Science.gov

Sample records for change climate-chemistry interactions

  1. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  2. SPARC-IGAC Symposium on Climate-Chemistry Interactions. Climate Feedback by Water Vapor in the Tropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Minschwaner, K.

    2003-01-01

    The strong greenhouse forcing by atmospheric water vapor is expected to play an important role in shaping the direction of any future changes in climate. We present calculations that provide a new perspective on the sensitivity of upper tropospheric water vapor to changes in surface temperature. Equilibrium states of our atmospheric model show unambiguously that as the surface warms, changes in the vertical distribution and temperature of detraining air parcels from tropical convection lead to higher water vapor mixing ratios in the upper troposphere. However, the increase in mixing ratio is not as large as the increase in saturation mixing ratio due to warmer environmental temperatures, so that the relative humidity decreases. Our analysis suggests that models that maintain a fixed relative humidity are likely overestimating the magnitude of the water vapor feedback.

  3. Assessing the climatic effect of carbon dioxide and other trace gases using an interactive two-dimensional climate-chemistry model. Final report, December 1992--August 1996

    SciTech Connect

    Ko, M.K.W.

    1996-12-31

    In the recent IPCC report, the role of tropospheric aerosols, stratospheric aerosols, and natural solar variability have also been identified as having sizable effects on climate, both by direct perturbation of the radiative balance and indirectly by changing ozone. Although the effect of changing CO{sub 2} is by far the dominant factor on a century time scale, the effects from the other identified factors are important on a decade time scale. It is important to understand the mechanisms that relate these changes to climatic responses. Developing appropriate numerical models with the capability to simulate these mechanisms will enable one to correctly interpret the observed climate changes that have occurred to data, as well as predict future changes in climate. It is presently impractical to run comprehensive 3-D general circulation model simulations of the interactions between atmospheric chemistry and the rest of the climate system on time scales of decades to centuries. Thus, 2-D models and other lower resolution models play an essential role in understanding the complex interactions of the integrated climate system.

  4. New Development of the Online Integrated Climate-Chemistry model framwork (RegCM-CHEM4)

    NASA Astrophysics Data System (ADS)

    Zakey, A. S.; Shalaby, A. K.; Solmon, F.; Giorgi, F.; Tawfik, A. B.; Steiner, A. L.; Baklanov, A.

    2012-04-01

    The RegCM-CHEM4 is a new online integrated climate-chemistry model based on the regional climate model (RegCM4). The RegCM4 developed at the Abdus Salam International Centre for Theoretical Physics (ICTP), is a hydrostatic, sigma coordinate model. Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism CBM-Z with lumped species that represent broad categories of organics based on carbon bond structure. The computationally rapid radical balance method RBM is coupled as a chemical solver to the gas-phase mechanism. Photolysis rates are determined as a function of meteorological and chemical inputs and interpolated from an array of pre-determined values based on the Tropospheric Ultraviolet-Visible Model (TUV) with cloud cover corrections. Cloud optical depths and cloud altitudes from RegCM-CHEM4 are used in the photolysis calculations, thereby directly coupling the photolysis rates and chemical reactions to meteorological conditions at each model time step. In this study, we evaluate the model over Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000-2005). For the episode analysis, model simulations show a good agreement with the European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the summer 2003 heat wave event. Analysis of the full six years of simulation indicates that the coupled chemistry-climate model can reproduce the seasonal cycle of ozone, with an overestimation of ozone in the non-event years of 5-15 ppb depending on the geographic region. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  5. Impact of Aircraft Nox Emissions Simulated With A Coupled Climate-chemistry Model and Sensitivities To Climate-chemistry Feedback, Lightning and Model Resolution

    NASA Astrophysics Data System (ADS)

    Grewe, V.; Dameris, M.; Fichter, C.; Sausen, R.

    The fully coupled climate-chemistry model is applied to investigate the effect of air- craft NOx emissions on the chemical composition of the atmosphere for the time pe- riods 1990 and 2015. The model results show contributions of the aircraft NOx emis- sions to the NOx concentration of 30% and 50% and to the ozone concentration of 3% and 8% in 1990 and 2015, respectively. The pattern of the response will be inter- pretated by using a Lagrangian approach. Additional simulations will be presented to show the sensitivity of the results to the way the chemistry is coupled to the calcu- lation of the meteorology, the description of the lightning NOx emissions, the model resolution, the model domain, and the flight altitude.

  6. Biodiversity: Interacting global change drivers

    NASA Astrophysics Data System (ADS)

    Settele, Josef; Wiemers, Martin

    2015-10-01

    Climate change impacts on species do not occur in isolation. Now research on drought-sensitive British butterflies uses citizen science to attribute the drivers of population changes and shows landscape management to be a key part of the solution.

  7. Education, Interaction, and Social Change.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.

    This book examines the interaction of education and other elements in our culture. The social system of education is seen as similar to that of such other formal social institutions as business. Moreover, an understanding of the role and function of education can be achieved through an application of social science theory and research findings.…

  8. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  9. Conceptual Acquisition and Change through Social Interaction.

    ERIC Educational Resources Information Center

    Kobayashi, Yoshikazu

    1994-01-01

    Examines the role of social interaction as a facilitator of learning in general and conceptual change in particular. Three conditions are proposed as necessary for social interaction to facilitate knowledge construction--horizontal information, comparable domain knowledge, and availability of cognitive tools. Suggests that these conditions assure…

  10. Plant-plant interactions and environmental change.

    PubMed

    Brooker, Rob W

    2006-01-01

    Natural systems are being subjected to unprecedented rates of change and unique pressures from a combination of anthropogenic environmental change drivers. Plant-plant interactions are an important part of the mechanisms governing the response of plant species and communities to these drivers. For example, competition plays a central role in mediating the impacts of atmospheric nitrogen deposition, increased atmospheric carbon dioxide concentrations, climate change and invasive nonnative species. Other plant-plant interaction processes are also being recognized as important factors in determining the impacts of environmental change, including facilitation and evolutionary processes associated with plant-plant interactions. However, plant-plant interactions are not the only factors determining the response of species and communities to environmental change drivers - their activity must be placed within the context of the wide range of factors that regulate species, communities and ecosystems. A major research challenge is to understand when plant-plant interactions play a key role in regulating the impact of environmental change drivers, and the type of role that plant-plant interactions play. Although this is a considerable challenge, some areas of current research may provide the starting point to achieving these goals, and should be pursued through large-scale, integrated, multisite experiments. PMID:16866935

  11. Technical Note: On the Parallelization of a Global Climate-Chemistry Modeling System

    SciTech Connect

    Lee, Peter S.; Zaveri, Rahul A.; Easter, Richard C.; Peters, Leonard K.

    1999-02-01

    Coupled climate-chemistry simulations are computationally intensive owing to the spatial and temporal scope of the problem. In global chemistry models, the time integrations encountered in the chemistry and aerosol modules usually comprise the major CPU consumption. Parallelization of these segments of the code can contribute to multifold CPU speed-ups with minimal modification of the original serial code. This technical note presents a single program-multiple data (SPMD) strategy applied to the time-split chemistry modules of a coupled climate--global tropospheric chemistry model. Latitudinal domain decomposition is adopted along with a dynamic load-balancing technique that uses the previous time-step's load/latitude estimates for distributing the latitude bands amongst the processors. The coupled model is manually parallelized using the Message Passing Interface standard (MPI) on a distributed memory platform (IBM-SP2). Load-balancing efficiencies and the associated MPI overheads are discussed. Overall speed-ups and efficiencies are also calculated for a series of runs employing up to eight processors.

  12. Responding to Climate Change Interactive Course

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Matter, J. M.; Callahan, P.; Schlosser, P.

    2011-12-01

    While many institutions now have courses that teach climate from an earth or biological systems perspective, it is more challenging to address how to respond to climate change. Implementing adaptation and mitigation measures requires an interdisciplinary approach of involving stakeholders, identifying needs, resolving conflicts and taking action at levels ranging from local, to national and global. Through the upper level undergraduate course "Responding to Climate Change" taught at Barnard College and Columbia University, students engage in a variety of hands-on activities that help them navigate potential options. Activities include games, role play, case studies, scenario development, spatial planning, exploration of analogies, and conflict resolution exercises. Evaluation indicates that this interactive approach empowers students with scientific and technical knowledge, an understanding of how to deal with complexity, and optimism in their capacity to problem solve.

  13. Changes in interacting species with disturbance

    NASA Astrophysics Data System (ADS)

    Cole, Glen F.

    1987-03-01

    Human-influenced changes in the diversity and abundance of native wildlife in a southern boreal forest area, which became a national park in 1975, are used to develop working hypotheses for predicting and subsequently measuring the effects of disturbance or restoration programs on groups of interacting species. Changes from presettlement conditions began with early 1900 hunting, which eliminated woodland caribou ( Rangifer tarandus) and elk ( Cervus elaphus), and reduced moose ( Alces alces) to the low numbers which still persist. Increases in white-tailed deer ( Odocoileus virginianus), as these other cervid species became less abundant or absent, provided enough alternative food to sustain the system's carnivores until plant succession on previously burned or logged areas also caused deer to decline. With increased competition for reduced food, carnivore species also became less abundant or absent and overexploited some prey populations. The abilities of interacting species to maintain dynamically stable populations or persist varied with their different capacities to compensate for increased exploitation or competition. These relationships suggested a possible solution to the problem of predicting the stability of populations in disturbed systems. For the 1976 1985 period, a hypothesis that the increased protection of wildlife from exploitation in a national park would restore a more diverse, abundant, and productive fauna had to be rejected.

  14. Flavor changing supersymmetry interactions in a supernova

    NASA Astrophysics Data System (ADS)

    Amanik, Philip S.; Fuller, George M.; Grinstein, Benjamin

    2005-09-01

    We consider for the first time flavor changing neutral currents (FCNC's) in the infall stage of stellar collapse. We take as an example R-Parity violating interactions of the minimal standard supersymmetric model involving neutrinos and quarks. However, our considerations extend to other kinds of flavor changing neutrino reactions as well. We examine non-forward neutrino scattering processes on heavy nuclei and free nucleons in the supernova core. This investigation has led to four principal original discoveries/products: (1) first calculation of neutrino flavor changing cross sections for spin 1/2 (e.g., free nucleon) and spin 0 nuclear targets; (2) discovery of nuclear mass number squared ( A2) coherent amplification of neutrino-quark FCNC's; (3) analysis of FCNC-induced alteration of electron capture and weak/nuclear equilibrium in the collapsing core; and (4) generalization of the calculated cross sections (mentioned in 1) for the case of hot heavy nuclei to be used in collapse/supernova and neutrino transport simulations. The scattering processes that we consider allow electron neutrinos to change flavor during core collapse, thereby opening holes in the ν e sea, which allows electron capture to proceed and results in a lower core electron fraction Ye. A lower Ye implies a lower homologous core mass, a lower shock energy, and a greater nuclear photo-disintegration burden for the shock. In addition, unlike the standard supernova model, the core now could have net muon and/or tau lepton numbers. These effects could be significant even for supersymmetric couplings below current experimental bounds.

  15. Predicting biotic interactions and their variability in a changing environment.

    PubMed

    Kadowaki, Kohmei; Barbera, Claire G; Godsoe, William; Delsuc, Frédéric; Mouquet, Nicolas

    2016-05-01

    Global environmental change is altering the patterns of biodiversity worldwide. Observation and theory suggest that species' distributions and abundances depend on a suite of processes, notably abiotic filtering and biotic interactions, both of which are constrained by species' phylogenetic history. Models predicting species distribution have historically mostly considered abiotic filtering and are only starting to integrate biotic interaction. However, using information on present interactions to forecast the future of biodiversity supposes that biotic interactions will not change when species are confronted with new environments. Using bacterial microcosms, we illustrate how biotic interactions can vary along an environmental gradient and how this variability can depend on the phylogenetic distance between interacting species. PMID:27220858

  16. Ocean-Atmosphere Interaction in Climate Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  17. Use of the HadGEM2 climate-chemistry model to investigate interannual variability in methane sources

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; O'Connor, Fiona; Clark, Douglas; Huntingford, Chris; Gedney, Nicola

    2013-04-01

    The global mean atmospheric concentration of methane (CH4) has more than doubled during the industrial era [1] and now constitutes ? 20% of the anthropogenic climate forcing by greenhouse gases [2]. The globally-averaged CH4 growth rate, derived from surface measurements, has fallen significantly from a high of 16 ppb yr-1 in the late 1970s/early 1980s and was close to zero between 1999 and 2006 [1]. This overall period of declining or low growth was however interspersed with years of positive growth-rate anomalies (e.g., in 1991-1992, 1998-1999 and 2002-2003). Since 2007, renewed growth has been evident [1, 3], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics in 2008. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [1, 4]. In this paper, we report results from runs of the HadGEM2 climate-chemistry model [5] using year- and month-specific emission datasets. The HadGEM2 model includes the comprehensive atmospheric chemistry and aerosol package, the UK Chemistry Aerosol community model (UKCA, http://www.ukca.ac.uk/wiki/index.php). The Standard Tropospheric Chemistry scheme was selected for this work. This chemistry scheme simulates the Ox, HOx and NOx chemical cycles and the oxidation of CO, methane, ethane and propane. Year- and month-specific emission datasets were generated for the period from 1997 to 2009 for the emitted species in the chemistry scheme (CH4, CO, NOx, HCHO, C2H6, C3H8, CH3CHO, CH3CHOCH3). The approach adopted varied depending on the source sector: Anthropogenic: The emissions from anthropogenic sources were based on decadal-averaged emission inventories compiled by [6] for the Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP). These were then used to derive year-specific emission datasets by scaling the

  18. Use of the HadGEM2 climate-chemistry model to investigate interannual variability in methane sources

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; O'Connor, Fiona; Clark, Douglas; Huntingford, Chris; Gedney, Nicola

    2013-04-01

    The global mean atmospheric concentration of methane (CH4) has more than doubled during the industrial era [1] and now constitutes ? 20% of the anthropogenic climate forcing by greenhouse gases [2]. The globally-averaged CH4 growth rate, derived from surface measurements, has fallen significantly from a high of 16 ppb yr-1 in the late 1970s/early 1980s and was close to zero between 1999 and 2006 [1]. This overall period of declining or low growth was however interspersed with years of positive growth-rate anomalies (e.g., in 1991-1992, 1998-1999 and 2002-2003). Since 2007, renewed growth has been evident [1, 3], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics in 2008. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [1, 4]. In this paper, we report results from runs of the HadGEM2 climate-chemistry model [5] using year- and month-specific emission datasets. The HadGEM2 model includes the comprehensive atmospheric chemistry and aerosol package, the UK Chemistry Aerosol community model (UKCA, http://www.ukca.ac.uk/wiki/index.php). The Standard Tropospheric Chemistry scheme was selected for this work. This chemistry scheme simulates the Ox, HOx and NOx chemical cycles and the oxidation of CO, methane, ethane and propane. Year- and month-specific emission datasets were generated for the period from 1997 to 2009 for the emitted species in the chemistry scheme (CH4, CO, NOx, HCHO, C2H6, C3H8, CH3CHO, CH3CHOCH3). The approach adopted varied depending on the source sector: Anthropogenic: The emissions from anthropogenic sources were based on decadal-averaged emission inventories compiled by [6] for the Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP). These were then used to derive year-specific emission datasets by scaling the

  19. Floods and climate change: interactions and impacts.

    PubMed

    Bronstert, Axel

    2003-06-01

    Whether the floods experienced during the last decade in Germany and in other European countries are triggered or worsened by human activities has been the subject of a great deal of debate. Possible anthropogenic activities leading to increased flood risk include river regulation measures, intensified land use and forestry, and emissions of greenhouse gases causing a change in the global climate. This article discusses the latter by reviewing the existing knowledge on the subject. First, the relevance, capabilities, and limitations of climate models for the simulation and analysis of flood risk under aspects of the anthropogenic climate change are described. Special consideration is given here to differences between the "typical" spatial scale of climate models and hydrological flood models. Second, observations of trends in climate variables relevant for river flooding issues are summarized. Special emphasis is put on the Rhine and other German catchment areas. Third, the possibilities of modeling the different parts of the "cascade of flood risk" are summarized, introducing the special features of meteorological, hydrological, and river hydraulic models. PMID:12836847

  20. Coevolution and the Effects of Climate Change on Interacting Species

    PubMed Central

    Northfield, Tobin D.; Ives, Anthony R.

    2013-01-01

    Background Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes. Methodology/Principle Findings We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change. Conclusions/Significance Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities. PMID:24167443

  1. Modelling refractive index changes due to molecular interactions

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    There are a large number of sensing techniques which use optical changes to monitor interactions between molecules. In the absence of fluorophores or other labels, the basic signal transduction mechanism relies on refractive index changes arising from the interactions of the molecules involved. A quantitative model incorporating molecular transport, reaction kinetics and optical mixing is presented which reveals important insights concerning the optimal detection of molecular interactions optically. Although conceptually simple, a comprehensive model such as this has not been reported anywhere. Specifically, we investigate the pros and cons of detecting molecular interactions in free solution relative to detecting molecular interactions on surfaces using surface bound receptor molecules such as antibodies. The model reveals that the refractive index change produced in surface based sensors is 2-3 orders of magnitude higher than that from interactions in free solution. On the other hand, the model also reveals that it is indeed possible to distinguish specific molecular interactions from non-specific ones based on free-solution bulk refractometry without any washing step necessary in surface based sensors. However, the refractive index change for free solution interactions predicted by the model is smaller than 10-7 RIU, even for large proteins such as IgG in sufficiently high concentrations. This value is smaller than the typical 10-6 RIU detection limit of most state of the art optical sensing techniques therefore requiring techniques with substantially higher index sensitivity such as Back Scattering Interferometry.

  2. Revisiting trough interactions and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Peirano, C. M.; Corbosiero, K. L.; Tang, B. H.

    2016-05-01

    An updated climatology of Atlantic basin tropical cyclone (TC) intensity change in the presence of upper tropospheric trough forcing is presented. To control for changes in the background thermodynamic environment, a methodology that normalizes intensity change by the potential intensity of the TC is used to more narrowly focus on the effect of troughs compared to previous studies. Relative to the full sample of Atlantic TCs, troughs are a negative influence on intensification: trough interaction cases are 4% less likely to intensify and 5% more likely to weaken. Troughs are especially detrimental compared to TCs without trough forcing: trough interaction cases are 14% less likely to intensify and 13% more likely to weaken. Additionally, eddy flux convergence of angular momentum, previously shown to positively affect TC intensity change, is shown to be a weak predictor of intensity change compared to vertical wind shear, which is enhanced during a trough interaction.

  3. An effect of change in patient status on marital interaction.

    PubMed

    Roman, M; Bauman, G; Borello, J; Meltzer, B; Ehrenberg, D B

    1976-06-01

    In the treatment of couples and families, even more so than of individuals, therapists invariably are forced to face the problem of assessment of change in the marital or family "system." The purpose of the present study was to investigate changes in marital interaction for a special population, that is, in which one member of each married pair had been, but was no longer, a hospitalized psychiatric patient. The primary question we addressed was whether changes in marital interaction could be amply detected and whether these changes could be attributed to the particular role shift that had occurred in one spouse--from "patient" to "nonpatient." Utilizing a technique called Interaction Testing, which the senior authors devised in 1960, we found that such alterations in marital interaction do indeed arise when one member of the couple moves out of a patient role and that our instrument is useful in elucidating the nature of such effects. In addition, it can be expected that a study of this kind will be of theoretical and methodological value in dealing with the general issues of problem-solving interaction in couples and families. The clinical aspect of the study may also be expected to stimulate useful thinking regarding family theapy in hospital settings, patient management, and aftercare. PMID:1026444

  4. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    NASA Astrophysics Data System (ADS)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For

  5. Interactive Sectoring and Animation of Global Change Data

    NASA Technical Reports Server (NTRS)

    Meyer, Paul J.; Buillory, Anthony R.; Atkinson, Robert J.; Jedlovec, Gary J.

    1999-01-01

    In order to analyze and share results of global change data sets, scientists require a venue in which to exchange their results. One appropriate medium for these collaborative efforts is the world wide web. Intuitive and efficient user interfaces, and background processes have been developed at the Global Hydrology and Climate Center to interactively view weather satellite, radar, global temperature anomaly, and model output data using the world wide web. These tools combine scripts, Java and C code which allows the user to easily interact with data, to create high resolution sector images, and sectored animation sequences. This paper examines the architecture and interfaces and how they are used for collaborative research.

  6. Change point testing in logistic regression models with interaction term.

    PubMed

    Fong, Youyi; Di, Chongzhi; Permar, Sallie

    2015-04-30

    A threshold effect takes place in situations where the relationship between an outcome variable and a predictor variable changes as the predictor value crosses a certain threshold/change point. Threshold effects are often plausible in a complex biological system, especially in defining immune responses that are protective against infections such as HIV-1, which motivates the current work. We study two hypothesis testing problems in change point models. We first compare three different approaches to obtaining a p-value for the maximum of scores test in a logistic regression model with change point variable as a main effect. Next, we study the testing problem in a logistic regression model with the change point variable both as a main effect and as part of an interaction term. We propose a test based on the maximum of likelihood ratios test statistic and obtain its reference distribution through a Monte Carlo method. We also propose a maximum of weighted scores test that can be more powerful than the maximum of likelihood ratios test when we know the direction of the interaction effect. In simulation studies, we show that the proposed tests have a correct type I error and higher power than several existing methods. We illustrate the application of change point model-based testing methods in a recent study of immune responses that are associated with the risk of mother to child transmission of HIV-1. PMID:25612253

  7. Multivariate Analysis of Conformational Changes Induced by Macromolecular Interactions

    NASA Astrophysics Data System (ADS)

    Mitra, Indranil; Alexov, Emil

    2009-11-01

    Understanding protein-protein binding and associated conformational changes is critical for both understanding thermodynamics of protein interactions and successful drug discovery. Our study focuses on computational analysis of plausible correlations between induced conformational changes and set of biophysical characteristics of interacting monomers. It was done by comparing 3D structures of unbound and bound monomers to calculate the RMSD which is used as measure of the structural changed induced by the binding. We correlate RMSD with volumetric and interfacial charge of the monomers, the amino acid composition, the energy of binding, and type of amino acids at the interface. as predictors. The data set was analyzed with SVM in R & SPSS which is trained on a combination of a new robust evolutionary conservation signal with the monomeric properties to predict the induced RMSD. The goal of this study is to undergo parametric tests and heirchiacal cluster and discriminant multivariate analysis to find key predictors which will be used to develop algorithm to predict the magnitude of conformational changes provided by the structure of interacting monomers. Results indicate that the most promising predictor is the net charge of the monomers, however, other parameters as the type of amino acids at the interface have significant contribution as well.

