fluid dynamics (CFD) simulations by the controls discipline is presented. The objective is to reduce the development time and cost for propulsion system controls by using CFD simulations to obtain high-fidelity system models for control design and as numerical test beds for control system testing and validation. An interdisciplinary team has been formed to develop analytical and computational tools in three discipline areas: controls, CFD, and computational technology. The controls effort has focused on specifying requirements for an interface between the controls specialist and CFD simulations and a new method for extracting linear, reduced-order control models from CFD simulations. Existing CFD codes are being modified to permit time accurate execution and provide realistic boundary conditions for controls studies. Parallel processing and distributed computing techniques, along with existing system integration software, are being used to reduce CFD execution times and to support the development of an integrated analysis/design system. This paper describes: the initial application for the technology being developed, the high speed civil transport (HSCT) inlet control problem; activities being pursued in each discipline area; and a prototype analysis/design system in place for interactive operation and visualization of a time-accurate HSCT-inlet simulation.
Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III
1996-01-01
Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.
NASA Technical Reports Server (NTRS)
Redonnet, Stephane; Lockard, David P.; Khorrami, Mehdi R.; Choudhari, Meelan M.
2011-01-01
This paper presents a numerical assessment of acoustic installation effects in the tandem cylinder (TC) experiments conducted in the NASA Langley Quiet Flow Facility (QFF), an open-jet, anechoic wind tunnel. Calculations that couple the Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) of the TC configuration within the QFF are conducted using the CFD simulation results previously obtained at NASA LaRC. The coupled simulations enable the assessment of installation effects associated with several specific features in the QFF facility that may have impacted the measured acoustic signature during the experiment. The CFD-CAA coupling is based on CFD data along a suitably chosen surface, and employs a technique that was recently improved to account for installed configurations involving acoustic backscatter into the CFD domain. First, a CFD-CAA calculation is conducted for an isolated TC configuration to assess the coupling approach, as well as to generate a reference solution for subsequent assessments of QFF installation effects. Direct comparisons between the CFD-CAA calculations associated with the various installed configurations allow the assessment of the effects of each component (nozzle, collector, etc.) or feature (confined vs. free jet flow, etc.) characterizing the NASA LaRC QFF facility.
CFD-based Modeling of Inflight Mercury Capture
Madsen, J.I.; O'Brien, T.J.
2007-01-01
A numerical model of sorbent injection and in-flight mercury capture is presented. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, no velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which combines the physics of mass transfer at the microscopic sorbent scale with macroscopic flow conditions provided via Computational Fluid Dynamics (CFD) simulations. The implication is a cost-efficient tool for design of injection systems that maximize capture efficiency. The modeling framework will be presented along with results based on simulation of sites from the DOE/NETL sorbent injection field test program.
Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD
NASA Technical Reports Server (NTRS)
Brandt, Achi
1998-01-01
As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.
Standard Problems for CFD Validation for NGNP - Status Report
Richard W. Johnson; Richard R. Schultz
2010-08-01
The U.S. Department of Energy (DOE) is conducting research and development to support the resurgence of nuclear power in the United States for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The project is called the Next Generation Nuclear Plant (NGNP) Project, which is based on a Generation IV reactor concept called the very high temperature reactor (VHTR). The VHTR will be of the prismatic or pebble bed type; the former is considered herein. The VHTR will use helium as the coolant at temperatures ranging from 250°C to perhaps 1000°C. While computational fluid dynamics (CFD) has not previously been used for the safety analysis of nuclear reactors in the United States, it is being considered for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal operational and accident situations. The “Standard Problem” is an experimental data set that represents an important physical phenomenon or phenomena, whose selection is based on a phenomena identification and ranking table (PIRT) for the reactor in question. It will be necessary to build a database that contains a number of standard problems for use to validate CFD and systems analysis codes for the many physical problems that will need to be analyzed. The first two standard problems that have been developed for CFD validation consider flow in the lower plenum of the VHTR and bypass flow in the prismatic core. Both involve scaled models built from quartz and designed to be installed in the INL’s matched index of refraction (MIR) test facility. The MIR facility employs mineral oil as the working fluid at a constant temperature. At this temperature, the index of refraction of the mineral oil is the same as that of the quartz. This provides an advantage to the
Employing Sensitivity Derivatives for Robust Optimization under Uncertainty in CFD
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Putko, Michele M.; Taylor, Arthur C., III
2004-01-01
A robust optimization is demonstrated on a two-dimensional inviscid airfoil problem in subsonic flow. Given uncertainties in statistically independent, random, normally distributed flow parameters (input variables), an approximate first-order statistical moment method is employed to represent the Computational Fluid Dynamics (CFD) code outputs as expected values with variances. These output quantities are used to form the objective function and constraints. The constraints are cast in probabilistic terms; that is, the probability that a constraint is satisfied is greater than or equal to some desired target probability. Gradient-based robust optimization of this stochastic problem is accomplished through use of both first and second-order sensitivity derivatives. For each robust optimization, the effect of increasing both input standard deviations and target probability of constraint satisfaction are demonstrated. This method provides a means for incorporating uncertainty when considering small deviations from input mean values.
Intelligent Patching of Conceptual Geometry for CFD Analysis
NASA Technical Reports Server (NTRS)
Li, Wu
2010-01-01
The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect
Verification and Validation Studies for the LAVA CFD Solver
NASA Technical Reports Server (NTRS)
Moini-Yekta, Shayan; Barad, Michael F; Sozer, Emre; Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.
2013-01-01
The verification and validation of the Launch Ascent and Vehicle Aerodynamics (LAVA) computational fluid dynamics (CFD) solver is presented. A modern strategy for verification and validation is described incorporating verification tests, validation benchmarks, continuous integration and version control methods for automated testing in a collaborative development environment. The purpose of the approach is to integrate the verification and validation process into the development of the solver and improve productivity. This paper uses the Method of Manufactured Solutions (MMS) for the verification of 2D Euler equations, 3D Navier-Stokes equations as well as turbulence models. A method for systematic refinement of unstructured grids is also presented. Verification using inviscid vortex propagation and flow over a flat plate is highlighted. Simulation results using laminar and turbulent flow past a NACA 0012 airfoil and ONERA M6 wing are validated against experimental and numerical data.
Automated CFD for Generation of Airfoil Performance Tables
NASA Technical Reports Server (NTRS)
Strawn, Roger; Mayda, E. Q.; vamDam, C. P.
2009-01-01
A method of automated computational fluid dynamics (CFD) has been invented for the generation of performance tables for an object subject to fluid flow. The method is applicable to the generation of tables that summarize the effects of two-dimensional flows about airfoils and that are in a format known in the art as C81. (A C81 airfoil performance table is a text file that lists coefficients of lift, drag, and pitching moment of an airfoil as functions of angle of attack for a range of Mach numbers.) The method makes it possible to efficiently generate and tabulate data from simulations of flows for parameter values spanning all operational ranges of actual or potential interest. In so doing, the method also enables filling of gaps and resolution of inconsistencies in C81 tables generated previously from incomplete experimental data or from theoretical calculations that involved questionable assumptions.
Application of traditional CFD methods to nonlinear computational aeroacoustics problems
NASA Technical Reports Server (NTRS)
Chyczewski, Thomas S.; Long, Lyle N.
1995-01-01
This paper describes an implementation of a high order finite difference technique and its application to the category 2 problems of the ICASE/LaRC Workshop on Computational Aeroacoustics (CAA). Essentially, a popular Computational Fluid Dynamics (CFD) approach (central differencing, Runge-Kutta time integration and artificial dissipation) is modified to handle aeroacoustic problems. The changes include increasing the order of the spatial differencing to sixth order and modifying the artificial dissipation so that it does not significantly contaminate the wave solution. All of the results were obtained from the CM5 located at the Numerical Aerodynamic Simulation Laboratory. lt was coded in CMFortran (very similar to HPF), using programming techniques developed for communication intensive large stencils, and ran very efficiently.
Development of CFD model for augmented core tripropellant rocket engine
NASA Astrophysics Data System (ADS)
Jones, Kenneth M.
1994-10-01
The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.
Turbulence modelling in CFD: Present status, future prospects
NASA Technical Reports Server (NTRS)
Launder, Brian E.
1992-01-01
Information is given in viewgraph form for turbulence modeling in computational fluid dynamics (CFD). The Eddy Viscosity Models (EVM), Algebraic Second Moment Closures (ASM), and Differential Second-Moment Closures (DSM) are considered. It is concluded that EVM's, ASM's, and DSM's will remain in use, though with a steady decline in importance of EVM's and ASM's in favor of DSM's. Improved versions of low-Re two-equation EVM's should lead to more reliable predictions of separated flows than are achievable at present. Further refinement of sub-models in second moment closures can be expected throughout this decade. There will be increasing attention given to interfacing SMC with higher order approaches such as LES, and an increased use of two-time-scale schemes providing distinct time scales for large and fairly small eddies.
Development and Applications of 3D Cartesian CFD Technology
NASA Technical Reports Server (NTRS)
Melton, John E.; Berger, Marsha J.; VanDalsem, William (Technical Monitor)
1994-01-01
The urgent need for dramatic reductions in aircraft design cycle time is focusing scrutiny upon all aspects of computational fluid dynamics (CFD). These reductions will most likely come not from increased reliance upon user-interactive (and therefore time-expensive) methods, but instead from methods that can be fully automated and incorporated into 'black box' solutions. In comparison with tetrahedral methods, three-dimensional Cartesian grid approaches are in relative infancy, but initial experiences with automated Cartesian techniques are quite promising. Our research is targeted at furthering the development of Cartesian methods so that they can become key elements of a completely automatic grid generation/flow solution procedure applicable to the Euler analysis of complex aircraft geometries.
Heat transfer measurements and CFD simulations of an impinging jet
NASA Astrophysics Data System (ADS)
Petera, Karel; Dostál, Martin
2016-03-01
Heat transport in impinging jets makes a part of many experimental and numerical studies because some similarities can be identified between a pure impingement jet and industrial processes like, for example, the heat transfer at the bottom of an agitated vessel. In this paper, experimental results based on measuring the response to heat flux oscillations applied to the heat transfer surface are compared with CFD simulations. The computational cost of a LES-based approach is usually too high therefore a comparison with less computationally expensive RANS-based turbulence models is made in this paper and a possible improvement of implementing an anisotropic explicit algebraic model for the turbulent heat flux model is evaluated.
The PEP Symposium on CFD Techniques for Propulsion Applications
NASA Astrophysics Data System (ADS)
Hirsch, Ch.
1992-09-01
This is part of the PEP contribution to the 69th FDP meeting on Aerodynamic Engine/Airframe Integration for High Performance Aircraft and Missiles. It presents an overview of the main outcomes of the last PEP meeting dealing with CFD techniques for propulsion applications. The emphasis was given to computational work on realistic 3D configurations, covering the four following topics: full 3D validations; full 3D numerical techniques; unsteady flows and multidimensional reacting flows. In addition, an invited paper from FDP on the state of the art of computational techniques for 3D Navier-Stokes equations and a technical evaluation of the meeting were presented. The most widely stressed conclusion was the urgent need for a large scale effort on validation of numerical accuracy and of physical models.
Newton-Krylov-Schwarz: An implicit solver for CFD
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Keyes, David E.; Venkatakrishnan, V.
1995-01-01
Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton's method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on aerodynamics applications emphasizing comparisons with a standard defect-correction approach, subdomain preconditioner consistency, subdomain preconditioner quality, and the effect of a coarse grid.
A Multiscale/Multifidelity CFD Framework for Robust Simulations
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Yannis; Karniadakis, George
2015-11-01
We develop a general CFD framework based on multifidelity simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy simulated fields. We combine approximation theory and domain decomposition together with machine learning techniques, e.g. co-Kriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation with different patches of the domain simulated by finite differences at fine resolution or very low resolution but also with Monte Carlo, hence fusing multifidelity and heterogeneous models to obtain the final answer. Second, we simulate the flow in a driven cavity by fusing finite difference solutions with solutions obtained by dissipative particle dynamics - a coarse-grained molecular dynamics method. In addition to its robustness and resilience, the new framework generalizes previous multiscale approaches (e.g. continuum-atomistic) in a unified parallel computational framework.
Automatic Data Distribution for CFD Applications on Structured Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry
1999-01-01
Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAPT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAPT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.
Automatic Data Distribution for CFD Applications on Structured Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry
2000-01-01
Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAFT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAFT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.
Statistical Analysis of CFD Solutions from the Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
2002-01-01
A simple, graphical framework is presented for robust statistical evaluation of results obtained from N-Version testing of a series of RANS CFD codes. The solutions were obtained by a variety of code developers and users for the June 2001 Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration used for the computational tests is the DLR-F4 wing-body combination previously tested in several European wind tunnels and for which a previous N-Version test had been conducted. The statistical framework is used to evaluate code results for (1) a single cruise design point, (2) drag polars and (3) drag rise. The paper concludes with a discussion of the meaning of the results, especially with respect to predictability, Validation, and reporting of solutions.
Development of Supersonic Combustion Experiments for CFD Modeling
NASA Technical Reports Server (NTRS)
Baurle, Robert; Bivolaru, Daniel; Tedder, Sarah; Danehy, Paul M.; Cutler, Andrew D.; Magnotti, Gaetano
2007-01-01
This paper describes the development of an experiment to acquire data for developing and validating computational fluid dynamics (CFD) models for turbulence in supersonic combusting flows. The intent is that the flow field would be simple yet relevant to flows within hypersonic air-breathing engine combustors undergoing testing in vitiated-air ground-testing facilities. Specifically, it describes development of laboratory-scale hardware to produce a supersonic combusting coaxial jet, discusses design calculations, operability and types of flames observed. These flames are studied using the dual-pump coherent anti- Stokes Raman spectroscopy (CARS) - interferometric Rayleigh scattering (IRS) technique. This technique simultaneously and instantaneously measures temperature, composition, and velocity in the flow, from which many of the important turbulence statistics can be found. Some preliminary CARS data are presented.
CFD simulation of mixing in egg-shaped anaerobic digesters.
Wu, Binxin
2010-03-01
A computational fluid dynamics (CFD) model that characterizes mechanical draft tube mixing in egg-shaped anaerobic digesters was developed. Simulation of flow patterns were carried out with a propeller rotating from 400 to 750rpm, assuming liquid manure to be Newtonian (water) and non-Newtonian fluids depending on the total solids (TS) concentration. Power number and flow number of the propeller in water mixing were validated against lab specifications and experimental data from a field test. The rotational direction and placement of the propeller were examined to identify the primary pumping mode and the optimum position of the propeller fixed inside the tube. Quantitative comparisons of two mixing methods and two digester shapes indicated that mechanical draft tube mixing is more efficient than external pumped recirculation, and that the egg shape provides for more efficient mixing than the cylindrical shape. Furthermore, scale-up rules for mixing in egg-shaped digesters were investigated. PMID:19913870
Workload Characterization of CFD Applications Using Partial Differential Equation Solvers
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center
NASA Technical Reports Server (NTRS)
Kutler, Paul; Gross, Anthony R.
1987-01-01
The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.
Present and future of CFD on the aero-engine development in IHI
NASA Astrophysics Data System (ADS)
Tanaka, Atsushige
1990-09-01
Advances in aircraft engine performance and economy are achieved by a fusion of many individual advances in technology. Especially striking advances in the evolution of aerodynamic technology have appeared in the development and utilization of computational fluid dynamics (CFD). CFD already may have attained the level and continues to demonstrate extraordinarily valuable possibilities, in which it is an essential complement to testing and experimentation. A brief review is presented of the current status and the future of CFD on aircraft engine development in IHI.
Sample of CFD optimization of a centrifugal compressor stage
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Drozdov, A.
2015-08-01
Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.
CFD Analyses of Air-Ingress Accident for VHTRs
NASA Astrophysics Data System (ADS)
Ham, Tae Kyu
The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
CFD in the context of IHPTET: The Integrated High Performance Turbine Technology Program
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hudson, Dale A.
1989-01-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosphy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
The presentation summarizes developments of ongoing applications of fine-scale (geometry specific) CFD simulations to urban areas within atmospheric boundary layers. Enabling technology today and challenges for the future are discussed. There is a challenging need to develop a ...
CFD-based method of determining form factor k for different ship types and different drafts
NASA Astrophysics Data System (ADS)
Wang, Jinbao; Yu, Hai; Zhang, Yuefeng; Xiong, Xiaoqing
2016-07-01
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.
2010-01-01
This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.
CFD in the context of IHPTET - The Integrated High Performance Turbine Engine Technology Program
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hudson, Dale A.
1989-01-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosophy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data
NASA Technical Reports Server (NTRS)
Ruf, J. H.
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.
Summary of the First AIAA CFD High Lift Prediction Workshop (invited)
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Long, M.; Stuever, R. A.; Wayman, T. R.
2011-01-01
The 1st AIAA CFD High Lift Prediction Workshop was held in Chicago in June 2010. The goals of the workshop included an assessment of the numerical prediction capability of current-generation CFD technology/ codes for swept, medium/high-aspect ratio wings in landing/take-off (high lift) configurations. 21 participants from 8 countries and 18 organizations, submitted a total of 39 datasets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to flap angle were analyzed, and effects of grid family, grid density, solver, and turbulence model were addressed. Some participants also assessed the effects of support brackets used to attach the flap and slat to the main wing. This invited paper describes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.
CFD code development for performance evaluation of a pilot-scale FCC riser reactor
Chang, S.L.; Lottes, S.A.; Zhou, C.Q.; Golchert, B.; Petrick, M.
