Sample records for channel array electrophoresis

  1. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2000-01-01

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  2. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2004-06-15

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  3. Detection system of capillary array electrophoresis microchip based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  4. Ultra-High-Speed DNA Fragment Separations Using Microfabricated Capillary Array Electrophoresis Chips

    NASA Astrophysics Data System (ADS)

    Woolley, Adam T.; Mathies, Richard A.

    1994-11-01

    Capillary electrophoresis arrays have been fabricated on planar glass substrates by photolithographic masking and chemical etching techniques. The photolithographically defined channel patterns were etched in a glass substrate, and then capillaries were formed by thermally bonding the etched substrate to a second glass slide. High-resolution electrophoretic separations of φX174 Hae III DNA restriction fragments have been performed with these chips using a hydroxyethyl cellulose sieving matrix in the channels. DNA fragments were fluorescently labeled with dye in the running buffer and detected with a laser-excited, confocal fluorescence system. The effects of variations in the electric field, procedures for injection, and sizes of separation and injection channels (ranging from 30 to 120 μm) have been explored. By use of channels with an effective length of only 3.5 cm, separations of φX174 Hae III DNA fragments from ≈70 to 1000 bp are complete in only 120 sec. We have also demonstrated high-speed sizing of PCR-amplified HLA-DQα alleles. This work establishes methods for high-speed, high-throughput DNA separations on capillary array electrophoresis chips.

  5. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.

    PubMed

    Shadpour, Hamed; Hupert, Mateusz L; Patterson, Donald; Liu, Changgeng; Galloway, Michelle; Stryjewski, Wieslaw; Goettert, Jost; Soper, Steven A

    2007-02-01

    A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides

  6. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis.

  7. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490

  9. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  10. High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding.

    PubMed

    Dang, Fuquan; Tabata, Osamu; Kurokawa, Masaya; Ewis, Ashraf A; Zhang, Lihua; Yamaoka, Yoshihisa; Shinohara, Shouji; Shinohara, Yasuo; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-04-01

    We have developed a novel technique for mass production of microfabricated capillary array electrophoresis (mu-CAE) plastic chips for high-speed, high-throughput genetic analysis. The mu-CAE chips, containing 10 individual separation channels of 50-microm width, 50-microm depth, and a 100-microm lane-to-lane spacing at the detection region and a sacrificial channel network, were fabricated on a poly(methyl methacrylate) substrate by injection molding and then bonded manually using a pressure-sensitive sealing tape within several seconds at room temperature. The conditions for injection molding and bonding were carefully characterized to yield mu-CAE chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to monitor simultaneously the separation in a 10-channel array with laser-induced fluorescence detection. High-performance electrophoretic separations of phiX174 HaeIII DNA restriction fragments and PCR products related to the human beta-globin gene and SP-B gene (the surfactant protein B) have been demonstrated on mu-CAE plastic chips using a methylcellulose sieving matrix in individual channels. The current work demonstrated greatly simplified the fabrication process as well as a detection scheme for mu-CAE chips and will bring the low-cost mass production and application of mu-CAE plastic chips for genetic analysis.

  11. A simple and highly sensitive spectroscopic fluorescence-detection system for multi-channel plastic-microchip electrophoresis based on side-entry laser-beam zigzag irradiation.

    PubMed

    Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro

    2017-06-27

    A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.

  12. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    PubMed

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  13. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.

    PubMed

    Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

    2009-03-07

    A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.

  14. Array signal recovery algorithm for a single-RF-channel DBF array

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Wu, Wen; Fang, Da Gang

    2016-12-01

    An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.

  15. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  16. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  17. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  18. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  19. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  20. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  1. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  2. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat

    PubMed Central

    Gunasekara, Dulan B.; Hulvey, Matthew K.; Lunte, Susan M.

    2012-01-01

    The combination of microchip electrophoresis (ME) with amperometric detection leads to a number of analytical challenges that are associated with isolating the detector from the high voltages used for the separation. While methods such as end-channel alignment and the use of decouplers have been employed, they have limitations. A less common method has been to utilize an electrically isolated potentiostat. This approach allows placement of the working electrode directly in the separation channel without using a decoupler. This paper explores the use of microchip electrophoresis and electrochemical detection (ME-EC) with an electrically isolated potentiostat for the separation and in-channel detection of several biologically important anions. The separation employed negative polarity voltages and tetradecyltrimethylammonium bromide (TTAB, as a buffer modifier) for the separation of nitrite (NO2-), glutathione (GSH), ascorbic acid (AA), and tyrosine (Tyr). A half-wave potential (E½) shift of approximately negative 500 mV was observed for NO2- and H2O2 standards in the in-channel configuration compared to end channel. Higher separation efficiencies were observed for both NO2- and H2O2 with the in-channel detection configuration. The limits of detection were approximately two-fold lower and the sensitivity was approximately two-fold higher for in-channel detection of nitrite when compared to end-channel. The application of this microfluidic device for the separation and detection of biomarkers related to oxidative stress is described. PMID:21437918

