Science.gov

Sample records for cgd ranks co2

  1. Magnetic properties of (Ho 1-cGd c) Co 2 compounds

    NASA Astrophysics Data System (ADS)

    Tari, A.; Keith, V.; Hwang, J. S.

    1994-02-01

    E.S.R., magnetisation and susceptibility measurements have been carried out on the series (Ho 1-cGd c)Co 2. In compounds with c≤ 0.40 we find evidence of spin reorientation. In the three most dilute compounds a g-value of about four is obtained which increases with increasing Gd content.

  2. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  3. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2006-07-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) estimate the potential for CO{sub 2} sequestration in, and methane production from, low-rank coals of the Lower Calvert Bluff Formation of the Wilcox Group in the east-central Texas region, (2) quantify uncertainty associated with these estimates, (3) conduct reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells, and (4) compare the results with those obtained from previous studies of vertical wells. To estimate the total volumes of CO{sub 2} that may be sequestered in, and total volumes of methane that can be produced from, the Wilcox Group low-rank coals in east-central Texas, we used data provided by Anadarko Petroleum Corporation, data obtained during this research, and results of probabilistic simulation modeling studies we conducted. For the analysis, we applied our base-case coal seam characteristics to a 2,930-mi{sup 2} (1,875,200-ac) area where Calvert Bluff coal seams range between 4,000 and 6,200 ft deep. Results of the probabilistic analysis indicate that potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources, assuming a 71.3% recovery factor, range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf. As part of the technology transfer for this project, we presented the paper SPE 100584 at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, on May 15-18, 2006. Also, we submitted an abstract to be considered for inclusion in a special volume dedicated to CO{sub 2} sequestration in geologic media, which

  4. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2006-03-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. In this reporting period we revised all of the economic calculations, participated in technology transfer of project results, and began working on project closeout tasks in anticipation of the project ending December 31, 2005. In this research, we conducted five separate simulation investigations, or cases. These cases are (1) CO{sub 2} sequestration base case scenarios for 4,000-ft and 6,200-ft depth coal beds in the Lower Calvert Bluff Formation of east-central Texas, (2) sensitivity study of the effects of well spacing on sequestration, (3) sensitivity study of the effects of injection gas composition, (4) sensitivity study of the effects of injection rate, and (5) sensitivity study of the effects of coal dewatering prior to CO{sub 2} injection/sequestration. Results show that, in most cases, revenue from coalbed methane production does not completely offset the costs of CO{sub 2} sequestration in Texas low-rank coals, indicating that CO{sub 2} injection is not economically feasible for the ranges of gas prices and carbon credits investigated. The best economic performance is obtained with flue gas (13% CO{sub 2} - 87% N{sub 2}) injection, as compared to injection of 100% CO{sub 2} and a mixture of 50% CO{sub 2} and 50% N{sub 2}. As part of technology transfer for this project, we presented results at the West Texas Geological Society Fall Symposium in October 2005 and at the COAL-SEQ Forum in November 2005.

  5. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. Mcvay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-02-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue modeling studies of CO{sub 2} sequestration performance in coalbed methane reservoirs under various operational conditions. Detailed correlation of coal zones is important for reservoir analysis and modeling. Therefore, we interpreted and created isopleth maps of coal occurrences, and correlated individual coal seams within the coal bearing subdivisions of the Wilcox Group--the Hooper, Simsboro and Calvert Bluff formations. Preliminary modeling studies were run to determine if gravity effects would affect the performance of CO{sub 2} sequestration in coalbed methane reservoirs. Results indicated that gravity could adversely affect sweep efficiency and, thus, volumes of CO{sub 2} sequestered and methane produced in thick, vertically continuous coals. Preliminary modeling studies were also run to determine the effect of injection gas composition on sequestration in low-rank coalbeds. Injected gas composition was varied from pure CO{sub 2} to pure N{sub 2}, and results show that increasing N{sub 2} content degrades CO{sub 2} sequestration and methane production performance. We have reached a Data Exchange Agreement with Anadarko Petroleum Corporation. We are currently incorporating the Anadarko data into our work, and expect these data to greatly enhance the accuracy and value of our studies.

  6. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

    2006-05-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

  7. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2003-10-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

  8. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2003-07-01

    The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

  9. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

    2004-07-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox

  10. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2005-10-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to perform reservoir simulation and economic sensitivity studies to (1) determine the effects of injection gas composition, (2) determine the effects of injection rate, and (3) determine the effects of coal dewatering prior to CO{sub 2} injection on CO{sub 2} sequestration in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas. To predict CO{sub 2} sequestration and ECBM in LCB coal beds for these three sensitivity studies, we constructed a 5-spot pattern reservoir simulation model and selected reservoir parameters representative of a typical depth, approximately 6,200-ft, of potential LCB coalbed reservoirs in the focus area of East-Central Texas. Simulation results of flue gas injection (13% CO{sub 2} - 87% N{sub 2}) in an 80-acre 5-spot pattern (40-ac well spacing) indicate that LCB coals with average net thickness of 20 ft can store a median value of 0.46 Bcf of CO{sub 2} at depths of 6,200 ft, with a median ECBM recovery of 0.94 Bcf and median CO{sub 2} breakthrough time of 4,270 days (11.7 years). Simulation of 100% CO{sub 2} injection in an 80-acre 5-spot pattern indicated that these same coals with average net thickness of 20 ft can store a median value of 1.75 Bcf of CO{sub 2} at depths of 6,200 ft with a median ECBM recovery of 0.67 Bcf and median CO{sub 2} breakthrough time of 1,650 days (4.5 years). Breakthrough was defined as the point when CO{sub 2} comprised 5% of the production stream for all cases. The injection rate sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to

  11. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of

  12. Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

    SciTech Connect

    Oldenburg, Curtis M.

    2005-09-19

    This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from possible CO2 leakage. The approach is based on the assumption that HSE risk due to CO2 leakage is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or general information available from published materials along with estimates of uncertainty to evaluate the three basic characteristics in order to screen and rank candidate sites. Application of the framework to the Rio Visa Gas Field, Ventura Oil Field, and Mammoth Mountain demonstrates the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies. Revisions and extensions to improve the approach are anticipated in the near future as it is used and tested by colleagues and collaborators.

  13. Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

    SciTech Connect

    Oldenburg, Curtis M.

    2006-03-15

    This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2)storage sites on the basis of health, safety, and environmental (HSE)risk arising from possible CO2 leakage. The approach is based on theassumption that HSE risk due to CO2 leakage is dependent on three basiccharacteristics of a geologic CO2 storage site: (1) the potential forprimary containment by the target formation, (2) the potential forsecondary containment if the primary formation leaks, and (3) thepotential for attenuation and dispersion of leaking CO2 if the primaryformation leaks and secondary containment fails. The framework isimplemented in a spreadsheet in which users enter numerical scoresrepresenting expert opinions or general information available frompublished materials along with estimates of uncertainty to evaluate thethree basic characteristics in order to screen and rank candidate sites.Application of the framework to the Rio Vista Gas Field, Ventura OilField, and Mammoth Mountain demonstrates the approach. Refinements andextensions are possible through the use of more detailed data or modelresults in place of property proxies. Revisions and extensions to improvethe approach are anticipated in the near future as it is used and testedby colleagues and collaborators.

  14. Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk

    SciTech Connect

    Oldenburg, Curtis M.

    2006-11-27

    A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

  15. Data fusion of CO2 retrieved from GOSAT and AIRS using regression analysis and fixed rank kriging

    NASA Astrophysics Data System (ADS)

    Zhou, Cong; Shi, Runhe; Gao, Wei

    2015-09-01

    This paper proposes an improved statistical method for fusing carbon dioxide (CO2) data retrieved from two major instruments, the Greenhouse gases Observing SATellite (GOSAT) and the Atmospheric Infrared Sounder (AIRS). These two datasets were fused to obtain CO2 concentrations near the surface, which is a region that is especially important for studies on carbon sources and sinks. Overall, the CO2 monthly average values from GOSAT are all lower than those from AIRS from 2010 to 2012. The datasets show the similar seasonal cycles of carbon dioxide and show an increasing trend with a determination coefficient of 0.45. A strong correlation was determined by adding the climatic factors as independent variables for regression analysis. The correlation coefficients between the CO2 values from AIRS and GOSAT significantly increased in response. The true CO2 data processes were then predicted using the fixed rank kriging method. This showed that the data-fusion CO2 product provides more reasonable information and that the corresponding mean squared prediction errors are smaller than those from the single GOSAT CO2 dataset.

  16. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  17. A method to assess the ranking importance of uncertainties of residual and dissolution trapping of CO2 on a large-scale storage site

    NASA Astrophysics Data System (ADS)

    Audigane, P.; Rohmer, J.; Manceau, J. C.

    2014-12-01

    The long term fate of mobile CO2 remaining after the injection period is a crucial issue for regulators and operators. There are needs to evaluate properly the amount of gas free to migrate and to estimate the fluid movements at long time scales. Often the difficulty is to manage the computational time to assess the large time and dimension scale of the problem. The second limitation is the large level of uncertainty associated to the computation prediction. A variance-based global sensitivity analysis is proposed to assess the importance ranking of uncertainty sources, with regards to the behavior of the mobile CO2 during the post-injection period. We consider three output parameters which characterize the location and the quantity of mobile CO2, considering residual and dissolution trapping. To circumvent both (i) the large number of computationally intensive reservoir-scale flow simulations and (ii) the different nature of uncertainties whether linked to parameters (continuous variables) or to modeling assumptions (scenario-like variables) we propose to use advanced meta-modeling techniques of ACOSSO-type. The feasibility of the approach is demonstrated using a potential site for CO2 storage in the Paris basin (France), for which the amount, nature and quality of the data available at disposal and the associated uncertainties can be seen as representative to those of a storage project at the post-screening stage. A special attention has been paid to confront the results of the sensitivity analysis with the physical interpretation of the processes.

  18. CO2 Laser Market

    NASA Astrophysics Data System (ADS)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  19. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.

    PubMed

    von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André

    2016-02-01

    Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases. PMID:26752014

  20. CO2-Neutral Fuels

    NASA Astrophysics Data System (ADS)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  1. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  2. Restoration of NET formation by gene therapy in CGD controls aspergillosis

    PubMed Central

    Bianchi, Matteo; Hakkim, Abdul; Brinkmann, Volker; Siler, Ulrich; Seger, Reinhard A.

    2009-01-01

    Chronic granulomatous disease (CGD) patients have impaired nicotinamide adenine dinucleotide phosphate (NADPH) oxidase function, resulting in poor antimicrobial activity of neutrophils, including the inability to generate neutrophil extracellular traps (NETs). Invasive aspergillosis is the leading cause of death in patients with CGD; it is unclear how neutrophils control Aspergillus species in healthy persons. The aim of this study was to determine whether gene therapy restores NET formation in CGD by complementation of NADPH oxidase function, and whether NETs have antimicrobial activity against Aspergillus nidulans. Here we show that reconstitution of NET formation by gene therapy in a patient with CGD restores neutrophil elimination of A nidulans conidia and hyphae and is associated with rapid cure of preexisting therapy refractory invasive pulmonary aspergillosis, underlining the role of functional NADPH oxidase in NET formation and antifungal activity. PMID:19541821

  3. CO2 blood test

    MedlinePlus

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum ... Many medicines can interfere with blood test results. Your health care provider will tell you if you need to stop taking any medicines before you have this test. DO ...

  4. Gastrointestinal Disorders Associated with Common Variable Immune Deficiency (CVID) and Chronic Granulomatous Disease (CGD)

    PubMed Central

    Uzzan, Mathieu; Ko, Huaibin M.; Mehandru, Saurabh; Cunningham-Rundles, Charlotte

    2016-01-01

    Common Variable Immune Deficiency (CVID) and Chronic Granulomatous Disease (CGD) are two of the well-characterized primary immune defects with distinct pathologic defects. While CVID is predominantly a disorder of the adaptive immune system, in CGD, innate immunity is impaired. In both syndromes, the clinical manifestations include an increased susceptibility to infections and a number of non-infectious, inflammatory conditions including systemic autoimmunity, as well as organ-specific pathology. Among the organ-associated disorders, gastrointestinal (GI) manifestations are one of the most intractable. As such, non-infectious inflammatory disorders of the GI tract are clinically challenging as they have protean manifestations, often resembling inflammatory bowel disease (IBD) or celiac disease, are notoriously difficult to treat, and hence are associated with significant morbidity and mortality. Therefore, assessing the pathogenesis, and defining appropriate therapeutic approaches for GI disease in patients with CVID and CGD is imperative. PMID:26951230

  5. Gastrointestinal Disorders Associated with Common Variable Immune Deficiency (CVID) and Chronic Granulomatous Disease (CGD).

    PubMed

    Uzzan, Mathieu; Ko, Huaibin M; Mehandru, Saurabh; Cunningham-Rundles, Charlotte

    2016-04-01

    Common variable immune deficiency (CVID) and chronic granulomatous disease (CGD) are two of the well-characterized primary immune deficiencies with distinct pathologic defects. While CVID is predominantly a disorder of the adaptive immune system, in CGD, innate immunity is impaired. In both syndromes, the clinical manifestations include an increased susceptibility to infections and a number of non-infectious, inflammatory conditions including systemic autoimmunity, as well as organ-specific pathology. Among the organ-associated disorders, gastrointestinal (GI) manifestations are one of the most intractable. As such, non-infectious inflammatory disorders of the GI tract are clinically challenging as they have protean manifestations, often resembling inflammatory bowel disease (IBD) or celiac disease, are notoriously difficult to treat, and hence are associated with significant morbidity and mortality. Therefore, assessing the pathogenesis and defining appropriate therapeutic approaches for GI disease in patients with CVID and CGD is imperative. PMID:26951230

  6. SITE RANK

    EPA Science Inventory

    Site rank is formulated for ranking the relative hazard of contamination sources and vulnerability of drinking water wells. Site rank can be used with a variety of groundwater flow and transport models.

  7. Capnography: monitoring CO2.

    PubMed

    Casey, Georgina

    2015-10-01

    MONITORING RESPIRATORY and metabolic function by using capnography to measure end tidal carbon dioxide is standard practice in anaesthesia. It is also becoming more common in intensive care units and during procedural sedation. End tidal carbon dioxide (EtCO2) monitoring may also be used to assess effectiveness of cardiopulmonary resuscitation. Capnography is now emerging in general medical and surgical wards to monitor respiratory depression in patients using opioid analgesics. Using EtCO2 to monitor respiratory function offers many benefits over pulse oximetry. It is important to understand the differences between these two monitoring methods, and why capnography is increasingly favoured in many situations. An understanding of the physiological processes involved in CO2 excretion allows nurses to use capnography in a safe and meaningful way, while monitoring at-risk patients in acute care. PMID:26638570

  8. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  9. Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Wu, Yi; Rong, Mingzhe; Guo, Anxiang; Han, Guiquan; Lu, Yanhui

    2016-03-01

    In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, CO2/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solving the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there are high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CF4 (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature. supported in part by the National Key Basic Research Program of China (973 Program) (No. 2015CB251002), the Science and Technology Project Funds of the Grid State Corporation of China (No. SGSNK00KJJS1501564), National Natural Science Foundation of China (Nos. 51221005, 51577145), the Fundamental Research Funds for the Central Universities of China, and the Program for New Century Excellent Talents in University, China

  10. Inflammation and repeated infections in CGD: two sides of a coin.

    PubMed

    Kuijpers, Taco; Lutter, Rene

    2012-01-01

    Chronic granulomatous disease (CGD) is an uncommon congenital immunodeficiency seen approximately in 1 of 250,000 individuals. It is caused by a profound defect in a burst of oxygen consumption that normally accompanies phagocytosis in all myeloid cells (neutrophils, eosinophils, monocytes, and macrophages). This "respiratory burst" involves the catalytic conversion of molecular oxygen to the oxygen free-radical superoxide, which in turn gives rise to hydrogen peroxide, hypochlorous acid, and hydroxyl radicals. These oxygen derivatives play a critical role in the killing of pathogenic bacteria and fungi. As a result of the failure to activate the respiratory burst in their phagocytes, the majority of CGD patients suffer from severe recurrent infections and rather unexplained prolonged inflammatory reactions that may result in granulomatous lesions. Both may cause severe organ dysfunction depending on the tissues involved. Preventive measures as well as rapid (invasive) diagnostic procedures are required to successfully treat CGD. Hematopoietic stem cell transplantation may be a serious option in some of the patients. PMID:22083605

  11. Rank Dynamics

    NASA Astrophysics Data System (ADS)

    Gershenson, Carlos

    Studies of rank distributions have been popular for decades, especially since the work of Zipf. For example, if we rank words of a given language by use frequency (most used word in English is 'the', rank 1; second most common word is 'of', rank 2), the distribution can be approximated roughly with a power law. The same applies for cities (most populated city in a country ranks first), earthquakes, metabolism, the Internet, and dozens of other phenomena. We recently proposed ``rank diversity'' to measure how ranks change in time, using the Google Books Ngram dataset. Studying six languages between 1800 and 2009, we found that the rank diversity curves of languages are universal, adjusted with a sigmoid on log-normal scale. We are studying several other datasets (sports, economies, social systems, urban systems, earthquakes, artificial life). Rank diversity seems to be universal, independently of the shape of the rank distribution. I will present our work in progress towards a general description of the features of rank change in time, along with simple models which reproduce it

  12. CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Brown, D.; Callan, R.; Constant, G.; Davies, P. H.; Foord, R.

    CO2 laser-based radars operating at 10 microns are both highly energy-efficient and eye-safe, as well as compact and rugged; they also furnish covertness-enhancing fine pointing accuracy, and are difficult to jam or otherwise confuse. Two modes of operation are generally employed: incoherent, in which the laser is simply used as a high power illumination source, and in the presently elaborated coherent or heterodyne mode. Applications encompass terrain-following and obstacle avoidance, Doppler discrimination of missile and aircraft targets, pollutant gas detection, wind measurement for weapons-aiming, and global wind field monitoring.

  13. CO2 laser preionisation

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  14. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  15. Ar + CO2 and He + CO2 Plasmas in ASTRAL

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Munoz, J.; Kamar, O.; Loch, S.

