Science.gov

Sample records for chain reaction-denaturing gradient

  1. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of microbial community structure in landfill leachate.

    PubMed

    Uchida, Miho; Hatayoshi, Haruna; Syuku-nobe, Aoi; Shimoyama, Takefumi; Nakayama, Toru; Okuwaki, Akitsugu; Nishino, Tokuzo; Hemmi, Hisashi

    2009-05-30

    The structures of microbial communities in water samples obtained from a landfill site that had been a source of environmental pollution by emitting hydrogen sulfide were elucidated using polymerase chain reaction-denaturing gradient gel electrophoresis. The microbial communities, which consisted of a limited number of major microorganisms, were stable for several months. Microorganisms capable of degrading such chemical compounds as 2-hydroxybenzothiazole and bisphenol A were observed in landfill leachate. Microorganisms responsible for the production of hydrogen sulfide were not the primary microbes detected, even in water samples obtained from the site of gas emission. PMID:18977596

  2. Association of diverse bacterial communities in human bile samples with biliary tract disorders: a survey using culture and polymerase chain reaction-denaturing gradient gel electrophoresis methods.

    PubMed

    Tajeddin, E; Sherafat, S J; Majidi, M R S; Alebouyeh, M; Alizadeh, A H M; Zali, M R

    2016-08-01

    Bacterial infection is considered a predisposing factor for disorders of the biliary tract. This study aimed to determine the diversity of bacterial communities in bile samples and their involvement in the occurrence of biliary tract diseases. A total of 102 bile samples were collected during endoscopic retrograde cholangiopancreatography (ERCP). Characterization of bacteria was done using culture and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods. Antimicrobial susceptibility of the isolates was determined based on the Clinical and Laboratory Standards Institute (CLSI) guidelines and identity of the nucleotide sequences of differentiated bands from the DGGE gels was determined based on GenBank data. In total, 41.2 % (42/102) of the patients showed bacterial infection in their bile samples. This infection was detected in 21 % (4/19), 45.4 % (5/11), 53.5 % (15/28), and 54.5 % (24/44) of patients with common bile duct stone, microlithiasis, malignancy, and gallbladder stone, respectively. Escherichia coli showed a significant association with gallstones. Polymicrobial infection was detected in 48 % of the patients. While results of the culture method established coexistence of biofilm-forming bacteria (Pseudomonas aeruginosa, E. coli, Klebsiella pneumoniae, Enterococcus spp., and Acinetobacter spp.) in different combinations, the presence of Capnocytophaga spp., Lactococcus spp., Bacillus spp., Staphylococcus haemolyticus, Enterobacter or Citrobacter spp., Morganella spp., Salmonella spp., and Helicobacter pylori was also characterized in these samples by the PCR-DGGE method. Multidrug resistance phenotypes (87.5 %) and resistance to third- and fourth-generation cephalosporins and quinolones were common in these strains, which could evolve through their selection by bile components. Ability for biofilm formation seems to be a need for polymicrobial infection in this organ. PMID:27193890

  3. Tracking the composition and dominant components of the microbial community via polymerase chain reaction-denaturing gradient gel electrophoresis and fluorescence in situ hybridization during vermiconversion for liquid-state excess sludge stabilization.

    PubMed

    Xu, Ting; Xing, Meiyan; Yang, Jian; Lv, Baoyi; Duan, Ting; Nie, Jing

    2014-09-01

    To quantitatively explore the microbial community modified by earthworms, a vermifilter (VF, with earthworms) and a conventional biofilter (BF, without earthworms) were continuously operated to stabilize excess sludge. The results demonstrated a positive role imposed by earthworms on compositions and dominant components of microbial community in the VF. For one thing, the phyla Actinobacteria and Acidobacteria were only detected in the VF, which might explain for the higher Shannon index of bacteria in the VF (H = 2.58) than that in the BF (H = 1.99). For another, the total proportion of dominant bacteria in the VF increased by 23% compared to the BF. Moreover, quantification analysis explicitly noted that the dominant bacteria in VF were β-proteobacteria (27 ± 2%) and γ-proteobacteria (24 ± 1%) while that in BF was Bacteroidetes (21 ± 1%). In conclusion, stimulated by earthworms, a unique microbial community developed in the VF, thus improving the stabilization of excess sludge. PMID:24971951

  4. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar.

    PubMed

    De Vero, Luciana; Gala, Elisabetta; Gullo, Maria; Solieri, Lisa; Landi, Sara; Giudici, Paolo

    2006-12-01

    Acetic acid bacteria (AAB) are fastidious micro-organisms to isolate and cultivate despite of the great number of growth media available. Moreover, conventional techniques used to study AAB populations are time consuming and not completely reliable. In this study, we tested the usefulness of the polymerase chain reaction-denaturing gradient gel electophoresis (PCR-DGGE) as a rapid and cost effective method for the screening of AAB in traditional balsamic vinegar (TBV). DGGE analysis was applied to 19 AAB strains isolated by agar plating from three different samples of TBV. DGGE was also used for the analysis of PCR products obtained from DNA extracted directly from the TBV samples. A tentative species identification was achieved comparing the PCR-DGGE patterns of the isolated strains and the TBV samples to those of 15 AAB reference strains. The results support that DGGE is functional to monitor vinegar's AAB population. PMID:16943087

  5. Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography.

    PubMed

    Martínez Cristancho, Carlos Andrés; Seidel-Morgenstern, Andreas

    2016-02-19

    This paper deals with the theoretical design and experimental validation of an affinity-based continuous multi-column chromatography process for the purification of single-chain Fragment variable (scFv) antibodies. An open-loop 3-zone pH-gradient simulated moving bed (SMB) process was investigated exploiting the highly specific affinity of metal ions toward histidine-tagged recombinant proteins. The separation problem was simplified by considering the cell culture supernatant as a pseudo-binary mixture. The influence of mobile phase pH on the adsorption isotherm parameters was estimated by the inverse method using recorded pH-gradient batch elution profiles. Suitable operating parameters for the SMB process were identified using an equilibrium stage model and subsequently validated in a lab-scale SMB unit. Finally, the performance of the pH-gradient SMB process was compared against a non-optimized batch process. Biologically active single-chain Fragment variable antibody formats were purified continuously with 9% more recovery, 11 times more productivity (576 mg of purified scFv per day and liter stationary phase in SMB) and enriched by a factor of 2.5 compared to those obtained in the non-optimized batch process. PMID:26810806

  6. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction.

    PubMed

    Steger, G

    1994-07-25

    A program is described which calculates the thermal stability and the denaturation behaviour of double-stranded DNAs and RNAs up to a length of 1000 base pairs. The algorithm is based on recursive generation of conditional and a priori probabilities for base stacking. Output of the program may be compared directly to experimental results; thus the program may be used to optimize the nucleic acid fragments, the primers and the experimental conditions prior to experiments like polymerase chain reactions, temperature-gradient gel electrophoresis, denaturing-gradient gel electrophoresis and hybridizations. The program is available in three versions; the first version runs interactively on VAXstations producing graphics output directly, the second is implemented as part of the HUSAR package at GENIUSnet, the third runs on any computer producing text output which serves as input to available graphics programs. PMID:8052531

  7. Decrease in fungal biodiversity along an available phosphorous gradient in arable Andosol soils in Japan.

    PubMed

    Bao, Zhihua; Matsushita, Yuko; Morimoto, Sho; Hoshino, Yuko Takada; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Murakami, Hiroharu; Kuroyanagi, Yukiko; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2013-06-01

    Andosols comprise one of the most important soil groups for agricultural activities in Japan because they cover about 46.5% of arable upland fields. In this soil group, available phosphorus (P) is accumulated by application of excessive fertilizer, but little is known about the influence of increasing P availability on microbial community diversity at large scales. We collected soil samples from 9 agro-geographical sites with Andosol soils across an available P gradient (2048.1-59.1 mg P2O5·kg(-1)) to examine the influence of P availability on the fungal community diversity. We used polymerase chain reaction - denaturing gradient gel electrophoresis to analyze the fungal communities based on 18S rRNA genes. Statistical analyses revealed a high negative correlation between available P and fungal diversity (H'). Fungal diversity across all sites exhibited a significant hump-shaped relationship with available P (R(2) = 0.38, P < 0.001). In addition, the composition of the fungal community was strongly correlated with the available P gradient. The ribotype F6, which was positively correlated with available P, was closely related to Mortierella. The results show that both the diversity and the composition of the fungal community were influenced by available P concentrations in Andosols, at a large scale. This represents an important step toward understanding the processes responsible for the maintenance of fungal diversity in Andosolic soils. PMID:23750950

  8. 250-GHz electron spin resonance studies of polarity gradients along the aliphatic chains in phospholipid membranes.

    PubMed Central

    Earle, K. A.; Moscicki, J. K.; Ge, M.; Budil, D. E.; Freed, J. H.

    1994-01-01

    Rigid-limit 250-GHz electron spin resonance (FIR-ESR) spectra have been studied for a series of phosphatidylcholine spin labels (n-PC, where n = 5, 7, 10, 12, 16) in pure lipid dispersions of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as well as dispersions of DPPC containing the peptide gramicidin A (GA) in a 1:1 molar ratio. The enhanced g-tensor resolution of 250-GHz ESR for these spin labels permitted a careful study of the nitroxide g-tensor as a function of spin probe location and membrane composition. In particular, as the spin label is displaced from the polar head group, Azz decreases and gxx increases as they assume values typical of a nonpolar environment, appropriate for the hydrophobic alkyl chains in the case of pure lipid dispersions. The field shifts of spectral features due to changes in gxx are an order of magnitude larger than those from changes in Azz. The magnetic tensor parameters measured in the presence of GA were characteristic of a polar environment and showed only a very weak dependence of Azz and gxx on label position. These results demonstrate the significant influence of GA on the local polarity along the lipid molecule, and may reflect increased penetration of water into the alkyl chain region of the lipid in the presence of GA. The spectra from the pure lipid dispersions also exhibit a broad background signal that is most significant for 7-, 10-, and 12-PC, and is more pronounced in DPPC than in POPC. It is attributed to spin probe aggregation yielding spin exchange narrowing. The addition of GA to DPPC essentially suppressed the broad background signal observed in pure DPPC dispersions. PMID:7518705

  9. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    PubMed

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species. PMID:26907755

  10. Analysis of T cell receptor-gamma gene rearrangements by denaturing gradient gel electrophoresis of GC-clamped polymerase chain reaction products. Correlation with tumor-specific sequences.

    PubMed Central

    Greiner, T. C.; Raffeld, M.; Lutz, C.; Dick, F.; Jaffe, E. S.

    1995-01-01

    We describe a modified denaturing gradient gel electrophoresis (DGGE) procedure with a 40-nucleotide GC clamp in the polymerase chain reaction to improve resolution in amplifying T cell receptor-gamma (TCR-gamma) rearrangements. DNA from 46 cases of lymphoblastic leukemia/lymphoma, 5T cell lines, 2 B cell lines, 7 normal lymphocytes, and 3 cases of Hodgkin's disease was amplified by polymerase chain reaction. In addition, 20 cases of paraffin-embedded T cell lymphomas and 5 cases of reactive hyperplasia were also studied. Clonal TCR-gamma rearrangements were identified on DGGE by the presence of a predominant band. Results obtained from 5 T cell lines and 12 lymphoblastic leukemia/lymphomas containing known TCR-gamma gene rearrangements revealed 100% concordance in detecting clonal rearrangements between DGGE and traditional Southern blot analysis. Of the remaining 34 lymphoblastic leukemia/lymphoma cases studied by DGGE alone, 30 were positive. DGGE analysis of 10 lymphoblastic leukemia/lymphoma cases with known group IV gamma to J gamma 1 or J gamma 2 rearrangement sequences confirmed that the electrophoretic migration was dependent on the tumor-specific rearranged TCR-gamma sequence. In addition, 17 of 20 cases of paraffin-embedded T cell lymphomas were positive by DGGE, 6 of which had the clonal population also identified in fresh tissue DNA. DGGE analysis of GC-clamped polymerase chain reaction products can provide a way to more accurately detect TCR-gamma clonality of lymphoid tumors and can be applied to archival tissues. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7856738

  11. Evaluation of PCR-DGGE as a method to recapitulate host phylogeny by fecal microbial community fingerprint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Recent studies indicate that host animal could be the primary factor determining the composition of the gastrointestinal microbiome. If host phenotype dictates microbiome composition, then composition should recapitulate host phylogeny. Polymerase chain reaction-denaturing gradient gel ...

  12. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    PubMed

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods. PMID:26241491

  13. Effect of short chain fructooligosaccharides (scFOS) on immunological status and gut microbiota of gilthead sea bream (Sparus aurata) reared at two temperatures.

    PubMed

    Guerreiro, Inês; Serra, Cláudia R; Enes, Paula; Couto, Ana; Salvador, Andreia; Costas, Benjamín; Oliva-Teles, Aires

    2016-02-01

    The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets. PMID:26721230

  14. Application of PCR-Denaturing-Gradient Gel Electrophoresis (DGGE) Method to Examine Microbial Community Structure in Asparagus Fields with Growth Inhibition due to Continuous Cropping

    PubMed Central

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE. PMID:22200640

  15. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    NASA Astrophysics Data System (ADS)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  16. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  17. Irradiance gradients

    SciTech Connect

    Ward, G.J. Ecole Polytechnique Federale, Lausanne ); Heckbert, P.S. . School of Computer Science Technische Hogeschool Delft . Dept. of Technical Mathematics and Informatics)

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques.

  18. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  19. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  20. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  1. Laser textured surface gradients

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  2. Gradient enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    van Zijl, Peter C.; Hurd, Ralph E.

    2011-12-01

    This paper provides a brief overview of the personal recollections of the authors regarding their contributions to the introduction of shielded gradient technology into NMR spectroscopy during the late 1980s and early 1990s. It provides some background into early probe design and details some of the early technical progress with the use of shielded magnetic field gradients for coherence selection in high resolution NMR and describes the developments at General Electric, the National Institutes of Health, Georgetown University and Johns Hopkins University School of Medicine that ultimately led to this technology becoming commonplace in modern NMR spectroscopy. Most of this early technical work was published in the Journal of Magnetic Resonance.

  3. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  4. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  5. Gradient tabu search.

    PubMed

    Stepanenko, Svetlana; Engels, Bernd

    2007-01-30

    This paper presents a modification of the tabu search called gradient tabu search (GTS). It uses analytical gradients for a fast minimization to the next local minimum and analytical diagonal elements of the Hessian to escape local minima. For an efficient blocking of already visited areas tabu regions and tabu directions are introduced into the tabu list (TL). Trials with various well-known test functions indicate that the GTS is a very promising approach to determine local and global minima of differentiable functions. Possible application areas could be optimization routines for force field parameters or conformational searches for large molecules. PMID:17186482

  6. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  7. Manipulating the Gradient

    ERIC Educational Resources Information Center

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  8. Bigravity from gradient expansion

    NASA Astrophysics Data System (ADS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-05-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  9. Polymer brush gradients grafted from plasma-polymerized surfaces.

    PubMed

    Coad, Bryan R; Bilgic, Tugba; Klok, Harm-Anton

    2014-07-22

    A new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient to which initiators for atom transfer radical polymerization (ATRP) were immobilized. After surface-initiated atom transfer radical polymerization (SI-ATRP), poly(2-hydroxyethyl methacrylate) (PHEMA) chains were grafted from the surface and the measured thickness profiles provided direct evidence for how surface crowding provides an entropic driving force resulting in chain extension away from the surface. Film thicknesses were found to increase with the position along the gradient surface, reflecting the gradual transition from collapsed to more extended surface-tethered polymer chains as the grafting density increased. The method described is novel in that the approach provides covalent linkages from the polymer coating to the substrate and is not limited to a particular surface chemistry of the starting material. PMID:24967529

  10. Crater Chains

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  11. Continuous gravity gradient logging

    SciTech Connect

    Fitch, J.L.; Lyle, W.D. Jr.

    1986-07-29

    A method is described for conducting a gravimetry survey of an earth formation, comprising the steps of: (a) continuously traversing the earth formation with a gravity logging tool having a column of fluid within the tool, (b) measuring a first pressure difference along a first interval within the column of fluid, (c) measuring a second pressure difference along a second interval within the column of fluid, (d) differencing the first and second pressure differences to determine the gravity gradient along the earth formation between the first and second intervals.

  12. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center (ESTSC)

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  13. Tectorial Membrane Stiffness Gradients

    PubMed Central

    Richter, Claus-Peter; Emadi, Gulam; Getnick, Geoffrey; Quesnel, Alicia; Dallos, Peter

    2007-01-01

    The mammalian inner ear processes sound with high sensitivity and fine resolution over a wide frequency range. The underlying mechanism for this remarkable ability is the “cochlear amplifier”, which operates by modifying cochlear micromechanics. However, it is largely unknown how the cochlea implements this modification. Although gradual improvements in experimental techniques have yielded ever-better descriptions of gross basilar membrane vibration, the internal workings of the organ of Corti and of the tectorial membrane have resisted exploration. Although measurements of cochlear function in mice with a gene mutation for α-tectorin indicate the tectorial membrane's key role in the mechanoelectrical transformation by the inner ear, direct experimental data on the tectorial membrane's physical properties are limited, and only a few direct measurements on tectorial micromechanics are available. Using the hemicochlea, we are able to show that a tectorial membrane stiffness gradient exists along the cochlea, similar to that of the basilar membrane. In artificial perilymph (but with low calcium), the transversal and radial driving point stiffnesses change at a rate of –4.0 dB/mm and −4.9 dB/mm, respectively, along the length of the cochlear spiral. In artificial endolymph, the stiffness gradient for the transversal component was –3.4 dB/mm. Combined with the changes in tectorial membrane dimensions from base to apex, the radial stiffness changes would be able to provide a second frequency-place map in the cochlea. Young's modulus, which was obtained from measurements performed in the transversal direction, decreased by −2.6 dB/mm from base to apex. PMID:17496047

  14. Generalized conjugate gradient squared

    SciTech Connect

    Fokkema, D.R.; Sleijpen, G.L.G.

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  15. Gradient boosting machines, a tutorial.

    PubMed

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  16. Gradient boosting machines, a tutorial

    PubMed Central

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  17. Health supply chain management.

    PubMed

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors. PMID:20407173

  18. Adjusting the Chain Gear

    NASA Astrophysics Data System (ADS)

    Koloc, Z.; Korf, J.; Kavan, P.

    The adjustment (modification) deals with gear chains intermediating (transmitting) motion transfer between the sprocket wheels on parallel shafts. The purpose of the adjustments of chain gear is to remove the unwanted effects by using the chain guide on the links (sliding guide rail) ensuring a smooth fit of the chain rollers into the wheel tooth gap.

  19. Gradients in analyzability.

    PubMed

    Grotstein, J S

    A discussion of "Some Communicative Properties of the Bipersonal Field" by Robert Langs, M.D. In response to Dr. Langs' delineation of the bipersonal field concept and his clinical elaboration of a triad of disorders which are graded into classifications of descending analyzability: Types A,B, and C fields. I confirm his thesis and endeavor to demonstrate some underlying foundations of his categorical assumptions, namely the conceptions of projective identification, of the intactness of the background object of primary identification, the conception of a dual-track theory of infantile development in order to delineate the parallel between the separated self and the continuation of primary identification, and the postulation of manic and schizoid types of narcissistic character disorders (Types B and C respectively). All of these conceptions are vicissitudes of the varying ways in which patients confront the depressive position of separation-individuation with rapprochement and, thereby, conform to a gradient in which symbolization interpretations can be utilized in analytic treatment. PMID:738806

  20. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  1. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  2. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  3. Gradient elution in capillary electrochromatography

    SciTech Connect

    Anex, D.; Rakestraw, D.J.; Yan, Chao; Dadoo, R.; Zare, R.N.

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  4. Syntheses of Gradient pi-Conjugated Copolymers of Thiophene

    SciTech Connect

    Locke, Jonas R.; McNeil, Anne J.

    2010-11-09

    we prepared the first gradient π-conjugated copolymers via Ni-catalyzed chain-growth copolymerization of 3-hexylthiophene and 3-((hexyloxy)methyl)thiophene. Because rate studies indicated little difference in monomer reactivities, one monomer was gradually added to the polymerization over time to form gradient copolymers. Now that controlled sequence π-conjugated copolymers can be synthesized, the next goal is to identify their unique properties, including phase-compatibilizing abilities in homopolymer blends. Preliminary data reported herein suggest that the solid-state optical and physical properties are influenced by the copolymer sequence. Finally, although the Ni-catalyzed copolymerizations are chain growth under the conditions reported herein, our preliminary attempts to expand the substrate scope by examining the copolymerization of monomers with varying steric and electronic properties has highlighted a need for developing improved catalysts.

  5. Single polymer gating of channels under a solvent gradient

    NASA Astrophysics Data System (ADS)

    Nath, S.; Foster, D. P.; Giri, D.; Kumar, S.

    2013-11-01

    We study the effect of a gradient of solvent quality on the coil-globule transition for a polymer in a narrow pore. A simple self-attracting, self-avoiding walk model of a polymer in solution shows that the variation in the strength of the interaction across the pore leads the system to go from one regime (good solvent) to the other (poor solvent) across the channel. This may be thought to be analogous to thermophoresis, where the polymer goes from the hot region to the cold region under the temperature gradient. The behavior of short chains is studied using exact enumeration while the behavior of long chains is studied using transfer matrix techniques. The distribution of the monomer density across the layer suggests that a gatelike effect can be created, with potential applications as a sensor.

  6. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  7. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  8. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  9. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density. PMID:25978093

  10. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  11. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  12. Relations in Chains

    ERIC Educational Resources Information Center

    Mineur, B. W.

    1973-01-01

    The criticisms made against chain indexing are reviewed, and PRECIS briefly considered as a possible (but improbable) general substitute for indexing. The failures of chain indexing arise mainly from an overemphasis on generic relationships. The use of symbols to represent relations between terms is suggested for the chain index. (80 references)…

  13. Parameter-exploring policy gradients.

    PubMed

    Sehnke, Frank; Osendorfer, Christian; Rückstiess, Thomas; Graves, Alex; Peters, Jan; Schmidhuber, Jürgen

    2010-05-01

    We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method outperforms well-known algorithms from the fields of standard policy gradients, finite difference methods and population based heuristics. We also show that the improvement is largest when the parameter samples are drawn symmetrically. Lastly we analyse the importance of the individual components of our method by incrementally incorporating them into the other algorithms, and measuring the gain in performance after each step. PMID:20061118

  14. Spatial gradient tuning in metamaterials

    NASA Astrophysics Data System (ADS)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  15. Generalized gradient and contour program

    USGS Publications Warehouse

    Hellman, Marshall Strong

    1972-01-01

    This program computes estimates of gradients, prepares contour maps, and plots various sets of data provided by the user on the CalComp plotters. The gradients represent the maximum rates of change of a real variable Z=f(X,Y) with respect to the twodimensional rectangle on which the function is defined. The contours are lines of equal Z values. The program also plots special line data sets provided by the user.

  16. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504

  17. Gushing metal chain

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  18. Estimation of coastal density gradients

    NASA Astrophysics Data System (ADS)

    Howarth, M. J.; Palmer, M. R.; Polton, J. A.; O'Neill, C. K.

    2012-04-01

    Density gradients in coastal regions with significant freshwater input are large and variable and are a major control of nearshore circulation. However their measurement is difficult, especially where the gradients are largest close to the coast, with significant uncertainties because of a variety of factors - spatial and time scales are small, tidal currents are strong and water depths shallow. Whilst temperature measurements are relatively straightforward, measurements of salinity (the dominant control of spatial variability) can be less reliable in turbid coastal waters. Liverpool Bay has strong tidal mixing and receives fresh water principally from the Dee, Mersey, Ribble and Conwy estuaries, each with different catchment influences. Horizontal and vertical density gradients are variable both in space and time. The water column stratifies intermittently. A Coastal Observatory has been operational since 2002 with regular (quasi monthly) CTD surveys on a 9 km grid, an situ station, an instrumented ferry travelling between Birkenhead and Dublin and a shore-based HF radar system measuring surface currents and waves. These measurements are complementary, each having different space-time characteristics. For coastal gradients the ferry is particularly useful since measurements are made right from the mouth of Mersey. From measurements at the in situ site alone density gradients can only be estimated from the tidal excursion. A suite of coupled physical, wave and ecological models are run in association with these measurements. The models, here on a 1.8 km grid, enable detailed estimation of nearshore density gradients, provided appropriate river run-off data are available. Examples are presented of the density gradients estimated from the different measurements and models, together with accuracies and uncertainties, showing that systematic time series measurements within a few kilometres of the coast are a high priority. (Here gliders are an exciting prospect for

  19. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  20. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  1. The influence of ALN-Al gradient material gradient index on ballistic performance

    NASA Astrophysics Data System (ADS)

    Wang, Youcong; Liu, Qiwen; Li, Yao; Shen, Qiang

    2013-03-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  2. Isolation of cardiac myosin light-chain isotypes by chromatofocusing. Comparison of human cardiac atrial light-chain 1 and foetal ventricular light-chain 1.

    PubMed

    Vincent, N D; Cummins, P

    1985-04-01

    Cardiac myosin light chain isotypes have been resolved using chromatofocusing, a new preparative column chromatographic technique. The method relies on production of narrow-range, shallow and stable pH gradients using ion-exchange resins and buffers with even buffering capacity over the required pH range. Light chains were resolved in order of decreasing isoelectric point in the pH range 5.2-4.5. Gradients of delta pH = 0.004-0.006/ml elution volume were achieved which were capable of resolving light chains with isoelectric point differences of only 0.03. Analytical isoelectric focusing of light chains in polyacrylamide gels could be used to predict the results of preparative chromatofocusing for method development. Chromatofocusing was capable of resolving human and bovine cardiac light chain 1 and 2 subunits, atrial (ALC) and ventricular (VLC) light chain isotypes and homologous VLC-2 and VLC-2* light chains. The technique was used to purify and resolve the human foetal ventricular light chain 1 (FLC-1) from adult ventricular light chain 1 (VLC-1) present in foetal ventricles and the atrial light chain 1 (ALC-1) in adult atria. Comparative peptide mapping studies and amino acid analyses were carried out on FLC-1 and ALC-1. No differences were detected between FLC-1 and ALC-1 using three different proteases and amino acid compositions were similar with the exception of glycine content. The studies indicate that FLC-1 and ALC-1 are homologous, and possibly identical, light chains. Comparison of human FLC-1/ALC-1 with VLC-1 suggested marked structural and chemical differences in these light chain isotypes, in particular in the contents of methionine, proline, lysine and alanine residues. Differences in the contents of these residues were also apparent in the corresponding bovine atrial and ventricular light chains [Wikman-Coffelt, J. & Srivastava, S. (1979) FEBS Lett. 106, 207-212]. The latter three residues are known to be rich in the N-termini of cardiac and

  3. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  4. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  5. Templating Surfaces with Gradient Assemblies

    SciTech Connect

    Genzer,J.

    2005-01-01

    One of the most versatile and widely used methods of forming surfaces with position-dependent wettability is that conceived by Chaudhury and Whitesides more than a decade ago. In this paper we review several projects that utilize this gradient-forming methodology for: controlled of deposition of self-assembled monolayers on surfaces, generating arrays of nanoparticles with number density gradients, probing the mushroom-to-brush transition in surface-anchored polymers, and controlling the speed of moving liquid droplets on surfaces.

  6. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  7. Effect of Gradient Sequencing on Copolymer Order-Disorder Transitions: Phase Behavior of Styrene/n-Butyl Acrylate Block and Gradient Copolymers

    SciTech Connect

    Mok, Michelle M; Ellison, Christopher J; Torkelson, John M

    2012-11-14

    We investigate the effect of gradient sequence distribution in copolymers on order-disorder transitions, using rheometry and small-angle X-ray scattering to compare the phase behavior of styrene/n-butyl acrylate (S/nBA) block and gradient copolymers. Relative to block sequencing, gradient sequencing increases the molecular weight necessary to induce phase segregation by over 3-fold, directly consistent with previous predictions from theory. Results also suggest the existence of both upper and lower order-disorder transitions in a higher molecular weight S/nBA gradient copolymer, made accessible by the shift in order-disorder temperatures from gradient sequencing. The combination of transitions is speculated to be inaccessible in S/nBA block copolymer systems due to their overlap at even modest molecular weights and also their location on the phase diagram relative to the polystyrene glass transition temperature. Finally, we discuss the potential impacts of polydispersity and chain-to-chain monomer sequence variation on gradient copolymer phase segregation.

  8. Variable metric conjugate gradient methods

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  9. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  10. Gradient Tempering Of Bearing Races

    NASA Technical Reports Server (NTRS)

    Parr, Richardson A.

    1991-01-01

    Gradient-tempering process increases fracture toughness and resistance to stress-corrosion cracking of ball-bearing races made of hard, strong steels and subject to high installation stresses and operation in corrosive media. Also used in other applications in which local toughening of high-strength/low-toughness materials required.

  11. HIGH GRADIENT MAGNETIC PARTICULATE COLLECTION

    EPA Science Inventory

    This paper describes the initial phases of an evaluation of high gradient magnetic separation (HGMS) as a potential method of fine particle collection from industrial stack gases. HGMS is a relatively new separation technique that has been shown to be capable of removing small, w...

  12. Swarm equatorial electric field chain: First results

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Chulliat, A.; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-02-01

    The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an official Level-2 Swarm product. Here we present first results of EEF estimates from nearly a year of Swarm data. We find excellent agreement with independent measurements from the ground-based coherent scatter radar at Jicamarca, Peru, as well as horizontal field measurements from the West African Magnetometer Network magnetic observatory chain. We also calculate longitudinal gradients of EEF measurements made by the A and C lower satellite pair and find gradients up to about 0.05 mV/m/deg with significant longitudinal variability.

  13. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  14. Critical Chain Exercises

    ERIC Educational Resources Information Center

    Doyle, John Kevin

    2010-01-01

    Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…

  15. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  16. Selective and directional actuation of elastomer films using chained magnetic nanoparticles.

    PubMed

    Mishra, Sumeet R; Dickey, Michael D; Velev, Orlin D; Tracy, Joseph B

    2016-01-21

    We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. PMID:26677134

  17. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  18. SUMO chains: polymeric signals.

    PubMed

    Vertegaal, Alfred C O

    2010-02-01

    Ubiquitin and ubiquitin-like proteins are conjugated to a wide variety of target proteins that play roles in all biological processes. Target proteins are conjugated to ubiquitin monomers or to ubiquitin polymers that form via all seven internal lysine residues of ubiquitin. The fate of these target proteins is controlled in a chain architecture-dependent manner. SUMO (small ubiquitin-related modifier) shares the ability of ubiquitin to form chains via internal SUMOylation sites. Interestingly, a SUMO-binding site in Ubc9 is important for SUMO chain synthesis. Similar to ubiquitin-polymer cleavage by USPs (ubiquitin-specific proteases), SUMO chain formation is reversible. SUMO polymers are cleaved by the SUMO proteases SENP6 [SUMO/sentrin/SMT3 (suppressor of mif two 3)-specific peptidase 6], SENP7 and Ulp2 (ubiquitin-like protease 2). SUMO chain-binding proteins including ZIP1, SLX5/8 (synthetic lethal of unknown function 5/8), RNF4 (RING finger protein 4) and CENP-E (centromere-associated protein E) have been identified that interact non-covalently with SUMO chains, thereby regulating target proteins that are conjugated to SUMO multimers. SUMO chains play roles in replication, in the turnover of SUMO targets by the proteasome and during mitosis and meiosis. Thus signalling via polymers is an exciting feature of the SUMO family. PMID:20074033

  19. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  20. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  1. Carbon and Oxygen Galactic Gradients

    NASA Astrophysics Data System (ADS)

    Carigi, L.; Peimbert, M.; Esteban, C.; García-Rojas, J.