  3. Channel capacity of an array system for Gaussian channels with applications to combining and noise cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  4. Channel Capacity of an Array System for Gaussian Channels With Applications to Combining and Noise Cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  5. Integration of serpentine channels for microchip electrophoresis with a palladium decoupler and electrochemical detection

    PubMed Central

    Bowen, Amanda L; Martin, R. Scott

    2010-01-01

    While it has been shown that microchip electrophoresis with electrochemical detection can be used to separate and detect electroactive species, there is a need to increase the separation performance of these devices so that complex mixtures can be routinely analyzed. Previous work in microchip electrophoresis has demonstrated that increasing the separation channel length leads to an increase in resolution between closely eluting analytes. This paper details the use of lengthened serpentine microchannels for microchip electrophoresis and electrochemical detection where a palladium decoupler is used to ground the separation voltage so that the working electrodes remain in the fluidic network. In this work, palladium electrodepositions were used to increase the decoupler surface area and more efficiently dissipate hydrogen produced at the decoupler. Dopamine and norepinephrine, which only differ in structure by a hydroxyl group, were used as model analytes. It was found that increasing the separation channel length led to improvements in both resolution and the number of theoretical plates for these analytes. The use of a bi-layer valving device, where PDMS-based valves are utilized for the injection process, along with serpentine microchannels and amperometric detection resulted in a multi-analyte separation and an average of 28,700 theoretical plates. It was also shown that the increased channel length is beneficial when separating and detecting analytes from a high ionic strength matrix. This was demonstrated by monitoring the stimulated release of neuro-transmitters from a confluent layer of PC 12 cells. PMID:19739137

  6. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmoticmore » flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.« less

  7. High-Performance Multiplex SNP Analysis of Three Hemochromatosis-Related Mutations With Capillary Array Electrophoresis Microplates

    PubMed Central

    Medintz, Igor; Wong, Wendy W.; Berti, Lorenzo; Shiow, Lawrence; Tom, Jennifer; Scherer, James; Sensabaugh, George; Mathies, Richard A.

    2001-01-01

    An assay is described for high-throughput single nucleotide polymorphism (SNP) genotyping on a microfabricated capillary array electrophoresis (CAE) microchip. The assay targets the three common variants at the HFE locus associated with the genetic disease hereditary hemochromatosis (HHC). The assay employs allele-specific PCR (ASPCR) for the C282Y (845g->a), H63D (187c->g), and S65C (193a->t) variants using fluorescently-labeled energy-transfer (ET) allele-specific primers. Using a 96-channel radial CAE microplate, the labeled ASPCR products generated from 96 samples in a reference Caucasian population are simultaneously separated with single-base-pair resolution and genotyped in under 10 min. Detection is accomplished with a laser-excited rotary four-color fluorescence scanner. The allele-specific amplicons are differentiated on the basis of both their size and the color of the label emission. This study is the first demonstration of the combined use of ASPCR with ET primers and microfabricated radial CAE microplates to perform multiplex SNP analyses in a clinically relevant population. PMID:11230165

  8. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this systemmore » using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.« less

  9. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast <1 h design-prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (<1 min) and short (1 mm) protein separations. The facile fabrication and prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  10. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  11. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  12. A 31-Channel MR Brain Array Coil Compatible with Positron Emission Tomography

    PubMed Central

    Sander, Christin Y.; Keil, Boris; Chonde, Daniel B.; Rosen, Bruce R.; Catana, Ciprian; Wald, Lawrence L.

    2014-01-01

    Purpose Simultaneous acquisition of MR and PET images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. Methods A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (SNR, g-factor) and PET attenuation. Results The coil design showed an improvement in attenuation by 190% (average) compared to conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical ROI) compared to a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. Conclusion The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. PMID:25046699

  13. A 31-channel MR brain array coil compatible with positron emission tomography.

    PubMed

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  14. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  15. Mutual coupling, channel model, and BER for curvilinear antenna arrays

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyong

    This dissertation introduces a wireless communications system with an adaptive beam-former and investigates its performance with different antenna arrays. Mutual coupling, real antenna elements and channel models are included to examine the system performance. In a beamforming system, mutual coupling (MC) among the elements can significantly degrade the system performance. However, MC effects can be compensated if an accurate model of mutual coupling is available. A mutual coupling matrix model is utilized to compensate mutual coupling in the beamforming of a uniform circular array (UCA). Its performance is compared with other models in uplink and downlink beamforming scenarios. In addition, the predictions are compared with measurements and verified with results from full-wave simulations. In order to accurately investigate the minimum mean-square-error (MSE) of an adaptive array in MC, two different noise models, the environmental and the receiver noise, are modeled. The minimum MSEs with and without data domain MC compensation are analytically compared. The influence of mutual coupling on the convergence is also examined. In addition, the weight compensation method is proposed to attain the desired array pattern. Adaptive arrays with different geometries are implemented with the minimum MSE algorithm in the wireless communications system to combat interference at the same frequency. The bit-error-rate (BER) of systems with UCA, uniform rectangular array (URA) and UCA with center element are investigated in additive white Gaussian noise plus well-separated signals or random direction signals scenarios. The output SINR of an adaptive array with multiple interferers is analytically examined. The influence of the adaptive algorithm convergence on the BER is investigated. The UCA is then investigated in a narrowband Rician fading channel. The channel model is built and the space correlations are examined. The influence of the number of signal paths, number of the

  16. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  17. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.