    2007-11-01

    Spectroscopy study of the ASTRAL helicon plasma source running Ar + CO2 and He + CO2 gas mixes is presented. ASTRAL produces plasmas with the following parameters: ne = 10^10 - 10^13 cm-3, Te = 2 - 10 eV and Ti = 0.03 - 0.5 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A 0.33 m scanning monochromator is used for this study. Using Ar + CO2 gas mixes, very different plasmas are observed as the concentration of CO2 is changed. At low CO2 concentration, the bluish plasma is essentially atomic and argon transitions dominate the spectra. Weak C I and O I lines are present in the 750 - 1000 nm range. At higher CO2 concentration, the plasma becomes essentially molecular and is characterized by intense, white plasma columns. Here, spectra are filled with molecular bands (CO2, CO2^+, CO and CO^+). Limited molecular dissociative excitation processes associated with the production of C I and O I emission are also observed. On the other hand, He + CO2 plasmas are different. Here, rf matches are only possible at low CO2 concentration. Under these conditions, the spectra are characterized by strong C I and O I transitions with little or no molecular bands. Strong dissociative processes observed in these plasmas can be link to the high Te associated with He plasmas. An analysis of the spectra with possible scientific and industrial applications will be presented.

  16. Magnetic and electron spin resonance studies of (Ce 1-cGd c)Rh 2

    NASA Astrophysics Data System (ADS)

    Tari, A.

    1990-08-01

    Magnetic and ESR measurements have been performed on several samples of the (Ce 1-cGd c)Rh 2 series in the interval 0 ≦ c ≦ 1. It is found that only those Ce atoms with at least 3nn Gd atoms are magnetic. The cerium sublattice appears to reach the magnetic percolation limit at about c=0.3. Using the lattice parameters and the RKKY model a value of 0.19eV is computed for the effective exchange integral Jo at the GdRh 2 end of the series.

  17. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  18. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  19. CO2 interaction with geomaterials.

    SciTech Connect

    Guthrie, George D.; Al-Saidi, Wissam A.; Jordan, Kenneth D.; Voora, Vamsee, K.; Romanov, Vyacheslav N.; Lopano, Christina L; Myshakin, Eugene M.; Hur, Tae Bong; Warzinski, Robert P.; Lynn, Ronald J.; Howard, Bret H.; Cygan, Randall Timothy

    2010-09-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2

  20. Leaves: Elevated CO2 levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burning fossil fuels and land use changes such as deforestation and urbanization have led to a dramatic rise in the concentration of carbon dioxide (CO2) in the atmosphere since the onset of the Industrial Revolution. The highly dilute CO2 from the atmosphere enters plant leaves where it is concentr...

  1. CO2 Sequestration short course

    SciTech Connect

    DePaolo, Donald J.; Cole, David R; Navrotsky, Alexandra; Bourg, Ian C

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  2. Alpharetroviral Vector-mediated Gene Therapy for X-CGD: Functional Correction and Lack of Aberrant Splicing

    PubMed Central

    Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel

    2013-01-01

    Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695

  3. Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Graber, Harry L.; Barbour, Randall L.

    1995-05-01

    This study reports on results of our efforts to improve the efficiency and stability of previously developed reconstruction algorithms for optical diffusion tomography. The previous studies, which applied regularization and a priori contraints to iterative methods--POCS, CGD, and SART algorithms--showed that in most cases, good quality reconstructions of simply structured media were achievalbe using a perturbation model. The CGD method, which is the most efficient of the three algorithms, was, however, in some instances not able to produce good quality images because of the difficulty in applying range constraints, which can cause divergence. In this study, a scheme is proposed to detect this gradient vector is reset and the CGD reconstruction is restarted using the previous reconstruction as the initial value. In gradient vector is reset and the CGD reconstruction is restarted using the previous reconstruction as the initial value. In addition, a rescaling technique, which rescaled the weight matrix to make it more uniform and less ill-conditioned, is also used to suppress numerical errors and accelerate convergence. Two criteria, rescaling the maximum of each column to 1 and rescaling the average of each column to 1, were applied and compared to results without rescaling. The results show that, with properly imposed constraints, good quality images can be obtained using the CGD method. The convergence speed is much slower when constraints are imposed, but still comparable to the POCS and SART algorithms, The rescaling technique produces more stable and more accurate reconstructions, and speeds up the reconstruction significantly for all three algorithms.

  4. An obsession with CO2.

    PubMed

    Jones, Norman L

    2008-08-01

    The concept that underlies this paper is that carbon dioxide (CO2) removal is at least as important as the delivery of oxygen for maximum performance during exercise. Increases in CO2 pressure and reductions in the pH of muscle influence muscle contractile properties and muscle metabolism (via effects on rate-limiting enzymes), and contribute to limiting symptoms. The approach of Barcroft exemplified the importance of integrative physiology, in describing the adaptive responses of the circulatory and respiratory systems to the demands of CO2 production during exercise. The extent to which failure in the response of one system may be countered by adaptation in another is also explained by this approach. A key factor in these linked systems is the transport of CO2 in the circulation. CO2 is mainly (90%) transported as bicarbonate ions--as such, transport of CO2 is critically related to acid-base homeostasis. Understanding in this field has been facilitated by the approach of Peter Stewart. Rooted in classical physico-chemical relationships, the approach identifies the independent variables contributing to homeostasis--the strong ion difference ([SID]), ionization of weak acids (buffers, Atot) and CO2 pressure (PCO2). The independent variables may be reliably measured or estimated in muscle, plasma, and whole blood. Equilibrium conditions are calculated to derive the dependent variables--the most important being the concentrations of bicarbonate and hydrogen ions. During heavy exercise, muscle [H+] can exceed 300 nEq.L-1 (pH 6.5), mainly due to a greatly elevated PCO2 and fall in [SID] as a result of increased lactate (La-) production. As blood flows through active muscle, [La-] increase in plasma is reduced by uptake of La- and Cl- by red blood cells, with a resultant increase in plasma [HCO3-]. Inactive muscle contributes to homeostasis through transfer of La- and Cl- into the muscle from both plasma and red blood cells; this results in a large increase in [HCO3

  5. ACCURACY OF CO2 SENSORS

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  6. CO2 Sequestration Crosswell Monitoring

    NASA Astrophysics Data System (ADS)

    Morency, C.; Luo, Y.; Tromp, J.

    2010-12-01

    Geologic sequestration of CO2, a green house gas, represents an effort to reduce the large amount of CO2 generated as a by-product of fossil fuels combustion and emitted into the atmosphere. This process of sequestration involves CO2 storage deep underground into highly permeable porous media sealed by caprock. "4D seismics" is a natural non-intrusive monitoring technique which involves 3D time-lapse seismic surveys. The success of monitoring CO2 movement relies upon a proper description of the physics of the problem. We realize time-lapse migrations comparing acoustic, elastic (with or without Gassmann's formulae), and poroelastic simulations of 4D seismic imaging. This approach highlights the influence of using different physical theories on interpreting seismic data, and, more importantly, on extracting the CO2 signature from the seismic wave field. We investigate various types of inversions using (1) P-wave traveltimes, (2) P- & S-wave traveltimes and (3) P- & S-wave traveltimes and amplitudes. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method. Biot's equations are implemented in the forward and adjoint simulations to account for poroelastic effects.

  7. Update on CO2 emissions

    SciTech Connect

    Friedingstein, P.; Houghton, R.A.; Marland, Gregg; Hackler, J.; Boden, Thomas A; Conway, T.J.; Canadell, J.G.; Raupach, Mike; Ciais, Philippe; Le Quere, Corrine

    2010-12-01

    Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

  8. The CO2nnect activities

    NASA Astrophysics Data System (ADS)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  9. An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2003-01-01

    Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.

  10. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  11. When Does Rank(ABC)= Rank(AB) + Rank(BC) - Rank(B) Hold?

    ERIC Educational Resources Information Center

    Tian, Yongge; Styan, George P. H.

    2002-01-01

    The well-known Frobenius rank inequality established by Frobenius in 1911 states that the rank of the product ABC of three matrices satisfies the inequality rank(ABC) [greater than or equal]rank(AB) + rank(BC) - rank(B) A new necessary and sufficient condition for equality to hold is presented and then some interesting consequences and…

  12. CO2 Acquisition Membrane (CAM)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  13. Estimation of continuous anthropogenic CO2 using CO2, CO, δ13C(CO2) and Δ14C(CO2)

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Gerbig, C.; Janssens-Maenhout, G.; Levin, I.

    2015-07-01

    We investigate different methods for estimating anthropogenic CO2 using modelled continuous atmospheric concentrations of CO2 alone, as well as CO2 in combination with the surrogate tracers CO, δ13C(CO2) and Δ14C(CO2). These methods are applied at three hypothetical stations representing rural, urban and polluted conditions. We find that independent of the tracer used, an observation-based estimate of continuous anthropogenic CO2 is not feasible at rural measurement sites due to the low signal to noise ratio of anthropogenic CO2 estimates at such settings. At urban and polluted sites, potential future continuous Δ14C(CO2) measurements with a precision of 5 ‰ or better are most promising for anthropogenic CO2 determination (precision ca. 10-20%), but the insensitivity against CO2 contributions from biofuel emissions may reduce its accuracy in the future. Other tracers, such as δ13C(CO2) and CO could provide an accurate and already available alternative if all CO2 sources in the catchment area are well characterized with respect to their isotopic signature and CO to anthropogenic CO2 ratio. We suggest a strategy for calibrating these source characteristics on an annual basis using precise Δ14C(CO2) measurements on grab samples. The precision of anthropogenic CO2 determination using δ13C(CO2) is largely determined by the measurement precision of δ13C(CO2) and CO2. The precision when using the CO-method is mainly limited by the variation of natural CO sources and CO sinks. At present, continuous anthropogenic CO2 could be determined using the tracers δ13C(CO2) and/or CO with a precision of about 30 %, a mean bias of about 10 % and without significant diurnal discrepancies. This allows significant improvement, validation and bias reduction of highly resolved emission inventories using atmospheric observation and regional modelling.

  14. Surface Condensation of CO2 onto Kaolinite

    SciTech Connect

    Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Owen, Antionette T.; Ramprasad, Sudhir; Martin, Paul F.; McGrail, B. Peter

    2014-02-11

    The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto poorly crystalline kaolinite (KGa-2) at conditions relevant to geologic sequestration has been investigated using a quartz crystal microbalance (QCM) and density functional theory (DFT) methods. The QCM data indicated linear adsorption of CO2 (0-0.3 mmol CO2/g KGa-2) onto the kaolinite surface up through the gaseous state (0.186 g/cm3). However in the supercritical region, CO2 adsorption increases dramatically, reaching a peak (0.9-1.0 mmol CO2/g KGa-2) near 0.43 g/cm3, before declining rapidly to surface adsorption values equivalent or below gaseous CO2. This adsorption profile was not observed with He or N2. Comparative density functional studies of CO2 interactions with kaolinite surface models rule out CO2 intercalation and confirm that surface adsorption is favored up to approximately 0.35 g/cm3 of CO2, showing distorted T-shaped CO2-CO2 clustering, typical of supercritical CO2 aggregation over the surface as the density increases. Beyond this point, the adsorption energy gain for any additional CO2 becomes less than the CO2 interaction energy (~0.2 eV) in the supercritical medium resulting in overall desorption of CO2 from the kaolinite surface.

  15. Outsourcing CO2 within China

    PubMed Central

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  16. Intelligent CO 2 beam guiding

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Stimpfl, Joffrey; Emonts, Michael

    The Fraunhofer IPT has recently developed a self-diagnosing laser system technology which can monitor the process parameters of all laser system components and supports the adjustment of the beam guidance of CO2 laser production systems with large ranges of travel. The intelligent system furthermore interprets the correlated laser beam parameter responses and proposes appropriate measures for preventive maintenance. The new assisted beam guidance adjustment bases upon active reflector modules adjusting with a large angular range of average ±0.8∘ at maximum resolution and a position-sensitive detector for the position of the pilot laser.

  17. Passive CO2 concentration in higher plants.

    PubMed

    Sage, Rowan F; Khoshravesh, Roxana

    2016-06-01

    Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2. PMID:27058940

  18. Characterization of CO2 reservoir rock in Switzerland

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Madonna, Claudio; Zappone, Alba

    2014-05-01

    Anthropogenic emissions of Carbon Dioxide (CO2) are one of the key drivers regarding global climate change (IPCC, 2007). Carbon Dioxide Capture and Storage (CCS) is one valuable technology to mitigate current climate change with an immediate impact. The IPCC special report on CCS predicted a potential capture range of 4.7 to 37.5 Gt of CO2 by 2050. Among several countries, Switzerland has started to investigate its potential for CO2 storage (Chevalier et al., 2010) and is currently performing research on the characterization of the most promising reservoir/seal rocks for CO2 sequestration. For Switzerland, the most feasible option is to store CO2 in saline aquifers, sealed by impermeable formations. One aquifer of regional scale in the Swiss Molasse Basin is a carbonate sequence consisting of reworked shallow marine limestones and accumulations of shell fragments. The upper part of the formation presents the most promising permeability values and storage properties. The storage potential has been estimated of 706 Mt of CO2, based on the specific ranking scheme proposed by Chevalier et al. 2010. In this study, key parameters such as porosity, permeability and acoustic velocities in compressional and shear mode have been measured in laboratory at pressures and temperatures simulating in situ conditions. Reservoir rock samples have been investigated. Permeability has been estimated before and after CO2 injection in supercritical state. The simulation of typical reservoir conditions allows us to go one step further towards a significant evaluation of the reservoir's true capacities for CO2 sequestration. It seems of major importance to notice that the permeability crucially depends on confining pressure, temperature and pore pressure conditions of the sample. Especially at in situ conditions with CO2 being at supercritical state, a substantial loss in permeability have to be taken into consideration when it comes to the calculation of potential injection rates. The

  19. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  20. CO2 laser frequency multiplication

    SciTech Connect

    Not Available

    1992-03-01

    The duration of the mode-locked CO(2) laser pulses was measured to be 0.9 + or - nsec by the technique of (second harmonic) autocorrelation. Knowing the pulse duration, the spot size, and the harmonic conversion efficiency, a detailed fit of experiment to theory gave an estimate of the nonlinear coefficient of AgGaSe(2). d36 = 31 + or - V(1), in agreement with the most accurate literature values. A number of experiments were made with longer pulse trains in which the highest harmonic energy conversion reached 78%. The damage threshold was measured and it turned out to be related much more strongly to fluence than intensity. The shorter pulse trains had peak intensities of close to 300 MW 1/cm squared whereas the longer trains (3 usec) had intensities up to 40 MW 1/cm squared.

  1. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  2. Photosynthesis in a CO2 rich atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of CO2 ([CO2]) in the atmosphere is projected to reach ~550 ppm by 2050. C3 plants respond directly to growth at elevated [CO2] via stimulated photosynthesis and reduced stomatal conductance. The enhancement of photosynthesis is the result of increased velocity of carboxylation of ...

  3. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    The climate and environmental impacts of the current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. A discussion on CO2 mitigation via accelerated limestone weathering covers limestone and seawater availability and cost; reaction rates and densities; effectiveness in CO2 sequestration; and environmental impacts and benefits.

  4. Recent Trends in Atmospheric 14CO2

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Rayner, P.; Bousquet, P.; Cozic, A.; Miller, J. B.; Lehman, S. J.; Peters, W.; Tans, P. P.; Ciais, P.

    2007-12-01

    The radiocarbon content of atmospheric CO2 (14CO2) varies due to a number of factors. After the near-doubling of the 14CO2 loading in the early 1960s (due to atmospheric nuclear weapons testing), many studies examined the fate of this 'bomb 14C' to understand exchange processes of CO2 with the surface reservoirs. Today, however, the atmosphere and surface reservoirs are close to equilibrium with respect to bomb 14C, and instead, changes in 14CO2 more strongly reflect the response to the addition of 14C-free fossil fuel CO2 to the atmosphere. We use an atmospheric transport model to simulate recent atmospheric 14CO2, and compare this to observations at several sites over the Northern Hemisphere continents. We show that, in the Northern Hemisphere, 14CO2 variability is dominated by the effect of fossil fuel CO2 emissions. The model simulates the time trends quite well, including both the overall secular trend and the seasonal cycle. A seasonal cycle in 14CO2 is observed at the high altitude sites of Niwot Ridge, Colorado, and Jungfraujoch, Switzerland, but the magnitude varies from year to year. Our modeling studies demonstrate that this inter-annual variability can be explained by differences in atmospheric transport. This is in contrast to CO2 concentration seasonal cycles, which are dominated by seasonal changes in CO2 source strengths.

  5. Forest succession at elevated CO2

    SciTech Connect

    Clark, James S.; Schlesinger, William H.

    2002-02-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  6. Isotopic CO2 Instrumentation for UAV Measurements

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Silver, J.

    2013-12-01

    Carbon dioxide is the largest component of anthroprogenic green house gas emissions. Knowing atmospheric 13CO2/12CO2 ratios precisely is important for understanding biogenic and anthroprogenic sources and sinks for carbon. Instrumentation mounted on UAV aircraft would enable important spatial isotopic CO2 information. However, current isotopic CO2 instrumentation have unfavorable attributes for UAV use, such as high power requirements, high cost, high weight, and large size. Here we present the early development of a compact isotopic CO2 instrument that is designed to nullify effects of pressure, temperature and moisture, and will ultimately be suitable for UAV deployment.

  7. Residual CO2 trapping in Indiana limestone.

    PubMed

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-01

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers. PMID:23167314

  8. Microbial Growth under Supercritical CO2

    PubMed Central

    Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.

    2015-01-01

    Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188

  9. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  10. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    PubMed

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2. PMID:26596773

  11. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Buelo, Cal D.; Cole, Jonathan J.; Pace, Michael L.

    2016-03-01

    It is well established that lakes are typically sources of CO2 to the atmosphere. However, it remains unclear what portion of CO2 efflux is from endogenously processed organic carbon or from exogenously produced CO2 transported into lakes. We estimated high-frequency CO2 and O2 efflux from three north temperate lakes in summer to determine the proportion of the total CO2 efflux that was exogenously produced. Two of the lakes were amended with nutrients to experimentally enhance endogenous CO2 uptake. In the unfertilized lake, 50% of CO2 efflux was from exogenous sources and hydrology had a large influence on efflux. In the fertilized lakes, endogenous CO2 efflux was negative (into the lake) yet exogenous CO2 made the lakes net sources of CO2 to the atmosphere. Shifts in hydrologic regimes and nutrient loading have the potential to change whether small lakes act primarily as reactors or vents in the watershed.