    2006-06-01

    A chemical evolution model of the Galaxy has been computed to reproduce the O/H gradients from Galactic HII regions. This model solves the C enrichment problem because it fits the C/H and C/O gradients and the C and O histories of the solar vicinity. The model is based on C yields dependent on metallicity (Z) owing to stellar winds. The C yields of massive stars (MS) increase with Z and those of low and intermediate mass stars (LIMS) decrease with Z. An important result is that the fraction of carbon in the interstellar medium (ISM) due to MS and LIMS is strongly dependent on Z of the ISM, therefore, that fraction depends on time and on the Galactocentric distance. At present and in the solar vicinity about half of the C in the interstellar medium has been produced by MS and half by LIMS.

  2. Analysis of mutations using PCR and denaturing gradient gel electrophoresis

    SciTech Connect

    Cariello, N.F.; Swenberg, J.A. Duke Univ., Durham, NC ); DeBellis, A.; Skopek, T.R. )

    1991-01-01

    Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on primary sequence. Under the appropriate conditions, all base pair (bp) substitutions, frameshifts, and deletions less than about 10 bp can be resolved from the wild type sequence using DGGE. Polymerase chain reaction (PCR) permits facile amplification of a given region of the genome. The authors have combined PCR and DGGE to: (1) localize mutations in the X-linked human androgen receptor gene; (2) analyze thousands of thioguanine-resistant mutants simultaneously; (3) examine the fidelity of several DNA polymerases used in PCR.

  3. Translocation of reptating chains

    NASA Astrophysics Data System (ADS)

    Żurek, S.; Drzewiński, A.; van Leeuwen, J. M. J.

    2011-05-01

    Voltage-driven translocation is modeled with the Rubinstein-Duke rules for hopping reptons in one- and two-dimensional lattices. The chain is driven through the pore by a bias potential promoting the transition of stored length in one direction. Coupling states give a semi-periodicity of the process that enables us to relate the properties to the stationary state of the master equation. The exact solution for short chains and Monte Carlo simulations for longer chains are used to calculate displacements, velocities and the translocation time.

  4. Superdirective and gradient sensor arrays

    NASA Astrophysics Data System (ADS)

    Merklinger, Harold M.

    2003-10-01

    During the late 1960s and the 1970s, underwater acoustic investigators examined superdirective and gradient sensor systems in order to enhance submarine detection capabilities for surface ships and maritime aircraft. Simple gradient processing had already been used in both in-air acoustic systems (cardioid and super-cardioid microphones) as well as radio and radar applications. Superdirective techniques were known [R. L. Pritchard, J. Acoust. Soc. Am. 25, 879 (1953)] and sometimes exploited in radar systems. It was quickly demonstrated that simple gradient sensors and modest degrees of superdirective array processing were possible, although self-noise and the ability to calibrate hydrophones limited the processing gains achievable. Circular superdirective arrays were used extensively by the Defence Research Establishment Atlantic for noise directionality measurements in the frequency range 4 Hz to about 1 kHz and considered for naval ASW applications until the superiority of oil-filled conventional arrays became apparent. Nevertheless, the significant theoretical and practical development of spatial harmonic beamforming and direction finding was completed. Although much of this work was not considered classified, neither was it widely published. This presentation will review the concepts developed and progress made. Beamforming, noise mitigation and calibration issues are covered.

  5. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  6. Factorialsum Number Chains.

    ERIC Educational Resources Information Center

    Lamb, John, Jr.

    1989-01-01

    Describes several phenomena in which interesting properties of numbers are demonstrated. Includes discussions of amicable, perfect, and sociable numbers. Presents computer programs for conducting a number chain search. (RT)

  7. Respiratory chain supercomplexes.

    PubMed

    Schägger, H

    2001-01-01

    Respiratory chain supercomplexes have been isolated from mammalian and yeast mitochondria, and bacterial membranes. Functional roles of respiratory chain supercomplexes are catalytic enhancement, substrate channelling, and stabilization of complex I by complex III in mammalian cells. Bacterial supercomplexes are characterized by their relatively high detergent-stability compared to yeast or mammalian supercomplexes that are stable to sonication. The mobility of substrate cytochrome c increases in the order bacterial, yeast, and mammalian respiratory chain. In bacterial supercomplexes, the electron transfer between complexes III and IV involves movement of the mobile head of a tightly bound cytochrome c, whereas the yeast S. cerevisiae seems to use substrate channelling of a mobile cytochrome c, and mammalian respiratory chains have been described to use a cytochrome c pool. Dimeric ATP synthase seems to be specific for mitochondrial OXPHOS systems. Monomeric complex V was found in Acetobacterium woodii and Paracoccus denitrificans. PMID:11798023

  8. Light chain nephropathy.

    PubMed

    Darouich, Sihem; Bettaieb, Ilhem; Aouadia, Raja; Hedri, Hafedh; Abderrahim, Ezzeddine; Goucha, Rym; Khedher, Adel

    2015-01-01

    Light chain deposition disease (LCDD) is characterized by the tissue deposition of monotypic immunoglobulin light chains of either kappa or lambda isotype. It is the archetypal systemic disease that is most frequently diagnosed on a kidney biopsy, although the deposits may involve several other organs. This brief review focuses on the clinicopathological features of LCDD-associated nephropathy with an emphasis on the diagnostic and therapeutic difficulties related to this elusive condition. PMID:26022011

  9. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    PubMed

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health. PMID:26943010

  10. Oxygen gradients in the microcirculation.

    PubMed

    Pittman, R N

    2011-07-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453

  11. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  12. Autonomous pump against concentration gradient

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan; Zhong, Wei-Rong

    2016-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process.

  13. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  14. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  15. Electron Temperature Gradient Mode Transport

    SciTech Connect

    Horton, W.; Kim, J.-H.; Hoang, G. T.; Park, H.; Kaye, S. M.; LeBlanc, B. P.

    2008-05-14

    Anomalous electron thermal losses plays a central role in the history of the controlled fusion program being the first and most persistent form of anomalous transport across all toroidal magnetic confinement devices. In the past decade the fusion program has made analysis and simulations of electron transport a high priority with the result of a clearer understanding of the phenomenon, yet still incomplete. Electron thermal transport driven by the electron temperature gradient is examined in detail from theory, simulation and power balance studies in tokamaks with strong auxiliary heating.

  16. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  17. Pulsed Field Gradient Selection in Two-Dimensional Magic Angle Spinning NMR Spectroscopy of Dipolar Solids

    NASA Astrophysics Data System (ADS)

    Fritzhanns, Tilo; Hafner, Siegfried; Demco, Dan E.; Spiess, Hans W.; Laukien, Frank H.

    1998-10-01

    The utility of gradient selection in MAS spectroscopy of dipolar solids is explored in two examples. In the first, rotor-synchronized gradients of appropriate strength and duration are applied to select1H double-quantum coherences. The resulting DQ MAS spectrum of adamantane is compared with that acquired by the corresponding phase-cycling technique. As a second example, a1H 2D exchange MAS experiment is performed on an elastomer sample. In this experiment, a gradient is applied to remove undesired coherences that would otherwise distort the spectrum for short mixing times. The diagonal-peak intensities in the resulting spectrum show a linear decrease with increasing mixing time indicating cross-relaxation by slow chain motions as the relevant process. Both types of experiments demonstrate the potential of gradient-selection techniques for MAS spectroscopy of dipolar solids.

  18. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  19. Gradient-Modulated PETRA MRI

    PubMed Central

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J.; Garwood, Michael

    2015-01-01

    Image blurring due to off-resonance and fast T2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners. PMID:26771005

  20. Chain formation and chain dynamics in a dilute magnetorheological fluid.

    PubMed

    Hagenbüchle, M; Liu, J

    1997-10-20

    Magnetorheological fluids are suspensions of magnetizable particles that reversibly change from liquid to solid when subjected to a magnetic field. A field-induced structure of dipolar chains is responsible for these changes. Our work aimed at understanding chain dynamics and the kinetics of chain formation by using dynamic light scattering. Chain length is determined by measurement of the diffusion coefficient. Chain-length growth shows a Smoluchowski behavior. PMID:18264283

  1. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  2. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  3. Solitons in Granular Chains

    SciTech Connect

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-04-12

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.

  4. Negative thermal conductivity of chains of rotors with mechanical forcing

    NASA Astrophysics Data System (ADS)

    Iacobucci, Alessandra; Legoll, Frédéric; Olla, Stefano; Stoltz, Gabriel

    2011-12-01

    We consider chains of rotors subjected to both thermal and mechanical forcings in a nonequilibrium steady state. Unusual nonlinear profiles of temperature and velocities are observed in the system. In particular, the temperature is maximal in the center, which is an indication of the nonlocal behavior of the system. Despite this uncommon behavior, local equilibrium holds for long enough chains. Our numerical results also show that when the mechanical forcing is strong enough, the energy current can be increased by an inverse temperature gradient. This counterintuitive result again reveals the complexity of nonequilibrium states.

  5. A theoretical investigation of symmetry-origin unidirectional energy gradient in light-harvesting dendrimers

    NASA Astrophysics Data System (ADS)

    Koda, Shin-ichi

    2016-03-01

    We theoretically investigate a possibility that the symmetry of the repetitively branched structure of light-harvesting dendrimers creates the energy gradient descending toward inner generations (layers of pigment molecules) of the dendrimers. In the first half of this paper, we define a model system using the Frenkel exciton Hamiltonian that focuses only on the topology of dendrimers and numerically show that excitation energy tends to gather at inner generations of the model system at a thermal equilibrium state. This indicates that an energy gradient is formed in the model system. In the last half, we attribute this result to the symmetry of the model system and propose two symmetry-origin mechanisms creating the energy gradient. The present analysis and proposition are based on the theory of the linear chain (LC) decomposition [S. Koda, J. Chem. Phys. 142, 204112 (2015)], which equivalently transforms the model system into a set of one-dimensional systems on the basis of the symmetry of dendrimers. In the picture of the LC decomposition, we find that energy gradient is formed both in each linear chain and among linear chains, and these two mechanisms explain the numerical results well.

  6. Strength gradient enhances fatigue resistance of steels.

    PubMed

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch's tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  7. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  8. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  9. Strain gradient effects on cyclic plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Legarth, Brian Nyvang

    2010-04-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between rigid platens have been carried out, using the finite element method. It is shown for elastic-perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening in the presence of conventional material hardening. Furthermore, it is shown that dissipative gradient effects can lead to both an increase and a decrease in the dissipation per load cycle depending on the magnitude of the dissipative length parameter, whereas energetic gradient effects lead to decreasing dissipation for increasing energetic length parameter. For dissipative gradient effects it is found that dissipation has a maximum value for some none zero value of the material length parameter, which depends on the magnitude of the deformation cycles.

  10. Gradient scaling for nonuniform meshes

    SciTech Connect

    Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.

    1985-01-01

    This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.

  11. INTERACTING QUANTUM SPIN CHAINS

    SciTech Connect

    ZHELUDEV,A.

    2001-09-09

    A brief review of recent advances in neutron scattering studies of low-dimensional quantum magnets is followed by a particular example. The separation of single-particle and continuum states in the weakly-coupled S = l/2 chains system BaCu{sub 2}Si{sub 2}O{sub 7} is described in some detail.

  12. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  13. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  14. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  15. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  16. Breaking the Chains

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2007-01-01

    In 1792 more than 350,000 people in Britain signed a petition calling for an end to the slave trade. It was, writes historian Adam Hochschild in his book "Bury the Chains," "the first time in history that a large number of people became outraged, and stayed outraged for many years, over someone else's rights". In 1807--after 15 years of…

  17. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation. PMID:27271915

  18. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  19. Ant colony optimization and stochastic gradient descent.

    PubMed

    Meuleau, Nicolas; Dorigo, Marco

    2002-01-01

    In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633

  20. Origin of Temperature Gradient in Nonequilibrium Steady States in Weakly Coupled Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Ishida, Toyohiko; Sugita, Ayumu

    2016-07-01

    We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.

  1. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry.

    PubMed

    Papon, Aurélie; Montes, Hélène; Hanafi, Mohamed; Lequeux, François; Guy, Laurent; Saalwächter, Kay

    2012-02-10

    The slowing-down of the dynamics of a polymer chain near a surface has been observed for many years now. Here we show that the behavior of model nanocomposites can be quantitatively described with a gradient of glass-transition temperature. We describe with a single parameter-the range of this gradient-the temperature and solvent effect on the spin relaxation dynamics. Moreover, this parameter allows a quantitative description of the nanocomposite calorimetric response from the one of the bulk polymer. PMID:22401088

  2. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering

    PubMed Central

    Ramalingam, Murugan; Young, Marian F.; Thomas, Vinoy; Sun, Limin; Chow, Laurence C.; Tison, Christopher K.; Chatterjee, Kaushik; Miles, William C.; Simon, Carl G.

    2012-01-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues. PMID:22286209

  3. Effects of Sequence Distribution, Concentration and pH on Gradient and Block Copolymer Micelle Formation in Solution

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen; Kim, Jungki; Wong, Christopher; Torkelson, John

    2011-03-01

    Gradient copolymers are a relatively new class of materials with a gradual change in comonomer composition along the copolymer chain length, which have exhibited unique material properties in comparison to random and block copolymers. Here we extend this architecture to amphiphilic systems that form micelles in solvent, as the effect of a nonuniform comonomer sequence distribution is expected to strongly influence critical aggregation phenomena. Utilizing pyrene as a fluorescence probe, we determined that gradient copolymers present an intermediate critical aggregation concentration in comparison to analogous block and random copolymers. The effect of gradient architecture on a pH-sensitive copolymer was also investigated, concluding that gradient sequencing significantly impacts the solubility and critical aggregation pH when compared to block and random copolymers of similar composition, providing further evidence that gradient architectures introduce a powerful means of tuning properties between block and random copolymers.

  4. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor)

    1988-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on a normal probability chart, enables prediction of the yield of good integrated circuits from the wafer.

  5. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, U. (Inventor)

    1986-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on normal probability chart enables prediction of the yield of good integrated circuits from the wafer.

  6. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management. PMID:12866156

  7. Callisto Crater Chain Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic of three images shows an area within the Valhalla region on Jupiter's moon, Callisto. North is to the top of the mosaic and the Sun illuminates the surface from the left. The smallest details that can be discerned in this picture are knobs and small impact craters about 160 meters (175 yards) across. The mosaic covers an area approximately 45 kilometers (28 miles) across. It shows part of a prominent crater chain located on the northern part of the Valhalla ring structure.

    Crater chains can form from the impact of material ejected from large impacts (forming secondary chains) or by the impact of a fragmented projectile, perhaps similar to the Shoemaker-Levy 9 cometary impacts into Jupiter in July 1994. It is believed this crater chain was formed by the impact of a fragmented projectile. The images which form this mosaic were obtained by the solid state imaging system aboard NASA's Galileo spacecraft on Nov. 4, 1996 (Universal Time).

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  8. The innovation value chain.

    PubMed

    Hansen, Morten T; Birkinshaw, Julian

    2007-06-01

    The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain. PMID:17580654

  9. A novel method for RNA extraction from Andosols using casein and its application to amoA gene expression study in soil.

    PubMed

    Wang, Yong; Nagaoka, Kazunari; Hayatsu, Masahito; Sakai, Yoriko; Tago, Kanako; Asakawa, Susumu; Fujii, Takeshi

    2012-11-01

    The lack of a universal method to extract RNA from soil hinders the progress of studies related to nitrification in soil, which is an important step in the nitrogen cycle. It is particularly difficult to extract RNA from certain types of soils such as Andosols (volcanic ash soils), which is the dominant agricultural soil in Japan, because of RNA adsorption by soil. To obtain RNA from these challenging soils to study the bacteria involved in nitrification, we developed a soil RNA extraction method for gene expression analysis. Autoclaved casein was added to an RNA extraction buffer to recover RNA from soil, and high-quality RNA was successfully extracted from eight types of agricultural soils that were significantly different in their physicochemical characteristics. To detect bacterial ammonia monooxygenase subunit A gene (amoA) transcripts, bacterial genomic DNA and messenger RNA were co-extracted from two different types of Andosols during incubation with ammonium sulfate. Polymerase chain reaction-denaturing gradient gel electrophoresis and reverse transcription polymerase chain reaction-denaturing gradient gel electrophoresis analyses of amoA in soil microcosms revealed that only few amoA, which had the highest similarities to those in Nitrosospira multiformis, were expressed in these soils after treatment with ammonium sulfate, although multiple amoA genes were present in the soil microcosms examined. PMID:22993110

  10. Short granular chain under vibration: Spontaneous switching of states

    NASA Astrophysics Data System (ADS)

    Sun, Y.-C.; Fei, H.-T.; Huang, P.-C.; Juan, W.-T.; Huang, J.-R.; Tsai, J.-C.

    2016-03-01

    We study experimentally a short chain of N (≤8 ) loosely connected spheres bouncing against a horizontal surface that vibrates sinusoidally at intensity Γ . Distinct states are identified: a base state of uniform bouncing in-sync with the substrate prevails at low values of Γ , whereas increasing Γ can induce transitions to two excited states with appreciable storage of energy around one or both ends of the chain. We find that, in a transitional window of Γ , the chain can even switch spontaneously among states, resolving the mystery why different modes of motion can be initiated at the same position in our previous work along a gradient of vibration [Phys. Rev. Lett. 112, 058001 (2014), 10.1103/PhysRevLett.112.058001]. Preliminary interpretations on the parametric dependences and the optimal frequency window for seeing these transitions are offered, based on the microscopic and statistical evidence in our experiments up to date.

  11. Gradient Sensing: Engineering the Yeast Love Affair.

    PubMed

    Goryachev, Andrew B; Leda, Marcin

    2016-06-01

    A new study in fission yeasts promotes the notion that transient polarity patches that wander the cell surface at the onset of mating are discrete agents of gradient sensing. This concept unexpectedly bridges the modes of gradient sensing in eukaryotes and prokaryotes. PMID:27269722

  12. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  13. Microinstabilities in weak density gradient tokamak systems

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  14. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented. PMID:23611335

  15. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    SciTech Connect

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  16. Density gradient stabilization of electron temperature gradient driven turbulence in a spherical tokamak.

    PubMed

    Ren, Y; Kaye, S M; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann, N C; Smith, D R; Yuh, H

    2011-04-22

    In this Letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k(⊥)ρ(s) ≲ 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of 2 decrease in the plasma effective thermal diffusivity. PMID:21599377

  17. Dual fuel gradients in uranium silicide plates

    SciTech Connect

    Pace, B.W.

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  18. Can Molecular Gradients Wire the Brain?

    PubMed

    Goodhill, Geoffrey J

    2016-04-01

    Concentration gradients are believed to play a key role in guiding axons to their appropriate targets during neural development. However, there are fundamental physical constraints on gradient detection, and these strongly limit the fidelity with which axons can respond to gradient cues. I discuss these constraints and argue they suggest that many axon guidance events in vivo cannot be explained solely in terms of gradient-based mechanisms. Rather, precise wiring requires the collaboration of gradients with other types of guidance cues. Since we know relatively little about how this might work, I argue that our understanding of how the brain becomes wired up during development is still at an early stage. PMID:26927836

  19. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  20. Induced population gradients in galaxy merger remnants

    NASA Technical Reports Server (NTRS)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We use numerical models to investigate the nature of induced population gradients in merger remnants. As noted by White, we find that the population mixing in stellar-dynamical mergers is rather moderate, leading to metallicity gradients in the remnant that are closely tied to gradients in the progenitor galaxies. Furthermore, the resultant metallicity gradients are poorly fitted by power laws, showing significant nonlinearities within an effective radius. If constant metallicity bulges are added to the progenitor disks, the strong relation between final and initial metallicity gradients is diluted, but the final gradients are still not well fitted by power laws. Detailed studies of the shape of the metallicity gradients in elliptical galaxies should help determine the degree to which stellar-dynamical mergers have contributed to the population of present-day ellipticals. We also consider the effects of centrally concentrated starbursts on metallicity gradients. Using simple models for metallicity enhancement, we find that addition of a metal-rich starburst population can reproduce the magnitude and shape of metallicity gradients observed in elliptical galaxies. However, even in such cases the metallicity gradients in the merger remnant should steepen significantly beyond an effective radius. Modelling such merger-induced starbursts with population synthesis techniques, we find that if the starburst is characterized by solar metallicity, it should be detectable as a bluing of the nuclear regions for several Gyr. However, if the starburst is metal-rich, the reddening effects of higher metallicity makes the broad-band signature of the starburst much more difficult to detect.

  1. A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Li, B.; Weinberg, K.; Conti, S.; Ortiz, M.

    2015-01-01

    We formulate a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. We show that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. In particular, we derive optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely, the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains and to the strain-gradient elasticity regularization. We show how the critical energy-release rate of specific materials can be determined from test data. Finally, we demonstrate the scope and fidelity of the model by means of an example of application, namely, Taylor-impact experiments of polyurea 1000 rods.

  2. Formation of chain structures in systems of charged grains interacting via isotropic pair potentials

    SciTech Connect

    Vaulina, O. S.; Lisina, I. I.; Koss, K. G.

    2013-05-15

    Conditions for the formation of chain structures of charged grains confined in the gravitational field by external electric fields are studied analytically and numerically. The relationships between the parameters of the pair interaction potential, the number of grains, and the electric field gradient in the trap are found. A criterion for the violation of stable equilibrium in a quasi-one-dimensional chain of grains and the formation of a new configuration in the system is proposed.

  3. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  4. Musical Markov Chains

    NASA Astrophysics Data System (ADS)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  5. Monte Carlo without chains

    SciTech Connect

    Chorin, Alexandre J.

    2007-12-12

    A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.

  6. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter

    PubMed Central

    Huang, Susie Y.; Nummenmaa, Aapo; Witzel, Thomas; Duval, Tanguy; Cohen-Adad, Julien; Wald, Lawrence L.; McNab, Jennifer A.

    2014-01-01

    Diffusion magnetic resonance imaging (MRI) methods for axon diameter mapping benefit from higher maximum gradient strengths than are currently available on commercial human scanners. Using a dedicated high-gradient 3 T human MRI scanner with a maximum gradient strength of 300 mT/m, we systematically studied the effect of gradient strength on in vivo axon diameter and density estimates in the human corpus callosum. Pulsed gradient spin echo experiments were performed in a single scan session lasting approximately 2 h on each of three human subjects. The data were then divided into subsets with maximum gradient strengths of 77, 145, 212, and 293 mT/m and diffusion times encompassing short (16 and 25 ms) and long (60 and 94 ms) diffusion time regimes. A three-compartment model of intra-axonal diffusion, extra-axonal diffusion, and free diffusion in cerebrospinal fluid was fitted to the data using a Markov chain Monte Carlo approach. For the acquisition parameters, model, and fitting routine used in our study, it was found that higher maximum gradient strengths decreased the mean axon diameter estimates by two to three fold and decreased the uncertainty in axon diameter estimates by more than half across the corpus callosum. The exclusive use of longer diffusion times resulted in axon diameter estimates that were up to two times larger than those obtained with shorter diffusion times. Axon diameter and density maps appeared less noisy and showed improved contrast between different regions of the corpus callosum with higher maximum gradient strength. Known differences in axon diameter and density between the genu, body, and splenium of the corpus callosum were preserved and became more reproducible at higher maximum gradient strengths. Our results suggest that an optimal q-space sampling scheme for estimating in vivo axon diameters should incorporate the highest possible gradient strength. The improvement in axon diameter and density estimates that we demonstrate from

  7. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    PubMed

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials. PMID:26053298

  8. Atom Transfer Radical Copolymerization of Gradient Copolymers of HEMA/DMAEMA with Arbitrary Composition Profiles

    NASA Astrophysics Data System (ADS)

    Gallow, Keith; Loo, Yueh-Lin

    2009-03-01

    Gradient copolymers represent a new class of statistical copolymers where a non-uniform composition profile is controllably introduced along the length of the polymer chain. Gradient copolymers have thermal and mechanical properties that are different from random or block copolymers having the same average composition. Due to synthetic limitations, however, the introduction of arbitrary composition profiles remains challenging. Here, we demonstrate the ability to controllably introduce arbitrary composition profiles along copolymers of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) by atom transfer radical copolymerization in a semi-batch reactor. Using gas chromatography to monitor monomer consumption, we have constructed a kinetic model which we use as a basis to synthesize copolymers with linear and parabolic composition profiles. The overall DMAEMA content and molecular weight of these gradient copolymers were determined using nuclear magnetic resonance spectroscopy and size exclusion chromatography, respectively, and both show good agreement with our model's predictions.

  9. [Trophic chains in soil].

    PubMed

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25508107

  10. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25438576

  11. Satellite gravity gradient grids for geophysics.

    PubMed

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  12. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  13. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  14. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING

    PubMed Central

    Sant, Shilpa; Hancock, Matthew J.; Donnelly, Joseph P.; Iyer, Dharini; Khademhosseini, Ali

    2011-01-01

    During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell–material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell–material interactions in context with the long-term goals of tissue engineering. PMID:21874065

  15. Satellite gravity gradient grids for geophysics

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-02-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  16. ATLAS3D Stellar Population Gradients

    NASA Astrophysics Data System (ADS)

    Kuntschner, Harald

    2015-04-01

    We present stellar population gradients of early-type galaxies from the ATLAS3D survey: a complete, volume-limited multi-wavelength survey of 260 early-type galaxies in the local 42 Mpc volume. Using emission-corrected spectra integrated within elliptical annuli we measure line-strength indices and apply single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement as function of radius. For all galaxies we derive basic linear stellar population gradients versus radius logR/Re). These gradients are examined on their own and versus three mass-sensitive parameters: K-band luminosity MK, velocity dispersion within one effective radius log σe, and our dynamical mass MJAM. We find a correlation between positive age gradients (younger centre) and steeper negative metallicity gradients with a Spearman rank correlation coefficient of -0.46 and a significance of 7.65 × 10-15. Furthermore, we find a robustly estimated mean metallicity gradient of Δ[Z/H] = -0.37 +/- 0.01 for the sample with a significant trend for more massive galaxies to have shallower profiles. While there is no clear distinction between fast and slow rotators or signs of environmental influence, we do detect a significantly larger range of [Z/H]-gradients towards low mass galaxies.

  17. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups. PMID:26235451

  18. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING.

    PubMed

    Sant, Shilpa; Hancock, Matthew J; Donnelly, Joseph P; Iyer, Dharini; Khademhosseini, Ali

    2010-12-01

    During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell-material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell-material interactions in context with the long-term goals of tissue engineering. PMID:21874065

  19. Gradient-based MCMC samplers for dynamic causal modelling

    PubMed Central

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2016-01-01

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349

  20. Sound beam manipulation based on temperature gradients

    SciTech Connect

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  1. Sound beam manipulation based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-10-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  2. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  3. Myosin light-chain phosphatase.

    PubMed Central

    Morgan, M; Perry, S V; Ottaway, J

    1976-01-01

    1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain. Images PLATE 1 PMID:186030

  4. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  5. The glassy wormlike chain

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Glaser, Jens

    2007-11-01

    We introduce a new model for the dynamics of a wormlike chain (WLC) in an environment that gives rise to a rough free energy landscape, which we name the glassy WLC. It is obtained from the common WLC by an exponential stretching of the relaxation spectrum of its long-wavelength eigenmodes, controlled by a single parameter \\boldsymbol{\\cal E} . Predictions for pertinent observables such as the dynamic structure factor and the microrheological susceptibility exhibit the characteristics of soft glassy rheology and compare favourably with experimental data for reconstituted cytoskeletal networks and live cells. We speculate about the possible microscopic origin of the stretching, implications for the nonlinear rheology, and the potential physiological significance of our results.

  6. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics. PMID:23384180

  7. Counter-gradient in premixed turbulent flames

    NASA Astrophysics Data System (ADS)

    Libby, P. A.; Bray, K. N. C.

    1980-01-01

    A new theory for premixed turbulent flames normal to the oncoming reactants is developed on the basis of the Bray-Moss-Libby model of premixed combustion and second-order closure. Gradient transport assumptions are carefully avoided. The final formulation focuses on the intensity of the fluctuations of the velocity component normal to the flame and on the mean flux of product. At low rates of heat release corresponding to small intensities of the density fluctuations the new theory is in agreement with our earlier theory based on gradient transport. However, as the heat release increases toward values of practical interest, counter-gradient diffusion, i.e., mean flux in the direction of increasing mean concentration, arises and is attributable to the differential effect of mean pressure gradient on cold reactants and hot products. The implications of these results are discussed.

  8. Multi-point gradient calculation with constraints

    NASA Astrophysics Data System (ADS)

    de Keyser, Johan

    Multi-spacecraft missions resolve the space-time ambiguity inherent in single-spacecraft in situ measurements. One particularly useful technique is the computation of the gradients (spaceand time-derivatives) from multi-point observations of scalar and vector fields. Given the diffi- culties inherent in computing derivatives, we propose to improve the determination of gradients by imposing additional information in the form of constraints. We discuss geometric constraints on the orientation of the gradient vectors and physically-motivated constraints. For instance, imposing the divergence-free condition for the magnetic field leads to an improved curlometer. We describe the usefulness of such constrained least-squares gradient techniques as applied to magnetic field and plasma density observations by Cluster.

  9. Coreless Concept for High Gradient Induction Cell

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  10. Isotachophoresis of proteins in sucrose density gradients.

    PubMed

    Acevedo, F

    1993-10-01

    The separation of proteins from human serum by isotachophoresis in sucrose density gradients, with mixtures of discrete amphoteric substances as spacers, is described. Open columns and columns with a dialysis membrane to hold the sucrose gradients were used. A simple algorithm based on the Kohlrausch function was used to calculate the amount of each spacer. The pH gradients generated in open columns were found to be in agreement with the calculations. The load was up to two gram proteins. The analysis of the fractions obtained after the separation showed a distribution of components similar to as analytical isotachophoresis. It is concluded that sucrose density gradients are suitable as supporting media for the preparative separation of proteins by isotachophoresis. The high resolution attained and the possibility of scaling-up the separation systems are major advantages of this system. In addition, the sample is easily and completely recoverable. PMID:8125049

  11. Gradient systems in view of information geometry

    NASA Astrophysics Data System (ADS)

    Fujiwara, Akio; Amari, Shun-ichi

    Dualistic properties of a gradient flow on a manifold M associated with a dualistic structure (g, ∇, ∇ ∗) is studied from an information geometrical viewpoint. Some useful applications are also investigated.

  12. Investigation of ionospheric gradients for GAGAN application

    NASA Astrophysics Data System (ADS)

    Chandra, K. Ravi; Srinivas, V. Satya; Sarma, A. D.