  8. Qualitative change of character of dispersive interaction with intermolecular distance.

    PubMed

    Haslmayr, Johannes; Renger, Thomas

    2013-07-28

    The dispersive interaction between molecules results from Coulomb-correlated fluctuations of electrons and for large intermolecular distances it can be related to the molecular polarizabilities as in London's theory (F. London, Trans. Faraday Soc. 33, 8-26 (1937)). Here, we investigate the interaction between molecules with anisotropic polarizabilities at arbitrary distances using symmetry adapted perturbation theory, which allows us to analyze the different parts of the intermolecular potential separately. Whereas at large distances, in accordance with London's theory, there is no way to describe the dispersive interaction by a sum over pairwise isotropic atom-centered energy terms, at short distances such a description becomes possible. This surprising result has consequences for the development of molecular mechanics force fields, supports the dispersion energy terms applied in dispersion corrected density functional theory, and indicates that there is a qualitative change in electron correlation with distance. Apparently, at short distances intermolecular electron correlation is less influenced by intramolecular electron delocalization. PMID:23901956

  9. Biotic interactions mediate soil microbial feedbacks to climate change

    PubMed Central

    Crowther, Thomas W.; Thomas, Stephen M.; Maynard, Daniel S.; Baldrian, Petr; Covey, Kristofer; Frey, Serita D.; van Diepen, Linda T. A.; Bradford, Mark A.

    2015-01-01

    Decomposition of organic material by soil microbes generates an annual global release of 50–75 Pg carbon to the atmosphere, ∼7.5–9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle–climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle–climate feedbacks. PMID:26038557

  10. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-01

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks. PMID:26038557

  11. Audiotactile interaction can change over time in cochlear implant users

    PubMed Central

    Landry, Simon P.; Guillemot, Jean-Paul; Champoux, François

    2014-01-01

    Recent results suggest that audiotactile interactions are disturbed in cochlear implant (CI) users. However, further exploration regarding the factors responsible for such abnormal sensory processing is still required. Considering the temporal nature of a previously used multisensory task, it remains unclear whether any aberrant results were caused by the specificity of the interaction studied or rather if it reflects an overall abnormal interaction. Moreover, although duration of experience with a CI has often been linked with the recovery of auditory functions, its impact on multisensory performance remains uncertain. In the present study, we used the parchment-skin illusion, a robust illustration of sound-biased perception of touch based on changes in auditory frequencies, to investigate the specificities of audiotactile interactions in CI users. Whereas individuals with relatively little experience with the CI performed similarly to the control group, experienced CI users showed a significantly greater illusory percept. The overall results suggest that despite being able to ignore auditory distractors in a temporal audiotactile task, CI users develop to become greatly influenced by auditory input in a spectral audiotactile task. When considered with the existing body of research, these results confirm that normal sensory interaction processing can be compromised in CI users. PMID:24904359

  12. Audiotactile interaction can change over time in cochlear implant users.

    PubMed

    Landry, Simon P; Guillemot, Jean-Paul; Champoux, François

    2014-01-01

    Recent results suggest that audiotactile interactions are disturbed in cochlear implant (CI) users. However, further exploration regarding the factors responsible for such abnormal sensory processing is still required. Considering the temporal nature of a previously used multisensory task, it remains unclear whether any aberrant results were caused by the specificity of the interaction studied or rather if it reflects an overall abnormal interaction. Moreover, although duration of experience with a CI has often been linked with the recovery of auditory functions, its impact on multisensory performance remains uncertain. In the present study, we used the parchment-skin illusion, a robust illustration of sound-biased perception of touch based on changes in auditory frequencies, to investigate the specificities of audiotactile interactions in CI users. Whereas individuals with relatively little experience with the CI performed similarly to the control group, experienced CI users showed a significantly greater illusory percept. The overall results suggest that despite being able to ignore auditory distractors in a temporal audiotactile task, CI users develop to become greatly influenced by auditory input in a spectral audiotactile task. When considered with the existing body of research, these results confirm that normal sensory interaction processing can be compromised in CI users. PMID:24904359

  13. Mantle plume interaction with an endothermic phase change

    NASA Technical Reports Server (NTRS)

    Schubert, Gerald; Anderson, Charles; Goldman, Peggy

    1995-01-01

    High spatial resolution numerical simulations of mantle plumes impinging from below on the endothermic phase change at 660-km depth are used to investigate the effects of latent heat release on the plume-phase change interaction. Both axisymmetric and planar upflows are considered, and the strong temperature dependence of mantle viscosity is taken into account. For plume strengths considered, a Clapeyron slope of -4 MPa/K prevents plume penetration of the phase change. Plumes readily penetrate the phase change for a Clapeyron slope of -2 MPa/K and arrive in the upper mantle considerably hotter than if they had not traversed the phase change. For the same amount of thermal drive, i.e., the same excess basal temperature, axisymmetric plumes are hotter upon reaching the upper mantle than are planar upwellings. Heating of plumes by their passage through the spinel-perovskite endothermic phase change can have important consequences for the ability of the plume to thermally thin the lithosphere and cause melting and volcanism.

  14. Deforestation changes land-atmosphere interactions across South American biomes

    NASA Astrophysics Data System (ADS)

    Salazar, Alvaro; Katzfey, Jack; Thatcher, Marcus; Syktus, Jozef; Wong, Kenneth; McAlpine, Clive

    2016-04-01

    South American biomes are increasingly affected by land use/land cover change. However, the climatic impacts of this phenomenon are still not well understood. In this paper, we model vegetation-climate interactions with a focus on four main biomes distributed in four key regions: The Atlantic Forest, the Cerrado, the Dry Chaco, and the Chilean Matorral ecosystems. We applied a three member ensemble climate model simulation for the period 1981-2010 (30 years) at 25 km resolution over the focus regions to quantify the changes in the regional climate resulting from historical deforestation. The results of computed modelling experiments show significant changes in surface fluxes, temperature and moisture in all regions. For instance, simulated temperature changes were stronger in the Cerrado and the Chilean Matorral with an increase of between 0.7 and 1.4 °C. Changes in the hydrological cycle revealed high regional variability. The results showed consistent significant decreases in relative humidity and soil moisture, and increases in potential evapotranspiration across biomes, yet without conclusive changes in precipitation. These impacts were more significant during the dry season, which resulted to be drier and warmer after deforestation.

  15. Changing intensity of interaction can resolve prisoner's dilemmas

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; Zhang, Chunyan; Sun, Qinglin; Chen, Zengqiang; Zhang, Jianlei

    2016-03-01

    We put forward a computational model which mainly focuses on the effect of changing the intensity of interaction between individuals to study the evolutionary prisoner's dilemma game in social networks. In this model, an individual will unilaterally increase the intensity of interaction from it to some of its neighbors in case it is satisfied with the current income which it obtains from the neighbor; conversely, the individual will unilaterally reduce the intensity of interaction from it to its neighbor. We show that this simple evolutionary rule can effectively shift the survival barrier of cooperators and drastically facilitate the emergence of cooperation. Interestingly, for a fixed temptation to defect, there exists the smallest increment of intensity of interaction, resulting in a plateau of high cooperation level due to the positive feedback mechanism. Furthermore, we find good agreement between simulation results and theoretical predictions obtained from an extended pair-approximation method. Meanwhile, we illustrate the dynamical evolution of cooperators on the network, and investigate the impact of noise during the strategy updates.

  16. Interactive Sectoring and Animation of Global Change Data

    NASA Technical Reports Server (NTRS)

    Meyer, Paul J.; Guillory, Anthony; Atkinson, R. J.; Jedlovec, Gary J.

    1999-01-01

    In order to analyze and share results of global change climate data sets, scientists require a venue in which to exchange their results. The perfect medium for these collaborative efforts is the world wide web. Intuitive and efficient user interfaces, and background processes were developed at the Global Hydrology and Climate Center to interactively view weather satellite, radar, global temperature anomaly, and model output data using the world wide web. These tools combine scripts, Java, and C code, which allows the end user to easily interact with data, to create high resolution sector images, and sectored animation sequences. This paper examines the architecture and interfaces which were designed at the Global Hydrology and Climate Center and how they are used for collaborative research.

  17. Shock wave interaction with an abrupt area change

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    1991-01-01

    The wave patterns that occur when a shock wave interacts with an abrupt area changed are analyzed in terms of the incident shock wave Mach number and area-jump ratio. The solutions predicted by a semi-similar models are in good agreement with those obtained numerically from the quasi-one-dimensional time-dependent Euler equations. The entropy production for the wave system is defined and the principle of minimum entropy production is used to resolve a nonuniqueness problem of the self-similar model.

  18. Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes.

    PubMed

    Xu, Xingfeng; Liu, Wei; Zhong, Junzhen; Luo, Liping; Liu, Chengmei; Luo, Shunjing; Chen, Lin

    2015-11-01

    The interaction of rice glutelin (RG) with amylose was characterized by spectroscopic and molecular docking studies. The intrinsic fluorescence of RG increased upon the addition of amylose. The binding sites, binding constant and thermodynamic features indicated that binding process was spontaneous and the main driving force of the interaction was hydrophobic interaction. The surface hydrophobicity of RG decreased with increasing amount of amylose. Furthermore, synchronous fluorescence and circular dichroism (CD) spectra provided data concerning conformational and micro-environmental changes of RG. With the concentration of amylose increasing, the polarity around the tyrosine residues increased while the hydrophobicity decreased. Alteration of protein conformation was observed with increasing of α-helix and reducing of β-sheet. Finally, a visual representation of two binding sites located in the amorphous area of RG was presented by molecular modeling studies. PMID:26416238

  19. Climate change exacerbates interspecific interactions in sympatric coastal fishes.

    PubMed

    Milazzo, Marco; Mirto, Simone; Domenici, Paolo; Gristina, Michele

    2013-03-01

    Biological responses to warming are presently based on the assumption that species will remain within their bioclimatic envelope as environmental conditions change. As a result, changes in the relative abundance of several marine species have been documented over the last decades. This suggests that warming may drive novel interspecific interactions to occur (i.e. invasive vs. native species) or may intensify the strength of pre-existing ones (i.e. warm vs. cold adapted). For mobile species, habitat relocation is a viable solution to track tolerable conditions and reduce competitive costs, resulting in 'winner' species dominating the best quality habitat at the expense of 'loser' species. Here, we focus on the importance of warming in exacerbating interspecific interactions between two sympatric fishes. We assessed the relocation response of the cool-water fish Coris julis (a potential 'loser' species in warming scenarios) at increasing relative dominance of the warm-water fish Thalassoma pavo (a 'winner' species). These wrasses are widespread in the Mediterranean nearshore waters. C. julis tolerates cooler waters and is found throughout the basin. T. pavo is common along southern coasts, although the species range is expanding northwards as the Mediterranean warms. We surveyed habitat patterns along a thermo-latitudinal gradient in the Western Mediterranean Sea and manipulated seawater temperature under two scenarios (present day vs. projected) in outdoor arenas. Our results show that the cool-water species relocates to a less-preferred seagrass habitat and undergoes lower behavioural performance in warmer environments, provided the relative dominance of its warm-water antagonist is high. The results suggest that expected warming will act synergistically with increased relative dominance of a warm-water species to cause a cool-water fish to relocate in a less-preferred habitat within the same thermal environment. Our study highlights the complexity of climate

  20. Noise pollution changes avian communities and species interactions.

    PubMed

    Francis, Clinton D; Ortega, Catherine P; Cruz, Alexander

    2009-08-25

    Humans have drastically changed much of the world's acoustic background with anthropogenic sounds that are markedly different in pitch and amplitude than sounds in most natural habitats. This novel acoustic background may be detrimental for many species, particularly birds. We evaluated conservation concerns that noise limits bird distributions and reduces nesting success via a natural experiment to isolate the effects of noise from confounding stimuli and to control for the effect of noise on observer detection biases. We show that noise alone reduces nesting species richness and leads to different avian communities. Contrary to expectations, noise indirectly facilitates reproductive success of individuals nesting in noisy areas as a result of the disruption of predator-prey interactions. The higher reproductive success for birds within noisy habitats may be a previously unrecognized factor contributing to the success of urban-adapted species and the loss of birds less tolerant of noise. Additionally, our findings suggest that noise can have cascading consequences for communities through altered species interactions. Given that noise pollution is becoming ubiquitous throughout much of the world, knowledge of species-specific responses to noise and the cumulative effects of these novel acoustics may be crucial to understanding and managing human-altered landscapes. PMID:19631542

  1. Does cadmium pollution change trophic interactions in rockpool food webs?

    SciTech Connect

    Koivisto, S.; Arner, M.; Kautsky, N.

    1997-06-01

    The authors studied the regulation of phytoplankton and zooplankton biomass in rockpool food webs under chronic cadmium pollution. Experimental food webs with two and three trophic levels were composed of phytoplankton, small-bodied zooplankton (Chydorus sphaericus, Cyclops sp., and rotifers), Daphnia magna, and Notonecta sp., a zooplanktivorous predator. Every food web received a control and cadmium treatment allowing a separate study of cadmium and predation effects. After a 3-week stabilization period, cadmium and Notonecta were added and changes in primary productivity, chlorophyll, zooplankton species composition, and biomass were followed during 8 weeks. The results showed that phytoplankton and Daphnia were consumer regulated in both control and cadmium treatments, although resource availability ultimately determined the biomass at each trophic level. Daphnia was the only zooplankton species that reduced phytoplankton and also the only species that was eliminated by Notonecta predation. Notonecta had an indirect positive impact on phytoplankton biomass that increased after the extinction of Daphnia. Cadmium significantly reduced phytoplankton and Daphnia but did not change the trophic interactions between them, i.e., Daphnia and chlorophyll were significantly negatively correlated both in the control and cadmium treatments. Cadmium did not affect the relationship between Daphnia and Notonecta.

  2. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  3. Innovative Interactive Visitor Experiences Focused on Climate Change

    NASA Astrophysics Data System (ADS)

    Lettvin, E. E.

    2011-12-01

    Pacific Science Center has adopted a multi-pronged approach to introduce visitors to the concepts of climate change and linkages to human behavior in an informal science education setting. We leverage key fixed exhibit assets derived from collaborations with NOAA: Science on a Sphere and an exhibit kiosk showcasing local CO2 measurements that are adjacent on our exhibit floor. NOAA PMEL Scientists deployed a sensor at the top of the Space Needle that measures variability in atmospheric CO2 over Seattle; the kiosk showcases these near-real-time, daily, weekly and monthly measurements as well as similar observations from a NOAA buoy near Aberdeen, Washington. Displays of these data enable visitors to see first-hand varying CO2 levels in urban and remote marine environments as well as seasonal cycling. It also reveals quantifiable increases in CO2 levels over a relatively short time (~5 years). Trained interpreters help visitors understand linkages between personal behavior and corresponding CO2 footprints. Interpreters discuss connections between local and regional CO2 measurements displayed on the kiosk, and global Sphere datasets including NOAA Carbon Tracker, changing arctic sea ice coverage and sea level rise projections. Portable Discovery Carts, consisting of props and interactive, hands-on activities provide a platform for facilitated interpretation on a series of topics. We have developed two climate focused carts: 'Sinks and Sources' that examines materials and activities that produce and absorb carbon, and 'Ocean Acidification' that shows how absorption of atmospheric CO2 is changing ocean composition and its habitability for marine life. These carts can be deployed anywhere on the exhibit floor but are primarily used adjacent to the Sphere and the kiosk, making it possible to have a range of conversations about global and local CO2 levels, linkages to individual and collective behaviour and associated implications. Additional collaborations with members of

  4. Changing shape of elastic shells via electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; Thomas, Creighton; Olvera de La Cruz, Monica

    2014-03-01

    Shape plays a key role in the design of synthetic structures such as biomimetic red blood cells, metallic nanocontainers and colloidal building blocks for self-assembly. It is therefore crucial to enhance our current capabilities to synthesize membranes of desired shapes with precision and provide a simple procedure to induce shape modifications. We show that Coulomb interactions can be used as a tool for designing and manipulating shapes of soft elastic shells at the nanoscale. We investigate the minimal-energy conformations of charged, elastic nanoshells subject to the constraint of fixed total volume for a wide range of electrostatic and elastic parameters. We find that the shape of the shell changes when we decrease the electrolyte concentration in the surrounding environment or increase the total charge on the shell surface. We obtain a variety of smooth shapes that include ellipsoids, discs, and bowls. A discussion on the possible origins of these shapes and related procedures to induce shape deformations is also provided. We thank U.S. Department of Energy Award DEFG02-08ER46539 and the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research (AFOSR) Award No. FA9550-10-1-0167 for financial support.

  5. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats. PMID:25763628

  6. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

    2002-10-28

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the

  7. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarad; H. Yasuhara; A. Alajmi

    2002-04-20

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray micro-tomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in

  8. A UNIFYING CONCEPT FOR ASSESSING TOXICOLOGICAL INTERACTIONS: CHANGES IN SLOPE

    EPA Science Inventory

    Robust statistical methods are important to the evaluation of interactions among chemicals in a mixture. However, different concepts of interaction as applied to the statistical analysis of chemical mixture toxicology data or as used in environmental risk assessment often can ap...

  9. Asymmetries of Knowledge and Epistemic Change in Social Gaming Interaction

    ERIC Educational Resources Information Center

    Piirainen-Marsh, Arja; Tainio, Liisa

    2014-01-01

    While a growing number of studies investigate the role of knowledge and interactional management of knowledge asymmetries in conversation analysis, the epistemic organization of multilingual and second language interactions is still largely unexplored. This article addresses this issue by investigating how knowledge asymmetries and changing…

  10. Change Trajectories for Parent-Child Interaction Sequences during Parent-Child Interaction Therapy for Child Physical Abuse

    ERIC Educational Resources Information Center

    Hakman, Melissa; Chaffin, Mark; Funderburk, Beverly; Silovsky, Jane F.

    2009-01-01

    Objective: Parent-child interaction therapy (PCIT) has been found to reduce future child abuse reports among physically abusive parents. Reductions in observed negative parenting behaviors mediated this benefit. The current study examined session-by-session interaction sequences in order to identify when during treatment these changes occur and…

  11. Social interaction is associated with changes in infants’ motor activity

    PubMed Central

    Scola, Céline; Bourjade, Marie; Jover, Marianne

    2015-01-01

    Background In developmental research, infants are commonly assumed to be early stakeholders in interactions with their caregivers. The tools that infants can use to interact with others vary from visual contact to smiling or vocalizing, and also include motor activity. However, surprisingly few studies have explored how the nature and context of social interactions affect infants’ engagement in motor activity. Methods We investigated the kinematic properties of foot and face movements produced by 11 infants aged between 5 and 9 months during six contrasting dyadic episodes (i.e. passive presence of a stranger or the infant's mother, weak or intense interaction with the stranger/mother as she sings a nursery play song). Results The infants’ face and foot motor activity was significantly reduced during the interactive episodes, compared with the episodes without any interaction, in both the mother and stranger conditions. Furthermore, the level of their motor activity was significantly lower in the stranger condition than in the mother one for some parameters. Conclusion These results are in line with those reported by previous studies and confirm the relevance of using motor activity to delineate the early forms of interactive episodes in infants. PMID:26546793

  12. Land Use and climate change interactions in tropical South America

    NASA Astrophysics Data System (ADS)

    Swann, A. L. S.; Longo, M.; Knox, R. G.; Lee, E.; Moorcroft, P. R.

    2015-12-01

    Ongoing agricultural expansion in Amazonia and the surrounding areas of Brazil is expected to continue over the next several decades as global food demand increases. The transition of natural forest and savannah ecosystems to pastureland and agricultural crops is predicted to create warmer and drier atmospheric conditions than the native vegetation. Compounding this effect, climate change is likely to lead to reduced transpiration fluxes as plants become more water efficient under higher atmospheric carbon dioxide (CO2) levels. Here we investigate the expected impacts of predicted future land use on the climate of South America as well as the potential impacts of increasing CO2. We find that the climate response to land use change generally consistent with expectations from previous global modeling simulations with drier conditions resulting from deforestation, however the direct changes in precipitation are relatively small (on order of a few percent). Local drying from land use change is driven primarily by decreases in evapo-transpiration associated with the loss of forest, and concomitant increases in runoff. Significant changes in convectively available potential energy and convective inhibition during the transition to the wet season indicate that the decrease in surface latent heat flux is indeed leading to a drier atmosphere, however these changes occur around a mean climatological state that is already very favorable for convection, and thus lead to relatively small changes in precipitation. The physiological effects of increasing CO2 alone also drive a reduction in precipitation, which is compounded by radiation-driven circulation changes. If these land use changes were to occur under a background state of drier conditions, such as those predicted for the future global climate model experiments, this additional atmospheric drying driven by land use change may be sufficient to decrease precipitation more substantially.

  13. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Shindell, D. T.; Faluvegi, G.