  12. CO2 transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, Russell K.; Anderson, D.E.

    2007-01-01

    CO2 transport processes relevant for estimating net ecosystem exchange (NEE) at the Niwot Ridge AmeriFlux site in the front range of the Rocky Mountains, Colorado, USA, were investigated during a pilot experiment. We found that cold, moist, and CO2-rich air was transported downslope at night and upslope in the early morning at this forest site situated on a ???5% east-facing slope. We found that CO2 advection dominated the total CO2 transport in the NEE estimate at night although there are large uncertainties because of partial cancellation of horizontal and vertical advection. The horizontal CO2 advection captured not only the CO2 loss at night, but also the CO2 uptake during daytime. We found that horizontal CO2 advection was significant even during daytime especially when turbulent mixing was not significant, such as in early morning and evening transition periods and within the canopy. Similar processes can occur anywhere regardless of whether flow is generated by orography, synoptic pressure gradients, or surface heterogeneity as long as CO2 concentration is not well mixed by turbulence. The long-term net effect of all the CO2 budget terms on estimates of NEE needs to be investigated. ?? 2007 Elsevier B.V. All rights reserved.

  13. Covalent Organic Frameworks for CO2 Capture.

    PubMed

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-01

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. PMID:26924720

  14. Radiocarbon in Tree STEM CO2 Efflux

    NASA Astrophysics Data System (ADS)

    Muhr, J.; Czimczik, C. I.; Angert, A.; Trumbore, S.

    2011-12-01

    Carbon dioxide efflux from tree stems can be a significant component of the stand-level carbon balance. Recent studies have demonstrated that tree stem CO2 efflux may reflect more than just in-situ respiration but also transport from other locations and it has been suggested that it may also include C originally respired in roots or even uptake of soil CO2. We report measurements of the radiocarbon signature of carbon emitted from a range of mature tree stems in tropical and temperate forest ecosystems. Comparison of the radiocarbon signature of respired CO2 with the observed rate of decline in atmsopheric 14C-CO2 provides a measure of the time elapsed between C fixation by the plant and its return to the atmosphere as stem CO2 efflux. In all investigated trees, we observed that stem CO2 efflux had higher radiocarbon signatures than the contemporary atmospheric 14C-CO2, and therefore was derived from C fixed one to several years earlier. In tropical forest trees, we found that the 14C signature of CO2 within the stem (~4-5 cm depth) had even higher radiocarbon signatures than the stem CO2 efflux. In one of the investigated tree species, the in-stem CO2 was derived from C sources fixed on average ~20 years previously. These results confirm observations of root-respired CO2 that also have shown contributions of C substrates older than recent photosynthetic products, and the presence of extracable C reserves in wood that reflect the presence of older C sources. Our results imply that stem CO2 efflux is not only derived from respiration of recent photosynthetic products but includes contributions from older, stored C pools. Ongoing investigations will enable us to compare CO2 efflux for trees subjected to experimental drought, and using different life strategies (deciduous versus evergreen oaks) to determine if the use of these older C stores varies with stress.

  15. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  16. Global CO2 Emission from Volcanic Lakes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  17. Soft Approaches to CO2 Activation.

    PubMed

    Das, Shoubhik; Bobbink, Felix D; Gopakumar, Aswin; Dyson, Paul J

    2015-01-01

    The utilization of CO(2) as a C1 synthon is becoming increasingly important as a feedstock derived from carbon capture and storage technologies. Herein, we describe some of our recent research on carbon dioxide valorization, notably, using organocatalysts to convert CO(2) into carboxylic acid, ester, formyl and methyl groups on various organic molecules. We describe these studies within the broader context of CO(2) capture and valorization and suggest approaches for future research. PMID:26842327

  18. CO2 sequestration: Storage capacity guideline needed

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  19. Global Mapping of CO2 on Enceladus

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Matson, D.; Johnson, T. V.

    2014-12-01

    We present the first global map of CO2 on Enceladus. The purpose is to determine whether CO2 is associated to fractures and eruptions, and if it formed recently. Cassini observed tectonic features and plumes on Enceladus, which could be caused by a warm subsurface ocean containing dissolved gases. CO2 should be one of these gases (Postberg F. et al., Nature, 2009), and some of it should be erupted and condensed onto the surface (Matson et al., Icarus, 2012). Validation of this hypothesis could be done by determining the amount, location and molecular state of the CO2. Free CO2 ice and complexed CO2 were reported on Enceladus (Brown et al., Science, 2006; Hansen, LPSC, 2010) from analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) data, and on other Saturn icy satellites (Cruikshank et al., Icarus, 2010 ; Filacchione et al., Icarus, 2010). Complexed CO2 has also been found from Galileo Near-Infrared Mapping Spectrometer (NIMS) spectra on the icy Galilean satellites (McCord et al., Science, 1997 and JGR, 1998), apparently due to both interior outgassing and radiation processing. CO2 has an asymmetric stretching mode that creates an absorption band, the wavelength position of which is sensitive to the nature of molecular associations between CO2 and their neighbors. Free CO2 ice absorbs at 4.268 μm for (Sandford and Allamandola, 1990) and CO2 complexed with other molecules absorbs at shorter wavelengths, around 4.25 μm or shorter (Chaban et al., Icarus, 2007). In VIMS spectra of Enceladus, this stretching mode absorption band is near the instrument detection limit. We utilized all VIMS data sets available that had significant spatial resolution to increase the statistics of the observations for any given location and improve the signal to noise. CO2 has also a smaller absorption at 2.7 μm, although it occurs in a range of wavelength that has higher signal-to-noise ratio by several magnitudes, because the surface of Enceladus (mostly H2O ice) has

  20. CO2 MITIGATION VIA ACCELERATED LIMESTONE WEATHERING

    SciTech Connect

    Rau, G H; Knauss, K G; Langer, W H; Caldeira, K G

    2004-02-27

    The climate and environmental impacts of our current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. As part of this effort, various means of capturing and storing CO2 generated from fossil-fuel-based energy production are being investigated. One of the proposed methods involves a geochemistry-based capture and sequestration process that hydrates point-source, waste CO2 with water to produce a carbonic acid solution. This in turn is reacted and neutralized with limestone, thus converting the original CO2 gas to calcium bicarbonate in solution, the overall reaction being:

  1. R&D100: CO2 Memzyme

    SciTech Connect

    Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing; Vanegas, Juan

    2015-11-19

    By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.

  2. Experimental Ion Mobility measurements in Ne-CO2 and CO2-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Encarnação, P. M. C. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Trindade, A. M. F.; Borges, F. I. G. M.; Conde, C. A. N.

    2016-05-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V‑1s‑1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V‑1s‑1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This second peak, with higher mobility, was attributed to CO2+ ions. The mobility values of the main peak range between 2.11 ± 0.04 and 1.10 ± 0.03 cm2V‑1s‑1 in the 1%–99% interval of CO2, while the second peak's from 2.26 ± 0.02 and 1.95 ± 0.04 cm2V‑1s‑1 (1%–10% of CO2). The inverse of the mobility displays an aproximately linear dependence on the CO2 concentration in the mixture.

  3. Photolytically Generated CO2 on Iapetus

    NASA Astrophysics Data System (ADS)

    Palmer, Eric; Brown, R. H.

    2007-10-01

    The leading edge of Iapetus is covered with a dark material that is carbon rich, suggested to be either a carbonaceous layer (Smith el al 1982), CH4 and NH3 embedded in water ice (Squyres et al 1983), or nitrogen-rich tholin and amorphous carbon (Buratti et al 2005). Laboratory experiments have shown that CO2 can be generated from such material both by photolysis (Allamandola, Sandford & Valero 1988) and radiolysis (Strazzulla & Palumbo 1998). We consider the accumulation of CO2 that could be photolytically generated and sequestered in the polar regions of Iapetus. The polar regions provide only a temporary cold trap for CO2, and any polar cap is expected to be seasonal in nature. Using a numerical model to track the movement of CO2, we find that as CO2 moves between poles, 10% of it would reach escape velocity and be lost from the system every solar orbit (29.46 years). CO2 would accumulate until its loss rate equaled its production rate; thus, the quantity of CO2 in a polar cap would be 10 times the amount produced in a single solar orbit. Provided that the generation of CO2 is large enough, Cassini VIMS would be able to detect a seasonal CO2 polar cap. Since the polar regions are comprised of water ice and do not have the same coating of carbon rich dark material as the dark side, any 4.26 micron band absorption would be CO2 frost rather than complexed CO2.

  4. Primary cutaneous γδ-T-cell lymphoma (CGD-TCL) with unilateral lower extremity swelling as first-onset symptom: a rare case report.

    PubMed

    Li, Duo; Huang, Lijun; Guo, Bin; Wen, Qiuyuan; Wang, Weiyuan; Luo, Jiadi; Fan, Songqing

    2014-01-01

    Primary cutaneous γδ-T-cell lymphoma (CGD-TCL) is a distinct disease entity which is an extremely rare neoplasm with poor prognosis, characterized by the γ/δ T-cell receptor expression on atypical lymphocytes. We report the case of a 42-year-old man who first presented with a swelling in the extremities and subsequent appeared subcutaneous nodule over the body. In order to clarify the diagnosis, a biopsy of subcutaneous nodule for pathology had been done. CGD-TCL was diagnosed by histopathology, immunophenotype, in situ hybridization and analysis of TCRγ genes rearrangement. The patient was treated with chemotherapeutic regimens-CHOP (cyclophosphamide, doxorubicin, vincristine and prednisolone). After one period of chemotherapy, subcutaneous nodules became small, even disappeared, swelling and ulcer in the left pedal gone away gradually. One month later after first chemotherapy, tumor relapsed with lesions growing back rapidly, also showed disease in double lungs. The patient was just 10-month survival time from the onset. To our knowledge, this case is the first report of CGD-TCL with unilateral lower extremity swelling as the first-onset symptom. If patient is presented the first symptoms such as swelling of extremities, especially when ulceration appears, it is of great significance to be considerate about the possibility of CGD-TCL. PMID:25197420

  5. Playing the Rankings Game.

    ERIC Educational Resources Information Center

    Machung, Anne

    1998-01-01

    The "U.S. News and World Report" rankings of colleges do not affect institutions equally; the schools impacted most are those that have the most to lose because they benefit from, even rely on, the rankings for prestige and visibility. The magazine relies on the rankings for substantial sales revenues, and has garnered considerable power within…

  6. Order-Theoretical Ranking.

    ERIC Educational Resources Information Center

    Carpineto, Claudio; Romano, Giovanni

    2000-01-01

    Presents an approach to document ranking that explicitly addresses the word mismatch problem between a query and a document by exploiting interdocument similarity information, based on the theory of concept lattices. Compares information retrieval using concept lattice-based ranking (CLR) to BMR (best-match ranking) and HCR (hierarchical…

  7. CAPTURING CO2 WITH MGO AEROGELS

    EPA Science Inventory

    CO2 capture from flue gas requires that the adsorbent be active at relatively low CO2 concentrations (3 – 13 vol%), high temperatures (~ 250ºC), and in the presence of many other gas species. These conditions will be simulated in the student designed reactor. The...

  8. CO2 ice on Mars: Theoretical simulations

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    A theoretical model of the energy budget of the polar caps of Mars has been created which is used to study the hemispherical asymmetry in CO2 ice. The observations which show survival of seasonal CO2 ice in the Southern Hemisphere in summer and not in the Northern Hemisphere in summer have been reproduced.

  9. Capturing CO2 via reactions in nanopores.

    SciTech Connect

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  10. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  11. Mars South Pole CO2 Paleoatmosphere

    NASA Astrophysics Data System (ADS)

    Schneck, T.

    2004-03-01

    Seasonal asymmetry in the CO mixing ratio is explained by condensation of CO_2. High levels of deuteration can be obtained if the gas phase is depleted of CO. UV limbs measurements found intense Cameron band emissions of CO from 1900-2700 A produced by dissociative excitation of CO_2.

  12. Aqueous ethylenediamine for CO(2) capture.

    PubMed

    Zhou, Shan; Chen, Xi; Nguyen, Thu; Voice, Alexander K; Rochelle, Gary T

    2010-08-23

    Aqueous ethylenediamine (EDA) has been investigated as a solvent for CO(2) capture from flue gas. EDA can be used at 12 M (mol kg(-1) H(2)O) with an acceptable viscosity of 16 cP (1 cP=10(-3) Pa s) with 0.48 mol CO(2) per equivalent of EDA. Similar to monoethanolamine (MEA), EDA can be used up to 120 degrees C in a stripper without significant thermal degradation. Inhibitor A will effectively eliminate oxidative degradation. Above 120 degrees C, loaded EDA degrades with the production of its cyclic urea and other related compounds. Unlike piperazine, when exposed to oxidative degradation, EDA does not result in excessive foaming. Over much of the loading range, the CO(2) absorption rate with 12 M EDA is comparable to 7 M MEA. However, at typical rich loading, 12 M EDA absorbs CO(2) 2 times slower than 7 M MEA. The capacity of 12 M EDA is 0.72 mol CO(2)/(kg H(2)O+EDA) (for P(CO(2) )=0.5 to 5 kPa at 40 degrees C), which is about double that of MEA. The apparent heat of CO(2) desorption in EDA solution is 84 kJ mol(-1) CO(2); greater than most other amine systems. PMID:20677204

  13. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  14. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  15. Zinc depolarized electrochemical CO2 concentration

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  16. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  17. Venting of CO2 at Enceladus’ Surface

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Davies, Ashley G.; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Tom B.; Radebaugh, Jani

    2015-11-01

    Enceladus has CO2 surface deposits in its South Polar Region that have been recently mapped by J.-P. Combe et al. (2015 AGU Fall Meeting). Assuming that these are CO2 frost, we show how they can be formed. We use an ocean-water circulation model [1] that specifies pressure gradients that drive water to the surface from a relatively gas-rich, subsurface ocean. We now examine the movement of CO2 to the surface; formation of shallow CO2 gas pockets in the ice; and the venting of CO2, when at least some of the gas freezes to form frost. If the local heat flow is known (cf. [2]), then the depths of the corresponding gas pockets can be calculated. References: [1] Matson et al. (2012) Icarus, 221, 53-62. [2] Howett et al. (2011) J. Geophys. Res. 116, E03003. Acknowledgements: AGD thanks the NASA OPR Program for support.

  18. The ins and outs of CO2

    PubMed Central

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  19. The ins and outs of CO2.

    PubMed

    Raven, John A; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  20. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  1. Quantum anonymous ranking

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wen, Qiao-Yan; Liu, Bin; Su, Qi; Qin, Su-Juan; Gao, Fei

    2014-03-01

    Anonymous ranking is a kind of privacy-preserving ranking whereby each of the involved participants can correctly and anonymously get the rankings of his data. It can be utilized to solve many practical problems, such as anonymously ranking the students' exam scores. We investigate the issue of how quantum mechanics can be of use in maintaining the anonymity of the participants in multiparty ranking and present a series of quantum anonymous multiparty, multidata ranking protocols. In each of these protocols, a participant can get the correct rankings of his data and nobody else can match the identity to his data. Furthermore, the security of these protocols with respect to different kinds of attacks is proved.

  2. CO2 deserts: implications of existing CO2 supply limitations for carbon management.

    PubMed

    Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S

    2014-10-01

    Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies. PMID:25137398

  3. Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas.

    PubMed

    Chen, Fu; Yang, Yongjun; Ma, Yanjun; Hou, Huping; Zhang, Shaoliang; Ma, Jing

    2016-05-18

    CO2-EOR (enhanced oil recovery) has been proposed as a viable option for flooding oil and reducing anthropogenic CO2 contribution to the atmospheric pool. However, the potential risk of CO2 leakage from the process poses a threat to the ecological system. High-throughput sequencing was used to investigate the effects of CO2 emission on the composition and structure of soil bacterial communities. The diversity of bacterial communities notably decreased with increasing CO2 flux. The composition of bacterial communities varied along the CO2 flux, with increasing CO2 flux accompanied by increases in the relative abundance of Bacteroidetes and Firmicutes phyla, but decreases in the relative abundance of Acidobacteria and Chloroflexi phyla. Within the Firmicutes phylum, the genus Lactobacillus increased sharply when the CO2 flux was at its highest point. Alpha and beta diversity analysis revealed that differences in bacterial communities were best explained by CO2 flux. The redundancy analysis (RDA) revealed that differences in bacterial communities were best explained by soil pH values which related to CO2 flux. These results could be useful for evaluating the risk of potential CO2 leakages on the ecosystems associated with CO2-EOR processes. PMID:27056285

  4. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs. PMID:27362472

  5. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  6. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  7. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  8. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill

  9. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, R.G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  10. Natural Analog for Geologic Storage of CO2: CO2 accumulation in China

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, T.; Liu, N.; Zhou, B.

    2012-12-01

    Natural accumulations of CO2 are potential analogues of CO2 geological storage that can provide useful information on the behaviour of supercritical CO2 in reservoirs. Natural CO2 accumulations are common across Northeast China, and, although they occur in a wide variety of geological settings, their distribution is principally controlled by the Mesozoic-Cenozoic rift basins and associated Quaternary volcanism. High CO2 concentrations (>60 CO2%) in natural gas reservoirs are usually related to volcanism and magmatism, and possesses mantle-genetic origin. CO2 reservoirs consist of sandstone, volcanic rocks and carbonate rocks with the buried depth from 2000-3000 m. Dawsonite is recognized in almost all of the CO2-bearing basin, which has been proved to share the same carbon source with CO2 in the reservoirs in Songliao basin, Hailaer basin and Donghai basin. Petrographic data show that dawsonite is abundant in feldspar- rich sandstone, volcanic rock fragment-rich sandstones and tuff. In some cases, high percentage of dawsonite cement constitutes a diagenetic seal, which occurs in the reservoir-mudstone caprock and prevents upward leakage of CO2. Besides dawsonite, mantle-genetic CO2 flux leads to the formation of calcite, ankerite and siderite. The statistics of porosity and permeability measured from the dawsonite-bearing sandstone and dawsonite-absent sandstone with the almost same burial depth in Songliao basin show that the mantle-genetic CO2 flux result in lower reservoir quality, suggesting that mineral trapping for CO2 is significant. Chemical analyses of formation water in Songliao basin and Hailaer basin indicate that the concentrations of TDS, HCO3-,CO32-, Mg2+,Ca2+ and Na+ + K+ in dawsonite-bearing sandstone are higher than that in dawsonite-absent sandstone. Distribution of CO2 and dawsonite is constrainted by the regional caprocks in the Songliao basin. The charging time of the mantle-genetic CO2 in China dates from 50 to 25 Ma.