    2009-05-01

    To cater to the needs of aviation applications, GPS Aided GEO Augmented Navigation (GAGAN) system is being implemented over the Indian region. The most prominent parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of TEC. In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating ionospheric gradients in multiple viewing directions. Rate of TEC (ROT) and Rate of TEC Index (ROTI) are calculated to identify the ionospheric gradients. Among the satellite signals arriving in multiple directions, the signals which suffer from severe ionospheric gradients are identified and avoided for improving GAGAN positional accuracy. The outcome of this paper will be helpful for improving GAGAN system performance.

  13. Gradients for SL(q)-foliations

    NASA Astrophysics Data System (ADS)

    Bartoszek, Adam; Kalina, Jerzy; Pierzchalski, Antoni

    2011-12-01

    Gradients, i.e., irreducible (with respect to the orthogonal group) components of the covariant derivative on a foliation, are considered under the assumption that the foliation has holonomy invariant transversal volume form.

  14. Gradient systems on coupled cell networks

    NASA Astrophysics Data System (ADS)

    Manoel, Miriam; Roberts, Mark

    2015-10-01

    For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs. These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of {{\\mathbf{S}}1} -invariant admissible functions on a ring of cells.

  15. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.

    1995-12-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  16. SW New Mexico BHT geothermal gradient calculations

    DOE Data Explorer

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  17. Intratumoral oxygen gradients mediate sarcoma cell invasion.

    PubMed

    Lewis, Daniel M; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T S Karin; Simon, M Celeste; Gerecht, Sharon

    2016-08-16

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm(3)) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1-6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245

  18. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  19. Pressure gradient influence in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200 gradient.

  20. Natural gradient learning algorithms for RBF networks.

    PubMed

    Zhao, Junsheng; Wei, Haikun; Zhang, Chi; Li, Weiling; Guo, Weili; Zhang, Kanjian

    2015-02-01

    Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can accelerate the dynamics of learning and avoid plateaus. In this letter, we assume that the probability density function (pdf) of the input and the activation function are gaussian. First, we introduce natural gradient learning to the RBF networks and give the explicit forms of the Fisher information matrix and its inverse. Second, since it is difficult to calculate the Fisher information matrix and its inverse when the numbers of the hidden units and the dimensions of the input are large, we introduce the adaptive method to the natural gradient learning algorithms. Finally, we give an explicit form of the adaptive natural gradient learning algorithm and compare it to the conventional gradient descent method. Simulations show that the proposed adaptive natural gradient method, which can avoid the plateaus effectively, has a good performance when RBF networks are used for nonlinear functions approximation. PMID:25380332

  1. Chains, bombs, potrzebies and slugs

    NASA Astrophysics Data System (ADS)

    Jewess, Mike; McDowell, Alex; Maxfield, Stephen; Hunt, A. G.; Hicks, Bruce

    2010-03-01

    I read with pleasure Robert Crease's article on unusual units (February pp17-19). However, the article stated that an acre is 10×10 chains, when it is in fact 10×1 chains. Incidentally, a distance of 10 chains (220 yards) is known as a furlong, a word that suggests the length of a ploughed furrow and that is still used in horse-racing.

  2. Supply Chain Coordination in Hospitals

    NASA Astrophysics Data System (ADS)

    Rego, Nazaré; de Sousa, Jorge Pinho

    This paper presents an innovative approach to support the definition of strategies for the design of alternative configurations of hospital supply chains. This approach was developed around a hybrid Tabu Search / Variable Neighbourhood Search metaheuristic, that uses several neighbourhood structures. The flexibility of the procedure allows its application to supply chains with different topologies and atypical cost characteristics. A preliminary computational experience shows the approach potential in solving large scale supply chain configuration problems. The future incorporation of this approach in a broader Decision Support System (DSS) will provide a tool that can significantly contribute to an increase of healthcare supply chains efficiency and encourage the establishment of collaborative partnerships between their members.

  3. Dynamical Aspects of Inextensible Chains

    NASA Astrophysics Data System (ADS)

    Ferrari, Franco; Pyrka, Maciej

    In the present work, a method to impose the inextensibility constraints on the dynamics of a chain fluctuating in a thermal bath at fixed temperature is investigated. The final goal is to construct the probability function of the chain and the generating functional of the correlation functions of the relevant degrees of freedom of the system. First, we study the dynamics of a freely hinged chain composed by massive beads connected together by massless segments of fixed length. It is shown that a system of this kind may be described by a set of Langevin equations in which the noise is characterized by a non-gaussian probability distribution. Starting from these Langevin equations, the generating functional of the freely hinged chain is derived in path integral form. A connection with a stochastic process governed by a Fokker-Planck equation is established. Next, a chain composed by one-dimensional bars with constant mass distribution is considered. A path integral expression of the generating functional for a chain of this type is derived. Finally, it is verified that in the limit in which the chain becomes continuous, both generating functionals of the freely hinged chain and of the freely jointed bar chain converge to the same result as expected.

  4. Human laminin B2 chain

    SciTech Connect

    Pikkarainen, T.; Kallunki, T.; Tryggvason, K.

    1988-05-15

    The complete amino acid sequence of the human laminin B2 chains has been determined by sequencing of cDNA clones. The six overlapping clones studied cover approximately 7.5 kilobases of which 5312 nucleotides were sequenced from the 5' end. The open reading frame codes for a 33-residue signal peptide and a 1576-residue B2 chain proper, which is 189 residues less than in the highly homologous B1 chain. Computer analysis revealed that the B2 chain consists of distinct domains that contain helical structures, cysteine-rich repeats, and globular regions, as does the B1 chain. However, domain ..cap alpha.. and domain ..beta.. of the B1 chain have no counterpart in B2, and the number of cysteine-rich repeats is 12, or 1 less than in the B1 chain. The degree of homology between the two chains is highest in the cysteine repeat-containing domains III and V where 40% of the residues match. However, in helical domains I/II only 16% of residues match. The results demonstrate that the B1 and B2 chains of laminin are highly homologous proteins that are probably the products of related genes.

  5. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles. PMID:27269182

  6. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  7. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility

  8. Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study

    NASA Technical Reports Server (NTRS)

    Tian, Pu; Smith, Grant D.

    2003-01-01

    We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  9. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  10. Exploring membrane respiratory chains.

    PubMed

    Marreiros, Bruno C; Calisto, Filipa; Castro, Paulo J; Duarte, Afonso M; Sena, Filipa V; Silva, Andreia F; Sousa, Filipe M; Teixeira, Miguel; Refojo, Patrícia N; Pereira, Manuela M

    2016-08-01

    Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27044012

  11. Verifying the Hanging Chain Model

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  12. Age and metallicity gradients in fossil ellipticals

    NASA Astrophysics Data System (ADS)

    Eigenthaler, P.; Zeilinger, W. W.

    2013-05-01

    Context. Fossil galaxy groups are speculated to be old and highly evolved systems of galaxies that formed early in the universe and had enough time to deplete their L∗ galaxies through successive mergers of member galaxies, building up one massive central elliptical, but retaining the group X-ray halo. Aims: Considering that fossils are the remnants of mergers in ordinary groups, the merger history of the progenitor group is expected to be imprinted in the fossil central galaxy (FCG). We present for the first time radial gradients of single-stellar population (SSP) ages and metallicites in a sample of FCGs to constrain their formation scenario. We also measure line-strength gradients for the strongest absorption features in these galaxies. Methods: We took deep spectra with the long-slit spectrograph ISIS at the William Herschel Telescope (WHT) for six FCGs. The obtained spectra are fit with Pegase HR SSP models within the full-spectrum fitting package ULySS yielding SSP ages and metallicities of the stellar populations. We measure radial gradients of SSP ages and metallicities along the major axes. Lick indices are measured for the strongest absorption features to determine line-strength gradients and compare with the full-spectrum fitting results. Results: Our sample comprises some of the most massive galaxies in the universe exhibiting an average central velocity dispersion of σ0 = 271 ± 28 km s-1. Metallicity gradients are throughout negative with comparatively flat slopes of ∇[Fe/H] = -0.19 ± 0.08 while age gradients are found to be insignificant (∇age = 0.00 ± 0.05). All FCGs lie on the fundamental plane, suggesting that they are virialised systems. We find that gradient strengths and central metallicities are similar to those found in cluster ellipticals of similar mass. Conclusions: The comparatively flat metallicity gradients with respect to those predicted by monolithic collapse (∇Z = -0.5) suggest that fossils are indeed the result of

  13. Swarm magnetic gradients for lithospheric modelling (SLIM)

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Kotsiaros, Stavros; Brönner, Marco; Haagmans, Roger; Fuchs, Martin; Holzrichter, Nils; Olsen, Nils; Baykiev, Eldar

    2016-04-01

    We present first results of a feasibility study to use magnetic gradient information derived from Swarm data for crustal field modelling. The study is part of ESA's Support To Science Element (STSE) Swarm+ Innovations. In a first step, magnetic gradients have been derived from the observations taken by the three Swarm satellites, with emphasis on the two side-by-side flying spacecraft. Next, these gradients are used to compute magnetic gradient grids at 450 km altitude (the present mean altitude of the lower Swarm satellites) for one example region, North-West Europe. The suggested area comprise both exposed basement geology in southern Sweden and Norway with crustal scale magnetic anomalies and the Sorgenfrei-Tornquist Zone, a well-studied large scale tectonic fault system. With sensitivity analysis we studied the added benefit of the information from the gradient grids for lithospheric magnetic field modelling. A wealth of aeromagnetic data and additional constraining information for the example area allows us to validate our modelling results in great detail.

  14. Gradient-enhanced FAWSETS perfusion measurements

    NASA Astrophysics Data System (ADS)

    Marro, Kenneth I.; Lee, Donghoon; Hyyti, Outi M.

    2005-08-01

    This work describes the use of custom-built gradients to enhance skeletal muscle perfusion measurements acquired with a previously described arterial spin labeling technique known as FAWSETS (flow-driven arterial water stimulation with elimination of tissue signal). Custom-built gradients provide active control of the static magnetic field gradient on which FAWSETS relies for labeling. This allows selective, 180° modulations of the phase of the perfusion component of the signal. Phase cycling can then be implemented to eliminate all extraneous components leaving a signal that exclusively reflects capillary-level perfusion. Gradient-enhancement substantially reduces acquisition time and eliminates the need to acquire an ischemic signal to quantify perfusion. This removes critical obstacles to application of FAWSETS in organs other than skeletal muscle and makes the measurements more desirable for clinical environments. The basic physical principles of gradient-enhancement are demonstrated in flow phantom experiments and in vivo utility is demonstrated in rat hind limb during stimulated exercise.

  15. Control of vortex breakdown by temperature gradients

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel Angel; Shtern, Vladimir

    2003-11-01

    An axial gradient of temperature can either suppress or enhance vortex breakdown (VB). The underlying mechanism of such VB control is centrifugal or/and gravitational convection. An additional thermal-convection flow directed oppositely to the base flow suppresses VB while a co-flow enhances VB. Our numerical simulations of a compressible flow in a sealed cylinder induced by a rotating bottom disk clearly reveal these effects. We vary the temperature gradient (ɛ), Mach (Ma), Froude (Fr), and Reynolds (Re) numbers, and the aspect ratio (h). As ɛ increases (ɛ>0 corresponding to a temperature gradient parallel to the downward near-axis flow), the VB "bubble," which occurs at ɛ=0, diminishes and then totally disappears. The opposite temperature gradient (ɛ<0) enlarges the VB bubble and makes the flow unsteady. These effects of centrifugal convection become more prominent with increasing Ma and Re. Density variations induced by the temperature gradients are more important for VB control than those induced by the increase in Ma. A new efficient time-evolution code for axisymmetric flows of an ideal gas has facilitated these simulations.

  16. Importance of Ionospheric Gradients for error Correction

    NASA Astrophysics Data System (ADS)

    Ravula, Ramprasad

    Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.

  17. Gradient algorithm applied to laboratory quantum control

    SciTech Connect

    Roslund, Jonathan; Rabitz, Herschel

    2009-05-15

    The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.

  18. Performance optimization in electric field gradient focusing.

    PubMed

    Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L

    2009-01-01

    Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL). PMID:19081099

  19. Polarisation effects in gradient nano-optics

    SciTech Connect

    Erokhin, N S; Shvartsburg, A B; Zueva, Yu M

    2013-09-30

    The spectra of reflection of s- and p-polarised waves from gradient nanocoatings at arbitrary angles of incidence are found within the framework of two exactly solvable models of such coatings. To use the detected spectra in the visible and IR ranges, for different frequencies and coating thicknesses we present the wave reflection coefficients as functions of dimensionless frequencies related to the refractive index gradient of the coating material. It is shown that reflection from the gradient coatings in question is an order of magnitude weaker than reflection from uniform coatings, other parameters of radiation and the reflection system being equal. We report a new exactly solvable model illustrating the specific effect of gradient film optics – the possibility of non-reflective propagation of an s-wave through such a film (an analogue of the Brewster effect). The prospects are shown for the use of gradient nanostructures with different refractive index profiles to fabricate broadband non-reflective coatings. (nanogradient dielectric coatings and metamaterials)

  20. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices. PMID:17766237

  1. Phase-corrected Bipolar Gradients in Multiecho Gradient-echo Sequences for Quantitative Susceptibility Mapping

    PubMed Central

    Li, Jianqi; Chang, Shixin; Liu, Tian; Jiang, Hongwei; Dong, Fang; Pei, Mengchao; Wang, Qianfeng; Wang, Yi

    2016-01-01

    Object The large echo spacing of unipolar readout gradients in current multiecho gradient-echo sequences for mapping fields in quantitative susceptibility mapping (QSM) can be reduced using bipolar readout gradients to improve acquisition efficiency. Materials and Methods Phase discrepancies between odd and even echoes in the bipolar readout gradients caused by non-ideal gradient behaviors were measured, modeled as polynomials in space and corrected for accordingly in field mapping. The bipolar approach for multiecho gradient-echo field mapping was compared with the unipolar approach for QSM. Results The odd-even-echo phase discrepancies were approximately constant along the phase encoding direction and linear along the readout and slice-selection directions. A simple linear phase correction in all three spatial directions was shown to enable accurate QSM in the human brain using a bipolar multiecho GRE sequence. Bipolar multiecho acquisition provides QSM in good quantitative agreement with unipolar acquisition while also reducing noise. Conclusion With a linear phase correction between odd-even echoes, bipolar readout gradients can be used in multiecho gradient-echo sequences for QSM. PMID:25408108

  2. Motion Driven by Strain Gradient Fields

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chen, Shaohua

    2015-09-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces.

  3. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  4. Substrate Curvature Gradient Drives Rapid Droplet Motion

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-01

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.

  5. Substrate curvature gradient drives rapid droplet motion.

    PubMed

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces. PMID:25062213

  6. How receptor diffusion influences gradient sensing

    PubMed Central

    Nguyen, H.; Dayan, P.; Goodhill, G. J.

    2015-01-01

    Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors. PMID:25551145

  7. Vertical gradients of sunspot magnetic fields

    NASA Astrophysics Data System (ADS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-04-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  8. Vertical gradients of sunspot magnetic fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  9. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  10. Thermal gradient analysis for the ESOPO spectrograph

    NASA Astrophysics Data System (ADS)

    Farah, A.; González, J. Jesús; Sierra, G.; Hernández, J. V.; Pedrayes, M.; Echevarría, J.; Costero, R.; Avila, G.; Arroyo, M.; Cobos, F.; Colorado, E.; Cordova, A.; Chapa, O.; Garcia, B.; Garfias, F.; Granados, F.; Guisa, G.; Luna, E.; Martínez, B.; Michel, R.; Murillo, F.; Pérez, F.; Quechol, S.; Quirós, F.; Tejada, C.

    2008-07-01

    ESOPO will be a spectrograph of medium resolution for the 2.1 m telescope of the National Observatory at San Pedro Martir, Baja California, Mexico. It has been developed by the Instituto de Astronomia of the Universidad Nacional Autonoma de Mexico (IA-UNAM). The main goal of this instrument is to modernize the capabilities of making science with that particular telescope. It is planned to achieve a spectral resolution between 500 and 5000. ESOPO is split into two arms; each one specialized in a specific wavelength range covering together all the visible light. A very important issue in spectrographs is to avoid inside thermal gradients. Different temperatures in the optical elements produce mechanical movements and image quality degradation during an exposition. The error budget analysis developed for ESOPO allows establishing the required limits for temperature gradients. In this paper is described the thermal analysis of the spectrograph, including specifications, finite element models, thermal equations and expected thermal gradients.

  11. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  12. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  13. Temperature gradient formation while axial gas compression

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2015-11-01

    A spinning gas in equilibrium has a rotation-dependent heat capacity. However, as equilibrium is approached, such as after sudden heating, significant variations in temperature appear. Surprisingly, when fast axial compression or instantaneous gas heating occurs, the temperature does not grow homogeneously in radial direction, but instead has a gradient towards to the maximum of potential energy of external or self potential. The gradient monotonically grows with compression rate and the amplitude of the potential. The gradient builds up due to change of equilibrium density distribution, yet, not due to acoustic waves created by the compression. This result was checked in numerical simulations for particles in an external constant gravitational potential and also for rotating gas in the cylinder with perfect slip boundary conditions on the walls. This work was supported by the U.S. Defense Threat Reduction Agency, and by the NNSA SSAA Program through DOE Research Grant No. DE-FG52-08NA28553.

  14. Conjugate gradient algorithms using multiple recursions

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  15. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  16. Density gradient expansion of correlation functions

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert

    2013-04-01

    We present a general scheme based on nonlinear response theory to calculate the expansion of correlation functions such as the pair-correlation function or the exchange-correlation hole of an inhomogeneous many-particle system in terms of density derivatives of arbitrary order. We further derive a consistency condition that is necessary for the existence of the gradient expansion. This condition is used to carry out an infinite summation of terms involving response functions up to infinite order from which it follows that the coefficient functions of the gradient expansion can be expressed in terms of the local density profile rather than the background density around which the expansion is carried out. We apply the method to the calculation of the gradient expansion of the one-particle density matrix to second order in the density gradients and recover in an alternative manner the result of Gross and Dreizler [Gross and Dreizler, Z. Phys. AZPAADB0340-219310.1007/BF01413038 302, 103 (1981)], which was derived using the Kirzhnits method. The nonlinear response method is more general and avoids the turning point problem of the Kirzhnits expansion. We further give a description of the exchange hole in momentum space and confirm the wave vector analysis of Langreth and Perdew [Langreth and Perdew, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.21.5469 21, 5469 (1980)] for this case. This is used to derive that the second-order gradient expansion of the system averaged exchange hole satisfies the hole sum rule and to calculate the gradient coefficient of the exchange energy without the need to regularize divergent integrals.

  17. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  18. Gradient Learning Algorithms for Ontology Computing

    PubMed Central

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  19. The effect of density gradients on hydrometers

    NASA Astrophysics Data System (ADS)

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  20. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  1. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  2. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  3. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  4. A new nonlinear conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Awad; Mamat, Mustafa; Mohd, Ismail bin; Rivaie, Mohd; Omer, Osman

    2015-02-01

    Conjugate gradient (CG) methods are essential for solving large-scale unconstrained optimization problems. Many of studies and modifications have been practiced to improve this method. In this paper, a new class of conjugate gradient coefficients (βk) with a new parameter m = ‖g/k‖ ‖dk-1‖ that possess global convergence properties is presented. The global convergence and sufficient decent property result is established using inexact line searches to determine the step size of CG, denoted as ∝k. Numerical result shows that the new formula is superior and more efficient when compared to other CG coefficients.

  5. Electron heat transport down steep temperature gradients

    SciTech Connect

    Matte, J.P.; Virmont, J.

    1982-12-27

    Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.

  6. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  7. Principal whitened gradient for information geometry.

    PubMed

    Yang, Zhirong; Laaksonen, Jorma

    2008-01-01

    We propose two strategies to improve the optimization in information geometry. First, a local Euclidean embedding is identified by whitening the tangent space, which leads to an additive parameter update sequence that approximates the geodesic flow to the optimal density model. Second, removal of the minor components of gradients enhances the estimation of the Fisher information matrix and reduces the computational cost. We also prove that dimensionality reduction is necessary for learning multidimensional linear transformations. The optimization based on the principal whitened gradients demonstrates faster and more robust convergence in simulations on unsupervised learning with synthetic data and on discriminant analysis of breast cancer data. PMID:18255260

  8. Gradient, counter-gradient transport and their transition in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Zimont, Vladimir L.; Biagioli, Fernando

    2002-03-01

    We theoretically and numerically analyse the phenomenon of counter-gradient transport in turbulent premixed flames with pressure distribution across the flame brush mainly controlled by heat release. The focus is on the transition from counter-gradient to gradient transport obtained when increasing the turbulence intensity/laminar flame speed ratio, a phenomenon recently found in open laboratory flame experiments by Frank et al (1999 Combust. Flame 116 220). The analysis is based on the turbulent flame closure combustion model for the simulation of turbulent premixed flames at strong turbulence (u' >> sL). In this case, earlier work suggests that turbulent premixed flames have non-equilibrium increasing flame brush width controlled in the model only by turbulence and independent from the counter-gradient transport phenomenon which has gasdynamic nature, and equilibrium turbulent flame speed which quickly adapts to the local turbulence. Flames of this type have been called intermediate steady propagation flames. According to the present analysis, transport in turbulent premixed flames is composed of two contributions: real physical gradient turbulent diffusion, which is responsible for the growth of flame brush thickness, and counter-gradient pressure-driven convective transport related to the different acceleration of burnt and unburnt gases subject to the average pressure variation across the turbulent flame. The original gasdynamics model for the pressure-driven transport which is developed here shows that the overall transport may be of gradient or counter-gradient nature according to which of these two contributions is dominant, and that along the flame a transformation from gradient to counter-gradient transport takes place. Reasonable agreement with the mentioned laboratory experimental data strongly support the validity of the present modelling ideas. Finally, we explain why this phenomenon is also highly probable in large-scale industrial burners at much

  9. Food Chain Security and Vulnerability

    NASA Astrophysics Data System (ADS)

    Brunet, Sébastien; Delvenne, Pierre; Claisse, Frédéric

    In our contemporary societies, the food chain could be defined as a macro-technical system, which depends on a wide variety of actors and risks analysis methods. In this contribution, risks related to the food chain are defined in terms of "modern risks" (Beck 1992). The whole national economic sector of food production/distribution is vulnerable to a local accident, which can affect the functioning of food chain, the export programs and even the political system. Such a complex socio-technical environment is undoubtedly vulnerable to intentional act such as terrorism.

  10. Gradient and counter-gradient scalar transport in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Veynante, D.; Trouvé, A.; Bray, K. N. C.; Mantel, T.

    1997-02-01

    In premixed turbulent combustion, the modelling of the turbulent flux of the mean reaction progress variable c˜, rho;u[double prime or second]ic[double prime or second], remains, remains somewhat controversial. Classical gradient transport assumptions based on the eddy viscosity concept are often used while both experimental data and theoretical analysis have pointed out the existence of counter-gradient turbulent diffusion. Direct numerical simulation (DNS) is used in this paper to provide basic information on the turbulent flux of c˜ and study the occurrence of counter-gradient transport. The numerical configuration corresponds to two- or three-dimensional premixed flames in isotropic turbulent flow. The simulations correspond to various flame and flow conditions that are representative of flamelet combustion. They reveal that different flames will feature different turbulent transport properties and that these differences can be related to basic dynamical differences in the flame flow interactions: counter-gradient diffusion occurs when the flow field near the flame is dominated by thermal dilatation due to chemical reaction, whereas gradient diffusion occurs when the flow field near the flame is dominated by the turbulent motions. The DNS-based analysis leads to a simple expression to describe the turbulent flux of c˜, which in turn leads to a simple criterion to delineate between the gradient and counter-gradient turbulent diffusion regimes. This criterion suggests that the occurrence of one regime or the other is determined primarily by the ratio of turbulence intensity divided by the laminar flame speed, u[prime prime or minute]/sL, and by the flame heat release factor, [tau] [identical with] (Tb [minus sign] Tu)/Tu, where Tu and Tb are respectively the temperature within unburnt and burnt gas. Consistent with the Bray Moss Libby theory, counter-gradient (gradient) diffusion is promoted by low (high) values of u[prime prime or minute]/sL and high (low

  11. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  12. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  13. HOT PRESSING WITH A TEMPERATURE GRADIENT

    DOEpatents

    Hausner, H.H.

    1958-05-20

    A method is described for producing powder metal compacts with a high length to width ratio, which are of substantially uniform density. The process consists in arranging a heating coil around the die and providing a temperature gradient along the length of the die with the highest temperature at the point of the compact farthest away from the ram or plunger.

  14. Examining the Education Gradient in Chronic Illness

    ERIC Educational Resources Information Center

    Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal

    2015-01-01

    We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…

  15. Origins of concentration gradients for diffusiophoresis.

    PubMed

    Velegol, Darrell; Garg, Astha; Guha, Rajarshi; Kar, Abhishek; Kumar, Manish

    2016-05-25

    Fluid transport that is driven by gradients of pressure, gravity, or electro-magnetic potential is well-known and studied in many fields. A subtler type of transport, called diffusiophoresis, occurs in a gradient of chemical concentration, either electrolyte or non-electrolyte. Diffusiophoresis works by driving a slip velocity at the fluid-solid interface. Although the mechanism is well-known, the diffusiophoresis mechanism is often considered to be an esoteric laboratory phenomenon. However, in this article we show that concentration gradients can develop in a surprisingly wide variety of physical phenomena - imposed gradients, asymmetric reactions, dissolution, crystallization, evaporation, mixing, sedimentation, and others - so that diffusiophoresis is in fact a very common transport mechanism, in both natural and artificial systems. We anticipate that in georeservoir extractions, physiological systems, drying operations, laboratory and industrial separations, crystallization operations, membrane processes, and many other situations, diffusiophoresis is already occurring - often without being recognized - and that opportunities exist for designing this transport to great advantage. PMID:27174044

  16. Color gradient background-oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael J.

    2016-06-01

    Background-oriented schlieren is a method of visualizing refractive disturbances by comparing digital images with and without a refractive disturbance distorting a background pattern. Traditionally, backgrounds consist of random distributions of high-contrast color transitions or speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern between the two images. Here, a novel method of using color gradient backgrounds is explored as an alternative that eliminates the need to perform a complex image correlation between the digital images. A simple image subtraction can be used instead to identify the location, magnitude, and direction of the image distortions. Gradient backgrounds are demonstrated to provide quantitative data only limited by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Quantitative measurement of density in a thermal boundary layer is presented. Two-dimensional gradient backgrounds using multiple colors are demonstrated to allow measurement of two-dimensional refractions. A computer screen is used as the background, which allows for rapid modification of the gradient to tune sensitivity for a particular application.

  17. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  18. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  19. Uranium Distribution along the Salinity Gradient

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.; Seo, J.; Lee, J.; Chung, K.

    2006-12-01

    Uranium distribution has been examined in the estuarine waters of the Keum River, Korea. Water samples were collected along a salinity gradient, range from 0.2 to 31.5 psu. Dissolved uranium in the samples has been extracted by C-18 SPE cartridge after pre-treatment. Extraction of uranium by C-18 cartridge after complexation with APDC/DDDC shows about 90 % recovery. After concentration of sample onto C-18 cartridge, uranium complex has been sequentially extracted by 50 % and 100 % acetonitrile, respectively. Result shows good recovery efficiency at low pH (2.5 _ 3.0) during the pre-treatment of sample which was presumably related with destabilization of uranium-carbonate complex. In the estuary, uranium shows typical conservative behavior along the salinity gradient. The current result substantiates earlier reports that uranium is conservatively transported from the river to the ocean. Most of dissolved trace metals, except cadmium, decreased with increasing salinity in the estuary. Dissolved organic carbon also decreased along the salinity gradient. Copper was rapidly removed during the mixing with seawaters as a result of organic matter flocculation. Dissolved molybdenum, vanadium and uranium distribution in the estuary showed similarities that those concentration increase along the salinity gradient.

  20. CMB anisotropies from a gradient mode

    NASA Astrophysics Data System (ADS)

    Mirbabayi, Mehrdad; Zaldarriaga, Matias

    2015-03-01

    A linear gradient mode must have no observable dynamical effect on short distance physics. We confirm this by showing that if there was such a gradient mode extending across the whole observable Universe, it would not cause any hemispherical asymmetry in the power of CMB anisotropies, as long as Maldacena's consistency condition is satisfied. To study the effect of the long wavelength mode on short wavelength modes, we generalize the existing second order Sachs-Wolfe formula in the squeezed limit to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. Next, we consider effects that are of second order in the long mode. A gradient mode Φ = qṡx generated in Single-field inflation is shown to induce an observable quadrupole moment. For instance, in a matter-dominated model it is equal to Q = 5(qṡx)2/18. This quadrupole can be canceled by superposition of a quadratic perturbation. The result is shown to be a nonlinear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  1. Color gradient background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael

    2015-11-01

    Background oriented schlieren (BOS) imaging is a method of visualizing refractive disturbances through the comparison of digital images. By comparing images with and without a refractive disturbance visualizations can be achieved via a range of image processing methods. Traditionally, backgrounds consist of random distributions of high contrast speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern. Here a novel method of using color gradient backgrounds is explored as an alternative. The gradient background eliminates the need to perform an image correlation between the two digital images, as simple image subtraction can be used to identify the location, magnitude, and direction of the image distortions. This allows for quicker processing. Two-dimensional gradient backgrounds using multiple colors are shown. The gradient backgrounds are demonstrated to provide quantitative data limited only by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Additional results include the use of a computer screen as a background.

  2. Natural equivalents of thermal gradient experiments

    NASA Astrophysics Data System (ADS)

    Rodríguez, Carmen; Geyer, Adelina; Castro, Antonio; Villaseñor, Antonio

    2015-06-01

    Crystallization experiments using the intrinsic thermal gradient in 10 mm length capsules loaded in piston-cylinder assemblies were used to investigate silicic magma crystallization. The application of experimental results to natural environments requires the scaling of physical parameters of petrological interest. Therefore, we propose here a comparative study between thermal gradients and numerical simulations of natural magma chambers. We use the Finite Element method to calculate thermal profiles across a cooling silicic magma chamber. These numerical profiles are compared with the intrinsic thermal structure of half-inch, piston-cylinder assemblies at 500 MPa. It is concluded that a set of varied magma chamber geometries and/or distinct stages of their cooling history can approach the intrinsic thermal structure of laboratory experiments. Once the thermal properties for magma and its host rock are fixed, the experimental-numerical approach is mostly dependent on the volume and aspect ratio of the magma chamber. Our results indicate, for instance, that a 10 mm length capsule with a thermal gradient of 40 °C/mm (from 1100 to 700 °C) may represent a 150-1100 m wide portion of a cooling magma chamber of 10-20 km diameter and 2-10 km height, emplaced at a depth of 18 km. Additional possible scenarios are represented by larger magma chambers, up to 30 km diameter, in which the experimental thermal gradient can represent a 150-3700 m-thin-section of the large igneous bodies.

  3. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  4. Bibliometric Application of Markov Chains.