1997-09-01
Fluid Catalytic Cracking (FCC) is an important conversion process for the refining industry. The improvement of FCC technology could have a great impact on the public in general by lowering the cost of transportation fuel. A recent review of the FCC technology development by Bienstock et al. of Exxon indicated that the use of computational fluid dynamics (CFD) simulation can be very effective in the advancement of the technology. Theologos and Markatos used a commercial CFD code to model an FCC riser reactor. National Laboratories of the U.S. Department of Energy (DOE) have accumulated immense CFD expertise over the years for various engineering applications. A recent DOE survey showed that National Laboratories are using their CFD expertise to help the refinery industry improve the FCC technology under DOE`s Cooperative Research and Development Agreement (CRADA). Among them are Los Alamos National Laboratory with Exxon and Amoco and Argonne National Laboratory (ANL) with Chevron and UOP. This abstract briefly describes the current status of ANL`s work. The objectives of the ANL CRADA work are (1) to use a CFD code to simulate FCC riser reactor flow and (2) to evaluate the impacts of operating conditions and design parameters on the product yields. The CFD code used in this work was originally developed for spray combustion simulation in early 1980 at Argonne. It has been successfully applied to diagnosing a number of multi-phase reacting flow problems in a magneto-hydrodynamic power train. A new version of the CFD code developed for the simulation of the FCC riser flow is called Integral CRacKing FLOw (ICRKFLO). The CFD code solves conservation equations of general flow properties for three phases: gaseous species, liquid droplets, and solid particles. General conservation laws are used in conjunction with rate equations governing the mass, momentum, enthalpy, and species for a multi-phase flow with gas species, liquid droplets, and solid particles.
Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.
2015-12-17
Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.
Demonstration of an automated CFD system for three-dimensional flow simulations
NASA Technical Reports Server (NTRS)
Vanderburg, J. W.; Maseland, J. E. J.; Hagmeijer, R.; Decock, K. M. J.
1995-01-01
In this paper the capabilities of an automated CFD system which is currently available at NLR are demonstrated. Transonic flow around the AS28G wing/body configuration and hypersonic flow through a generic three-dimensional mixed-compression airbreathing inlet are simulated. An assessment of the level of automation of the current CFD-system is made. The problem-turnaround time lies within the order of a week for both applications.
NASA Astrophysics Data System (ADS)
Balakin, Boris V.; Hoffmann, Alex C.; Kosinski, Pawel; Istomin, Vladimir A.; Chuvilin, Evgeny M.
2010-09-01
A combined computational fluid dynamics/population balance model (CFD-PBM) is developed for gas hydrate particle size prediction in turbulent pipeline flow. The model is based on a one-moment population balance technique, which is coupled with flow field parameters computed using commercial CFD software. The model is calibrated with a five-moment, off-line population balance model and validated with experimental data produced in a low-pressure multiphase flow loop.
Assessment of CFD-based Response Surface Model for Ares I Supersonic Ascent Aerodynamics
NASA Technical Reports Server (NTRS)
Hanke, Jeremy L.
2011-01-01
The Ascent Force and Moment Aerodynamic (AFMA) Databases (DBs) for the Ares I Crew Launch Vehicle (CLV) were typically based on wind tunnel (WT) data, with increments provided by computational fluid dynamics (CFD) simulations for aspects of the vehicle that could not be tested in the WT tests. During the Design Analysis Cycle 3 analysis for the outer mold line (OML) geometry designated A106, a major tunnel mishap delayed the WT test for supersonic Mach numbers (M) greater than 1.6 in the Unitary Plan Wind Tunnel at NASA Langley Research Center, and the test delay pushed the final delivery of the A106 AFMA DB back by several months. The aero team developed an interim database based entirely on the already completed CFD simulations to mitigate the impact of the delay. This CFD-based database used a response surface methodology based on radial basis functions to predict the aerodynamic coefficients for M > 1.6 based on only the CFD data from both WT and flight Reynolds number conditions. The aero team used extensive knowledge of the previous AFMA DB for the A103 OML to guide the development of the CFD-based A106 AFMA DB. This report details the development of the CFD-based A106 Supersonic AFMA DB, constructs a prediction of the database uncertainty using data available at the time of development, and assesses the overall quality of the CFD-based DB both qualitatively and quantitatively. This assessment confirms that a reasonable aerodynamic database can be constructed for launch vehicles at supersonic conditions using only CFD data if sufficient knowledge of the physics and expected behavior is available. This report also demonstrates the applicability of non-parametric response surface modeling using radial basis functions for development of aerodynamic databases that exhibit both linear and non-linear behavior throughout a large data space.
Investigation on the Oscillating Gas Flow Along AN Inertance Tube by Experimental and Cfd Methods
NASA Astrophysics Data System (ADS)
Chen, Houlei; Zhao, Miguang; Yang, Luwei; Cai, Jinghui; Hong, Guotong; Liang, Jingtao
2010-04-01
To investigate the oscillating gas flow along an inertance tube used in pulse tube coolers, a CFD model is set up for FLUENT and an experimental measuring cell is designed and optimized by CFD results. Some characteristics of oscillating flow are demonstrated and discussed. Then, the flow status along an inertance tube is measured by the optimized measuring cell. The experimental results validate the simulating results.
INVESTIGATION ON THE OSCILLATING GAS FLOW ALONG AN INERTANCE TUBE BY EXPERIMENTAL AND CFD METHODS
Chen Houlei; Zhao Miguang; Yang Luwei; Cai Jinghui; Hong Guotong; Liang Jingtao
2010-04-09
To investigate the oscillating gas flow along an inertance tube used in pulse tube coolers, a CFD model is set up for FLUENT and an experimental measuring cell is designed and optimized by CFD results. Some characteristics of oscillating flow are demonstrated and discussed. Then, the flow status along an inertance tube is measured by the optimized measuring cell. The experimental results validate the simulating results.
CFD Analyses of Air-Ingress Accident for VHTRs
NASA Astrophysics Data System (ADS)
Ham, Tae Kyu
The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air
NASA Technical Reports Server (NTRS)
Thompson, David E.; Brooks, Walt F. (Technical Monitor)
1994-01-01
A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.
Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.
2004-01-01
A CFD validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result. there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.
2006-01-01
A computational fluid dynamics (CFD) validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result, there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.
Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures
NASA Astrophysics Data System (ADS)
Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna
2010-09-01
Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.
Highly Efficient Design-of-Experiments Methods for Combining CFD Analysis and Experimental Data
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Haller, Harold S.
2009-01-01
It is the purpose of this study to examine the impact of "highly efficient" Design-of-Experiments (DOE) methods for combining sets of CFD generated analysis data with smaller sets of Experimental test data in order to accurately predict performance results where experimental test data were not obtained. The study examines the impact of micro-ramp flow control on the shock wave boundary layer (SWBL) interaction where a complete paired set of data exist from both CFD analysis and Experimental measurements By combining the complete set of CFD analysis data composed of fifteen (15) cases with a smaller subset of experimental test data containing four/five (4/5) cases, compound data sets (CFD/EXP) were generated which allows the prediction of the complete set of Experimental results No statistical difference were found to exist between the combined (CFD/EXP) generated data sets and the complete Experimental data set composed of fifteen (15) cases. The same optimal micro-ramp configuration was obtained using the (CFD/EXP) generated data as obtained with the complete set of Experimental data, and the DOE response surfaces generated by the two data sets were also not statistically different.
NASA Astrophysics Data System (ADS)
Di Sabatino, Silvana; Buccolieri, Riccardo; Pulvirenti, Beatrice; Britter, Rex
Until recently, urban air quality modelling has been based on operational models of an integral nature. The use of computational fluid dynamics (CFD) models to address the same problems is increasing rapidly. Operational models e.g. OSPM, AERMOD, ADMS-Urban have undergone many comprehensive formal evaluations as to their "fitness for purpose" while CFD models do not have such an evaluation record in the urban air quality context. This paper looks at the application of both approaches to common problems. In particular, pollutant dispersion from point and line sources in the simplest neutral atmospheric boundary layer and line sources placed within different regular building geometries is studied with the CFD code FLUENT and the atmospheric dispersion model ADMS-Urban. Both the effect of street canyons of different aspect ratios and various obstacle array configurations consisting of cubical buildings are investigated. The standard k-ɛ turbulence model and the advection-diffusion (AD) method (in contrast to the Lagrangian particle tracking method) are used for the CFD simulations. Results from the two approaches are compared. Overall CFD simulations with the appropriate choice of coefficients produce similar concentration fields to those predicted by the integral approach. However, some quantitative differences are observed. These differences can be explained by investigating the role of the Schmidt number in the CFD simulations. A further interpretation of the differences between the two approaches is given by quantifying the exchange velocities linked to the mass fluxes between the in-canopy and above-canopy layers.
An integrated CFD/experimental analysis of aerodynamic forces and moments
NASA Technical Reports Server (NTRS)
Melton, John E.; Robertson, David D.; Moyer, Seth A.
1989-01-01
Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.
A coupled DEM-CFD method for impulse wave modelling
NASA Astrophysics Data System (ADS)
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been
Auralization of CFD Vorticity Using an Auditory Illusion
NASA Astrophysics Data System (ADS)
Volpe, C. R.
2005-12-01
One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally
CFD-Based Design Optimization Tool Developed for Subsonic Inlet
NASA Technical Reports Server (NTRS)
1995-01-01
The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the
A CFD Approach to Modeling Spacecraft Fuel Slosh
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.
2009-01-01
Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally
Three Dimensional Alveolar Flow Phenomena Using a CFD Approach
NASA Astrophysics Data System (ADS)
Sznitman, Josue
2005-11-01
Respiratory flows in the lung periphery are characterized by low Reynolds numbers (typically Re<1) in sub-millimeter airways marked by the presence of alveoli (gas exchange units). We present for realistic breathing conditions using CFD simulations (CFX-5.7.1), 3D velocity fields and flow patterns induced by the expansion/contraction of alveoli and acinar ducts during oscillatory flow. Based on anatomical data, the alveolus and airway are modeled as a spherical cap connected to a cylindrical duct, both subject to moving wall boundary conditions simulating respiration. The resulting 3D flow patterns are complex and governed by the ratio of the alveolar to ductal flow rates. This ratio describes the interplay between alveolar recirculation, induced by the ductal shear flow over the alveolus opening, and alveolar radial flow, induced by the expansion/contraction motion. Our 3D results are in good agreement with 2D simulations reported in the literature. Although convection mechanisms may transport gas along acinar ducts and deeper into the acinus, velocity fields within alveoli predict that upon gas entering them, transport is then solely dominated by diffusion mechanisms.
Cfd Simulation to the Flow Field of Venturi Injector
NASA Astrophysics Data System (ADS)
Huang, Xingfa; Li, Guangyong; Wang, Miao
Venturi injector is widely used in fertigation system due to its obvious advantages such as cheap and robust system without mobile pieces, simple structure, convenient to operation, stable performance, needless of external energy for operation etc. At present, the hydraulic parameters such as suction capacity (injection rate) for the most of the Venturi injectors produced domestically are not very desirable. In this paper, CFD (Computational Fluid Dynamics) method was used to simulate the inner flow field of the Venturi injectors, and the relationships among the structure parameters (i.e., throat length L, throat diameter D, slot diameter Da) and suction capacity q, and the optimal structure sizes of the Venturi injector were analyzed. The results show that when the inlet pressure and the slot position are kept unchanged as the sample one, the suction capacity of Venturi injector increases with the decrease of throat diameter D and throat length L, and the increase of slot diameter Da; while keeping the slot diameter Da, throat diameter D and throat length L unchanged, the suction capacity of Venturi injector q increases with the increase of inlet pressure P. The optimal combination of the structural parameters in this size was selected as follows: throat diameter D=8mm, slot diameter Da=18.5mm, and throat length L=14mm. In this case, the suction capacity of the Venturi injector q=1.203m3/h. The results can provide theoretic support for domestic Venturi injector research, design and manufacturing.
CFD modeling of thermoelectric generators in automotive EGR-coolers
NASA Astrophysics Data System (ADS)
Högblom, Olle; Andersson, Ronnie
2012-06-01
A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1994-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.
An incremental strategy for calculating consistent discrete CFD sensitivity derivatives
NASA Technical Reports Server (NTRS)
Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Hou, Gene W.; Jones, Henry E.
1992-01-01
In this preliminary study involving advanced computational fluid dynamic (CFD) codes, an incremental formulation, also known as the 'delta' or 'correction' form, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations which are associated with aerodynamic sensitivity analysis. For typical problems in 2D, a direct solution method can be applied to these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods appear to be needed for future 3D applications; however, because direct solver methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form result in certain difficulties, such as ill-conditioning of the coefficient matrix, which can be overcome when these equations are cast in the incremental form; these and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two laminar sample problems: (1) transonic flow through a double-throat nozzle; and (2) flow over an isolated airfoil.
CFD analysis of gas explosions vented through relief pipes.
Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G
2006-09-21
Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization. PMID:16675106
Visualization Co-Processing of a CFD Simulation
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
1999-01-01
OVERFLOW, a widely used CFD simulation code, is combined with a visualization system, pV3, to experiment with an environment for simulation/visualization co-processing on a SGI Origin 2000 computer(O2K) system. The shared memory version of the solver is used with the O2K 'pfa' preprocessor invoked to automatically discover parallelism in the source code. No other explicit parallelism is enabled. In order to study the scaling and performance of the visualization co-processing system, sample runs are made with different processor groups in the range of 1 to 254 processors. The data exchange between the visualization system and the simulation system is rapid enough for user interactivity when the problem size is small. This shared memory version of OVERFLOW, with minimal parallelization, does not scale well to an increasing number of available processors. The visualization task takes about 18 to 30% of the total processing time and does not appear to be a major contributor to the poor scaling. Improper load balancing and inter-processor communication overhead are contributors to this poor performance. Work is in progress which is aimed at obtaining improved parallel performance of the solver and removing the limitations of serial data transfer to pV3 by examining various parallelization/communication strategies, including the use of the explicit message passing.
Benchmark Active Controls Technology (BACT) Wing CFD Results
NASA Technical Reports Server (NTRS)
Schuster, David M.; Bartels, Robert E.
2000-01-01
The Benchmark Active Controls Technology (BACT) wing test (see chapter 8E) provides data for the validation of aerodynamic, aeroelastic, and active aeroelastic control simulation codes. These data provide a rich database for development and validation of computational aeroelastic and aeroservoelastic methods. In this vein, high-level viscous CFD analyses of the BACT wing have been performed for a subset of the test conditions available in the dataset. The computations presented in this section investigate the aerodynamic characteristics of the rigid clean wing configuration as well as simulations of the wing with a static and oscillating aileron and spoiler deflection. Two computational aeroelasticity codes extensively used at NASA Langley Research Center are implemented in this simulation. They are the ENS3DAE and CFL3DAE computational aeroelasticity programs. Both of these methods solve the three-dimensional compressible Navier-Stokes equations for both rigid and flexible vehicles, but they use significantly different approaches to the solution 6f the aerodynamic equations of motion. Detailed descriptions of both methods are presented in the following section.
Aerodynamic analysis of Audi A4 Sedan using CFD
NASA Astrophysics Data System (ADS)
Birwa, S. K.; Rathi, N.; Gupta, R.
2013-04-01
This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.
Fully consistent CFD methods for incompressible flow computations
NASA Astrophysics Data System (ADS)
Kolmogorov, D. K.; Shen, W. Z.; Sørensen, N. N.; Sørensen, J. N.
2014-06-01
Nowadays collocated grid based CFD methods are one of the most efficient tools for computations of the flows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure-velocity coupling on collocated grids use the so-called momentum interpolation method of Rhie and Chow [1]. As known, the method and some of its widely spread modifications result in solutions, which are dependent of time step at convergence. In this paper the magnitude of the dependence is shown to contribute about 0.5% into the total error in a typical turbulent flow computation. Nevertheless if coarse grids are used, the standard interpolation methods result in much higher non-consistent behavior. To overcome the problem, a recently developed interpolation method, which is independent of time step, is used. It is shown that in comparison to other time step independent method, the method may enhance the convergence rate of the SIMPLEC algorithm up to 25 %. The method is verified using turbulent flow computations around a NACA 64618 airfoil and the roll-up of a shear layer, which may appear in wind turbine wake.
AirShow 1.0 CFD Software Users' Guide
NASA Technical Reports Server (NTRS)
Mohler, Stanley R., Jr.
2005-01-01
AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.
CFD Models of a Serpentine Inlet, Fan, and Nozzle
NASA Technical Reports Server (NTRS)
Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.
2010-01-01
Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan
CFD Model of Water Droplet Transport for ISS Hygiene Activity
NASA Technical Reports Server (NTRS)
Son, Chang H.
2011-01-01
The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.
CFD modeling could optimize sorbent injection system efficiency
Blankinship, S.
2006-01-15
Several technologies will probably be needed to remove mercury from coal-plant stack emissions as mandated by new mercury emission control legislation in the USA. One of the most promising mercury removal approaches is the injection of a sorbent, such as powdered activated carbon (PAC), to make it much more controllable. ADA-ES recently simulated field tests of sorbent injection at New England Power Company's Brayton Point Power Plant in Somerset, Mass., where activated carbon sorbent was injected using a set of eight lances upstream of the second of two electrostatic precipitators (ESPs). Consultants from Fluent created a computational model of the ductwork and injection lances. The simulation results showed that the flue gas flow was poorly distributed at the sorbent injection plane, and that a small region of reverse flow occurred, a result of the flow pattern at the exit of the first ESP. The results also illustrated that the flow was predominantly in the lower half of the duct, and affected by some upstream turning vanes. The simulations demonstrated the value of CFD as a diagnostic tool. They were performed in a fraction of the time and cost required for the physical tests yet provided far more diagnostic information, such as the distribution of mercury and sorbent at each point in the computational domain. 1 fig.