  11. Evaluating and quantifying the potential for CO2 leakage through the caprock during carbon sequestration using a Risk Matrix

    NASA Astrophysics Data System (ADS)

    Edlmann, K.

    2012-04-01

    Geological sequestration of CO2 in deep aquifers or depleted oil/gas reservoirs is considered a solution for reducing excess CO2 currently being emitted to the atmosphere. Low permeability cap rocks trap the CO2 that is then sequestered in the underlying porous reservoir or aquifer rock. The long term dependability of CO2 sequestration is directly linked to the integrity of the caprock seals effectively trapping the CO2. Evaluation and quantification of all of the possible CO2 leakage risks and their severity and probability throughout the life of the carbon sequestration timescale is essential. This study aims to identify the CO2 leakage risks, analyse them and then evaluate the impact of each risk - will it cause leakage, how will it leak and how much will it leak? The risks assessed covered all factors that may lead to CO2 leakage including those associated with matrix permeability, CO2 diffusion, aquifer flow, scCO2 flow properties, capillary transport, effective and relative permeability of the scCO2 / brine / pore system, migration through fracture and microfracture network both existing and induced, geological discontinuities and the wellbore and drilling environment. The risks were assessed by assigning a severity and probability to each identified risk. Severity was ranked from 1 to 5; where 1 was mm scale intrusion and 5 was leakage above the top caprock. Probability was also ranked from 1 to 5; where 1 was likelihood of happening after 10,000 years and 5 was likelihood of it happening during injection. A risk matrix was produced which highlights the risks that will have the most significant impact on CO2 sequestration reliability.

  12. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  13. The Oceanic Sink for Anthropogenic CO2

    SciTech Connect

    Sabine, Chris; Feely, R. A.; Gruber, N.; Key, Robert; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C. S.; Wallace, D.W.R.; Tilbrook, B.; Millero, F. J.; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2004-01-01

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for ~48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  14. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.

    PubMed

    Engineer, Cawas B; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordström, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian I

    2016-01-01

    Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate. PMID:26482956

  15. Partitioning of the Leaf CO2 Exchange into Components Using CO2 Exchange and Fluorescence Measurements.

    PubMed

    Laisk, A.; Sumberg, A.

    1994-10-01

    Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate. PMID:12232361

  16. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  17. Study on CO2 global recycling system.

    PubMed

    Takeuchi, M; Sakamoto, Y; Niwa, S

    2001-09-28

    In order to assist in finding ways to mitigate CO2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO2 reduction rate is 41%, the balance ratio of the energy and CO2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO2 emissions and to utilize renewable energy. PMID:11589395

  18. Mechanisms of CO2 Interaction with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Romanov, V.; Myshakin, E. M.; Howard, B.; Guthrie, G.

    2013-12-01

    Improved understanding of basic fluid-rock interactions can lead to more accurate models of the coupled fluid-flow and geomechanics in engineered geological systems. We studied carbon dioxide (CO2) interaction with source clay samples from The Clay Minerals Society. The manometric, infrared (IR) and X-ray diffraction (XRD) data indicated that montmorillonite can permanently trap CO2 molecules in its interlayer, after dynamic exposure to supercritical CO2. Such trapping is quite secure and appears to result in partial carbonate formation. Molecular dynamics simulations were carried out to investigate CO2 intercalation into the interlayer and its interaction with interlayer species. Previously reported results of simulations using simplified smectite models suggested that the experimentally observed red shift of the asymmetric-stretch vibrational mode for the trapped carbon dioxide can be attributed to induced polarization of the CO2 molecule by the interlayer water molecules. Modified smectite models were designed to account for the naturally occurring structural disorder that allows guest molecules to occupy localized interlamellar voids. In such models, energy dependences and structural rearrangements of the interlayer species are governed by rotational misalignment in turbostratically disordered clay. CO2 invasion in the interlayer disrupts the long-range ordering of water molecules and cations thus forcing the system to adopt energetically unfavorable configurations. New findings indicate that interaction between intercalated CO2 and H2O is limited and, with the increasing interlayer hydration, CO2 preferentially accumulates in interlamellar voids. The vibrational spectra produced by the new model, assuming that clay systems can exist in fractional hydration states, show either a combination of undisturbed and red-shifted asymmetric-stretch modes or a broad peak consistent with the multiple smeared peaks, which explain the multi-mode features that have appeared

  19. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  20. CO2 As An Inverse Greenhouse Gas

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.

    1984-01-01

    It is a well-known fact that mankind's burning of fossil fuels such as coal, gas and oil has significantly increased the CO2 content of Earth's atmosphere, from something less than 300 ppm (parts per million by volume) in the pre-Industrial Revolution era to a con-centration which is currently somewhat over 340 ppm. It is also fairly well established that a concentration of 600 ppm will be reached sometime in the next century. Atmospheric scientists using complex computer models of the atmosphere have predicted that such a concentration doubling will lead to a calamatous climatic warming, due to the thermal infra-red "greenhouse" properties of CO2. However, my investigation of a large body of empirical evidence suggests just the opposite. Indeed, long-term records of surface air temperature and snow cover data indicate that increasing concentrations of atmospheric CO2 may actually tend to cool the Earth and not warm it. These and other observations of the real world lead to the conclusion that, for the present composition of the Earth's atmosphere, CO2 appears to behave as an inverse greenhouse gas. A mechanism for this phenomenon is suggested; and it is then indicated how enhanced concentrations of atmospheric CO2 may be beneficial for the planet, particularly with respect to the ability of enhanced CO2 concentrations to stimulate plant growth and reduce water requirements.

  1. CO2 cooling in terrestrial planet thermospheres

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Hunten, D. M.; Roble, R. G.

    1994-01-01

    We examine the recent progress in the debate on the CO2-O relaxation rate, its temperature dependence, and its corresponding impact on the thermospheric heat budgets of Venus, Earth, and Mars. This comparative approach provides the broadest range of conditions under which a common CO2-O relaxation rate should provide consistent results. New global mean calculations are presented for the heat budgets of these three planets using large CO2-O relaxation rates that have been inferred recently from Earth CO2 radiance measurements and laboratory studies. Results indicate that available Venus and Mars data constrain the CO2-O relaxation rate to be 2-4 x 10(exp -12)/cu cm/s at 300 K. For Venus, this strong cooling serves as an effective thermostat that gives rise to a small variation of thermospheric temperatures over the solar cycle, just as observed. Conversely, CO2 cooling does not appear to be dominant in the dayside heat budget of the Mars thermosphere over most of the solar cycle. For the Earth, this strong cooling implies that the lower thermosphere does not typically require significant eddy diffusion or heat conduction. However, global-scale dynamics or an additional heating mechanism may be needed to restore calculated temperatures to observed values when relaxation rates exceeding 2 x 10(exp -12)/cu cm/s are employed.

  2. CO2 Absorption Spectroscopy and Climate Change

    NASA Astrophysics Data System (ADS)

    Feldman, Daniel; Mlawer, Eli; Mlynczak, Martin; Gero, Jon; Collins, William; Torn, Margaret

    2014-03-01

    Most of the absorption, and therefore radiative forcing, due to increased atmospheric CO2 occurs in line wings, so utilizing an accurate line shape is necessary for climate science. Recent advances in CO2 absorption spectroscopy have been incorporated into benchmark line-by-line radiative transfer models. These updates include the Energy Corrected Sudden Approximation to represent isolated line profiles, line mixing, and line clusters. The CO2 line profiles are sub-Lorentzian and are explicitly modeled up to 25 cm-1 from each line's center. Consistent continuum absorption is implemented over the remainder of the profile except for modest empirical adjustments based on observations. Thus, line-by-line models calculate the absorption effects of CO2 that agree with theory and measurements. This is validated with long-term spectroscopic measurements from the ARM program's AERI instrument. This spectroscopy trains computationally-efficient correlated-k methods for climate model radiative transfer, but they overpredict instantaneous radiative forcing from doubled CO2 by approximately 7% in part because they have larger errors handling the impact of increased CO2 in the stratosphere than the troposphere. The implications of this can be tested with supercomputers. This work was supported by the Director, Office of Science, Office of Biol. & Env. Res., Clim. & Env. Sci. Div., of the U.S. D.O.E., Contract No. DE-AC02-05CH11231 as part of the Atmos. Sys. Res.

  3. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  4. Density of aqueous solutions of CO2

    SciTech Connect

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  5. The overlooked tropical oceanic CO2 sink

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Araujo, Moacyr; Lefèvre, Nathalie

    2016-04-01

    The intense rainfall in the tropical Atlantic spatially overlaps with the spread of the Amazon plume. Based on remote-sensed sea surface salinity and rainfall, we removed the contribution of rainfall to the apparent Amazon plume area, thus refining the quantification of its extension (0.84 ± 0.06 × 106 km2 to 0.89 ± 0.06 × 106 km2). Despite the previous overestimation of the Amazon plume area due to the influence of rainfall (>16%), our calculated annual CO2 flux based on rainfall-corrected sea surface CO2 fugacity confirms that the Amazon River plume is an atmospheric CO2 sink of global importance (-7.61 ± 1.01 to -7.85 ± 1.02 Tg C yr-1). Yet we show that current sea-air CO2 flux assessments for the tropical Atlantic could be overestimated in about 10% by neglecting the CO2 sink associated to the Amazon plume. Thus, including the Amazon plume, the sea-air CO2 exchange for the tropical Atlantic is estimated to be 81.1 ± 1.1 to 81.5 ± 1.1 Tg C yr-1.

  6. CO2 Acquisition Membrane (CAM) Project

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    2003-01-01

    The CO2 Acquisition Membrane (CAM) project was performed to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes developed in this project are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP). These membrane materials may be used in a variety of ISRU systems, for example as the atmospheric inlet filter for an ISPP process to enhance the concentration of CO2 for use as a reactant gas, to passively separate argon and nitrogen trace gases from CO2 for habitat pressurization, to provide a system for removal of CO2 from breathing gases in a closed environment, or within a process stream to selectively separate CO2 from other gaseous components. The membranes identified and developed for CAM were evaluated for use in candidate ISRU processes and other gas separation applications, and will help to lay the foundation for future unmanned sample return and human space missions. CAM is a cooperative project split among three institutions: Lockheed Martin Astronautics (LMA), the Colorado School of Mines (CSM), and Marshall Space Flight Center (MSFC).

  7. Global CO2 simulation using GOSAT-based surface CO2 flux estimates

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Oda, T.; Saito, M.; Valsala, V.; Belikov, D.; Saeki, T.; Saito, R.; Morino, I.; Uchino, O.; Yoshida, Y.; Yokota, Y.; Bril, A.; Oshchepkov, S.; Andres, R. J.; Maksyutov, S.

    2012-04-01

    Investigating the distribution and temporal variability of surface CO2 fluxes is an active research topic in the field of contemporary carbon cycle dynamics. The technique central to this effort is atmospheric inverse modeling with which surface CO2 fluxes are estimated by making corrections to a priori flux estimates such that mismatches between model-predicted and observed CO2 concentrations are minimized. Past investigations were carried out by utilizing CO2 measurements collected in global networks of surface-based monitoring sites. Now, datasets of column-averaged CO2 dry air mole fraction (XCO2) retrieved from spectral soundings collected by GOSAT are available for complementing the surface-based CO2 observations. These space-based XCO2 data are expected to enhance the spatiotemporal coverage of the existing surface observation network and thus reduce uncertainty associated with the surface flux estimates. We estimated monthly CO2 fluxes in 64 sub-continental regions from a subset of the surface-based GLOBALVIEW CO2 data and the GOSAT FTS SWIR Level 2 XCO2 retrievals. We further simulated CO2 concentrations in 3-D model space using the surface flux estimates obtained. In this presentation, we report the result of a comparison between the simulated CO2 concentrations and independent surface observations. As part of an effort in inter-comparing GOSAT-based surface CO2 flux estimates, we also look at results yielded with XCO2 data retrieved with the PPDF-DOAS algorithm and those made available by the NASA Atmospheric CO2 Observations from Space team. For this study, we used version 08.1 of the National Institute for Environmental Studies atmospheric transport model, which was driven by the Japan Meteorological Agency's JCDAS wind analysis data. The CO2 forward simulations were performed on 2.5° × 2.5° horizontal grids at 32 vertical levels between the surface and the top of the atmosphere. The a priori flux dataset used was comprised of the sum of four

  8. Modeling CO2 Gas Migration of Shallow Subsurface CO2 Leakage Experiments

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Plampin, M. R.; Pawar, R.; Illangasekare, T. H.

    2013-12-01

    Leakage of injected CO2 into shallow subsurface aquifers or back into the atmosphere at geologic carbon sequestration sites is a risk that must be minimized. One potential CO2 leakage pathway involves the transport of dissolved CO2 into a shallow aquifer where the CO2 exsolves, forming a free CO2 gas phase that subsequently migrates through the aquifer. In order to reduce the negative effects of CO2 exsolution, it is important to fully understand each of the processes controlling the movement CO2, as well as the effects of aquifer heterogeneity on the overall fate and transport of CO2. In this work, we present multiphase flow simulations of intermediate scale CO2 exsolution experiments. The multiphase flow simulations were carried out using the Finite Element Heat and Mass Transfer code (FEHM) developed at Los Alamos National Laboratory. Simulations were first designed to model experiments conducted in two different homogeneous packed sands. PEST (Parameter Estimation and Uncertainty Analysis) was used to optimize multiphase flow parameters (i.e., porosity, permeability, relative permeability, and capillary pressure) within FEHM. The optimized parameters were subsequently used to model heterogeneous experiments consisting of various packing configurations using the same sands. Comparisons of CO2 saturation between experiments and simulations will be presented and analyzed.

  9. Leaf cavity CO2 concentrations and CO2 exchange in onion, Allium cepa L.

    PubMed

    Byrd, G T; Loboda, T; Black, C C; Brown, R H

    1995-06-01

    Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 μL L(-1) near the leaf base to below atmospheric (<350 μL L(-1)) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 μmol m(-2) s(-1) and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by (14)CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 μL L(-1) of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L(-1) O2 compared to 20 mL L(-1) O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue. PMID:24307095

  10. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  11. Precursory volcanic CO2 signals from space

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  12. CO2 sequestration potential of Charqueadas coal field in Brazil

    SciTech Connect

    Romanov, V; Santarosa, C; Crandall, D; Haljasmaa, I; Hur, T -B; Fazio, J; Warzinski, R; Heemann, R; Ketzer, J M

    2013-02-01

    Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study. The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.

  13. How to Rank Journals

    PubMed Central

    Bradshaw, Corey J. A.; Brook, Barry W.

    2016-01-01

    There are now many methods available to assess the relative citation performance of peer-reviewed journals. Regardless of their individual faults and advantages, citation-based metrics are used by researchers to maximize the citation potential of their articles, and by employers to rank academic track records. The absolute value of any particular index is arguably meaningless unless compared to other journals, and different metrics result in divergent rankings. To provide a simple yet more objective way to rank journals within and among disciplines, we developed a κ-resampled composite journal rank incorporating five popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index of relative rank uncertainty. We applied the approach to six sample sets of scientific journals from Ecology (n = 100 journals), Medicine (n = 100), Multidisciplinary (n = 50); Ecology + Multidisciplinary (n = 25), Obstetrics & Gynaecology (n = 25) and Marine Biology & Fisheries (n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplinary journal set to the results of a survey of 188 publishing ecologists who were asked to rank the same journals, and found a 0.68–0.84 Spearman’s ρ correlation between the two rankings datasets. Our composite index approach therefore approximates relative journal reputation, at least for that discipline. Agglomerative and divisive clustering and multi-dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identified specific clusters of similarly ranked journals, with only Nature & Science separating out from the others. When comparing a selection of journals within or among disciplines, we recommend collecting multiple citation-based metrics for a sample of relevant and realistic journals to calculate the composite rankings and their relative uncertainty windows. PMID:26930052

  14. How to Rank Journals.

    PubMed

    Bradshaw, Corey J A; Brook, Barry W

    2016-01-01

    There are now many methods available to assess the relative citation performance of peer-reviewed journals. Regardless of their individual faults and advantages, citation-based metrics are used by researchers to maximize the citation potential of their articles, and by employers to rank academic track records. The absolute value of any particular index is arguably meaningless unless compared to other journals, and different metrics result in divergent rankings. To provide a simple yet more objective way to rank journals within and among disciplines, we developed a κ-resampled composite journal rank incorporating five popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index of relative rank uncertainty. We applied the approach to six sample sets of scientific journals from Ecology (n = 100 journals), Medicine (n = 100), Multidisciplinary (n = 50); Ecology + Multidisciplinary (n = 25), Obstetrics & Gynaecology (n = 25) and Marine Biology & Fisheries (n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplinary journal set to the results of a survey of 188 publishing ecologists who were asked to rank the same journals, and found a 0.68-0.84 Spearman's ρ correlation between the two rankings datasets. Our composite index approach therefore approximates relative journal reputation, at least for that discipline. Agglomerative and divisive clustering and multi-dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identified specific clusters of similarly ranked journals, with only Nature & Science separating out from the others. When comparing a selection of journals within or among disciplines, we recommend collecting multiple citation-based metrics for a sample of relevant and realistic journals to calculate the composite rankings and their relative uncertainty windows. PMID:26930052

  15. Advanced CO2 Removal Technology Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas

    2001-01-01

    The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.

  16. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2

    NASA Technical Reports Server (NTRS)

    Kawa, Randy; Huisheng, Bian

    2004-01-01

    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  17. NaSrCo2F7, a Co(2+) pyrochlore antiferromagnet.