    ERIC Educational Resources Information Center

    Pao, Miranda Lee; McCreery, Laurie

    1986-01-01

    A rudimentary description of Markov Chains is presented in order to introduce its use to describe and to predict authors' movements among subareas of the discipline of ethnomusicology. Other possible applications are suggested. (Author)

  5. GPS, GNSS, and Ionospheric Density Gradients

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; O'Hanlon, B.; Humphreys, T. E.

    2009-12-01

    Ionospheric density and density gradients affect GNSS signals in two ways. They can introduce ranging errors or irregularities that form on the density gradients producing scintillation. Here we focus on the issue of ranging errors. There are two approaches to mitigating ranging errors produced by ionospheric density gradients which can be 20-30 m during major magnetic storms. The first approach is to use a reference receiver(s) to determine the ionospheric contribution to ranging errors. The ranging error is then transmitted to the user for correction within the mobile receiver. This approach is frequently referred to as differential GPS and, when multiple reference receivers are used, the system is referred to as an augmentation system. This approach is vulnerable to ionospheric gradients depending on the reference receiver spacing(s) and latency in applying the correction within the mobile receiver. The second approach is to transmit navigation signals at two frequencies and then use the relative delay between the two signals to both estimate the ranging error and calculate the correct range. Currently the dual frequency technique is used by US military receivers with an encryption key and some civilian receivers which must be stationary and average over times long compared to those required for navigation. However, the technology of space based radio navigation is changing. GPS will soon be a system with three frequencies and multiple codes. Furthermore Europe, Russia, and China are developing independent systems to complement and compete with GPS while India and Japan are developing local systems to enhance GPS performance in their regions. In this talk we address two questions. How do density gradients affect augmentation systems including the social consequences and will the new GPS/GNSS systems with multiple civilian frequencies be able to remove ionospheric errors. The answers are not at all clear.

  6. Gradient zone-boundary control in salt-gradient solar ponds

    DOEpatents

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  7. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The

  8. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice. PMID:19885962

  9. Elastic properties of magnetosome chains

    NASA Astrophysics Data System (ADS)

    Kiani, Bahareh; Faivre, Damien; Klumpp, Stefan

    2015-04-01

    Magnetotactic bacteria swim and orient in the direction of a magnetic field thanks to the magnetosome chain, a cellular ‘compass needle’ that consists of a string of vesicle-enclosed magnetic nanoparticles aligned on a cytoskeletal filament. Here we investigate the mechanical properties of such a chain, in particular the bending stiffness. We determine the contribution of magnetic interactions to the bending stiffness and the persistence length of the chain. This contribution is comparable to, but typically smaller than the contribution of the semiflexible filament. For a chain of magnetic nanoparticles without a semiflexible filament, the linear configuration is typically metastable and the lowest energy structures are closed chains (flux closure rings) without a net magnetic moment that are thus not functional as a cellular compass. Our calculations show that the presence of the cytoskeletal filament stabilizes the chain against ring closure, either thermodynamically or kinetically, depending on the stiffness of the filament, confirming that such stabilization is one of the roles of this structure in these bacterial cells.

  10. Linear chains and chain-like fractals from electrostatic heteroaggregation.

    PubMed

    Kim, Anthony Y; Hauch, Kip D; Berg, John C; Martin, James E; Anderson, Robert A

    2003-04-01

    The internal structure of materials prepared by aggregation of oppositely charged polystyrene spheres (electrostatic heteroaggregation) is investigated by static light scattering, optical microscopy, and Brownian dynamics simulation. Light scattering indicates ultralow mass fractal dimensions, as low as 1.2. Such low fractal dimensions, approaching the theoretical limit of a linear object, imply a chaining mechanism. Optical micrographs reveal linear chains with the particle charge alternating down the chains. Brownian dynamics simulation gives additional support for a chaining mechanism. For the polystyrene system (120-nm primary particle diameters), the fractal dimension is found to increase from 1.2 to 1.7 as the background electrolyte is increased. In terms of electrostatic screening, the results match those reported recently for larger polystyrene spheres. The low fractal dimensions appear to represent a crossover from linear chains to a structure of diffusion-limited aggregates; however, experiments under density-neutral conditions imply that sedimentation plays an important role in the formation of ultralow fractal dimensions. The practical implication is that microcomposites with a locally uniform distribution of starting materials and almost any degree of branching can be prepared from oppositely charged particles. PMID:12742045

  11. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    USGS Publications Warehouse

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H., Jr.

    2015-01-01

    Given the importance of size and age at reproductive maturity to population dynamics, this information on counter-gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.

  12. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  13. Gradient parameter and axial and field rays in the gradient-index crystalline lens model

    NASA Astrophysics Data System (ADS)

    Pérez, M. V.; Bao, C.; Flores-Arias, M. T.; Rama, M. A.; Gómez-Reino, C.

    2003-09-01

    Gradient-index models of the human lens have received wide attention in optometry and vision sciences for considering how changes in the refractive index profile with age and accommodation may affect refractive power. This paper uses the continuous asymmetric bi-elliptical model to determine gradient parameter and axial and field rays of the human lens in order to study the paraxial propagation of light through the crystalline lens of the eye.

  14. A gradient field defeats the inherent repulsion between magnetic nanorods

    PubMed Central

    Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.

    2014-01-01

    When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550

  15. Effects of predation risk across a latitudinal temperature gradient.

    PubMed

    Matassa, Catherine M; Trussell, Geoffrey C

    2015-03-01

    The nonconsumptive effects (NCEs) of predators on prey behavior and physiology can influence the structure and function of ecological communities. However, the strength of NCEs should depend on the physiological and environmental contexts in which prey must choose between food and safety. For ectotherms, temperature effects on metabolism and foraging rates may shape these choices, thereby altering NCE strength. We examined NCEs in a rocky intertidal food chain across a latitudinal sea surface temperature gradient within the Gulf of Maine. The NCEs of green crabs (Carcinus maenas) on the foraging, growth, and growth efficiency of prey snails (Nucella lapillus) were consistent across a broad (~8.5 °C) temperature range, even though snails that were transplanted south consumed twice as many mussels (Mytilus edulis) and grew twice as much as snails that were transplanted north. The positive effects of warmer temperatures in the south allowed snails under high risk to perform similarly to or better than snails under low risk at cooler temperatures. Our results suggest that for prey populations residing at temperatures below their thermal optimum, the positive effects of future warming may offset the negative effects of predation risk. Such effects may be favorable to prey populations facing increased predation rates due to warmer temperatures associated with climate change. Attention to the direct and indirect effects of temperature on species interactions should improve our ability to predict the effects of climate change on ecological communities. PMID:25433694

  16. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta.

    PubMed

    George, N T; Sponberg, S; Daniel, T L

    2012-02-01

    A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures and phases of activation, we show that regional differences in muscle temperature will induce a spatial gradient in the mechanical power output throughout the DLM(1). Indeed, we note that this power gradient spans from positive to negative values across the predicted temperature range. Warm ventral subunits produce positive power at their in vivo operating temperatures, and therefore act as motors. Concurrently, as muscle temperature decreases dorsally, the subunits produce approximately zero mechanical power output, acting as an elastic energy storage source, and negative power output, behaving as a damper. Adjusting the phase of activation further influences the temperature sensitivity of power output, significantly affecting the mechanical power output gradient that is expressed. Additionally, the separate subregions of the DLM(1) did not appear to employ significant physiological compensation for the temperature-induced differences in power output. Thus, although the components of a muscle are commonly thought to operate uniformly, a significant within-muscle temperature gradient has the potential to induce a mechanical power gradient, whereby subunits within a muscle operate with separate and distinct functional roles. PMID:22246256

  17. Thermocapillary migration of a small chain of bubbles

    NASA Technical Reports Server (NTRS)

    Wei, Huailiang; Subramanian, R. S.

    1993-01-01

    The quasistatic thermocapillary migration of a chain of two or three spherical bubbles in an unbounded fluid possessing a uniform temperature gradient is investigated in the limit of vanishing Reynolds and Peclet numbers. The line of bubble centers is permitted to be either parallel or perpendicular to the direction of the undisturbed temperature gradient. The governing equations are solved by a truncated-series, boundary-collocation technique. Results are presented which demonstrate the impact of the presence of other bubbles on a test bubble. In the three-bubble case, a simple pairwise-additive approximation is constructed from the reflections solution, and found to perform well except when the bubbles are close to each other. Also, features of the flow topology in the fluid are explored. Separated reverse flow wakes are found in the axisymmetric problem, and other interesting structures are noted for the case in which the line of centers is perpendicular to the applied temperature gradient. The observed flow structure is shown to be the result of superposition of simpler basic flows.

  18. Hydrodynamic gradient expansion in gauge theory plasmas.

    PubMed

    Heller, Michal P; Janik, Romuald A; Witaszczyk, Przemysław

    2013-05-24

    We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description, we calculate numerically the form of the stress tensor for a boost-invariant flow in a hydrodynamic expansion up to terms with 240 derivatives. We observe a factorial growth of gradient contributions at large orders, which indicates a zero radius of convergence of the hydrodynamic series. Furthermore, we identify the leading singularity in the Borel transform of the hydrodynamic energy density with the lowest nonhydrodynamic excitation corresponding to a 'nonhydrodynamic' quasinormal mode on the gravity side. PMID:23745858

  19. Edge detection based on gradient ghost imaging.

    PubMed

    Liu, Xue-Feng; Yao, Xu-Ri; Lan, Ruo-Ming; Wang, Chao; Zhai, Guang-Jie

    2015-12-28

    We present an experimental demonstration of edge detection based on ghost imaging (GI) in the gradient domain. Through modification of a random light field, gradient GI (GGI) can directly give the edge of an object without needing the original image. As edges of real objects are usually sparser than the original objects, the signal-to-noise ratio (SNR) of the edge detection result will be dramatically enhanced, especially for large-area, high-transmittance objects. In this study, we experimentally perform one- and two-dimensional edge detection with a double-slit based on GI and GGI. The use of GGI improves the SNR significantly in both cases. Gray-scale objects are also studied by the use of simulation. The special advantages of GI will make the edge detection based on GGI be valuable in real applications. PMID:26832041

  20. Opinion Formation Models on a Gradient

    PubMed Central

    Gastner, Michael T.; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales , not as in independent percolation, and the cluster size distribution is consistent with first-order percolation. PMID:25474528

  1. Program predicts reservoir temperature and geothermal gradient

    SciTech Connect

    Kutasov, I.M.

    1992-06-01

    This paper reports that a Fortran computer program has been developed to determine static formation temperatures (SFT) and geothermal gradient (GG). A minimum of input data (only two shut-in temperature logs) is required to obtain the values of SFT and GG. Modeling of primary oil production and designing enhanced oil recovery (EOR) projects requires knowing the undisturbed (static) reservoir temperature. Furthermore, the bottom hole circulating temperature (BHCT) is an important factor affecting a cement's thickening time, rheological properties, compressive strength, development, and set time. To estimate the values of BHCT, the geothermal gradient should be determined with accuracy. Recently we obtained an approximate analytical solution which describes the shut-in temperature behavior.

  2. A mesh gradient technique for numerical optimization

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1973-01-01

    A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.

  3. Bioactive Molecule Prediction Using Extreme Gradient Boosting.

    PubMed

    Babajide Mustapha, Ismail; Saeed, Faisal

    2016-01-01

    Following the explosive growth in chemical and biological data, the shift from traditional methods of drug discovery to computer-aided means has made data mining and machine learning methods integral parts of today's drug discovery process. In this paper, extreme gradient boosting (Xgboost), which is an ensemble of Classification and Regression Tree (CART) and a variant of the Gradient Boosting Machine, was investigated for the prediction of biological activity based on quantitative description of the compound's molecular structure. Seven datasets, well known in the literature were used in this paper and experimental results show that Xgboost can outperform machine learning algorithms like Random Forest (RF), Support Vector Machines (LSVM), Radial Basis Function Neural Network (RBFN) and Naïve Bayes (NB) for the prediction of biological activities. In addition to its ability to detect minority activity classes in highly imbalanced datasets, it showed remarkable performance on both high and low diversity datasets. PMID:27483216

  4. MAGNETIC ADVECTION DUE TO DIFFUSIVITY GRADIENTS

    NASA Astrophysics Data System (ADS)

    Zita, E. J.

    2009-12-01

    We derive and discuss an important source of advection of magnetic fields in plasmas, for a completely general case. Magnetic diffusivity is proportional to electrical resistivity: where the value this parameter is high, it is well known that magnetic fields can leak (or diffuse) rapidly into (or out) of the plasma. Magnetohydrodynamic lore has it that where gradients, or changes in space, of the value of the diffusivity are high, magnetic fields can have enhanced flow (or advection). We derive this phenomenon rigorously, compare our results to other work in the literature, and discuss its implications, especially for kinematic dynamos. As an extra mathematical bonus, we find that the magnetic advection due to diffusivity gradients can be expressed in terms of a diffusion equation within the induction equation, making its computational implementation especially simple.

  5. Gradient Optimization for SC CW Accelerators

    SciTech Connect

    Schneider, William; Kneisel, Peter; Rode, Claus

    2003-05-01

    The proposed rare isotope accelerator (RIA) design consists of a normally conducting radio frequency quadruple (RFQ) section, a superconducting (SC) drift tube cavity section, a SC elliptical multi-cell cavity section and two charge strippers with associated charge state selection and beam matching optics. The SC elliptical section uses two or three multi-cell beta cavity types installed into cryomodules to span the energy region of about 84.5 MeV/nucleon up to 400 MeV/nucleon. This paper focuses on the gradient optimization of these SC elliptical cavities that provide a significant portion of the total acceleration to the beam. The choice of gradient coupled with the cavity quality factor has a strong affect on the overall cost of the accelerator. The paper describes the optimization of the capital and operating cost associated with the RIA elliptical cavity cryomodules.

  6. Opinion formation models on a gradient.

    PubMed

    Gastner, Michael T; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4), not proportional g(-4/7) as in independent percolation, and the cluster size distribution is consistent with first-order percolation. PMID:25474528

  7. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  8. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  9. Ecological gradients within a Pennsylvanian mire forest

    SciTech Connect

    DiMichele, W.A.; Falcon-Lang, H.J.; Nelson, W.J.; Brick, S.D.; Ames, P.R.

    2007-05-15

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over 1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale.

  10. Terrestrial carbon dynamics across gradients of urbanization

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Raciti, S.; Rao, P.; Yoon, B.; Dunn, A. L.; Phillips, N.

    2010-12-01

    Most of our global population and its CO2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO2 concentrations. Most research to date has focused on urban carbon emissions, or separately on urban vegetation carbon exchange. Thus, we are currently lacking the empirical data and evidence of mechanisms linking urban patterns and ecosystem function that are critical to advance urban sustainability efforts. Using the Seattle, WA and Boston, MA regions as contrasting case studies, we explore the relationships between terrestrial carbon exchange and land cover across urban to rural gradients. Micrometeorological, biometric, and remote sensing methods are combined to characterize the relationships between urban land covers and vegetation across gradients of urbanization.

  11. A direct MP2 gradient method

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Head-Gordon, Martin; Pople, John A.

    1990-02-01

    We present a direct method for evaluating the gradient of the second-order Møller-Plesset (MP2) energy without storing any quartic quantities, such as two-electron repulsion integrals (ERIs), double substitution amplitudes or the two-particle density matrix. For an N-basis-function calculation, N3 memory is required, and the ERIs and their first derivatives are computed up to O (number of occupied orbitals) times, plus additional ERI evaluations to obtain the Hartree-Fock (HF) orbitals and solve the coupled perturbed HF equation. Larger amounts of memory are used to reduce the O evaluations in the MP2 step. The floating point operation count is still proportional to ON4, as in conventional MP2 gradient codes since ERI evaluation is just an N4 step. Illustrative calculations are reported to assess the performance of the algorithm.

  12. Ecological gradients within a Pennsylvanian mire forest

    USGS Publications Warehouse

    DiMichele, W.A.; Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.D.; Ames, P.R.

    2007-01-01

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over ???1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale. ?? 2007 The Geological Society of America.

  13. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  14. Cosmic ray intensity gradients in the solar system

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1975-01-01

    Recent progress in the determination of cosmic-ray intensity gradients is reviewed. Direct satellite measurements of the integral gradient are described together with various types of indirect measurements, including measurements of the Ar-37/Ar-39 ratio in samples from the Lost City meteorite, studies of anisotropies in neutron-monitor counting rates, and analysis of the sidereal diurnal anisotropy observed at a single point on earth. Nucleonic radial gradients and electron gradients measured by satellites in differential energy windows are discussed, and theoretical studies of the physical processes involved in these gradients are summarized. Observations of intensity gradients in heliographic latitude are reported.

  15. Designing superhydrophobic surfaces using fluorosilsesquioxane-urethane hybrid and porous silicon gradients

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; McInnes, Steven J. P.; Choudhury, Namita R.; Dutta, Naba K.; Voelcker, Nicolas H.

    2008-12-01

    Here we describe a new class of near superhydrophobic surfaces formed using fluorinated polyhedral oligosilsesquioxane (FluoroPOSS) urethane hybrids and porous silicon gradients (pSi). We demonstrate that the surface segregation behavior of the hydrophobic fluoro component can be controlled by the type and nature of chain extender of the urethane and resultant hydrophobic association via intra or intermolecular aggregation. The surface film formed exhibits near superhydrophobicity. This work has significant potential for applications in antifouling and self-cleaning coatings, biomedical devices, microfluidic systems and tribological surfaces.

  16. Experimental verification of the formation mechanism for pillar arrays in nanofilms subject to large thermal gradients.

    PubMed

    McLeod, Euan; Liu, Yu; Troian, Sandra M

    2011-04-29

    The free surface of molten nanofilms is known to undergo spontaneous formation of periodic protrusions when exposed to a large transverse thermal gradient. Early time measurements of the array pitch and growth rate in polymer melts confirm a formation process based on a long wavelength thermocapillary instability and not electrostatic attraction or acoustic phonon driven growth as previously believed. We find excellent agreement with theoretical predictions provided the nanofilm out-of-plane thermal conductivity is several times larger than bulk, an enhancement suggestive of polymer chain alignment. PMID:21635044

  17. Experimental Verification of the Formation Mechanism for Pillar Arrays in Nanofilms Subject to Large Thermal Gradients

    NASA Astrophysics Data System (ADS)

    McLeod, Euan; Liu, Yu; Troian, Sandra M.

    2011-04-01

    The free surface of molten nanofilms is known to undergo spontaneous formation of periodic protrusions when exposed to a large transverse thermal gradient. Early time measurements of the array pitch and growth rate in polymer melts confirm a formation process based on a long wavelength thermocapillary instability and not electrostatic attraction or acoustic phonon driven growth as previously believed. We find excellent agreement with theoretical predictions provided the nanofilm out-of-plane thermal conductivity is several times larger than bulk, an enhancement suggestive of polymer chain alignment.

  18. M-step preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.

  19. Quantized Concentration Gradient in Picoliter Scale

    NASA Astrophysics Data System (ADS)

    Hong, Jong Wook

    2010-10-01

    Generation of concentration gradient is of paramount importance in the success of reactions for cell biology, molecular biology, biochemistry, drug-discovery, chemotaxis, cell culture, biomaterials synthesis, and tissue engineering. In conventional method of conducting reactions, the concentration gradients is achieved by using pipettes, test tubes, 96-well assay plates, and robotic systems. Conventional methods require milliliter or microliter volumes of samples for typical experiments with multiple and sequential reactions. It is a challenge to carry out experiments with precious samples that have strict limitations with the amount of samples or the price to pay for the amount. In order to overcome this challenge faced by the conventional methods, fluidic devices with micrometer scale channels have been developed. These devices, however, cause restrictions on changing the concentration due to the fixed gradient set based on fixed fluidic channels.ootnotetextJambovane, S.; Duin, E. C.; Kim, S-K.; Hong, J. W., Determination of Kinetic Parameters, KM and kcat, with a Single Experiment on a Chip. textitAnalytical Chemistry, 81, (9), 3239-3245, 2009.^,ootnotetextJambovane, S.; Hong, J. W., Lorenz-like Chatotic System on a Chip In The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), The Netherlands, October, 2010. Here, we present a unique microfluidic system that can generate quantized concentration gradient by using series of droplets generated by a mechanical valve based injection method.ootnotetextJambovane, S.; Rho, H.; Hong, J., Fluidic Circuit based Predictive Model of Microdroplet Generation through Mechanical Cutting. In ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida, USA, October, 2009.^,ootnotetextLee, W.; Jambovane, S.; Kim, D.; Hong, J., Predictive Model on Micro Droplet Generation through Mechanical Cutting. Microfluidics and Nanofluidics, 7, (3), 431-438, 2009

  20. Reconstructing global overturning from meridional density gradients

    NASA Astrophysics Data System (ADS)

    Butler, E. D.; Oliver, K. I. C.; Hirschi, J. J.-M.; Mecking, J. V.

    2016-04-01

    Despite the complexity of the global ocean system, numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a "rotated" form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000 m) for multi-decadal (and longer) timescales, accurately reconstructing the relative magnitude of the response for different frequencies and explaining over 85 % of overturning variance on timescales of 64-2048 years. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, between 76 and 94 % of the observed variability at 4000 m is reconstructed on timescales of 32 years (and longer). The scaling law is also applied in the Indo-Pacific. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of between 0.79 and 0.99 are obtained with upper Atlantic MOC variability on timescales >25 years. These results indicate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be reconstructed from hydrography on multi-decadal and longer timescales provided that the link is made in this way.

  1. Applications of gradient index metamaterials in waveguides

    PubMed Central

    Fu, Yangyang; Xu, Yadong; Chen, Huanyang

    2015-01-01

    In this letter, we find that gradient index metamaterials (GIMs) could be utilized to manipulate wave propagation in waveguides. Through manipulating the conversion between propagating wave and surface wave, we can design some interesting applications in waveguides, such as controlling transmission effect, realizing bending waveguide and achieving waveguide splitting effect. These devices not only work for both transverse electric and magnetic polarized waves, but also function for a broadband of spectra. Numerical simulations are performed to verify our findings. PMID:26656558

  2. Advanced concepts for high-gradient acceleration

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The promise of high-gradient accelerator research is a future for physics beyond the 5-TeV energy scale. Looking beyond what can be engineered today, the authors examine basic research directions for colliders of the future, from mm-waves to lasers, and from solid-state to plasmas, with attention to material damage, beam-dynamics, a workable collision scheme, and energetics.

  3. Cosmic ray gradients in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Wake, B.; Ip, W.-H.; Axford, I.

    1983-01-01

    Launched in 1972 and 1973 respectively, the Pioneer 10 and 11 spacecraft are now probing the outer heliosphere on their final escape from the sun. The data in this paper extend for almost an entire solar cycle from launch to early 1983, when Pioneer 10 was at a heliocentric distance of 29 AU and Pioneer 11, 13 AU. The UCSD instruments on board were used to study the gradient, and to look at the time and spatial variations of the cosmic ray intensities.

  4. Discontinuity of cortical gradients reflects sensory impairment.

    PubMed

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-12-29

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations-patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion-enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  5. Exploration of very high gradient cavities

    SciTech Connect

    Eremeev, Grigory

    2011-07-01

    Several of the 9-cell ILC cavities processed at Jlab within ongoing ILC R&D program have shown interesting behavior at high fields, such as mode mixing and sudden field emission turn-on during quench. Equipped with thermometry and oscillating superleak transducer (OST) system for quench detection, we couple our RF measurements with local dissipation measurements. In this contribution we report on our findings with high gradient SRF cavities.

  6. DC CHARACTERIZATION OF HIGH GRADIENT MULTILAYER INSULATORS

    SciTech Connect

    Watson, J A; Caporaso, G J; Sampayan, S E; Sanders, D M; Krogh, M L

    2005-05-26

    We have developed a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. We have demonstrated that these structures perform 2 to 5 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We present new testing results showing exceptional behavior at DC, with gradients in excess of 110kV/cm in vacuum.

  7. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  8. Laminate delamination due to thermal gradients

    SciTech Connect

    Hutchinson, J.W.; Lu, T.J.

    1995-10-01

    Flaw-induced delamination of orthotropic laminates subject to through-thickness temperature gradients is analyzed. A crack-like flaw impedes heat flow through the laminate, producing thermal stresses and crack tip stress intensities. The focus is on delamination cracks which propagate under steady-state conditions. The steady-state analysis becomes accurate for a crack whose length is about one laminate thickness. Moreover, the analysis provides realistic fail-safe criteria for excluding delamination.

  9. Disentangling of two intertwined chains

    NASA Astrophysics Data System (ADS)

    Baumgärtner, A.; Muthukumar, M.

    1986-01-01

    The nonequilibrium process of disentangling of two self-avoiding polymer chains is investigated using Monte Carlo methods. The initial configuration of the two chains corresponds to a double helix of M turns. Chains consisting of N=8M+1 segments with M=2, 4, and 8 have been simulated. The disentangling process is found to take place in two distinct stages. The first step is the softening of the original double helix configuration to form interpenetrating chains with their centers of mass not far away from each other. This process takes a typical time of the order of N3.0 ± 0.2 . During the first stage, the center of mass of the either strand obeys the diffusion law, with the diffusion coefficient D˜N-(1.6±0.2) . The second stage involves the actual unraveling of the interpenetrating chains to form the isolated coils. The time taken for this step is found to scale as N3.3±0.2 . After the disentangling is complete, we recover the Rouse behavior, D˜N-1 for the center of mass diffusion of each coil.

  10. Data-driven backward chaining

    NASA Technical Reports Server (NTRS)

    Haley, Paul

    1991-01-01

    The C Language Integrated Production System (CLIPS) cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is also relevant to ongoing problem solving. Goal generation can be mimicked in simple cases using forward chaining. However, such mimicry requires manual coding of additional rules which can assert an inadequate goal representation for every condition in every rule that can have corresponding facts derived by backward chaining. In general, for N rules with an average of M conditions per rule the number of goal generation rules required is on the order of N*M. This is clearly intractable from a program maintenance perspective. We describe the support in Eclipse for backward chaining which it automatically asserts as it checks rule conditions. Important characteristics of this extension are that it does not assert goals which cannot match any rule conditions, that 2 equivalent goals are never asserted, and that goals persist as long as, but no longer than, they remain relevant.

  11. Eocene continental climates and latitudinal temperature gradients

    NASA Astrophysics Data System (ADS)

    Greenwood, David R.; Wing, Scott L.

    1995-11-01

    Global climate during the Mesozoic and early Cenozoic is thought to have been warmer than at present, but there is debate about winter temperatures. Paleontological data indicate mild temperatures even at high latitudes and in mid-latitude continental interiors, whereas computer simulations of continental paleoclimates produce winter temperatures closer to modern levels. Foliar physiognomy and floristic composition of 23 Eocene floras from the interior of North America and Australia indicate cold month means generally >2 °C, even where the mean annual temperature (MAT) was <15 °C. Reconstructed Eocene latitudinal gradients of MAT are curvilinear but are about 0.4 °C per 1° of latitude in continental interiors at mid-latitudes, much less than the 0.8 1.0 °C per 1° of latitude observed in eastern and central North America today, but similar to modern gradients in the Southern Hemisphere mid-latitudes and on the west coast of North America. Latitudinal temperature gradients reconstructed here are broadly representative of Eocene climates, showing that the discrepancy between proxy data and simulations will not be resolved by regional adjustments to paleogeography or reinterpretation of individual fossil assemblages. Similar discrepancies between proxy data and general circulation model simulations for other time periods suggest that there is a basic flaw with the way climate models simulate heat transport to, or loss from, continental surfaces.

  12. Phosphorescent imaging of oxygen gradients in tissues

    NASA Astrophysics Data System (ADS)

    Swanson, Curtis J.; Kitakis, F.

    1995-08-01

    Until recently, the ability to measure the changing oxygen gradients in perfused tissues in response to metabolic demand, has been limited to point-measurements and/or averaged A-V oxygen differences during perfusion using oxygen electrodes. With the recent introduction of novel phosphorescent probes specifically quenched by oxygen, the ability to spacially map oxygen gradients in real-time may offer new insights into the dynamics of microvascular design and supply. Accordingly, this paper provides initial image data on Langendorff perfused rat hearts wherein the relative change in phosphorescent intensity of Pd-meso-tetra(4- carboxyphenyl)phorphine (2micrometers ) as the reporter probe, is quantitatively related to spacial oxygen gradients as seen on the left-ventricle during changing gassing conditions. Digital image analysis (frame advance), after proper calibration and alignment, provides images which can be usefully interpreted. Clinical applications of such emerging technologies could have wide-spread diagnostic applications not only as applied to the coronary bed, but other tissue surfaces displaying various degrees of aschemia and/or hypoxia.

  13. Exponential gradient maker using a disposable syringe.

    PubMed

    Domingo, A

    1990-08-15

    With a simple modification, any disposable syringe can become a reliable and easy to use exponential gradient maker. The modification consists of two notches, made with a razor blade, in the borders of the rubber sealing tip of the plunger. A clamp in the tube connected to the syringe allows control over solution flow. With the clamp prohibiting drainage, the body of the syringe is filled with the desired volume of starting solution I. A magnetic stir bar, small enough to spin inside the syringe is included. The notched plunger is introduced until no air space remains. This forms the fixed volume, closed mixing chamber, while the rest of the volume of the syringe forms the open chamber. The two chambers are connected through the notches in the plunger. The ending solution II is poured after the introduction of the plunger. Opening the clamp allows solution I in the closed chamber to flow out, and the solution II in the open chamber flows through the notches and mixes with solution I. This exponential gradient maker can be reused many times, but the low cost of the components makes it potentially disposable. This feature is especially useful when using toxic chemicals, or when pouring polyacrylamide gradient gels, since the apparatus may be disposed of after contamination or eventual polymerization. PMID:2278394

  14. Resolution requirements for velocity gradients in turbulence

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier

    1994-01-01

    Since high resolution numerical simulations of turbulent flows, or experiments at high Reynolds numbers, represent a substantial investment in resources, the estimation of the minimum resolution required for the study of a given property has been the subject of continued interest. Different properties require, in general, different resolutions, and the present paper is dedicated to the requirements for the measurement of the probability distribution functions of the velocity gradients and, in particular, of their low order moments. The deviation of these quantities from the values corresponding to a Gaussian distribution was one of the first indications of the presence of Reynolds number-dependent intermittency and has been the object of recent interest as numerical simulations have become able to explore the distribution of gradients in the low Reynolds number range, while new experiments have extended the range to increasingly high Reynolds numbers. We will use progressive filtering of the results of numerical simulations of isotropic turbulence as a model for the effect of a sensor of finite size. The numerical issues will be addressed first to ensure that the simulations are fully resolved from the point of view of the velocity gradients. This will also give us an estimate for the numerical resolution required for the different quantities.

  15. Integrated calibration of magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; GuoQuan, Ren; Zhining, Li

    2015-01-01

    Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

  16. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI. PMID:23008151

  17. Fast computation of satellite gravitational gradient.

    NASA Astrophysics Data System (ADS)

    Lin, Qinchang; Yuan, Lin

    1998-07-01

    The computation of the Earth's potential function at high order and degree with the method of Cunningham (1970) causes overflow most of the time. The normalized method can eliminate the overflows, but leads to formulae much more involved than those in Cunningham's method; besides, the programming is more complex and the computer time required larger. The method presented has the following features: each component of the satellite gravitational gradient can be computed; the formulae are short and easy to be programmed; the method is much quicker than the normalization method and can be carried out with a microcomputer, without overflow even in the case of Earth's spherical harmonics of order and degree as high as 1025 or higher. This method satisfies the present demand to compute the satellite gravitational gradient with high accuracy. Furthermore, the authors present formulae for the fast computation, without overflow, of the gravitational gradient corresponding to Earth's spherical harmonics up to order and degree of 3170×3170 or higher.