    PubMed

    Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L

    2006-07-01

    A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.

  18. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

    PubMed Central

    Shen, Yue-xiao; Si, Wen; Erbakan, Mustafa; Decker, Karl; De Zorzi, Rita; Saboe, Patrick O.; Kang, You Jung; Majd, Sheereen; Butler, Peter J.; Walz, Thomas; Aksimentiev, Aleksei; Hou, Jun-li; Kumar, Manish

    2015-01-01

    Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14 cm3/s or 3.5(±1.0) × 108 water molecules per s, which is in the range of AQPs (3.4∼40.3 × 108 water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 108 water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼107 water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 105 pores per μm2) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 103 pores per μm2). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays. PMID:26216964

  19. Focused intracochlear electric stimulation with phased array channels.

    PubMed

    van den Honert, Chris; Kelsall, David C

    2007-06-01

    A method is described for producing focused intracochlear electric stimulation using an array of N electrodes. For each electrode site, N weights are computed that define the ratios of positive and negative electrode currents required to produce cancellation of the voltage within scala tympani at all of the N-1 other sites. Multiple sites can be stimulated simultaneously by superposition of their respective current vectors. The method allows N independent stimulus waveforms to be delivered to each of the N electrode sites without spatial overlap. Channel interaction from current spread associated with monopolar stimulation is substantially eliminated. The method operates by inverting the spread functions of individual monopoles as measured with the other electrodes. The method was implemented and validated with data from three human subjects implanted with 22-electrode perimodiolar arrays. Results indicate that (1) focusing is realizable with realistic precision; (2) focusing comes at the cost of increased total stimulation current; (3) uncanceled voltages that arise beyond the ends of the array are weak except when stimulating the two end channels; and (4) close perimodiolar positioning of the electrodes may be important for minimizing stimulation current and sensitivity to measurement errors.

  20. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI.

    PubMed

    Ertürk, M Arcan; Raaijmakers, Alexander J E; Adriany, Gregor; Uğurbil, Kâmil; Metzger, Gregory J

    2017-02-01

    To develop a 16-channel transceive body imaging array at 7.0 T with improved transmit, receive, and specific absorption rate (SAR) performance by combining both loop and dipole elements and using their respective and complementary near and far field characteristics. A 16-channel radiofrequency (RF) coil array consisting of eight loop-dipole blocks (16LD) was designed and constructed. Transmit and receive performance was quantitatively investigated in phantom and human model simulations, and experiments on five healthy volunteers inside the prostate. Comparisons were made with 16-channel microstrip line (16ML) and 10-channel fractionated dipole antenna (10DA) arrays. The 16LD was used to acquire anatomic and functional images of the prostate, kidneys, and heart. The 16LD provided > 14% improvements in the signal-to-noise ratio (SNR), peak B1+, B1+ transmit, and SAR efficiencies over the 16ML and 10DA in simulations inside the prostate. Experimentally, the 16LD had > 20% higher SNR and B1+ transmit efficiency compared with other arrays, and achieved up to 51.8% higher peak B1+ compared with 10DA. Combining loop and dipole elements provided a body imaging array with high channel count and density while limiting inter-element coupling. The 16LD improved both near and far-field performance compared with existing 7.0T body arrays and provided high-quality MRI of the prostate kidneys and heart. Magn Reson Med 77:884-894, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations

    PubMed Central

    Meneses, Diogenes; Gunasekara, Dulan B.; Pichetsurnthorn, Pann; da Silva, José A. F.; de Abreu, Fabiane C.; Lunte, Susan M.

    2015-01-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration. PMID:25256669

  2. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  3. Stacked, Filtered Multi-Channel X-Ray Diode Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less

  4. Equalization filters for multiple-channel electromyogram arrays

    PubMed Central

    Clancy, Edward A.; Xia, Hongfang; Christie, Anita; Kamen, Gary

    2007-01-01

    Multiple channels of electromyogram activity are frequently transduced via electrodes, then combined electronically to form one electrophysiologic recording, e.g. bipolar, linear double difference and Laplacian montages. For high quality recordings, precise gain and frequency response matching of the individual electrode potentials is achieved in hardware (e.g., an instrumentation amplifier for bipolar recordings). This technique works well when the number of derived signals is small and the montages are pre-determined. However, for array electrodes employing a variety of montages, hardware channel matching can be expensive and tedious, and limits the number of derived signals monitored. This report describes a method for channel matching based on the concept of equalization filters. Monopolar potentials are recorded from each site without precise hardware matching. During a calibration phase, a time-varying linear chirp voltage is applied simultaneously to each site and recorded. Based on the calibration recording, each monopolar channel is digitally filtered to “correct” for (equalize) differences in the individual channels, and then any derived montages subsequently created. In a hardware demonstration system, the common mode rejection ratio (at 60 Hz) of bipolar montages improved from 35.2 ± 5.0 dB (prior to channel equalization) to 69.0 ± 5.0 dB (after equalization). PMID:17614134

  5. FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry

    NASA Astrophysics Data System (ADS)

    Dai, Jisheng; Liu, An; Lau, Vincent K. N.