    PubMed

    Krizan, J W; Cava, R J

    2015-07-29

    We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3 K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder. PMID:26154596

  18. Memory Efficient Ranking.

    ERIC Educational Resources Information Center

    Moffat, Alistair; And Others

    1994-01-01

    Describes an approximate document ranking process that uses a compact array of in-memory, low-precision approximations for document length. Combined with another rule for reducing the memory required by partial similarity accumulators, the approximation heuristic allows the ranking of large document collections using less than one byte of memory…

  19. On Rank and Nullity

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2012-01-01

    This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.

  20. Hitting the Rankings Jackpot

    ERIC Educational Resources Information Center

    Chapman, David W.

    2008-01-01

    Recently, Samford University was ranked 27th in the nation in a report released by "Forbes" magazine. In this article, the author relates how the people working at Samford University were surprised at its ranking. Although Samford is the largest privately institution in Alabama, its distinguished academic achievements aren't even well-recognized…

  1. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  2. Monitoring of near surface CO2

    NASA Astrophysics Data System (ADS)

    Faber, E.; Möller, I.; Teschner, M.; Poggenburg, J.; Spickenbom, K.; Schulz, H. J.

    2009-04-01

    Monitoring of near surface CO2 ECKHARD FABER1, INGO MÖLLER1, MANFRED TESCHNER1, JÜRGEN POGGENBURG1, KAI SPICKENBOM1, HANS-MARTIN SCHULZ1,2 1Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, e.faber@bgr.de 2present adress: GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, D-14473 Potsdam Underground gas storage and sequestration of carbon dioxide is one of the methods to reduce the input of antropogenic CO2 into the atmosphere and its greenhouse effect. Storage of CO2 is planned in depleted reservoirs, in aquifers and in salt caverns. Storage sites must have very small leakage rates to safely store the CO2 for centuries. Thus, a careful investigation and site selection is crucial. However, any leakage of CO2 to the surface is potentially dangerous for humans and environment. Therefore, instruments and systems for the detection of any CO2 escaping the storage sites and reaching the atmosphere have to be developed. Systems to monitor gases in deep wells, groundwater and surface sediments for leaking CO2 are developed, tested and are contnuously improved. Our group is mainly analysing CO2 in shallow (down to 3 m) soil samples using automatically operating monitoring systems. The systems are equipped with sensors to measure CO2 (and other gases) concentrations and other environmental parameters (atmospheric pressure, ambient and soil temperatures, etc.). Data are measured in short intervals (minute to subminute), are stored locally and are transferred by telemetrical systems into the BGR laboratory (Weinlich et al., 2006). In addition to soil gases monitoring systems technical equipment is available for continuous underwater gas flow measurements. Several of those monitoring systems are installed in different areas like Czech Republic, Austria, Italy and Germany. To detect any leaking gas from a sequestration site after CO2 injection, the naturally existing CO2 concentration (before injection) must be known. Thus, the natural

  3. Decarboxylation, CO2 and the reversion problem.

    PubMed

    Kluger, Ronald

    2015-11-17

    Decarboxylation reactions occur rapidly in enzymes but usually are many orders of magnitude slower in solution, if the reaction occurs at all. Where the reaction produces a carbanion and CO2, we would expect that the high energy of the carbanion causes the transition state for C-C bond cleavage also to be high in energy. Since the energy of the carbanion is a thermodynamic property, an enzyme obviously cannot change that property. Yet, enzymes overcome the barrier to forming the carbanion. In thinking about decarboxylation, we had assumed that CO2 is well behaved and forms without its own barriers. However, we analyzed reactions in solution of compounds that resemble intermediates in enzymic reaction and found some of them to be subject to unexpected forms of catalysis. Those results caused us to discard the usual assumptions about CO2 and carbanions. We learned that CO2 can be a very reactive electrophile. In decarboxylation reactions, where CO2 forms in the same step as a carbanion, separation of the products might be the main problem preventing the forward reaction because the carbanion can add readily to CO2 in competition with their separation and solvation. The basicity of the carbanion also might be overestimated because when we see that the decarboxylation is slow, we assume that it is because the carbanion is high in energy. We found reactions where the carbanion is protonated internally; CO2 appears to be able to depart without reversion more rapidly. We tested these ideas using kinetic analysis of catalytic reactions, carbon kinetic isotope effects, and synthesis of predecarboxylation intermediates. In another case, we observed that the decarboxylation is subject to general base catalysis while producing a significant carbon kinetic isotope effect. This requires both a proton transfer from an intermediate and C-C bond-breaking in the rate-determining step. This would occur if the route involves the surprising initial addition of water to the carboxyl

  4. CO2 DIAL measurements of water vapor

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Margolis, Jack S.; Brothers, Alan M.; Tratt, David M.

    1987-01-01

    CO2 lidars have heretofore been used to measure water vapor concentrations primarily using the 10R(20) line at 10.247 microns, which has a strong overlap with a water vapor absorption line. This paper discusses the use of that line as well as other CO2 laser lines for which the absorption coefficients are weaker. The literature on measurement of water vapor absorption coefficients using CO2 lasers is reviewed, and the results from four laboratories are shown to be generally consistent with each other after they are normalized to the same partial pressure, temperature, and ethylene absorption coefficent for the 10P(14) CO2 laser line; however, the agreement with the Air Force Geophysics Laboratory's HITRAN and FASCOD 2 spectral data tapes is not good either for the water vapor absorption lines or for the water vapor continuum. Demonstration measurements of atmospheric water vapor have been conducted using the Mobile Atmospheric Pollutant Mapping System, a dual CO2 lidar system using heterodyne detection. Results are discussed for measurements using three sets of laser line pairs covering a wide range of water vapor partial pressures.

  5. Direct Copolymerization of CO2 and Diols

    PubMed Central

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  6. Direct CO2-Methanation of flue gas

    NASA Astrophysics Data System (ADS)

    Müller, Klaus; Fleige, Michael; Rachow, Fabian; Israel, Johannes; Schmeißer, Dieter

    2013-04-01

    Already discovered by Paul Sabatier in 1902 the Hydrogenation according to CO2 + 4H2 ->CH4 + 2H2O nowadays is discussed in the course of the "Power-to-Gas" approach to utilize excess energy from renewable electricity generation in times of oversupply of electricity. We investigate the behavior of this process in a simulated flue gas atmosphere of conventional base load power plants, which could be used as constant sources of the reactant CO2. In relation to an approach related to carbon capture and cycling, the conversion of CO2 directly from the flue gas of a conventional power plant is a new aspect and has several advantages: The conversion of CO2 into methane could be integrated directly into the combustion process. Even older power plants could be upgraded and used as a possible source for CO2, in the same sense as the amine cleaning of flue gas, as a post combustion process. Further, waste heat of the power plant could be used as process energy for the catalytic reaction. Therefore the influence of different flue gas compositions such as varying contents of nitrogen and residual oxygen are tested in a laboratory scale. The heterogeneous catalysis process is investigated with regard to conversion rates, yield and selectivity and long-term stability of the Ni-catalyst. Also the influence of typical contaminations like SO2 is investigated and will be presented.

  7. The supply chain of CO2 emissions

    PubMed Central

    Davis, Steven J.; Peters, Glen P.; Caldeira, Ken

    2011-01-01

    CO2 emissions from the burning of fossil fuels are conventionally attributed to the country where the emissions are produced (i.e., where the fuels are burned). However, these production-based accounts represent a single point in the value chain of fossil fuels, which may have been extracted elsewhere and may be used to provide goods or services to consumers elsewhere. We present a consistent set of carbon inventories that spans the full supply chain of global CO2 emissions, finding that 10.2 billion tons CO2 or 37% of global emissions are from fossil fuels traded internationally and an additional 6.4 billion tons CO2 or 23% of global emissions are embodied in traded goods. Our results reveal vulnerabilities and benefits related to current patterns of energy use that are relevant to climate and energy policy. In particular, if a consistent and unavoidable price were imposed on CO2 emissions somewhere along the supply chain, then all of the parties along the supply chain would seek to impose that price to generate revenue from taxes collected or permits sold. The geographical concentration of carbon-based fuels and relatively small number of parties involved in extracting and refining those fuels suggest that regulation at the wellhead, mine mouth, or refinery might minimize transaction costs as well as opportunities for leakage. PMID:22006314

  8. Direct Copolymerization of CO2 and Diols

    NASA Astrophysics Data System (ADS)

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-04-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification.

  9. Direct Copolymerization of CO2 and Diols.

    PubMed

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  10. Generation of X-CGD cells for vector evaluation from healthy donor CD34(+) HSCs by shRNA-mediated knock down of gp91(phox).

    PubMed

    Brendel, Christian; Kaufmann, Kerstin B; Krattenmacher, Anja; Pahujani, Shweta; Grez, Manuel

    2014-01-01

    Innovative approaches for the treatment of rare inherited diseases are hampered by limited availability of patient derived samples for preclinical research. This also applies for the evaluation of novel vector systems for the gene therapy of monogenic hematological diseases like X-linked chronic granulomatous disease (X-CGD), a severe primary immunodeficiency caused by mutations in the gp91(phox) subunit of the phagocytic NADPH oxidase. Since current gene therapy protocols involve ex vivo gene modification of autologous CD34(+) hematopoietic stem cells (HSC), the ideal preclinical model should simulate faithfully this procedure. However, the low availability of patient-derived CD34(+) cells limits the feasibility of this approach. Here, we describe a straightforward experimental strategy that circumvents this limitation. The knock down of gp91(phox) expression upon lentiviral delivery of shRNAs into CD34(+) cells from healthy donors generates sufficient amounts of X-CGD CD34(+) cells which subsequently can be used for the evaluation of novel gene therapeutic strategies using a codon-optimized gp91(phox) transgene. We have used this strategy to test the potential of a novel gene therapy vector for X-CGD. PMID:26015977

  11. Successful Combination of Sequential Gene Therapy and Rescue Allo-HSCT in Two Children with X-CGD - Importance of Timing.

    PubMed

    Siler, Ulrich; Paruzynski, Anna; Holtgreve-Grez, Heidi; Kuzmenko, Elena; Koehl, Ulrike; Renner, Eleonore D; Alhan, Canan; de Loosdrecht, Arjan A van; Schwäble, Joachim; Pfluger, Thomas; Tchinda, Joelle; Schmugge, Markus; Jauch, Anna; Naundorf, Sonja; Kühlcke, Klaus; Notheis, Gundula; Güngor, Tayfun; Kalle, Christof V; Schmidt, Manfred; Grez, Manuel; Seger, Reinhard; Reichenbach, Janine

    2015-01-01

    We report on a series of sequential events leading to long-term survival and cure of pediatric X-linked chronic granulomatous disease (X-CGD) patients after gamma-retroviral gene therapy (GT) and rescue HSCT. Due to therapyrefractory life-threatening infections requiring hematopoietic stem cell transplantation (HSCT) but absence of HLAidentical donors, we treated 2 boys with X-CGD by GT. Following GT both children completely resolved invasive Aspergillus nidulans infections. However, one child developed dual insertional activation of ecotropic viral integration site 1 (EVI1) and signal transducer and activator of transcription 3 (STAT3) genes, leading to myelodysplastic syndrome (MDS) with monosomy 7. Despite resistance to mismatched allo-HSCT with standard myeloablative conditioning, secondary intensified rescue allo-HSCT resulted in 100 % donor chimerism and disappearance of MDS. The other child did not develop MDS despite expansion of a clone with a single insertion in the myelodysplasia syndrome 1 (MDS1) gene and was cured by early standard allo-HSCT. The slowly developing dominance of clones harboring integrations in MDS1-EVI1 may guide clinical intervention strategies, i.e. early rescue allo-HSCT, prior to malignant transformation. GT was essential for both children to survive and to clear therapy-refractory infections, and future GT with safer lentiviral self-inactivated (SIN) vectors may offer a therapeutic alternative for X-CGD patients suffering from life-threatening infections and lacking HLA-identical HSC donors. PMID:25981636

  12. Surface CO2 leakage during the first shallow subsurface CO2release experiment

    SciTech Connect

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2007-09-15

    A new field facility was used to study CO2 migrationprocesses and test techniques to detect and quantify potential CO2leakage from geologic storage sites. For 10 days starting 9 July 2007,and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1,respectively, were released from a ~;100-m long, sub-water table (~;2.5-mdepth) horizontal well. The spatio-temporal evolution of leakage wasmapped through repeated grid measurements of soil CO2 flux (FCO2). Thesurface leakage onset, approach to steady state, and post-release declinematched model predictions closely. Modeling suggested that minimal CO2was taken up by groundwater through dissolution, and CO2 spread out ontop of the water table. FCO2 spatial patterns were related to well designand soil physical properties. Estimates of total CO2 discharge along withsoil respiration and leakage discharge highlight the influence ofbackground CO2 flux variations on detection of CO2 leakagesignals.

  13. CO2-Binding-Organic-Liquids-Enhanced CO2 Capture using Polarity-Swing-Assisted Regeneration

    SciTech Connect

    Zhang, Jian; Kutnyakov, Igor; Koech, Phillip K.; Zwoster, Andy; Howard, Chris; Zheng, Feng; Freeman, Charles J.; Heldebrant, David J.

    2013-01-01

    A new solvent-based CO2 capture process couples the unique attributes of non-aqueous, CO2-binding organic liquids (CO2BOLs) with the newly discovered polarity-swing-assisted regeneration (PSAR) process that is unique to switchable ionic liquids. Laboratory measurements with PSAR indicate the ability to achieve a regeneration effect at 75°C comparable to that at 120°C using thermal regeneration only. Initial measurements also indicate that the kinetic behavior of CO2 release is also improved with PSAR. Abstract cleared PNWD-SA-9743

  14. Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.

    PubMed

    Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz

    2014-06-01

    We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development. PMID:24798684

  15. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  16. The oceanic sink for anthropogenic CO2.

    PubMed

    Sabine, Christopher L; Feely, Richard A; Gruber, Nicolas; Key, Robert M; Lee, Kitack; Bullister, John L; Wanninkhof, Rik; Wong, C S; Wallace, Douglas W R; Tilbrook, Bronte; Millero, Frank J; Peng, Tsung-Hung; Kozyr, Alexander; Ono, Tsueno; Rios, Aida F

    2004-07-16

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential. PMID:15256665

  17. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  18. Oxygen isotope fractionation in stratospheric CO2

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J.

    1991-01-01

    A new cryogenic collection system has been flown on board a balloon gondola to obtain separate samples of ozone and carbon dioxide without entrapping major atmospheric gases. Precision laboratory isotopic analysis of CO2 samples collected between 26 and 35.5 km show a mass-independent enrichment in both O-17 and O-18 of about 11 per mil above tropospheric values. Ozone enrichment in its heavy isotopes was 9 to 16 percent in O3-50 and 8 to 11 percent in O3-49, respectively (Schueler et al., 1990). A mechanism to explain the isotope enrichment in CO2 has been recently proposed by Yung et al. (1991). The model is based on the isotope exchange between CO2 and O3 via O(1D), resulting in a transfer of the ozone isotope enrichment to carbon dioxide. Predicted enrichment and measured values agree well.

  19. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    Accelerated weathering of limestone (AWL: CO22+ + CaCO3 + H2O ??? Ca2+ + 2HCO3- as a low-tech, inexpensive, high-capacity, environmentally-friendly CO2 capture and sequestration technology was evaluated. With access to seawater and limestone being essential to this approach, significant limestone resources were close to most CO2-emitting power plants along the coastal US. Waste fines, representing > 20% of current US crushed limestone production (> 109 tons/yr), could be used as an inexpensive source of AWL carbonate. AWL end-solution disposal in the ocean would significantly reduce effects on ocean pH and carbonate chemistry relative to those caused by direct atmospheric or ocean CO2 disposal. Indeed, the increase in ocean Ca2+ and bicarbonate offered by AWL should enhance growth of corals and other calcifying marine organisms.

  20. Quick-look assessments to identify optimal CO2 EOR storage sites

    NASA Astrophysics Data System (ADS)

    Núñez-López, Vanessa; Holtz, Mark H.; Wood, Derek J.; Ambrose, William A.; Hovorka, Susan D.

    2008-06-01

    A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.

  1. CO2 sequestration in basalts: laboratory measurements

    NASA Astrophysics Data System (ADS)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  2. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bodewits, Dennis; Feaga, Lori; Knight, Matthew; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2016-08-01

    Carbon dioxide is a primary volatile in comet nuclei, and potentially a major contributor to comet activity (i.e., the process of mass loss). However, CO2 cannot be observed directly from the ground, and past surveys of this molecule in comets were limited to space-borne snapshot observations. This situation limits our understanding of the behavior of CO2 in comets, and its role in driving comet mass loss. To address this deficiency, we were awarded a Cy11 Spitzer program designed to quantify the production rate of CO2 on >month-long timescales for 21 comets. We request an additional 269~hr in Cy13 to complete the Spitzer portion of our survey, and to add three more comets (46P/Wirtanen and 2 Target of Opportunity Oort cloud comets). Our survey is designed to probe the orbital trends of CO2 production in the comet population. We aim to: 1) examine the role of CO2 in the persistent post-perihelion activity observed in Jupiter-family comets; 2) measure the seasonal variations of CO2/H2O as a proxy for nucleus heterogeneity, when possible; 3) search for orbital trends sensitive to cumulative insolation as a proxy for nucleus layering; and 4) examine how Oort cloud comets evolve by comparing dynamically new and old targets. The final data set will allow us to investigate the effects of heating on the evolution of comets, if nucleus structures can be inferred through activity, and set the stage for JWST investigations into comet activity and composition.