  18. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  19. Pedestrian Detection Using Gradient Local Binary Patterns

    NASA Astrophysics Data System (ADS)

    Jiang, Ning; Xu, Jiu; Goto, Satoshi

    In recent years, local pattern based features have attracted increasing interest in object detection and recognition systems. Local Binary Pattern (LBP) feature is widely used in texture classification and face detection. But the original definition of LBP is not suitable for human detection. In this paper, we propose a novel feature named gradient local binary patterns (GLBP) for human detection. In this feature, original 256 local binary patterns are reduced to 56 patterns. These 56 patterns named uniform patterns are used for generating a 56-bin histogram. And gradient value of each pixel is set as the weight which is always same in LBP based features in histogram calculation to computing the values in 56 bins for histogram. Experiments are performed on INRIA dataset, which shows the proposal GLBP feature is discriminative than histogram of orientated gradient (HOG), Semantic Local Binary Patterns (S-LBP) and histogram of template (HOT). In our experiments, the window size is fixed. That means the performance can be improved by boosting methods. And the computation of GLBP feature is parallel, which make it easy for hardware acceleration. These factors make GLBP feature possible for real-time pedestrian detection.

  20. Collective Chemotaxis through Noisy Multicellular Gradient Sensing

    NASA Astrophysics Data System (ADS)

    Varennes, Julien; Han, Bumsoo; Mugler, Andrew

    2016-08-01

    Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of less than 1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment and while the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to individual cells polarization to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments.

  1. Collective Chemotaxis through Noisy Multicellular Gradient Sensing.

    PubMed

    Varennes, Julien; Han, Bumsoo; Mugler, Andrew

    2016-08-01

    Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of <1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment, and although the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to the polarization of individual cells to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments. PMID:27508447

  2. Fast algorithm for integrating inconsistent gradient fields.

    PubMed

    Rivera, M; Marroquin, J L; Servin, M; Rodriguez-Vera, R

    1997-11-10

    A discrete Fourier transform (DFT) based algorithm for solving a quadratic cost functional is proposed; this regularized functional allows one to obtain a consistent gradient field from an inconsistent one. The calculated consistent gradient may then be integrated by use of simple methods. The technique is presented in the context of the phase-unwrapping problem; however, it may be applied to other problems, such as shapes from shading (a robot-vision technique) when inconsistent gradient fields with irregular domains are obtained. The regularized functional introduced here has advantages over existing techniques; in particular, it is able to manage complex irregular domains and to interpolate over regions with invalid data without any smoothness assumptions over the rest of the lattice, so that the estimation error is reduced. Furthermore, there are no free parameters to adjust. The DFT is used to compute a preconditioner because there is highly efficient hardware to perform the calculations and also because it may be computed by optical means. PMID:18264380

  3. Efficient gradient computation for dynamical models

    PubMed Central

    Sengupta, B.; Friston, K.J.; Penny, W.D.

    2014-01-01

    Data assimilation is a fundamental issue that arises across many scales in neuroscience — ranging from the study of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data assimilation involves inverting a generative model that can not only explain observed data but also generate predictions. Typically, the model is inverted or fitted using conventional tools of (convex) optimization that invariably extremise some functional — norms, minimum descriptive length, variational free energy, etc. Generally, optimisation rests on evaluating the local gradients of the functional to be optimized. In this paper, we compare three different gradient estimation techniques that could be used for extremising any functional in time — (i) finite differences, (ii) forward sensitivities and a method based on (iii) the adjoint of the dynamical system. We demonstrate that the first-order gradients of a dynamical system, linear or non-linear, can be computed most efficiently using the adjoint method. This is particularly true for systems where the number of parameters is greater than the number of states. For such systems, integrating several sensitivity equations – as required with forward sensitivities – proves to be most expensive, while finite-difference approximations have an intermediate efficiency. In the context of neuroimaging, adjoint based inversion of dynamical causal models (DCMs) can, in principle, enable the study of models with large numbers of nodes and parameters. PMID:24769182

  4. Modeling of polypeptide chains as C alpha chains, C alpha chains with C beta, and C alpha chains with ellipsoidal lateral chains.

    PubMed

    Fogolari, F; Esposito, G; Viglino, P; Cattarinussi, S

    1996-03-01

    In an effort to reduce the number of degrees of freedom necessary to describe a polypeptide chain we analyze the statistical behavior of polypeptide chains when represented as C alpha chains, C alpha chains with C beta atoms attached, and C alpha chains with rotational ellipsoids as models of side chains. A statistical analysis on a restricted data set of 75 unrelated protein structures is performed. The comparison of the database distributions with those obtained by model calculation on very short polypeptide stretches allows the dissection of local versus nonlocal features of the distributions. The database distribution of the bend angles of polypeptide chains of pseudo bonded C alpha atoms spans a restricted range of values and shows a bimodal structure. On the other hand, the torsion angles of the C alpha chain may assume almost all possible values. The distribution is bimodal, but with a much broader probability distribution than for bend angles. The C alpha - C beta vectors may be taken as representative of the orientation of the lateral chain, as the direction of the bond is close to the direction of the vector joining C alpha to the ad hoc defined center of the "steric mass" of the side chain. Interestingly, both the bend angle defined by C alpha i-C alpha i+1-C beta i+1 and the torsional angle offset of the pseudo-dihedral C alpha i-C alpha i+1-C alpha i+2-C beta i+2 with respect to C alpha i-C alpha i+1-C alpha i+2-C alpha i+3 span a limited range of values. The latter results show that it is possible to give a more realistic representation of polypeptide chains without introducing additional degrees of freedom, i.e., by just adding to the C alpha chain a C beta with given side-chain properties. However, a more realistic description of side chains may be attained by modeling side chains as rotational ellipsoids that have roughly the same orientation and steric hindrance. To this end, we define the steric mass of an atom as proportional to its van der

  5. Precise Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.

  6. Ligand chain length conveys thermochromism.

    PubMed

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  7. Chain reconfiguration in active noise

    NASA Astrophysics Data System (ADS)

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  8. Leading a supply chain turnaround.

    PubMed

    Slone, Reuben E

    2004-10-01

    Just five years ago, salespeople at Whirlpool were in the habit of referring to their supply chain organization as the "sales disablers." Now the company excels at getting products to the right place at the right time--while managing to keep inventories low. How did that happen? In this first-person account, Reuben Slone, Whirlpool's vice president of Global Supply Chain, describes how he and his colleagues devised the right supply chain strategy, sold it internally, and implemented it. Slone insisted that the right focal point for the strategy was the satisfaction of consumers at the end of the supply chain. Most supply chain initiatives do the opposite: They start with the realities of a company's manufacturing base and proceed from there. Through a series of interviews with trade customers large and small, his team identified 27 different capabilities that drove industry perceptions of Whirlpool's performance. Knowing it was infeasible to aim for world-class performance across all of them, Slone weighed the costs of excelling at each and found the combination of initiatives that would provide overall competitive advantage. A highly disciplined project management office and broad training in project management were key to keeping work on budget and on benefit. Slone set an intense pace--three "releases" of new capabilities every month--that the group maintains to this day. Lest this seem like a technology story, however, Slone insists it is just as much a "talent renaissance." People are proud today to be part of Whirlpool's supply chain organization, and its new generation of talent will give the company a competitive advantage for years to come. PMID:15559580

  9. Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles.

    PubMed

    Heinrich, D; Goñi, A R; Osán, T M; Cerioni, L M C; Smessaert, A; Klapp, S H L; Faraudo, J; Pusiol, D J; Thomsen, C

    2015-10-14

    We have used low-field (1)H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with

  10. Shear Flow Induced Transition from Liquid-Crystalline to Polymer Behavior in Side-Chain Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Lapp, A.

    1997-01-01

    We determine the structure and conformation of side-chain liquid-crystalline polymers subjected to shear flow in the vicinity of the smectic phase by neutron scattering on the velocity gradient plane. Below the nematic-smectic transition we observe a typical liquid-crystal behavior; the smectic layers slide, leading to a main-chain elongation parallel to the velocity direction. In contrast, a shear applied above the transition induces a tilted main-chain conformation which is typical for polymer behavior.

  11. Differential evolution Markov chain with snooker updater and fewer chains

    SciTech Connect

    Vrugt, Jasper A; Ter Braak, Cajo J F

    2008-01-01

    Differential Evolution Markov Chain (DE-MC) is an adaptive MCMC algorithm, in which multiple chains are run in parallel. Standard DE-MC requires at least N=2d chains to be run in parallel, where d is the dimensionality of the posterior. This paper extends DE-MC with a snooker updater and shows by simulation and real examples that DE-MC can work for d up to 50--100 with fewer parallel chains (e.g. N=3) by exploiting information from their past by generating jumps from differences of pairs of past states. This approach extends the practical applicability of DE-MC and is shown to be about 5--26 times more efficient than the optimal Normal random walk Metropolis sampler for the 97.5% point of a variable from a 25--50 dimensional Student T{sub 3} distribution. In a nonlinear mixed effects model example the approach outperformed a block-updater geared to the specific features of the model.

  12. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  13. Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments

    NASA Astrophysics Data System (ADS)

    Dixon, Cory

    This dissertation presents a decentralized gradient-based mobility control algorithm for the formation and maintenance of an optimal end-to-end communication chain using a team of unmanned aircraft acting as communication relays. With the use of unmanned aircraft (UA) as communication relays, a common mode of operation is to form a communication relay chain between a lead exploring node (which may be ground based or another UA) and a control station. In this type of operation the lead node is typically deployed to explore (sense) a remote region of interest that is beyond direct radio frequency (RF) communication range, or out of line-of-sight, to the control station. To provide non-line-of-sight service, and extend the communication range of the lead node, unmanned aircraft acting as communication relays are deployed in a convoy fashion behind the lead vehicle to form a cascaded relay chain. The focus of this work is the use of the mobility of a fixed number of relay aircraft to maximize the capacity of a directed communication chain from a source node to a destination node. Local objective functions are presented that use the signal-to-noise-and-interference ratio (SNIR) of neighbor communication links as inputs to maximize the end-to-end capacity of packet-based and repeater-type network chains. An adaptive gradient-based SNIR controller using the local objective function can show significant improvement in the capacity of the communication chain that is not possible with range-based controllers, or static deployment strategies, in RF environments containing unknown localized noise sources and terrain effects. Since the SNIR field is unknown, an online estimate of the SNIR field gradient is formed using methods of Stochastic Approximation from the orbital motion of the aircraft tracking a control point. Flight demonstrations using the Networked Unmanned Aircraft System Command, Control and Communications testbed were conducted to validate the controller

  14. Application of a food chain model to polychlorinated biphenyl contamination of the lobster and winter flounder food chains in New Bedford Harbor

    SciTech Connect

    Connolly, J.P. Manhattan Coll., Riverdale, NY )

    1991-04-01

    As part of a Remedial Investigation/Feasibility Study for the New Bedford Harbor Superfund site a model of polychlorinated biphenyls (PCBs) in the lobster and winter flounder food chains was developed. This model successfully reproduces tri-, tetra-, penta-, and hexachlorobiphenyl concentrations observed at all levels of the food chain and across the 2 order of magnitude concentration gradient in the system. The model indicated that PCB concentrations in the flounder and, to a lesser extent, in the lobster are derived from the sediment. Dietary uptake exceeds uptake across the gill for all four homologues and becomes the dominant route at the higher chlorinated homologues. The assimilation efficiency of ingested PCB apparently declines from relatively high values for tri-chlorobiphenyl to relatively low values for hexachlorobiphenyl. Differences in observed lobster and flounder PCB concentrations appear to be due to differences in the importance of the benthic component of the food chains of these animals and differences in whole body lipid content.

  15. Tuning Surface Microstructure and Gradient Property of Polymer by Photopolymerizable Polysiloxane-modified Nanogels

    PubMed Central

    Chen, Cong; Liu, JianCheng; Sun, Fang; Stansbury, Jeffrey W.

    2014-01-01

    This paper reports a series of photopolymerizable polysiloxane-modified nanogels for regulating surface microstructure and gradient property of polymers, which were synthesized by solution polymerization under different feed ratios of a methacrylate-modified polysiloxane, urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The nanogel structure and composition were characterized by proton nuclear magnetic resonance (1H-NMR), Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscope (TEM), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The dispersion of these nanogels in triethylene glycol dimethacrylate (TEGDMA) can reduce the onset and magnitude of shrinkage stress during polymerization without compromise to mechanical properties of the resulting polymers. Most importantly, as demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), the nanogels exhibit good self-floating ability in the monomer/polymer matrix and the increase of polysiloxane content in the nanogel can enhance the self-floating capability due to the lower surface tension and energy associated with the polysiloxane component. As a result, the polysiloxane-modified nanogels can spontaneously form a concentration gradient that can be locked in upon photopolymerization leading to a well-controlled heterogeneous polymer that presents a gradient change in thermal stability. With the increase of polysiloxane content, the thermal stability of the polymer was improved significantly. Furthermore, the enrichment of the nanogel on the surface resulting from the good self-floating ability can reduce the dispersion surface energy of gradient polymer film and generate a more hydrophobic surface with altered surface microstructure. These photopolymerizable polysiloxane-modified nanogels are demonstrated to have potential broad application in the preparation of gradient

  16. Three-Dimensional Turbulent Boundary Layer With Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Hebbar, Sheshagiri K.

    1992-01-01

    Report describes experiment to measure effects of adverse pressure gradient on three-dimensional turbulent boundary-layer flow; effect of streamwise gradient of pressure on crossflow of particular interest. Production of turbulent kinetic energy grows rapidly in vicinity of step as result of steep mean-flow velocity gradients. Dissipation grows less quickly than production; leading to net growth with distance along streamline.

  17. Smallest Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    This viewgraph presentation is focused on the general aspect of atomic chain electronics that I have been studying. Results have been published before, but are being rederived here using a new physical/mathematical picture/model, which deepens the physical understanding. Precise adatom structures can be used as a template on a regulated surface with no uncertainty.

  18. Novette chain design and performance

    SciTech Connect

    Hunt, J.T.; Speck, D.R.

    1980-12-11

    The design and performance of the Novette laser system, which is a two-beam, two-wavelength (1.05 ..mu.. and 0.53 ..mu..) target irradiation facility using phosphate glass laser chains, are discussed with information on the glass properties, controlling factors in the design selection, and projected performance with varying operating conditions. (LCL)

  19. Categorization Using Chains of Examples.

    ERIC Educational Resources Information Center

    Heit, Evan

    1992-01-01

    Presents a mathematical-categorization model using multiple-step chains of reasoning (CORs) and memory for examples. In 5 experiments, 144 undergraduates memorized descriptions of fictional people, then made predictions from incomplete descriptions using 1-, 2-, or 3-step CORs. The multiple-step context model with one- and two-step inference…

  20. Biogeochemistry of a temperate forest nitrogen gradient

    USGS Publications Warehouse

    Perakis, Steven S.; Sinkhorn, Emily R.

    2011-01-01

    Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant–soil–microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (USA). Surface mineral soil N (0–10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N·ha−1·yr−1. Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for −1·yr−1. Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.

  1. Gravity gradient preliminary investigations, part 2: Lunar tidal gravity gradients and stresses (exhibit C)

    NASA Technical Reports Server (NTRS)

    Houston, M. H.; Thompson, L. G. D.

    1971-01-01

    Preliminary analysis of the gravity gradients associated with gravity tides on the moon caused by the earth indicates that the relative changes in the gradients are very irregular, and large, and about 15 times greater than those experienced on earth. Thus gradients, in preference to gravity tides themselves, may well be an important key in correlating tide effects with lunar transient events and moonquakes, and also in determining triggering mechanisms for crustal movement and faulting. Preliminary analysis of lunar crustal stresses and strains caused by lunar gravity tides indicates that these factors may be more direct causative agents or triggering mechanisms. In particular, the cubic dilation undergoes relatively large changes and is about 11 times greater on the moon than on earth. Thus it should be correspondingly more important.

  2. Supply chain challenges. building relationships.

    PubMed

    Beth, Scott; Burt, David N; Copacino, William; Gopal, Chris; Lee, Hau L; Lynch, Robert Porter; Morris, Sandra

    2003-07-01

    Supply chain management is all about software and systems, right? Put in the best technology, sit back, and watch as your processes run smoothly and the savings roll in? Apparently not. When HBR convened a panel of leading thinkers in the field of supply chain management, technology was not top of mind. People and relationships were the dominant issues of the day. The opportunities and problems created by globalization, for example, are requiring companies to establish relationships with new types of suppliers. The ever-present pressure for speed and cost containment is making it even more important to break down stubbornly high internal barriers and establish more effective cross-functional relationships. The costs of failure have never been higher. The leading supply chain performers are applying new technology, new innovations, and process thinking to far greater advantage than the laggards, reaping tremendous gains in all the variables that affect shareholder value: cost, customer service, asset productivity, and revenue generation. And the gap between the leaders and the losers is growing in almost every industry. This roundtable gathered many of the leading thinkers and doers in the field of supply chain management, including practitioners Scott Beth of Intuit, Sandra Morris of Intel, and Chris Gopal of Unisys. David Burt of the University of San Diego and Stanford's Hau Lee bring the latest research from academia. Accenture's William Copacino and the Warren Company's Robert Porter Lynch offer the consultant's perspectives. Together, they take a wide-ranging view of such topics as developing talent, the role of the chief executive, and the latest technologies, exploring both the tactical and the strategic in the current state of supply chain management. PMID:12858712

  3. Broadband mode conversion via gradient index metamaterials

    PubMed Central

    Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2016-01-01

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456

  4. Broadband mode conversion via gradient index metamaterials.

    PubMed

    Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2016-01-01

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456

  5. Spin Gradient Demagnetization Cooling of Ultracold Atoms

    SciTech Connect

    Medley, Patrick; Weld, David M.; Miyake, Hirokazu; Pritchard, David E.; Ketterle, Wolfgang

    2011-05-13

    We demonstrate a new cooling method in which a time-varying magnetic field gradient is applied to an ultracold spin mixture. This enables preparation of isolated spin distributions at positive and negative effective spin temperatures of {+-}50 pK. The spin system can also be used to cool other degrees of freedom, and we have used this coupling to cool an apparently equilibrated Mott insulator of rubidium atoms to 350 pK. These are the lowest temperatures ever measured in any system. The entropy of the spin mixture is in the regime where magnetic ordering is expected.

  6. Stereo vision with distance and gradient recognition

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  7. 3D Electromagnetic inversion using conjugate gradients

    SciTech Connect

    Newman, G.A.; Alumbaugh, D.L.

    1997-06-01

    In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.

  8. Temperature Gradient Field Theory of Nucleation

    NASA Astrophysics Data System (ADS)

    Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.

    2016-02-01

    According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.

  9. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  10. A Compact High Gradient Pulsed Magnetic Quadpole

    SciTech Connect

    Shuman, D.; Faltens, A.; Kajiyama, Y.; Kireeff-Covo, M.; Seidl, P.

    2005-07-05

    A design for a high gradient, low inductance pulsed quadrupole magnet is presented. The magnet is a circular current dominated design with a circular iron return yoke. Conductor angles are determined by a method of direct multipole elimination which theoretically eliminates the first four higher order multipole field components. Coils are fabricated from solid round film-insulated conductor, wound as a single layer ''non-spiral bedstead'' coil having a diagonal leadout entirely within one upturned end. The coils are wound and stretched straight in a special winder, then bent in simple fixtures to form the upturned ends.

  11. π-Conjugated Copolymers of Thiophene: Effect of Chain Architecture on the Physical and Optoelectronic Properties for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Amonoo, Jojo; Glynos, Emmanouil; Chen, Chelsea; Li, Anton; Locke, Jonas; McNeil, Anne; Green, Peter

    2012-02-01

    We found that polymer chain architecture strongly influences phase separation capabilities of the donor-acceptor blend in bulk heterojunction organic photovoltaic devices. Ni-catalyzed controlled polymerization was utilized to access new conjugated copolymers of 3-hexylthiophene and 3-(hexyloxy)methylthiophene, two donor polymers. Monomer sequence was controlled along the copolymer chain by the rate of addition of the comonomers, to achieve diblock, random and gradient copolymer chain architectures. This allowed us to study the effect of copolymer sequence of polythiophene based copolymer/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend on the structure, nanoscale morphology and local charge transport properties using conductive and photoconductive atomic force microscopy. The gradient configuration showed the largest phase separation behavior with PCBM.

  12. Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Ren, Wei-Min; He, Ke-Ke; Lu, Xiao-Bing

    2014-12-01

    The development of efficient processes for CO2 transformation into useful products is a long-standing goal for chemists, since CO2 is an abundant, inexpensive and non-toxic renewable C1 resource. Here we describe the enantioselective copolymerization of 3,4-epoxytetrahydrofuran with CO2 mediated by biphenol-linked dinuclear cobalt complex, affording the corresponding polycarbonate with >99% carbonate linkages and excellent enantioselectivity (up to 99% enantiomeric excess). Notably, the resultant isotactic polycarbonate is a typical semicrystalline polymer, possessing a melting point of 271 °C. Furthermore, the enantioselective terpolymerization of 3,4-epoxytetrahydrofuran, cyclopentene oxide and CO2 mediated by this dinuclear cobalt complex gives novel gradient polycarbonates, in which the decrement of one component and the increment of the other component occur sequentially from one chain end to the other end. The resultant terpolymers show perfectly isotactic structure and have unique crystalline-gradient nature, in which the crystallinity continuously varies along the main chain.

  13. Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2.

    PubMed

    Liu, Ye; Ren, Wei-Min; He, Ke-Ke; Lu, Xiao-Bing

    2014-01-01

    The development of efficient processes for CO2 transformation into useful products is a long-standing goal for chemists, since CO2 is an abundant, inexpensive and non-toxic renewable C1 resource. Here we describe the enantioselective copolymerization of 3,4-epoxytetrahydrofuran with CO2 mediated by biphenol-linked dinuclear cobalt complex, affording the corresponding polycarbonate with >99% carbonate linkages and excellent enantioselectivity (up to 99% enantiomeric excess). Notably, the resultant isotactic polycarbonate is a typical semicrystalline polymer, possessing a melting point of 271 °C. Furthermore, the enantioselective terpolymerization of 3,4-epoxytetrahydrofuran, cyclopentene oxide and CO2 mediated by this dinuclear cobalt complex gives novel gradient polycarbonates, in which the decrement of one component and the increment of the other component occur sequentially from one chain end to the other end. The resultant terpolymers show perfectly isotactic structure and have unique crystalline-gradient nature, in which the crystallinity continuously varies along the main chain. PMID:25477252

  14. Complex surface concentration gradients by stenciled "electro click chemistry".

    PubMed

    Hansen, Thomas S; Lind, Johan U; Daugaard, Anders E; Hvilsted, Søren; Andresen, Thomas L; Larsen, Niels B

    2010-10-19

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically active ligands including cell binding peptides are patterned in gradients by this method without losing their biological function or the conductivity of the polymer. PMID:20860406

  15. A method for easily customizable gradient gel electrophoresis.

    PubMed

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric

    2016-09-15

    Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. PMID:27393767

  16. Biomimetic Approaches to Control Soluble Concentration Gradients in Biomaterials

    PubMed Central

    Nguyen, Eric H.; Schwartz, Michael P.

    2013-01-01

    Soluble concentration gradients play a critical role in controlling tissue formation during embryonic development. The importance of soluble signaling in biology has motivated engineers to design systems that allow precise and quantitative manipulation of gradient formation in vitro. Engineering techniques have increasingly moved to the third dimension in order to provide more physiologically relevant models to study the biological role of gradient formation and to guide strategies for controlling new tissue formation for therapeutic applications. This review provides an overview of efforts to design biomimetic strategies for soluble gradient formation, with a focus on microfluidic techniques and biomaterials approaches for moving gradient generation to the third dimension. PMID:21265021

  17. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  18. Chain networking revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Yexin; Tsige, Mesfin; Wang, Shi-Qing

    Based on Kremer-Grest model for entangled polymer melts, we demonstrate how the response of a polymer glass depends critically on the chain length. After quenching two melts of very different chain lengths (350 beads per chain and 30 beads per chain) into deeply glassy states, we subject them to uniaxial extension. Our MD simulations show that the glass of long chains undergoes stable necking after yielding whereas the system of short chains is unable to neck and breaks up after strain localization. During ductile extension of the polymer glass made of long chain significant chain tension builds up in the load-bearing strands (LBSs). Further analysis is expected to reveal evidence of activation of the primary structure during post-yield extension. These results lend support to the recent molecular model 1 and are the simulations to demonstrate the role of chain networking. This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859)

  19. Chain Release Behavior of Gellan Gels

    NASA Astrophysics Data System (ADS)

    Hossain, Khandker S.; Nishinari, Katsuyoshi

    The chain release behavior from gellan gels was studied by immersing the gel into water and monitoring the mass loss as a function of time. Concentration of released gellan in the external solution was determined for gels of different sizes using phenol-sulfuric acid method. The chain release process became faster with increasing total surface area and volume. However the concentration of released chain normalized by surface area and volume suggests that the chain release itself is governed not only by the ionic effect and the amount of unassociated chains in gel but other factors such as osmotic pressure may play an important role on the chain release from the gels. The diffusion coefficient was estimated from the chain release process which is in the same order of magnitude reported for an isolated gellan chain by light scattering. Rheological measurements also suggest that the unassociated gellan chains are released out when immersed in pure water while unassociated chains are restricted to release out when immersed in salt solution due to the intrusion of cations which is responsible for further association of the unassociated gellan chains being in agreement with the previously published results. The elastic modulus of gels was increased by immersion of gels in water and in salt solutions, which can be attributed as the stiffening of network chains due to gel swelling and the conversion from free and unassociated chains into network chains, respectively, leading to an increase in elastic modulus with time.

  20. Polymer Chain Reinforcement across Narrow Interfaces: Entanglements Versus Chain Friction

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Fredrickson, Glenn H.; Kramer, Edward J.

    2002-03-01

    It is widely believed that entangled chains that bridge a glassy polymer/polymer interface solely determine its fracture energy (G_c). However, experiments show that while Gc increases with interfacial width (w), Gc vs. w/d_t, where dt is the tube diameter of the melt, is not universal. For some polymer pairs Gc increases dramatically even when w << d_t, while for others Gc does not increase until w >= d_t. We demonstrate that the friction stress for polymer loop pull-out from the interface is given by f_monoρ_merw/2 where f_mono is the static friction coefficient per mer and ρ_mer is the mer number density. Unlike interfaces with short block copolymers, where the friction stress for block pull-out is limited by a maximum areal density of block copolymer, the polymer/polymer friction stress grows linearly with w. For interfaces as narrow as 3 nm, it can be large enough to induce crazing. A model that includes both loop pull-out and chain entanglement shows that modest changes in f_mono can account for the fact that Gc versus w/dt is non-universal. A high areal density of bridging, entangled chains is therefore sufficient, but not necessary, to reinforce polymer interfaces.

  1. Spatial temperature gradients guide axonal outgrowth.

    PubMed

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  2. Optimization of ceramic strength using elastic gradients.

    PubMed

    Zhang, Yu; Ma, Li

    2009-05-01

    We present a new concept for strengthening ceamics by utilizing a graded structure with a low elastic modulus at both top and bottom surfaces sandwiching a high-modulus interior. Closed-form equations have been developed for stress analysis of simply supported graded sandwich beams subject to transverse center loads. Theory predicts that suitable modulus gradients at the ceramic surface can effectively reduce and spread the maximum bending stress from the surface into the interior. The magnitude of such stress dissipation is governed by the thickness ratio of the beam to the graded layers. We test our concept by infiltrating both top and bottom surfaces of a strong class of zirconia ceramic with an in-house prepared glass of similar coefficient of thermal expansion and Poisson's ratio to zirconia, producing a controlled modulus gradient at the surface without significant long-range residual stresses. The resultant graded glass/zirconia/glass composite exhibits significantly higher load-bearing capacity than homogeneous zirconia. PMID:20161019

  3. Shape optimization of pressure gradient microphones

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Seiner, J. M.

    1977-01-01

    Recently developed finite element computer programs were utilized to investigate the influence of the shape of a body on its scattering field with the aim of determining the optimal shape for a Pressure Gradient Microphone (PGM). Circular cylinders of various aspect ratios were evaluated to choose the length to diameter ratio best suited for a dual element PGM application. Alterations of the basic cylindrical shape by rounding the edges and recessing at the centerline were also studied. It was found that for a + or - 1 db deviation from a linear pressure gradient response, a circular cylinder of aspect ratio near 0.5 was most suitable, yielding a useful upper frequency corresponding to ka = 1.8. The maximum increase in this upper frequency limit obtained through a number of shape alterations was only about 20 percent. An initial experimental evaluation of a single element cylindrical PGM of aspect ratio 0.18 utilizing a piezoresistive type sensor was also performed and is compared to the analytical results.

  4. Why molecules move along a temperature gradient

    PubMed Central

    Duhr, Stefan; Braun, Dieter

    2006-01-01

    Molecules drift along temperature gradients, an effect called thermophoresis, the Soret effect, or thermodiffusion. In liquids, its theoretical foundation is the subject of a long-standing debate. By using an all-optical microfluidic fluorescence method, we present experimental results for DNA and polystyrene beads over a large range of particle sizes, salt concentrations, and temperatures. The data support a unifying theory based on solvation entropy. Stated in simple terms, the Soret coefficient is given by the negative solvation entropy, divided by kT. The theory predicts the thermodiffusion of polystyrene beads and DNA without any free parameters. We assume a local thermodynamic equilibrium of the solvent molecules around the molecule. This assumption is fulfilled for moderate temperature gradients below a fluctuation criterion. For both DNA and polystyrene beads, thermophoretic motion changes sign at lower temperatures. This thermophilicity toward lower temperatures is attributed to an increasing positive entropy of hydration, whereas the generally dominating thermophobicity is explained by the negative entropy of ionic shielding. The understanding of thermodiffusion sets the stage for detailed probing of solvation properties of colloids and biomolecules. For example, we successfully determine the effective charge of DNA and beads over a size range that is not accessible with electrophoresis. PMID:17164337

  5. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  6. Spatial temperature gradients guide axonal outgrowth

    PubMed Central

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  7. Optimization of ceramic strength using elastic gradients

    PubMed Central

    Zhang, Yu; Ma, Li

    2009-01-01

    We present a new concept for strengthening ceamics by utilizing a graded structure with a low elastic modulus at both top and bottom surfaces sandwiching a high-modulus interior. Closed-form equations have been developed for stress analysis of simply supported graded sandwich beams subject to transverse center loads. Theory predicts that suitable modulus gradients at the ceramic surface can effectively reduce and spread the maximum bending stress from the surface into the interior. The magnitude of such stress dissipation is governed by the thickness ratio of the beam to the graded layers. We test our concept by infiltrating both top and bottom surfaces of a strong class of zirconia ceramic with an in-house prepared glass of similar coefficient of thermal expansion and Poisson’s ratio to zirconia, producing a controlled modulus gradient at the surface without significant long-range residual stresses. The resultant graded glass/zirconia/glass composite exhibits significantly higher load-bearing capacity than homogeneous zirconia. PMID:20161019

  8. A selection of high gradient cavity experiments

    SciTech Connect

    Peter Kneisel

    1998-01-01

    In the two years since the 7th SRF workshop, a variety of cavity tests have been carried out with the objective to reproducibly achieve surface electric rf fields above 40 MV/m with no or only very little electron loading. This paper reports about a collection of tests on single cell and multi-cell cavities, which received standard surface treatments such as buffered chemical polishing and high pressure ultrapure water rinsing, but no heat treatments. Often the cavities were limited by quenches, posting a limit of 700 to 1,000 Oersted on achievable peak magnetic fields of high purity niobium RRR values between 200 and 250. In a seamless single cell cavity fabricated by V. Palmieri of INFN Legnaro by spinning, a very promising gradient of E{sub acc}=25 MV/m was measured. In collaboration with CERN, several tests on sputtering niobium prepared at CERN were also carried out, and accelerating gradients up to 25 MV/m were achieved. A single cell cavity, electron beam welded after electrochemical buffing, showed only good performance--E{sub p} > 50 MV/m--after the removal of more than 100 {micro}m of material. However, this cavity showed rather heavy Q disease even when cooled down rapidly; the Q degradation could be partially reversed by diffusing the oxygen from an anodized Nb{sub 2}O{sub 5} layer into the niobium by heating the cavity in-situ at T=250 C.