    2011-03-01

    Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC) assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI) and the observations from the Tropospheric Emission Spectrometer (TES) satellite from January 2005 to December 2008. The results show that sampling and monthly averaging of the observation operators produce biases of less than ±3% for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling biases were also within the insignificant range of ±3% (that is ±0.14 g kg-1) in both models. Sampling led to a temperature bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to -1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8% bias was calculated in the upper troposphere water vapour due to monthly

  14. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Shindell, D. T.; Faluvegi, G.

    2011-07-01

    Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC) assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI) and the observations from the Tropospheric Emission Spectrometer (TES) instrument on board the NASA-Aura satellite from January 2005 to December 2008. The results show that sampling and monthly averaging of the observation operators produce zonal-mean biases of less than ±3 % for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling zonal-mean biases were also within the insignificant range of ±3 % (that is ±0.14 g kg-1) in both models. Sampling led to a temperature zonal-mean bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to -1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8 % bias was

  15. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  16. Implications of Glacier Volume Change for Ice-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; O'Neel, S.; Fellman, J.; Bidlack, A.; Arendt, A. A.; Arimitsu, M.; Spencer, R. G.

    2015-12-01

    Changes in climate are forcing complex glaciological responses that can be transmitted to downstream ecosystems via glacier runoff. Along the Gulf of Alaska, rates of glacier mass loss are among the highest measured on Earth. Changes in glacier volume in this region are altering the amount of glacier runoff delivered to the coastal ocean. Moreover, shifts in glacier extent are changing the location of the ice-ocean interface and, in cases where tidewater glaciers become grounded, fundamentally altering circulation in glacierized fjords. The runoff from glacier ecosystems is unique in terms of its physical and chemical properties when compared to runoff from non-glacial ecosystems. For example, the silt and chemical constituents in glacier discharge alter light penetration and the nutrient regime in near-shore marine ecosystems, which, in turn, influence levels of marine primary productivity. Future changes in the magnitude, timing, and location of glacier runoff have important implications for biogeochemical and ecological processes in glacially-dominated fjords and estuaries. This talk will highlight research from glacierized watersheds and fjords to synthesize what is known about the physical, chemical, and biological linkages that characterize icefield-ocean ecosystems along the Gulf of Alaska.

  17. An Interactional Model for Resistance to Change in Educational Institutions.

    ERIC Educational Resources Information Center

    Gjerde, Per F.

    Although schools have served as a major target of both educational and mental-health oriented interventions, they have shown a marked tendency to assimilate innovative programs into existing patterns. This paper analyzes the sources and manifestations of resistance to change in schools and discusses the implications of such resistance for the…

  18. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  19. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  20. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  1. Common Processes of Change in Psychotherapy and Seven Other Social Interactions.

    ERIC Educational Resources Information Center

    Lampropoulos, Georgios K.

    2001-01-01

    Argues that change processes in psychotherapy can be understood more clearly by comparing them with other change-inducing social relationships. In showing how this may be done, describes different social interactions and discusses them in terms of a parsimonious set of common factors in change. Stresses the importance of the cross-fertilization of…

  2. Interactions between environmental changes and brain plasticity in birds.

    PubMed

    Barnea, Anat

    2009-09-01

    Neurogenesis and neuronal recruitment occur in many vertebrates, including humans. Most of the new neurons die before reaching their destination. Those which survive migrate to various brain regions, replace older ones and connect to existing circuits. Evidence suggests that this replacement is related to acquisition of new information. Therefore, neuronal replacement can be seen as a form of brain plasticity that enables organisms to adjust to environmental changes. However, direct evidence of a causal link between replacement and learning remains elusive. Our hypothesis is that increased neuronal recruitment is associated with increase in memory load. Moreover, since neuronal recruitment is part of a turnover process, we assume that the same conditions that favor survival of some neurons induce the death of others. I present studies that investigated the effect of various behaviors and environmental conditions (food-hoarding, social change, reproductive cycle) on neuronal recruitment and survival in adult avian brains, and discuss how these phenomena relate to the life of animals. I offer a frame and rationale for comparing neuronal replacement in the adult brain, in order to uncover the pressures, rules, and mechanisms that govern its constant rejuvenation. The review emphasizes the importance of using various approaches (behavioral, anatomical, cellular and hormonal) in neuroethological research, and the need to study natural populations, in order to fully understand how neurogenesis and neuronal replacement contribute to life of animals. Finally, the review indicates to future directions and ends with the hope that a better understanding of adult neuronal replacement will lead to medical applications. PMID:19361509

  3. An Interactive Multi-Model for Consensus on Climate Change

    SciTech Connect

    Kocarev, Ljupco

    2014-07-02

    This project purports to develop a new scheme for forming consensus among alternative climate models, that give widely divergent projections as to the details of climate change, that is more intelligent than simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under development effectively allows models to assimilate data from one another in run time with weights that are chosen in an adaptive training phase using 20th century data, so that the models synchronize with one another as well as with reality. An alternate approach that is being explored in parallel is the automated combination of equations from different models in an expert-system-like framework.

  4. Complex interactions in Lake Michigan’s rapidly changing ecosystem

    USGS Publications Warehouse

    Vanderploeg, Henry A.; Bunnell, David B.; Carrick, Hunter J.; Hook, Tomas O.

    2015-01-01

    For over 30 years, Lake Michigan’s food web has been in a constant state of transition from reductions in nutrient loading and proliferation of invasive species at multiple trophic levels. In particular, there has been concern about impacts from the invasive predatory cercopagids (Bythotrephes longimanus and Cercopagis pengoi) and expanding dreissenid mussel and round goby populations. This special issue brings together papers that explore the status of the Lake Michigan food web and the factors responsible for these changes, and suggests research paths that must be taken for understanding and predicting system behavior. This introductory paper describes the special issue origin, presents an overview of the papers, and draws overarching conclusions from the papers.

  5. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to

  6. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to

  7. Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors.

    PubMed

    Klein, Shannon G; Pitt, Kylie A; Rathjen, Kristen A; Seymour, Jamie E

    2014-01-01

    Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species. Cubozoan jellyfish known to cause Irukandji syndrome have historically been confined to tropical waters but may be expanding into subtropical regions. Here, we examine the interactive effects of warming and acidification on the population dynamics of polyps of an Irukandji jellyfish, Alatina nr mordens, and the formation of statoliths in newly metamorphosed medusae, to determine if this jellyfish could tolerate future conditions predicted for southeast Queensland (SEQ), Australia. Two experiments, examining the orthogonal factors of temperature and pH, were undertaken. Experiment 1 mimicked the current, ca. 2050 and ca. 2100 summer temperature and pH conditions predicted for SEQ using A1F1 scenarios (temperature: 25, 27, 29 °C; pH: 7.9, 7.8, 7.6) and Experiment 2 mimicked current and future winter conditions (18 and 22 °C, pH 7.9, 7.8, 7.6). All polyps in Experiment 1 survived and budded. Fewer polyps budded in the lower pH treatments; however, patterns varied slightly among temperature treatments. Statoliths at pH 7.6 were 24% narrower than those at pH 7.8 and 7.9. Most polyps survived the winter conditions mimicked by Experiment 2 but only polyps in the 22 °C, pH 7.9 treatment increased significantly. The current absence of A. nr mordens medusae in SEQ, despite the polyps' ability to tolerate the current temperature and pH conditions, suggests that ecological, rather than abiotic factors currently limit their distribution. Observations that budding was lower under low pH treatments suggest that rates of asexual reproduction will likely be much slower in the future. We consider that A. nr mordens polyps are likely to tolerate future conditions but are unlikely to thrive in the long term. However, if polyps can overcome potential ecological boundaries and acidification proceeds slowly A. nr mordens could expand polewards in the short

  8. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Baris; Hou, Wei-Shu; Kao, Chung; Kohda, Masaya; McCoy, Brent

    2015-12-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 → t c bar + t bar c, where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 125 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos ⁡ (β - α), while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin ⁡ (β - α) ∼ 1. We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies.

  9. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    McCoy, Brent; Altunkaynak, Baris; Kao, Chung; Hou, Wei-Shou; Kohda, Masaya

    2016-03-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 --> t c + t c , where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 126 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such a limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos (β - α) , while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin (β - α) ~ 1 . We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies. Academia Sinica, National Taiwan University; OU Supercomputing Center for Education & Research; U.S. Department of Energy, Grant No. DEFG01-13ER41979; Academic Summit Grants: MOST 103-2745-M-002-001-ASP, NTU-EPR-103R8915, and NSC 102-2112-M-033-007-MY3.

  10. The Interactive Relationship of Dogmatism and Attitude Discrepancy-Congruency to Attitude Change.

    ERIC Educational Resources Information Center

    McCann, Stewart J. H.; Hamilton, Marshall L.

    1978-01-01

    Hypothesized that dogmatism and attitude discrepancy-congruency would be interactively related to attitude change. Results suggest that supportive information may be more effective in polarizing opinions or attitudes of nondogmatic persons than dogmatic persons. (Author)

  11. UNEP REPORT, "ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: 2002 ASSESSMENT."

    EPA Science Inventory

    United Nations Environment Programme (UNEP) Report on "Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment." The chapters were published in the first issue (No. 1) of the 2003 volume of journal "Photochemical & Photobiological Scien...

  12. The Administrative Internship and Role Change: A Study of the Relationship Between Interaction and Attitudes

    ERIC Educational Resources Information Center

    Ferreira, Joseph L.

    1970-01-01

    In interpreting data gathered in an administrative internship program, the author suggests that certain attitude changes, taken as an index of role shift, are associated with interaction patterns with significant others. (Author/MF)

  13. Efficient fold-change detection based on protein-protein interactions.

    PubMed

    Buijsman, W; Sheinman, M

    2014-02-01

    Various biological sensory systems exhibit a response to a relative change of the stimulus, often referred to as fold-change detection. In the past few years, fold-change detecting mechanisms, based on transcriptional networks, have been proposed. Here we present a fold-change detecting mechanism, based on protein-protein interactions, consisting of two interacting proteins. This mechanism does not consume chemical energy and is not subject to transcriptional and translational noise, in contrast to previously proposed mechanisms. We show by analytical and numerical calculations that the mechanism is robust and can have a fast, precise, and efficient response for parameters that are relevant to eukaryotic cells. PMID:25353514

  14. Multi-Phase Fracture-Matrix Interactions Under Stress Changes

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-12-07

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the

  15. Studying Learning Processes of Student Teachers with Stimulated Recall Interviews through Changes in Interactive Cognitions

    ERIC Educational Resources Information Center

    Schepens, Annemie; Aelterman, Antonia; Van Keer, Hilde

    2007-01-01

    This article describes a qualitative study into student teachers' learning processes through changes in their interactive cognitions. First, theoretical propositions about the relation between learning to teach, professional development, and practical knowledge are defined. Next, the procedure to grasp interactive cognitions as part of practical…

  16. After Early Autism Diagnosis: Changes in Intervention and Parent-Child Interaction

    ERIC Educational Resources Information Center

    Suma, Katharine; Adamson, Lauren B.; Bakeman, Roger; Robins, Diana L.; Abrams, Danielle N.

    2016-01-01

    This study documents the relation between an autism spectrum disorder (ASD) diagnosis, increases in intervention, and changes in parent-child interaction quality. Information about intervention and observations of interaction were collected before diagnosis and a half year after diagnosis for 79 low-risk toddlers who had screened positive for ASD…

  17. Agonistic interactions elicit rapid changes in brain nonapeptide levels in zebrafish.

    PubMed

    Teles, Magda C; Gozdowska, Magdalena; Kalamarz-Kubiak, Hanna; Kulczykowska, Ewa; Oliveira, Rui F

    2016-08-01

    The teleost fish nonapeptides, arginine vasotocin (AVT) and isotocin (IT), have been implicated in the regulation of social behavior. These peptides are expected to be involved in acute and transient changes in social context, in order to be efficient in modulating the expression of social behavior according to changes in the social environment. Here we tested the hypothesis that short-term social interactions are related to changes in the level of both nonapeptides across different brain regions. For this purpose we exposed male zebrafish to two types of social interactions: (1) real opponent interactions, from which a Winner and a Loser emerged; and (2) mirror-elicited interactions, that produced individuals that did not experience a change in social status despite expressing similar levels of aggressive behavior to those of participants in real-opponent fights. Non-interacting individuals were used as a reference group. Each social phenotype (i.e. Winners, Losers, Mirror-fighters) presented a specific brain profile of nonapeptides when compared to the reference group. Moreover, the comparison between the different social phenotypes allowed to address the specific aspects of the interaction (e.g. assessment of opponent aggressive behavior vs. self-assessment of expressed aggressive behavior) that are linked with neuropeptide responses. Overall, agonistic interactions seem to be more associated with the changes in brain AVT than IT, which highlights the preferential role of AVT in the regulation of aggressive behavior already described for other species. PMID:27235811

  18. How will biotic interactions influence climate change-induced range shifts?

    PubMed

    HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J

    2013-09-01

    Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. PMID:23876073

  19. Examining the interaction between land use change, temperature extremes and land-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Hirsch, Annette L.; Pitman, Andy J.; Kala, Jatin; Lorenz, Ruth; Donat, Markus G.

    2016-04-01

    Using the Weather and Research Forecasting Model, we examine the combined impact of land-atmosphere coupling and land use change (LUC) on simulated temperature extremes. The sensitivity of the impact of LUC on temperature extremes to the choice of planetary boundary layer (PBL) and cumulus parameterization schemes are also evaluated to examine whether the impact of LUC on temperature extremes is dependent on the atmospheric model physics and if this impact is modulated by changes in land-atmosphere coupling. A decomposition of the surface energy balance is used to examine the different responses to LUC. Results show a consistent weakening in the soil moisture-temperature coupling strength with LUC irrespective of the atmospheric model physics tested here. In contrast, temperature extremes show an asymmetric response to LUC dependent on the choice of PBL scheme, which is linked to differences in the parameterization of vertical transport. This influences convective precipitation, contributing a positive feedback on soil moisture and consequently on the partitioning of the surface turbulent fluxes. The results suggest that the impact of LUC on temperature extremes depends on the land-atmosphere coupling that in turn depends on the choice of PBL. Indeed, the sign of the change in temperature extremes due to LUC can be changed simply by altering the choice of PBL schemes examined here.

  20. Changes in Children's Peer Interactions Following a Natural Disaster: How Predisaster Bullying and Victimization Rates Changed Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Terranova, Andrew M.; Boxer, Paul; Morris, Amanda Sheffield

    2009-01-01

    Youth exposed to disasters experience stress and adjustment difficulties, which likely influence their interactions with peers. In this study, we examined changes in bullying and peer victimization in two cohorts of children. Youth from an area affected by Hurricane Katrina were assessed pre- and postdisaster (n = 96, mean [M] = 10.9 years old,…

  1. Phenological overlap of interacting species in a changing climate: an assessment of available approaches.

    PubMed

    Rafferty, Nicole E; Caradonna, Paul J; Burkle, Laura A; Iler, Amy M; Bronstein, Judith L

    2013-09-01

    Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of long-term phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of long-term data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climate-induced phenological shifts has focused on terrestrial pairwise resource-consumer interactions, especially those between plants and insects. PMID:24102003

  2. Phenological overlap of interacting species in a changing climate: an assessment of available approaches

    PubMed Central

    Rafferty, Nicole E; CaraDonna, Paul J; Burkle, Laura A; Iler, Amy M; Bronstein, Judith L

    2013-01-01

    Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of long-term phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of long-term data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climate-induced phenological shifts has focused on terrestrial pairwise resource–consumer interactions, especially those between plants and insects. PMID:24102003

  3. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and

  4. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    NASA Astrophysics Data System (ADS)

    Tallaksen, Lena M.; Burkhart, John F.; Stordal, Frode

    2015-04-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reduced snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: i) Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. ii) Assessing the influence of climate and land cover changes on water and energy fluxes. iii) Integrating remote earth observations with in

  5. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    NASA Astrophysics Data System (ADS)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  6. A three-way perspective of stoichiometric changes on host-parasite interactions.

    PubMed

    Aalto, Sanni L; Decaestecker, Ellen; Pulkkinen, Katja

    2015-07-01

    Changes in environmental nutrients play a crucial role in driving disease dynamics, but global patterns in nutrient-driven changes in disease are difficult to predict. In this paper we use ecological stoichiometry as a framework to review host-parasite interactions under changing nutrient ratios, focusing on three pathways: (i) altered host resistance and parasite virulence through host stoichiometry (ii) changed encounter or contact rates at population level, and (iii) changed host community structure. We predict that the outcome of nutrient changes on host-parasite interactions depends on which pathways are modified, and suggest that the outcome of infection could depend on the overlap in stoichiometric requirements of the host and the parasite. We hypothesize that environmental nutrient enrichment alters infectivity dynamics leading to fluctuating selection dynamics in host-parasite coevolution. PMID:25978937

  7. Interactions Between Climate Change, Fire and Invasive Plants in California Ecosystems

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.

    2007-12-01

    Changes in fire regimes are predicted in many climate change scenarios. The types of changes are greatly affected by the fuel structure of the ecosystem and different trajectories of change are expected in surface fire regimes than in crown fire regimes. However, in the multi-factorial world of natural ecosystems, climate is only one of the drivers of future change and some of the known threats to ecosystem stability are expected to push the system over particular thresholds of tolerance very rapidly. Invasive species have been widely recognized as drivers of ecosystem change, often generating feedback effects that alter fuel structure and future fire behavior. Human demographic changes, and the concomitant changes in anthropogenic fire ignitions are an additional threat to future ecosystem stability. I will address how these factors might interact with climate change in ecosystems of very different fuel structure, including surface fire ponderosa pine forests and crown fire chaparral shrublands in California.

  8. After Early Autism Diagnosis: Changes in Intervention and Parent-Child Interaction.

    PubMed

    Suma, Katharine; Adamson, Lauren B; Bakeman, Roger; Robins, Diana L; Abrams, Danielle N

    2016-08-01

    This study documents the relation between an autism spectrum disorder (ASD) diagnosis, increases in intervention, and changes in parent-child interaction quality. Information about intervention and observations of interaction were collected before diagnosis and a half year after diagnosis for 79 low-risk toddlers who had screened positive for ASD risk during a well-baby checkup. Children diagnosed with ASD (n = 44) were 2.69 times more likely to increase intervention hours. After ASD diagnosis, the relation between intervention and interaction quality was complex: although increases in intervention and interaction quality were only modestly related, the overall amount of intervention after diagnosis was associated with higher quality interactions. Moreover, lower quality interactions before diagnosis significantly increased the likelihood that intervention would increase post-diagnosis. PMID:27193183

  9. Environmental Enrichments for a Group of Captive Macaws: Low Interaction Does Not Mean Low Behavioral Changes.

    PubMed

    Reimer, Jéssica; Maia, Caroline Marques; Santos, Eliana Ferraz

    2016-01-01

    Environmental enrichment has been widely used to improve conditions for nonhuman animals in captivity. However, there is no consensus about the best way to evaluate the success of enrichments. This study evaluated whether the proportion of time spent interacting with enrichments indicated the proportion of overall behavioral changes. Six environmental enrichments were introduced in succession to 16 captive macaws, and interaction of the animals with them as well as the behaviors of the group were recorded before and during the enrichments. All of the enrichments affected the proportions of time spent in different behaviors. Macaws interacted more with certain items (hibiscus and food tree) than with others (a toy or swings and stairs), but introduction of the enrichments that invoked the least interaction caused as many behavioral changes as those that invoked the most. Moreover, feeding behavior was only affected by the enrichment that invoked the least interaction, a change not detected by a general analysis of enrichment effects. In conclusion, little interaction with enrichment does not mean little change in behavior, and the effects of enrichments are more complex than previously considered. PMID:27135378

  10. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  11. Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  12. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2011-02-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales. PMID:21253663

  13. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    SciTech Connect

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  14. Interactive Land Use-Climate Change Predictions in West Africa: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.; Koo, J.

    2013-12-01

    Land use changes constitute an important regional climate change forcing that modifies the greenhouse gas induced future climate changes. At the same time, climate change is an important driver for land use changes, although it is unclear how important this impact might be relative to the impact of socio-economic factors on future land use. Using West Africa as an example, this study examines the importance of considering land use-climate change interactions in decadal predictions for future land use and climate changes, and thus assess whether there is a strong need to incorporate land use modeling into earth system models. Specifically, we evaluate the impact of projected climate changes from a regional climate model (RegCM4-CLM4) on crop yields using the crop model DSSAT, and assess the need for future land use changes by combining crop yield changes with demand for local productions predicted based on socio-economic drivers using an economic model (IFPRI's IMPACT model). For this preliminary assessment, a simple land use allocation approach is used, which favors agricultural expansion over intensification in order to provide an upper limit for land use changes. As a first test, the RCP8.5 mid-century climate projected by the NCAR CESM model is used as the future climate boundary conditions to drive the regional climate model. The impact of considering the land use-climate change interactions will be evaluated based on the differences in projected climate changes between two types of simulations: one that considers land use changes driven by both climate-induced crop yield changes and socioeconomic factors, and one that considers land use changes driven solely by socioeconomic factors.

  15. Interactions between above- and belowground organisms modified in climate change experiments

    NASA Astrophysics Data System (ADS)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  16. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.

    PubMed

    Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio

    2015-05-01

    This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions. PMID:25029488

  17. Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

    NASA Astrophysics Data System (ADS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-04-01

    Changes to the large-scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  18. For Parents: Recognizing and Changing Inappropriate Services through an Interactional Approach.

    ERIC Educational Resources Information Center

    Kitano, Margie K.; LeVine, Elaine S.