CFD modelling of nitrogen injection in a longwall gob area
Yuan, Liming; Smith, Alex C.
2015-01-01
This paper describes computational fluid dynamics (CFD) simulations conducted to investigate the effectiveness of N2 injection in an active panel and a sealed longwall gob area to prevent and suppress spontaneous heating of coal using various injection locations and flow rates. In the active panel simulations, a single longwall panel with a bleederless ventilation system was simulated. The spontaneous heating of crushed coal from pillars was simulated and N2 was injected from different locations on the headgate side and through boreholes from the surface. The N2 injection rate at each location was varied between 0.18 m3/s and 0.94 m3/s (380 and 2000 cfm). In the sealed longwall simulations, seal leakage rate was varied to determine its effect on N2 injection effectiveness. The results of this study should aid mine ventilation engineers in developing more effective N2 injection strategies to prevent and control spontaneous heating of coal in underground coal mines. PMID:26213573
CFD simulation of anaerobic digester with variable sewage sludge rheology.
Craig, K J; Nieuwoudt, M N; Niemand, L J
2013-09-01
A computational fluid dynamics (CFD) model that evaluates mechanical mixing in a full-scale anaerobic digester was developed to investigate the influence of sewage sludge rheology on the steady-state digester performance. Mechanical mixing is provided through an impeller located in a draft tube. Use is made of the Multiple Reference Frame model to incorporate the rotating impeller. The non-Newtonian sludge is modeled using the Hershel-Bulkley law because of the yield stress present in the fluid. Water is also used as modeling fluid to illustrate the significant non-Newtonian effects of sewage sludge on mixing patterns. The variation of the sewage sludge rheology as a result of the digestion process is considered to determine its influence on both the required impeller torque and digester mixing patterns. It was found that when modeling the fluid with the Hershel-Bulkley law, the high slope of the sewage stress-strain curve at high shear rates causes significant viscous torque on the impeller surface. Although the overall fluid shear stress property is reduced during digestion, this slope is increased with sludge age, causing an increase in impeller torque for digested sludge due to the high strain rates caused by the pumping impeller. Consideration should be given to using the Bingham law to deal with high strain rates. The overall mixing flow patterns of the digested sludge do however improve slightly. PMID:23764598
Simplistic Approach to Characterize Sloshing Phenomena using CFD Simulation
NASA Astrophysics Data System (ADS)
Mahmud, Md; Khan, Rafiqul; Xu, Qiang
2015-03-01
Liquid sloshing in vessels caused by forced acceleration has been the subject of intense investigations for last several decades both by experiments and numerical simulations. Many studies are done to minimize the sloshing induced forces on the vessel internals and some studies focused on different ways to describe the sloshing patterns. Most of the sloshing characterization methods are done using complex mathematical manipulation and more simplified method may be useful for better practical understanding. In this study, simple/easily understandable methods are explored to describe sloshing phenomenon through Computation Fluid Dynamics (CFD) simulation. Several parameters were varied including liquid level/tank length ratio, wave induced vessel motions, motion frequency, amplitudes in various sea state conditions. Parameters such as hydrodynamic force, pressure, moments, turbulent kinetic energy, height of the free surface, vorticity are used to quantify the sloshing intensity. In addition, visual inspections of sloshing motion are done through gas-liquid/oil-water interface fluctuation, streamlines, vector profiles. An equation connecting independent variables to resultant quantities will be established that will make it easier to describe the sloshing.
Flow and particle deposition in the Turbuhaler: a CFD simulation.
Milenkovic, J; Alexopoulos, A H; Kiparissides, C
2013-05-01
In this work the steady-state flow in a commercial dry powder inhaler device, DPI (i.e., Turbuhaler) is described using computational fluid dynamics. The Navier-Stokes equations are solved using commercial CFD software considering different flow models, i.e., laminar, k-ε, k-ε RNG, and k-ω SST as well as large Eddy simulation. Particle motion and deposition are described using a Eulerian-fluid/Lagrangian-particle approach. Particle collisions with the DPI walls are taken to result in deposition when the normal collision velocity is less than a critical capture velocity. Flow and particle deposition, for a range of mouthpiece pressure drops (i.e., 800-8800 Pa), as well as particle sizes corresponding to single particles and aggregates (i.e., 0.5-20 μm), are examined. The total volumetric outflow rate, the overall particle deposition as well as the spatial distribution of deposition sites in the DPI are determined. The transitional k-ω SST model for turbulent flow was found to produce results most similar to a reference solution obtained with LES, as well as experimental results for the pressure drop in the DPI. Overall, the simulation results are found to be in agreement with the available experimental data for local and total particle deposition. PMID:23528279
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
CFD simulation of hydrogen deflagration in a vented room
NASA Astrophysics Data System (ADS)
Tolias, I. C.; Venetsanos, A. G.; Markatos, N. C.; Kiranoudis, C. T.
2015-09-01
In the present work, CFD simulations of hydrogen deflagration in a real scale vented room are performed. Two ignition points were simulated: at the wall opposite to the vent (back ignition) and at the center of the chamber (center ignition). The overpressure time series and flame front velocities are compared with the experimental results. The combustion model is based on the turbulent flame speed concept. The turbulent flame speed is calculated based on a modification of Yakhot's equation, in order to account for all the main physical mechanisms which appear in hydrogen deflagrations. Special attention is given to the simulation of Rayleigh-Taylor instability. This instability occurs at the vent area and results in sudden explosion of the mixture that has been pushed outside the chamber at the initial stage of the explosion. The importance of this external explosion to the generated overpressures inside the chamber is highlighted. The agreement between experimental and computational results is satisfactory in both back ignition and center ignition cases.
CFD Simulations on Interference Effects between Offshore Wind Turbines
NASA Astrophysics Data System (ADS)
Weihing, P.; Meister, K.; Schulz, C.; Lutz, Th; Krämer, E.
2014-06-01
This paper presents results of detailed 3D CFD simulations of two 5MW wind turbines sited in the German wind farm Alpha Ventus which are located behind each other at half-wake conditions. The focus of interest in this study is put on wake - turbine interaction, in order to derive the main shadow effects and their influence on blade loads and power response of the downstream turbine. For this purpose, Detached Eddy Simulations (DES) were performed using the flow solver FLOWer from DLR (German Aerospace Center). To consider all relevant aerodynamic effects, the main turbine components are represented as direct model with resolved boundary layers. Measurement-based turbulent inflow conditions are prescribed to realistically account for the atmospheric boundary layer. In order to analyze the flow conditions in front of the downstream turbine, wake propagation and velocity spectra are evaluated and compared with the undisturbed atmospheric boundary layer. Their impact on loads and power production and their corresponding fluctuations is discussed by comparing these with the upstream turbine. It was found, that fatigue loads occurring at half-wake conditions are significantly higher for the downstream turbine, since blade load fluctuations are highly amplified by the unsteady wake of the upstream turbine.
Combining Comparison Functions and Finite Element Approximations in CFD
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1995-01-01
In a variety of potential flow applications, the modal element method has been shown to significantly reduce the numerical grid, employ a more precise grid termination boundary condition, and give theoretical insight to the flow physics. The method employs eigenfunctions to replace the numerical grid over significant portions of the flow field. Generally, a numerical grid is employed around obstacles with complex geometry while eigenfunctions are applied to regions in the flow field where the boundary conditions can easily be satisfied. To handle a wider class of computational fluid dynamics (CFD) problems, the present paper extends the modal element to include function approximations which do not satisfy the governing differential equation. To accomplish this task, a double modal series approximation and weighted residual constraints are developed to force the comparison functions to satisfy the governing differential equation and to interface properly with the finite element solution. As an example, the method is applied to the problem of potential flow in a channel with two-dimensional cylindrical like obstacles. The calculated flow fields are in excellent agreement with exact analytical solutions.
CFD simulation of boundary effects on closely spaced jets
NASA Astrophysics Data System (ADS)
Shrivastava, Ishita; Adams, Eric
2015-11-01
In coastal areas characterized by shallow water depth, industrial effluents are often diluted using multiple closely spaced jets. Examples of such effluents include brine from desalination plants, treated wastewater from sewage treatment plants and heated water from thermal power plants. These jets are arranged in various orientations, such as unidirectional diffusers and rosette groups, to maximize mixing with ambient water. Due to effects of dynamic pressure, the jets interact with each other leading to mixing characteristics which are quite different from those of individual jets. The effect of mutual interaction is exaggerated under confinement, when a large number of closely spaced jets discharge into shallow depth. Dilution through an outfall, consisting of multiple jets, depends on various outfall and ambient parameters. Here we observe the effects of shoreline proximity, in relation to diffuser length and water depth, on the performance of unidirectional diffusers discharging to quiescent water. For diffusers located closer to shore, less dilution is observed due to the limited availability of ambient water for dilution. We report on the results of Computational Fluid Dynamics (CFD) simulations and compare the results with experimental observations.
Elliptic Volume Grid Generation for Viscous CFD Parametric Design Studies
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Cheatwood, F. McNeil
1996-01-01
This paper presents a robust method for the generation of zonal volume grids of design parametrics for aerodynamic configurations. The process utilizes simple algebraic techniques with parametric splines coupled with elliptic volume grid generation to generate isolated zonal grids for changes in body configuration needed to perform parametric design studies. Speed of the algorithm is maximized through the algebraic methods and reduced number of grid points to be regenerated for each design parametric without sacrificing grid quality and continuity within the volume domain. The method is directly applicable to grid reusability, because it modifies existing ow adapted volume grids and enables the user to restart the CFD solution process with an established flow field. Use of this zonal approach reduces computer usage time to create new volume grids for design parametric studies by an order of magnitude, as compared to current methods which require the regeneration of an entire volume grid. A sample configuration of a proposed Single Stage-to-Orbit Vehicle is used to illustrate an application of this method.
Modeling the aeroacoustics of axial fans from CFD calculations
NASA Astrophysics Data System (ADS)
Salesky, Alexandre; Hennemand, Vincent; Kouidri, Smaine; Berthelot, Yves
2002-11-01
The main source of aeroacoustic noise in axial fans is the distribution of the fluctuating, unsteady, aerodynamic forces on the blades. Numerical simulations were carried out with the CFD code (NUMECA), first with steady flow conditions to validate the aerolic performances (pressure drop as a function of flow rate) of the simulated six-bladed axial fans. Simulations were then made with unsteady flows to compute the fluctuating force distributions on the blades. The turbulence was modeled either with the Baldwin-Lomax model or with the K-epsilon model (extended wall function). The numerical results were satisfactory both in terms of numerical convergence and in terms of the physical characteristic of the forces acting on the blades. The numerical results were then coupled into an in-house aeroacoustics code that computes the farfield radiated noise spectrum and directivity, based on the Ffowcs-Williams Hawkings formulation, or alternatively, on the simpler Lowson model. Results compared favorably with data obtained under nonanechoic conditions, based upon ISO 5801 and ISO 5136 standards.
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1993-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.
A novel approach to CFD analysis of the urban environment
NASA Astrophysics Data System (ADS)
Nardecchia, F.; Gugliermetti, F.; Bisegna, F.
2015-11-01
The construction of cities, with their buildings and human activities, not only changes the landscape, but also influences the local climate in a manner that depends on many different factors and parameters: weather conditions, urban thermo-physical and geometrical characteristics, anthropogenic moisture and heat sources. Land-cover and canopy structure play an important role in urban climatology and every environmental assessment and city design face with them. Inside the previous frame, the objective of this study is both to identify both the key design variables that alter the environment surrounding the buildings, and to quantified the extension area of these phenomena. The tool used for this study is a 2D computational fluid dynamics (CFD) numerical simulation considering different heights for buildings, temperature gaps between undisturbed air and building's walls, velocities of undisturbed air. Results obtained allowed to find a novel approach to study urban canopies, giving a qualitative assessment on the contribution and definition of the total energy of the area surrounding the buildings.
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.
The CONV-3D code for DNS CFD calculation
NASA Astrophysics Data System (ADS)
Chudanov, Vladimir; ALCF ThermHydraX Team
2014-03-01
The CONV-3D code for DNS CFD calculation of thermal and hydrodynamics on Fast Reactor with use of supercomputers is developed. This code is highly effective in a scalability at the high performance computers such as ``Chebyshev'', ``Lomonosov'' (Moscow State University, Russia), Blue Gene/Q(ALCF MIRA, ANL). The scalability is reached up to 106 processors. The code was validated on a series of the well known tests in a wide range of Rayleigh (106-1016) and Reynolds (103-105. Such code was validated on the blind tests OECD/NEA of the turbulent intermixing in horizontal subchannels of the fuel assembly at normal pressure and temperature (Matis-H), of the flows in T-junction and the report IBRAE/ANL was published. The good coincidence of numerical predictions with experimental data was reached, that specifies applicability of the developed approach for a prediction of thermal and hydrodynamics in a boundary layer at small Prandtl that is characteristic of the liquid metal reactors. Project Name: ThermHydraX. Project Title: U.S.-Russia Collaboration on Cross-Verification and Validation in Thermal Hydraulics.
Design of Shrouded Airborne Wind Turbine & CFD Analysis
NASA Astrophysics Data System (ADS)
Anbreen, Faiqa; Faiqa Anbreen Collaboration
2015-11-01
The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.
A Comparative Study Using CFD to Predict Iced Airfoil Aerodynamics
NASA Technical Reports Server (NTRS)
Chi, x.; Li, Y.; Chen, H.; Addy, H. E.; Choo, Y. K.; Shih, T. I-P.
2005-01-01
WIND, Fluent, and PowerFLOW were used to predict the lift, drag, and moment coefficients of a business-jet airfoil with a rime ice (rough and jagged, but no protruding horns) and with a glaze ice (rough and jagged end has two or more protruding horns) for angles of attack from zero to and after stall. The performance of the following turbulence models were examined by comparing predictions with available experimental data. Spalart-Allmaras (S-A), RNG k-epsilon, shear-stress transport, v(sup 2)-f, and a differential Reynolds stress model with and without non-equilibrium wall functions. For steady RANS simulations, WIND and FLUENT were found to give nearly identical results if the grid about the iced airfoil, the turbulence model, and the order of accuracy of the numerical schemes used are the same. The use of wall functions was found to be acceptable for the rime ice configuration and the flow conditions examined. For rime ice, the S-A model was found to predict accurately until near the stall angle. For glaze ice, the CFD predictions were much less satisfactory for all turbulence models and codes investigated because of the large separated region produced by the horns. For unsteady RANS, WIND and FLUENT did not provide better results. PowerFLOW, based on the Lattice Boltzmann method, gave excellent results for the lift coefficient at and near stall for the rime ice, where the flow is inherently unsteady.
A Three-Dimensional Unsteady CFD Model of Compressor Stability
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
2006-01-01
A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.
Hanna, S R; Brown, M J; Camelli, F E; Chan, S T; Coirier, W J; Hansen, O R; Huber, A H; Kim, S; Reynolds, R M
2006-03-06
Computational Fluid Dynamics (CFD) model simulations of urban boundary layers have improved so that they are useful in many types of flow and dispersion analyses. The study described here is intended to assist in planning emergency response activities related to releases of chemical or biological agents into the atmosphere in large cities such as New York City. Five CFD models (CFD-Urban, FLACS, FEM3MP, FEFLO-Urban, and Fluent-Urban) have been applied by five independent groups to the same 3-D building data and geographic domain in Manhattan, using approximately the same wind input conditions. Wind flow observations are available from the Madison Square Garden March 2005 (MSG05) field experiment. It is seen from the many side-by-side comparison plots that the CFD models simulations of near-surface wind fields generally agree with each other and with field observations, within typical atmospheric uncertainties of a factor of two. The qualitative results shown here suggest, for example, that transport of a release at street level in a large city could reach a few blocks in the upwind and crosswind directions. There are still key differences seen among the models for certain parts of the domain. Further quantitative examinations of differences among the models and the observations are necessary to understand causal relationships.
CFD-DEM simulations of current-induced dune formation and morphological evolution
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng
2016-06-01
Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', 'small dune', 'vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver developed by the authors. This is a general-purpose solver for particle-laden flows tailed for particle transport problems. Validation tests are performed to demonstrate the capability of CFD-DEM in the full range of sediment transport regimes. Comparison of simulation results with experimental and numerical benchmark data demonstrates the merits of CFD-DEM approach. In addition, the improvements of the present simulations over existing studies using CFD-DEM are presented. The present solver gives more accurate prediction of sediment transport rate by properly accounting for the influence of particle volume fraction on the fluid flow. In summary, this work demonstrates that CFD-DEM is a promising particle-resolving approach for probing the physics of current-induced sediment transport.
Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James
2003-01-01
The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to
NASA Astrophysics Data System (ADS)
Sun, Qi; Groth, Alexandra; Bertram, Matthias; Brina, Olivier; Pereira, Vitor Mendes; Aach, Til
2011-03-01
Recently, image-based computational fluid dynamic simulations (CFD) have been proposed to investigate the local hemodynamics inside human cerebral aneurysms. It is suggested that the knowledge of the computed three-dimensional flow fields can be used to assist clinical risk assessment and treatment decision making. However, the reliability of CFD for accurately representing the human cerebral blood flow is difficult to assess due to the impossibility of ground truth measurements. A recently proposed virtual angiography method has been used to indirectly validate CFD results by comparing virtually constructed and clinically acquired angiograms. However, the validations are not yet comprehensive as they lack either from patient-specific boundary conditions (BCs) required for CFD simulations or from quantitative comparison methods. In this work, a simulation pipeline is built up including image-based geometry reconstruction, CFD simulations solving the dynamics of blood flow and contrast agent (CA), and virtual angiogram generation. In contrast to previous studies, the patient-specific blood flow rates obtained by transcranial color coded Doppler (TCCD) ultrasound are used to impose CFD BCs. Quantitative measures are defined to thoroughly evaluate the correspondence between the clinically acquired and virtually constructed angiograms, and thus, the reliability of CFD simulations. Exemplarily, two patient cases are presented. Close similarities are found in terms of spatial and temporal variations of CA distribution between acquired and virtual angiograms. Besides, for both patient cases, discrepancies of less than 15% are found for the relative root mean square errors (rRMSE) in time intensity curve (TIC) comparisons from selected characteristic positions.
Automatic Conversion of Conceptual Geometry to CFD Geometry for Aircraft Design
NASA Technical Reports Server (NTRS)
Li, Wu
2007-01-01
Conceptual aircraft design is usually based on simple analysis codes. Its objective is to provide an overall system performance of the developed concept, while preliminary aircraft design uses high-fidelity analysis tools such as computational fluid dynamics (CFD) analysis codes or finite element structural analysis codes. In some applications, such as low-boom supersonic concept development, it is important to be able to explore a variety of drastically different configurations while using CFD analysis to check whether a given configuration can be tailored to have a low-boom ground signature. It poses an extremely challenging problem of integrating CFD analysis in conceptual design. This presentation will discuss a computer code, called iPatch, for automatic conversion of conceptual geometry to CFD geometry. In general, conceptual aircraft geometry is not as well-defined as a CAD geometry model. In particular, a conceptual aircraft geometry model usually does not define the intersection curves for the connecting surfaces. The computer code iPatch eliminates the gap between conceptual geometry and CFD geometry by accomplishing the following three tasks automatically: (1) use bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometry components (such as wing and fuselage) can be intersected to form a watertight CFD geometry, (2) compute the intersection curves of surface patches at any resolution (up to 10-7 accuracy) specified by users, and (3) write the B-spline surface patches and the corresponding boundary points for the watertight CFD geometry in the format that can be directly exported to the meshing tool VGRID in the CFD software TetrUSS. As a result, conceptual designers can get quick feedback on the aerodynamic characteristics of their concepts, which will allow them to understand some subtlety in their concepts and to be able to assess their concepts with a higher degree of
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
AP-IO: Asynchronous Pipeline I/O for Hiding Periodic Output Cost in CFD Simulation
Xiaoguang, Ren; Xinhai, Xu
2014-01-01
Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%. PMID:24955390
AP-IO: asynchronous pipeline I/O for hiding periodic output cost in CFD simulation.
Xiaoguang, Ren; Xinhai, Xu
2014-01-01
Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%. PMID:24955390
Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver
NASA Astrophysics Data System (ADS)
Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.
2016-05-01
This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.
NASA Technical Reports Server (NTRS)
Korkegi, R. H.
1983-01-01
The results of a National Research Council study on the effect that advances in computational fluid dynamics (CFD) will have on conventional aeronautical ground testing are reported. Current CFD capabilities include the depiction of linearized inviscid flows and a boundary layer, initial use of Euler coordinates using supercomputers to automatically generate a grid, research and development on Reynolds-averaged Navier-Stokes (N-S) equations, and preliminary research on solutions to the full N-S equations. Improvements in the range of CFD usage is dependent on the development of more powerful supercomputers, exceeding even the projected abilities of the NASA Numerical Aerodynamic Simulator (1 BFLOP/sec). Full representation of the Re-averaged N-S equations will require over one million grid points, a computing level predicted to be available in 15 yr. Present capabilities allow identification of data anomalies, confirmation of data accuracy, and adequateness of model design in wind tunnel trials. Account can be taken of the wall effects and the Re in any flight regime during simulation. CFD can actually be more accurate than instrumented tests, since all points in a flow can be modeled with CFD, while they cannot all be monitored with instrumentation in a wind tunnel.
Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.
Analytic Corrections to CFD Heating Predictions Accounting for Changes in Surface Catalysis. Part II
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Inger, George R.
1996-01-01
A new approach for combining the insight afforded by integral boundary-layer analysis with comprehensive (but time intensive) computational fluid dynamic (CFD) flowfield solutions of the thin-layer Navier-Stokes equations is described. The approach extracts CFD derived quantities at the wall and at the boundary layer edge for inclusion in a post-processing boundary-layer analysis. It allows a designer at a work-station to address two questions, given a single CFD solution. (1) How much does the heating change for a thermal protection system (TPS) with different catalytic properties than was used in the original CFD solution? (2) How does the heating change at the interface of two different TPS materials with an abrupt change in catalytic efficiency? The answer to the second question is particularly important, because abrupt changes from low to high catalytic efficiency can lead to localized increase in heating which exceeds the usually conservative estimate provided by a fully catalytic wall assumption. Capabilities of this approach for application to Reusable Launch Vehicle (RLV) design are demonstrated. If the definition of surface catalysis is uncertain early in the design process, results show that fully catalytic wall boundary conditions provide the best baseline for CFD design points.
CFD analysis of mine fire smoke spread and reverse flow conditions
Edwards, J.C.; Hwang, C.C.
1999-07-01
A Computational Fluid Dynamics (CFD) program was used to model buoyancy induced Product-Of-Combustion (POC) spread from experimental fires in the National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Laboratory (PRL), safety research coal mine. In one application, the CFD program was used to predict spread from fires in an entry under zero airflow conditions. At a location, 0.41 m below the entry's roof at a distance of 30 m from the fire, the measured smoke spread rates were 0.093 and 0.23 m/s for a 30 and a 296 kw fire, respectively. The CFD program predicted spread rates of 0.15 and 0.26 m/s based upon the measured fire heat production rates. Based upon a computation with C{sub 3}H{sub 8} as the hydrocarbon fuel, a predicted 5 ppm CO alert time of 70 s at a distance of 30 m from the fire is to be compared with the measured alert time of 148 S. In a second application, the CFD program was used to analyze smoke flow reversal conditions, and the results were compared with visual observations of smoke reversal for 12 diesel fuel fires. The CFD predictions were in qualitative agreement with visual observations of smoke reversal.
CFD study of isothermal water flow in rod bundle with split-type spacer grid
NASA Astrophysics Data System (ADS)
Batta, A.; Class, A. G.
2014-06-01
The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.
Needs and opportunities for CFD-code validation
Smith, B.L. |
1996-06-01
The conceptual design for the ESS target consists of a horizontal cylinder containing a liquid metal - mercury is considered in the present study - which circulates by forced convection and carries away the waste heat generated by the spallation reactions. The protons enter the target via a beam window, which must withstand the thermal, mechanical and radiation loads to which it is subjected. For a beam power of 5MW, it is estimated that about 3.3MW of waste heat would be deposited in the target material and associated structures. it is intended to confirm, by detailed thermal-hydraulics calculations, that a convective flow of the liquid metal target material can effectively remove the waste heat. The present series of Computational Fluid Dynamics (CFD) calculations has indicated that a single-inlet Target design leads to excessive local overheating, but a multiple-inlet design, is coolable. With this option, inlet flow streams, two from the sides and one from below, merge over the target window, cooling the window itself in crossflow and carrying away the heat generated volumetrically in the mercury with a strong axial flow down the exit channel. The three intersecting streams form a complex, three-dimensional, swirling flow field in which critical heat transfer processes are taking place. In order to produce trustworthy code simulations, it is necessary that the mesh resolution is adequate for the thermal-hydraulic conditions encountered and that the physical models used by the code are appropriate to the fluid dynamic environment. The former relies on considerable user experience in the application of the code, and the latter assurance is best gained in the context of controlled benchmark activities where measured data are available. Such activities will serve to quantify the accuracy of given models and to identify potential problem area for the numerical simulation which may not be obvious from global heat and mass balance considerations.
CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER
Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L
2008-03-03
Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.
CFD simulation of hydrodynamic characteristics on pulse combustor
NASA Astrophysics Data System (ADS)
Rahmatika, Annie Mufyda; Salihat, Efaning; Tikasari, Rachma; Widiyastuti, W.; Winardi, Sugeng
2016-02-01
The purpose of this research is to study the simulation of the combustion characteristics and performances in pulse combustor using different excess air composition and different pulse combustor geometry using CFD (Computational Fluid Dynamics) software Ansys FLUENT 15.0. The distribution of temperature, pressure, and fluid velocity using 2D axisymmetric with k-ɛ turbulence models. Two kind geometries of pulse combustors were selected and compared their performance. The first combustor, called geometry A has expanded tail-pipe with diameter 10 mm expanded to 20 mm with length 86 mm. The second combustor, called geometry B has cylinder tailpipe which 10 mm in diameter and 200 mm in length. Air and propane were selected as oxidizer and fuel, respectively, at temperature 27°C and pressure 1 atm with varied excess air of 0%, 23%, 200%, and 500%. The simulation result shows that the average temperature of outflow gas combustion decreased with increasing the excess air. On the other hand, the pressure amplitude increased with increasing the excess air. Amplitude of presure for excess air of 0%, 23%, 200% and 500% were 14,976.03 Pa; 26,100.19 Pa; 41,529.02 Pa; and 85,019.01 Pa, respectively. The geometry of pulse combustor affected the performance of gas combustion produced. Geometry A showed that the energy produced in the combustion cycle amounts to 538,639 to 958,639 J/kg. On the other hand, geometry B showed that the generated energy was in the range 864,502 to 1,280,814 J/kg. Combustor with geometry B provided more effective combustion performance rather than B caused by its larger heat transfer area sectional area.
CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion
NASA Astrophysics Data System (ADS)
Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.
2015-09-01
The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.
CFD analysis of straight and flared vortex tube
NASA Astrophysics Data System (ADS)
Dhillon, Aman Kumar; Bandyopadhyay, Syamalendu S.
2015-12-01
Vortex tube (VT) is a simple low refrigeration producing device having no moving part. However, the flow inside it is very complex. Recent studies show that the performance of VT improves with the increase in the divergence angle of a flared VT. To explore the temperature separation phenomenon in the VT, a three dimensional computational fluid dynamics (CFD) analysis of VT has been carried out. For the present work, a VT having diameter of 12 mm, length of 120 mm, cold outlet diameter of 7 mm and hot outlet annulus of 0.4 mm with 6 straight rectangular nozzles having area of 0.5 sq. mm each is considered. The turbulence in the flow field of the VT is modeled by standard k-e turbulence model considering Redlich-Kwong real gas model. The effect of variation of divergence angle of hot tube in the VT is studied and compared with the experimental results available in the literature. The temperature separation between the hot outlet and cold outlet, in both straight and 2 degree flared tube is studied. Analysis results indicate that for a hot mass fraction above 0.5, the flared tube shows better cold production capacity compared to the straight tube. Effect of important parameters like temperature gradient, velocities (axial, radial and tangential), velocity gradients, effective thermal conductivity and viscosity of fluid etc., on heat transfer and shear work transfer in the VT have been investigated. To understand the temperature separation mechanism, heat transfer and work transfer along the axial direction have been evaluated in both straight and flared tubes. The isentropic efficiency and COP as a refrigerator as well as a heat pump of straight tube and flared tube have been computed.
The Analysis and Design of Low Boom Configurations Using CFD and Numerical Optimization Techniques
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
The use of computational fluid dynamics (CFD) for the analysis of sonic booms generated by aircraft has been shown to increase the accuracy and reliability of predictions. CFD takes into account important three-dimensional and nonlinear effects that are generally neglected by modified linear theory (MLT) methods. Up to the present time, CFD methods have been primarily used for analysis or prediction. Some investigators have used CFD to impact the design of low boom configurations using trial and error methods. One investigator developed a hybrid design method using a combination of Modified Linear Theory (e.g. F-functions) and CFD to provide equivalent area due to lift driven by a numerical optimizer to redesign or modify an existing configuration to achieve a shaped sonic boom signature. A three-dimensional design methodology has not yet been developed that completely uses nonlinear methods or CFD. Constrained numerical optimization techniques have existed for some time. Many of these methods use gradients to search for the minimum of a specified objective function subject to a variety of design variable bounds, linear and nonlinear constraints. Gradient based design optimization methods require the determination of the objective function gradients with respect to each of the design variables. These optimization methods are efficient and work well if the gradients can be obtained analytically. If analytical gradients are not available, the objective gradients or derivatives with respect to the design variables must be obtained numerically. To obtain numerical gradients, say, for 10 design variables, might require anywhere from 10 to 20 objective function evaluations. Typically, 5-10 global iterations of the optimizer are required to minimize the objective function. In terms of using CFD as a design optimization tool, the numerical evaluation of gradients can require anywhere from 100 to 200 CFD computations per design for only 10 design variables. If one CFD
CFD-Based Redesign of a Low-Boom Supersonic Demonstrator Concept
NASA Technical Reports Server (NTRS)
Shields, Elwood; Li, Wu
2011-01-01
To design a more realistic low-boom supersonic demonstrator concept, theoretical engines were replaced with F-100 type engines. The original nacelle for the theoretical engine is replaced with a larger nacelle that is assumed adequate to house the F-100 engine. The process to redesign the configuration is then described and the rationales for design changes are given in some detail. Computational fluid dynamics (CFD) analysis was used to compute the equivalent area (A(sub e)) of the configuration during the redesign process. The goal of redesigning the configuration to match the CFD Ae of the configuration to a low-boom target was accomplished. The ground signature for CFD A(sub e) of the redesigned configuration has similar low-boom characteristics as that of the original low-boom configuration with theoretical engines.
Supersonic Retropropulsion CFD Validation with Ames Unitary Plan Wind Tunnel Test Data
NASA Technical Reports Server (NTRS)
Schauerhamer, Daniel G.; Zarchi, Kerry A.; Kleb, William L.; Edquist, Karl T.
2013-01-01
A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 90 70 Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.
CFD Validation with Experiment and Verification with Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
This paper will document our effort in validating a coupled fluid-structure interaction CFD tool in predicting a damping device performance in the laboratory condition. Consistently good comparisons of "blind" CFD predictions against experimental data under various operation conditions, design parameters, and cryogenic environment will be presented. The power of the coupled CFD-structures interaction code in explaining some unexpected phenomena of the device observed during the technology development will be illustrated. The evolution of the damper device design inside the LOX tank will be used to demonstrate the contribution of the tool in understanding, optimization and implementation of LOX damper in Ares I vehicle. It is due to the present validation effort, the LOX damper technology has matured to TRL 5. The present effort has also contributed to the transition of the technology from an early conceptual observation to the baseline design of thrust oscillation mitigation for the Ares I within a 10 month period.
Application of CFD codes to the design and development of propulsion systems
NASA Technical Reports Server (NTRS)
Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.
1987-01-01
The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.
The Expanding Role of Applications in the Development and Validation of CFD at NASA
NASA Technical Reports Server (NTRS)
Schuster, David M.
2010-01-01
This paper focuses on the recent escalation in application of CFD to manned and unmanned flight projects at NASA and the need to often apply these methods to problems for which little or no previous validation data directly applies. The paper discusses the evolution of NASA.s CFD development from a strict Develop, Validate, Apply strategy to sometimes allowing for a Develop, Apply, Validate approach. The risks of this approach and some of its unforeseen benefits are discussed and tied to specific operational examples. There are distinct advantages for the CFD developer that is able to operate in this paradigm, and recommendations are provided for those inclined and willing to work in this environment.
Calibration of the k- ɛ model constants for use in CFD applications
NASA Astrophysics Data System (ADS)
Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora
2011-11-01
The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.
CFD analyses of natural circulation in the air-cooled reactor cavity cooling system
Hu, R.; Pointer, W. D.
2013-07-01
The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)
Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.
2010-01-01
The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.
Validation of a CFD Methodology for Positive Displacement LVAD Analysis Using PIV Data
Reddy, Varun; Deutsch, Steve; Manning, Keefe B.; Paterson, Eric G.
2013-01-01
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance. PMID:20353260
Overview of CFD Validation Experiments for Circulation Control Applications at NASA
NASA Technical Reports Server (NTRS)
Jones, G. S.; Lin, J. C.; Allan, B. G.; Milholen, W. E.; Rumsey, C. L.; Swanson, R. C.
2008-01-01
Circulation control is a viable active flow control approach that can be used to meet the NASA Subsonic Fixed Wing project s Cruise Efficient Short Take Off and Landing goals. Currently, circulation control systems are primarily designed using empirical methods. However, large uncertainty in our ability to predict circulation control performance has led to the development of advanced CFD methods. This paper provides an overview of a systematic approach to developing CFD tools for basic and advanced circulation control applications. This four-step approach includes "Unit", "Benchmar", "Subsystem", and "Complete System" experiments. The paper emphasizes the ongoing and planned 2-D and 3-D physics orientated experiments with corresponding CFD efforts. Sample data are used to highlight the challenges involved in conducting circulation control computations and experiments.
Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.
Supersonic retropropulsion CFD validation with Ames Unitary Plan Wind Tunnel test data
NASA Astrophysics Data System (ADS)
Schauerhamer, D. G.; Zarchi, K. A.; Kleb, W. L.; Edquist, K. T.
A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 9'× 7' Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.
CFD simulation of shear-induced aggregation and breakage in turbulent Taylor-Couette flow.