    2018-05-01

    This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs, and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.

  6. Capillary electrophoresis systems and methods

    DOEpatents

    Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  7. Computational investigation of hydrokinetic turbine arrays in an open channel using an actuator disk-LES model

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Yang, Xiaolei; Sotiropoulos, Fotis

    2012-11-01

    While a considerable amount of work has focused on studying the effects and performance of wind farms, very little is known about the performance of hydrokinetic turbine arrays in open channels. Unlike large wind farms, where the vertical fluxes of momentum and energy from the atmospheric boundary layer comprise the main transport mechanisms, the presence of free surface in hydrokinetic turbine arrays inhibits vertical transport. To explore this fundamental difference between wind and hydrokinetic turbine arrays, we carry out LES with the actuator disk model to systematically investigate various layouts of hydrokinetic turbine arrays mounted on the bed of a straight open channel with fully-developed turbulent flow fed at the channel inlet. Mean flow quantities and turbulence statistics within and downstream of the arrays will be analyzed and the effect of the turbine arrays as means for increasing the effective roughness of the channel bed will be extensively discussed. This work was supported by Initiative for Renewable Energy & the Environment (IREE) (Grant No. RO-0004-12), and computational resources were provided by Minnesota Supercomputing Institute.

  8. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performedmore » in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.« less

  9. Development of a 64 channel ultrasonic high frequency linear array imaging system

    PubMed Central

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom

  10. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    PubMed

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites. (c) 2008 Wiley-Liss, Inc.

  11. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  12. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    PubMed

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images

  13. A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging

    PubMed Central

    Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977

  14. Stacked, filtered multi-channel X-ray diode array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustnessmore » and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.« less

  15. Frequency bandwidth limitation of external pulse electric fields in cylindrical micro-channel electrophoresis with analyte velocity modulation.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lee, Chia-Yu; Yeo, Leslie Y

    2005-04-15

    In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.

  16. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  17. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  18. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh.

    PubMed

    Divett, T; Vennell, R; Stevens, C

    2013-02-28

    At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.

  19. Loss of heterozygosity assay for molecular detection of cancer using energy-transfer primers and capillary array electrophoresis.

    PubMed

    Medintz, I L; Lee, C C; Wong, W W; Pirkola, K; Sidransky, D; Mathies, R A

    2000-08-01

    Microsatellite DNA loci are useful markers for the detection of loss of heterozygosity (LOH) and microsatellite instability (MI) associated with primary cancers. To carry out large-scale studies of LOH and MI in cancer progression, high-throughput instrumentation and assays with high accuracy and sensitivity need to be validated. DNA was extracted from 26 renal tumor and paired lymphocyte samples and amplified with two-color energy-transfer (ET) fluorescent primers specific for loci associated with cancer-induced chromosomal changes. PCR amplicons were separated on the MegaBACE-1000 96 capillary array electrophoresis (CAE) instrument and analyzed with MegaBACE Genetic Profiler v.1.0 software. Ninety-six separations were achieved in parallel in 75 minutes. Loss of heterozygosity was easily detected in tumor samples as was the gain/loss of microsatellite core repeats. Allelic ratios were determined with a precision of +/- 10% or better. Prior analysis of these samples with slab gel electrophoresis and radioisotope labeling had not detected these changes with as much sensitivity or precision. This study establishes the validity of this assay and the MegaBACE instrument for large-scale, high-throughput studies of the molecular genetic changes associated with cancer.

  20. Eight channel transmit array volume coil using on-coil radiofrequency current sources

    PubMed Central

    Kurpad, Krishna N.; Boskamp, Eddy B.

    2014-01-01

    Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418

  1. Four-channel surface coil array for sequential CW-EPR image acquisition

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  2. Enantioseparations of amino acids by capillary array electrophoresis with 532 nm laser induced fluorescence detection.

    PubMed

    Liu, Kaiying; Wang, Li

    2013-06-21

    Capillary array electrophoresis (CAE) is a promising technique for multiple enantiomeric separations. Carboxytetramethylrhodamine succinimidyl ester (TAMRA SE), a rhodamine-core fluorescent probe, has rarely been applied as an original precolumn derivatization reagent for chiral amino acid (AA) analysis so far. For these purposes, high-throughput enantiomeric separations of 12 TAMRA SE-AAs by a home-made 532 nm CAE-LIF scanner are presented. The effect of cyclodextrins (CDs) and a variety of organic modifiers was quickly investigated. Baseline separations were achieved in 100 mM Tris-borate buffer (pH 10.0) containing 2 mM β-CD and 10 mM hexamethylenediamine (HDA). Multiple determination of the enantiomeric excess (ee) in non-racemic mixtures of alanine is successfully presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Arrays of flow channels with heat transfer embedded in conducting walls

    DOE PAGES

    Bejan, A.; Almerbati, A.; Lorente, S.; ...