    1989-01-01

    The article provides parents with specific strategies, based on an interactional model, for working effectively with schools to ensure the best possible services for the gifted child. Major steps include recognizing the need for intervention, developing parent-school partnerships for change, and monitoring progress. (Author/DB)

  19. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    ERIC Educational Resources Information Center

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  20. Predictors of Change in Stress, Interaction Styles, and Depression in Parents of Toddlers with Autism

    ERIC Educational Resources Information Center

    Trocchio, Jennie S.

    2013-01-01

    The purpose of this study was to identify the predictors of change in parental stress (including parent and child factors), depression, and interaction style in parents of toddlers with Autism Spectrum Disorders (ASD), exposed to two types of early intervention (EI) programs, PLAY and Community Standard (CS). This study utilized secondary data of…

  1. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  2. INTERACTIONS OF CHANGING CLIMATE AND ULTRAVIOLET RADIATION IN AQUATIC AND TERRESTRIAL BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade interest has developed in the interactive effects of climate change and UV radiation on aquatic and terrestrial biogeochemical cycles. This talk used selected case studies to illustrate approaches that are being used to investigate these intriguing processe...

  3. Learning as Longitudinal Interactional Change: From "Other"-Repair to "Self"-Repair in Physiotherapy Treatment

    ERIC Educational Resources Information Center

    Martin, Cathrin; Sahlstrom, Fritjof

    2010-01-01

    The aims of this article are to address how learning is constituted and can be studied as a phenomenon in interaction and to discuss how teaching and learning are related. Theoretically, the article argues for and discusses constraints and affordances for relating sociocultural understandings of learning as changing participation to "conversation…

  4. SMART Moves? A Case Study of One Teacher's Pedagogical Change through Use of the Interactive Whiteboard

    ERIC Educational Resources Information Center

    Mohon, Elizabeth H.

    2008-01-01

    This case study investigates how the use of an interactive whiteboard (IWB) leads to pedagogical change within a UK secondary school classroom. A teacher's experiences as recorded in a reflective journal, and the responses of students as recorded in a questionnaire, are set within the context of rhetoric about the value of IWBs. It is argued that…

  5. INTERACTIVE EFFECTS OF OZONE DEPLETION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    The effects of ozone depletion on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the...

  6. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  7. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  8. Proteomics changes during the incompatible interaction between cowpea and Colletotrichum gloeosporioides (Penz.) Penz and Sacc.

    PubMed

    Moura, Hudson Fernando N; Vasconcelos, Ilka M; Souza, Carlos Eduardo A; Silva, Fredy D A; Moreno, Frederico B M B; Lobo, Marina D P; Monteiro-Moreira, Ana C O; Moura, Arlindo A; Costa, José H; Oliveira, José Tadeu A

    2014-03-01

    Anthracnose represents an important disease of cowpea [Vigna unguiculata L. (Walp.)] caused by the hemibiothrophic fungus Colletotrichum gloeosporioides that drastically reduces cowpea field production. In this study we investigated some biochemical aspects underlying the incompatible interaction between a resistant cowpea genotype and C. gloeosporioides using a proteomic approach. Analyses of two-dimensional gel electrophoresis patterns and protein identification indicate C. gloeosporioides infection-dependent cowpea leaf proteome changes associated with metabolism, photosynthesis, response to stress, oxidative burst and scavenging, defense signaling, and pathogenesis-related proteins. Moreover the C. gloeosporioides responsive proteins interaction network in cowpea revealed the interconnected modulation of key cellular processes involving particularly antioxidants proteins, photosynthetic apparatus forming proteins and proteins of the energetic metabolism that interact with each other suggesting that their expression changes are also important for resistance of cowpea to C. gloeosporioides. PMID:24467908

  9. Soil biotic interactions and climate change: consequences for carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Bardgett, Richard

    2015-04-01

    There is currently much interest in understanding the biological mechanisms that regulate carbon exchanges between land and atmosphere, and how these exchanges respond to climate change. Climate change impacts on biogeochemical cycles via a variety of mechanisms; but there is now mounting evidence that biotic interactions between plants and diverse soil communities play a major role in determining carbon cycle responses to climate change across a range of spatial and temporal scales. Over seasonal and annual timescales, climate change impacts the growth and physiology of plants and their roots, with knock on effects for the activity of soil biota and carbon transformations; in the longer term, over tens to hundreds of years, climate change can cause shifts in community composition, and species range expansions and contractions, with cascading impacts on belowground communities and carbon cycling in soil. These responses have local and, potentially, global scale implications for carbon cycle feedbacks. In this talk, I will draw on recent research to illustrate this hierarchy of plant-soil feedback responses to climate change, the mechanisms involved, and consequences for the carbon cycle at local and global scales. I will also discuss how such knowledge on plant-soil interactions might be harnessed to inform management strategies for soil carbon sequestration and mitigation of climate change, and identify some major research challenges for the future.

  10. Effects of interactive global changes on methane uptake in an annual grassland

    NASA Astrophysics Data System (ADS)

    Blankinship, Joseph C.; Brown, Jamie R.; Dijkstra, Paul; Hungate, Bruce A.

    2010-06-01

    The future size of the terrestrial methane (CH4) sink of upland soils remains uncertain, along with potential feedbacks to global warming. Much of the uncertainty lies in our lack of knowledge about potential interactive effects of multiple simultaneous global environmental changes. Field CH4 fluxes and laboratory soil CH4 consumption were measured five times during 3 consecutive years in a California annual grassland exposed to 8 years of the full factorial combination of ambient and elevated levels of precipitation, temperature, atmospheric CO2 concentration, and N deposition. Across all sampling dates and treatments, increased precipitation caused a 61% reduction in field CH4 uptake. However, this reduction depended quantitatively on other global change factors. Higher precipitation reduced CH4 uptake when temperature or N deposition (but not both) increased, and under elevated CO2 but only late in the growing season. Warming alone also decreased CH4 uptake early in the growing season, which was partly explained by a decrease in laboratory soil CH4 consumption. Atmospheric CH4 models likely need to incorporate nonadditive interactions, seasonal interactions, and interactions between methanotrophy and methanogenesis. Despite the complexity of interactions we observed in this multifactor experiment, the outcome agrees with results from single-factor experiments: an increased terrestrial CH4 sink appears less likely than a reduced one.

  11. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    PubMed

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological

  12. Genetic interactions within inositol-related pathways are associated with longitudinal changes in ventricle size

    PubMed Central

    Koran, Mary Ellen I.; Hohman, Timothy J.; Meda, Shashwath A.; Thornton-Wells, Tricia A.

    2013-01-01

    The genetic etiology of late onset Alzheimer disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies (GWAS) in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p=9.10×10−12; LILV: p=8.20×10−13). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles. PMID:24077433

  13. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  14. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    PubMed Central

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  15. Plant response to climate change varies with topography, interactions with neighbors, and ecotype.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Song, Daniel S; Lkhagva, Ariuntsetseg; Sharkhuu, Anarmaa; Boldgiv, Bazartseren; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2013-02-01

    Predicting the future of any given species represents an unprecedented challenge in light of the many environmental and biological factors that affect organismal performance and that also interact with drivers of global change. In a three-year experiment set in the Mongolian steppe, we examined the response of the common grass Festuca lenensis to manipulated temperature and water while controlling for topographic variation, plant-plant interactions, and ecotypic differentiation. Plant survival and growth responses to a warmer, drier climate varied within the landscape. Response to simulated increased precipitation occurred only in the absence of neighbors, demonstrating that plant-plant interactions can supersede the effects of climate change. F. lenensis also showed evidence of local adaptation in populations that were only 300 m apart. Individuals from the steep and dry upper slope showed a higher stress/drought tolerance, whereas those from the more productive lower slope showed a higher biomass production and a greater ability to cope with competition. Moreover, the response of this species to increased precipitation was ecotype specific, with water addition benefiting only the least stress-tolerant ecotype from the lower slope origin. This multifaceted approach illustrates the importance of placing climate change experiments within a realistic ecological and evolutionary framework. Existing sources of variation impacting plant performance may buffer or obscure climate change effects. PMID:23691663

  16. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  17. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    NASA Technical Reports Server (NTRS)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  18. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    USGS Publications Warehouse

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  19. INTERACTIONS BETWEEN CHEMICAL AND CLIMATE STRESSORS: A ROLE FOR MECHANISTIC TOXICOLOGY IN ASSESSING CLIMATE CHANGE RISKS

    PubMed Central

    Hooper, Michael J; Ankley, Gerald T; Cristol, Daniel A; Maryoung, Lindley A; Noyes, Pamela D; Pinkerton, Kent E

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Environ. Toxicol. Chem. 2013;32:32–48. © 2012 SETAC PMID:23136056

  20. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  1. Dynamics of binary and planetary-system interaction with disks - Eccentricity changes

    NASA Technical Reports Server (NTRS)

    Atrymowicz, Pawel

    1992-01-01

    Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.

  2. Protein-Nanoparticle Interaction-Induced Changes in Protein Structure and Aggregation.

    PubMed

    Kim, Yuna; Ko, Sung Min; Nam, Jwa-Min

    2016-07-01

    Large surface area, small size, strong optical properties, controllable structural features, variety of bioconjugation chemistries, and biocompatibility make many different types of nanoparticles (NPs), such as gold NPs, useful for many biological applications, such as biosensing, cellular imaging, disease diagnostics, drug delivery, and therapeutics. Recently, interactions between proteins and NPs have been extensively studied to understand, control, and utilize the interactions involved in biomedical applications of NPs and several biological processes, such as protein aggregation, for many diseases, including Alzheimer's disease. These studies also offer fundamental knowledge on changes in protein structure, protein aggregation mechanisms, and ways to unravel the roles and fates of NPs within the human body. This review focuses on recent studies on the roles and uses of NPs in protein structural changes and aggregation processes. PMID:27062521

  3. Novel measure of driver and vehicle interaction demonstrates transient changes related to alerting.

    PubMed

    Brooks, Justin R; Kerick, Scott E; McDowell, Kaleb

    2015-01-01

    Driver behavior and vehicle-road kinematics have been shown to change over prolonged periods of driving; however, the interaction between these two indices has not been examined. Here we develop a measure that examines how drivers turn the steering wheel relative to heading error velocity, which the authors call the relative steering wheel compensation (RSWC). The RSWC transiently changes on a short time scale coincident with a verbal query embedded within the study paradigm. In contrast, more traditional variables are dynamic over longer time scales consistent with previous research. The results suggest drivers alter their behavioral output (steering wheel correction) relative to sensory input (vehicle heading error velocity) on a distinct temporal scale and may reflect an interaction of alerting and control. PMID:25356659

  4. Novel Measure of Driver and Vehicle Interaction Demonstrates Transient Changes Related to Alerting

    PubMed Central

    Brooks, Justin R.; Kerick, Scott E.; McDowell, Kaleb

    2015-01-01

    ABSTRACT Driver behavior and vehicle-road kinematics have been shown to change over prolonged periods of driving; however, the interaction between these two indices has not been examined. Here we develop a measure that examines how drivers turn the steering wheel relative to heading error velocity, which the authors call the relative steering wheel compensation (RSWC). The RSWC transiently changes on a short time scale coincident with a verbal query embedded within the study paradigm. In contrast, more traditional variables are dynamic over longer time scales consistent with previous research. The results suggest drivers alter their behavioral output (steering wheel correction) relative to sensory input (vehicle heading error velocity) on a distinct temporal scale and may reflect an interaction of alerting and control. PMID:25356659

  5. Developmental change and consistency in parental interactions with school-age children who have mental retardation.

    PubMed

    Floyd, F J; Costigan, C L; Phillippe, K A

    1997-05-01

    Developmental changes and within-family consistency in parent-child interactions were examined for mothers and fathers of school-age children (6 to 18 years) with mental retardation. At Time 1 and 18 to 24 months later, 98 families (29 single, 69 two-parent) with a child who had mild or moderate mental retardation completed semi-structured interaction sessions in their homes. As expected, both positive and negative exchanges decreased longitudinally, and cross-sectional comparisons revealed fewer parent commands, less child noncompliance, fewer child negatives, and less parent positive reciprocity with older children. Most behaviors were highly consistent between family members and stable over time. Findings were discussed in relation to parental responsiveness to developmental changes for the child and the coherence of family relationships over time. PMID:9152474

  6. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change. PMID:26822392

  7. Changes in thalamo-frontal interaction under different levels of anesthesia in rats.

    PubMed

    Shin, Teo Jeon; Cho, Dongrae; Ham, Jinsil; Choi, Dong-Hyuk; Kim, Seonghyun; Jeong, Seongwook; Kim, Hyoung-Ihl; Kim, Jae Gwan; Lee, Boreom

    2016-08-01

    Anesthesia is thought to be mediated by inhibiting the integration of information between different areas of the brain. Long-range thalamo-cortical interaction plays a critical role in inducing anesthesia-related unconsciousness. However, it remains unclear how this interaction change according to anesthetic depth. In this study, we aimed to investigate how different levels of anesthesia affect thalamo-frontal interactions. Prior to the experiment, electrodes were implanted to record local field potentials (LFPs). Isoflurane (ISO) was administered and LFPs were measured in rats from four different brain areas (left frontal, right frontal, left thalamus and right thalamus) at four different anesthesia levels: awake, deep (ISO 2.5vol%), light (ISO 1vol%) and recovery. Spectral granger causality (Spectral-GC) were calculated at the measured areas in accordance with anesthetic levels. Anesthesia led to a decrease in connectivity in the thalamo-frontal direction and an increase in connectivity in the frontal-thalamic direction. The changes in thalamo-frontal functional connectivity were prominent during deep anesthesia at high frequency bands. The connection strengths between the thalamus and the frontal area changed depending on the depth of anesthesia. The relationships between anesthetic levels and thalamo-frontal activity may shed light on the neural mechanism by which different levels of anesthesia act. PMID:27230989

  8. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with

  9. Minor Allele Frequency Changes the Nature of Genotype by Environment Interactions.

    PubMed

    Verhulst, Brad; Neale, Michael C

    2016-09-01

    In the classical twin study, phenotypic variation is often partitioned into additive genetic (A), common (C) and specific environment (E) components. From genetical theory, the outcome of genotype by environment interaction is expected to inflate A when the interacting factor is shared (i.e., C) between the members of a twin pair. We show that estimates of both A and C can be inflated. When the shared interacting factor changes the size of the difference between homozygotes' means, the expected sibling or DZ twin correlation is .5 if and only if the minor allele frequency (MAF) is .5; otherwise the expected DZ correlation is greater than this value, consistent (and confounded) with some additional effect of C. This result is considered in the light of the distribution of minor allele frequencies for polygenic traits. Also discussed is whether such interactions take place at the locus level or affect an aggregated biological structure or system. Interactions with structures or endophenotypes that result from the aggregated effects of many loci will generally emerge as part of the A estimate. PMID:27105628

  10. Enculturating science: Community-centric design of behavior change interactions for accelerating health impact.

    PubMed

    Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L

    2015-08-01

    Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning

  11. Interactive effects of global change factors on soil respiration and its components: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong; Nie, Yuanyuan; He, Yanghui; Jiang, Liling; Wu, Zhuoting; Hosseini Bai, Shahla

    2016-09-01

    As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the

  12. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    PubMed Central

    Baert, Jan M.; Janssen, Colin R.; Sabbe, Koen; De Laender, Frederik

    2016-01-01

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity–ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity–productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity–productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions. PMID:27534986

  13. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions.

    PubMed

    Baert, Jan M; Janssen, Colin R; Sabbe, Koen; De Laender, Frederik

    2016-01-01

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions. PMID:27534986

  14. Dynamic changes in brain aromatase activity following sexual interactions in males: where, when and why?

    PubMed Central

    de Bournonville, Catherine; Dickens, Molly J.; Ball, Gregory F.; Balthazart, Jacques; Cornil, Charlotte A.

    2012-01-01

    Summary It is increasingly recognized that estrogens produce rapid and transient effects at many neural sites ultimately impacting physiological and behavioral endpoints. The ability of estrogens to acutely regulate cellular processes implies that their concentration should also be rapidly fine-tuned. Accordingly, rapid changes in the catalytic activity of aromatase, the limiting enzyme for estrogen synthesis, have been identified that could serve as a regulatory mechanism of local estrogen concentrations. However, the precise anatomical localization, time-course, triggering stimuli and functional significance of these enzymatic changes in vivo are not well understood. To address these issues as to where, when and why aromatase activity (AA) rapidly changes after sexual interactions, AA was assayed in six populations of aromatase-expressing cells microdissected from the brain of male quail that experienced varying durations of visual exposure to or copulation with a female. Sexual interactions resulted in a rapid AA inhibition. This inhibition occurred in specific brain regions (including the medial preoptic nucleus), in a context-dependent fashion and time-scale suggestive of post-translational modifications of the enzyme. Interestingly, the enzymatic fluctuations occurring in the preoptic area followed rather than preceded copulation and were tied specifically to the female's presence. This pattern of enzymatic changes suggests that rapid estrogen effects are important during the motivational phase of the behavior to trigger physiological events essential to activate mate search and copulation. PMID:22999655

  15. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.

    PubMed

    Lee, Tzong-Hsien; Hirst, Daniel J; Aguilar, Marie-Isabel

    2015-09-01

    Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein-membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:26009270

  16. The role of interactions in a world implementing adaptation and mitigation solutions to climate change.

    PubMed

    Warren, Rachel

    2011-01-13

    The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world. PMID:21115521

  17. Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves

    PubMed Central

    Mantei, Kristen E.; Ramakrishnan, Selvakumar; Sharp, Peter J.; Buntin, John D.

    2008-01-01

    Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity. PMID

  18. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    PubMed Central

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-01-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307

  19. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    NASA Astrophysics Data System (ADS)

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W. F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-08-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

  20. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  1. Climate change affects the outcome of competitive interactions-an application of principal response curves.

    PubMed

    Heegaard, Einar; Vandvik, Vigdis

    2004-05-01

    It has been hypothesised that climate change may affect vegetation by changing the outcome of competitive interactions. We use a space-for-time approach to evaluate this hypothesis in the context of alpine time-of-snowmelt gradients. Principal response curves, a multivariate repeated-measurement analysis technique, are used to analyse for compositional differences in local ridge-to-snowbed gradients among 100 m altitudinal bands from 1,140 to 1,550 m a.s.l., corresponding to a temperature gradient of 2.5 degrees C (local lapse rate is 0.6 degrees C). The interaction between time-of-snowmelt and altitude is strongly significant statistically, indicating that the altitudinal gradient cannot be explained simply by the physiological responses of the species, but that there are also changes in the outcome of competitive interactions. At higher altitudes, there is a decrease in the time-of-snowmelt ranges of species which have intermediate times-of-snowmelt optima, whereas snowbed (chinophilous) species have wider time-of-snowmelt ranges. As snowbed species can survive, grow and reproduce at very early snow-free sites at high altitudes, the most likely explanation for their absence from all but the latest time-of-snowmelt habitats at lower altitudes is competitive exclusion by more vigorous lee-side species. This suggests that with future climate change snowbed species will experience, in addition to habitat fragmentation and reduced size of habitats due to increased temperature and snowmelt, an indirect effect due to competitive exclusion from late-snowmelt sites by species that have their optima outside snowbeds. PMID:15021981

  2. Training mildly handicapped peers to facilitate changes in the social interaction skills of autistic children.

    PubMed Central

    Shafer, M S; Egel, A L; Neef, N A

    1984-01-01

    We evaluated the effects of a peer-training strategy, consisting of direct prompting and modeling, on the occurrence and duration of interactions between autistic students and nonautistic peer-trainers. Data were obtained in both training and generalization settings. The results of a multiple-baseline design across students demonstrated that:the direct prompting procedure produced immediate and substantial increases in the occurrences and durations of positive social interactions between the peer-trainers and autistic students; these increases were maintained across time at levels above baseline during subsequent free-play probes; these findings were judged by teachers to be socially valid; untrained peers increased their interactions with the autistic students in three of the four groups; generalization of behavior change across settings occurred only after specific programming; and interactions between untrained peers and peer-trainers decreased following training. Variables that may account for the results and the implications of these findings for peer-mediated interventions are discussed. PMID:6526767

  3. Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship

    PubMed Central

    Grigaltchik, Veronica S.; Ward, Ashley J. W.; Seebacher, Frank

    2012-01-01

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator–prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10–30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator–prey interactions can be a mechanism by which global warming affects ecological communities. PMID:22859598

  4. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants

    PubMed Central

    Barbieri, Rafael F.; Lester, Philip J.; Miller, Alexander S.; Ryan, Ken G.

    2013-01-01

    Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success. PMID:24266038

  5. Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.

    PubMed

    Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice

    2016-01-01

    We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release. PMID:26264114

  6. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    PubMed

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  7. Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling.

    PubMed

    Zhao, Yan; Chen, Zhangyi; Li, Jianke; Xu, Mingsheng; Shao, Yaoyao; Tu, Yonggang

    2016-07-15

    Changes in gel microstructure characteristics and in intermolecular interactions of preserved egg whites during pickling were investigated. Spin-spin relaxation times of preserved egg whites significantly decreased in the first 8 days and remained unchanged after the 16th day. SEM images revealed a three-dimensional gel network, interwoven with a loose linear fibrous mesh structure. The protein gel mesh structure became more regular, smaller, and compacted with pickling time. Free sulfhydryl contents in the egg whites increased significantly, while total sulfhydryl contents dramatically decreased during pickling. The primary intermolecular forces in the preserved egg white gels were ionic and disulfide bonds. Secondary forces included hydrophobic interaction and relatively few hydrogen bonds. During the first 8 days, the proportion of ionic bonds sharply decreased, and that of disulfide bonds increased over the first 24 days. PMID:26948621

  8. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons

    PubMed Central

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I.; Castilla, Rocío; Barreto, George E.; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  9. Carbon and water interactions and the footprint of climate-change activities (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2010-12-01

    Although climate change will have profound effects on ecosystems worldwide, climate policies will alter many terrestrial systems more in the coming decade than climate change will. Biofuels, renewable portfolio standards for electricity, and carbon pricing and offsets all change the global carbon cycle by design, competing for land area and land uses in ways that alter native systems. Just as importantly, such activities inevitably - and profoundly - change the Earth’s water cycle. In cases such as reduced emissions from deforestation and degradation (REDD), climate change activities could cut global deforestation rates in half by 2030, preserving 1.5 to 3 billion 9 metric tons of CO2-equivalent (tCO2e) emissions yearly and preserving the benefits of tropical forests for water recycling. In other cases, such as afforestation (tree planting) or biofuels, fundamental trade-offs exist between maximizing net primary production on land and the amounts of water required for such activities. Fundamental biogeochemical knowledge of carbon-water interactions can help to maximize the benefits of climate policies while preserving water resources and other ecosystem services wherever possible.