Wang, Liguang; Vigil, R Dennis; Fox, Rodney O
2005-05-01
An experimental and computational investigation of the effects of local fluid shear rate on the aggregation and breakage of approximately 10 microm latex spheres suspended in an aqueous solution undergoing turbulent Taylor-Couette flow was carried out. First, computational fluid dynamics (CFD) simulations were performed and the flow field predictions were validated with data from particle image velocimetry experiments. Subsequently, the quadrature method of moments (QMOM) was implemented into the CFD code to obtain predictions for mean particle size that account for the effects of local shear rate on the aggregation and breakage. These predictions were then compared with experimental data for latex sphere aggregates (using an in situ optical imaging method). Excellent agreement between the CFD-QMOM and experimental results was observed for two Reynolds numbers in the turbulent-flow regime. PMID:15797411
Review on CFD simulation in heart with dilated cardiomyopathy and myocardial infarction.
Chan, Bee Ting; Lim, Einly; Chee, Kok Han; Abu Osman, Noor Azuan
2013-05-01
The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method. PMID:23428371
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.
2002-01-01
An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit
Geoghegan, Patrick J; Petrov, Andrei Y; Vineyard, Edward Allan; Zaltash, Abdolreza; Linkous, Randall Lee
2008-01-01
A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frost build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.
Dr. Chenn Zhou
2008-10-15
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.
Comparing different CFD wind turbine modelling approaches with wind tunnel measurements
NASA Astrophysics Data System (ADS)
Kalvig, Siri; Manger, Eirik; Hjertager, Bjørn
2014-12-01
The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach.
Comparison of PLIF and CFD Results for the Orion CEV RCS Jets
NASA Technical Reports Server (NTRS)
Ivey, Christopher B.; Danehy, Paul M.; Bathel, Brett F.; Dyakonov, Artem A.; Inman, Jennifer A.; Jones, Stephen B.
2011-01-01
Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to visualize and measure centerline streamwise velocity of the Orion Crew Exploration Vehicle (CEV) Reaction Control System (RCS) Jets at NASA Langley Research Center's 31-Inch Mach 10 Air wind tunnel. Fluorescence flow visualizations of pitch, roll, and yaw RCS jets were obtained using different plenum pressures and wind tunnel operating stagnation pressures. For two yaw RCS jet test cases, the PLIF visualizations were compared to computational flow imaging (CFI) images based on Langley Aerothermal Upwind Relaxation Algorithm (LAURA) computational fluid dynamics (CFD) simulations of the flowfield. For the same test cases, the streamwise velocity measurements were compared to CFD. The CFD solution, while showing some unphysical artifacts, generally agree with the experimental measurements.
Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Rojahn, Josh
2011-01-01
Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.
Validation of a CFD methodology for positive displacement LVAD analysis using PIV data.
Medvitz, Richard B; Reddy, Varun; Deutsch, Steve; Manning, Keefe B; Paterson, Eric G
2009-11-01
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance. PMID:20353260
CFD Validation with LDV Test Data for Payload/Fairing Internal Flow
NASA Technical Reports Server (NTRS)
Kandula, max; Hammad, Khaled; Schallhorn, Paul
2005-01-01
Flowfield testing of a 1/5th scale model of a payload/fairing configuration, typical of an expendable launch vehicle, has been performed. Two-dimensional (planar) velocity measurements were carried out in four planes with the aid of Laser Doppler Velocimetry (LDV). Computational Fluid Dynamics (CFD) analysis results for the scale model flowfleld are compared with the test data. The CFD results are in general agreement with the test data. The ability of the CFD methodology in identifying the global flow features (including critical points such as vortex, saddle point, etc.) has been demonstrated. Practical problems and difficulties associated with the LDV method applied to the complex geometry under consideration have been summarized.
A coupled RELAPS-3D/CFD methodology with a proof-of-principle calculation
Aumiller, D.L.; Tomlinson, E.T.; Bauer, R.C.
2000-01-01
The RELAP5-3D computer code was modified to make the explicit coupling capability in the code fully functional. As a test of the modified code, a coupled RELAP5/RELAP5 analysis of the Edwards-O'Brien blowdown problem was performed which showed no significant deviations from the standard RELAP5-3D predictions. In addition, a multiphase Computational Fluid Dynamics (CFD) code was modified to permit explicit coupling to RELAP5-3D. Several calculations were performed with this code. The first analysis used the experimental pressure history from a point just upstream of the break as a boundary condition. This analysis showed that a multiphase CFD code could calculate the thermodynamic and hydrodynamic conditions during a rapid blowdown transient. Finally, a coupled RELAP5/CFD analysis was performed. The results are presented in this paper.
The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Walker, Eric L.
2011-01-01
The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.
A novel methodology for interpreting air quality measurements from urban streets using CFD modelling
NASA Astrophysics Data System (ADS)
Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming
2011-09-01
In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population
NASA Technical Reports Server (NTRS)
West, Jeff; Yang, H. Q.
2014-01-01
There are many instances involving liquid/gas interfaces and their dynamics in the design of liquid engine powered rockets such as the Space Launch System (SLS). Some examples of these applications are: Propellant tank draining and slosh, subcritical condition injector analysis for gas generators, preburners and thrust chambers, water deluge mitigation for launch induced environments and even solid rocket motor liquid slag dynamics. Commercially available CFD programs simulating gas/liquid interfaces using the Volume of Fluid approach are currently limited in their parallel scalability. In 2010 for instance, an internal NASA/MSFC review of three commercial tools revealed that parallel scalability was seriously compromised at 8 cpus and no additional speedup was possible after 32 cpus. Other non-interface CFD applications at the time were demonstrating useful parallel scalability up to 4,096 processors or more. Based on this review, NASA/MSFC initiated an effort to implement a Volume of Fluid implementation within the unstructured mesh, pressure-based algorithm CFD program, Loci-STREAM. After verification was achieved by comparing results to the commercial CFD program CFD-Ace+, and validation by direct comparison with data, Loci-STREAM-VoF is now the production CFD tool for propellant slosh force and slosh damping rate simulations at NASA/MSFC. On these applications, good parallel scalability has been demonstrated for problems sizes of tens of millions of cells and thousands of cpu cores. Ongoing efforts are focused on the application of Loci-STREAM-VoF to predict the transient flow patterns of water on the SLS Mobile Launch Platform in order to support the phasing of water for launch environment mitigation so that vehicle determinantal effects are not realized.
CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models
Ma, J.; Zitney, S.
2012-01-01
Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.
Study of CFD Variation on Transport Configurations from the Second Drag-Prediction Workshop
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.
2004-01-01
This paper describes and analyzes a series of nearly 90 CFD test cases performed as a contribution to the second Drag Prediction Workshop, held in association with the AIAA in June 2003. Two configurations are included: DLR-F6 wing-body and wing-body-nacelle-pylon. The ability of CFD to predict the drag, lift, and pitching moment from experiment-including the "delta" arising from the addition of the nacelle and pylon-is assessed. In general, at a fixed angle of attack CFD overpredicts lift, but predicts the delta C (sub L) reasonably well. At low lift levels (C (sub L) less than 0.3)), delta C (sub D) is 20-30 drag counts (30-45%) high. At the target lift coefficient of C(sub L) = 0.5, delta C (sub D) is overpredicted by between 11-16 counts. However, the primary contribution of this paper is mot so much the assessment of CFD against experiment, but rather a detailed assessment and analysis of CFD variation. The series of test cases are designed to determine the sensitivity/variability of CFD to a variety of factors, including grid, turbulence model, transition code, and viscous model. Using medium-level grids (6-11 million points) at the target lift coefficient, the maximum variation in drag due to different grids is 5-11 drag counts, due to code is 5-10 counts, due to turbulence model is 7-15 counts, due to transition is 10-11 counts, and due to viscous model is 4-5 counts. Other specific variations are described in the paper.
NASA Technical Reports Server (NTRS)
West, Jeff S.; Richardson, Brian R.; Schmauch, Preston; Kenny, Robert J.
2011-01-01
Marshall Space Flight Center (MSFC) has been heavily involved in developing the J2-X engine. The Center has been testing a Work Horse Gas Generator (WHGG) to supply gas products to J2-X turbine components at realistic flight-like operating conditions. Three-dimensional time accurate CFD simulations and analytical fluid analysis have been performed to support WHGG tests at MSFC. The general purpose CFD program LOCI/Chem was utilized to simulate flow of products from the WHGG through a turbine manifold, a stationary row of turbine vanes, into a Can and orifice assembly used to control the back pressure at the turbine vane row and finally through an aspirator plate and flame bucket. Simulations showed that supersonic swirling flow downstream of the turbine imparted a much higher pressure on the Can wall than expected for a non-swirling flow. This result was verified by developing an analytical model that predicts wall pressure due to swirling flow. The CFD simulations predicted that the higher downstream pressure would cause the pressure drop across the nozzle row to be approximately half the value of the test objective. With CFD support, a redesign of the Can orifice and aspirator plate was performed. WHGG experimental results and observations compared well with pre-test and post-test CFD simulations. CFD simulations for both quasi-static and transient test conditions correctly predicted the pressure environment downstream of the turbine row and the behavior of the gas generator product plume as it exited the WHGG test article, impacted the flame bucket and interacted with the external environment.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
Virtual maneuvering test in CFD media in presence of free surface
NASA Astrophysics Data System (ADS)
Hajivand, Ahmad; Mousavizadegan, S. Hossein
2015-05-01
Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ɛ and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.
Virtual maneuvering test in CFD media in presence of free surface
NASA Astrophysics Data System (ADS)
Hajivand, Ahmad; Mousavizadegan, S. Hossein
2015-09-01
Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ɛ and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.
Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Chen, Jen-Ping
2012-01-01
This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.
Recent Improvements in the FDNS CFD Code and its Associated Process
NASA Technical Reports Server (NTRS)
West, Jeff S.; Dorney, Suzanne M.; Turner, Jim (Technical Monitor)
2002-01-01
This viewgraph presentation gives an overview on recent improvements in the Finite Difference Navier Stokes (FDNS) computational fluid dynamics (CFD) code and its associated process. The development of a utility, PreViewer, has essentially eliminated the creeping of simple human error into the FDNS Solution process. Extension of PreViewer to encapsulate the Domain Decompression process has made practical the routine use of parallel processing. The combination of CVS source control and ATS consistency validation significantly increases the efficiency of the CFD process.
NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD
NASA Technical Reports Server (NTRS)
Schuh, Michael J.; Garcia, Jospeh A.; Carter, Melissa B.; Deere, Karen A.; Stremel, Paul M.; Tompkins, Daniel M.
2016-01-01
Wind tunnel tests of a 5.75% scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14'x22' and NASA Ames Research Center (ARC) 40'x80' low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.
NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD
NASA Technical Reports Server (NTRS)
Schuh, Michael J.; Garcia, Joseph A.; Carter, Melissa B.; Deere, Karen A.; Tompkins, Daniel M.; Stremel, Paul M.
2016-01-01
Wind tunnel tests of a 5.75 scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14x22 and NASA Ames Research Center (ARC) 40x80 low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.
Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water
NASA Astrophysics Data System (ADS)
Beneš, Petr; Kollárik, Róbert
2011-12-01
This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.
CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.
Meroney, Robert N; Colorado, P E
2009-03-01
Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations. PMID:19135698
Application of the Loci-Based CFD Code Chem at MSFC: Preliminary Results
NASA Technical Reports Server (NTRS)
West, Jeff S.; Rothermel, Jeff
2002-01-01
Contents include the following: 1. Objectives. Concentrate on determining the qualitative accuracy, performance and robustness of the Chen code. 2. What is the Loci-Chem CFD code? Density-based, finite volume, generalized unstructured grid, Navier-Stokes solver. The algorithm was implemented using the Loci framework, which allows implementation issues such as parallel processing to be handled transparently to the coding of the CFD algorithm. 3. Application to Bifurcating Duct problem. Flow splits from single duct to two ducts. 4. Application to single element injector. 5. Application to PSU RBCC rig. 6. 90 degree elbow benchmark problem. 7. Future work.
CFD validation in OECD/NEA t-junction benchmark.
Obabko, A. V.; Fischer, P. F.; Tautges, T. J.; Karabasov, S.; Goloviznin, V. M.; Zaytsev, M. A.; Chudanov, V. V.; Pervichko, V. A.; Aksenova, A. E.
2011-08-23
When streams of rapidly moving flow merge in a T-junction, the potential arises for large oscillations at the scale of the diameter, D, with a period scaling as O(D/U), where U is the characteristic flow velocity. If the streams are of different temperatures, the oscillations result in experimental fluctuations (thermal striping) at the pipe wall in the outlet branch that can accelerate thermal-mechanical fatigue and ultimately cause pipe failure. The importance of this phenomenon has prompted the nuclear energy modeling and simulation community to establish a benchmark to test the ability of computational fluid dynamics (CFD) codes to predict thermal striping. The benchmark is based on thermal and velocity data measured in an experiment designed specifically for this purpose. Thermal striping is intrinsically unsteady and hence not accessible to steady state simulation approaches such as steady state Reynolds-averaged Navier-Stokes (RANS) models.1 Consequently, one must consider either unsteady RANS or large eddy simulation (LES). This report compares the results for three LES codes: Nek5000, developed at Argonne National Laboratory (USA), and Cabaret and Conv3D, developed at the Moscow Institute of Nuclear Energy Safety at (IBRAE) in Russia. Nek5000 is based on the spectral element method (SEM), which is a high-order weighted residual technique that combines the geometric flexibility of the finite element method (FEM) with the tensor-product efficiencies of spectral methods. Cabaret is a 'compact accurately boundary-adjusting high-resolution technique' for fluid dynamics simulation. The method is second-order accurate on nonuniform grids in space and time, and has a small dispersion error and computational stencil defined within one space-time cell. The scheme is equipped with a conservative nonlinear correction procedure based on the maximum principle. CONV3D is based on the immersed boundary method and is validated on a wide set of the experimental and
Certification of CFD heat transfer software for turbine blade analysis
NASA Technical Reports Server (NTRS)
Jordan, William A.
2004-01-01
Accurate modeling of heat transfer effects is a critical component of the Turbine Branch of the Turbomachinery and Propulsion Systems Division. Being able to adequately predict and model heat flux, coolant flows, and peak temperatures are necessary for the analysis of high pressure turbine blades. To that end, the primary goal of my internship this summer will be to certify the reliability of the CFD program GlennHT for the purpose of turbine blade heat transfer analysis. GlennHT is currently in use by the engineers in the Turbine Branch who use the FORTRAN 77 version of the code for analysis. The program, however, has been updated to a FORTRAN 90 version which is more robust than the older code. In order for the new code to be distributed for use, its reliability must first be certified. Over the course of my internship I will create and run test cases using the FORTRAN 90 version of GlennHT and compare the results to older cases which are known to be accurate, If the results of the new code match those of the sample cases then the newer version will be one step closer to certification for distribution. In order to complete these it will first be necessary to become familiar with operating a number of other programs. Among them are GridPro, which is used to create a grid mesh around a blade geometry, and FieldView, whose purpose is to graphically display the results from the GlennHT program. Once enough familiarity is established with these programs to render them useful, then the work of creating and running test scenarios will begin. The work is additionally complicated by a transition in computer hardware. Most of the working computers in the Turbine Branch are Silicon Graphics machines, which will soon be replaced by LINUX PC's. My project is one of the first to make use the new PC's. The change in system architecture however, has created several software related issues which have greatly increased the time and effort investments required by the project
CFD Analyses of Damaged Fuel Inside a Cleaning Vessel
Legradi, Gabor; Boros, Ildiko; Aszodi, Attila
2006-07-01
On 10-11 of April, 2003, a serious incident occurred in a special fuel assembly cleaning tank, which was installed into the service shaft of the 2. unit of the Paks NPP in Hungary. During this incident, most of the 30 fuel assemblies put into the cleaning tank have seriously damaged. In the Institute of Nuclear Techniques of the Budapest University of Technology and Economics several CFD investigations were performed concerning the course of the incident, the post incidental conditions and the recovery work. The main reason of the incident can be originated from the defective design of the cleaning tank which resulted in the insufficient cooling of the system in a special operational mode. Our investigation performed with a complex 3D CFX model clearly showed how could as strong temperature stratification develop inside the cleaning tank that it was able to block the coolant flow through the fuel assemblies. After the blocking of the flow, the coolant turned into boiling and the assemblies became uncovered. The temperature of the surfaces of the fuel assemblies went above 1000 deg. C. With the aid of the radiative heat transfer model of the CFX-5.6 code, the surface temperatures were analyzed. When the cleaning instrument got opened the fuel assemblies suffered a serious thermal shock and the assemblies highly damaged. The post-incident thermo-hydraulic state inside the cleaning vessel was investigated with a rather complex CFX model. The uncertainties were decreased by a wide parameter study. The recovery work is planned to be started in the close future. The operators of the damaged fuel removing equipments will work standing on a platform which will be placed into the service shaft just above the surface of the coolant of decreased level. Protecting the workers against unnecessary personal doses is a very important task. In this situation, while the coolant is important part of the biological shielding, it is also a source of radiation due to the considerable
Corley, Richard A; Minard, Kevin R; Kabilan, Senthil; Einstein, Daniel R; Kuprat, Andrew P; harkema, J R; Kimbell, Julia; Gargas, M L; Kinzell, John H
2009-06-01
The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflows calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.
CFD Variability for a Civil Transport Aircraft Near Buffet-Onset Conditions
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Morrison, Joseph H.; Biedron, Robert T.