  3. CO2 chemosensing in rat oesophagus

    PubMed Central

    Akiba, Y; Mizumori, M; Kuo, M; Ham, M; Guth, P H; Engel, E; Kaunitz, J D

    2016-01-01

    Background Acid in the oesophageal lumen is often sensed as heartburn. It was hypothesised that luminal CO2, a permeant gas, rather than H+, permeates through the epithelium, and is converted to H+, producing an afferent neural signal by activating chemosensors. Methods The rat lower oesophageal mucosa was superfused with pH 7.0 buffer, and pH 1.0 or pH 6.4 high CO2 (PCO2 = 260 Torr) solutions with or without the cell-permeant carbonic anhydrase (CA) inhibitor methazolamide (MTZ, 1 mM), the cell-impermeant CA inhibitor benzolamide (BNZ, 0.1 mM), the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (CPZ, 0.5 mM) or the acid-sensing ion channel (ASIC) inhibitor amiloride (0.1 mM). Interstitial pH (pHint) was measured with 5′,6′-carboxyfluorescein (5 mg/kg intravenously) loaded into the interstitial space, and blood flow was measured with laser-Doppler. Results Perfusion of a high CO2 solution induced hyperaemia without changing pHint, mimicking the effect of pH 1.0 perfusion. Perfused MTZ, BNZ, CPZ and amiloride all inhibited CO2-induced hyperaemia. CA XIV was expressed in the prickle cells, with CA XII in the basal cells. TRPV1 was expressed in the stratum granulosum and in the muscularis mucosa, whereas all ASICs were expressed in the prickle cells, with ASIC3 additionally in the muscularis mucosa. Conclusions The response to CO2 perfusion suggests that CO2 diffuses through the stratum epithelium, interacting with TRPV1 and ASICs in the epithelium or in the submucosa. Inhibition of the hyperaemic response to luminal CO2 by CA, TRPV1 and ASIC inhibitors implicates CA and these chemosensors in transduction of the luminal acid signal. Transepithelial CO2 permeation may explain how luminal H+ equivalents can rapidly be transduced into hyperaemia, and the sensation of heartburn. PMID:18682519

  4. Leak Path Development in CO2 Wells

    NASA Astrophysics Data System (ADS)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.

    2014-12-01

    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  5. CO2 laser cutting of natural granite

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  6. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  7. Selective Oxytrifluoromethylation of Allylamines with CO2.

    PubMed

    Ye, Jian-Heng; Song, Lei; Zhou, Wen-Jun; Ju, Tao; Yin, Zhu-Bao; Yan, Si-Shun; Zhang, Zhen; Li, Jing; Yu, Da-Gang

    2016-08-16

    Reported is the first oxy-trifluoromethylation of allylamines with carbon dioxide (CO2 ) using copper catalysis, thus leading to important CF3 -containing 2-oxazolidones. It is also the first time CO2 , a nontoxic and easily available greenhouse gas, has been used to tune the difunctionalization of alkenes from amino- to oxy-trifluoromethylation. Of particular note, this multicomponent reaction is highly chemo-, regio-, and diastereoselective under redox-neutral and mild reaction conditions. Moreover, these reactions feature good functional-group tolerance, broad substrate scope, easy scalability and facile product diversification. The important products could also be formed with either spirocycles or two adjacent tetrasubstituted carbon centers. PMID:27411560

  8. CO2 Acquisition Membrane (CAM) Project

    NASA Technical Reports Server (NTRS)

    Mason, L. W.; Way, J. D.; Vlasse, M.

    2001-01-01

    The CO2 Acquisition Membrane (CAM) project will develop, test, and analyze membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The CAM technology will enable passive separation of these gases, allow energy efficient acquisition and purification of these important resources, and lay the foundation for future unmanned sample return and human space missions. The CAM membranes are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP).

  9. Crystallization of CO2 ice and the absence of amorphous CO2 ice in space

    PubMed Central

    Escribano, Rafael M.; Muñoz Caro, Guillermo M.; Cruz-Diaz, Gustavo A.; Rodríguez-Lazcano, Yamilet; Maté, Belén

    2013-01-01

    Carbon dioxide (CO2) is one of the most relevant and abundant species in astrophysical and atmospheric media. In particular, CO2 ice is present in several solar system bodies, as well as in interstellar and circumstellar ice mantles. The amount of CO2 in ice mantles and the presence of pure CO2 ice are significant indicators of the temperature history of dust in protostars. It is therefore important to know if CO2 is mixed with other molecules in the ice matrix or segregated and whether it is present in an amorphous or crystalline form. We apply a multidisciplinary approach involving IR spectroscopy in the laboratory, theoretical modeling of solid structures, and comparison with astronomical observations. We generate an unprecedented highly amorphous CO2 ice and study its crystallization both by thermal annealing and by slow accumulation of monolayers from the gas phase under an ultrahigh vacuum. Structural changes are followed by IR spectroscopy. We also devise theoretical models to reproduce different CO2 ice structures. We detect a preferential in-plane orientation of some vibrational modes of crystalline CO2. We identify the IR features of amorphous CO2 ice, and, in particular, we provide a theoretical explanation for a band at 2,328 cm−1 that dominates the spectrum of the amorphous phase and disappears when the crystallization is complete. Our results allow us to rule out the presence of pure and amorphous CO2 ice in space based on the observations available so far, supporting our current view of the evolution of CO2 ice. PMID:23858474

  10. Recurrent fuzzy ranking methods

    NASA Astrophysics Data System (ADS)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  11. Greenland CO2 and δ13C of CO2 - assigning the contamination

    NASA Astrophysics Data System (ADS)

    Jenk, T.; Rubino, M.; Etheridge, D.; Bigler, M.; Blunier, T.

    2012-04-01

    Analysis of air extracted from bubbles of Greenland ice results in considerably higher CO2 concentrations compared to records from Antarctic sites. This can not be explained by the inter-hemispheric gradient expected for past climatic conditions. Instead, it is attributed to chemical reactions between impurities in the ice, contributing excess CO2 to the atmospheric signal which was initially trapped in the bubbles. This is consistent with the fact that Greenland ice contains a significantly higher amount of impurities compared to Antarctic ice. Different candidates of CO2 producing chemical reactions were suggested by previous studies: (i) the acidification of carbonates, (ii) the oxidation of hydrocarbons and (iii) the photodecarboxilation of humic like substances. However, there is no agreement on how much each of the above reactions contributes. This study aims to identify the contribution from organic and inorganic sources to the Greenland CO2 excess. Compared to previous studies we base our analysis on an increased set of parameters and data points. We discuss data of CO2 and δ13C-CO2, both in high (2.5 cm) and low resolution (55 to 110 cm) along with parallel records of chemical impurities from three different sites in Greenland. The samples for the presented high resolution CO2 and δ13C of CO2 records were measured on a new set-up at the Centre for Ice and Climate (needle cracker, GC-IRMS).

  12. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News ... L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.2 x 8.5 km nadir ... Subset Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  13. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News:  TES News ... L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 x 8.5 km nadir ... Subset Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  14. CO2 Virtual Science Data Environment: Providing Streamlined Access to CO2 Data

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Cinquini, L.; Davidoff, S.; Duran, B.; Eldering, A.; Granat, R. A.; Gunson, M. R.; Hofman, J.; Knosp, B.; Murphy, E.; Osterman, G. B.; Zimdars, P.

    2014-12-01

    CO2 is an important greenhouse gas and therefore characterizing and understanding its global distribution is crucial for the study of Earth's changing climate. Currently, satellite remote sensing measurements of CO2 are available from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric InfraRed Sounder (AIRS), Orbiting Carbon Observatory 2 (OCO-2), and Tropospheric Emission Spectrometer (TES). Traditionally, data from these different missions are distributed separately from one another and they each possess different data formats, making it cumbersome for researchers to access, analyze, and perform inter-comparison. We present an effort at JPL to design a web-based science data environment (co2.jpl.nasa.gov) that allows users to access and utilize CO2 data from GOSAT, AIRS, OCO-2, TES, and the ground-based Total Carbon Column Observing Network (TCCON) in a single user-friendly interface. The features of the data environment include the ability to download full mission-specific CO2-related Level 2 data files or to customize them based on location, time, data variable, version, and format. An important feature of the JPL CO2 data environment is that it allows generation of customized Level 3 products and provides detailed documentation on the mission specifications along with technical data information. These tools are designed to allow users streamlined access to relevant remote sensing and ground-based CO2 datasets in order to facilitate research on atmospheric CO2.

  15. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in

  16. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  17. Effects of dissolved CO2 on Shallow Freshwater Microbial Communities simulating a CO2 Leakage Scenario

    NASA Astrophysics Data System (ADS)

    Gulliver, D. M.; Lowry, G. V.; Gregory, K.

    2013-12-01

    Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the atmospheric release of greenhouse gasses, establishing a concern of sequestered CO2 leakage into overlying potable aquifers. Leaking CO2 may affect existing biogeochemical processes and therefore water quality. There is a critical need to understand the evolution of CO2 exposed microbial communities that influence the biogeochemistry in these freshwater aquifers. The evolution of microbial ecology for different CO2 exposure concentrations was investigated using fluid-slurry samples obtained from a shallow freshwater aquifer (55 m depth, 0.5 MPa, 22 °C, Escatawpa, MS). The microbial community of well samples upstream and downstream of CO2 injection was characterized. In addition, batch vessel experiments were conducted with the upstream aquifer samples exposed to varying pCO2 from 0% to 100% under reservoir temperature and pressure for up to 56 days. The microbial community of the in situ experiment and the batch reactor experiment were analyzed with 16S rRNA clone libraries and qPCR. In both the in situ experiment and the batch reactor experiment, DNA concentration did not correlate with CO2 exposure. Both the in situ experiment and the batch reactors displayed a changing microbial community with increased CO2 exposure. The well water isolate, Curvibacter, appeared to be the most tolerant genus to high CO2 concentrations in the in situ experiments and to mid-CO2 concentrations in the batch reactors. In batch reactors with pCO2 concentrations higher than experienced in situ (pCO2 = 0.5 MPa), Pseudomonas appeared to be the most tolerant genus. Findings provide insight into a dynamic biogeochemical system that will alter with CO2 exposure. Adapted microbial populations will eventually give rise to the community that will impact the metal mobility and water quality. Knowledge of the surviving microbial populations will enable improved models for predicting the fate of CO2

  18. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  19. Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery

    NASA Astrophysics Data System (ADS)

    Lach, Elliot

    1994-09-01

    The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.

  20. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  1. CO2 laser used in cosmetology

    NASA Astrophysics Data System (ADS)

    Su, Chenglie

    1993-03-01

    Cases of various kinds of warts, nevi, papillomas, skin angiomas, ephilises, skin vegetation, scars and brandy noses were vaporized and solidified with a 2.5 - 8 W low power CO2 laser with an overall satisfaction rate up to 99.8% and the satisfaction rate for one time 92%.

  2. Agriculture waste and rising CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there are many uncertainties concerning agriculture’s role in global environmental change including the effects of rising atmospheric CO2 concentration. A viable and stable world food supply depends on productive agricultural systems, but environmental concerns within agriculture have to...

  3. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1976-01-01

    Development of a Bosch process CO2 reduction unit was continued, and, by means of hardware modifications, the performance was substantially improved. Benefits of the hardware upgrading were demonstrated by extensive unit operation and data acquisition in the laboratory. This work was accomplished on a cold seal configuration of the Bosch unit.

  4. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  5. Blackbody-pumped CO2 laser experiment

    NASA Astrophysics Data System (ADS)

    Christiansen, W. H.; Insuik, R. J.

    1983-07-01

    Thermal radiation from a high temperature oven was used as an optical pump to achieve lasing from CO2 mixtures. Laser output as a function of blackbody temperature and gas conditions is described. This achievement represents the first blackbody cavity pumped laser and has potential for solar pumping. Previously announced in STAR as N83-10420

  6. 76 FR 43489 - Deferral for CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... dioxide CO 2 e carbon dioxide equivalents EO Executive Order EPA U.S. Environmental Protection Agency FR... the national inventory, see 74 FR 55351, under the definition for ``carbon dioxide equivalent.'' We... Prevention of Significant Deterioration (PSD) and Title V permitting requirements to biogenic carbon...

  7. Nuclear-pumped CO2 laser

    NASA Technical Reports Server (NTRS)

    Rowe, M.

    1979-01-01

    The He-3 (n,p)T reaction was examined as an energy source for a CO2 laser. For this purpose He-3 was added to a functioning CO2 electrically excited laser. Initially the laser was run electrically with 12 torr total pressure. The gas mixture was 1:1:8, CO2:N2:He. At zero reactor power, the laser was tested in place next to the core of the Georgia Tech. Research Reactor. After verification of laser action He-3 was added to the system. The He-3 partial pressures of 10 torr, 50 torr, and 300 torr were added in three separate reactor runs. Reactor power ranged from zero to 5 million watts, which corresponds to a peak flux of 10 to the 14th power/sq cm. At reactor powers greater than 10 kW, gain of up to 30 percent was shown. However, indications are this may be due to gamma excitation rather than caused by the He-3 (n,p)T reaction. These results do agree with the data of past CO2 nuclear pumped laser experiments.

  8. Artificial photosynthesis - CO2 towards methanol

    NASA Astrophysics Data System (ADS)

    Nazimek, D.; Czech, B.

    2011-03-01

    The new insight into the problem of carbon dioxide utilization into valuable compound - methanol and then its transformation into fuel is presented. Because the highly endothermic requirements of the reaction of CO2 hydrogenation a photocatalytic route is applied. Combining of the two reactions: water splitting and CO2 hydrogenation using H2O as a source of hydrogen at the same time and place are proposed. The studies over modified TiO2 catalysts supported on Al2O3 were conducted in a self-designed circulated photocatalytic reaction system under at room temperature and constant pressure. Experimental results indicated that the highest yield of the photoreduction of CO2 with H2O were obtained using TiO2 with the active anatase phase modified by Ru and WO3 addition. The conversion was very high - almost 97% of CO2 was transformed mainly into methanol (14%vol.) and into small amount of formic and acetic acid and ester.

  9. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    NASA Astrophysics Data System (ADS)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2

  10. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    PubMed

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  11. Isolation of microorganisms from CO2 sequestration sites through enrichments under high pCO2

    NASA Astrophysics Data System (ADS)

    Peet, K. C.; Freedman, A. J.; Boreham, C.; Thompson, J. R.

    2012-12-01

    Carbon Capture and Storage (CCS) in geologic formations has the potential to reduce greenhouse gas emissions from fossil fuel processing and combustion. However, little is known about the effects that CO2 may have on biological activity in deep earth environments. To understand microorganisms associated with these environments, we have developed a simple high-pressure enrichment methodology to cultivate organisms capable of growth under supercritical CO2 (scCO2). Growth media targeting different subsurface functional metabolic groups is added to sterilized 316 stainless steel tubing sealed with quarter turn plug valves values and pressurized to 120-136 atm using a helium-padded CO2 tank, followed by incubation at 37 °C to achieve the scCO2 state. Repeated passages of crushed subsurface rock samples and growth media under supercritical CO2 headspaces are assessed for growth via microscopic enumeration. We have utilized this method to survey sandstone cores for microbes capable of growth under scCO2 from two different geologic sites targeted for carbon sequestration activities. Reproducible growth of microbial biomass under high pCO2 has been sustained from each site. Cell morphologies consist of primarily 1-2 μm rods and oval spores, with densities from 1E5-1E7 cells per ml of culture. We have purified and characterized a bacterial strain most closely related to Bacillus subterraneus (99% 16S rRNA identity) capable of growth under scCO2. Preliminary physiological characterization of this strain indicates it is a spore-forming facultative anaerobe able to grow in 0.5 to 50 ppt salinity. Genome sequencing and analysis currently in progress will help reveal genetic mechanisms of acclimation to high pCO2 conditions associated with geologic carbon sequestration.

  12. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  13. Vadose Zone Remediation of CO2 Leakage from Geologic CO2 Storage Sites

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Benson, Sally M.

    2004-03-03

    In the unlikely event that CO2 leakage from deep geologic CO2 sequestration sites reaches the vadose zone, remediation measures for removing the CO2 gas plume may have to be undertaken. Carbon dioxide leakage plumes are similar in many ways to volatile organic compound (VOC) vapor plumes, and the same remediation approaches are applicable. We present here numerical simulation results of passive and active remediation strategies for CO2 leakage plumes in the vadose zone. The starting time for the remediation scenarios is assumed to be after a steady-state CO2 leakage plume is established in the vadose zone, and the source of this plume has been cut off. We consider first passive remediation, both with and without barometric pumping. Next, we consider active methods involving extraction wells in both vertical and horizontal configurations. To compare the effectiveness of the various remediation strategies, we define a half-life of the CO2 plume as a convenient measure of the CO2 removal rate. For CO2 removal by passive remediation approaches such as barometric pumping, thicker vadose zones generally require longer remediation times. However, for the case of a thin vadose zone where a significant fraction of the CO2 plume mass resides within the high liquid saturation region near the water table, the half-life of the CO2 plume without barometric pumping is longer than for somewhat thicker vadose zones. As for active strategies, results show that a combination of horizontal and vertical wells is the most effective among the strategies investigated, as the performance of commonly used multiple vertical wells was not investigated.

  14. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  15. Modelling the Martian CO2 Ice Clouds

    NASA Astrophysics Data System (ADS)

    Listowski, Constantino; Määttänen, A.; Montmessin, F.; Lefèvre, F.

    2012-10-01

    Martian CO2 ice cloud formation represents a rare phenomenon in the Solar System: the condensation of the main component of the atmosphere. Moreover, on Mars, condensation occurs in a rarefied atmosphere (large Knudsen numbers, Kn) that limits the growth efficiency. These clouds form in the polar winter troposphere and in the mesosphere near the equator. CO2 ice cloud modeling has turned out to be challenging: recent efforts (e.g. [1]) fail in explaining typical small sizes (80 nm-130 nm) observed for mesospheric clouds [2]. Supercold pockets (T<< Tcond), which appear to be common in the mesosphere [3],might be exclusively responsible of the formation of such clouds, as a consequence of gravity waves propagating throughout the atmosphere [4]. In order to understand by modeling the effect CO2 clouds could have on the Martian climate, one needs to properly predict the crystal sizes, and so the growth rates involved. We will show that Earth microphysical crystal growth models, which deal with the condensation of trace gases, are misleading when transposed for CO2 cloud formation: they overestimate the growth rates at high saturation ratios. On the other hand, an approach based on the continuum regime (small Kn), corrected to account for the free molecular regime (high Kn) remains efficient. We present our new approach for modelling the growth of Martian CO2 cloud crystals, investigated with a 1D-microphysical model. [1] Colaprete, A., et al., (2008) PSS, 56, 150C [2] Montmessin, F., et al., (2006) Icarus, 183, 403-410 [3] Montmessin at al., (2011) mamo, 404-405 [4] Spiga, A., et al., (2012), GRL, 39, L02201 [5] Wood, S. E., (1999), Ph.D. thesis, UCLA [6] Young, J. B., J. Geophys. Res., 36, 294-2956, 1993

  16. CO2 monitoring at the pilot-scale CO2 injection site in Nagaoka, Japan

    NASA Astrophysics Data System (ADS)

    Tanase, D.; Xue, Z.; Watanabe, J.; Saito, H.