  10. Interactive change detection based on dissimilarity image and decision tree classification

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Crouzil, Alain; Puel, Jean-Baptiste

    2015-02-01

    Our study mainly focus on detecting changed regions in two images of the same scene taken by digital cameras at different times. The images taken by digital cameras generally provide less information than multi-channel remote sensing images. Moreover, the application-dependent insignificant changes, such as shadows or clouds, may cause the failure of the classical methods based on image differences. The machine learning approach seems to be promising, but the lack of a sufficient volume of training data for photographic landscape observatories discards a lot of methods. So we investigate in this work the interactive learning approach and provide a discriminative model that is a 16-dimensional feature space comprising the textural appearance and contextual information. Dissimilarity measures in different neighborhood sizes are used to detect the difference within the neighborhood of an image pair. To detect changes between two images, the user designates change and non-change samples (pixel sets) in the images using a selection tool. This data is used to train a classifier using decision tree training method which is then applied to all the other pixels of the image pair. The experiments have proved the potential of the proposed approach.

  11. Aerosols, Clouds, and Precipitation as Scale Interactions in the Climate System and Controls on Climate Change

    NASA Astrophysics Data System (ADS)

    Donner, Leo

    Clouds are major regulators of atmospheric energy flows. Their character depends on atmospheric composition, dynamics, and thermodynamic state. Clouds can assume organized structures whose scales are planetary, while processes important for determining basic properties occur on the scale of microns. The range of processes, scales, and interactions among them has precluded the development of concise theories for the role of clouds in climate, and limitations in modeling clouds in complex climate models remain among the key uncertainties in understanding and projecting climate change. The distribution function of vertical velocities (updraft speeds) in clouds is an important control on climate forcing by clouds and possibly a strong correlate with climate sensitivity. (Climate forcing refers to the change in Earth's energy balance as atmospheric composition changes, in particular, due to human activity. Climate sensitivity is defined here as the equilibrium change in globally averaged annual surface temperature as a result of doubled carbon dioxide.) Vertical velocities are central because they determine the thermodynamic environment governing phase changes of water, with both equilibrium and non-equilibrium phenomena important. The spatial and temporal spectra of relevant vertical velocities includes scales both numerically resolved by climate models and below their resolution limit. The latter implies a requirement to parameterize these smaller scale motions in models. The scale dependence of vertical velocities and emerging observational constraints on their distribution provide new opportunities for representing aerosols, clouds, and precipitation in climate models. Success in doing so could provide important breakthroughs in understanding both climate forcing and sensitivity.

  12. Investigation of Protein-Protein Interactions and Conformational Changes in Hedgehog Signaling Pathway by FRET.

    PubMed

    Fu, Lin; Lv, Xiangdong; Xiong, Yue; Zhao, Yun

    2015-01-01

    Protein-protein interactions and signal-induced protein conformational changes are fundamental molecular events that are considered as essential in modern life sciences. Among various techniques developed to study such phenomena, fluorescence resonance energy transfer (FRET) is a widely used method with many advantages in detecting these molecular events. Here, we describe the application of FRET in the mechanistic investigation of cell signal transduction, taking the example of the Hh signaling pathway, which plays a critical role in embryonic development and tissue homeostasis. A number of general guidelines as well as some key notes have been summarized as a protocol for reader's reference. PMID:26179039

  13. `Our Changing Climate' - A new interactive game about weather, climate, the Earth's energy budget and the impacts caused by climate change

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Lorentz, K.; Ruhlman, K.; Gilman, I.; Chambers, L. H.

    2010-12-01

    ‘Our Changing Climate’ is a brand new game developed at NASA’s Langley Research Center by the Informal Education group and the Science Directorate to educate the public on Earth’s climate system how the Sun, ocean, atmosphere, clouds, ice, land, and life interact with each other, and how these interactions are changing due to anthropogenic effects. The game was designed for students in middle school (5th and 8th grade) between the ages of 10-14 as part of the NASA's Summer of Innovation campaign for excellence in science, technology, engineering and mathematics, or STEM, education. The game, ‘Our Changing Climate’, is composed of a series of interactive boards, featuring the following topics: (1) the difference between weather and climate - “Weather vs Climate”, (2) the interactions of clouds and greenhouse gases on short and long wave radiation - “Greenhouse Gases and Clouds”, and (3) the definition of albedo and the importance of bright surfaces over the Arctic - “Arctic Temperature”. Each interactive board presents a climate system and steps the student or spectator through the climate interaction using “clues” and hands-on items that they need to put correctly on the board to understand the concept. Once the student or spectator finishes this part, they then have a better grasp of the concept and are able to understand how these interactions are changing due to the increase in average global temperature. This knowledge is then tested or “driven home” with interactive questions that show how these interactions in our climate are changing today. The concept is then reinforced with an example of a recent event presented in the media. The game has been piloted in outreach and informal settings, as well as for professional development of educators. The game, interactions and engagement of each of the audiences mentioned will be presented.

  14. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change.

    PubMed

    Ballaré, C L; Caldwell, M M; Flint, S D; Robinson, S A; Bornman, J F

    2011-02-01

    Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms. PMID:21253661

  15. Analysing change in music therapy interactions of children with communication difficulties.

    PubMed

    Spiro, Neta; Himberg, Tommi

    2016-05-01

    Music therapy has been found to improve communicative behaviours and joint attention in children with autism, but it is unclear what in the music therapy sessions drives those changes. We developed an annotation protocol and tools to accumulate large datasets of music therapy, for analysis of interaction dynamics. Analysis of video recordings of improvisational music therapy sessions focused on simple, unambiguous individual and shared behaviours: movement and facing behaviours, rhythmic activity and musical structures and the relationships between them. To test the feasibility of the protocol, early and late sessions of five client-therapist pairs were annotated and analysed to track changes in behaviours. To assess the reliability and validity of the protocol, inter-rater reliability of the annotation tiers was calculated, and the therapists provided feedback about the relevance of the analyses and results. This small-scale study suggests that there are both similarities and differences in the profiles of client-therapist sessions. For example, all therapists faced the clients most of the time, while the clients did not face back so often. Conversely, only two pairs had an increase in regular pulse from early to late sessions. More broadly, similarity across pairs at a general level is complemented by variation in the details. This perhaps goes some way to reconciling client- and context-specificity on one hand and generalizability on the other. Behavioural characteristics seem to influence each other. For instance, shared rhythmic pulse alternated with mutual facing and the occurrence of shared pulse was found to relate to the musical structure. These observations point towards a framework for looking at change in music therapy that focuses on networks of variables or broader categories. The results suggest that even when starting with simple behaviours, we can trace aspects of interaction and change in music therapy, which are seen as relevant by therapists

  16. Analysing change in music therapy interactions of children with communication difficulties

    PubMed Central

    2016-01-01

    Music therapy has been found to improve communicative behaviours and joint attention in children with autism, but it is unclear what in the music therapy sessions drives those changes. We developed an annotation protocol and tools to accumulate large datasets of music therapy, for analysis of interaction dynamics. Analysis of video recordings of improvisational music therapy sessions focused on simple, unambiguous individual and shared behaviours: movement and facing behaviours, rhythmic activity and musical structures and the relationships between them. To test the feasibility of the protocol, early and late sessions of five client–therapist pairs were annotated and analysed to track changes in behaviours. To assess the reliability and validity of the protocol, inter-rater reliability of the annotation tiers was calculated, and the therapists provided feedback about the relevance of the analyses and results. This small-scale study suggests that there are both similarities and differences in the profiles of client–therapist sessions. For example, all therapists faced the clients most of the time, while the clients did not face back so often. Conversely, only two pairs had an increase in regular pulse from early to late sessions. More broadly, similarity across pairs at a general level is complemented by variation in the details. This perhaps goes some way to reconciling client- and context-specificity on one hand and generalizability on the other. Behavioural characteristics seem to influence each other. For instance, shared rhythmic pulse alternated with mutual facing and the occurrence of shared pulse was found to relate to the musical structure. These observations point towards a framework for looking at change in music therapy that focuses on networks of variables or broader categories. The results suggest that even when starting with simple behaviours, we can trace aspects of interaction and change in music therapy, which are seen as relevant by therapists

  17. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  18. Modeling Abrupt Change in Global Sea Level Arising from Ocean - Ice-Sheet Interaction

    SciTech Connect

    Holland, David M

    2011-09-24

    It is proposed to develop, validate, and apply a coupled ocean ice-sheet model to simulate possible, abrupt future change in global sea level. This research is to be carried out collaboratively between an academic institute and a Department of Energy Laboratory (DOE), namely, the PI and a graduate student at New York University (NYU) and climate model researchers at the Los Alamos National Laboratory (LANL). The NYU contribution is mainly in the area of incorporating new physical processes into the model, while the LANL efforts are focused on improved numerics and overall model development. NYU and LANL will work together on applying the model to a variety of modeling scenarios of recent past and possible near-future abrupt change to the configuration of the periphery of the major ice sheets. The project's ultimate goal is to provide a robust, accurate prediction of future global sea level change, a feat that no fully-coupled climate model is currently capable of producing. This proposal seeks to advance that ultimate goal by developing, validating, and applying a regional model that can simulate the detailed processes involved in sea-level change due to ocean ice-sheet interaction. Directly modeling ocean ice-sheet processes in a fully-coupled global climate model is not a feasible activity at present given the near-complete absence of development of any such causal mechanism in these models to date.

  19. Top-down Control of Stream Food Webs: Indirect Effects by Changed Behaviour and Species Interactions

    NASA Astrophysics Data System (ADS)

    Winkelmann, C.; Petzoldt, T.; Koop, J. H.; Benndorf, J.

    2005-05-01

    Predators may directly control stream food webs by consuming invertebrates. But sub lethal effects on prey such as change of activity rhythm or feeding behaviour may lead to indirect effects of predation on other species. Thus, predators may strongly effect invertebrate community structure. The aim of a currently running paired ecosystem experiment is to detect changes of species interaction induced by benthivorous gudgeon (Gobio gobio). For this purpose we link the measurement of physiological fitness parameters to the observation of behavioural changes. Preliminary studies indicated a top-down control of the drift activity of Baetis larvae, while a bottom-up effect could not be observed. The presence of benthivorous gudgeon led to a significantly changed species composition of the invertebrate drift and reduced drift activity of Baetis larvae compared to the fish free control. The diurnal drift pattern of Baetis larvae with a nocturnal peak was observed both in the control and fish reaches. Thus benthivorous gudgeon controls the drift behaviour in a similar way as known for drift-feeding trout. The content of triglycerides and glycogen did not differ between the drifting and not-drifting individuals. Therefore their energetic status does not seem to control drift the activity of Baetis larvae.

  20. The influence of phase changes on debris-cloud interactions with protected structures

    SciTech Connect

    Lawrence, R.J.; Kmetyk, L.N.; Chhabildas, L.C.

    1994-05-16

    The physical state of the debris cloud generated by the interaction of a projectile with a thin target depends on the energy balance associated with above the sound speeds of the impact event. At impact velocities well materials involved, the cloud is expected to be primarily molten, but with some vapor present. A series of numerical calculations using the multi-dimensional finite-difference hydrocode CTH has been used to evaluate the effect of phase changes (i.e., different vapor fractions) on these clouds, and their subsequent interaction with backwall structures. In the calculations, higher concentrations of vapor are achieved by increasing the initial temperature of both the projectile and the thin shield while keeping the impact velocity constant, and by actually increasing the impact velocity. The nature of the debris cloud and its subsequent loading on the protected structure depend on both its thermal and physical state. This interaction can cause rupture, spallation or simply bulging of the backwall. These computational results are discussed and compared with new experimental observations obtained at an impact velocity of {approximately}10 km/s. In the experiment, the debris cloud was generated by the impact of a plate-shaped titanium projectile with a thin titanium shield.

  1. The Influence of Seasonally Changing Groundwater/Surface Water Interaction on the Composition of Sediment Fauna

    NASA Astrophysics Data System (ADS)

    Schmidt, S. I.; Hahn, H. J.; Hatton, T. J.; Woodbury, R. J.; Watson, G. D.

    2005-05-01

    Sediment fauna in both streams and groundwater are crucial to the functioning of sediment processes, and are known to be highly influenced by hydraulics. But how does the seasonal variation of groundwater/surface water interactions influence the faunal composition? This question was addressed in a small Western Australian catchment, where four stream sediment sites and 30 groundwater bores were sampled over the period of one year. Mixed fauna at those sites displaying groundwater/surface water interaction was expected. However, there were virtually no species common to groundwater bores and stream sediment tubes, although they were sampled using the same method. The missing species exchange was probably due to the small pore spaces. Since the hydrological and chemical variety within groundwater sites was surprising, going far beyond gradually changing interactions with surface water, we grouped the groundwater sites into four major hydrogeological classes and looked for patterns with which fauna reflected these groups. In two of these hydrogeological groups (Artesian and concentration zones) no fauna was found at all, while fauna was sampled regularly in discharging and recharging zones. Fauna in groundwater bores also reflected whether groundwater was recharged from precipitation alone or also at least seasonally from the stream.

  2. In vitro cytokines profile and ultrastructural changes of microglia and macrophages following interaction with Leishmania.

    PubMed

    Ramos, Patricia Karla Santos; Brito, Maysa de Vasconcelos; Silveira, Fernando Tobias; Salgado, Cláudio Guedes; De Souza, Wanderley; Picanço-Diniz, Cristovam Wanderley; Picanço-Diniz, José Antonio Junior

    2014-07-01

    In the present study, we assessed morphological changes and cytokine production after in vitro interaction with causative agents of American cutaneous leishmaniasis and compared the microglia and macrophage immune responses. Cultures of microglia and macrophages infected with stationary-phase promastigotes of Leishmania (Viannia) shawi, Leishmania (Viannia) braziliensis or Leishmania (Leishmania) amazonensis were evaluated 24, 48 and 72 h after interaction. Macrophages only presented the classical phagocytic process while microglia also displayed large cytoplasmic projections similar to the ruffles described in macropinocytosis. In the macrophage cultures, the percentage of infected cells increased over time, in a fashion that was dependent on the parasite species. In contrast, in microglial cells as the culture time progressed, there was a significant reduction in the percentage of infected cells independent of parasite species. Measurements of cytokines in macrophage cultures 48 h after interactions revealed distinct expression patterns for different parasites, whereas in microglial cultures they were similar for all Leishmania tested species. Taken together, our results suggest that microglia may have a higher phagocytic ability and cytotoxic potential than macrophages for all investigated species. The robust response of microglia against all parasite species may suggest microglia have an important role in the defence against cerebral leishmaniasis. PMID:24717447

  3. Interaction of Insect Defoliation, Wildfires and Climate Change on Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hom, J.; van Tuyl, S.; Scheller, R.; Pan, Y.; Clark, K.; Cole, J.; Foster, J.; Patterson, M.; Gallagher, M.

    2009-05-01

    We assess and predict the interactive effects of gypsy moth defoliation, fire management, and climate change on carbon uptake, forest productivity, species composition, and tree mortality in the New Jersey Pine Barrens. This effort will combine carbon flux measurements, a forest landscape disturbance model, and field monitoring data. We will determine how interactions among these disturbances affect current management and potential carbon management goals. The LANDIS-II forest landscape simulation model in this study uses three model extensions or modules: the Dynamic Fire System (DFS) extension, the Biomass Succession extension, and an insect defoliation extension. Parameterization of the DFS and the Biomass Succession extension uses new and existing data sources for the study area. This includes flux tower data from three upland forest types, for annual net ecosystem exchange of carbon taken before and after defoliation as well as during prescribed burns. An intensified grid of FIA-type plots around each tower (up to 24 plots per tower) provides additional biometric information. The study conducted a field mortality survey and canopy foliar analysis to understand the process of forest decline with insect defoliation. This project provides a predictive framework for working through landscape to regional management scenarios in areas with multiple, interacting management priorities that can be applied across the US, especially in areas where both insect and fire disturbances occur.

  4. Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.

    PubMed

    Hsu, Shen-Hsing; Lo, Yueh-Yu; Liu, Tseng-Huang; Pan, Yih-Jiuan; Huang, Yun-Tzu; Sun, Yuh-Ju; Hung, Cheng-Chieh; Tseng, Fan-Gang; Yang, Chih-Wei; Pan, Rong-Long

    2015-01-01

    Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog. PMID:25451931

  5. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    PubMed

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region. PMID:25010945

  6. Cation Interactions and Membrane Potential Induce Conformational Changes in NaPi-IIb.

    PubMed

    Patti, Monica; Fenollar-Ferrer, Cristina; Werner, Andreas; Forrest, Lucy R; Forster, Ian C

    2016-09-01

    Voltage-dependence of Na(+)-coupled phosphate cotransporters of the SLC34 family arises from displacement of charges intrinsic to the protein and the binding/release of one Na(+) ion in response to changes in the transmembrane electric field. Candidate coordination residues for the cation at the Na1 site were previously predicted by structural modeling using the x-ray structure of dicarboxylate transporter VcINDY as template and confirmed by functional studies. Mutations at Na1 resulted in altered steady-state and presteady-state characteristics that should be mirrored in the conformational changes induced by membrane potential changes. To test this hypothesis by functional analysis, double mutants of the flounder SLC34A2 protein were constructed that contain one of the Na1-site perturbing mutations together with a substituted cysteine for fluorophore labeling, as expressed in Xenopus oocytes. The locations of the mutations were mapped onto a homology model of the flounder protein. The effects of the mutagenesis were characterized by steady-state, presteady-state, and fluorometric assays. Changes in fluorescence intensity (ΔF) in response to membrane potential steps were resolved at three previously identified positions. These fluorescence data corroborated the altered presteady-state kinetics upon perturbation of Na1, and furthermore indicated concomitant changes in the microenvironment of the respective fluorophores, as evidenced by changes in the voltage dependence and time course of ΔF. Moreover, iodide quenching experiments indicated that the aqueous nature of the fluorophore microenvironment depended on the membrane potential. These findings provide compelling evidence that membrane potential and cation interactions induce significant large-scale structural rearrangements of the protein. PMID:27602725

  7. Assessing the Land-Ocean Interaction under Extreme Climate Change Condition - a Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, T.; Leung, R.; Balaguru, K.; Hibbard, K. A.

    2011-12-01

    Many modeling applications, at global and regional scales, have demonstrated that numerical models are useful tools to quantify the uncertainty and the interactions between natural physical and biogeochemical processes and human activities in coastal regions. A regional integrated assessment modeling framework to investigate the interactions of agriculture and land use, coastal ecological issues, energy supply and effects of climate changes is under development by Pacific Northwest National Laboratory (PNNL), with specific application to the Gulf of Mexico. The Gulf is vulnerable to the direct impacts of climate changes, such as sea level rise, hurricane-induced storm surge and extreme floods due to high precipitation and river run-off. This presentation will focus on the coastal modeling aspect of this integrated modeling approach. An unstructured-grid finite volume coastal ocean model, which has the capability of simulating coastal circulation, wave and storm surges, sediment transport and biogeochemical processes, is applied to simulate hurricane storm surges and extreme flood events in the coastal region of Gulf of Mexico. Specifically, storm surge along the US Southeast coasts and freshwater plume in the Mississippi Delta were simulated and compared to observations. Numerical sensitivity studies with boundary conditions and forcing indicated the urgent need of a real observation network as well as the importance of accurate model predictions at regional scales to drive the model at smaller scales. The implication of natural pressures, such as storm surge and flooding to biogeochemical processes and marine ecosystem will be discussed.

  8. Tree mortality from drought, insects, and their interactions in a changing climate

    USGS Publications Warehouse

    Anderegg, William R. L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie

    2015-01-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.

  9. The smell of change: warming affects species interactions mediated by chemical information.

    PubMed

    Sentis, Arnaud; Ramon-Portugal, Felipe; Brodeur, Jacques; Hemptinne, Jean-Louis

    2015-10-01

    Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes. PMID:25820469

  10. COMBINED AND INTERACTIVE EFFECTS OF GLOBAL CLIMATE CHANGE AND TOXICANTS ON POPULATIONS AND COMMUNITIES

    PubMed Central

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator–prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities. Environ. Toxicol. Chem. 2013;32:49–61. © 2012 SETAC PMID:23147390

  11. Tree mortality from drought, insects, and their interactions in a changing climate.

    PubMed

    Anderegg, William R L; Hicke, Jeffrey A; Fisher, Rosie A; Allen, Craig D; Aukema, Juliann; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W; Macalady, Alison K; McDowell, Nate; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D; Stephenson, Nathan L; Tague, Christina; Zeppel, Melanie

    2015-11-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change. PMID:26058406

  12. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    USGS Publications Warehouse

    Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  13. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    PubMed Central

    Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354

  14. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    NASA Astrophysics Data System (ADS)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    the shortcomings of current climate models in the projections of future climate change and feedback mechanisms at high latitudes. Interactions and feedbacks between clouds, sea ice, and various atmospheric circulation patterns in the Arctic are also investigated based on multi-decadal satellite products, including cloud characteristics and radiation fluxes from the MODerate resolution Imaging Spectroradiometer (MODIS) data and the APP-x dataset, sea ice products from Special Sensor Microwave/Imager (SSM/I), and various atmospheric parameters from reanalysis data sets. Results demonstrate that changes in sea ice concentration and cloud cover played major roles in the magnitude of recent Arctic surface temperature trends. Interactions between sea ice and clouds are strong, such that recent shrinking of sea ice extent might influence future cloud cover changes. Not surprisingly, cloud cover is also affected by changes in large-scale atmospheric circulation patterns. Quantitative analyses of the relationships between trends in these parameters provide new insight into polar climates.