  9. Pressure gradient induced generation of microbubbles

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2015-11-01

    It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.

  10. Spatial temperature gradients guide axonal outgrowth

    NASA Astrophysics Data System (ADS)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  11. Stellar Population Gradients in SO Galaxies

    NASA Astrophysics Data System (ADS)

    Prochaska, Leslie C.; Courteau, S.; McDonald, M.; Rose, J. A.

    2009-01-01

    The origin of S0 galaxies is a cornerstone of galaxy formation models. This work is a study of the mechanisms involved in the formation and evolution of S0 galaxies through the analysis of radial trends in stellar populations extending far into the galaxies' outskirts. Our analysis is based on new, deep, optical and NIR imaging of a large sample of S0 galaxies covering a wide range of properties. Color gradients, computed from SDSS griz and UH2.2m J & H band imaging beyond 4.5 Re, are matched with stellar population models to derive population ages and metallicity gradients. These trends are compared amongst galaxies of varying properties. The changes in stellar populations with galaxy components (bulge/disk/halo), environment, galaxy mass, concentration, and other structural properties will provide formation models with critical constraints. Intriguingly, we find that ages increase substantially with radius for a large sub-sample of S0 galaxies. In fact, in approximately 25% of our sample, the population age of the galaxies increases by more than 8 Gyr from the center out. We provide tentative interpretations for this and other observed trends, in the context of current galaxy formation scenarios.

  12. Intergenerational and socioeconomic gradients of child obesity.

    PubMed

    Costa-Font, Joan; Gil, Joan

    2013-09-01

    Can the rise in obesity among children be attributed to the intergenerational transmission of parental influences? Does this trend affect the influence of parent's socioeconomic status on obesity? This paper documents evidence of an emerging social gradient of obesity in pre-school children resulting from a combination of both socio-economic status and less intensive childcare associated with maternal employment, when different forms of intergenerational transmission are controlled for. We also estimate and decompose income related inequalities in child obesity. We take advantage of a uniquely constructed dataset from Spain that contains records form 13,358 individuals for a time period (years 2003-2006) in which a significant spike in the growth of child obesity was observed. Our results suggest robust evidence of both socioeconomic and intergenerational gradients. Results are suggestive of a high income effect in child obesity, alongside evidence that income inequalities have doubled in just three years with a pure income effect accounting for as much as 72-66% of these income inequality estimates, even when intergenerational transmission is accounted for. Although, intergenerational transmission does not appear to be gender specific, when accounted for, mother's labour market participation only explains obesity among boys but not among girls. Hence, it appears income and parental influences are the central determinants of obesity among children. PMID:23906118

  13. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  14. Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation.

    PubMed

    Yamane, Ikko; Sasaki, Hiroaki; Sugiyama, Masashi

    2016-07-01

    Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering. PMID:27171983

  15. Multimode gradient high performance liquid chromatography mass spectrometry method applicable to metabolomics and environmental monitoring.

    PubMed

    Ammann, Adrian A; Suter, Marc J-F

    2016-07-22

    Metabolomics or environmental investigations generate samples containing very large numbers of small molecular weight analytes. A single mode chromatographic separation excludes a substantial part of such complex analyte mixtures. For instance, a reversed-phase separation would not retain ionic species, resulting in a correspondingly huge front peak. To address this problem, we used two commercially available mixed-mode ion-exchange reversed-phase columns (WAX-1 and WCX-1) in sequence in a novel multimode separation method. After trapping hydrophobics on a C18-trap in loop position, hydrophilics passing the trap are separated by a simultaneous gradient for HILIC, anion and cation exchange chromatography. This gradient ends in a washout phase with a high percentage of water, the correct starting conditions for a reversed-phase gradient eluting hydrophobics from the trap in a second step of the run. Amino acids (9), organic acids (2), sugars (8), fatty acid derived compounds (11), antioxidants (4), miscellanea (6) and xenobiotics (4) were analyzed. Compounds were separated after a single sample injection during a 50min run. Lipids derived small fatty acids up to a chain length of 12 carbons were also accessible within this run time. PMID:27324626

  16. Towards biotracing in food chains.

    PubMed

    Hoorfar, Jeffrey; Wagner, Martin; Jordan, Kieran; Bouquin, Solveig Lind; Skiby, Jeffrey

    2011-03-01

    Biotracing is tracing (backward)/tracking (forward) biological contamination in the food/feed chain. Advances in detection technologies, improvements in molecular marker identification, clearer understanding of pathogenicity markers, improved modelling methodologies and, more importantly, the integration of these disciplines will lead to better capability in full-chain tracing and tracking biological contaminations (biotracing). The advantages of improved biotraceability are faster intervention, limited recalls and more targeted remedial action. The project is not dealing with risk assessments but developing tools that can be used in "second-generation" risk assessments involving quantitative microbiology. This concept is the core activity of BIOTRACER, which is an Integrated Project (2007-2011) funded by the EU 6th Framework Programme. The research in biotracing is organised into five Research Areas, and 21 cross-disciplinary work packages that cover tracing and tracking of contamination in feed, meat and dairy chains, in addition to accidental and deliberate contamination of bottled water. The BIOTRACER Consortium consists of 46 partners, including Europe's largest food/feed industries, several SMEs, and relevant International Cooperation (INCO) countries. The Consortium includes experts in predictive microbiology, database developers, software companies, risk assessors, risk managers, system biologists, food and molecular microbiologists, legislative officers, standardization and validation members and food retailers. The outcomes will ensure a more reliable and rapid response to a microbial contamination event. PMID:20627434

  17. Immunodiagnosis of alpha chain disease.

    PubMed Central

    Doe, W F; Danon, F; Seligmann, M

    1979-01-01

    Since the early diagnosis of alpha chain disease (alphaCD)) is essential to successful treatment and to epidemiological studies, the available immunodiagnostic techniques were compared for their sensitivity, specificity and ease of performance on a panel of sixteen sera, comprising ten alphaCD sera and six control sera containing either IgA myeloma protein or high levels of polyclonal IgA. Immunoselection by immunoelectrophoresis into gel containing a specially developed anti-Fabalpha antiserum provided the most sensitive and specific detection system for alphaCD protein. The same technique using anti-light chain antiserum for immunoselection was also highly sensitive, but proved less specific, being prone to false positives with difficult IgA myeloma proteins. Somewhat less sensitive, but specific and simple to perform, was immunoelectrophoresis using an antiserum recognizing the conformational specificities of Fabalpha as well as those of the constant region of alpha chains. Immunoselection using the Ouchterlony or rocket techniques proved to be less sensitive and prone to false positives when some IgA myeloma sera were tested. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 PMID:113152

  18. Finite sample effect in temperature gradient focusing.

    PubMed

    Lin, Hao; Shackman, Jonathan G; Ross, David

    2008-06-01

    Temperature gradient focusing (TGF) is a new and promising equilibrium gradient focusing method which can provide high concentration factors for improved detection limits in combination with high-resolution separation. In this technique, temperature-dependent buffer chemistry is employed to generate a gradient in the analyte electrophoretic velocity. By the application of a convective counter-flow, a zero-velocity point is created within a microchannel, at which location the ionic analytes accumulate or focus. In general, the analyte concentration is small when compared with buffer ion concentrations, such that the focusing mechanism works in the ideal, linearized regime. However, this presumption may at times be violated due to significant sample concentration growth or the use of a low-concentration buffer. Under these situations the sample concentration becomes non-negligible and can induce strong nonlinear interactions with buffer ions, which eventually lead to peak shifting and distortion, and the loss of detectability and resolution. In this work we combine theory, simulation, and experimental data to present a detailed study on nonlinear sample-buffer interactions in TGF. One of the key results is the derivation of a generalized Kohlrausch regulating function (KRF) that is valid for systems in which the electrophoretic mobilities are not constant but vary spatially. This generalized KRF greatly facilitates analysis, allowing reduction of the problem to a single equation describing sample concentration evolution, and is applicable to other problems with heterogeneous electrophoretic mobilities. Using this sample evolution equation we have derived an understanding of the nonlinear peak deformation phenomenon observed experimentally in TGF. We have used numerical simulations to validate our theory and to quantitatively predict TGF. Our simulation results demonstrate excellent agreement with experimental data, and also indicate that the proper inclusion of

  19. Comparisons of Modified Backward Chaining: Backward Chaining with Leap-Aheads and Reverse Chaining with Leap-Aheads.

    ERIC Educational Resources Information Center

    Spooner, Fred; And Others

    1986-01-01

    Variations of backward chaining--backward chaining with leap-aheads (BCLA) and reverse chaining with leap-aheads (RCLA)-- were compared with four severely retarded learners (17-32 years) who were trained on two complex vocational tasks. Learning rate for the BCLA procedure was superior to the RCLA procedure. Time to criterion differences were…

  20. Relation chain based clustering analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-ning; Zhao, Ming-yang; Luo, Hai-bo

    2011-08-01

    Clustering analysis is currently one of well-developed branches in data mining technology which is supposed to find the hidden structures in the multidimensional space called feature or pattern space. A datum in the space usually possesses a vector form and the elements in the vector represent several specifically selected features. These features are often of efficiency to the problem oriented. Generally, clustering analysis goes into two divisions: one is based on the agglomerative clustering method, and the other one is based on divisive clustering method. The former refers to a bottom-up process which regards each datum as a singleton cluster while the latter refers to a top-down process which regards entire data as a cluster. As the collected literatures, it is noted that the divisive clustering is currently overwhelming both in application and research. Although some famous divisive clustering methods are designed and well developed, clustering problems are still far from being solved. The k - means algorithm is the original divisive clustering method which initially assigns some important index values, such as the clustering number and the initial clustering prototype positions, and that could not be reasonable in some certain occasions. More than the initial problem, the k - means algorithm may also falls into local optimum, clusters in a rigid way and is not available for non-Gaussian distribution. One can see that seeking for a good or natural clustering result, in fact, originates from the one's understanding of the concept of clustering. Thus, the confusion or misunderstanding of the definition of clustering always derives some unsatisfied clustering results. One should consider the definition deeply and seriously. This paper demonstrates the nature of clustering, gives the way of understanding clustering, discusses the methodology of designing a clustering algorithm, and proposes a new clustering method based on relation chains among 2D patterns. In

  1. Information flow in the pharmaceutical supply chain.

    PubMed

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  2. Information flow in the pharmaceutical supply chain

    PubMed Central

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  3. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  4. Convective polymerase chain reaction around micro immersion heater

    NASA Astrophysics Data System (ADS)

    Hennig, Martin; Braun, Dieter

    2005-10-01

    Polymerase chain reaction (PCR) is performed in the thermal convection created by a micro immersion heater. Instead of repetitive heating and cooling, the temperature gradient induces thermal convection which drives the reaction liquid between hot and cold parts of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates with the use of proteins into twice the amount in the cold region. The constant heater is simply dipped into the reaction solution. Compared to previous experiments, we demonstrate that convective PCR is possible in a robotically accessible open vessel. Our approach compares well with fast PCR cyclers and replicates DNA 500 000 fold within 20minutes. We reduce the necessary components for PCR to cheap, single-use components and therefore increasing the prospects of bringing PCR to point of care applications—even in third world countries.

  5. Observations of Warm Carbon Chain Chemistry in NGC 3576

    NASA Astrophysics Data System (ADS)

    Saul, M.; Tothill, N. F. H.; Purcell, C. R.

    2015-01-01

    We report observations of warm carbon chain chemistry (WCCC) in NGC 3576, including high angular resolution imaging of an ionization source candidate and the first detection of C5H in a massive star-forming region. In order to investigate the environment associated with birthline emergence, we ask how observed chemical conditions relate to Class 0/1 core differentiation: a systemic shift in peak position between species correlates with giant molecular cloud core gradients in turbulence and age. Emission in several molecular lines including HC3N (11-10), NH3 (1, 1), and C5H supports the G291.3-0.7 ionization front—transitional pre-main-sequence core interaction regulating the WCCC environment.

  6. OBSERVATIONS OF WARM CARBON CHAIN CHEMISTRY IN NGC 3576

    SciTech Connect

    Saul, M.; Tothill, N. F. H.; Purcell, C. R. E-mail: n.tothill@uws.edu.au

    2015-01-01

    We report observations of warm carbon chain chemistry (WCCC) in NGC 3576, including high angular resolution imaging of an ionization source candidate and the first detection of C{sub 5}H in a massive star-forming region. In order to investigate the environment associated with birthline emergence, we ask how observed chemical conditions relate to Class 0/1 core differentiation: a systemic shift in peak position between species correlates with giant molecular cloud core gradients in turbulence and age. Emission in several molecular lines including HC{sub 3}N (11-10), NH{sub 3} (1, 1), and C{sub 5}H supports the G291.3-0.7 ionization front—transitional pre-main-sequence core interaction regulating the WCCC environment.

  7. On the role of sharp chains in the transport theorem

    NASA Astrophysics Data System (ADS)

    Falach, L.; Segev, R.

    2016-03-01

    A generalized transport theorem for convecting irregular domains is presented in the setting of Federer's geometric measure theory. A prototypical r-dimensional domain is viewed as a flat r-chain of finite mass in an open set of an n-dimensional Euclidean space. The evolution of such a generalized domain in time is assumed to follow a continuous succession of Lipschitz embedding so that the spatial gradient may be nonexistent in a subset of the domain with zero measure. The induced curve is shown to be continuous with respect to the flat norm and differential with respect to the sharp norm on currents in Rn. A time-dependent property is naturally assigned to the evolving region via the action of an r-cochain on the current associated with the domain. Applying a representation theorem for cochains, the properties are shown to be locally represented by an r-form. Using these notions, a generalized transport theorem is presented.

  8. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  9. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process. PMID:27021584

  10. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments.

    PubMed

    Laverman, Anniet M; Cazier, Thibaut; Yan, Chen; Roose-Amsaleg, Céline; Petit, Fabienne; Garnier, Josette; Berthe, Thierry

    2015-09-01

    Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population. PMID:25663374

  11. Size effects of potato waste on its treatment by microbial fuel cell.

    PubMed

    Du, Haixia; Li, Fusheng

    2016-01-01

    The performance of microbial fuel cell (MFC) in treating potato cubes with different sizes (the edge size of 3, 5 and 7 mm) was investigated. Current density was found lower as the size of potato cubes increased, even if the differences in their removal were less apparent. At the end of MFC operation for 81 days, both total and soluble chemical oxygen demand reached nearly identical values, irrespective of the potato sizes; and citrate and isobutyrate were two major organic acids remaining in the solutions. Bacterial community analysis using polymerase chain reaction, denaturing gradient gel electrophoresis and sequencing indicated that bacterial species on the anode and in the anodic solution were similar and did not change obviously with potato sizes, and that, in similarity with previous studies on potato-processing wastewater treatment, Proteobacteria and Firmicutes were two dominating phyla. Geobacter was found richer on the anode than in the anodic solutions. PMID:26583755

  12. Gradients of meteorological parameters in convective and nonconvective areas

    NASA Technical Reports Server (NTRS)

    Mccown, M. S.; Scoggins, J. R.

    1977-01-01

    Horizontal gradients of geopotential height, temperature, and wind speed were computed at the 850-, 700-, 500-, and 200-mb levels. Mixing ratio gradients also were computed, but only for the 850-, 700-, and 500-mb levels. Rawinsonde data was provided at 3- to 6-h intervals. Cumulative frequency distributions and statistical parameters showed that the variability and magnitude of the gradients decreased as the gradients were computed over progressively longer distances. Most frequency distributions were positively skewed, and the standard deviations of the gradient distributions were roughly half as large as the means. An examination of the differences of gradients observed in convective and nonconvective areas was made after convective areas were determined objectively using Manually Digitized Radar data. The gradients of height, wind speed, and mixing ratio at 850 mb were larger in convective than nonconvective areas. No general relationship held for the meteorological variables at other levels. Intensive examination of the gradients observed near squall lines revealed typical gradient patterns and trends in the magnitudes of the gradients associated with convective systems.

  13. Fano resonances from gradient-index metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-01

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  14. Fano resonances from gradient-index metamaterials.

    PubMed

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-01

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies. PMID:26813107

  15. Strain gradient plasticity theory applied to machining

    SciTech Connect

    Royer, Raphael; Laheurte, Raynald; Darnis, Philippe; Gerard, Alain; Cahuc, Olivier

    2011-05-04

    Machining is the most common manufacturing process. A good behaviour law is necessary in the simulation of machining processes (analytical and finite element modeling). Usually, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. Significant differences can appear between experimental and simulation results. The aim of this paper is to present the choices made regarding the behaviour law in this context. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked to metal cutting processes. The theoretical framework has the potential of expressing moments at the tool tip as they were observed in experiments. It will be shown that the theory has the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

  16. Strain gradient plasticity theory applied to machining

    NASA Astrophysics Data System (ADS)

    Royer, Raphaël; Laheurte, Raynald; Darnis, Philippe; Gérard, Alain; Cahuc, Olivier

    2011-05-01

    Machining is the most common manufacturing process. A good behaviour law is necessary in the simulation of machining processes (analytical and finite element modeling). Usually, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. Significant differences can appear between experimental and simulation results. The aim of this paper is to present the choices made regarding the behaviour law in this context. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked to metal cutting processes. The theoretical framework has the potential of expressing moments at the tool tip as they were observed in experiments. It will be shown that the theory has the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

  17. Magnon dark modes and gradient memory.

    PubMed

    Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X

    2015-01-01

    Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories. PMID:26568130

  18. A Gradient Descent Approximation for Graph Cuts

    NASA Astrophysics Data System (ADS)

    Yildiz, Alparslan; Akgul, Yusuf Sinan

    Graph cuts have become very popular in many areas of computer vision including segmentation, energy minimization, and 3D reconstruction. Their ability to find optimal results efficiently and the convenience of usage are some of the factors of this popularity. However, there are a few issues with graph cuts, such as inherent sequential nature of popular algorithms and the memory bloat in large scale problems. In this paper, we introduce a novel method for the approximation of the graph cut optimization by posing the problem as a gradient descent formulation. The advantages of our method is the ability to work efficiently on large problems and the possibility of convenient implementation on parallel architectures such as inexpensive Graphics Processing Units (GPUs). We have implemented the proposed method on the Nvidia 8800GTS GPU. The classical segmentation experiments on static images and video data showed the effectiveness of our method.

  19. 'Thermal forces': colloids in temperature gradients

    NASA Astrophysics Data System (ADS)

    Piazza, Roberto

    2004-09-01

    In the presence of a thermal gradient, macromolecular solutes or dispersed particles drift to the cold or to the hot side: this effect is known as thermophoresis, and is the counterpart of particle suspensions of the Soret effect (or thermal diffusion) in simple fluid mixtures. Here I review recent experimental results on colloid thermophoresis and present new data suggesting a universal nature for the temperature dependence of thermophoresis in aqueous systems. There are strong analogies between thermophoresis in liquids and other thermally induced flow processes like gas thermal creep and membrane thermo-osmosis; starting from these, I present some guidelines for a general model of thermophoresis in disperse systems, accounting both for single-particle and collective effects.

  20. Constant field gradient planar cavity structure

    SciTech Connect

    Kang, Yoon W.; Kustom, R.L.

    1997-12-01

    A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  1. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Yoon W.; Kustom, Robert L.

    1999-01-01

    A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  2. Dual-rail optical gradient echo memory

    NASA Astrophysics Data System (ADS)

    Higginbottom, D. B.; Geng, J.; Campbell, G. T.; Hosseini, M.; Cao, M. T.; Sparkes, B. M.; Bernu, J.; Robins, N. P.; Lam, P. K.; Buchler, B. C.

    2015-09-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  3. Observation of temperature-gradient-induced magnetization.

    PubMed

    Hou, Dazhi; Qiu, Zhiyong; Iguchi, R; Sato, K; Vehstedt, E K; Uchida, K; Bauer, G E W; Saitoh, E

    2016-01-01

    Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic resonance when in contact with a magnetic insulator by observing an anomalous Hall-like effect, which directly proves the breakdown of time-reversal symmetry. Such Hall measurements give experimental access to the spectral spin Hall conductance of the host metal, which is closely related to other spin caloritronics phenomena such as the spin Nernst effect and serves as a reference for theoretical calculation. PMID:27457185

  4. Elevational gradients as indicators of hydrologic change

    NASA Astrophysics Data System (ADS)

    Mote, P. W.; Hamlet, A. F.

    2006-12-01

    Owing to strong controls on mean temperature, elevational gradients in mountainous regions play a large role in determining many important features including quantity and duration of snow cover and dominant vegetation. Observations and hydrological modeling (using the Variable Infiltration Capacity, VIC, hydrologic model) are combined to examine past changes in snow, streamflow, flood risk, and evaporation in the Western US. Temperature plays an important role and for many of these hydrological indicators the largest relative change occurs near the altitude of the 0°C isotherm for point values, or in basins with a mean temperature near 0°C. In fact, temperature is a more useful indicator than elevation, since it provides a consistent reference surface across a wide range of latitudes. Experiments with the VIC model indicate that temperature variability alone can explain most of the hydrologic trends, whereas precipitation variability alone cannot. Implications for a warming world will be discussed.

  5. Dual-rail optical gradient echo memory.

    PubMed

    Higginbottom, D B; Geng, J; Campbell, G T; Hosseini, M; Cao, M T; Sparkes, B M; Bernu, J; Robins, N P; Lam, P K; Buchler, B C

    2015-09-21

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6° phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration. PMID:26406693

  6. Implementation of the phase gradient algorithm

    SciTech Connect

    Wahl, D.E.; Eichel, P.H.; Jakowatz, C.V. Jr.

    1990-01-01

    The recently introduced Phase Gradient Autofocus (PGA) algorithm is a non-parametric autofocus technique which has been shown to be quite effective for phase correction of Synthetic Aperture Radar (SAR) imagery. This paper will show that this powerful algorithm can be executed at near real-time speeds and also be implemented in a relatively small piece of hardware. A brief review of the PGA will be presented along with an overview of some critical implementation considerations. In addition, a demonstration of the PGA algorithm running on a 7 in. {times} 10 in. printed circuit board containing a TMS320C30 digital signal processing (DSP) chip will be given. With this system, using only the 20 range bins which contain the brightest points in the image, the algorithm can correct a badly degraded 256 {times} 256 image in as little as 3 seconds. Using all range bins, the algorithm can correct the image in 9 seconds. 4 refs., 2 figs.

  7. Observation of temperature-gradient-induced magnetization

    PubMed Central

    Hou, Dazhi; Qiu, Zhiyong; Iguchi, R.; Sato, K.; Vehstedt, E. K.; Uchida, K.; Bauer, G. E. W.; Saitoh, E.

    2016-01-01

    Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic resonance when in contact with a magnetic insulator by observing an anomalous Hall-like effect, which directly proves the breakdown of time-reversal symmetry. Such Hall measurements give experimental access to the spectral spin Hall conductance of the host metal, which is closely related to other spin caloritronics phenomena such as the spin Nernst effect and serves as a reference for theoretical calculation. PMID:27457185

  8. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  9. Fano resonances from gradient-index metamaterials

    PubMed Central

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-01

    Fano resonances – resonant scattering features with a characteristic asymmetric profile – have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies. PMID:26813107

  10. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  11. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  12. Nonlinear analysis of the gradient drift instability

    NASA Astrophysics Data System (ADS)

    González, Rafael; Vega, Matías de la

    An analytical study of the gradient drift instability in the equatorial electrojet of wavelengths in the order of one kilometer is presented. Different mechanisms, linear, non-local and turbulent, are found in the literature to explain the predominance of the 1 km wavelength in the electrojet. In the present work a simplified model is proposed in which the nonlinear evolution of three coupled modes is followed. By considering that one of the modes attains the stationary state, the evolution of the other two is obtained, and it is found that they follow equations of the Lotka-Volterra type. A stable stationary nonlinear solution for these equations is also found, and the conditions under which periodic solutions are possible are analyzed.

  13. A matrix analysis of conjugate gradient algorithms

    SciTech Connect

    Ashby, S.F.; Gutknecht, M.H.

    1993-04-01

    This paper explores the relationships between the conjugate gradient algorithms Orthodir, Orthomin, and Orthores. To facilitate this exploration, a matrix formulation for each algorithm is given. It is shown that Orthodir directly computes a Hessenberg matrix H{sub k} at step k. Orthores also computes a Hessenberg matrix, G{sub k}, which is similar to a Hessenberg matrix obtained from H{sub k} by perturbing its last column. (This perturbation vanishes at convergence.) Orthomin, on the other hand, computes a UL and LU factorization of the perturbed H{sub k} and G{sub k}, respectively. The breakdown of Orthomin and Orthores are interpreted in terms of these underlying matrix factorizations. A connection with Lanczos algorithms is also examined, as is the special case of B-normal(1) matrices (for which efficient three-term CG algorithms exist).

  14. Magnon dark modes and gradient memory

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X.

    2015-01-01

    Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories. PMID:26568130

  15. Error analysis of stochastic gradient descent ranking.

    PubMed

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error. PMID:24083315

  16. High-gradient compact linear accelerator

    SciTech Connect

    Carder, B.M.

    1995-12-31

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  17. Abundance Gradients in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Dupke, Renato De Alencar

    This dissertation presents the analysis of spatially resolved ASCA satellite X-ray spectra for four clusters of galaxies (Abell 496, Abell 2199, Abell 3571 and Abell 1060). The abundance distributions of Abell 496, Abell 2199 and Abell 3571 are shown to be centrally enhanced. The distribution of elemental abundance ratios, combined with calculations of supernovae rates, shows that the central abundance enhancement in these galaxy clusters is dominated by supernova, Type 1a iron, while the outer parts are dominated by supernovae Type II iron and the most likely mechanism proposed to produce this central iron is ram-pressure stripping, rather than accumulated stellar mass loss from the central dominant galaxy. At least 50% (by mass) of the iron in the central regions is from supernovae Type Ia, varying slightly from cluster to cluster. Although the analysis of Abell 1060 reveals no significant central abundance enhancement, supernovae Type Ia are shown to contribute significantly to the iron content of the central regions. However, accumulated stellar mass loss from the two central dominant galaxies in this cluster can account for all of the supernovae Type la iron in the central regions. The nickel to iron abundance ratio shows that delayed detonation explosion models for supernovae Type la are inconsistent with the observed abundance ratios in the inner regions of Abell 496, Abell 2199 and Abell 3571. A comparison of the distributions of iron mass and the luminosity of early type galaxies in four clusters, three of them having central abundance enhancements (Virgo, Abell 496 and Centaurus) and one having a flat abundance distribution (Coma), indicates that the iron mass traces the luminosity of early type galaxies in abundance gradient clusters better than in flat abundance clusters. This suggests that abundance gradients can be washed out by cluster mergers.

  18. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  19. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  20. Model protocells from single-chain lipids.

    PubMed

    Mansy, Sheref S

    2009-03-01

    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed. PMID:19399223

  1. Model Protocells from Single-Chain Lipids

    PubMed Central

    Mansy, Sheref S.

    2009-01-01

    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed. PMID:19399223

  2. Extending the "Knowledge Advantage": Creating Learning Chains

    ERIC Educational Resources Information Center

    Maqsood, Tayyab; Walker, Derek; Finegan, Andrew

    2007-01-01

    Purpose: The purpose of this paper is to develop a synergy between the approaches of knowledge management in a learning organisation and supply chain management so that learning chains can be created in order to unleash innovation and creativity by managing knowledge in supply chains. Design/methodology/approach: Through extensive literature…

  3. Visualisation for System Learning in Supply Chains

    ERIC Educational Resources Information Center

    Lindskog, Magnus; Abrahamsson, Mats; Aronsson, Hakan

    2007-01-01

    Contemporary supply chains are vastly complex, and decisions made by actors have system-wide consequences that these might not be able to foresee. There are gaps between "best practice"-founded theory and actual practice in supply chains. To remedy this, we argue, the supply chain actors need to enhance systems knowledge. There is a need to…

  4. Learning to Integrate: Supply Chains Reconceptualised

    ERIC Educational Resources Information Center

    Sense, Andrew J.; Clements, Michael D. J.

    2007-01-01

    This paper introduces and explains a conception of supply chains from a situated learning perspective. This non-conventional supply chain perspective invites the reader to consider supply chain scenarios as "situated learning opportunities involving multiple communities of practice" interacting and participating together. It is argued that by…

  5. 1D ferrimagnetism in homometallic chains

    NASA Astrophysics Data System (ADS)

    Coronado, E.; Gómez-García, C. J.; Borrás-Almenar, J. J.

    1990-05-01

    The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2'-bipyridine) are discussed on the basis of an Ising-chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior.

  6. On a Result for Finite Markov Chains

    ERIC Educational Resources Information Center

    Kulathinal, Sangita; Ghosh, Lagnojita

    2006-01-01

    In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…

  7. Chains versus Independents: Newspaper and Market Characteristics.

    ERIC Educational Resources Information Center

    Hale, F. Dennis

    A study examined the marketing differences between large chain newspapers and small chain and independent newspapers by analyzing differences in characteristics of the newspapers, patterns of circulation, economic and social conditions of the market, and competition from other print media. The 200 newspapers studied--113 large chain and 87 small…

  8. The Advancement Value Chain: An Exploratory Model

    ERIC Educational Resources Information Center

    Leonard, Edward F., III

    2005-01-01

    Since the introduction of the value chain concept in 1985, several varying, yet virtually similar, value chains have been developed for the business enterprise. Shifting to higher education, can a value chain be found that links together the various activities of advancement so that an institution's leaders can actually look at the philanthropic…

  9. Tunnel current across linear homocatenated germanium chains

    SciTech Connect

    Matsuura, Yukihito

    2014-01-28

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e{sup −βL}, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length.