    2005-12-01

    A pilot-scale CO2 sequestration project supported by the Japanese Government (METI) has been conducted by Research Institute of Innovative Technology for the Earth (RITE) in co-operation with Engineering Advancement Association of Japan (ENAA). The test site is located at the South Nagaoka gas field operated by Teikoku Oil Co., Ltd. in Nagaoka city, Niigata Prefecture, 200 km north of Tokyo. The targeted layer for the CO2 injection is a thin permeable zone intercalated in a 60 m thick sandstone bed of early Pleistocene age, which lies about 1,100 m below the ground surface. One injection well (IW-1) and three observation wells (OB-2, -3, -4) were drilled at the site. The CO2 injection started on 7 July 2003 and ended on 11 January 2005 with the total injected amount of 10,400 tonnes within eighteen months. Purchased CO2 of 99.9 % pure was injected in the supercritical state at the rate of 20-40 tonnes per day. A series of time-lapse CO2 monitoring consisted of geophysical well logging and cross-well seismic tomography has been performed at the injection site and the results provide valuable insight into the CO2 movement in the sandstone reservoir. Time-lapse well loggings of induction, gamma ray, neutron and sonic were performed almost once a month to monitor CO2 breakthrough at the three observation wells. On 10 March 2004, a breakthrough was first detected at OB-2, 40 m apart from the injection well, after the cumulative injection of 4,000 tonnes. As an evidence of CO2 breakthrough changes appeared in results of sonic, induction and neutron logs. The sonic P-wave velocity decreased significantly up to 23% after the breakthrough, and then results of sonic logging showed the CO2-bearing zone getting wider during the injection of CO2. Differences appeared also in widths of CO2-bearing zone of induction and neutron logs. On 16 July 2004, another breakthrough of CO2 was detected at OB-4 of 60 m away from the injection well as changes in sonic and neutron logs. No sign

  17. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban-rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without

  18. On the coupled system performance of transcritical CO2 heat pump and rankine cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Tian, Jingrui; Hou, Xiujuan

    2013-12-01

    As one of the natural refrigerants, CO2 is a potential substitute for synthesized refrigerants with favorable environmental properties. In order to improve the performance of rankine cycle (RankC), the coupled system cycle (CSC) was designed and the performance was analyzed in this paper, which the CSC is combined by the RankC and the transcritical CO2 heat pump cycle with an expander. Based on thermodynamic principles, the performance analysis platform was designed and the performance analysis was employed. The results show that the average efficiency of the RankC is about 30 %, and the extraction cycle is about 32 %, while the CSC is about 39 %, and the last one is better than the others at the same parameters. With increasing of the boiler feed water temperature, the efficiencies of the three kinds of cycles show increasing trend. With increasing of pressure in conderser-evaporator or outlet temperature of gas cooler, the efficiency of the CSC shows a downward trend. Some fundamental data were obtained for increasing the RankC efficiency by waste heat recovery, and play an active role in improvement the efficiency of power plants.

  19. Molecular Behavior CO2 and CO2-H2O Mixtures at Interfaces

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Chialvo, A.; Rother, G.; Vlcek, L.

    2010-12-01

    Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. Regardless of the formation type, the CO2 will encounter a complex heterogeneous porous matrix with widely varying pore size and pore distribution, interconnectivity, and surface composition. A small but non-trivial percentage of the pore space is comprised of voids that range from 100 nm down to a few nm in size. These nanoporous environments are more dominant in the cap or seal rocks, such as shale or clay-rich mudstones that act as confining barriers to leakage of CO2 out of the storage reservoir. A concern is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We investigated the behavior of pure CO2 and CO2-H2O mixtures interacting with simple substrates, e.g. SiO2 and muscovite, that act as proxies for more complex mineralogical systems. SANS results were described for sorption properties of supercritical CO2 inside mesoporous silica aerogel (95% porosity; 5-40 nm pores), a proxy for the quartz sub-system. The Adsorbed Phase Model (APM) allows, for the first time, a means to quantify the physical properties (e.g. excess, absolute and total adsorption) of the adsorbed phase formed by fluids inside porous media in terms of the mean density and volume of the sorption phase. The results show clear evidence for fluid depletion for conditions above the critical density. Classical molecular dynamics (CMD) modeling of CO2-silica aerogel interactions also indicates the presence of fluid depletion for conditions above the critical density consistent with SANS results. CMD was also used to assess the microscopic behavior of CO2-H2O mixture

  20. CO2-helium and CO2-neon mixtures at high pressures.

    PubMed

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium. PMID:23387603

  1. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    SciTech Connect

    Aubrey, Doug, P.; Teskey, Robert, O.

    2009-07-01

    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m-2 d-1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m-2 d-1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  2. Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2.

    PubMed

    Holtum, Joseph A M; Winter, Klaus

    2003-11-01

    Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 microl CO2 l(-1), net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 microl CO2 l(-1) and mean of 600 microl CO2 l(-1), the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 microl CO2 l(-1) was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 microl CO2 l(-1) to 600 microl CO2 l(-1). The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature. PMID:12905026

  3. Intraspecific variation in juvenile tree growth under elevated CO2 alone and with O3: a meta-analysis.

    PubMed

    Resco de Dios, Víctor; Mereed, Tessema E; Ferrio, Juan Pedro; Tissue, David T; Voltas, Jordi

    2016-06-01

    Atmospheric carbon dioxide (CO2) concentrations are expected to increase throughout this century, potentially fostering tree growth. A wealth of studies have examined the variation in CO2 responses across tree species, but the extent of intraspecific variation in response to elevated CO2 (eCO2) has, so far, been examined in individual studies and syntheses of published work are currently lacking. We conducted a meta-analysis on the effects of eCO2 on tree growth (height, stem biomass and stem volume) and photosynthesis across genotypes to examine whether there is genetic variation in growth responses to eCO2 and to understand their dependence on photosynthesis. We additionally examined the interaction between the responses to eCO2 and ozone (O3), another global change agent. Most of the published studies so far have been conducted in juveniles and in Populus spp., although the patterns observed were not species dependent. All but one study reported significant genetic variation in stem biomass, and the magnitude of intraspecific variation in response to eCO2 was similar in magnitude to previous analyses on interspecific variation. Growth at eCO2 was predictable from growth at ambient CO2 (R(2) = 0.60), and relative rankings of genotype performance were preserved across CO2 levels, indicating no significant interaction between genotypic and environmental effects. The growth response to eCO2 was not correlated with the response of photosynthesis (P > 0.1), and while we observed 57.7% average increases in leaf photosynthesis, stem biomass and volume increased by 36 and 38.5%, respectively, and height only increased by 9.5%, suggesting a predominant role for carbon allocation in ultimately driving the response to eCO2 Finally, best-performing genotypes under eCO2 also responded better under eCO2 and elevated O3 Further research needs include widening the study of intraspecific variation beyond the genus Populus and examining the interaction between eCO2 and

  4. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  5. The Relationship Between CO2 Levels and CO2 Related Symptoms Reported on the ISS

    NASA Technical Reports Server (NTRS)

    VanBaalen, M.; Law, J.; Foy, M.; Wear, M. L.; Mason, S.; Mendez, C.; Meyers, V.

    2014-01-01

    Medical Operations, Toxicology, and the Lifetime Surveillance of Astronaut Health collaborated to assess the association of CO2 levels on board the International Space Station and USOS crew reported symptoms inflight, i.e. headache and vision changes. Private Medical Conference (PMC) documents and the weekly Space Medicine Operations Team (SMOT) Notes were used to provide a robust data set of inflight medical events. All events and non-events were documented independent of CO2 levels and other potential contributors. Average (arithmetic mean) and single point maximum ppCO2 was calculated for the 24 hours and 7 days prior to the PMC or SMOT date and time provided by LSAH. Observations falling within the first 7 days of flight (147) were removed from the datasets analyzed to avoid confounding with Space Adaptation Syndrome. The final analysis was based on 1716 observations. For headache, 46 headaches were observed. CO2 level, age at launch, time inflight, and data source were all significantly associated with headache. In particular, for each 1 mmHg increase in CO2, the odds of a crewmember reporting a headache doubled. For vision changes, 29 reports of vision changes were observed. These observations were not found to be statistically associated with CO2 levels as analyzed. While the incidence of headache has was not high (3%), headaches may be an indicator of underlying increases in intracranial pressure, which may result likely from the synergy between CO2-induced cerebral vasodilatation and decreased venous drainage in microgravity. Vision changes were inconsistently reported and as a result did not align appropriately with the CO2 levels. Further analysis is needed. Our results support ongoing efforts to lower the CO2 exposure limits in spacecraft.

  6. CO2 mineralization-bridge between storage and utilization of CO2.

    PubMed

    Geerlings, Hans; Zevenhoven, Ron

    2013-01-01

    CO2 mineralization comprises a chemical reaction between suitable minerals and the greenhouse gas carbon dioxide. The CO2 is effectively sequestered as a carbonate, which is stable on geological timescales. In addition, the variety of materials that can be produced through mineralization could find applications in the marketplace, which makes implementation of the technology more attractive. In this article, we review recent developments and assess the current status of the CO2 mineralization field. In an outlook, we briefly describe a few mineralization routes, which upon further development have the potential to be implemented on a large scale. PMID:23452171

  7. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.

    1999-01-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  8. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation. PMID:24205186

  9. CO2 permeability of fractured cap rocks - experiments and numerical simulations (CO2Seals)

    NASA Astrophysics Data System (ADS)

    (Draeger), Ines Rick; Clauser, Christoph

    2010-05-01

    In CO2 sequestration and underground gas storage the sealing capacity of a cap rock is of paramount importance. The main question is therefore how the leakage of CO2 through fissures and faults within the cap rock may affect the CO2 sealing efficiency of low-permeable seal lithotypes. In many cases, these structures provide the main pathways for leakage of CO2. Here, we provide an overview of one part of the joint research project CO2Seals, which deals with the effect of structural features - such as tectonic faults and fissures in the overburden - on the migration of CO2 in addition to mineralogical, petrophysical, and geochemical properties of different lithotypes. The primary contribution of the entire project consists of an improvement of the present quantitative understanding of CO2 transport and retention processes and associated interactions in cap rocks between rock and CO2 or brine. To this end, we are adapting different numerical tools for simulating the relevant petrophysical and geochemical processes of CO2 in cap rocks, in close operation with: (1) large-scale CO2-percolation experiments on fractured cap rock samples; (2) permeability, gas breakthrough, and diffusion experiments; (3) measurements of the mechanical stability of cap rocks and the geochemical alterations of fault zone rock. The observed resulting changes in petrophysical properties, such as porosity, relative rock permeability (CO2 and brine), and fault permeability provide basics for the following numerical simulations. For example, first permeability tests of a marl and clay cap rock out of Cretaceous and Jurassic formations revealed gas permeability of 10-18 m2 down to 10-22 m2. In addition, first percolation experiments indicated that the influence of fault zones on the measured CO2 permeability of clays is very low. Furthermore, numerical bench-scale models are performed to provide confidence for the subsequent transfer to reservoir systems. Large-scale numerical models were created

  10. Increasing CO2 threatens human nutrition.

    PubMed

    Myers, Samuel S; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D B; Bloom, Arnold J; Carlisle, Eli; Dietterich, Lee H; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N Michele; Nelson, Randall L; Ottman, Michael J; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A; Schwartz, Joel; Seneweera, Saman; Tausz, Michael; Usui, Yasuhiro

    2014-06-01

    Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health. PMID:24805231

  11. Effects of contaminants in CO2 lasers.

    NASA Technical Reports Server (NTRS)

    Smith, N. S.

    1973-01-01

    A theoretical model which includes the effects of contaminants is developed for the high flow electric discharge CO2-N2-He laser. The model couples the excitation and relaxation processes, CO2 dissociation, and negative ion formation with the flow processes. An analysis of the effects of CO, O2, NO, and N2O impurities on the average small signal gain is presented. CO decreases the gain by collisional depopulation of the upper laser level, and O2, NO, and N2O reduce the gain by decreasing the electron density by forming stable negative ions. In particular, N2O exhibits a strong quenching effect because of its large dissociation cross section for the formation of O(-).

  12. Ultraviolet photoionization in CO2 TEA lasers

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Smith, A. L. S.

    1988-07-01

    The effects of gas composition and spark parameters on the UV emission in CO2 TEA laser gas mixtures were investigated together with the nature of photoionization process and the photoelectron-loss mechanism. A linear relationship was found between N2 concentration and photoionization (with no such dependence on C concentration, from CO and CO2), but the increases in photoionization that could be effected by optimizing the spark discharge circuit parameters were much higher than those produced by changes in gas composition. UV emission was directly proportional to the amount of stored electrical energy in the spark-discharge circuit and to the cube of the peak current produced in the spark by the discharge of this energy. Photoionization was also found to be proportional to the spark electrode gap. It was found that free-space sparks gave a considerably broader emission pattern than a surface-guided notched spark.

  13. CO2 Impacts on the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Stevenson, Rachel; Yelle, Roger

    2014-09-01

    The dynamically new comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 140,000 km on 2014 Oct 19. This encounter is unique---a record close approach to a planet with spacecraft that can observe its passage---and currently, all 5 Mars orbiters have plans to observe the comet and/or its effects on the planet. Gas from the comet's coma is expected to collide with the Martian atmosphere, altering the abundances of some species and producing significant heating, inflating the upper atmosphere. We propose DDT observations with Spitzer/IRAC to measure the comet's CO2+CO coma (observing window Oct 30 - Nov 20), to use these measurements to derive the coma's CO2 density at Mars during the closest approach, and to aid the interpretation of any observed effects or changes in the Martian atmosphere.

  14. Innovative Energy Strategies for CO2 Stabilization

    NASA Astrophysics Data System (ADS)

    Watts, Robert G.

    2002-08-01

    Many of the world's climate scientists believe that the build-up of heat-trapping CO2 in the atmosphere will lead to global warming unless we burn less fossil fuels. At the same time, energy must be supplied in increasing amounts for the developing world to continue its growth. This work discusses the feasibility of increasingly efficient energy use and the potential for supplying energy from sources that do not introduce CO2. The book analyzes the prospects for Earth-based renewables: solar, wind, biomass, hydroelectricity, geothermal and ocean energy. It then discusses nuclear fission and fusion, and the relatively new idea of harvesting solar energy on satellites or lunar bases. It will be essential reading for all those interested in energy issues.

  15. Controls on the CO2 seasonal cycle

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Forget, F.; Haberle, Robert M.; Schaeffer, J.; Lee, H.

    1993-01-01

    Surface pressure measurement performed by the Viking landers show substantial variations in pressure on seasonal timescales that are characterized by two local minima and two local maxima. These variations have widely been attributed to the seasonal condensation and sublimation of CO2 in the two polar regions. It has been somewhat of a surprise that the amplitude of the minimum and maximum that is dominated by the CO2 cycle in the north was much weaker than the corresponding amplitude of the south-dominated extrema. Another surprise was that the seasonal pressure cycle during years 2 and 3 of the Viking mission was so similar to that for year 1, despite the occurrence of two global dust storms during year 1 and none during years 2 and 3. An energy balance model that incorporates dynamical factors from general circulation model (GCM) runs in which the atmospheric dust opacity and seasonal date were systematically varied was used to model the observed seasonal pressure variations. The energy balance takes account of the following processes in determining the rates of CO2 condensation and sublimation at each longitudinal and latitudinal grid point: solar radiation, infrared radiation from the atmosphere and surface, subsurface heat conduction, and atmospheric heat advection. Condensation rates are calculated both at the surface and in the atmosphere. In addition, the energy balance model also incorporates information from the GCM runs on seasonal redistribution of surface pressure across the globe. Estimates of surface temperature of the seasonal CO2 caps were used to define the infrared radiative losses from the seasonal polar caps. The seasonal pressure variations measured at the Viking lander sites were closely reproduced.

  16. [Voice quality following CO2 laser cordectomy].

    PubMed

    Höfler, H; Bigenzahn, W

    1986-11-01

    The voice of patients after CO2 laser cordectomy was evaluated by subjective assessment, registration of voice parameters and sonegraphic classification. The results proved to be closely concordant, the main result being a slight or medium degree of dysphonia. Severe dysphonia or aphonia occurred in about one fifth of patients. This result is somewhat inferior to radiotherapy, but superior to standard translaryngeal cordectomy. Yanagihara's sonegraphic classification of dysphonia is recommendable for future comparative studies. PMID:3807602

  17. Continuous CO2 extractor and methods

    SciTech Connect

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  18. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  19. Pulpotomies with CO2 laser in dogs

    NASA Astrophysics Data System (ADS)

    Figueiredo, Jose A. P.; Chavantes, Maria C.; Gioso, Marco A.; Pesce, Hildeberto F.; Jatene, Adib D.

    1995-05-01

    The aim of this study was to evaluate the clinical aspects of dental pulps submitted to shallow pulpotomy followed by CO2 laser radiation at five different procedures. For this purpose, initially 66 dogs' teeth were opened and about 2 or 3 mm of coronal dental pulp was removed. Continuous irrigation with saline solution was implemented. The teeth were randomly divided into 6 groups of 11 each. After cessation of bleeding, in group I, CO2 laser (Xanar-20, USA) was irradiated for 1 second at a power of 5 watts; in group II, 2 seconds at 3 watts; in Group III, 2 seconds at 5 watts; in Group IV, 1 second at 3 watts; in Group V, a continuous mode at 3 watts; Group VI served as a control, with no laser irradiation. The results showed no clinical differences between the 3 W and 5 W powers. Time period of irradiation exposition influenced definitively the clinical appearance of the dental pulps. Groups I and IV (1 second) were unable to stop the bleeding, which persisted over 15 minutes for all teeth. This may be due to the intense heat generated by CO2 laser, causing vasodilatation. Groups II and III displayed a similar appearance, but bleeding stopped in about 10 minutes. Group V (continuous mode) had no bleeding after irradiation, but a plasma-like liquid would come out for almost 2 minutes. When comparing to the control (Group VI), all the pulps would assume a jelly-like aspect, with black granulated tissue on the surface, covering totally the pulps of Group V and partially the other groups. The histological results will be discussed in a further study. From the data obtained, it seems that CO2 laser irradiation for pulpotomies should be done in a continuous mode, for clinical convenience in terms of time taken and effective irradiation.