  15. Nectin-Like Interactions between Poliovirus and Its Receptor Trigger Conformational Changes Associated with Cell Entry

    PubMed Central

    Strauss, Mike; Filman, David J.; Belnap, David M.; Cheng, Naiqian; Noel, Roane T.

    2015-01-01

    ABSTRACT Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called “pocket factor”), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. IMPORTANCE The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are

  16. A Web-Based Modelling Platform for Interactive Exploration of Regional Responses to Global Change

    NASA Astrophysics Data System (ADS)

    Holman, I.

    2014-12-01

    Climate change adaptation is a complex human-environmental problem that is framed by the uncertainty in impacts and the adaptation choices available, but is also bounded by real-world constraints such as future resource availability and environmental and institutional capacities. Educating the next generation of informed decision-makers that will be able to make knowledgeable responses to global climate change impacts requires them to have access to information that is credible, accurate, easy to understand, and appropriate. However, available resources are too often produced by inaccessible models for scenario simulations chosen by researchers hindering exploration and enquiry. This paper describes the interactive exploratory web-based CLIMSAVE Integrated Assessment (IA) Platform (www.climsave.eu/iap) that aims to democratise climate change impacts, adaptation and vulnerability modelling. The regional version of the Platform contain linked simulation models (of the urban, agriculture, forestry, water and biodiversity sectors), probabilistic climate scenarios and socio-economic scenarios, that enable users to select their inputs (climate and socioeconomic), rapidly run the models using their input variable settings and view their chosen outputs. The interface of the CLIMSAVE IA Platform is designed to facilitate a two-way iterative process of dialogue and exploration of "what if's" to enable a wide range of users to improve their understanding surrounding impacts, adaptation responses and vulnerability of natural resources and ecosystem services under uncertain futures. This paper will describe the evolution of the Platform and demonstrate how using its holistic framework (multi sector / ecosystem service; cross-sectoral, climate and socio-economic change) will help to assist learning around the challenging concepts of responding to global change.

  17. Multi-finger interaction during involuntary and voluntary single finger force changes

    PubMed Central

    Martin, J.R.; Zatsiorsky, V.M.; Latash, M.L.

    2011-01-01

    Two types of finger interaction are characterized by positive co-variation (enslaving) or negative co-variation (error compensation) of finger forces. Enslaving reflects mechanical and neural connections among fingers, while error compensation results from synergic control of fingers to stabilize their net output. Involuntary and voluntary force changes by a finger were used to explore these patterns. We hypothesized that synergic mechanisms will dominate during involuntary force changes, while enslaving will dominate during voluntary finger force changes. Subjects pressed with all four fingers to match a target force that was 10% of their maximum voluntary contraction (MVC). One of the fingers was unexpectedly raised 5.0 mm at a speed of 30.0 mm/s. During finger raising the subject was instructed “not to intervene voluntarily”. After the finger was passively lifted and a new steady-state achieved, subjects pressed down with the lifted finger, producing a pulse of force voluntarily. The data were analyzed in terms of finger forces and finger modes (hypothetical commands to fingers reflecting their intended involvement). The target finger showed an increase in force during both phases. In the involuntary phase, the target finger force changes ranged between 10.71 ± 1.89% MVC (I-finger) and 16.60 ± 2.26% MVC (L-finger). Generally, non-target fingers displayed a force decrease with a maximum amplitude of −1.49 ± 0.43% MVC (L-finger). Thus, during the involuntary phase, error compensation was observed – non-lifted fingers showed a decrease in force (as well as in mode magnitude). During the voluntary phase, enslaving was observed – non-target fingers showed an increase in force and only minor changes in mode magnitude. The average change in force of non-target fingers ranged from 21.83 ± 4.47% MVC for R-finger (M-finger task) to 0.71 ± 1.10 % MVC for L-finger (I-finger task). The average change in mode of non-target fingers was between −7.34 ± 19

  18. Interaction between Neuroanatomical and Psychological Changes after Mindfulness-Based Training

    PubMed Central

    Santarnecchi, Emiliano; D’Arista, Sicilia; Egiziano, Eutizio; Gardi, Concetta; Petrosino, Roberta; Vatti, Giampaolo; Reda, Mario; Rossi, Alessandro

    2014-01-01

    Several cross-sectional studies have documented neuroanatomical changes in individuals with a long history of meditation, while a few evidences are available about the interaction between neuroanatomical and psychological changes even during brief exposure to meditation. Here we analyzed several morphometric indexes at both cortical and subcortical brain level, as well as multiple psychological dimensions, before and after a brief -8 weeks- Mindfulness Based Stress Reduction (MBSR) training program, in a group of 23 meditation naïve-subjects compared to age-gender matched subjects. We found a significant cortical thickness increase in the right insula and the somatosensory cortex of MBSR trainees, coupled with a significant reduction of several psychological indices related to worry, state anxiety, depression and alexithymia. Most importantly, an interesting correlation between the increase in right insula thickness and the decrease in alexithymia levels during the MBSR training were observed. Moreover, a multivariate pattern classification approach allowed to identify a cluster of regions more responsive to MBSR training across subjects. Taken together, these findings documented the significant impact of a brief MBSR training on brain structures, as well as stressing the idea of MBSR as a valuable tool for alexithymia modulation, also originally providing a plausible neurobiological evidence of a major role of right insula into mediating the observed psychological changes. PMID:25330321

  19. Effects of verbal interaction within cooperative groups on conceptual change in environmental science

    NASA Astrophysics Data System (ADS)

    Lindow, Lynn Eloise

    2000-10-01

    Conceptual change theorists argue that learning occurs as a consequence of students becoming dissatisfied with their initial knowledge and then searching for ideas that are intelligible and plausible. Cooperative groups provide the vehicle for verbal interactions to take place with research indicating improvement in achievement. This study examines the verbal interactions that occur in the cooperative learning setting and how that discourse reflects the components of conceptual change. Cooperative learning groups were videotaped as they participated in active learning sessions in a general science course where the participants experimented with short-term and long-term carbon cycling. Groups were introduced to the guidelines of cooperative learning and group roles were assigned to the groups. Videotaping was followed by stimulated recall interviews with participants from the groups. This data from the videotapes and the stimulated recall interviews were transcribed and assigned categories using the Q. S. R. NUD·IST software program to gain insights into the process of science learning. Interpretations were made based on the findings from the data. Prior knowledge or information gathered by participants in preparation for the active learning session was the starting point for discussions about scientific concepts. Once the discussions began, group members with confidence in their understanding of scientific concepts tended to participate and defend their ideas with examples. The recorder role was the most significant role as the recorder usually directed the discussions in order to develop complete responses. As the discussions continued, explanations by those who were confident assisted other group members with learning scientific concepts---peer teaching. As discourse occurred, conflicts in ideas generated discussion, clarifying ideas, elaborating on ideas, and reformulating science concepts until they were able to reach consensus. Through this process

  20. Interactions in hydrogen of relativistic neon to nickel projectiles: Total charge-changing cross sections

    SciTech Connect

    Chen, C.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T.G.; Insolia, A.; Jones, F.C.; Knott, C.N.; Lindstrom, P.J.; Mitchell, J.W.; Potenza, R.; Romanski, J.; Russo, G.V.; Soutoul, A.; Testard, O.; Tull, C.E.; Tuve, C.; Waddington, C.J.; Webber, W.R.; Wefel, J.P.; Zhang, X. Space Science Laboratory, University of California, Berkeley, California 94720 Service d'Astrophysique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, Cedex Dipartimento di Fisica, Universita di Catania, Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I 95129-Catania NASA

    1994-06-01

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.

  1. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors.

    PubMed

    Caldwell, Martyn M; Ballaré, Carlos L; Bornman, Janet F; Flint, Stephan D; Björn, Lars Olof; Teramura, Alan H; Kulandaivelu, G; Tevini, Manfred

    2003-01-01

    Based on research to date, we can state some expectations about terrestrial ecosystem response as several elements of global climate change develop in coming decades. Higher plant species will vary considerably in their response to elevated UV-B radiation, but the most common general effects are reductions in height of plants, decreased shoot mass if ozone reduction is severe, increased quantities of some phenolics in plant tissues and, perhaps, reductions in foliage area. In some cases, the common growth responses may be lessened by increasing CO2 concentrations. However, changes in chemistry of plant tissues will generally not be reversed by elevated CO2. Among other things, changes in plant tissue chemistry induced by enhanced UV-B may reduce consumption of plant tissues by insects and other herbivores, although occasionally consumption may be increased. Pathogen attack on plants may be increased or decreased as a consequence of elevated UV-B, in combination with other climatic changes. This may be affected both by alterations in plant chemistry and direct damage to some pathogens. Water limitation may decrease the sensitivity of some agricultural plants to UV-B, but for vegetation in other habitats, this may not apply. With global warming, the repair of some types of UV damage may be improved, but several other interactions between warming and enhanced UV-B may occur. For example, even though warming may lead to fewer killing frosts, with enhanced UV-B and elevated CO2 levels, some plant species may have increased sensitivity to frost damage. PMID:12659537

  2. Temperature and Soil Moisture Interactions in Quantifying Corn Yield Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.

    2011-12-01

    Corn yields have been shown to decline nonlinearly under particularly hot growing season conditions, and quantifying potential yield variability under different climate change scenarios remains a key question for global food security. Evidence from both empirical studies and process-based crop models suggest that in addition to the nonlinear effects of temperature on yield, an interaction between soil moisture and temperature might also be present. Exceptionally dry soils exacerbate the negative effect of high temperatures on yields, while high moisture content can buffer against heat stress, thereby mitigating yield loss. Precipitation has so far been an important variable in modeling yields because it acts as a proxy for soil moisture, which is more directly correlated with a crop's productivity, and because more reliable historical data exist for precipitation than for soil moisture. Furthermore, temperature and precipitation interact in complex ways in determining soil moisture, and hydrologic models are therefore needed to estimate soil moisture levels if these are to be incorporated into a statistical crop model based on historical data. We combine such a statistical model of corn yields in the U.S., downscaled and bias corrected temperature and precipitation outputs of 15 different climate models, and soil moisture datasets to quantify the importance of soil moisture in predicting yields. We also analyze the sensitivity of these results to the uncertainties associated with soil moisture measurement error and climate model spread.

  3. Breadth versus depth: Interactions that stabilize particle assemblies to changes in density or temperature

    NASA Astrophysics Data System (ADS)

    Piñeros, William D.; Baldea, Michael; Truskett, Thomas M.

    2016-02-01

    We use inverse methods of statistical mechanics to explore trade-offs associated with designing interactions to stabilize self-assembled structures against changes in density or temperature. Specifically, we find isotropic, convex-repulsive pair potentials that maximize the density range for which a two-dimensional square lattice is the stable ground state subject to a constraint on the chemical potential advantage it exhibits over competing structures (i.e., "depth" of the associated minimum on the chemical potential hypersurface). We formulate the design problem as a nonlinear program, which we solve numerically. This allows us to efficiently find optimized interactions for a wide range of possible chemical potential constraints. We find that assemblies designed to exhibit a large chemical potential advantage at a specified density have a smaller overall range of densities for which they are stable. This trend can be understood by considering the separation-dependent features of the pair potential and its gradient required to enhance the stability of the target structure relative to competitors. Using molecular dynamics simulations, we further show that potentials designed with larger chemical potential advantages exhibit higher melting temperatures.

  4. Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions

    PubMed Central

    Morriën, Elly; Engelkes, Tim; Macel, Mirka; Meisner, Annelein; Van der Putten, Wim H.

    2010-01-01

    Background and Aims In this Botanical Briefing we describe how the interactions between plants and their biotic environment can change during range-expansion within a continent and how this may influence plant invasiveness. Scope We address how mechanisms explaining intercontinental plant invasions by exotics (such as release from enemies) may also apply to climate-warming-induced range-expanding exotics within the same continent. We focus on above-ground and below-ground interactions of plants, enemies and symbionts, on plant defences, and on nutrient cycling. Conclusions Range-expansion by plants may result in above-ground and below-ground enemy release. This enemy release can be due to the higher dispersal capacity of plants than of natural enemies. Moreover, lower-latitudinal plants can have higher defence levels than plants from temperate regions, making them better defended against herbivory. In a world that contains fewer enemies, exotic plants will experience less selection pressure to maintain high levels of defensive secondary metabolites. Range-expanders potentially affect ecosystem processes, such as nutrient cycling. These features are quite comparable with what is known of intercontinental invasive exotic plants. However, intracontinental range-expanding plants will have ongoing gene-flow between the newly established populations and the populations in the native range. This is a major difference from intercontinental invasive exotic plants, which become more severely disconnected from their source populations. PMID:20354072

  5. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology.

    PubMed

    Kaplan, Ian; Carrillo, Juli; Garvey, Michael; Ode, Paul J

    2016-04-01

    In occupying an intermediate trophic position, herbivorous insects serve a vital link between plants at the base of the food chain and parasitoids at the top. Although these herbivore-mediated indirect plant-parasitoid interactions are well-documented, new studies have uncovered previously undescribed mechanisms that are fundamentally changing how we view tri-trophic relationships. In this review we highlight recent advances in this field focusing on both plant-driven and parasitoid-driven outcomes that flow up and down the trophic web, respectively. From the bottom-up, plant metabolites can impact parasitoid success by altering host immune function; however, few have considered the potential effects of other plant defense strategies such as tolerance on parasitoid ecology and behavior. From the top-down, parasitoids have long been considered plant bodyguards, but in reality the consequences of parasitism for herbivory rates and induction of plant defensive chemistry are far more complicated with cascading effects on community-level interactions. PMID:27436656

  6. Impacts of Aerosol-Cloud Interactions on Climate Change in East Asia

    NASA Astrophysics Data System (ADS)

    Shim, S.; Jung, Y.; Baek, H.; Cho, C.

    2013-12-01

    Climate impact by anthropogenic drivers gives high concerns in climate change simulation. IPCC AR4 emphasized the role of aerosol on climate besides the GHGs due to its negative significant radiative forcing. We find that climate feedback of anthropogenic aerosols over East Asia through direct and indirect (aerosol-cloud interaction) radiative process using HadGEM2-AO developed by the UK Met office. Due to the industrial revolution and population growth, total anthropogenic aerosol emissions have grown dramatically over East Asia; sulfate aerosol is the dominant component accounting for about 50% of total aerosol optical depth at 550nm (Figure 1). An increased amount of aerosols might increase the CCN number concentration and lead to more, but smaller, cloud droplets for fixed liquid water content. This increases the albedo of the cloud, resulting in enhance reflection and a cooling effect. And smaller drops require longer growth times to reach size at which they easily fall as precipitation. This effect called the cloud lifetime effect may enhance the cloud cover (Figure 2), with a persistent positive correlation between cloud cover and aerosol optical depth. Particularly, aerosols have an influence on the amount of cloud cover (SC, ST, and NS) through the interaction with precipitation efficiency of low level clouds. As a result of perturbations of East Asia aerosols from preindustrial to present day, a net radiative flux at the top of atmosphere is estimated to be -4 W/m2, with a regional mean surface cooling of 1.2 K. More detailed analysis will be shown at the conference. Fig. 1. (a) Total AOD distributions (b) Changes in decadal mean AOD over East Asia. Fig 2. Cloud cover distributions classified by ISCCP cloud types.

  7. The role of ocean-atmosphere interaction in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Nour-Eddine, Omrani; Keenlyside Noel, S.; Richard, Greatbatch

    2015-04-01

    Here, we present an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term coupled general circulation model experiment forced by the RCP 8.5 (Representative Concentration Pathways 8.5) scenario. In addition to globally strongly increased SSTs as a direct response to the radiative forcing, the model run shows a distinct change of the local sea surface temperature (SST hereafter) pattern in the Gulf Stream region. This includes changes of the SST gradients in the region of the Gulf Stream SST front, likely as a response of the wind-driven part of the oceanic surface circulation. As a consequence of a massive slow-down of the Atlantic Meridional Overturning Circulation the northern North Atlantic furthermore shows a much weaker warming than the other oceans. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of four runs: a control experiment based on the historical run, a run using the full SST from coupled RCP 8.5 run and two runs, where where we deconstructed the SST signal into a homogenous mean warming part and a local SST pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a a significant decrease in local precipitation. We show evidence that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. The warming causes a decreased low-level convergence and upward motion in the region with reduced SST gradient. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the SST pattern changes in the Gulf Stream region

  8. Entertainment-Education and Social Change: An Analysis of Parasocial Interaction, Social Learning, Collective Efficacy, and Paradoxical Communication.

    ERIC Educational Resources Information Center

    Papa, Michael J.; Singhal, Arvind; Law, Sweety; Pant, Saumya; Sood, Suruchi; Rogers, Everett M.; Shefner-Rogers, Corinne L.

    2000-01-01

    Explores processes of social change initiated by an entertainment-education radio soap opera by studying its effects in an observational case study in one rural village in India. Investigates the paradoxes, contradictions, and audience members' struggles in the process of media-stimulated change, a process involving parasocial interaction, peer…

  9. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies

    NASA Astrophysics Data System (ADS)

    Oliver, Tom H.; Marshall, Harry H.; Morecroft, Mike D.; Brereton, Tom; Prudhomme, Christel; Huntingford, Chris

    2015-10-01

    Climate change is expected to increase the frequency of some climatic extremes. These may have drastic impacts on biodiversity, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with `business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.

  10. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.

    PubMed

    Zhou, Shangbo; Yuan, Xingzhong; Peng, Shuchan; Yue, Junsheng; Wang, Xiaofeng; Liu, Hong; Williams, D Dudley

    2014-12-01

    Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW. PMID:25081003

  11. The Future Interaction of Science and Innovation Policy for Climate Change and National Security

    SciTech Connect

    Malone, Elizabeth L.; Cowell, Andrew J.; Riensche, Roderick M.

    2009-10-01

    Recent efforts to characterize the interactions among climate change and national security issues raise challenges of relating disparate bodies of scientific (both physical and social) knowledge as well as determining the role of innovation in meeting these challenges. Technological innovation has been called for to combat climate change, increase food production, and discover new ways of generating energy, and proposals for increased investments in R&D and technology deployment are to be met with everywhere. However, such policy decisions in one domain have impacts in other domains—often unexpected, often negative, but often capable of being addressed in planning stages. The technological tools described here allow users to embody the knowledge of different domains, to keep that knowledge up to date, and to define relationships, via both a model and an analytic game, such that policymakers can foresee problems and plan to forestall or mitigate them. Capturing and dynamically updating knowledge is the accomplishment of the Knowledge Encapsulation Framework. A systems dynamic model, created in STELLA®, simulates the relationships among different domains, so that relevant knowledge is applied to a seemingly independent issue. An analytic game provides a method to use that knowledge as it might be used in real-world settings.

  12. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important. PMID:18274006

  13. Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens

    PubMed Central

    Lake, Janice Ann; Wade, Ruth Nicola

    2009-01-01

    Crop losses caused by pests and weeds have been estimated at 42% worldwide, with plant pathogens responsible for almost $10 billion worth of damage in the USA in 1994 alone. Elevated carbon dioxide [ECO2] and associated climate change have the potential to accelerate plant pathogen evolution, which may, in turn, affect virulence. Plant–pathogen interactions under increasing CO2 concentrations have the potential to disrupt both agricultural and natural systems severely, yet the lack of experimental data and the subsequent ability to predict future outcomes constitutes a fundamental knowledge gap. Furthermore, nothing is known about the mechanistic bases of increasing pathogen agressiveness. In the absence of information on crop species, it is shown here that plant pathogen (Erysiphe cichoracearum) aggressiveness is increased under ECO2, together with changes in the leaf epidermal characteristics of the model plant Arabidopsis thaliana L. Stomatal density, guard cell length, and trichome numbers on leaves developing post-infection are increased under ECO2 in direct contrast to non-infected responses. As many plant pathogens utilize epidermal features for successful infection, these responses provide a positive feedback mechanism facilitating an enhanced susceptibility of newly developed leaves to further pathogen attack. Furthermore, a screen of resistant and susceptible ecotypes suggest inherent differences in epidermal responses to ECO2. PMID:19470658

  14. Interactive effects of global and regional change on a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; van Beusekom, Justus E. E.

    2008-03-01

    Shallow waters and lowland meet at the same level in the Wadden Sea, but are separated by walls of coastal defense. What are the prospects of this coastal ecosystem in a warmer world? We focus on tidal waters and inshore sedimentary bottoms, expect nutrient supply from land to decline and species introductions, temperature and sea level to rise. The effects are interrelated and will have an increasing likelihood of abrupt and irreversible developments. The biotic interactions are hardly predictable but we anticipate the following changes to be more likely than others: blooms of phytoplankton will be weak mainly because of increasing pelagic and benthic grazing pressure, both facilitated by warming. Possibly birds feeding on mollusks will encounter decreasing resource availability while fish-eaters benefit. Extensive reefs of Pacific oysters could facilitate aquatic macrophytes. Sea level rise and concomitant hydrodynamics above tidal flats favor well-anchored suspension feeders as well as burrowing fauna adapted to dynamic permeable sand. With high shares of immigrants from overseas and the south, species richness will increase; yet the ecosystem stability may become lower. We suggest that for the next decades invasions of introduced species followed by warming and declining nutrient supply will be the most pressing factor on the changes in the Wadden Sea ecosystem, and the effects of sea level rise to be the key issue on the scale of the whole century and beyond.