    2016-04-20

    Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements,more » on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.« less

  4. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  5. High throughput ion-channel pharmacology: planar-array-based voltage clamp.

    PubMed

    Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk

    2003-02-01

    Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.

  6. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  7. MUSIC: An 8 channel readout ASIC for SiPM arrays

    NASA Astrophysics Data System (ADS)

    Gómez, Sergio; Gascón, David; Fernández, Gerard; Sanuy, Andreu; Mauricio, Joan; Graciani, Ricardo; Sanchez, David

    2016-04-01

    This paper presents an 8 channel ASIC for SiPM anode readout based on a novel low input impedance current conveyor (under patent1). This Multiple Use SiPM Integrated Circuit (MUSIC) has been designed to serve several purposes, including, for instance, the readout of SiPM arrays for some of the Cherenkov Telescope Array (CTA) cameras. The current division scheme at the very front end part of the circuit splits the input current into differently scaled copies which are connected to independent current mirrors. The circuit contains a tunable pole zero cancellation of the SiPM recovery time constant to deal with sensors from different manufacturers. Decay times up to 100 ns are supported covering most of the available SiPM devices in the market. MUSIC offers three main features: (1) differential output of the sum of the individual input channels; (2) 8 individual single ended analog outputs and; (3) 8 individual binary outputs. The digital outputs encode the amount of collected charge in the duration of the digital signal using a time over threshold technique. For each individual channel, the user must select the analog or digital output. Each functionality, the signal sum and the 8 A/D outputs, include a selectable dual-gain configuration. Moreover, the signal sum implements dual-gain output providing a 15 bit dynamic range. Full die simulation results of the MUSIC designed using AMS 0.35 µm SiGe technology are presented: total die size of 9 mm2, 500 MHz bandwidth for channel sum and 150 MHz bandwidth for A/D channels, low input impedance (≍32 Ω), single photon output pulse width at half maximum (FWHM) between 5 and 10 ns and with a power consumption of ≍ 30 mW/ch plus ≍ 200 mW for the 8 ch sum. Encapsulated prototype samples of the MUSIC are expected by March 2016.

  8. Continuous-Time Random Walk Models of DNA Electrophoresis in a Post Array: II. Mobility and Sources of Band Broadening

    PubMed Central

    Olson, Daniel W.; Dutta, Sarit; Laachi, Nabil; Tian, Mingwei; Dorfman, Kevin D.

    2011-01-01

    Using the two-state, continuous-time random walk model, we develop expressions for the mobility and the plate height during DNA electrophoresis in an ordered post array that delineate the contributions due to (i) the random distance between collisions and (ii) the random duration of a collision. These contributions are expressed in terms of the means and variances of the underlying stochastic processes, which we evaluate from a large ensemble of Brownian dynamics simulations performed using different electric fields and molecular weights in a hexagonal array of 1 μm posts with a 3 μm center-to-center distance. If we fix the molecular weight, we find that the collision frequency governs the mobility. In contrast, the average collision duration is the most important factor for predicting the mobility as a function of DNA size at constant Péclet number. The plate height is reasonably well-described by a single post rope-over-pulley model, provided that the extension of the molecule is small. Our results only account for dispersion inside the post array and thus represent a theoretical lower bound on the plate height in an actual device. PMID:21290387

  9. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  10. A Semi-flexible 64-channel Receive-only Phased Array for Pediatric Body MRI at 3T

    PubMed Central

    Zhang, Tao; Grafendorfer, Thomas; Cheng, Joseph Y.; Ning, Peigang; Rainey, Bob; Giancola, Mark; Ortman, Sarah; Robb, Fraser J.; Calderon, Paul D.; Hargreaves, Brian A.; Lustig, Michael; Scott, Greig C.; Pauly, John M.; Vasanawala, Shreyas S.

    2015-01-01

    Purpose To design, construct, and validate a semi-flexible 64-channel receive-only phased array for pediatric body MRI at 3T. Methods A 64-channel receive-only phased array was developed and constructed. The designed flexible coil can easily conform to different patient sizes with non-overlapping coil elements in the transverse plane. It can cover a field of view of up to 44 × 28 cm2 and removes the need for coil repositioning for body MRI patients with multiple clinical concerns. The 64-channel coil was compared with a 32-channel standard coil for signal-to-noise ratio (SNR) and parallel imaging performances on different phantoms. With IRB approval and informed consent/assent, the designed coil was validated on 21 consecutive pediatric patients. Results The pediatric coil provided higher SNR than the standard coil on different phantoms, with the averaged SNR gain at least 23% over a depth of 7 cm along the cross-section of phantoms. It also achieved better parallel imaging performance under moderate acceleration factors. Good image quality (average score 4.6 out of 5) was achieved using the developed pediatric coil in the clinical studies. Conclusion A 64-channel semi-flexible receive-only phased array has been developed and validated to facilitate high quality pediatric body MRI at 3T. PMID:26418283

  11. Use of planar array electrophysiology for the development of robust ion channel cell lines.

    PubMed

    Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J

    2009-01-01

    The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.