2003-01-01
A CFD sensitivity analysis is conducted for an aircraft at several conditions, including flow with substantial separation (buffet onset). The sensitivity is studied using two different Navier-Stokes computer codes, three different turbulence models, and two different grid treatments of the wing trailing edge. This effort is a follow-on to an earlier study of CFD variation over a different aircraft in buffet onset conditions. Similar to the earlier study, the turbulence model is found to have the largest effect, with a variation of 3.8% in lift at the buffet onset angle of attack. Drag and moment variation are 2.9% and 23.6%, respectively. The variations due to code and trailing edge cap grid are smaller than that due to turbulence model. Overall, the combined approximate error band in CFD due to code, turbulence model, and trailing edge treatment at the buffet onset angle of attack are: 4% in lift, 3% in drag, and 31% in moment. The CFD results show similar trends to flight test data, but also exhibit a lift curve break not seen in the data.
NASA Astrophysics Data System (ADS)
Murena, Fabio; Favale, Giuseppe; Vardoulakis, Sotiris; Solazzo, Efisio
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/ W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k- ɛ turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/ W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.
Spectroscopic Classification of SN 2016blg (=PTSS-16cfd) as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Zheng, Xiangming; Wang, Xiaofeng; Li, Wenxiong; Rui, Liming; Yang, Zesheng; Xu, Zhijian; Li, Bin; Zhao, Haibin; Wang, Lifan
2016-04-01
We obtained an optical spectrum (range 320-850 nm) of SN 2016blg(=PTSS-16cfd), discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), on UT Apr.04.7 2016 with the 2.4-m telescope (+YFOSC) at LiJiang Gaomeigu Station of Yunnan Astronomical Observatories (YNAO).
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
CFD MODELING OF FINE SCALE FLOW AND TRANSPORT IN THE HOUSTON METROPOLITAN AREA, TEXAS
Fine scale modeling of flows and air quality in Houston, Texas is being performed; the use of computational fluid dynamics (CFD) modeling is being applied to investigate the influence of morphologic structures on the within-grid transport and dispersion of sources in grid models ...
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses
NASA Technical Reports Server (NTRS)
Friedlander, David J.
2013-01-01
Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.
Overview of the LaNCETS Flight Experiment and the CFD Analysis
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bio, Trong
2008-01-01
LaCETS baseline flight study include: 29 high-quality nearfield shock structure probings at three Mach numbers; Shocks in exhaust plume measured; ! CFD study of simplified nozzle shows similar plume structures as flight data; ! Phase II flights scheduled for October 2008; and ! US Industry and Academia invited to participate in analysis, review, and assessment of LaNCETS data.
Methodology for CFD Design Analysis of National Launch System Nozzle Manifold
NASA Technical Reports Server (NTRS)
Haire, Scot L.
1993-01-01
The current design environment dictates that high technology CFD (Computational Fluid Dynamics) analysis produce quality results in a timely manner if it is to be integrated into the design process. The design methodology outlined describes the CFD analysis of an NLS (National Launch System) nozzle film cooling manifold. The objective of the analysis was to obtain a qualitative estimate for the flow distribution within the manifold. A complex, 3D, multiple zone, structured grid was generated from a 3D CAD file of the geometry. A Euler solution was computed with a fully implicit compressible flow solver. Post processing consisted of full 3D color graphics and mass averaged performance. The result was a qualitative CFD solution that provided the design team with relevant information concerning the flow distribution in and performance characteristics of the film cooling manifold within an effective time frame. Also, this design methodology was the foundation for a quick turnaround CFD analysis of the next iteration in the manifold design.
A texture-based frameowrk for improving CFD data visualization in a virtual environment
Biveins, Gerrick O'Ron
2005-05-01
In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated but require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, {approx} 10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions are not limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions but limiting interaction for investigating the field.
A texture-based framework for improving CFD data visualization in a virtual environment
Gerrick O'Ron Bivins
2005-05-05
In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated hut require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, {approx}10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions are not limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions hut limiting interaction for investigating the field.
A simplified DEM-CFD approach for pebble bed reactor simulations
Li, Y.; Ji, W.
2012-07-01
In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculated with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)
CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.
2012-01-01
This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722
NASA Technical Reports Server (NTRS)
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
NASA Astrophysics Data System (ADS)
Befrui, Bizhan A.
1995-03-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
Combined MR imaging and CFD simulation of flow in the human descending aorta.
Wood, N B; Weston, S J; Kilner, P J; Gosman, A D; Firmin, D N
2001-05-01
A combined MR and computational fluid dynamics (CFD) study is made of flow in the upper descending thoracic aorta. The aim was to investigate further the potential of CFD simulations linked to in vivo MRI scans. The three-dimensional (3D) geometrical images of the aorta and the 3D time-resolved velocity images at the entry to the domain studied were used as boundary conditions for the CFD simulations of the flow. Despite some measurement uncertainties, comparisons between simulated and measured flow structures at the exit from the domain demonstrated encouraging levels of agreement. Moreover, the CFD simulation allowed the flow structure throughout the domain to be examined in more detail, in particular the flow separation region in the distal aortic arch and its influence on the downstream flow during late systole. Additional information such as relative pressure and wall shear stress, which could not be measured via MRI, were also extracted from the simulation. The results have encouraged further applications of the methods described. J. Magn. Reson. Imaging 2001;13:699-713. PMID:11329191
CFD simulation and analysis of emulsion droplet formation from straight-through microchannels.
Kobayashi, Isao; Mukataka, Sukekuni; Nakajima, Mitsutoshi
2004-10-26
We recently proposed a technique for preparing monodisperse emulsions with a coefficient of variation below 5% from a silicon array of micrometer-sized channels perpendicular to the plate surface, named a straight-through microchannel (MC). This study involved three-dimensional computational fluid dynamics (CFD) simulations to calculate the formation of an oil-in-water (O/W) emulsion droplet from straight-through MCs with circular and elliptic cross sections. The CFD results demonstrated that the oil phase that passed through the elliptic MCs exceeding a threshold aspect ratio between 3 and 3.5 was cut off spontaneously into a small droplet with a diameter of approximately 40 microm. Sufficient space for water at the channel exit had to be maintained for successful droplet formation. The formation and shrinkage of a neck inside the channel caused an increased pressure difference inside the channel and an increased velocity value near the neck. The pressure and velocity values at the neck drastically changed, and the neck was cut off instantaneously just before the completion of droplet formation. This process was triggered by a gradually increased pressure difference between the circular neck and inflating oil phase. The findings obtained in this paper provide useful numerical and visual information about the droplet formation phenomena from the straight-through MCs. The CFD results were verified by the experimental results, showing that the CFD approach can help design a suitable channel structure. PMID:15491227
Analytic corrections to CFD heating predictions accounting for changes in surface catalysis
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Inger, George R.
1996-01-01
Integral boundary-layer solution techniques applicable to the problem of determining aerodynamic heating rates of hypersonic vehicles in the vicinity of stagnation points and windward centerlines are briefly summarized. A new approach for combining the insight afforded by integral boundary-layer analysis with comprehensive (but time intensive) computational fluid dynamic (CFD) flowfield solutions of the thin-layer Navier-Stokes equations is described. The approach extracts CFD derived quantities at the wall and at the boundary layer edge for inclusion in a post-processing boundary-layer analysis. It allows a designer at a workstation to address two questions, given a single CFD solution. (1) How much does the heating change for a thermal protection system with different catalytic properties than was used in the original CFD solution? (2) How does the heating change at the interface of two different TPS materials with an abrupt change in catalytic efficiency? The answer to the second question is particularly important, because abrupt changes from low to high catalytic efficiency can lead to localized increase in heating which exceeds the usually conservative estimate provided by a fully catalytic wall assumption.
HART-II Acoustic Predictions using a Coupled CFD/CSD Method
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2009-01-01
This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.
CFD study of ejector flow behavior in a blast furnace gas galvanizing plant
NASA Astrophysics Data System (ADS)
Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio
2015-02-01
In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.
Multi-phase CFD modeling of solid sorbent carbon capture system
Ryan, E. M.; DeCroix, D.; Breault, Ronald W.; Xu, W.; Huckaby, E. David
2013-01-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.
CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT
Ng, E. Y. K.; Loong, T. H.; Bordone, Maurizio; Pua, Uei; Narayanan, Sriram
2013-01-01
The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA) geometric parameters, wall stress shear (WSS), abdominal flow patterns, intraluminal thrombus (ILT), and AAA arterial wall rupture using computational fluid dynamics (CFD). Real AAA 3D models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m3 and a kinematic viscosity of 4 × 10−3 Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index (β), saccular index (γ), deformation diameter ratio (χ), and tortuosity index (ε)) and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation. PMID:23864906
Comparison of a semi-analytic and a CFD model uranium combustion to experimental data.
Clarksean, R.
1998-04-01
Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome.
CFD INVESTIGATION OF EXPERIMENTAL DATA PROPOSED TO BE A VALIDATION DATA SET
Richard W. Johnson
2009-07-01
The U. S. Department of Energy (DOE) is currently supporting the development of a next generation nuclear plant (NGNP). The NGNP is based on the very high temperature reactor (VHTR), which is a Gen. IV gas-cooled reactor concept that will use helium as the coolant. Computational fluid dynamics (CFD) calculations are to be employed to estimate the details of the flow and heat transfer in the lower plenum where the heated coolant empties before exiting the reactor vessel. While it is expected that CFD will be able to provide detailed information about the flow, it must be validated using experimental data. Detailed experimental data have been taken in the INL’s matched index of refraction (MIR) facility of a scaled model of a section of the prismatic VHTR lower plenum. The present article examines the data that were taken to determine the suitability of such data to be a validation data set for CFD calculations. CFD calculations were made to compare with the experimental data to explore potential issues and make recommendations regarding the MIR data.
Use Computer-Aided Tools to Parallelize Large CFD Applications
NASA Technical Reports Server (NTRS)
Jin, H.; Frumkin, M.; Yan, J.
2000-01-01
Greenwich, to reduce potential errors made by users. Earlier tests on NAS Benchmarks and ARC3D have demonstrated good success of this tool. In this study, we have applied CAPO to parallelize three large applications in the area of computational fluid dynamics (CFD): OVERFLOW, TLNS3D and INS3D. These codes are widely used for solving Navier-Stokes equations with complicated boundary conditions and turbulence model in multiple zones. Each one comprises of from 50K to 1,00k lines of FORTRAN77. As an example, CAPO took 77 hours to complete the data dependence analysis of OVERFLOW on a workstation (SGI, 175MHz, R10K processor). A fair amount of effort was spent on correcting false dependencies due to lack of necessary knowledge during the analysis. Even so, CAPO provides an easy way for user to interact with the parallelization process. The OpenMP version was generated within a day after the analysis was completed. Due to sequential algorithms involved, code sections in TLNS3D and INS3D need to be restructured by hand to produce more efficient parallel codes. An included figure shows preliminary test results of the generated OVERFLOW with several test cases in single zone. The MPI data points for the small test case were taken from a handcoded MPI version. As we can see, CAPO's version has achieved 18 fold speed up on 32 nodes of the SGI O2K. For the small test case, it outperformed the MPI version. These results are very encouraging, but further work is needed. For example, although CAPO attempts to place directives on the outer- most parallel loops in an interprocedural framework, it does not insert directives based on the best manual strategy. In particular, it lacks the support of parallelization at the multi-zone level. Future work will emphasize on the development of methodology to work in a multi-zone level and with a hybrid approach. Development of tools to perform more complicated code transformation is also needed.
Towards CFD modeling of turbulent pipeline material transportation
NASA Astrophysics Data System (ADS)
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended
Feigley, Charles E; Do, Thanh H; Khan, Jamil; Lee, Emily; Schnaufer, Nicholas D; Salzberg, Deborah C
2011-05-01
Computational fluid dynamics (CFD) is used increasingly to simulate the distribution of airborne contaminants in enclosed spaces for exposure assessment and control, but the importance of realistic boundary conditions is often not fully appreciated. In a workroom for manufacturing capacitors, full-shift samples for isoamyl acetate (IAA) were collected for 3 days at 16 locations, and velocities were measured at supply grills and at various points near the source. Then, velocity and concentration fields were simulated by 3-dimensional steady-state CFD using 295K tetrahedral cells, the k-ε turbulence model, standard wall function, and convergence criteria of 10(-6) for all scalars. Here, we demonstrate the need to represent boundary conditions accurately, especially emission characteristics at the contaminant source, and to obtain good agreement between observations and CFD results. Emission rates for each day were determined from six concentrations measured in the near field and one upwind using an IAA mass balance. The emission was initially represented as undiluted IAA vapor, but the concentrations estimated using CFD differed greatly from the measured concentrations. A second set of simulations was performed using the same IAA emission rates but a more realistic representation of the source. This yielded good agreement with measured values. Paying particular attention to the region with highest worker exposure potential-within 1.3 m of the source center-the air speed and IAA concentrations estimated by CFD were not significantly different from the measured values (P = 0.92 and P = 0.67, respectively). Thus, careful consideration of source boundary conditions greatly improved agreement with the measured values. PMID:21422277
Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involve the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations and knowledge were mainly carried out by extensive experimental studies. A Volume-Of-Fluid (VOF) based CFD program developed at NASA MSFC was applied to extract slosh damping in a baffled tank from the first principle. First, experimental data using water with subscale smooth wall tank were used as the baseline validation. CFD simulation was demonstrated to be capable of accurately predicting natural frequency and very low damping value from the smooth wall tank at different fill levels. The damping due to a ring baffle at different liquid fill levels from barrel section and into the upper dome was then investigated to understand the slosh damping physics due to the presence of a ring baffle. Based on this study, the Root-Mean-Square error of our CFD simulation in estimating slosh damping was less than 4.8%, and the maximum error was less than 8.5%. Scalability of subscale baffled tank test using water was investigated using the validated CFD tool, and it was found that unlike the smooth wall case, slosh damping with baffle is almost independent of the working fluid and it is reasonable to apply water test data to the full scale LOX tank when the damping from baffle is dominant. On the other hand, for the smooth wall, the damping value must be scaled according to the Reynolds number. Comparison of experimental data, CFD, with the classical and modified Miles equations for upper dome was made, and the limitations of these semi-empirical equations were identified.
Smith, Alex C.
2015-01-01
In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion. PMID:26213572
NASA Astrophysics Data System (ADS)
Konishi, Yoshihiro; Tanaka, Fumihiko; Uchino, Toshitaka; Hamanaka, Daisuke
During transport using refrigerated trucks, the maintaining of the recommended conditions throughout a cargo is required to preserve the quality of fresh fruit and vegetables. Temperature distribution within a refrigerated container is governed by airflow pattern with thermal transport. In this study, Computational Fluid Dynamics(CFD) predictions were used to investigate the temperature distribution within a typical refrigerated truck filled with cardboard packed eggplants. Numerical modeling of heat and mass transfer was performed using the CFX code. In order to verify the developed CFD model full-scale measurement was carried out within a load of eggplants during transport. CFD predictions show reasonable agreement with actual data.
Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James
2005-01-01
New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in
CFD modeling of commercial-scale entrained-flow coal gasifiers
Ma, J.; Zitney, S.
2012-01-01
Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here
Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study.
Pekkan, Kerem; de Zélicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Frakes, David; Fogel, Mark A; Yoganathan, Ajit P
2005-03-01
Recent developments in medical image acquisition combined with the latest advancements in numerical methods for solving the Navier-Stokes equations have created unprecedented opportunities for developing simple and reliable computational fluid dynamics (CFD) tools for meeting patient-specific surgical planning objectives. However, for CFD to reach its full potential and gain the trust and confidence of medical practitioners, physics-driven numerical modeling is required. This study reports on the experience gained from an ongoing integrated CFD modeling effort aimed at developing an advanced numerical simulation tool capable of accurately predicting flow characteristics in an anatomically correct total cavopulmonary connection (TCPC). An anatomical intra-atrial TCPC model is reconstructed from a stack of magnetic resonance (MR) images acquired in vivo. An exact replica of the computational geometry was built using transparent rapid prototyping. Following the same approach as in earlier studies on idealized models, flow structures, pressure drops, and energy losses were assessed both numerically and experimentally, then compared. Numerical studies were performed with both a first-order accurate commercial software and a recently developed, second-order accurate, in-house flow solver. The commercial CFD model could, with reasonable accuracy, capture global flow quantities of interest such as control volume power losses and pressure drops and time-averaged flow patterns. However, for steady inflow conditions, both flow visualization experiments and particle image velocimetry (PIV) measurements revealed unsteady, complex, and highly 3D flow structures, which could not be captured by this numerical model with the available computational resources and additional modeling efforts that are described. Preliminary time-accurate computations with the in-house flow solver were shown to capture for the first time these complex flow features and yielded solutions in good
Computational Fluid Dynamics (CFD) simulations provide a number of unique opportunities for expanding and improving capabilities for modeling exposures to environmental pollutants. The US Environmental Protection Agency's National Exposure Research Laboratory (NERL) has been c...
Ratkovich, N; Chan, C C V; Bentzen, T R; Rasmussen, M R
2012-01-01
Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment for effective solids-liquid separation. However, a common problem encountered with MBR systems is fouling of the membrane resulting in frequent membrane cleaning and replacement which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the shear stress in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results were obtained with the CFD model (<9% error), it was extrapolated to include the non-Newtonian behaviour of activated sludge. PMID:22592479
NASA Technical Reports Server (NTRS)
Anusonti-Inthra, Phuriwat
2010-01-01
This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.
NASA Technical Reports Server (NTRS)
Smith, Marilyn J.; Lim, Joon W.; vanderWall, Berend G.; Baeder, James D.; Biedron, Robert T.; Boyd, D. Douglas, Jr.; Jayaraman, Buvana; Jung, Sung N.; Min, Byung-Young
2012-01-01
Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.