  10. Determination of gradient elastic tensors: stress and strain dependencies of electric field gradients in cubic and hexagonal systems

    NASA Astrophysics Data System (ADS)

    Brüsewitz, C.; Vetter, U.; Hofsäss, H.

    2015-02-01

    We present ab-initio calculations of the independent components of gradient elastic tensors, so-called gradient elastic constants, which relate electric field gradient tensors to stress or strain tensors. The constants of cubic and hexagonal metals, MAX phases, and zinc oxide were determined within the framework of density functional theory by using the augmented plane waves plus local orbitals method implemented in the WIEN2k code. Comparison with experimental gradient elastic constants and electric field gradients' stress dependencies suggest an accuracy of about 30% of the calculated constants, independent of the probe that detects the field gradient being self- or foreign-atom. Changes in the electric field gradient take place by strain-induced asymmetric occupations of the p and d states in the valence region for all investigated materials. Volume and structural dependencies of the electric field gradient can directly be determined from this fundamental approach and are, for hexagonal closed packed metals, consistent with vanishing electric field gradients around ideal close packing and volume dependencies larger than one. The concept of these calculations is applicable in any hyperfine interaction method and, thus, can be used to gain information about intrinsic strains in systems where the experimental gradient elastic constants are inaccessible.

  11. MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD

    SciTech Connect

    K. HANSON

    2001-02-01

    The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.

  12. Characterization of Combinatorial Polymer Blend Composition Gradients by FTIR Microspectroscopy

    PubMed Central

    Eidelman, Naomi; Simon, Carl G.

    2004-01-01

    A new FTIR technique was developed for characterizing thin polymer films used in combinatorial materials science. Fourier transform infrared microspectroscopy mapping technique was used to determine the composition of polymer blend gradients. Composition gradients were made from poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) in the form of thin films (6 cm × 2 cm) deposited on IR reflective substrates. Three composition gradient films were prepared and characterized. The results demonstrate the reproducibility and feasibility of a new, high-throughput approach for preparing and characterizing polymer composition gradients. The combination of composition gradient film technology and automated nondestructive FTIR microspectroscopy makes it possible to rapidly and quantitatively characterize polymer composition gradients for use in combinatorial materials science. PMID:27366606

  13. Design of a High Thermal Gradient Bridgman Furnace

    NASA Technical Reports Server (NTRS)

    LeCroy, J. E.; Popok, D. P.

    1994-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.

  14. A Cellular System for Spatial Signal Decoding in Chemical Gradients.

    PubMed

    Hegemann, Björn; Unger, Michael; Lee, Sung Sik; Stoffel-Studer, Ingrid; van den Heuvel, Jasmin; Pelet, Serge; Koeppl, Heinz; Peter, Matthias

    2015-11-23

    Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients. PMID:26585298

  15. Convection driven generation of long-range material gradients

    PubMed Central

    Du, Yanan; Hancock, Matthew J.; He, Jiankang; Villa-Uribe, Jose; Wang, Ben; Cropek, Donald M.; Khademhosseini, Ali

    2009-01-01

    Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethyleneglycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interaction. PMID:20035990

  16. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  17. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii[W

    PubMed Central

    Tolleter, Dimitri; Ghysels, Bart; Alric, Jean; Petroutsos, Dimitris; Tolstygina, Irina; Krawietz, Danuta; Happe, Thomas; Auroy, Pascaline; Adriano, Jean-Marc; Beyly, Audrey; Cuiné, Stéphan; Plet, Julie; Reiter, Ilja M.; Genty, Bernard; Cournac, Laurent; Hippler, Michael; Peltier, Gilles

    2011-01-01

    Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production. PMID:21764992

  18. Gradient porous hydroxyapatite ceramics fabricated by freeze casting method

    NASA Astrophysics Data System (ADS)

    Zuo, Kai-hui; zhang, Yuan; Jiang, Dongliang; Zeng, Yu-Ping

    2011-04-01

    By controlling the cooling rates and the composition of slurries, the gradient porous hydroxyapatite ceramics are fabricated by the freeze casting method. According to the different cooling rate, the pores of HAP ceramics fabricated by gradient freeze casting are divided into three parts: one is lamellar pores, another is column pore and the last one is fine round pores. The laminated freeze casting is in favour of obtaining the gradient porous ceramics composed of different materials and the ceramics have unclear interfaces.

  19. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  20. Effects of pressure gradients on turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Poinsot, T.

    1995-01-01

    The influence of a constant acceleration on a turbulent premixed flame is studied by direct numerical simulation. This acceleration induces a mean pressure gradient across the flame brush, leading to a modification of the turbulent flame structure due to differential buoyancy mechanisms between heavy cold fresh and light hot burnt gases. Such a pressure gradient may be encountered in practical applications in ducted flames. A favorable pressure gradient, i.e. the pressure decreases from unburnt to burnt gases, is found to decrease the flame wrinkling, the flame brush thickness, and the turbulent flame speed. A favorable pressure gradient also promotes counter-gradient turbulent transport. On the other hand, adverse pressure gradients tend to increase the flame brush thickness and turbulent flame speed, and promote classical gradient turbulent transport. The balance equation for the turbulent flux of the Favre averaged progress variable is also analyzed. The first results show that the fluctuating pressure term, cannot be neglected as generally assumed in models. Simple models assuming that a high mean pressure gradient may only be balanced by the cross-dissipation term seem too approximate. This analysis has to be continued to compare simulation data and closure schemes proposed for the transport equation. The analysis developed by Veynante et al.(1995) has been extended to imposed acceleration and mean pressure gradients. A simple model for the turbulent flux is proposed and validated from simulation data. Then, a modified criterion is derived to delineate between counter-gradient and gradient turbulent diffusion. In fact, counter-gradient diffusion may occur in most practical applications, especially for ducted flames.

  1. Directional solidification at ultra-high thermal gradient

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Lee, D. S.; Neff, M. A.

    1980-01-01

    A high gradient controlled solidification (HGC) furnace was designed and operated at gradients up to 1800 C/cm to continuously produce aluminum alloys. Rubber '0' rings for the water cooling chamber were eliminated, while still maintaining water cooling directly onto the solidified metal. An HGC unit for high temperature ferrous alloys was also designed. Successful runs were made with cast iron, at thermal gradients up to 500 C/cm.

  2. Using the gradient histogram to analyze the continuous phase plate

    NASA Astrophysics Data System (ADS)

    Yang, Chunlin

    2015-01-01

    The geometrical optical method has been used to discuss the far-field distribution characteristics of a continuous phase plate. The gradient histogram of the plate’s surface has been calculated. It has been proved that the gradient histogram can be used to show the angular spectrum of a phase plate. The gradient histogram can simplify the analysis process of the angular spectrum and describe the focal spot morphology more intuitively.

  3. Effective anisotropy gradient in pressure graded [Co/Pd] multilayers

    SciTech Connect

    Kirby, B. J. Maranville, B. B.; Greene, P. K.; Liu, Kai; Davies, J. E.

    2015-02-14

    We have used polarized neutron reflectometry to show that controlled variation of growth pressure during deposition of Co/Pd multilayers can be used to achieve a significant vertical gradient in the effective anisotropy. This gradient is strongly dependent on deposition order (low to high pressure or vice versa), and is accompanied by a corresponding gradient in saturation magnetization. These results demonstrate pressure-grading as an attractively simple technique for tailoring the anisotropy profile of magnetic media.

  4. Minimizing inner product data dependencies in conjugate gradient iteration

    NASA Technical Reports Server (NTRS)

    Vanrosendale, J.

    1983-01-01

    The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).

  5. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  6. Chemical Synthesis of Ubiquitin Chains.

    PubMed

    Hemantha, Hosahalli P; Bondalapati, Somasekhar; Singh, Sumeet K; Brik, Ashraf

    2015-01-01

    Chemical synthesis of complex biomolecules such as proteins is a challenging adventure, yet rewarding in driving various biochemical and biophysical research activities. Over the years, the refinement of peptide synthesis and invention of ligation methodologies have led to the successful synthesis of several complex protein targets. Ubiquitin bioconjugates, which are being studied intensively by many groups due to their involvement in numerous biological processes, represent a fine example where chemistry is greatly aiding these studies. In this article, we describe the synthetic routes and strategies to prepare different ubiquitin analogs with desired modifications, as well as di-ubiquitin chains. PMID:26629614

  7. Scaling of the spanning threshold in gradient percolation

    NASA Astrophysics Data System (ADS)

    Paterson, Lincoln

    2015-02-01

    A simple and fast way to apply correlations in percolation simulations is to apply a uniform gradient to the occupancy probabilities. For small networks, exact results are presented here for the spanning thresholds in site percolation with a gradient for networks up to 4 ×4 in two dimensions and 2 ×2 ×2 in three dimensions. Numerical results are provided for larger networks that extrapolate to a linear modification of the threshold proportional to the gradient for moderate values of the gradient.

  8. Role of spatial averaging in multicellular gradient sensing

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    2016-06-01

    Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation–global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation–global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.

  9. Role of spatial averaging in multicellular gradient sensing.

    PubMed

    Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    2016-01-01

    Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations. PMID:27203129

  10. A multiscale gradient-dependent plasticity model for size effects

    NASA Astrophysics Data System (ADS)

    Lyu, Hao; Taheri-Nassaj, Nasrin; Zbib, Hussein M.

    2016-06-01

    The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall-Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed.

  11. Aggregation-fragmentation model of robust concentration gradient formation

    NASA Astrophysics Data System (ADS)

    Saunders, Timothy E.

    2015-02-01

    Concentration gradients of signaling molecules are essential for patterning during development and they have been observed in both unicellular and multicellular systems. In subcellular systems, clustering of the signaling molecule has been observed. We develop a theoretical model of cluster-mediated concentration gradient formation based on the Becker-Döring equations of aggregation-fragmentation processes. We show that such a mechanism produces robust concentration gradients on realistic time and spatial scales so long as the process of clustering does not significantly stabilize the signaling molecule. Finally, we demonstrate that such a model is applicable to the pom1p subcellular gradient in fission yeast.

  12. Origin of stress gradients induced in capped, copper metallization

    SciTech Connect

    Murray, Conal E.

    2014-02-24

    Stress gradients generated near the top surface of Cu thin films by capping layers, as measured using a combination of conventional and glancing incidence x-ray diffraction, exhibit heterogeneous behavior that is directly related to plastic anisotropy within the Cu grains. A comparison of stress gradients measured from several x-ray reflections to their corresponding Schmid factors yields a consistent, critical resolved shear stress. The results experimentally verify that dislocation-mediated plasticity is responsible for the creation of stress gradients at the Cu film/cap interface. Depth-dependent measurements reveal that the observed gradients are localized to within 200 nm of this interface.

  13. Bias in the Gradient Sensing Response of Chemotactic Cells

    PubMed Central

    Skupsky, Ron; McCann, Colin; Nossal, Ralph; Losert, Wolfgang

    2009-01-01

    We apply linear-stability theory and perform perturbation studies to better characterize, and to generate new experimental predictions from, a model of chemotactic gradient sensing in eukaryotic cells. The model uses reaction-diffusion equations to describe 3′ phosphoinositide signaling and its regulation at the plasma membrane. It demonstrates a range of possible gradient-sensing mechanisms and captures such characteristic behaviors as strong polarization in response to static gradients, adaptation to differing mean levels of stimulus, and plasticity in response to changing gradients. An analysis of the stability of polarized steady-state solutions indicates that the model is most sensitive to off-axis perturbations. This biased sensitivity is reflected in responses to localized external stimuli as well, and leads to a clear experimental prediction, namely, that a cell which is polarized in a background gradient will be most sensitive to transient point-source stimuli lying within a range of angles that are oblique with respect to the polarization axis. Stimuli at angles below this range will elicit responses whose directions overshoot the stimulus angle, while responses to stimuli applied at larger angles will undershoot the stimulus angle. We argue that such a bias is likely to be a general feature of gradient sensing in highly motile cells, particularly if they are optimized to respond to small gradients. Finally, an angular bias in gradient sensing might lead to preferred turn angles and zigzag movements of cells moving up chemotactic gradients, as has been noted under certain experimental conditions. PMID:17462672

  14. Isolation of Early and Late Endosomes by Density Gradient Centrifugation.

    PubMed

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-01

    Density gradient centrifugation is a common method for separating intracellular organelles. During centrifugation, organelles float or sediment until they reach their isopycnic position within the gradient. The density of an organelle depends on its content, size, shape, and the lipid:protein ratio. The degree of separation between different organelles will therefore be highly dependent on how different their isopycnic points are in a given buffer. Separation will also depend on the medium used to prepare the gradient, whether it is sucrose (the most common) or an alternative. Here we describe the use of both continuous and discontinuous (step) gradients to isolate endocytic organelles. PMID:26527762

  15. Gradient index plasmonic ring resonator with high extinction ratio

    NASA Astrophysics Data System (ADS)

    Zhou, Zidong; He, Pengbin; Xu, Jinyou; Zhuang, Xiujuan; Li, Yunyun; Pan, Anlian

    2014-02-01

    We propose and investigate a compact gradient index plasmonic ring resonator (Grin PRR) with strong light confinement and extinction ratio based on finite element method (FEM). Theoretical simulation reveals that the change of index gradient influences the resonant frequency, Q factor and the mode volume. Significantly, it is demonstrated that the extinction ratio of Grin PRR can be optimized by varying the index gradient for any radius. Index gradient can enhance extinction ratio at settled size, so this structure has both high extinction ratio and smaller size footprint. It could be very promising for the high-density optical integration.

  16. Two Cases of Heavy Chain MGUS.

    PubMed

    Van Keer, Jan; Meijers, Björn; Delforge, Michel; Verhoef, Gregor; Poesen, Koen

    2016-01-01

    Heavy chain diseases are rare variants of B-cell lymphomas that produce one of three classes of immunoglobulin heavy chains, without corresponding light chains. We describe two patients with asymptomatic heavy chain monoclonal gammopathy. The first patient is a 51-year-old woman with alpha paraprotein on serum immunofixation. The second case is a 46-year-old woman with gamma paraprotein on urine immunofixation. Neither patient had corresponding monoclonal light chains. Workup for multiple myeloma and lymphoma was negative in both patients. These two cases illustrate that heavy chain monoclonal gammopathy can exist in the absence of clinically apparent malignancy. Only a few reports of "heavy chain MGUS" have been described before. In the absence of specialized guidelines, we suggest a similar follow-up as for MGUS, while taking into account the higher probability of progression to lymphoma than to myeloma. PMID:27213064

  17. Two Cases of Heavy Chain MGUS

    PubMed Central

    Meijers, Björn; Delforge, Michel; Verhoef, Gregor; Poesen, Koen

    2016-01-01

    Heavy chain diseases are rare variants of B-cell lymphomas that produce one of three classes of immunoglobulin heavy chains, without corresponding light chains. We describe two patients with asymptomatic heavy chain monoclonal gammopathy. The first patient is a 51-year-old woman with alpha paraprotein on serum immunofixation. The second case is a 46-year-old woman with gamma paraprotein on urine immunofixation. Neither patient had corresponding monoclonal light chains. Workup for multiple myeloma and lymphoma was negative in both patients. These two cases illustrate that heavy chain monoclonal gammopathy can exist in the absence of clinically apparent malignancy. Only a few reports of “heavy chain MGUS” have been described before. In the absence of specialized guidelines, we suggest a similar follow-up as for MGUS, while taking into account the higher probability of progression to lymphoma than to myeloma. PMID:27213064

  18. Soil Fertility Gradient in the Restinga Ecosystem

    NASA Astrophysics Data System (ADS)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  19. Nova chain design and performance

    SciTech Connect

    Simmons, W.W.; Glaze, J.A.; Trenholme, J.B.; Hagen, W.F.

    1980-09-04

    During the past year design of the Nova laser has undergone significant change as a result of developments in our laser glass and optical coating evaluation programs. Two notable aspects of the glass development program deserve emphasis. First, vendor qualification for production of fluorophosphate laser glass is progressing satisfactorily. There is a reasonable expectation that vendors can meet fluorophosphate glass specifications within Nova schedule constraints. Secondly, recent gain saturation measurements have shown that the saturation fluence of the fluorophosphate glass is larger than previously supposed (approx. 5.5 J/cm/sup 2/) and in fact is somewhat larger than Shiva silicate glasses. Hence, performance of Nova for pulses in the 3 ns and longer range should be satisfactory. For pulses in the 1 ns regime, of course, the fluorophosphate chain will have superior performance to that of silicate because of its low nonlinear index of refraction (approx. 30% that of silicate). These and other considerations have led us to choose a chain design based upon the use of fluorophosphate glass in our amplifiers.

  20. The effect of wall depletion and hydrodynamic interactions on stress-gradient-induced polymer migration.

    PubMed

    Rezvantalab, Hossein; Zhu, Guorui; Larson, Ronald G

    2016-07-21

    We generalize our recent continuum theory for the stress-gradient-induced migration of polymers [Zhu et al., J. Rheol., 2016, 60, 327-343] by incorporating the effect of solid boundaries on concentration variations. For a model flow in a channel with periodic slip wall velocity, which can in principle be produced by an electric field in the presence of a sinusoidal wall charge, we obtain theoretical results for the steady-state distribution of dilute solutions of polymer dumbbells using a systematic perturbation analysis in Weissenberg number Wi. We find that the presence of a thin wall depletion zone changes the lowest order solution from second to first in Wi and drastically affects the concentration field far from the depletion layer, due both to a coupling of the second derivative of the velocity field to the concentration gradient, and to convection of the polymer-depleted fluid in this layer into the bulk of the fluid. Additional effects induced by wall hydrodynamic interaction (HI) are assessed by incorporating polymer flux from the wall-HI migration theory of Ma and Graham into our continuum theory. We establish the range of validity of our theory by comparing the theoretical results with Brownian dynamics (BD) simulations: excellent agreement is achieved for relatively small molecules, while the theory breaks down when the Gradient number Gd is greater than 0.5, where Gd is the ratio of polymer coil size to the length scale over which the velocity gradient changes. The BD simulations are also extended to the case of long Hookean chains with numbers of springs per chain ranging from 1 to 32, where it is found that for fixed Gd and Wi, the results are nearly identical, showing that all important phenomena are captured by a simple dumbbell model, thus supporting the continuum theory which was derived for the case of dumbbells. In addition, the Stochastic Rotation Dynamics (SRD) method is employed to evaluate the role of HI on the migration pattern, producing

  1. Gradient representations and affine structures in AEn

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel; Nicolai, Hermann

    2005-11-01

    We study the indefinite Kac Moody algebras AEn, arising in the reduction of Einstein's theory from (n + 1) spacetime dimensions to one (time) dimension, and their distinguished maximal regular subalgebras A_{n-1}\\equiv\\mathfrak{sl}_n and A(1)n-2. The interplay between these two subalgebras is used, for n = 3, to determine the commutation relations of the 'gradient generators' within AE3. The low-level truncation of the geodesic σ-model over the coset space AEn/K(AEn) is shown to map to a suitably truncated version of the SL(n)/SO(n) nonlinear σ-model resulting from the reduction Einstein's equations in (n + 1) dimensions to (1 + 1) dimensions. A further truncation to diagonal solutions can be exploited to define a one-to-one correspondence between such solutions, and null geodesic trajectories on the infinite-dimensional coset space {\\mathfrak{H}}/K({\\mathfrak{H}}) , where {\\mathfrak{H}} is the (extended) Heisenberg group, and K({\\mathfrak{H}}) its maximal compact subgroup. We clarify the relation between {\\mathfrak{H}} and the corresponding subgroup of the Geroch group.

  2. Longitudinal photosynthetic gradient in crust lichens' thalli.

    PubMed

    Wu, Li; Zhang, Gaoke; Lan, Shubin; Zhang, Delu; Hu, Chunxiang

    2014-05-01

    In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens. PMID:24477924

  3. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. PMID:25476685

  4. Two-dimensional phase gradient autofocus

    NASA Astrophysics Data System (ADS)

    Warner, Douglas W.; Ghiglia, Dennis C.; Fitzgerrell, Alan; Beaver, John

    2000-11-01

    High-resolution synthetic aperture radar (SAR) images can be blurred by phase perturbations induced by uncompensated sensor motion and/or unknown propagation effects caused by inhomogeneities in the atmosphere, troposphere, or ionosphere. The inability of the sensor platform to compensate for these effects has driven the development of SAR autofocus algorithms, which are a particular class of blind restoration algorithms. Phase Gradient Autofocus (PGA) was the first robust non- parametric phase estimation and correction algorithm. It has been an enabling technology for high-resolution SARs and is currently being used in a number of operational SAR systems. Most phase errors experienced by SARs defocus the image in one dimension. However, some proposed systems, such as satellite-based UWB foliage penetration (FOPEN) systems will suffer from potentially severe propagation effects through the ionosphere, including Faraday rotation, dispersion, and scintillation. These effects would cause defocus coupled in range and cross-range, degrading the SAR image by a non-separable 2D phase error. In this work, we present the 2D formulation of PGA and some preliminary results. We also describe some of the additional difficulties that may appear in 2D autofocus: phase residues or branch points and a lack of available redundancy.

  5. Microsensors and microscale gradients in biofilms.

    PubMed

    Beyenal, Haluk; Babauta, Jerome

    2014-01-01

    Understanding the limiting factors and mechanisms of biofilm processes requires the direct measurement of microscale gradients using the appropriate tools. Microscale measurements can provide mechanistic information that cannot be obtained from bulk-scale measurements. Among the most used and trusted tools in microscale biofilm research are microsensors. The goal of this chapter is to introduce microsensor technology along with several examples to illustrate microscale processes in biofilms that are usually absent in bulk. We define a microsensor for biofilm research as a needle-type sensor with tip diameter of a few microns and a length up to several hundred microns. Microsensors can be used noninvasively to monitor in situ biofilm processes. Both optical and electrochemical microsensors can be used for biofilm applications. Because of newly discovered biofilm processes, the design and use of microsensors require customization and carefully designed experiments. In this chapter we present several examples describing the use of microsensors (1) in environmental biofilms, (2) in medical biofilms, and (3) in biofilms for energy and bioproducts. Microsensors can be the most useful if the measured profiles are integrated into the study of overall biofilm processes. PMID:24008918

  6. A laboratory superconducting high gradient magnetic separator

    SciTech Connect

    Yan, L.G.; Yu, Y.J.; Wang, Z.K.; Kao, Z.Y.; Ye, Z.X.; Xue, C.L.; Ye, P.; Cheng, Y.L.; Li, X.M.; Kong, Q.M.

    1989-03-01

    In order to know the effectiveness of high gradient magnetic separation for Kaolin clay purification and coal desulfurization in China and to develop suitable technology, a superconducting HGMS facility has been constructed and put into operation at the Institute of Electrical Engineering of Chinese Academy of Sciences. The working separation chamber is 80mm in diameter and 400mm in length. the magnet is wound with 0.75 and 0.5 mm in diameter NbTi superconducting composite. The winding is compact and wax-filled. The test proves that the magnet can operate at 5T. Special attention has been paid in the design and construction of the magnet cryostat in order for it to work as long as possible. In the wet beneficiation mode, there are two separation systems available, one is the upward pumping feeding system and another is with the downward gravity feeding. The rate of flow and the linear velocity are 0-0.5L/s and 0-100 cm/s respectively. The preliminary sample test results for Kaolin clay purification and coal desulfurization show the good feasibility of magnetic separation.

  7. Electron transfer across a thermal gradient.

    PubMed

    Craven, Galen T; Nitzan, Abraham

    2016-08-23

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  8. Limits to adaptation along environmental gradients.

    PubMed

    Polechová, Jitka; Barton, Nicholas H

    2015-05-19

    Why do species not adapt to ever-wider ranges of conditions, gradually expanding their ecological niche and geographic range? Gene flow across environments has two conflicting effects: although it increases genetic variation, which is a prerequisite for adaptation, gene flow may swamp adaptation to local conditions. In 1956, Haldane proposed that, when the environment varies across space, "swamping" by gene flow creates a positive feedback between low population size and maladaptation, leading to a sharp range margin. However, current deterministic theory shows that, when variance can evolve, there is no such limit. Using simple analytical tools and simulations, we show that genetic drift can generate a sharp margin to a species' range, by reducing genetic variance below the level needed for adaptation to spatially variable conditions. Aided by separation of ecological and evolutionary timescales, the identified effective dimensionless parameters reveal a simple threshold that predicts when adaptation at the range margin fails. Two observable parameters determine the threshold: (i) the effective environmental gradient, which can be measured by the loss of fitness due to dispersal to a different environment; and (ii) the efficacy of selection relative to genetic drift. The theory predicts sharp range margins even in the absence of abrupt changes in the environment. Furthermore, it implies that gradual worsening of conditions across a species' habitat may lead to a sudden range fragmentation, when adaptation to a wide span of conditions within a single species becomes impossible. PMID:25941385

  9. Polynomial preconditioning for conjugate gradient methods

    SciTech Connect

    Ashby, S.F.

    1987-12-01

    The solution of a linear system of equations, Ax = b, arises in many scientific applications. If A is large and sparse, an iterative method is required. When A is hermitian positive definite (hpd), the conjugate gradient method of Hestenes and Stiefel is popular. When A is hermitian indefinite (hid), the conjugate residual method may be used. If A is ill-conditioned, these methods may converge slowly, in which case a preconditioner is needed. In this thesis we examine the use of polynomial preconditioning in CG methods for both hermitian positive definite and indefinite matrices. Such preconditioners are easy to employ and well-suited to vector and/or parallel architectures. We first show that any CG method is characterized by three matrices: an hpd inner product matrix B, a preconditioning matrix C, and the hermitian matrix A. The resulting method, CG(B,C,A), minimizes the B-norm of the error over a Krylov subspace. We next exploit the versatility of polynomial preconditioners to design several new CG methods. To obtain an optimum preconditioner, we solve a constrained minimax approximation problem. The preconditioning polynomial, C(lambda), is optimum in that it minimizes a bound on the condition number of the preconditioned matrix, p/sub m/(A). An adaptive procedure for dynamically determining the optimum preconditioner is also discussed. Finally, in a variety of numerical experiments, conducted on a Cray X-MP/48, we demonstrate the effectiveness of polynomial preconditioning. 66 ref., 19 figs., 39 tabs.

  10. Environmental causes for plant biodiversity gradients.

    PubMed Central

    Davies, T Jonathan; Barraclough, Timothy G; Savolainen, Vincent; Chase, Mark W

    2004-01-01

    One of the most pervasive patterns observed in biodiversity studies is the tendency for species richness to decline towards the poles. One possible explanation is that high levels of environmental energy promote higher species richness nearer the equator. Energy input may set a limit to the number of species that can coexist in an area or alternatively may influence evolutionary rates. Within flowering plants (angiosperms), families exposed to a high energy load tend to be both more species rich and possess faster evolutionary rates, although there is no evidence that one drives the other. Specific environmental effects are likely to vary among lineages, reflecting the interaction between biological traits and environmental conditions in which they are found. One example of this is demonstrated by the high species richness of the iris family (Iridaceae) in the Cape of South Africa, a likely product of biological traits associated with reproductive isolation and the steep ecological and climatic gradients of the region. Within any set of conditions some lineages will tend to be favoured over others; however, the identity of these lineages will fluctuate with a changing environment, explaining the highly labile nature of diversification rates observed among major lineages of flowering plants. PMID:15519979

  11. Bayesian seismic tomography by parallel interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas

    2014-05-01

    The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the

  12. Swelling of chemical and physical planar brushes of gradient copolymers in a selective solvent.

    PubMed

    Venev, Sergey V; Potemkin, Igor I

    2014-09-14

    We propose a mean-field theory of chemical and physical planar brushes of linear gradient copolymers swollen in a selective solvent. The polymer chains are grafted to the substrate by the ends with the excess of insoluble monomer units, and the majority of the soluble units are located near the free ends of the chains. The grafting points are considered to be immobile (chemical brush) and mobile in-plane (physical brush). In the latter case the grafting density is determined from the equilibrium conditions (minimum of the free energy). A common peculiarity of the brushes of both types is that the polymer concentration gradually changes from a relatively high value near the substrate (collapsed region of the brush) to a small value near the free surface (swollen region of the brush). In the case of the chemical brush, a polymer depletion zone can appear in the middle of the brush if incompatibility between insoluble and soluble (A and B) units is high enough. Here the polymer density is even lower than near the free surface of the brush. The grafting density of the physical brush is inversely proportional to the chain length and increases with the decrease of the solvent quality for the insoluble (A) units. The latter can be accompanied by shrinkage of the brush thickness due to broad distribution of the insoluble units through the chain: a minor fraction of insoluble units near the free ends can aggregate with a major fraction of them near the substrate. As a result, the concentration of the soluble (B) units can have a maximum in the middle of the brush rather than near the free surface. PMID:25058377

  13. Dangling chain elastomers as repeatable fibrillar adhesives.

    PubMed

    Sitti, Metin; Cusick, Brian; Aksak, Burak; Nese, Alper; Lee, Hyung-il; Dong, Hongchen; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2009-10-01

    This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs. PMID:20355863

  14. Continuous chain bit with downhole cycling capability

    DOEpatents

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  15. Magnetostrictive gradient in Tb0.27Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification

    NASA Astrophysics Data System (ADS)

    Gao, Pengfei; Liu, Tie; Dong, Meng; Yuan, Yi; Wang, Kai; Wang, Qiang

    2016-09-01

    We investigated how high magnetic field gradients affected the magnetostrictive performance of Tb0.27Dy0.73Fe1.95 during solidification. At high applied magnetic field gradients, the magnetostriction exhibited a gradient distribution throughout the alloy. Increasing the magnetic field gradient also increased the magnetostriction gradient. We attributed the graded magnetostrictive performance to the gradient distribution of (Tb, Dy)Fe2 phase in the alloy and its orientation.

  16. Substrate-Bound Protein Gradients to Study Haptotaxis

    PubMed Central

    Ricoult, Sébastien G.; Kennedy, Timothy E.; Juncker, David

    2015-01-01

    Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function. PMID:25870855

  17. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  18. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  19. SWAT application in low-gradient Coastal Plain landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-gradient coastal plain watersheds present unique challenges for watershed modeling. Broad low-gradient floodplains with considerable in-stream vegetation contribute to low-velocity streamflow. In addition, direct interaction between streamflow and surficial aquifers must also be considered. H...

  20. Gradient Well-Formedness across the Morpheme Boundary

    ERIC Educational Resources Information Center

    Goldberg, Ariel M.

    2010-01-01

    Recent theories of phonology hold that phonotactic well-formedness may be gradient, with some legal structures being more well-formed than others. Linguistic and psycholinguistic research has demonstrated that "within" morphemes, speakers encode both categorical (*n/Onset) and gradient (st/Onset greater than sin/Onset) phonotactic restrictions.…

  1. Non-singular dislocation loops in gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2012-04-01

    Using gradient elasticity, we give in this Letter the non-singular fields produced by arbitrary dislocation loops in isotropic media. We present the ‘modified’ Mura, Peach-Koehler and Burgers formulae in the framework of gradient elasticity theory.

  2. The use of functionally gradient materials in medicine

    NASA Astrophysics Data System (ADS)

    Narayan, Roger J.; Hobbs, Linn W.; Jin, Chunming; Rabiei, Afsaneh

    2006-07-01

    Functionally gradient materials are characterized by uniform changes in composition, crystallinity, and/or grain structure, which may provide unique biological, chemical, or mechanical functionalities in next-generation medical devices. In this article, the development of functionally gradient Zr-Nb alloys, hydroxyapatite coatings, and diamondlike carbon-metal coatings for medical applications is reviewed.