  12. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  13. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  14. DNA Sequencing by Capillary Electrophoresis

    PubMed Central

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  15. Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brady, Gerald J.; Jinkins, Katherine R.; Arnold, Michael S.

    2017-09-01

    Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas array SWCNT FETs suffer from increasing off-state current and deteriorating subthreshold swing for LCH below 100 nm. We analyze array disorder using atomic force microscopy, which shows that crossing SWCNTs that arise from misoriented alignment raise SWCNTs off of the substrate for large portions of the channel when LCH is small. Electrostatics modeling analysis indicates that these raised SWCNTs are a likely contributor to the deteriorating off-current and subthreshold characteristics of arrays. These results demonstrate that improved inter-SWCNT pitch uniformity and alignment with minimal inter-SWCNT interactions will be necessary in order for solution processed SWCNT arrays to reach subthreshold performance on par with isolated SWCNTs. These results are also promising because they show that arrays of solution-processed SWCNTs can nearly reach ballistic conductance in the on-state despite imperfections in pitch and alignment.

  16. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  17. High channel count and high precision channel spacing multi-wavelength laser array for future PICs.

    PubMed

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H; Qiu, Bocang

    2014-12-09

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.

  18. Microplate array diagonal gel electrophoresis (MADGE), CpG-PCR and temporal thermal ramp-MADGE (Melt-MADGE) for single nucleotide analyses in populations.

    PubMed

    Day, I N; O'Dell, S D; Spanakis, E; Weavind, G P

    1999-02-01

    Important requirements for molecular genetic epidemiological studies are economy, sample parallelism, convenience of setup and accessibility, goals inadequately met by existent approaches. We invented microplate array diagonal gel electrophoresis (MADGE) to gain simultaneously the advantages of simple setup, 96-well microplate compatibility, horizontal electrophoresis, and the resolution of polyacrylamide. At essentially no equipment cost (one simple plastic gel former), 10-100-fold savings on time for sample coding, liquid transfers, and data documentation, in addition to volume reductions and gel re-use, can be achieved. MADGE is compatible with ARMS, restriction analysis and other pattern analyses. CpG-PCR is a general PCR approach to CpG sites (10-20% of all human single base variation): both primers have 3' T, and are abutted to the CpG, forcing a TaqI restriction site if the CpG is intact. Typically, a 52 bp PCR product is then cut in half. CpG-PCR also illustrates that PAGE-MADGE readily permits analysis of 'ultrashort' PCRs. Melt-MADGE employs real-time-variable-temperature electrophoresis to examine duplex mobility during melting, achieving DGGE-like de novo, mutation scanning, but with the conveniences of arbitrary programmability, MADGE compatibility and short run time. This suite of methods enhances our capability to type or scan thousands of samples simultaneously, by 10-100-fold.

  19. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data

    NASA Technical Reports Server (NTRS)

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.

    2013-01-01

    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  20. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  1. Microchip electrophoresis of oligosaccharides using large-volume sample stacking with an electroosmotic flow pump in a single channel.

    PubMed

    Kawai, Takayuki; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji

    2010-08-01

    The applicability of an online preconcentration technique, large-volume sample stacking with an electroosmotic flow pump (LVSEP), to microchip zone electrophoresis (MCZE) for the analysis of oligosaccharides was investigated. Since the sample stacking and separation proceeded continuously without polarity switching in LVSEP, a single "straight" channel microchip could be employed. In the MCZE analysis of oligosaccharides, sample adsorption onto the channel surface should be suppressed, so the straight microchannel was modified with poly(vinyl alcohol) (PVA). So far, the mechanism of LVSEP in the polymer-coated capillary or microchannel has not been reported, and thus, the LVSEP process in the PVA-coated channel was investigated by fluorescence imaging. Although it is well-known that the PVA coating can suppress the electroosmotic flow (EOF), an enhanced EOF with a mobility of 4.4 x 10(-4) cm(2)/(V x s) was observed in a low ionic strength sample solution. It was revealed that such temporarily enhanced EOF in the sample zone worked as the driving force to remove the sample matrix in LVSEP. To evaluate the analytical performance of LVSEP-MCZE, oligosaccharides were analyzed in the PVA-coated straight channel. As a result, both the glucose ladder and oligosaccharides obtained from bovine ribonuclease B were well enriched and separated with up to 2200-2900-fold sensitivity enhancement compared to those in a conventional MCZE analysis. The run-to-run repeatabilities of the migration time and peak height were good with relative standard deviations of 1.1% and 7.2%, respectively, which were better than those of normal MCZE. By applying the LVSEP technique to MCZE, a complicated voltage program for fluidic control could be simplified from four channels for two steps to two channels for one step.