  15. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    SciTech Connect

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; Newman, Gregory S.; Moore, Jessica A. M.; Cregger, Melissa A.; Moorhead, Leigh C.; Patterson, Courtney M.

    2015-08-07

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allow co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.

  16. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    DOE PAGESBeta

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; Newman, Gregory S.; Moore, Jessica A. M.; Cregger, Melissa A.; Moorhead, Leigh C.; Patterson, Courtney M.

    2015-08-07

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less

  17. Interactive effects of reactive nitrogen and climate change on US water resources

    NASA Astrophysics Data System (ADS)

    Baron, J.; Bernhardt, E. S.; Finlay, J. C.; Chan, F.; Nolan, B. T.; Howarth, B.; Hall, E.; Boyer, E. W.

    2011-12-01

    Water resources and aquatic ecosystems are increasingly strained by withdrawals for agriculture and drinking water supply, nitrogen and other pollutant inputs, and climate change. We describe current and projected effects of the interactions of reactive nitrogen (N) and climate change on water resources of the United States. As perturbations to the N cycle intensify in a warmer less predictable climate, interactions will negatively affect the services we expect of our water resources. There are also feedbacks to the climate system itself through the production of greenhouse gases. We conclude: 1. Nitrogen concentrations will increase in the nation's waters from increased N loading and higher N mineralization rates. N export from terrestrial to aquatic ecosystems exhibits a high sensitivity to climate variations. 2. Consequences range from eutrophication and acidification, which reduce natural biodiversity and harm economically valuable fisheries, to adverse impacts on human health. 3. Extreme flood events have the potential to transport N rapidly long distances downstream from its source. 4. A recent national assessment found 67% of streams derived more than 37% of their total nitrate load from base flow often derived from groundwater. Long residence times for groundwater nitrate below agricultural fields may cause benefits from proper N management practices to take decades to be realized under current and future climates. 5. Streams, wetlands, rivers, lakes, estuaries and continental shelves are hotspots for denitrification. Maintenance of N removal capacity thus a critical component of eutrophication management under changing climate and land use conditions. 6. The amount of N inputs from fertilizer and manure use, human population, and deposition is tightly coupled with hydrology to influence the rates and proportion of N emitted to the atmosphere as N2O. About 20% of global N2O emissions come from groundwater, lakes, rivers, and estuaries; stream and wetland

  18. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes.

    PubMed

    Saidi, Laiq-Jan; Polydoro, Manuela; Kay, Kevin R; Sanchez, Laura; Mandelkow, Eva-Maria; Hyman, Bradley T; Spires-Jones, Tara L

    2015-01-01

    One of the hallmarks of Alzheimer's disease is the formation of neurofibrillary tangles, intracellular aggregates of hyperphosphorylated, mislocalized tau protein, which are associated with neuronal loss. Changes in tau are known to impair cellular transport (including that of mitochondria) and are associated with cell death in cell culture and mouse models of tauopathy. Thus clearing pathological forms of tau from cells is a key therapeutic strategy. One critical modulator in the degradation and clearance of misfolded proteins is the co-chaperone CHIP (Carboxy terminus Hsp70 interacting Protein), which is known to play a role in refolding and clearance of hyperphosphorylated tau. Here, we tested the hypothesis that CHIP could ameliorate pathological changes associated with tau. We find that co-expressing CHIP with full-length tau, tau truncated at D421 mimicking caspase cleavage, or the short tauRDΔK280 tau construct containing only the tau repeat domain with a tauopathy mutation, decreases tau protein levels in human H4 neuroglioma cells in a manner dependent on the Hsp70-binding TPR domain of CHIP. The observed reduction in tau levels by CHIP is associated with a decrease of tau phosphorylation and reduced levels of cleaved Caspase 3 indicating that CHIP plays an important role in preventing tau-induced pathological changes. Furthermore, tau-associated mitochondrial transport deficits are rescued by CHIP co-expression in H4 cells. Together, these data suggest that the co-chaperone CHIP can rescue the pathological effects of tau, and indicate that other diseases of protein misfolding and accumulation may also benefit from CHIP upregulation. PMID:25374103

  19. Climate change threatens endangered plant species by stronger and interacting water-related stresses

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2011-12-01

    Atmospheric CO2-concentration, temperature and rainfall variability are all expected to increase in the near future. The resulting increased dynamics of soil moisture contents, together with increased plant physiological demands for both oxygen and water, will lead to an increased occurrence of wet and dry extremes of plant stresses, i.e., of oxygen and drought stress, respectively, alone and in interaction. The use of indirect environmental variables in previous studies and a focus on individual stresses rather than their combined effects has hampered understanding of the causal impact of climate change on plant species composition through changes in abiotic site conditions. Here, we use process-based simulations of oxygen and drought stresses in conjunction with a downscaled national version of IPCC scenarios in order to show that these stresses will increase (on average by ˜20% at sites where both stresses occur) in a warmer and more variable future (2050) climate. These two types of stresses will increasingly coincide, i.e. both stresses will occur more often (but not at the same time) within a single vegetation plot. We further show that this increased coincidence of water-related stresses will negatively affect the future occurrence of currently endangered plant species (causing a reduction of ˜16%), while apparently no such decrease will occur among common species. Individual stresses did not appear to affect the occurrence of endangered plant species. Consequently, our study demonstrates that species that are already threatened under the current climate will suffer most from the effects of climate change.

  20. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  1. Fostering Environmental Literacy For A Changing Earth: Interactive and Participatory Outreach Programs at Biosphere 2

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.; Huxman, T.; Morehouse, B.

    2008-12-01

    Earth system and ecological sustainability problems are complex outcomes of biological, physical, social, and economic interactions. A common goal of outreach and education programs is to foster a scientifically literate community that possesses the knowledge to contribute to environmental policies and decision making. Uncertainty and variability that is both inherent in Earth system and ecological sciences can confound such goals of improved ecological literacy. Public programs provide an opportunity to engage lay-persons in the scientific method, allowing them to experience science in action and confront these uncertainties face-on. We begin with a definition of scientific literacy that expands its conceptualization of science beyond just a collection of facts and concepts to one that views science as a process to aid understanding of natural phenomena. A process-based scientific literacy allows the public, teachers, and students to assimilate new information, evaluate climate research, and to ultimately make decisions that are informed by science. The Biosphere 2 facility (B2) is uniquely suited for such outreach programs because it allows linking Earth system and ecological science research activities in a large scale controlled environment setting with outreach and education opportunities. A primary outreach goal is to demonstrate science in action to an audience that ranges from K-12 groups to retired citizens. Here we discuss approaches to outreach programs that focus on soil-water-atmosphere-plant interactions and their roles in the impacts and causes of global environmental change. We describe a suite of programs designed to vary the amount of participation a visitor has with the science process (from passive learning to data collection to helping design experiments) to test the hypothesis that active learning fosters increased scientific literacy and the creation of science advocates. We argue that a revised framing of the scientific method with a more

  2. Human-water interactions in Myanmar's Dry Zone under climate change

    NASA Astrophysics Data System (ADS)

    Taft, Linda; Evers, Mariele

    2016-04-01

    Understanding human-water interactions is particularly essential in countries where the economy and the people's well-being and income strongly depend on the availability and quality of sufficient water resources. Such a strong dependency on water is existent in Myanmar's Dry Zone located in the central Ayeyarwady River basin. In this area, rainfall is associated with high heterogeneity across space and time. Precipitation amounts in the Dry Zone (500-1000 mm annually) are generally less compared to other regions in Myanmar (up to 4000-6000 mm). Following the Global Climate Risk Index, Myanmar is one of the countries which were most affected by extreme weather events between 1994 and 2013. Severe drought periods e.g in the years 1997-1998, 2010 and 2014 led to crop failures and water shortage in the Dry Zone, where more than 14 mio people predominantly practice agriculture. Due to the high variability of rainfalls, farming is only possible with irrigation, mainly conducted by canal systems from the rivers and groundwater withdrawal. Myanmar is recently facing big challenges which result from comprehensive political and economic reforms since 2011. These may also include increasing water use by new industrial zones and urbanization. However, not only policy and economy modify the need for water. Variability of river runoff and changes in seasonality are expected as a result of climate change. The overarching goal of the study is to understand and increase the knowledge on human-water-climate interactions and to elaborate possible future scenarios for Myanmar's Dry Zone. It is not well studied yet how current and future climate change and increasing human impact will influence the country's abundant water resources including groundwater. Therefore, the first step of this study is to identify the major drivers within the central Ayeyarwady River basin. We are in the process of collecting and analyzing data sets and information including hydrologic and eco

  3. Changes in the sexual behavior and testosterone levels of male rats in response to daily interactions with estrus females.

    PubMed

    Shulman, Leanne M; Spritzer, Mark D

    2014-06-22

    Male rat sexual behavior has been intensively studied over the past 100 years, but few studies have examined how sexual behavior changes over the course of several days of interactions. In this experiment, adult male rats in the experimental group (n=12) were given daily access to estrus females for 30 min per day for 15 consecutive days while control males (n=11) did not interact with females. Ovariectomized females were induced into estrus with hormonal injections, and males interacted with a different female each day. The amount of sexual activity (mounts, intromissions, and ejaculations) was found to cycle with a period of approximately 4 days in most male rats. Additionally, blood was collected every other day following sexual interactions to assess serum testosterone levels. Testosterone was found to peak on the first day of interaction and then fell back to near the level of control rats that did not interact with females. Following the initial peak, testosterone concentrations fluctuated less in males exposed to females than in controls. Sexual activity was not found to predict testosterone concentration. We conclude that when male rats have daily sexual interactions, sexual behavior tends to show cyclic changes and testosterone is significantly elevated only on the first day of interactions. PMID:24813700

  4. Changes in the sexual behavior and testosterone levels of male rats in response to daily interactions with estrus females

    PubMed Central

    Shulman, Leanne M.; Spritzer, Mark D.

    2014-01-01

    Male rat sexual behavior has been intensively studied over the past 100 years, but few studies have examined how sexual behavior changes over the course of several days of interactions. In this experiment, adult male rats (n = 12) were given daily access to estrus females for 30 min per day for 15 consecutive days and control males did not interact with females. Ovariectomized females were induced into estrus with hormonal injections, and males interacted with a different female each day. The amount of sexual activity (mounts, intromissions, and ejaculations) was found to cycle with a period of approximately 4 days in most male rats. Additionally, blood was collected every other day following sexual interactions to assess serum testosterone levels. Testosterone was found to peak on the first day of interaction and then fell back to near the level of control rats that did not interact with females. Following the initial peak, testosterone concentrations fluctuated less in males exposed to females than in controls. Sexual activity was not found to predict testosterone concentration. We conclude that when male rats have daily sexual interactions, sexual behavior tends to show cyclic changes and testosterone is significantly elevated only on the first day of interactions. PMID:24813700

  5. Classroom Demonstration and Interactive Model of Sea-Level Control on Lateral and Vertical Facies Changes

    NASA Astrophysics Data System (ADS)

    Smith, C.; Pound, K. S.; Jones, M. H.; Schmitt, L.; Campbell, K.

    2005-12-01

    Students often have difficulty understanding and visualizing the role that relative sea-level change plays in controlling vertical and lateral facies changes; they also struggle with explanations of regional facies patterns and changes as sea-level dependant. This interactive, dynamic, in-class model has been developed to build their understanding both of this topic, and of the nature of predictive scientific models. The model can be used as a follow-up to field observations, or to pre-teach concepts. The model assumes a land-ocean transect that is divided into 5 sedimentary settings. Each setting in the land-ocean transect is associated with sediment grain size that decreases basinward; the most basinward component is carbonate. In the model, seven 10-cm diameter see-through tubes are set up to represent `cores' spread along the land-ocean transect. Brightly-colored plastic beads are used to represent sediment deposited in each of the sedimentary settings. At the start, the position of the shoreline (sea level) is fixed between the fluvial (tube 2) and beach (tube 3) sediments. Students then deposit beads that represent their sediment type in the each tube. Other students control the sea-level marker, which can be raised or lowered, and students with the sediment (beads) move shoreward or basinward accordingly, and deposit their sediments (beads) in the appropriate tube. This produces a simple visual record (tubes with layers of distinctly colored beads) that show the idealized sedimentary consequences of relative sea-level change. After large-scale patterns in facies changes have been demonstrated and discussed, students can manipulate variables such as supply and rate. Students can fill a basin using a sequence of events they determine, and other student groups can interpret their cores. The learning and approach of this model can be extended to include real sediment (gravel, sand, silt, mud) deposited in cardboard tubes that are then opened and treated as cores

  6. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    PubMed

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    , such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such

  7. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  8. The Effectiveness of Parent-Child Interaction Therapy with Depressive Mothers: The Changing Relationship as the Agent of Individual Change

    ERIC Educational Resources Information Center

    Timmer, Susan G.; Ho, Lareina K. L.; Urquiza, Anthony J.; Zebell, Nancy M.; Fernandez y Garcia, Erik; Boys, Deanna

    2011-01-01

    This study uses a multi-method approach to investigate the effectiveness of Parent-Child Interaction Therapy (PCIT) in reducing children's behavior problems when parents report clinical levels of depressive symptoms. Participants were 132 children, 2-7 years of age, and their biological mothers, who either reported low (N = 78) or clinical levels…

  9. A mutation within the transmembrane domain of melanosomal protein Silver (Pmel17) changes lumenal fragment interactions

    PubMed Central

    Kuliawat, Regina; Santambrogio, Laura

    2009-01-01

    Melanocytes synthesize and store melanin within tissue-specific organelles, the melanosomes. Melanin deposition takes place along fibrils found within these organelles and fibril formation is known to depend on trafficking of the membrane glycoprotein Silver/Pmel17. However, correctly targeted, full-length Silver/Pmel17 cannot form fibers. Proteolytic processing in endosomal compartments and the generation of a lumenal Mα fragment that is incorporated into amyloid-like structures is also essential. Dominant White (DWhite), a mutant form of Silver/Pmel17 first described in chicken, causes disorganized fibers and severe hypopigmentation due to melanocyte death. Surprisingly, the DWhite mutation is an insertion of three amino acids into the transmembrane domain; the DWhite-Mα fragment is unaffected. To determine the functional importance of the transmembrane domain in organized fibril assembly, we investigated membrane trafficking and multimerization of Silver/Pmel17/DWhite proteins. We demonstrate that the DWhite mutation changes lipid interactions and disulfide bond-mediated associations of lumenal domains. Thus, partitioning into membrane microdomains and effects on conformation explain how the transmembrane region may contribute to the structural integrity of Silver/Pmel17 oligomers or influence toxic, amyloidogenic properties. PMID:19679373

  10. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor

    PubMed Central

    Drakulic, Srdja; Wang, Liping; Cuéllar, Jorge; Guo, Qing; Velázquez, Gilberto; Martín-Benito, Jaime; Sousa, Rui; Valpuesta, José M.

    2014-01-01

    Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand. PMID:25183523

  11. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation.

    PubMed

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2017-01-01

    In order to elucidate the heat-induced wheat gluten gel formation mechanism, changes in chemical interactions and protein conformation were investigated during gelation. The contribution of ionic and hydrogen bonds were found to decrease from 0.746 and 4.133g/L to 0.397 and 2.733g/L, respectively, as the temperature increased from 25 to 90°C. Moreover, the free SH content remarkably decreased from 37.91 to 19.79μmol/g during gelation. Ultraviolet absorption spectra and intrinsic fluorescence spectra suggested that wheat gluten unfolded during the heating process. In addition, wheat gluten gels treated at 80 and 90°C exhibited a "steric hindrance" effect, which can be attributed to the formation of aggregates. Fourier transform infrared spectra suggested that the random coil content increased at low temperatures (40 and 50°C), whereas the content of intermolecular β-sheets due to protein aggregation increased from 38.10% to 44.28% when the gelation temperature was 90°C. PMID:27507490

  12. Health effects from stratospheric ozone depletion and interactions with climate change.

    PubMed

    de Gruijl, Frank R; Longstreth, Janice; Norval, Mary; Cullen, Anthony P; Slaper, Harry; Kripke, Margaret L; Takizawa, Yukio; van der Leun, Jan C

    2003-01-01

    The potential health effects of elevated levels of ambient UV-B radiation are diverse, and it is difficult to quantify the risks, especially as they are likely to be considerably modified by human behaviour. Nevertheless epidemiological and experimental studies have confirmed that UV radiation is a definite risk factor for certain types of cataract, with peak efficacy in the UV-B waveband. The causal link between squamous cell carcinoma and cumulative solar UV exposure has been well established. New findings regarding the genetic basis of skin cancer, including studies on genetically modified mice, have confirmed the epidemiological evidence that UV radiation contributes to the formation of basal cell carcinomas and cutaneous melanomas, For the latter, animal models have demonstrated that UV exposure at a very young age is more detrimental than exposure in adulthood. Although suppression of certain immune responses has been recognised following UV exposure, the impact of this suppression on the control of infectious and autoimmune diseases is largely unknown. However, studies on several microbial infections have indicated significant consequences in terms of symptoms or reactivation of disease. The possibility that the immune response to vaccination could be depressed by UV-B exposure is of considerable concern. Newly emerging possibilities regarding interactions between ozone depletion and global climate change further complicate the risk assessments for human health but might result in an increased incidence of cataracts and skin cancer, plus alterations in the patterns of certain categories of infectious and other diseases. PMID:12659536

  13. Integrated analysis of ecosystem interactions with land use Change: The Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Goetz, Scott J.; Jantz, Claire A.; Prince, Stephen D.; Smith, Andrew J.; Varlyguin, Dmitry; Wright, Robb K.

    The Chesapeake Bay is the largest estuary in the United States, encompassed by a watershed extending 168,000 km2 over portions of six states and Washington, D.C. Restoration of the Bay has been the focus of a two-decade regional partnership of local, state and federal agencies, including a network of scientists, politicians and activists interacting through various committees, working groups, and advisory panels. The effectiveness of the restoration effort has been mixed, with both notable successes and failures. The overall health of the Bay has not declined since the restoration was initiated in 1983, but many of the advances have been offset by the pressure of increasing population and exurban sprawl across the watershed. The needs of the Chesapeake Bay Program are many, but the greatest is accurate information on land cover and land use change, primarily to assess the implications for water quality, examine various restoration scenarios, and calibrate spatial models of the urbanization process. We report here on a number of new land cover and land use data products, and associated applications to assist vulnerability assessment, integrated ecosystem analysis, and ultimately Bay restoration. We provide brief overviews of applications to model new residential development, assess losses and vulnerability of resource lands, and identify the factors that disrupt the health of streams in small watersheds. These data products and approaches are being applied by a number of agencies involved with the restoration effort, including the Chesapeake Bay Program's activities focused on living resources, water quality, and sound land use.

  14. Conformational Changes Leading to T7 DNA Delivery upon Interaction with the Bacterial Receptor*

    PubMed Central

    González-García, Verónica A.; Pulido-Cid, Mar; Garcia-Doval, Carmela; Bocanegra, Rebeca; van Raaij, Mark J.; Martín-Benito, Jaime; Cuervo, Ana; Carrascosa, José L.

    2015-01-01

    The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins. PMID:25697363

  15. Land-atmosphere interactions and climate change: Recent results and new perspectives (Invited)

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E. L.; Greve, P.; Gudmundsson, L.; Guillod, B.; Hirschi, M.; Mittelbach, H.; Mueller, B.; Mystakidis, S.; Orlowsky, B.; Orth, R.; Wilhelm, M.

    2013-12-01

    simulations. Manuscript in preparation. Seneviratne, S.I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A.J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004. Seneviratne, S.I., M. Wilhelm, T. Stanelle, B.J.J.M. van den Hurk, S. Hagemann, A. Berg, F. Cheruy, M.E. Higgins, A. Meier, V. Brovkin, M. Claussen, A. Ducharne, J.-L. Dufresne, K.L. Findell, J. Ghattas, D.M. Lawrence, S. Malyshev, M. Rumukainen, and B. Smith, 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Submitted to Geophys. Res. Lett.

  16. Cross-scale Interactions and Changing Pattern-Process Relationships: Consequences for System Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-scale interactions occur either when fine-scale processes influence a broad spatial extent or a long time period, or when broad-scale drivers interact with fine-scale processes to determine system dynamics. Cross-scale interactions are increasing recognized as having important influences on e...

  17. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance. PMID:26236843

  18. Dynamics of Defense Responses and Cell Fate Change during Arabidopsis-Pseudomonas syringae Interactions

    PubMed Central

    Hamdoun, Safae; Liu, Zhe; Gill, Manroop; Yao, Nan; Lu, Hua

    2013-01-01

    changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms. PMID:24349466

  19. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta).

    PubMed

    Manfredini, Fabio; Shoemaker, DeWayne; Grozinger, Christina M

    2016-01-01

    The dynamics of host-parasite interactions can change dramatically over the course of a chronic infection as the internal (physiological) and external (environmental) conditions of the host change. When queens of social insects found a colony, they experience changes in both their physiological state (they develop their ovaries and begin laying eggs) and the social environment (they suddenly stop interacting with the other members of the mother colony), making this an excellent model system for examining how these factors interact with chronic infections. We investigated the dynamics of host-viral interactions in queens of Solenopsis invicta (fire ant) as they transition from mating to colony founding/brood rearing to the emergence of the first workers. We examined these dynamics in naturally infected queens in two different social environments, where queens either founded colonies as individuals or as pairs. We hypothesized that stress associated with colony founding plays an important role in the dynamics of host-parasite interactions. We also hypothesized that different viruses have different modalities of interaction with the host that can be quantified by physiological measures and genomic analysis of gene expression in the host. We found that the two most prevalent viruses, SINV-1 and SINV-2, are associated with different fitness costs that are mirrored by different patterns of gene expression in the host. In fact SINV-2, the virus that imposes the significant reduction of a queen's reproductive output is also associated with larger changes of global gene expression in the host. These results show the complexity of interactions between S. invicta and two viral parasites. Our findings also show that chronic infections by viral parasites in insects are dynamic processes that may pose different challenges in the host, laying the groundwork for interesting ecological and evolutionary considerations. PMID:26811788

  20. Potential Effects of Climate Change on Ecological Interaction Outcomes Between Two Disease-Vector Mosquitoes: A Mesocosm Experimental Study.