NASA Astrophysics Data System (ADS)
Harris, A. C.; Allen, C. M.; Reiners, P. W.; Dunlap, W. J.; Cooke, D. R.; Campbell, I. H.; White, N. C.
2004-05-01
Porphyry Cu deposits form within and adjacent to small porphyritic intrusions that are apophyses to larger silicic magma bodies that reside in the upper parts of the Earth's crusts. Centred on these intrusions are hydrothermal systems of exsolved magmatic fluid with a carapace of convectively circulating meteoric water. We have applied several different dating techniques to assess the longevity of the magmatic-hydrothermal system and to define the cooling history of porphyry intrusions at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. The closure temperatures of these techniques range from 800oC (zircon U-Pb) to ~70oC (apatite (U-Th)/He; Fig. 1). The resulting cooling history indicates that the magmatic-hydrothermal system cooled to ca. 200oC by ~1.5 m.y. after the last porphyry intrusion (i.e., 6.96±0.09 Ma; U-Pb zircon age). Based on (U-Th)/He apatite data (closure temperature ~60-70oC), exposure and cessation of the system occurred before 4 Ma. The longevity of the magmatic-hydrothermal system indicated by these results is inconsistent with accepted mechanisms for porphyry Cu deposit formation. Depending on wallrock permeability, depth and cooling method, a 2 km wide by 3 km high intrusion has been predicted to cool between 0.01 to 0.1 m.y. (marked as the grey interval; Cathles et al., 1997 Economic Geology). We have obtained numerous age determinations younger than the U-Pb zircon age of the last known intrusion at Bajo de la Alumbrera. These imply that simple cooling of the small, mineralized porphyries did not happen. For the magmatic-hydrothermal system to have been sustained for longer than 0.1 m.y., either 1) younger small intrusions have been episodically emplaced below the youngest known intrusions, thus prolonging heat flow, or 2) fluids derived from a deeper and larger parental intrusion have been episodically discharged through the ore deposit long after the porphyry intrusion had lost its available heat. In either case, the longevity of
Development of Unsteady Aerodynamic State-Space Models from CFD-Based Pulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Raveh, Daniella E.
2001-01-01
A method for computing discrete-time state-space models of linearized unsteady aerodynamic behavior directly from aeroelastic CFD codes is presented. The method involves the treatment of CFD-based pulse responses as Markov parameters for use in a system identification /realization algorithm. Results are presented for the AGARD 445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 using the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The System/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time state-space models of the unsteady aerodynamic response of the wing over the entire frequency range of interest.
NASA Technical Reports Server (NTRS)
Kandula, Max; Caimi, Raoul; Steinrock, T. (Technical Monitor)
2001-01-01
An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.
Simulation of Jet Noise with OVERFLOW CFD Code and Kirchhoff Surface Integral
NASA Technical Reports Server (NTRS)
Kandula, M.; Caimi, R.; Voska, N. (Technical Monitor)
2002-01-01
An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.
Three-dimensional CFD simulation and aeroacoustics analysis of wind turbines
NASA Astrophysics Data System (ADS)
Khalili, Fardin
Wind turbines release aerodynamic noise that is one of the most barriers in wind energy development and public acceptance. Aeroacoustics is the noise generated by the interaction of blades, specifically the tip and trailing edge, with inflow turbulence structures and subsequent boundary layer separation and vortex shedding in the wake region. The objective of this study is to analyze the effects of different aerodynamic conditions on the performance and the aeroacoustic issue of wind turbines. Aerodynamic and aeroacoustic operation of a wind turbine is analyzed using a three-dimensional CFD and aeroacoustics model and using a commercial CFD Software, STAR-CCM+. Blades are modeled based on NREL S825 airfoil shape due to its high maximum lift and low profile drag. Wind turbine aerodynamic performance as well as broadband aeroacoustic noise with a focus on the trailing end, tip, inflow turbulence and boundary layer separation is investigated over a range of operating conditions.
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
An integrated CFD simulation tool in naval architecture and offshore (NAO) engineering
NASA Astrophysics Data System (ADS)
Jaswar, Maimun, A.; Priyanto, A.; Wahid, Mazlan Abdul; Zamani, Saman, Pauzi
2012-06-01
Integrated Computational Fluid Dynamic as a simulation tool for optimization of ship and offshore designs have been developed with higher reliability and accuracy by many institutions. The Department of Marine Technology at the Faculty of Mechanical Engineering, University Teknologi Malaysia has recently developed an integrated CFD simulation tool using potential theory, which intends to upgrade student's level understanding the application of fluid dynamic to ship and offshore structure designs. This paper discusses the application of integrated Naval Architecture and Offshore (NAO) CFD simulation tool for hull performance analysis in term of wave resistance. Detailed discussion on pressure distribution around the hull and generated wave profile by the hull are also presented. As a case study, hull performance of VLCC tanker is simulated using the tool.
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L. (Compiler)
2007-01-01
The papers presented here are from the Langley Research Center Workshop on Computational Fluid Dynamics (CFD) Validation of Synthetic Jets and Turbulent Separation Control (nicknamed "CFDVAL2004"), held March 2004 in Williamsburg, Virginia. The goal of the workshop was to bring together an international group of CFD practitioners to assess the current capabilities of different classes of turbulent flow solution methodologies to predict flow fields induced by synthetic jets and separation control geometries. The workshop consisted of three flow-control test cases of varying complexity, and participants could contribute to any number of the cases. Along with their workshop submissions, each participant included a short write-up describing their method for computing the particular case(s). These write-ups are presented as received from the authors with no editing. Descriptions of each of the test cases and experiments are also included.
A novel airlift reactor enhanced by funnel internals and hydrodynamics prediction by the CFD method.
Zhang, Tao; Wei, Chaohai; Feng, Chunhua; Zhu, Jialiang
2012-01-01
Airlift reactors have been used widely in many industrial processes, but little work has been conducted on such reactors integrated with internals. In this study, a novel airlift reactor with a funnel internal was developed to achieve better flow conditions and advantages in biological processes. The CFD (computational fluid dynamics) simulation method was employed to investigate the effect of the funnel internals on hydrodynamic properties in the reactor. A CFD model was developed for gas-liquid two-phase flow simulation in a bench-scale reactor. Grid-independent simulation results were verified with global-scale experimental data. The results showed that the local or global gas holdup could be enhanced by 15% and that turbulent kinetic energy could be reduced by a maximum of 7.8% when the superficial gas velocity was 1 cm/s. These features are beneficial for applications in stress-sensitive biological processes. PMID:22119313
AGARD WG13 aerodynamics of high speed air intakes: Assessment of CFD results
NASA Technical Reports Server (NTRS)
Bissinger, N. C.; Benson, T. J.; Bradley, R. G., Jr.
1992-01-01
A brief review of the work accomplished by the numerical subgroup of AGARD Working Group 13 on the aerodynamics of high speed air intakes is presented. This work comprised the selection of test cases for which experimental data were available. The test cases were chosen to range in complexity from normal-shock/boundary-layer interaction to full forebody-inlet combinations. Computations for these test cases were solicited from a large number of organizations and individual researchers within the NATO countries. The computation methods reached from Euler solvers (with and without boundary layer corrections) to full Reynolds averaged Navier-Stokes codes. The group compared these results with the test data available for each test case. A short overview of the CFD methods employed, a description of the test cases selected, and some of the comparisons between CFD solutions and test data are presented. The conclusions and recommendations drawn from this assessment are given.
Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.
2004-01-01
A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.
Application of CFD to the analysis and design of high-speed inlets
NASA Technical Reports Server (NTRS)
Rose, William C.
1995-01-01
Over the past seven years, efforts under the present Grant have been aimed at being able to apply modern Computational Fluid Dynamics to the design of high-speed engine inlets. In this report, a review of previous design capabilities (prior to the advent of functioning CFD) was presented and the example of the NASA 'Mach 5 inlet' design was given as the premier example of the historical approach to inlet design. The philosophy used in the Mach 5 inlet design was carried forward in the present study, in which CFD was used to design a new Mach 10 inlet. An example of an inlet redesign was also shown. These latter efforts were carried out using today's state-of-the-art, full computational fluid dynamics codes applied in an iterative man-in-the-loop technique. The potential usefulness of an automated machine design capability using an optimizer code was also discussed.
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.
2015-03-01
Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce
2014-01-01
A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.
The CFD Simulation on Thermal Comfort in a library Building in the Tropics
Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.
2010-05-21
This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.
A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.
2014-10-01
A GSM-CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM-CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.
CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades
NASA Astrophysics Data System (ADS)
Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.
2014-12-01
The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.
3D CFD Simulation of Horizontal Spin Casting of High Speed Steel Roll
NASA Astrophysics Data System (ADS)
Redkin, Konstantin; Balakin, Boris; Hrizo, Christopher; Vipperman, Jeffrey; Garcia, Isaac; University Of Pittsburgh Team; Whemco Collaboration; University Of Bergen Collaboration
2013-11-01
The present paper reports some preliminary results on the multiphase modeling of the melt behavior in the horizontal spinning chamber. Three-dimensional (3D) computational fluid dynamics (CFD) model of the high speed steel (HSS) melt was developed in a novel way on the base of volume-of-fluid technique. Preliminary 3D CFD of the horizontal centrifugal casting process showed that local turbulences can take place depending on the geometrical features of the ``feeding'' arm (inlet), its position relative to the chamber, pouring rates and temperatures. The distribution of the melt inside the mold is directly related to the melt properties (viscosity and diffusivity), which depend on the temperature and alloy composition. The predicted liquid properties, used in the modeling, are based on actual chemical composition analysis performed on different heats. Acknowledgement of WHEMCO and United Rolls Inc. for supporting the program. Special appreciation for Kevin Marsden.
Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Horvath, Thomas J.
2002-01-01
A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.
A CFD study of complex missile and store configurations in relative motion
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids.
CFD simulations to study the effects of wall protrusions on microfluidic mixing
NASA Astrophysics Data System (ADS)
Sarkar, Sourav; Singh, K. K.; Shankar, V.; Shenoy, K. T.
2015-08-01
In this study the effects of different types of wall protrusions on microfluidic mixing are studied using computational fluid dynamics (CFD) simulations. Two new protrusions, single first bracket protrusions and double opposite first bracket protrusions (DOFBPs), are conceptualized, evaluated through CFD simulations and compared to protrusions having standard geometrical shapes, e.g. rectangular protrusions, triangular protrusions and semicircular protrusions. In the range of Reynolds numbers covered in this study, the microchannel having an opposed T-junction and DOFBPs is found to provide good mixing. A hybrid approach relying on the modification of microfluidic junctions as well as wall protrusions for enhancing microfluidic mixing is also evaluated. The microchannel based on the hybrid approach of an OA 10°-20°-165° WY-junction and DOFBPs is also found to provide very good mixing for a wide range of Reynolds numbers.
Method for CFD Simulation of Propellant Slosh in a Spherical Tank
NASA Technical Reports Server (NTRS)
Benson, David J.; Mason, Paul A.
2011-01-01
Propellant sloshing can impart unwanted disturbances to spacecraft, especially if the spacecraft controller is driving the system at the slosh frequency. This paper describes the work performed by the authors in simulating propellant slosh in a spherical tank using computational fluid dynamics (CFD). ANSYS-CFX is the CFD package used to perform the analysis. A 42 in spherical tank is studied with various fill fractions. Results are provided for the forces on the walls and the frequency of the slosh. Snapshots of slosh animation give a qualitative understanding of the propellant slosh. The results show that maximum slosh forces occur at a tank fill fraction of 0.4 and 0.6 due to the amount of mass participating in the slosh and the room available for sloshing to occur. The slosh frequency increases as the tank fill fraction increases.
Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation.
Zhang, Yu; Furusawa, Toyoki; Sia, Sheau Fung; Umezu, Mitsuo; Qian, Yi
2013-01-01
The purpose of this study was to propose an innovative approach of setting outlet boundary conditions for the computational fluid dynamics (CFD) simulation of human common carotid arteries (CCAs) bifurcation based on the concept of energy loss minimisation at flow bifurcation. Comparisons between this new approach and previously reported boundary conditions were also made. The results showed that CFD simulation based on the proposed boundary conditions gave an accurate prediction of the critical stenosis ratio of carotid arteries (at around 65%). Other boundary conditions, such as the constant external pressure (P = 0) and constant outflow ratio, either overestimated or underestimated the critical stenosis ratio of carotid arteries. The patient-specific simulation results furthermore indicated that the calculated internal carotid artery flow ratio at CCA bifurcation (61%) coincided with the result obtained by clinical measurements through the use of Colour Doppler ultrasound. PMID:22288780
CFD Simulations and Experimental Verification on Nucleate Pool Boiling of Liquid Nitrogen
NASA Astrophysics Data System (ADS)
Xiaobin, Zhang; Wei, Xiong; Jianye, Chen; Yuchen, Wang; Tang, K.
To explore the mechanism of nucleate pool boiling of cryogenic fluids, an experimental apparatus was built to conduct a visualization study and verify the CFD boiling model. Apart from the general measurements of the super-heat and heat flux, the influences of super-heat on bubble departure diameters were specially analyzed. Based on the observations, the whole nucleate boiling process from bubble formation to departure from the heated wall can be divided into three stages: low heat flux stage; transitional stage; fully developed nucleate boiling (FDNB) stage. CFD simulations with several existing correlations and the attained values from the experiments for the bubble diameter were finally conducted, and the results fitted well with the present experimental data.
A workflow for patient-individualized virtual angiogram generation based on CFD simulation.
Endres, Jürgen; Kowarschik, Markus; Redel, Thomas; Sharma, Puneet; Mihalef, Viorel; Hornegger, Joachim; Dörfler, Arnd
2012-01-01
Increasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities, virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired angiograms. For the generation of virtual angiograms, several patient-specific parameters have to be incorporated to obtain virtual angiograms which match the acquired angiograms as best as possible. For this purpose, a workflow is presented and demonstrated involving multiple phantom and patient cases. PMID:23193428
A Workflow for Patient-Individualized Virtual Angiogram Generation Based on CFD Simulation
Endres, Jürgen; Kowarschik, Markus; Redel, Thomas; Sharma, Puneet; Mihalef, Viorel; Hornegger, Joachim; Dörfler, Arnd
2012-01-01
Increasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities, virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired angiograms. For the generation of virtual angiograms, several patient-specific parameters have to be incorporated to obtain virtual angiograms which match the acquired angiograms as best as possible. For this purpose, a workflow is presented and demonstrated involving multiple phantom and patient cases. PMID:23193428
NASA Technical Reports Server (NTRS)
Gea, L. M.; Vicker, D.
2006-01-01
The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Advances in CFD prediction of shock wave turbulent boundary layer interactions
NASA Astrophysics Data System (ADS)
Knight, Doyle; Yan, Hong; Panaras, Argyris G.; Zheltovodov, Alexander
2003-04-01
The paper presents a summary of recent computational fluid dynamics (CFD) simulations of shock wave turbulent boundary layer interactions. This survey was prepared as part of the activity of NATO RTO Working Group 10 which was established in December 1998, and considers results obtained subsequent to the previous survey paper on the same topic by Knight and Degrez (“Shock Wave Boundary Layer Interactions in High Mach Number Flows-A Critical Survey of Current CFD Prediction Capabilities”, AGARD Advisory Report AR-319, Volume II, December 1998). Five configurations are considered: 2-D compression corner, 2-D shock impingement, 2-D expansion-compression corner, 3-D single fin and 3-D double fin. Recent direct numerical simulations (DNS), large eddy simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) simulations are compared with experiment. The capabilities and limitations are described, and future research needs identified.
The application of CFD for military aircraft design at transonic speeds
NASA Technical Reports Server (NTRS)
Smith, C. W.; Braymen, W. W.; Bhateley, I. C.; Londenberg, W. K.
1989-01-01
Numerous computational fluid dynamics (CFD) codes are available that solve any of several variations of the transonic flow equations from small disturbance to full Navier-Stokes. The design philosophy at General Dynamics Fort Worth Division involves use of all these levels of codes, depending on the stage of configuration development. Throughout this process, drag calculation is a central issue. An overview is provided for several transonic codes and representative test-to-theory comparisons for fighter-type configurations are presented. Correlations are shown for lift, drag, pitching moment, and pressure distributions. The future of applied CFD is also discussed, including the important task of code validation. With the progress being made in code development and the continued evolution in computer hardware, the routine application of these codes for increasingly more complex geometries and flow conditions seems apparent.
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
Procedures and methods for veri.cation of coding algebra and for validations of models and calculations used in the aerospace computational fluid dynamics (CFD) community would be ef.cacious if used by the glacier dynamics modeling community. This paper presents some of those methods, and how they might be applied to uncertainty management supporting code veri.cation and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modeling are discussed. After establishing sources of uncertainty and methods for code veri.cation, the paper looks at a representative sampling of veri.cation and validation efforts that are underway in the glacier modeling community, and establishes a context for these within an overall solution quality assessment. Finally, a vision of a new information architecture and interactive scienti.c interface is introduced and advocated.
CFD model for a 3-D inhaling mannequin: verification and validation.