  20. CO2 laser cold cathode research results

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1973-01-01

    The construction and processing of four test lasers are discussed, and the test results are assessed. Tests show that the best performance was obtained from cathodes made from internally oxidized Ag-Cu alloys or pure Cu. Due to the cold cathode technology developments, sealed-off 1 w CO2 lasers with gas volumes of only 50 cu cm were duplicated, and have performed satisfactorily for more than 6000 hours.

  1. Aridity under conditions of increased CO2

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  2. Chronic Granulomatous Disease (CGD)

    MedlinePlus

    ... on ClinicalTrials.gov . Related Links​ Primary Immune Deficiency Diseases (PIDDs) Immune System National Library of Medicine, Genetics Home Reference ​​​ Javascript Error Your browser JavaScript is turned off causing certain ... and Infectious Diseases web site to work incorrectly. Please visit your ...

  3. Breadboard CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1976-01-01

    A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.

  4. Towards Overhauser DNP in supercritical CO2

    NASA Astrophysics Data System (ADS)

    van Meerten, S. G. J.; Tayler, M. C. D.; Kentgens, A. P. M.; van Bentum, P. J. M.

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for 1H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in 1H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4 ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4 T on high pressure superheated water and model systems such as toluene in high pressure CO2.

  5. Towards Overhauser DNP in supercritical CO2.

    PubMed

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. PMID:27082277

  6. 40 CFR 98.443 - Calculating CO2 geologic sequestration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Calculating CO2 geologic sequestration. You must calculate the mass of CO2 received using CO2 received... your approved MRV plan. (a) You must calculate and report the annual mass of CO2 received by pipeline...)(3) of this section, if applicable. (1) For a mass flow meter, you must calculate the total...

  7. 40 CFR 98.443 - Calculating CO2 geologic sequestration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Calculating CO2 geologic sequestration. You must calculate the mass of CO2 received using CO2 received... your approved MRV plan. (a) You must calculate and report the annual mass of CO2 received by pipeline...)(3) of this section, if applicable. (1) For a mass flow meter, you must calculate the total...

  8. Semi-analytical estimation of wellbore leakage risk during CO2 sequestration in Ottawa County, Michigan

    NASA Astrophysics Data System (ADS)

    Guo, B.; Matteo, E. N.; Elliot, T. R.; Nogues, J. P.; Deng, H.; Fitts, J. P.; Pollak, M.; Bielicki, J.; Wilson, E.; Celia, M. A.; Peters, C. A.

    2011-12-01

    Using the semi-analytical ELSA model, wellbore leakage risk is estimated for CO2 injection into either the Mt. Simon or St. Peter formations, which are part of the Michigan Sedimentary Basin that lies beneath Ottawa County, MI. ELSA is a vertically integrated subsurface modeling tool that can be used to simulate both supercritical CO2 plume distribution/migration and pressure- induced brine displacement during CO2 injection. A composite 3D subsurface domain was constructed for the ELSA simulations based on estimated permeabilities for formation layers, as well as GIS databases containing subsurface stratigraphy, active and inactive and inactive wells, and potential interactions with subsurface activities. These activities include potable aquifers, oil and gas reservoirs, and waste injection sites, which represent potential liabilities if encountered by brine or supercritical CO2 displaced from the injection formation. Overall, the 3D subsurface domain encompasses an area of 1500 km2 to a depth of 2 km and contains over 3,000 wells. The permeabilities for abandoned wells are derived from a ranking system based on available well data including historical records and well logs. This distribution is then randomly sampled in Monte Carlo simulations that are used to generate a probability map for subsurface interferences or atmospheric release resulting from leakage of CO2 and /or brine from the injection formation. This method serves as the basis for comparative testing between various scenarios for injection, as well as for comparing the relative risk of leakage between injection formations or storage sites.

  9. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.

    1976-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  10. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    PubMed

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. PMID:25497054

  11. Impact of CO2 Impure stream on a CO2 Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Segev, R.; Bear, J.; Bensabat, J.

    2013-12-01

    In a CO2 capture and storage (CCS) technology, a stream of CO2, extracted from the gas stream emitted from an industrial plant, is transported to a storage site where it is injected into a deep brine-containing geological reservoir for storage for very long time periods. The injected CO2 may contain various compositions of residual O2, SOx , NOx, and inert gases. In this work, we focus on the impact of the SO2 and its potential to acidify the reservoir brine. The amount of dissolved SO2 is determined by adjusting the Henry coefficient and fugacity coefficient for the mixture that contains CO2 as a major component and SO2. The models show the spreading of the pH level over time in the entire reservoir when different CO2-SO2 mixture compositions are injected. The minimum pH level achieved is 0.35 when 4% SO2 is injected, 1.8 when 2% SO2 is injected and 3.8 when a pure CO2 stream is injected. The model may serve as a tool to predict the influence of SO2 on the initial brine composition and on the initial rock properties. For example, a model result for the pH spreading in the reservoir, in the case of 2%SO2-CO2 injected mixture, is shown below. Fig.1. The pH level at the reservoir bedrock and caprock after 5 years for a 2%SO2-CO2 stream.

  12. TES/Aura L2 Carbon Dioxide (CO2) Lite Nadir (TL2CO2LN)

    Atmospheric Science Data Center

    2015-06-24

    TES/Aura L2 Carbon Dioxide (CO2) Lite Nadir (TL2CO2LN) News:  TES ... Level:  L2 Instrument:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Carbon Dioxide Order Data:  Reverb:   Order Data ...

  13. Process-dependent residual trapping of CO2 in sandstone

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Benson, Sally M.

    2014-04-01

    This paper demonstrates that the nature and extent of residual CO2 trapping depend on the process by which the CO2 phase is introduced into the rock. We compare residual trapping of CO2 in Berea Sandstone by imbibing water into a core containing either exsolved CO2 or CO2 introduced by drainage. X-ray computed tomography measurements are used to map the spatial distribution of CO2 preimbibition and postimbibition. Unlike during drainage where the CO2 distribution is strongly influenced by the heterogeneity of the rock, the distribution of exsolved CO2 is comparatively uniform. Postimbibition, the CO2 distribution retained the essential features for both the exsolved and drainage cases, but twice as much residual trapping is observed for exsolved CO2 even with similar preimbibition gas saturations. Residually trapped exsolved gas also disproportionately reduced water relative permeability. Development of process-dependent parameterization will help better manage subsurface flow processes and unlock benefits from gas exsolution.

  14. CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor.

    PubMed

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan

    2016-08-16

    Metallic nanoparticles (NPs) coated with stimuli-responsive polymers (SRPs) exhibit tunable optical properties responding to external stimuli and show promising sensing applications. We present a new CO2-responsive polymer, poly(N-(3-amidino)-aniline) (PNAAN), coated gold NPs (AuNPs) synthesized by directly reducing HAuCl4 with a CO2-responsive monomer N-(3-amidino)-aniline (NAAN). The amidine group of PNAAN can be protonated into a hydrophilic amidinium group by dissolved CO2 (dCO2). This induces the PNAAN to swell and detach from the AuNP surface, resulting in AuNP aggregation and color change. By monitoring the UV absorbance change of AuNPs, a sensitive dCO2 sensor with a linear range of 0.0132 to 0.1584 hPa and a limit of detection (LOD) of 0.0024 hPa is developed. This method shows dramatic improvement in sensitivity and convenience of sample preparation compared with the previously reported dCO2 sensor. PMID:27459645

  15. Low pCO2 Air-Polarized CO2 Concentrator Development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1997-01-01

    Life Systems completed a Ground-based Space Station Experiment Development Study Program which verifies through testing the performance and applicability of the electrochemical Air-Polarized Carbon Dioxide Concentrator (APC) process technology for space missions requiring low (i.e., less than 3 mm Hg) CO2 partial pressure (pCO2) in the cabin atmosphere. Required test hardware was developed and testing was accomplished at an approximate one-person capacity CO2 removal level. Initially, two five-cell electrochemical modules using flight-like 0.5 sq ft cell hardware were tested individually, following by their testing at the integrated APC system level. Testing verified previously projected performance and established a database for sizing of APC systems. A four person capacity APC system was sized and compared with four candidate CO2 removal systems. At its weight of 252 lb, a volume of 7 cu ft and a power consumption of 566 W while operating at 2.2 mm Hg pCO2, the APC was surpassed only by an Electrochemical Depolarized CO2 Concentrator (EDC) (operating with H2), when compared on a total equivalent basis.

  16. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  17. Effective Use of Natural CO2-RICH Systems for Stakeholder Communication: CO2FACTS.ORG

    NASA Astrophysics Data System (ADS)

    Olson, H. C.; Romanak, K.; Osborne, V.; Hovorka, S. D.; Clift, S.; Castner, A.

    2011-12-01

    The impact of using natural analogues as an avenue for communicating about CO2 injection and storage technology with stakeholders has been addressed by previous researchers, e.g., Romanak et al (2011), Dixon et al (2011). Analogies between natural CO2-rich systems and engineered CO2 storage are not necessarily straightforward, and stakeholder opinion is often based on factors other than technical accuracy of information (e.g., lack of trust, confidence, and fear). In order to enhance this communication pathway, STORE (Sequestration Training, Outreach, Research and Education), the outreach arm of the Gulf Coast Carbon Center at The University of Texas at Austin, has created an online resource (www.co2facts.org) to help stakeholders better understand the injection and storage of CO2 underground. The online resource includes frequently asked questions (FAQs) for a variety of CO2-storage-related issues, including those related to natural analogues, and uses examples of natural systems of CO2 release for communication. The content targets various levels of technical education and understanding. A unique feature of the online resource is its approach to verification of information. Each FAQ and example is "fact-checked" by an actual expert in the field. Part of this verification process is to provide an online link to background, credentials, scientific research and images of actual experts in the field at natural release sites. This approach helps put a face to, and potentially builds a relationship of trust with, the scientist behind the technical information. Videos of experts discussing natural systems and their similarities and differences with CO2 injection and storage sites are also part of the resource. Stakeholders commonly draw incorrect parallels between natural disasters that gain attention in the media (e.g., Lake Nyos) and CO2 injection and storage technology. The video images available at www.co2facts.org are a useful tool for assuaging environmental fears

  18. The Werkendam natural CO2 accumulation: An analogue for CO2 storage in depleted oil reservoirs

    NASA Astrophysics Data System (ADS)

    Bertier, Pieter; Busch, Andreas; Hangx, Suzanne; Kampman, Niko; Nover, Georg; Stanjek, Helge; Weniger, Philipp

    2015-04-01

    The Werkendam natural CO2 accumulation is hosted in the Röt (Early Triassic) sandstone of the West Netherlands Basin, at a depth of 2.8 km, about 20 km south-east of Rotterdam (NL). This reservoir, in a fault-bound structure, was oil-filled prior to charging with magmatic CO2 in the early Cretaceous. It therefore offers a unique opportunity to study long-term CO2-water-rock interactions in the presence of oil. This contribution will present the results of a detailed mineralogical and geochemical characterisation of core sections from the Werkendam CO2 reservoir and an adjacent, stratigraphically equivalent aquifer. X-ray diffraction combined with X-ray fluorescence spectrometry revealed that the reservoir samples contain substantially more feldspar and more barite and siderite than those from the aquifer, while the latter have higher hematite contents. These differences are attributed to the effects hydrocarbons and related fluids on diagenesis in the closed system of the CO2 reservoir versus the open-system of the aquifer. Petrophysical analyses yielded overall higher and more anisotropic permeability for the reservoir samples, while the porosity is overall not significantly different from that of their aquifer equivalents. The differences are most pronounced in coarse-grained sandstones. These have low anhydrite contents and contain traces of calcite, while all other analyzed samples contain abundant anhydrite, dolomite/ankerite and siderite, but no calcite. Detailed petrography revealed mm-sized zones of excessive primary porosity. These are attributed to CO2-induced dissolution of precompactional, grain-replacive anhydrite cement. Diagenetic dolomite/ankerite crystals are covered by anhedral, epitaxial ankerite, separated from the crystals by bitumen coats. Since these carbonates were oil-wet before CO2-charging, the overgrowths are interpreted to have grown after CO2-charging. Their anhedral habit suggests growth in a 2-phase water-CO2 system. Isotopic

  19. Method for tracing simulated CO2 leak in terrestrial environment with a 13CO2 tracer

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Rasse, Daniel

    2013-04-01

    Facilities for the geological storage of carbon dioxide (CO2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, developing regulations and guidance throughout the world (e.g. the EC Directive and the USEPA Vulnerability Evaluation Framework) recognize the importance of assessing the potential for environmental impacts from CO2 storage. RISCS, a European (FP7) project, aims to improve understanding of those impacts that could plausibly occur in the hypothetical case that unexpected leakage occurs. As part of the RISCS project the potential impacts that an unexpected CO2 leaks might have on a cropland ecosystems was investigated. A CO2 exposure field experiment based on CO2 injection at 85 cm depth under an oats culture was designed. To facilitate the characterization of the simulated leaking zone the gas used for injection was produced from natural gas and had a δ13C of -46‰. The aim of the present communication is to depict how the injected gas was traced within the soil-vegetation-atmosphere continuum using 13CO2 continuous cavity ring-down spectrometry (CRDS). Four subsurface experimental injection plots (6m x 3m) were set up. In order to test the effects of different intensity of leakage, the field experiment was designed as to create a longitudinal CO2 gradient for each plot. For this purpose gas supply pipes were inserted at one extremity of each plot at the base of a 45 cm thick layer of sand buried 40 cm below the surface under the clayey plough layer of Norwegian moraine soils. Soil CO2 concentration and isotopic signature were punctually recorded: 1) in the soil at 20 cm depth at 6 positions distributed on the central transect, 2) at the surface following a (50x50 cm) grid sampling pattern, and 3) in the canopy atmosphere at 10, 20, 30 cm along three longitudinal transects (seven sampling point per transect). Soil CO2 fluxes and isotopic signature were finally

  20. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    NASA Astrophysics Data System (ADS)

    de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.

    2013-08-01

    This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  1. Outflanking the Rankings Industry

    ERIC Educational Resources Information Center

    McGuire, Patricia

    2007-01-01

    In this article, the author argues that American higher education is allowing itself to be held hostage by the rankings industry, which can lead institutions to consider actions harmful to the public interest and encourage the public's infatuation with celebrity at the expense of substance. Instead of sitting quietly by during the upcoming ratings…

  2. RANKING INDOOR AIR TOXICS

    EPA Science Inventory

    The basis of the ranking is 10 monitoring studies chosen to represent "typical" concentrations of the pollutants found indoors. The studies were conducted in the United States during the last 15 years, and mainly focused on concentrations of pollutants in homes, schools, and off...

  3. Responses to the Rankings.

    ERIC Educational Resources Information Center

    Change, 1992

    1992-01-01

    Ten higher education professionals and one college senior comment on the "U.S. News and World Report" rankings of doctoral programs in six liberal arts disciplines. The authors' response to one set of comments and the comments of an executive editor from the magazine are also included. (MSE)

  4. Diversifying customer review rankings.

    PubMed

    Krestel, Ralf; Dokoohaki, Nima

    2015-06-01

    E-commerce Web sites owe much of their popularity to consumer reviews accompanying product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to decide which products to buy. At the same time, each popular product has thousands of user-generated reviews, making it impossible for a buyer to read everything. Current approaches to display reviews to users or recommend an individual review for a product are based on the recency or helpfulness of each review. In this paper, we present a framework to rank product reviews by optimizing the coverage of the ranking with respect to sentiment or aspects, or by summarizing all reviews with the top-K reviews in the ranking. To accomplish this, we make use of the assigned star rating for a product as an indicator for a review's sentiment polarity and compare bag-of-words (language model) with topic models (latent Dirichlet allocation) as a mean to represent aspects. Our evaluation on manually annotated review data from a commercial review Web site demonstrates the effectiveness of our approach, outperforming plain recency ranking by 30% and obtaining best results by combining language and topic model representations. PMID:25795511

  5. College Rankings. ERIC Digest.

    ERIC Educational Resources Information Center

    Holub, Tamara

    The popularity of college ranking surveys published by "U.S. News and World Report" and other magazines is indisputable, but the methodologies used to measure the quality of higher education institutions have come under fire by scholars and college officials. Criticisms have focused on methodological flaws, such as failure to consider differences…

  6. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  7. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2008-11-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y-1 for the period 2000 2005. These emissions resulted from the combustion of fossil fuels (260 TgC y-1) and land use change (240 TgC y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000 2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y-1 compared to the global average of 1.2 tC y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US of Gross Domestic Product (GDP) in Africa in 2005 was 187 gC/, close to the world average of 199 gC/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  8. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2009-03-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 Tg C y-1 for the period 2000-2005. These emissions resulted from the combustion of fossil fuels (260 Tg C y-1) and land use change (240 Tg C y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 Tg C accounting for 3.7% of the global emissions. The 2000-2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 t C y-1 compared to the global average of 1.2 t C y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US{} of Gross Domestic Product (GDP) in Africa was 187 g C/ in 2005, close to the world average of 199 g C/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  9. [Laryngomalacia treated with CO2 laser].

    PubMed

    Larsen, Dalia Gustaityté; Berg, Jette Scheby; Illum, Peter

    2010-07-01

    Laryngomalacia is the most common laryngeal anomaly which causes inspiratory stridor in newborns. The disease is usually self-limiting and resolves before the age of two years. We present a case of severe laryngomalacia with feeding disorder and airway obstruction which needed surgical management--supraglottoplasty. The shortened aryepiglottic folds were incised using CO(2) laser and jet ventilation. The patient was observed at the hospital for one week after surgery and discharged. Four weeks after treatment, the patient was free of airway obstruction and feeding problems. PMID:20594541

  10. CO2 laser ranging systems study

    NASA Technical Reports Server (NTRS)

    Filippi, C. A.

    1975-01-01

    The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.