    PubMed

    Leonel, B F; Koroiva, R; Hamada, N; Ferreira-Keppler, R L; Roque, F O

    2015-09-01

    The objective of this study was to experimentally assess the effects of different climate change scenarios on the outcomes of interactions between Aedes aegypti (L.) and Culex quinquefasciatus (Say) (Diptera: Culicidae) larvae. The experimental design maintained a constant density of specimens while the proportion of the species in different experimental climate change scenarios varied. Our results indicate that survival of the two species was not affected, but larval development and pupation times decreased under elevated atmospheric CO(2) concentration and high air temperature. In climate change scenarios with both species together, the survival of Ae. aegypti increased and its larval development time decreased with increasing density of Cx. quinquefasciatus. This may be attributed to the effects of intraspecific competition being more significant than interspecific competition in Ae. aegypti. Our study also reveals that climatic changes may affect the patterns of interactions between Cx. quinquefasciatus and Ae. aegypti. Alterations in climatic conditions changed the response of context-dependent competition, indicating the importance of studies on how ecological interactions will be affected by projected future climatic change. PMID:26336208

  1. An insulin based model to explain changes and interactions in human breath-holding.

    PubMed

    Dangmann, Rosita

    2015-06-01

    Until now oxygen was thought to be the leading factor of hypoxic conditions. Whereas now it appears that insulin is the key regulator of hypoxic conditions. Insulin seems to regulate the redox state of the organism and to determine the breakpoint of human breath-holding. This new hypoxia-insulin hypotheses might have major clinical relevance. Besides the clinical relevance, this hypothesis could explain, for the first time, why the training of the diaphragm, among other factors, results in an increase in breath-holding performance. Elite freedivers/apnea divers are able to reach static breath-holding times to over 6 min. Untrained persons exhibit an unpleasant feeling after more or less a minute. Breath-holding is stopped at the breakpoint. The partial oxygen pressure as well as the carbon dioxide pressure failed to directly influence the breakpoint in earlier studies. The factors that contribute to the breakpoint are still under debate. Under hypoxic conditions the organism needs more glucose, because it changes from the oxygen consuming pentose phosphate (36 ATP/glucose molecule) to the anaerobic glycolytic pathway (2ATP/glucose molecule). Hence insulin, as it promotes the absorption of glucose, is set in the center of interest regarding hypoxic conditions. This paper provides an insulin based model that could explain the changes and interactions in human breath-holding. The correlation between hypoxia and reactive oxygen species (ROS) and their influence on the sympathetic nerve system and hypoxia-inducible factor 1 alpha (HIF-1α) is dealt with. It reviews as well the direct interrelation of HIF-1α and insulin. The depression of insulin secretion through the vagus nerve activation via inspiration is discussed. Furthermore the paper describes the action of insulin on the carotid bodies and the diaphragm and therefore a possible role in respiration pattern. Freedivers that go over the breakpoint of breath-holding could exhibit seizures and thus the effect of

  2. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity

    EPA Science Inventory

    Climate change and Nr from anthropogenic activities are causing some of the most rapid changes in biodiversity in recent times. Climate change is causing warming trends that result in poleward and elevational range shiftsof flora and fauna, and changes in phenology, particularly ...

  3. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between aboveground and belowground herbivores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact aboveground and belowground herbivore interactions. Here we report the effects of aboveground (adult) and belowground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals i...

  4. Interactions between MAOA Genotype and Receipt of Public Assistance: Predicting Change in Depressive Symptoms and Body Mass Index

    ERIC Educational Resources Information Center

    Marmorstein, Naomi R.; Hart, Daniel

    2011-01-01

    Response to stress is determined in part by genetically influenced regulation of the monoamine system (MAOA). We examined the interaction of a stressor (receipt of public assistance) and a gene regulating MAOA in the prediction of change in adolescent depressive symptoms and body mass index (BMI). Participants were drawn from the National…

  5. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  6. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    ERIC Educational Resources Information Center

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  7. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works. PMID:27480780

  8. Impacts of future changes in phenology on land-atmosphere interactions in temperate and boreal regions

    NASA Astrophysics Data System (ADS)

    Kaduk, Jörg; Los, Sietse

    2010-05-01

    ), which suggest an advance of more than six days average. The observed relationship between chilling and warming at the time of green-up indicates an element of regional adaptation of the warming required for leaf out in biomes covering large areas. The phenological models were implemented in the Joint UK Land Environment Simulator (JULES). In the model the advance in green up leads to a longer growing season with longer leaf display. In regions where soil moisture is mainly fed by spring rain and snow melt, however, there is only a limited increase of photosynthesis as it is determined by soil water availability. A longer summer dry period is resulting. Simulations including a Fire Weather Index indicate that the longer dry summers lead to an increase in the forest fire risk under future climate change in considerable areas. While this increase results partially from the changed climate, partially also the earlier leaf appearance contributes to the increased risk. Also there is a significant difference between simulations using only SWMs in contrast to employing also a chilling dependency. The results highlight the necessity of including appropriate phenology models in climate models for correct predictions of land-atmosphere interactions.

  9. The human health effects of ozone depletion and interactions with climate change.

    PubMed

    Norval, M; Lucas, R M; Cullen, A P; de Gruijl, F R; Longstreth, J; Takizawa, Y; van der Leun, J C

    2011-02-01

    for a range of internal cancers, this is not yet conclusive, but strongest for colorectal cancer, at present. A role for vitamin D in protection against several autoimmune diseases has been studied, with the most convincing results to date for multiple sclerosis. Vitamin D is starting to be assessed for its protective properties against several infectious and coronary diseases. Current methods for protecting the eye and the skin from the adverse effects of solar UV radiation are evaluated, including seeking shade, wearing protective clothing and sunglasses, and using sunscreens. Newer possibilities are considered such as creams that repair UV-induced DNA damage, and substances applied topically to the skin or eaten in the diet that protect against some of the detrimental effects of sun exposure. It is difficult to provide easily understandable public health messages regarding "safe" sun exposure, so that the positive effects of vitamin D production are balanced against the negative effects of excessive exposure. The international response to ozone depletion has included the development and deployment of replacement technologies and chemicals. To date, limited evidence suggests that substitutes for the ozone-depleting substances do not have significant effects on human health. In addition to stratospheric ozone depletion, climate change is predicted to affect human health, and potential interactions between these two parameters are considered. These include altering the risk of developing skin tumours, infectious diseases and various skin diseases, in addition to altering the efficiency by which pathogenic microorganisms are inactivated in the environment. PMID:21253670

  10. Aptitude-Treatment Interactions in Preservice Teachers' Behavior Change during Computer-Simulated Teaching

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2007-01-01

    Adapting training methods to specific teacher traits to best facilitate the training effects for preservice teachers is an important, yet neglected, topic in aptitude-treatment interaction research. This study investigated interactions between four personal traits (CT-dispositions, thinking styles, CT-skills, and intrapersonal intelligence) and…

  11. Stability and Change in Early Childhood Classroom Interactions during the First Two Hours of a Day

    ERIC Educational Resources Information Center

    Curby, Timothy W.; Grimm, Kevin J.; Pianta, Robert C.

    2010-01-01

    Early childhood classrooms support children's learning in a variety of ways. Of critical importance are the interactions teachers have with children. The type and quality of classroom interactions vary and can be grouped into three domains: instructional, organizational, and emotional. The purpose of this study is to examine the extent to which…

  12. Client-Treatment Interaction in the Study of Differential Change Processes.

    ERIC Educational Resources Information Center

    Shoham-Salomon, Varda; Hannah, Mo Therese

    1991-01-01

    Discusses epistemological and methodological issues regarding aptitude-treatment interactions (ATI) in psychotherapy. Noting that track record of interactional research is not very encouraging, argues that ATI research should focus on heuristic goal of illuminating mechanisms and processes that make therapies differentially effective. Suggests…

  13. Changes in Traditional Television Content: Family Interaction Patterns on "The Simpsons."

    ERIC Educational Resources Information Center

    Larson, Mary Strom

    A study sought to describe family interaction as it has been taking place in a television family of the nineties--the Simpsons. Twelve episodes of the program were videotaped, transcriptions were made of the portions of the programs which contained family interactions, and 1,670 communication behaviors in the material were coded. Each behavior was…

  14. Main and interactive effects of multiple global-change factors on soil respiration and its components: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Xuhui

    2014-05-01

    Global change usually involves simultaneous changes in multiple environmental factors, which may considerably affect ecosystem structure and functioning and alter ecosystem services to human society. With increased awareness of their potential interactions, some multi-factorial studies have been conducted to investigate their main and interactive effects on carbon (C) cycling in terrestrial ecosystem. However, how multiple global-change factors affected soil respiration (Rs) and its components (i.e., autotrophic (Ra) and heterotrophic respiration (Rh)) remains controversial among individual studies. In this study, we conducted a meta-analysis to examine the main and possible 2- or 3-factor interactive effects with warming (W), elevated CO2 (E), nitrogen addition (N), increased precipitation (I) and drought (D) on Rs and its components from 150 published papers. Our results show that E, W, I and N significantly stimulated Rs by 29.23%, 7.19%, 22.95%, and 16.90% (p<0.05), respectively, while I depressed it by 16.90% (p<0.01). E consistently induced a significant positive effect on both Ra and Rh, while I affected them with an opposite trend. Among nine two-way interactive effects on Rs, synergistic interaction (i.e., the effect of combined treatment > the additive effects of single two main factors) occurred in E×N, E×W, I×N, and D×W, while neutral interaction (i.e., the effect of combined treatment ≡ the additive one) and antagonistic interaction (i.e., the effect of combined treatment < the additive one)was rare, only in I×W for neutral one and in N×W and I×E for the latter. In addition, E×W and E×N displayed synergistic interactions on Rh. The more dominance of synergistic interactions in two-way interactive effects on Rs and Rh may determine a central positive tendency of Rs in future, and affect the feedback of terrestrial C cycle to the climate system correspondingly.

  15. TERENO-SoilCan - Soil-Atmosphere Interactions Induced by Land Use Changes as a Result of Global Change

    NASA Astrophysics Data System (ADS)

    Puetz, T.; Burauel, P.; Bogena, H.; Vereecken, H.

    2009-04-01

    Based on the TERENO infrastructure, SoilCan (Soil can make a difference in climate policy) is designed as a long-term large scale experiment to study the effects of land use changes of terrestrial systems caused by Global Change. The soil and ground water, in particular the water and matter fluxes in soil, are the main focuses of SoilCan. Primary objectives of SoilCan are: • Further development of the instrumentation of the TERENO-observatories to study the effects of land use changes on soils • Collection of comprehensive long-term data to monitor Global Change on the regional scale • Provision of high-quality data to develop and improve the prognosis of regional climate models with the aim to develop and implement options for management strategies. In the frame of SoilCan, fully automated lysimeter systems will be installed on several highly equipped experimental field sites of the TERENO-observatories and the relevant status variables of each ecosystem will be monitored (e.g. climate, hydrology, biosphere-atmosphere exchange, biodiversity, etc.). The TERENO-observatories are placed in four different regions of Germany: • "Rur" observatory - moderate atlantic climate • "Ammer" observatory - alpine climate • "Bode" observatory - continental climate • "Müritz" observatory - baltic climate The field sites will have a radio-based technology for automatic monitoring and data communication. In total, 90 lysimeters (1.5 m depth, 1m2 surface) will be filled with soil monoliths at the four TERENO-observatories. The lysimeters will be partly transplanted along the existing natural temperature and rainfall gradients. The transplantation of lysimeters inside an observatory as well as between the four different observatories is of utmost importance for SoilCan. In case of the "Rur" observatory, three intensively instrumented field sites ("Wüstebach", "Rollesbroich" und "Selhausen") will be equipped with lysimeter stations. Along with a temperature and rainfall

  16. Large-scale changes in network interactions as a physiological signature of spatial neglect

    PubMed Central

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L.; Callejas, Alicia; Astafiev, Serguei V.; Metcalf, Nicholas V.; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z.; Carter, Alex R.; Shulman, Gordon L.

    2014-01-01

    networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. PMID:25367028

  17. Interactions of Changing Solar Ultraviolet Radiation and Climate with Light Induced Chemical Reactions in Aquatic Environments

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...

  18. Pax-3-DNA interaction: flexibility in the DNA binding and induction of DNA conformational changes by paired domains.

    PubMed Central

    Chalepakis, G; Wijnholds, J; Gruss, P

    1994-01-01

    The mouse Pax-3 gene encodes a protein that is a member of the Pax family of DNA binding proteins. Pax-3 contains two DNA binding domains: a paired domain (PD) and a paired type homeodomain (HD). Both domains are separated by 53 amino acids and interact synergistically with a sequence harboring an ATTA motif (binding to the HD) and a GTTCC site (binding to the PD) separated by 5 base pairs. Here we show that the interaction of Pax-3 with these two binding sites is independent of their angular orientation. In addition, the protein spacer region between the HD and the PD can be shortened without changing the spatial flexibility of the two DNA binding domains which interact with DNA. Furthermore, by using circular permutation analysis we determined that binding of Pax-3 to a DNA fragment containing a specific binding site causes conformational changes in the DNA, as indicated by the different mobilities of the Pax-3-DNA complexes. The ability to change the conformation of the DNA was found to be an intrinsic property of the Pax-3 PD and of all Pax proteins that we tested so far. These in vitro studies suggest that interaction of Pax proteins with their specific sequences in vivo may result in an altered DNA conformation. Images PMID:8065927

  19. Short communication: Changes in fluorescence intensity induced by soybean soluble polysaccharide-milk protein interactions during acidification.

    PubMed

    Li, Y H; Wang, W J; Xu, X J; Meng, Y C; Zhang, L W; Chen, J; Qiu, R

    2015-12-01

    Interactions between stabilizer and milk protein are believed to influence the stabilizing behavior of the milk system. We investigated changes in fluorescence intensity induced by interactions of soybean soluble polysaccharide (SSPS) and milk protein (Mp) during acidification. The fluorescence intensity (If) of Mp increased as pH decreased from 6.8 to 5.2. Compared with Mp alone, If of SSPS-Mp mixtures increased as the pH decreased from 6.8 to 5.2. We found that the If of the SSPS-Mp mixture decreased in a pH range from 5.2 to 3.6, which indicated a change in the polarity microenvironment around the Trp residues. We also found that the maximum emission wavelength (λmax) shifted from 337 to 330nm as pH decreased from 6.8 to 3.6, in further support of SSPS interacting with the polar portion of Mp during acidification. Furthermore, an excited monomeric molecule (pyrene exciplex) was found as a ground-state pyrene formed and a broad band was shown at about 450nm. The intensity ratio of the first peak to the third peak (I1:I3) of Mp increased slightly, and the ratio of intensity of pyrene exciplex to monomer (Ie:Im) decreased because pyrene molecules were located in a less hydrophobic microenvironment during acidification. However, the ratio of I1:I3 decreased clearly at pH below 5.6 and the ratio of Ie:Im showed the opposite trend in the SSPS-Mp mixture. Changes in intrinsic and exogenous fluorescence intensity confirmed that interactions of SSPS and Mp could change the polarity of the microenvironment and that SSPS probably interacted with the polar portion of Mp. These results could give insight into the behavior of stabilizers in acid milk products. PMID:26476946

  20. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    NASA Astrophysics Data System (ADS)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  1. Competition-interaction landscapes for the joint response of forests to climate change.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew C; Zhu, Kai

    2014-06-01

    The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US. PMID:24932467

  2. Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer.

    PubMed

    Garcia, Darysbel; Watts, Kylie J; Johnson, Mark S; Taylor, Barry L

    2016-04-01

    The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output. PMID:26713609

  3. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    NASA Astrophysics Data System (ADS)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  4. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α.

    PubMed

    Na, Jung-Hyun; Lee, Won-Kyu; Kim, Yuyoung; Jeong, Cherlhyun; Song, Seung Soo; Cha, Sun-Shin; Han, Kyou-Hoon; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2016-08-19

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. PMID:27297113

  5. Impacts of elevated CO2, climate change and their interactions on water budgets in four different catchments in Australia

    NASA Astrophysics Data System (ADS)

    Cheng, Lei; Zhang, Lu; Wang, Ying-Ping; Yu, Qiang; Eamus, Derek; O'Grady, Anthony

    2014-11-01

    Future water availability is affected directly by climate change mainly through changes in precipitation and indirectly by the biological effects of climate change and elevated atmospheric CO2 concentration (eCO2) through changes in vegetation water use. Previous studies of climate change impact on hydrology have focused on the direct impact and little has been reported in the literature on catchment-scale the indirect impact. In this study, we calibrated an ecohydrological model (WAVES) and used this model to estimate the direct and indirect effects and the interactive effect between climate change and eCO2 on water availability in four different catchments in Australia with contrasting climate regime and vegetation cover. These catchments were: a water-limited forest catchment and an energy-limited forest catchment, a water-limited grass catchment and an energy-limited grass catchment. The future meteorological forcing was projected from 12 GCMs representing a period centred on 2050s and future CO2 concentration was set as 550 ppm. Modelling experiments show that impacts of eCO2 and projected climate change on vegetation growth, evapotranspiration (ET) and runoff were in the same magnitude but opposite directions in all four catchments, except for the effects on runoff in the energy-limited grass catchment. Predicted responses of runoff to eCO2 indicate that eCO2 increased runoff in the energy-limited forest catchment by ∼2% but decreased runoff in other three catchments from 1% to 18%. This study indicates that rising CO2 increases ecosystem water use efficiency but it does not necessarily result in increased runoff because elevated CO2 also stimulates vegetation growth and increases ET. Elevated CO2 was proved to have greater impacts on runoff than climate change in the forest catchments. Modelling experiments also suggest that interactive effects between climate and CO2 are important, especially for predicting leaf area index (LAI) and ET in grassland

  6. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies.

    PubMed

    Mundim, Fabiane M; Bruna, Emilio M

    2016-09-01

    Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments. PMID:27513912

  7. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions

    PubMed Central

    Oliwa, Tomasz; Shen, Yang

    2015-01-01

    Motivation: It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for protein–protein interactions. But earlier studies have also found cases where conformational selection alone could not adequately explain conformational changes and other models have been proposed. Moreover, there is a pressing demand of constructing a much reduced but still relevant subset of protein conformational space to improve computational efficiency and accuracy in protein docking, especially for the difficult cases with significant conformational changes. Method and results: With both conformational selection and induced fit models considered, we extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and develop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical results over a large data set of significant conformational changes indicate that cNMA is capable of generating conformational vectors considerably better at approximating conformational changes with contributions from both intrinsic flexibility and inter-molecular interactions than conventional NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightforward application of conventional NMA to an encounter complex often does not improve upon NMA for an individual protein under study and intra- and inter-molecular interactions need to be differentiated properly. Moreover, in addition to induced motions of a protein under study, the induced motions of its binding partner and the coupling between the two sets of protein motions present in a near-native encounter complex lead to the improved

  8. Salts employed in hydrophobic interaction chromatography can change protein structure - insights from protein-ligand interaction thermodynamics, circular dichroism spectroscopy and small angle X-ray scattering.

    PubMed

    Komaromy, Andras Z; Kulsing, Chadin; Boysen, Reinhard I; Hearn, Milton T W

    2015-03-01

    Key requirements of protein purification by hydrophobic interaction chromatography (HIC) are preservation of the tertiary/quaternary structure, maintenance of biological function, and separation of the correctly folded protein from its unfolded forms or aggregates. This study examines the relationship between the HIC retention behavior of hen egg white lysozyme (HEWL) in high concentrations of several kosmotropic salts and its conformation, assessed by circular dichroism (CD) spectroscopy. Further, the physicochemical properties of HEWL in the presence of high concentrations of ammonium sulfate, sodium chloride and magnesium chloride were investigated by small angle X-ray scattering (SAXS) at different temperatures. Radii of gyration were extrapolated from Guinier approximations and the indirect transform program GNOM with protein-protein interaction and contrast variation taken into account. A bead model simulation provided information on protein structural changes using ab initio reconstruction with GASBOR. These results correlated to the secondary structure content obtained from CD spectroscopy of HEWL. These changes in SAXS and CD data were consistent with heat capacity ΔCp -values obtained from van't Hoff plot analyses of the retention data. Collectively, these insights enable informed decisions to be made on the choice of chromatographic conditions, leading to improved separation selectivity and opportunities for innovative column-assisted protein refolding methods. PMID:25690783

  9. Applying Large-Group Interaction Methods in the Planning and Implementation of Major Change Efforts.

    ERIC Educational Resources Information Center

    Bryson, John M.; Anderson, Sharon R.

    2000-01-01

    Compares the assumptions, strengths, and weaknesses of seven approaches frequently used in the public sector to involve large numbers of people in planning and implementing change. The approaches are real-time strategic change, search conferences, future searches, strategic options development and analysis, strategic choice, technology of…

  10. CHARACTERIZE INTERACTIONS BETWEEN ECOSYSTEM FUNCTIONING AND CHANGES IN CLIMATE, UV, AND LAND USE

    EPA Science Inventory

    Assessments of the long-term impacts of global changes in climate, ultraviolet (UV) radiation and land use on ecosystems require scientific data, concepts and models that describe the responses of ecosystem health to stresses related to the changes as well as information and mode...