Anthony, T Renee; Flynn, Michael R
2006-03-01
This work investigates the use of computational fluid dynamics (CFD) to model air flow and particle transport associated with an inhaling anatomical mannequin. The studied condition is typically representative of occupational velocities (Re = 1920) and at-rest breathing (R = U(o)/U(m) = 0.11). Methods to verify and validate CFD simulations are detailed to demonstrate convergence and describe the model's uncertainties. The standard k-epsilon model provided a reasonable flow field, although vertical velocity components were consistently smaller than the experimental validation data, owing to truncation of the computational model at hip height. Laminar particle trajectory studies indicated that the modeled velocity field resulted in a shift of particle aspiration fractions toward particles smaller than those determined experimentally, consistent with the vertical velocity field differences. PMID:16157607
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
NASA Technical Reports Server (NTRS)
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
An experimental study of characteristic combustion-driven flows for CFD validation
NASA Technical Reports Server (NTRS)
Pal, S.; Merenich, J. J.; Moser, M. D.; Santoro, R. J.
1993-01-01
The application of laser-based diagnostic techniques has become commonplace to a wide variety of combustion problems. New insights into combustion phenomena at a level previously unattainable has been made possible by non-intrusive measurements of velocity, temperature, and species. However, due to the adverse conditions which exist inside rocket engines, relatively few studies have addressed these combustion environments. The high pressure, high speed, combusting environment in a rocket engine prohibits the application of several measurement techniques. However, in the rocket community, there is a critical need for rocket flow field data to validate computational fluid dynamic (CFD) codes. Currently at Penn State, there is an effort to obtain flowfield measurements inside a rocket engine. Velocity measurements have been made inside the combustion chamber of a uni-element (shear coaxial injector) optically accessible rocket chamber at several axial locations downstream of the injector. These measurements, combined with future measurements, will provide benchmark data for CFD code validation.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. A Volume-Of-Fluid (VOF) based Computational Fluid Dynamics (CFD) program developed at MSFC was applied to extract slosh damping in the baffled tank from the first principle. First the experimental data using water with sub-scale smooth wall tank were used as the baseline validation. It is demonstrated that CFD can indeed accurately predict low damping values from the smooth wall at different fill levels. The damping due to a ring baffles at different depths from the free surface was then simulated, and fairly good agreement with experimental measurement was observed. Comparison with an empirical correlation of Miles equation is also made.
CFD simulation of flow-induced vibration of an elastically supported airfoil
NASA Astrophysics Data System (ADS)
Šidlof, Petr
2016-03-01
Flow-induced vibration of lifting or control surfaces in aircraft may lead to catastrophic consequences. Under certain circumstances, the interaction between the airflow and the elastic structure may lead to instability with energy transferred from the airflow to the structure and with exponentially increasing amplitudes of the structure. In the current work, a CFD simulation of an elastically supported NACA0015 airfoil with two degrees of freedom (pitch and plunge) coupled with 2D incompressible airflow is presented. The geometry of the airfoil, mass, moment of inertia, location of the centroid, linear and torsional stiffness was matched to properties of a physical airfoil model used for wind-tunnel measurements. The simulations were run within the OpenFOAM computational package. The results of the CFD simulations were compared with the experimental data.
CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor
NASA Astrophysics Data System (ADS)
Gelves, R.
2013-10-01
In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters (or closwre models) for an initial thermai non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two CFD codes currently being used at Glenn Research Center (GRC) for Stirling engine modeling are Fluent and CFD-ACE. The porous-media models available in each of these codes are equilibrium models, which assmne that the solid matrix and the fluid are in thermal equilibrium at each spatial location within the porous medium. This is believed to be a poor assumption for the oscillating-flow environment within Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, we non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location end time during the cycle. A NASA regenerator research grant has been providing experimental and computational results to support definition of various empirical coefficients needed in defining a noa-equilibrium, macroscopic, porous-media model (i.e., to define "closure" relations). The grant effort is being led by Cleveland State University, with subcontractor assistance from the University of Minnesota, Gedeon Associates, and Sunpower, Inc. Friction-factor and heat-transfer correlations based on data taken with the NASAlSunpower oscillating-flow test rig also provide experimentally based correlations that are useful in defining parameters for the porous-media model; these correlations are documented in Gedeon Associates' Sage Stirling-Code Manuals. These sources of experimentally based information were used to define the following terms and parameters needed in the non-equilibrium porous-media model: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity (including themal dispersion and estimate of tortuosity effects}, and fluid-solid heat transfer
Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis
Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan
2006-09-01
Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ‘hot spots’ do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ‘first principles.’ Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate
Overview of CFD Analyses Supporting the Reusable Solid Rocket Motor (RSRM) Program at MSFC
NASA Technical Reports Server (NTRS)
Stewart, Eric; McConnaughey, P.; Lin, J.; Reske, E.; Doran, D.; Whitesides, R. H.; Chen, Y.-S.
1996-01-01
During the past year, various computational fluid dynamic (CFD) analyses were performed at Marshall Space Flight Center to support the Reusable Solid Rocket Motor program. The successful completion of these analyses involved application of the CFD codes FDNS and CELMINT. The topics addressed by the analyses were: (1) the design and prediction of slag pool accumulation within the five inch test motor, (2) prediction of slag pool behavior and its response to lateral accelerations, (3) the clogging of potential insulation debonds within the nozzle by slag accumulation, (4) the behavior of jets within small voids inside nozzle joint gaps, (5) The effect of increased inhibitor stiffness on motor acoustics, and (6) the effect of a nozzle defect on particle impingement enhanced erosion. The emphasis of this presentation will be to further discuss the work in topics 3, 4, and 5.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.
1996-01-01
A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).
Validations of CFD Code for Density-Gradient Driven Air Ingress Stratified Flow
Chang H. Oh; Eung S. Kim; Richard Schultz; David Petti
2010-05-01
Air ingress into a very high temperature gas-cooled reactor (VHTR) is an important phenomena to consider because the air oxidizes the reactor core and lower plenum where the graphite structure supports the core region in the gas turbine modular helium reactor (GTMHR) design, thus jeopardizing the reactor’s safety. Validating the computational fluid dynamics (CFD) code used to analyze the air ingress phenomena is therefore an essential part of the safety analysis and the ultimate computation required for licensing
Development of a Common Research Model for Applied CFD Validation Studies
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Dehaan, Mark A.; Rivers, S. Melissa; Wahls, Richard A.
2008-01-01
The development of a wing/body/nacelle/pylon/horizontal-tail configuration for a common research model is presented, with focus on the aerodynamic design of the wing. Here, a contemporary transonic supercritical wing design is developed with aerodynamic characteristics that are well behaved and of high performance for configurations with and without the nacelle/pylon group. The horizontal tail is robustly designed for dive Mach number conditions and is suitably sized for typical stability and control requirements. The fuselage is representative of a wide/body commercial transport aircraft; it includes a wing-body fairing, as well as a scrubbing seal for the horizontal tail. The nacelle is a single-cowl, high by-pass-ratio, flow-through design with an exit area sized to achieve a natural unforced mass-flow-ratio typical of commercial aircraft engines at cruise. The simplicity of this un-bifurcated nacelle geometry will facilitate grid generation efforts of subsequent CFD validation exercises. Detailed aerodynamic performance data has been generated for this model; however, this information is presented in such a manner as to not bias CFD predictions planned for the fourth AIAA CFD Drag Prediction Workshop, which incorporates this common research model into its blind test cases. The CFD results presented include wing pressure distributions with and without the nacelle/pylon, ML/D trend lines, and drag-divergence curves; the design point for the wing/body configuration is within 1% of its max-ML/D. Plans to test the common research model in the National Transonic Facility and the Ames 11-ft wind tunnels are also discussed.
Improved signature prediction through coupling of ShipIR and CFD
NASA Astrophysics Data System (ADS)
Vaitekunas, David A.; Sideroff, Chris; Moussa, Christine
2011-05-01
Most existing platform signature models use semi-empirical correlations to predict flow convection on internal and external surfaces, a key element in the prediction of accurate skin signature. Although these convection algorithms are capable of predicting bulk heat transfer coefficients between each surface and the designated flow region, they are not capable of capturing local effects such as flow stagnation, flow separation, and flow history. Most computational fluid dynamics (CFD) codes lack the ability to predict changes in background solar and thermal irradiation with the environment and sun location, nor do they include multi-bounce radiative surface exchanges by default in their solvers. Existing interfaces between CFD and signature prediction typically involve a one-directional mapping of CFD predicted temperatures to the signature model. This paper describes a new functional interface between the NATO-standard ship signature model (ShipIR) and the ANSYS Fluent model, where a bi-directional mapping is used to transfer the thermal radiation predictions from ShipIR to Fluent, and after re-iteration of the CFD solution, transfer the wall and fluid temperatures back to ShipIR for further refinement of local-area heat transfer coefficients, and re-iteration of the ShipIR thermal solution. Both models converge to an RMS difference of 0.3 °C within a few successive iterations (5-6). This new functional interface is described through a detailed thermal/IR simulation of an unclassified research vessel, the Canadian Forces Auxiliary Vessel (CFAV) Quest. Future efforts to validate this new modelling approach using shipboard measurements are also discussed.
A CFD model for biomass combustion in a packed bed furnace
NASA Astrophysics Data System (ADS)
Karim, Md. Rezwanul; Ovi, Ifat Rabbil Qudrat; Naser, Jamal
2016-07-01
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO2 emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can't model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.
CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Davis, David Owen
2015-01-01
Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891
CFD numerical simulation of air natural convection over a heated cylindrical surface
NASA Astrophysics Data System (ADS)
Flori, M.; Vîlceanu, L.
2015-06-01
In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.
Application of CFD codes for the simulation of scramjet combustor flowfields
NASA Technical Reports Server (NTRS)
Chitsomboom, Tawit; Northam, G. Burton
1989-01-01
An overview of CFD activities in the Hypersonic Propulsion Branch is given. Elliptic and PNS codes that are being used for the simulation of hydrogen-air combusting flowfields for scramjet applications are discussed. Results of the computer codes are shown in comparison with those of the experiments where applicable. Two classes of experiments will be presented: parallel injection of hydrogen into vitiated supersonic air flow; and normal injection of hydrogen into supersonic crossflow of vitiated air.
NASA Astrophysics Data System (ADS)
Guo, Yuan; Deng, Baoqing; Ge, Daqiang; Shen, Xiuzhong
2015-08-01
CFD simulations of gas-solid fluidized beds have been performed in Euler-Euler framework. Green-Gauss Cell Based gradient approximation can predict the solid velocity well among gradient approximations. The dispersed choice in the turbulence model can reproduce the solid velocity correctly while the mixture and per phase choices cannot. The standard k-ɛ model, RNG k-ɛ model and SST k-ω model with the dispersed choice can predict the solid velocity well.
Design and CFD Simulation of the Drift Eliminators in Comparison with PIV Results
NASA Astrophysics Data System (ADS)
Stodůlka, Jiří; Vitkovičová, Rut
2015-05-01
Drift eliminators are the essential part of all modern cooling towers preventing significant losses of liquid water escaping to the enviroment. These eliminators need to be effective in terms of water capture but on the other hand causing only minimal pressure loss as well. A new type of such eliminator was designed and numerically simulated using CFD tools. Results of the simulation are compared with PIV visulisation on the prototype model.
Dynamic cavitation inside a high performance diesel injector - an experimental and CFD investigation
NASA Astrophysics Data System (ADS)
Bush, Daniel; Soteriou, Celia; Winterbourn, Mark; Daveau, Christian
2015-12-01
A combination of simulation and special experimental techniques has been used to investigate the transient flow and cavitation phenomena of a control device inside a high performance diesel injector. Dynamic cavitation behaviour was captured on a large scale transparent model, which was then used to develop and validate an advanced turbulence CFD model with Large Eddy Simulation. These techniques are used within Delphi to gain insight and optimise injector performance at real-size.
Hybrid MPI+OpenMP Programming of an Overset CFD Solver and Performance Investigations
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Jin, Haoqiang H.; Biegel, Bryan (Technical Monitor)
2002-01-01
This report describes a two level parallelization of a Computational Fluid Dynamic (CFD) solver with multi-zone overset structured grids. The approach is based on a hybrid MPI+OpenMP programming model suitable for shared memory and clusters of shared memory machines. The performance investigations of the hybrid application on an SGI Origin2000 (O2K) machine is reported using medium and large scale test problems.
Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff
2012-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.
NASA Astrophysics Data System (ADS)
Leuva, Dhawal
2011-07-01
Motion of propellant in the liquid propellant tanks due to inertial forces transferred from actions like stage separation and trajectory correction of the launch vehicle is known as propellant slosh. If unchecked, propellant slosh can reach resonance and lead to complete loss of the spacecraft stability, it can change the trajectory of the vehicle or increase consumption of propellant from the calculated requirements, thereby causing starvation of the latter stages of the vehicle. Predicting the magnitude of such slosh events is not trivial. Several passive mechanisms with limited operating range are currently used to mitigate the effects of slosh. An active damping mechanism concept developed here can operate over a large range of slosh frequencies and is much more effective than passive damping devices. Spherical and cylindrical tanks modeled using the ANSYS CFX software package considers the free surface of liquid propellant exposed to atmospheric pressure. Hydrazine is a common liquid propellant and since it is toxic, it cannot be used in experiment. But properties of hydrazine are similar to the properties of water; therefore water is substituted as propellant for experimental study. For close comparison of the data, water is substituted as propellant in CFD simulation. The research is done in three phases. The first phase includes modeling free surface slosh using CFD and validation of the model by comparison to previous experimental results. The second phase includes developing an active damping mechanism and simulating the behavior using a CFD model. The third phase includes experimental development of damping mechanism and comparing the CFD simulation to the experimental results. This research provides an excellent tool for low cost analysis of damping mechanisms for propellant slosh as well as proves that the concept of an active damping mechanism developed here, functions as expected.
Validation of High-Fidelity CFD Simulations for Rocket Injector Design
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor
2008-01-01
Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by evaluating the sensitivity of performance and injector-driven thermal environments to the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process. This paper documents the status of a focused effort to compare and understand the predictive capabilities and computational requirements of a range of CFD methodologies on a set of single element injector model problems. The steady Reynolds-Average Navier-Stokes (RANS), unsteady Reynolds-Average Navier-Stokes (URANS) and three different approaches using the Large Eddy Simulation (LES) technique were used to simulate the initial model problem, a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants. While one high-fidelity LES result matches the experimental combustion chamber wall heat flux very well, there is no monotonic convergence to the data with increasing computational tool fidelity. Systematic evaluation of key flow field regions such as the flame zone, the head end recirculation zone and the downstream near wall zone has shed significant, though as of yet incomplete, light on the complex, underlying causes for the performance level of each technique. 1 Aerospace Engineer and Combustion CFD Team Leader, MS ER42, NASA MSFC, AL 35812, Senior Member, AIAA. 2 Professor and Director, Computational Combustion Laboratory, School of Aerospace Engineering, 270 Ferst Dr., Atlanta, GA 30332, Associate Fellow, AIAA. 3 Reilly Professor of Engineering, School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, Fellow, AIAA. 4 Principal Member of Technical Staff, Combustion Research Facility, 7011 East Avenue, MS9051, Livermore, CA 94550, Associate
On the accuracy of CFD-based pressure drop predictions for right-angle ducts
NASA Astrophysics Data System (ADS)
Brankovic, Andreja
1993-07-01
The predictive capability of computational fluid dynamics (CFD) codes for turbulent flow through curved ducts is of significant importance to the design and performance analysis of modern rocket engine flowpaths. Code calibration and validation studies for this class of flow are desireable to estimate the performance margin and operating range of components designed using Navier-Stokes methods. Parametric experimental studies such as that of Weske (NACA ARR W-39) provided a wealth of performance data for the design of single- and compound elbow configurations with various cross-sections, curvature and aspect ratios at varying Reynolds numbers. In that work, the majority of data is presented in the form of loss coefficients, characterizing pressure losses due to duct curvature, and including losses due to wall friction. Using measured friction coefficients, losses of equivalent straight lengths of duct are subtracted, resulting in performance curves useful for design computations. These data are currently used in a CFD-based parametric study covering a broad range of operating conditions. Of particular interest for the accuracy of CFD predictions are the effects on pressure loss due to inlet boundary layer thickness (dependent on upstream development length), and the wall treatment for the turbulence equations (conventional wall functions vs. wall integration using a two-layer model). The experimental data are reassessed in the form of an error analysis, and are compared with CFD predictions for 18 computational cases. Grid-independence, grid spacing, and convergence requirements of the cases are discussed. Conclusions regarding the relative importance of the parametric variables will be presented.
An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design
NASA Technical Reports Server (NTRS)
Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor
2007-01-01
Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.
Experimental and three-dimensional CFD investigation in a gas turbine exhaust system
Sultanian, B.K.; Nagao, S.; Sakamoto, T.
1999-04-01
Both experimental and three-dimensional CFD investigations are carried out in a scale model of an industrial gas turbine exhaust system to better understand its complex flow field and to validate CFD prediction capabilities for improved design applications. The model consists of an annular diffuser passage with struts, followed by turning vanes and a rectangular plenum with side exhaust. Precise measurements of total/static pressure and flow velocity distributions at the model inlet, strut outlet and model outlet are made using aerodynamic probes and locally a Laser Doppler Velocimeter (LDV). Numerical analyses of the model internal flow field are performed utilizing a three-dimensional Navier-Stokes (N-S) calculation method with the industry standard {kappa}-{epsilon} turbulence model. Both the experiments and computations are carried out for three load conditions: full speed no load (FSNL), full speed mid load (FSML, 57% load), and full speed full load (FSFL). Based on the overall comparison between the measurements and CFD predictions, this study concludes that the applied N-S method is capable of predicting complicated gas turbine exhaust system flows for design applications.
Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses
NASA Astrophysics Data System (ADS)
Zhao, T.; Utili, S.; Crosta, G. B.
2016-06-01
This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.