  2. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  5. Electrokinetic Sample Preconcentration and Hydrodynamic Sample Injection for Microchip Electrophoresis Using a Pneumatic Microvalve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected intomore » the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.« less

  6. Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system.

    PubMed

    Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C

    2014-04-01

    A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.

  7. Reliability of spring interconnects for high channel-count polyimide electrode arrays

    NASA Astrophysics Data System (ADS)

    Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas

    2018-05-01

    Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.

  8. Parallel multipoint recording of aligned and cultured neurons on micro channel array toward cellular network analysis.

    PubMed

    Tonomura, Wataru; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    2010-08-01

    This paper describes an advanced Micro Channel Array (MCA) for recording electrophysiological signals of neuronal networks at multiple points simultaneously. The developed MCA is designed for neuronal network analysis which has been studied by the co-authors using the Micro Electrode Arrays (MEA) system, and employs the principles of extracellular recordings. A prerequisite for extracellular recordings with good signal-to-noise ratio is a tight contact between cells and electrodes. The MCA described herein has the following advantages. The electrodes integrated around individual micro channels are electrically isolated to enable parallel multipoint recording. Reliable clamping of a targeted cell through micro channels is expected to improve the cellular selectivity and the attachment between the cell and the electrode toward steady electrophysiological recordings. We cultured hippocampal neurons on the developed MCA. As a result, the spontaneous and evoked spike potentials could be recorded by sucking and clamping the cells at multiple points. In this paper, we describe the design and fabrication of the MCA and the successful electrophysiological recordings leading to the development of an effective cellular network analysis device.

  9. Ratcheted electrophoresis of Brownian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalik, Mikołaj; Bishop, Kyle J. M., E-mail: kjmbishop@engr.psu.edu

    2016-05-16

    The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operatingmore » condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.« less

  10. Compressive Channel Estimation and Tracking for Large Arrays in mm Wave Picocells

    DTIC Science & Technology

    2014-01-01

    abling sophisticated adaptation, including frequency-selective spatiotemporal processing (e.g., per subcarrier beamforming in OFDM systems). This approach...subarrays are certainly required for more advanced functionalities such as multiuser MIMO [17], spatial multiplexing [18], [19], [20], [21], [22], and...case, a regu- larly spaced 2D array), an estimate of the N2t,1D × N2r,1D MIMO channel matrix H can be efficiently arrived at by estimating the spatial

  11. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    DOEpatents

    Jackson, Douglas J [New Albany, IN; Roussel, Jr., Thomas J.; Crain, Mark M [Georgetown, IN; Baldwin, Richard P [Louisville, KY; Keynton, Robert S [Louisville, KY; Naber, John F [Prospect, KY; Walsh, Kevin M [Louisville, KY; Edelen, John G [Versailles, KY

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  12. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  13. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  14. A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla.

    PubMed

    Adriany, Gregor; Auerbach, Edward J; Snyder, Carl J; Gözübüyük, Ark; Moeller, Steen; Ritter, Johannes; Van de Moortele, Pierre-François; Vaughan, Tommy; Uğurbil, Kâmil

    2010-06-01

    Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra-high-field MR. Transmit coil arrays enable such techniques as B(1) (+) shimming to substantially improve transmit B(1) homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively-shortened half-wavelength transmission lines is presented. This approach was utilized to construct an array with whole-brain coverage using 16 transceiver elements and 16 receive-only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. (c) 2010 Wiley-Liss, Inc.

  15. Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.

    PubMed

    Duan, Lian; Cao, Zhen; Yobas, Levent

    2017-09-19

    Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.

  16. A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing

    PubMed Central

    Tolstosheeva, Elena; Gordillo-González, Víctor; Biefeld, Volker; Kempen, Ludger; Mandon, Sunita; Kreiter, Andreas K.; Lang, Walter

    2015-01-01

    High-density electrocortical (ECoG) microelectrode arrays are promising signal-acquisition platforms for brain-computer interfaces envisioned, e.g., as high-performance communication solutions for paralyzed persons. We propose a multi-channel microelectrode array capable of recording ECoG field potentials with high spatial resolution. The proposed array is of a 150 mm2 total recording area; it has 124 circular electrodes (100, 300 and 500 μm in diameter) situated on the edges of concentric hexagons (min. 0.8 mm interdistance) and a skull-facing reference electrode (2.5 mm2 surface area). The array is processed as a free-standing device to enable monolithic integration of a rigid interposer, designed for soldering of fine-pitch SMD-connectors on a minimal assembly area. Electrochemical characterization revealed distinct impedance spectral bands for the 100, 300 and 500 μm-type electrodes, and for the array's own reference. Epidural recordings from the primary visual cortex (V1) of an awake Rhesus macaque showed natural electrophysiological signals and clear responses to standard visual stimulation. The ECoG electrodes of larger surface area recorded signals with greater spectral power in the gamma band, while the skull-facing reference electrode provided higher average gamma power spectral density (γPSD) than the common average referencing technique. PMID:25569757