  3. Evolution of base-substitution gradients in primate mitochondrial genomes

    PubMed Central

    Raina, Sameer Z.; Faith, Jeremiah J.; Disotell, Todd R.; Seligmann, Hervé; Stewart, Caro-Beth; Pollock, David D.

    2005-01-01

    Inferences of phylogenies and dates of divergence rely on accurate modeling of evolutionary processes; they may be confounded by variation in substitution rates among sites and changes in evolutionary processes over time. In vertebrate mitochondrial genomes, substitution rates are affected by a gradient along the genome of the time spent being single-stranded during replication, and different types of substitutions respond differently to this gradient. The gradient is controlled by biological factors including the rate of replication and functionality of repair mechanisms; little is known, however, about the consistency of the gradient over evolutionary time, or about how evolution of this gradient might affect phylogenetic analysis. Here, we evaluate the evolution of response to this gradient in complete primate mitochondrial genomes, focusing particularly on A⇒G substitutions, which increase linearly with the gradient. We developed a methodology to evaluate the posterior probability densities of the response parameter space, and used likelihood ratio tests and mixture models with different numbers of classes to determine whether groups of genomes have evolved in a similar fashion. Substitution gradients usually evolve slowly in primates, but there have been at least two large evolutionary jumps: on the lineage leading to the great apes, and a convergent change on the lineage leading to baboons (Papio). There have also been possible convergences at deeper taxonomic levels, and different types of substitutions appear to evolve independently. The placements of the tarsier and the tree shrew within and in relation to primates may be incorrect because of convergence in these factors. PMID:15867428

  4. Pentagon chain in external fields

    NASA Astrophysics Data System (ADS)

    Kovács, György; Gulácsi, Zsolt

    2015-11-01

    We consider a pentagon chain described by a Hubbard type of model considered under periodic boundary conditions. The system (i) is placed in an external magnetic field perpendicular to the plane of the cells, and (ii) is in a site-selective manner under the action of an external electric potential. In these conditions, we show in an exact manner that the physical properties of the system can be qualitatively changed. The changes cause first strong modifications of the band structure of the system created by the one-particle part of the Hamiltonian, and second, produce marked changes of the phase diagram. We exemplify this by deducing ferromagnetic ground states in the presence of external fields in two different domains of the parameter space.

  5. Effect of temperature gradient of EBI of image intensifier

    SciTech Connect

    Chen, Q.

    1994-12-31

    In this paper the authors give the experiments for the measurement of EBI of an image intensifier with the change of temperature gradient of it. At the same time, the authors give the curves of EBI versus the different temperature gradients. The paper shows the causes for EBI of an image intensifier with the change of temperature gradient. The paper concluded, from the calculations and experiments, that there is need for the waiting measurement time for us to minimize the measuremental difference of EBI caused by temperature gradient. It is also indicated that the paper provides some scientific basis for improving possibly detecting objective performance of low light level night vision system in field if they adopt the scheme for the effect of temperature gradient on EBI of an image intensifier.

  6. Modeling turbulent boundary layers in adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Belcher, Stephen E.

    1991-01-01

    Many of the turbulent layers encountered in practical flows develop in adverse pressure gradients; hence, the dynamics of the thickening and possible separation of the boundary layer has important implications for design practices. What are the key physical processes that govern how a turbulent boundary layer responds to an adverse pressure gradient, and how should these processes be modeled? Despite the ubiquity of such flows in engineering and nature, these equations remain largely unanswered. The turbulence closure models presently used to describe these flows commonly use 'wall functions' that have ad hoc corrections for the effects of pressure gradients. There is, therefore, a practical and theoretical need to examine the effects of adverse pressure gradients on wall bounded turbulent flows in order to develop models based on sound physical principle. The evolution of a turbulent boundary layer on a flat wall with an externally imposed pressure gradient is studied.

  7. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  8. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  9. Cardiovascular Responses of Snakes to Gravitational Gradients

    NASA Technical Reports Server (NTRS)

    Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.

  10. Hydraulic gradient control for groundwater contaminant removal

    USGS Publications Warehouse

    Fisher, Atwood D.; Gorelick, S.M.

    1985-01-01

    The Rocky Mountain Arsenal near Denver, Colarado, U.S.A., is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. The simulation-management model eliminates wells far from the plume perimeter and activates wells near the perimeter as the plume decreases in size. This successfully stablizes the hydraulic gradient during aquifer cleanup.The Rocky Mountain Arsenal near Denver, Colorado, USA, is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. Refs.

  11. Molecular mechanisms for generating transmembrane proton gradients

    PubMed Central

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  12. Efficient and robust gradient enhanced Kriging emulators.

    SciTech Connect

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  13. Temperature profiles in high gradient furnaces

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Debnam, W. J.; Woodell, G. A.; Berry, R.; Crouch, R. K.; Sorokach, S. K.

    1989-01-01

    Accurate temperature measurement of the furnace environment is very important in both the science and technology of crystal growth as well as many other materials processing operations. A high degree of both accuracy and precision is acutely needed in the directional solidification of compound semiconductors in which the temperature profiles control the freezing isotherm which, in turn, affects the composition of the growth with a concomitant feedback perturbation on the temperature profile. Directional solidification requires a furnace configuration that will transport heat through the sample being grown. A common growth procedure is the Bridgman Stockbarger technique which basically consists of a hot zone and a cold zone separated by an insulator. In a normal growth procedure the material, contained in an ampoule, is melted in the hot zone and is then moved relative to the furnace toward the cold zone and solidification occurs in the insulated region. Since the primary path of heat between the hot and cold zones is through the sample, both axial and radial temperature gradients exist in the region of the growth interface. There is a need to know the temperature profile of the growth furnace with the crystal that is to be grown as the thermal load. However it is usually not feasible to insert thermocouples inside an ampoule and thermocouples attached to the outside wall of the ampoule have both a thermal and a mechanical contact problem as well as a view angle problem. The objective is to present a technique of calibrating a furnace with a thermal load that closely matches the sample to be grown and to describe procedures that circumvent both the thermal and mechanical contact problems.

  14. Biogeochemical gradients above a coal tar DNAPL.

    PubMed

    Scherr, Kerstin E; Backes, Diana; Scarlett, Alan G; Lantschbauer, Wolfgang; Nahold, Manfred

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares - Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H' and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are absent or

  15. Molecular mechanisms for generating transmembrane proton gradients.

    PubMed

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  16. Cetacean records along a coastal-offshore gradient in the Vitória-Trindade Chain, western South Atlantic Ocean.

    PubMed

    Wedekin, L L; Rossi-Santos, M R; Baracho, C; Cypriano-Souza, A L; Simões-Lopes, P C

    2014-02-01

    Oceanic waters are difficult to assess, and there are many gaps in knowledge regarding cetacean occurrence. To fill some of these gaps, this article provides important cetacean records obtained in the winter of 2010 during a dedicated expedition to collect visual and acoustic information in the Vitória-Trindade seamounts. We observed 19 groups of cetaceans along a 1300-km search trajectory, with six species being identified: the humpback whale (Megaptera novaeangliae, N = 9 groups), the fin whale (Balaenoptera physalus, N = 1), the Antarctic minke whale (Balaenoptera bonaerensis, N = 1), the rough-toothed dolphin (Steno bredanensis, N = 1), the bottlenose dolphin (Tursiops truncatus, N = 2), and the killer whale (Orcinus orca, N = 1). Most humpback whale groups (N = 7; 78%) were observed in the Vitória-Trindade seamounts, especially the mounts close to the Abrolhos Bank. Only one lone humpback whale was observed near Trindade Island after a search effort encompassing more than 520 km. From a total of 28 acoustic stations, humpback whale songs were only detected near the seamounts close to the Abrolhos Bank, where most groups of this species were visually detected (including a competitive group and groups with calves). The presence of humpback whales at the Trindade Island and surroundings is most likely occasional, with few sightings and low density. Finally, we observed a significant number of humpback whales along the seamounts close to the Abrolhos Bank, which may function as a breeding habitat for this species. We also added important records regarding the occurrence of cetaceans in these mounts and in the Western South Atlantic, including the endangered fin whale. PMID:25055095

  17. Kinetic Chain Rehabilitation: A Theoretical Framework

    PubMed Central

    Sciascia, Aaron; Cromwell, Robin

    2012-01-01

    Sequenced physiologic muscle activations in the upper and lower extremity result in an integrated biomechanical task. This sequencing is known as the kinetic chain, and, in upper extremity dominant tasks, the energy development and output follows a proximal to distal sequencing. Impairment of one or more kinetic chain links can create dysfunctional biomechanical output leading to pain and/or injury. When deficits exist in the preceding links, they can negatively affect the shoulder. Rehabilitation of shoulder injuries should involve evaluation for and restoration of all kinetic chain deficits that may hinder kinetic chain function. Rehabilitation programs focused on eliminating kinetic chain deficits, and soreness should follow a proximal to distal rationale where lower extremity impairments are addressed in addition to the upper extremity impairments. A logical progression focusing on flexibility, strength, proprioception, and endurance with kinetic chain influence is recommended. PMID:22666599

  18. Implementing a real-time chain of segmentation of images on a multi-FPGA architecture

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed; Zahirazami, Shahram

    1998-03-01

    In this paper we present the study and the implementation of an optimized chain of segmentation operators. We implemented this chain in real time, consisting of a Deriche contour detection, double threshold, closing of contours and finally region labeling, on a multi-FPGA architecture. This architecture has four processing FPGAs and four memory modules. Deriche operator, closing of contours and labeling occupy each one an FPGA. Double threshold and detection of the extremities filled partially the forth FPGA. The slowest component of the chain is Deriche operator which can go up to 11.4 Mhz, assuring the process of an image every 40 ms. Deriche operator tries to extract the contours by assuming that a contour is a step super positioned by a white gaussian noise. Our implementation consists of a smoothing part of four second order filters and a Sobel as a derivation part. The second order filters are causal and non-causal horizontal and vertical operators. The gradient image passes through a double threshold filter to select the real contours and the crests and the background pixels. Closing of contours eliminates the false crests and finally the labeling gives a unique label to each closed region. The latency of the chain is in the order of three images. This implementation shows the efficiency of the chain and also it demonstrates the capabilities of our architecture as a prototyping system.

  19. On geoid heights derived from GEOS 3 altimeter data along the Hawaiian-Emperor seamount chain

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1979-01-01

    The geoid heights derived from preliminary GEOS 3 satellite radar altimeter data over the Hawaiian-Emperor seamount chain are examined. Two objectives are pursued: (1) to evaluate the contribution of the topography of the seamount chain and its compensation to the marine geoid; and (2) to determine whether geoid heights derived from GEOS 3 altimeter data can be used to provide information on isostasy at geological features such as the Hawaiian-Emperor seamount chain which formed as relatively young loads on the oceanic lithosphere. Short-wavelength geoid highs of 5-12 m over the crest of the seamount chain and geoid lows over flanking regions are observed. The geological undulations can be explained by a simple model in which the seamount-chain load is supported by a strong rigid lithospheric plate. The elastic thickness estimates agree with values based on surface ship gravity and bathymetry observations, and provide further support to the hypothesis that the elastic thickness acquired at a surface load depends on the temperature gradient of the lithosphere at the time of loading.

  20. Coarse-grained simulations of an active filament propelled by a self-generated solute gradient

    NASA Astrophysics Data System (ADS)

    Sarkar, Debarati; Thakur, Snigdha

    2016-03-01

    A self-propelling semiflexible filament exhibits a variety of dynamical states depending on the flexibility and activity of the filament. Here we investigate the dynamics of such an active filament using a bead-spring model with the explicit hydrodynamic interactions. The activity in the filament is incorporated by inserting chemically active dimers at regular intervals along the chain. The chemical reactions at the catalytic bead of the dimer produces a self-generated concentration gradient and gives sufficient fuel to exhibit self-propulsion for the filament. Depending upon the rigidity and the configuration, the polymeric filament exhibits three distinct types of spontaneous motion, namely, rotational, snaking, and translational motion. The self-propulsion velocity of the filament for various rigidity and sizes has been calculated, and the factors affecting the propulsion are identified.

  1. Velocity autocorrelation spectra in molten polymers measured by NMR modulated gradient spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Mattea, Carlos; Stapf, Siegfried; Serša, Igor

    2014-04-01

    The segmental dynamics in molten linear polymers is studied by the NMR method of modulated gradient spin-echo, which directly probes a spectrum of molecular velocity autocorrelation function. Diffusion spectra of mono-disperse poly(isoprene-1.4) with different molecular masses, measured in the frequency range 0.1-10 kHz at a temperature of 26\\ ^{\\circ}\\text{C} , have a form similar to the spectrum of Rouse chain dynamics, which implicates the tube-Rouse motion as the dominant dynamic process in this frequency range. The scaling of the center-of-mass diffusion coefficient, given from the fitting parameters, changes from N^{-1} into N^{-2.4} at around N \\approx 3\\text{-}5 Kuhn steps, which is less than predicted by theory and simulations, while the correlation times of the tube-Rouse mode do not follow the anticipated scaling.

  2. Optically controlled periodical chain of quantum rings

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2016-03-01

    We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy spectrum of the chain, generates edge electron currents, and induces the Fano-like features in the electron transport through the finite chain. These effects create physical prerequisites for the development of optically controlled nanodevices based on a set of coupled quantum rings.

  3. Forming particle chains in inertial microfluidic devices

    NASA Astrophysics Data System (ADS)

    Hood, Kaitlyn; Liu, Lawrence; Roper, Marcus

    2015-11-01

    Particles in microfluidic devices at finite Reynolds number self-assemble into evenly-spaced chains, which can be exploited in inertial microfluidic devices for flow cytometry, high speed imaging, and entrapment. While the location and number of chains can be manipulated by changing the channel geometry, the particle interactions are not understood well enough to manipulate the spacing between particles. We present a mathematical model of particle interactions and the formation of particle chains. We will address the following questions: Is there a preferred particle spacing? What are the conditions needed for chain formation?

  4. Effects of tethered chains on adhesion

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Grest, Gary; Stevens, Mark

    2001-03-01

    We study adhesion between a polymer melt and substrate due to chemically attached polymer chains on the substrate surface. We have performed extensive molecular dynamics simulations to study the effect of temperature, crosslink density, tethered chain density (Σ), tethered chain length (N_t), tensile pull velocity (v) and chain stiffness on the adhesive failure mechanisms of pullout and/or scission of the tethered chains. We observe a crossover from pure chain pullout to chain scission as Nt and v are increased. The value of Nt at which this crossover occurs is comparable to the chain entanglement length for the coarse-grained model used. Experiments and simulations have shown that the energy required to separate a polymer melt from a substrate increases considerably if the formation of large voids, or crazing can be initiated in the melt. The onset of crazing depends on the temperature and the interaction strength of the substrate with the melt. We also present data illustrating the additional effects of tethered chains on crazing mechanisms.

  5. Magnetization dynamics in isolated Ising chains

    SciTech Connect

    Kudasov, A. N.

    2010-02-15

    The Glauber dynamics of an Ising chain or ring is shown to be determined by two characteristic times: {tau}{sub 1} for relaxation of the average magnetization per spin and {tau}{sub 2} for dynamical spontaneous symmetry breaking. An analytical solution for magnetization dynamics in a finite chain with fixed spins at both ends is found by the method of images. This solution is then used to calculate the spin-spin correlation functions for rings and chains. At low temperatures, since {tau}{sub 1} >> {tau}{sub 2}, there must exist a range of times when the chain is in one of two ordered states.

  6. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile.

    PubMed

    Nikitas, P; Pappa-Louisi, A

    2005-09-01

    The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes. PMID:16131080

  7. Minimum-effort motions for open-chain manipulators with task-dependent end-effector constraints

    SciTech Connect

    Martin, B.J.; Bobrow, J.E.

    1999-02-01

    In this article, the authors examine the solution of minimum-effort optimal control problems for open-chain manipulators. An approximate solution to the optimal control problem is determined by a constrained parameter optimization over a set of B-spline basis functions. They demonstrate that the parameter-optimization formulation of the problem is numerically ill-conditioned, and that it is therefore essential to include analytic, or exact, gradients of the objective function and the constraints in order to guarantee a solution. A recursive expression for these gradients is developed for general serial chains. Constraints on end-effector motions are taken into account using the logarithm of the spatial displacement. The formulation relies on the use of matrix exponentials for the manipulator kinematics, dynamics, and task constraints. Several examples are presented that demonstrate the power and flexibility of the approach.

  8. Gravity gradient for Greenland and its tectonic interpretation

    NASA Astrophysics Data System (ADS)

    Grushinsky, Andrew N.

    2013-04-01

    Gravity gradient is the indicator of the stress conditions in the lithosphere. The axis of gradient signs changing indicates the boundary of blocks exposed to different tensions. The lines of maxima and minima of gravity gradient correspondingly marked the boundary of zones of compression and expansion. Four various types of the gravity anomalies was calculated: in free air, Bouguer's, Glennie's and isostatic. And then was calculated their gradients. The preliminary analysis of gradients shows, that its qualitative behavior for all types of gravity anomalies is very closely and, therefore, conclusions about the stress conditions in the lithosphere of the considering region are definite. Range of the changing for gradients of gravity in free air anomalies - from -96.1 to 135.8 eötvös, and for gradients of gravity Bouguer's anomalies - from -122.6 to 141.9 eötvös. Range of the changing for gradients of gravity Glennie's and isostatic anomalies are substantially smaller, for gradients of gravity Glennie's anomalies - from -27.6 to 25.5 eötvös, and for gradients of gravity isostatic anomalies - from -19.2 to 21.2 eötvös. This difference in the gradient values, evidently, connects with the difference in the thoroughness and the degree of averaging of the anomalies. Analysis of gravity gradient shown the following: 1. In the western part of the researching region are distinguished three linear structures (two maxima and one minimum), which marked rift zone of the Baffin Bay and Davis Strait. This disappeared rift characterized by depressed zone, lengthened from Nares strait along the west sea coast of Greenland. In the south part of this zone localized deep fault, which northward become lesser expressed. To the north and north-east from the Nares strait lengthened to the North Pole zone of compression, blocked up existing previously rift, by which the rotation of the Greenland part of Canadian shield from its cardinal part happened. Center of this rotation

  9. Control of vortex breakdown by axial gradient of temperature

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel A.; Shtern, Vladimir

    2001-11-01

    It is shown that vortex breakdown (VB) can be suppressed or enhanced with help of temperature gradients. The underlying mechanism of such VB control is centrifugal convection. An axial gradient of temperature in a rotating fluid induces a counterflow that is parallel to the temperature gradient at periphery and anti-parallel near the axis (Shtern et.al. 2001, Phys. Fluids, 13, 2296). This centrifugal convection is utilized here to control VB in a compressible flow induced by a rotating lid in a sealed cylinder. To this end, we have developed an efficient 2D time-evolution code for compressible swirling flows. In our numerical studies, the temperature gradient, eps, and Mach number vary, while Reynolds number Re = 2450 and aspect ratio H/R = 2.5 are fixed. At eps= 0, there are two VB 'bubbles' which diminish and then totally disappear as increases eps, (eps > 0), which corresponds to the temperature gradient accelerating the near-axis flow. The opposite gradient of temperature (eps < 0) enhances VB: the bubble size increases and the flow becomes unsteady. These effects of temperature gradients are more prominent with increasing Mach number. The mechanism revealed can be applied to control VB in vortex burners and over delta wings of aircraft.

  10. Transition length prediction for flows with rapidly changing pressure gradients

    SciTech Connect

    Solomon, W.J.; Walker, G.J.; Gostelow, J.P.

    1996-10-01

    A new method for calculating intermittency in transitional boundary layers with changing pressure gradients is proposed and tested against standard turbomachinery flow cases. It is based on recent experimental studies, which show the local pressure gradient parameter to have a significant effect on turbulent spot spreading angles and propagation velocities (and hence transition length). This can be very important for some turbomachinery flows. On a turbine blade suction surface, for example, it is possible for transition to start in a region of favorable pressure gradient and finish in a region of adverse pressure gradient. Calculation methods that estimate the transition length from the local pressure gradient parameter at the start of transition will seriously overestimate the transition length under these conditions. Conventional methods based on correlations of zero pressure gradient transition date are similarly inaccurate. The new calculation method continuously adjusts the spot growth parameters in response to changes in the local pressure gradient through transition using correlations based on data given in the companion paper by Gostelow et al. (1996). Recent experiment correlations of Gostelow et al. (1994a) are used to estimate the turbulent spot generation rate at the start of transition. The method has been incorporated in a linear combination integral computation and tested with good results on cases that report both the intermittency and surface pressure distribution data. It has resulted in a much reduced sensitivity to errors in predicting the start of the transition zone, and can be recommended for engineering use in calculating boundary layer development on axial turbomachine blades.

  11. Vertical gradients of lung density in healthy supine men.

    PubMed Central

    Millar, A B; Denison, D M

    1989-01-01

    Computed tomography was used to determine the vertical gradient of physical density in peripheral lung tissue of 12 healthy supine subjects, at total lung capacity and residual volume. At total lung capacity the mean (SD) density of peripheral lung tissue at the level of the mid right atrium was 0.0715 (0.017) g/cm3 and the vertical gradient of density was slight. At residual volume the density of peripheral tissue at the same level was 0.272 (0.067) g/cm3 and the vertical density gradient was curvilinear and more pronounced. Predictions of the gradient at residual volume were made on the basis of the known compliance of the lung and measured effects were attributed to the action of gravity on blood vessel distensibility at total lung capacity. These predictions agreed closely with the actual density gradient measured at residual volume and provide a basis for forecasting the vertical density gradient that would exist in healthy lungs at any degree of inflation. Departure from these gradients would imply local abnormalities of lung compliance, distribution of mechanical stress, or distensibility of vessels. Images PMID:2763259

  12. Single image superresolution based on gradient profile sharpness.

    PubMed

    Yan, Qing; Xu, Yi; Yang, Xiaokang; Nguyen, Truong Q

    2015-10-01

    Single image superresolution is a classic and active image processing problem, which aims to generate a high-resolution (HR) image from a low-resolution input image. Due to the severely under-determined nature of this problem, an effective image prior is necessary to make the problem solvable, and to improve the quality of generated images. In this paper, a novel image superresolution algorithm is proposed based on gradient profile sharpness (GPS). GPS is an edge sharpness metric, which is extracted from two gradient description models, i.e., a triangle model and a Gaussian mixture model for the description of different kinds of gradient profiles. Then, the transformation relationship of GPSs in different image resolutions is studied statistically, and the parameter of the relationship is estimated automatically. Based on the estimated GPS transformation relationship, two gradient profile transformation models are proposed for two profile description models, which can keep profile shape and profile gradient magnitude sum consistent during profile transformation. Finally, the target gradient field of HR image is generated from the transformed gradient profiles, which is added as the image prior in HR image reconstruction model. Extensive experiments are conducted to evaluate the proposed algorithm in subjective visual effect, objective quality, and computation time. The experimental results demonstrate that the proposed approach can generate superior HR images with better visual quality, lower reconstruction error, and acceptable computation efficiency as compared with state-of-the-art works. PMID:25807567

  13. A flexoelectric theory with rotation gradient effects for elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Anqing, Li; Shenjie, Zhou; Lu, Qi; Xi, Chen

    2016-01-01

    In this paper, a general flexoelectric theory in the framework of couple stress theory is proposed for isotropic dielectrics, in which the rotation gradient and the polarization gradient are involved to represent the nonlocal mechanical and electrical effects, respectively. The present flexoelectric theory shows only the anti-symmetric part of rotation gradient can induce polarization, while the symmetric part of rotation gradient cannot induce polarization in isotropic dielectrics. The electrostatic stress is obtained naturally in the governing equations and boundary conditions in terms of the variational principle, which is composed of two parts: the Maxwell stress corresponding to the polarization and the remainder relating to the polarization gradient. The current theory is able to account for the effects of size, direct and inverse flexoelectricities, and electrostatic force. To illustrate this theory, a simple application of Bernoulli-Euler cantilever beam is discussed. The numerical results demonstrate neither the higher-order constant l 1 nor the higher-order constant l 2 associated with the symmetric and anti-symmetric parts of rotation gradient, respectively, can be ignored in the flexoelectric theory. In addition, the induced deflection increases as the increase of the flexoelectric coefficient. The polarization is no longer constant and the potential is no longer linear along the thickness direction of beam because of the influence of polarization gradient.

  14. Gradients of galactic cosmic rays and anomalous components

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1988-01-01

    Measurements of radial and latitudinal gradients of galactic cosmic rays and anomalous components now cover radii from 0.3 to 40 AU from the sun and latitudes up to 30 deg above the ecliptic plane for particle energies from approx. 10 MeV/n up to relativistic energies. The most accurate measurements cover the period 1972 through 1987, which includes more than one full 11 year cycle of solar activity. Radial gradients for glactic cosmic rays of all energies and species are small (similar to less than 10 percent AU), and variable in time, reaching a minimum of near 0 percent AU out to 30 AU for some species at solar maximum. Gradients for anomalous components are larger, of order 15 percent AU, may show similar time variability, and are relatively independent of particle species and energy. For the period 1985 through 1986 the intensity decreased away from the ecliptic for all species and energies. For galactic cosmic rays, the measured gradients are approx. 0.5 percent/degree near 20 AU, while for anomalous components the gradients are larger, ranging from 3 to 6 percent/degree. Comparison with a similar measurement for anomalous helium in 1975 through 1976 suggests that the latitude gradients for anomalous components have changed sign between 1975 and 1985. For galactic cosmic rays, the available evidence suggests no change in sign of the latitudinal gradient for relativistic particles.

  15. MATLAB toolbox for the regularized surface reconstruction from gradients

    NASA Astrophysics Data System (ADS)

    Harker, Matthew; O'Leary, Paul

    2015-04-01

    As Photometric Stereo is a means of measuring the gradient field of a surface, an essential step in the measurement of a surface structure is the reconstruction of a surface from its measured gradient field. Given that the surface normals are subject to noise, straightforward integration does not provide an adequate reconstruction of the surface. In fact, if the noise in the gradient can be considered to be Gaussian, the optimal reconstruction based on maximum likelihood principles is obtained by the method of least-squares. However, since the reconstruction of a surface from its gradient is an inverse problem, it is usually necessary to introduce some form of regularization of the solution. This paper describes and demonstrates the functionality of a library of MATLAB functions for the regularized reconstruction of a surface from its measured gradient field. The library of functions, entitled "Surface Reconstruction from Gradient Fields: grad2Surf Version 1.0" is available at the MATLAB file-exchange http://www.mathworks.com/matlabcentral/fileexchange/authors/321598 The toolbox is the culmination of a number of papers on the least-squares reconstruction of a surface from its measured gradient field, regularized solutions to the problem, and real-time implementations of the algorithms.1-4

  16. Analysis of the Critical Electron Temperature Gradient in Tore Supra

    NASA Astrophysics Data System (ADS)

    Horton, W.; Hu, B.; Zhu, P.; Hoang, G. T.; Bourdelle, C.; Ottaviani, M.; Garbet, X.; Giruzzi, G.

    2001-10-01

    The Tore Supra database of fast wave electron heating (FWEH) discharges is analyzed with respect to the role of the critical electron temperature gradient. The experimental evidence for the linear theory critical gradient is presented from both (i) power balance thermal flux versus the temperature gradient extrapolated to zero flux and (ii) the fluctuation spectra versus the gadient extrapolated to the vanishing point. Case studies with the LOCO and BALDUR transport codes are used to investigate the impact of the critical gradient in both cases close to the Ohmic discharge with 0.75 MW of rf power and strongly heated discharges with up to 7.4 MW of RF power. The interpretation of the critical gradient as a heat pinch term is also explored with thermodynamic theory and the space-time symmetries of the underlying dynamical equations. There is a relationship between the critical electron temperature gradient and the particle pinch. The evidence for the two candidates to explain the electron transport: trapped electron modes (TEM), characterized by wavenumbers much longer than the ion gyroradius, and the smaller-scale electron temperature gradient modes (ETG) with wavelengths comparable and smaller than the ion gyroradius is presented in detail.

  17. A comparison of the Monte Carlo and the flux gradient method for atmospheric diffusion

    SciTech Connect

    Lange, R.

    1990-05-01

    In order to model the dispersal of atmospheric pollutants in the planetary boundary layer, various methods of parameterizing turbulent diffusion have been employed. The purpose of this paper is to use a three-dimensional particle-in-cell transport and diffusion model to compare the Markov chain (Monte Carlo) method of statistical particle diffusion with the deterministic flux gradient (K-theory) method. The two methods are heavily used in the study of atmospheric diffusion under complex conditions, with the Monte Carlo method gaining in popularity partly because of its more direct application of turbulence parameters. The basis of comparison is a data set from night-time drainage flow tracer experiments performed by the US Department of Energy Atmospheric Studies in Complex Terrain (ASCOT) program at the Geysers geothermal region in northern California. The Atmospheric Diffusion Particle-In-Cell (ADPIC) model used is the main model in the Lawrence Livermore National Laboratory emergency response program: Atmospheric Release Advisory Capability (ARAC). As a particle model, it can simulate diffusion in both the flux gradient and Monte Carlo modes. 9 refs., 6 figs.

  18. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    PubMed Central

    Iwai, Kazuya; Minamisawa, Tamiko; Suga, Kanako; Yajima, Yasutomo; Shiba, Kiyotaka

    2016-01-01

    Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions. PMID:27193612

  19. Isocratic and gradient elution in micellar liquid chromatography with Brij-35.

    PubMed

    Peris-García, Ester; Ortiz-Bolsico, Casandra; Baeza-Baeza, Juan José; García-Alvarez-Coque, María Celia

    2015-06-01

    Polyoxyethylene(23)lauryl ether (known as Brij-35) is a nonionic surfactant, which has been considered as an alternative to the extensively used in micellar liquid chromatography anionic surfactant sodium lauryl (dodecyl) sulfate, for the analysis of drugs and other types of compounds. Brij-35 is the most suitable nonionic surfactant for micellar liquid chromatography, owing to its commercial availability, low cost, low toxicity, high cloud temperature, and low background absorbance. However, it has had minor use. In this work, we gather and discuss some results obtained in our laboratory with several β-blockers, sulfonamides, and flavonoids, concerning the use of Brij-35 as mobile phase modifier in the isocratic and gradient modes. The chromatographic performance for purely micellar eluents (with only surfactant) and hybrid eluents (with surfactant and acetonitrile) is compared. Brij-35 increases the polarity of the alkyl-bonded stationary phase and its polyoxyethylene chain with the hydroxyl end group allows hydrogen-bond interactions, especially for phenolic compounds. This offers the possibility of using aqueous solutions of Brij-35 as mobile phases with sufficiently short retention times. The use of gradients of acetonitrile to keep the concentration of Brij-35 constant is another interesting strategy that yields a significant reduction in the peak widths, which guarantee high resolution. PMID:25866292

  20. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations.

    PubMed

    Iwai, Kazuya; Minamisawa, Tamiko; Suga, Kanako; Yajima, Yasutomo; Shiba, Kiyotaka

    2016-01-01

    Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions. PMID:27193612