  17. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  18. Concerted vs. Sequential. Two Activation Patterns of Vast Arrays of Intracellular Ca2+ Channels in Muscle

    PubMed Central

    Zhou, Jinsong; Brum, Gustavo; González, Adom; Launikonis, Bradley S.; Stern, Michael D.; Ríos, Eduardo

    2005-01-01

    To signal cell responses, Ca2+ is released from storage through intracellular Ca2+ channels. Unlike most plasmalemmal channels, these are clustered in quasi-crystalline arrays, which should endow them with unique properties. Two distinct patterns of local activation of Ca2+ release were revealed in images of Ca2+ sparks in permeabilized cells of amphibian muscle. In the presence of sulfate, an anion that enters the SR and precipitates Ca2+, sparks became wider than in the conventional, glutamate-based solution. Some of these were “protoplatykurtic” (had a flat top from early on), suggesting an extensive array of channels that activate simultaneously. Under these conditions the rate of production of signal mass was roughly constant during the rise time of the spark and could be as high as 5 μm3 ms−1, consistent with a release current >50 pA since the beginning of the event. This pattern, called “concerted activation,” was observed also in rat muscle fibers. When sulfate was combined with a reduced cytosolic [Ca2+] (50 nM) these sparks coexisted (and interfered) with a sequential progression of channel opening, probably mediated by Ca2+-induced Ca2+ release (CICR). Sequential propagation, observed only in frogs, may require parajunctional channels, of RyR isoform β, which are absent in the rat. Concerted opening instead appears to be a property of RyR α in the amphibian and the homologous isoform 1 in the mammal. PMID:16186560

  19. Parallel multipoint recording of aligned and cultured neurons on corresponding Micro Channel Array toward on-chip cell analysis.

    PubMed

    Tonomura, W; Moriguchi, H; Jimbo, Y; Konishi, S

    2008-01-01

    This paper describes an advanced Micro Channel Array (MCA) so as to record neuronal network at multiple points simultaneously. Developed MCA is designed for neuronal network analysis which has been studied by co-authors using MEA (Micro Electrode Arrays) system. The MCA employs the principle of the extracellular recording. Presented MCA has the following advantages. First of all, the electrodes integrated around individual micro channels are electrically isolated for parallel multipoint recording. Sucking and clamping of cells through micro channels is expected to improve the cellular selectivity and S/N ratio. In this study, hippocampal neurons were cultured on the developed MCA. As a result, the spontaneous and evoked spike potential could be recorded by sucking and clamping the cells at multiple points. Herein, we describe the successful experimental results together with the design and fabrication of the advanced MCA toward on-chip analysis of neuronal network.

  20. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  1. Thin walled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in a spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward about the fuel rods, the open ended channel having a polygon shaped cross section with flat side sections connected between the corner sections; means separate from the channel connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, improvement in the flow channel comprising: four corners having a first thickness; four sides having a second and reduced thickness from themore » corner thickness, the sides welded to the corner sections.« less

  2. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    NASA Astrophysics Data System (ADS)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  3. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla.

    PubMed

    Oezerdem, Celal; Winter, Lukas; Graessl, Andreas; Paul, Katharina; Els, Antje; Weinberger, Oliver; Rieger, Jan; Kuehne, Andre; Dieringer, Matthias; Hezel, Fabian; Voit, Dirk; Frahm, Jens; Niendorf, Thoralf

    2016-06-01

    To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety validation. RF characteristics were examined in a phantom study. The array's suitability for high spatial resolution two-dimensional (2D) CINE imaging and for real time imaging of the heart was examined in a volunteer study. The arrays transmission fields and RF characteristics are suitable for cardiac MRI at 7.0T. The coil performance afforded a spatial resolution as good as (0.8 × 0.8 × 2.5) mm(3) for segmented 2D CINE MRI at 7.0T which is by a factor of 12 superior versus standardized protocols used in clinical practice at 1.5T. The proposed transceiver array supports 1D acceleration factors of up to R = 6 without impairing image quality significantly. The 16-channel bow tie antenna transceiver array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0 Tesla. Magn Reson Med 75:2553-2565, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes.

    PubMed

    Fu, Xiaotong; Mavrogiannis, Nicholas; Ibo, Markela; Crivellari, Francesca; Gagnon, Zachary R

    2017-01-01

    We present a new type of free-flow electrophoresis (FFE) device for performing on-chip microfluidic isotachophoresis and zone electrophoresis. FFE is performed using metal gallium electrodes, which are isolated from a main microfluidic flow channel using thin micron-scale polydimethylsiloxane/carbon black (PDMS/CB) composite membranes integrated directly into the sidewalls of the microfluidic channel. The thin membrane allows for field penetration and effective electrophoresis, but serves to prevent bubble generation at the electrodes from electrolysis. We experimentally demonstrate the ability to use this platform to perform on-chip free-flow electrophoretic separation and isotachophoretic concentration. Due to the small size and simple fabrication procedure, this PDMS/CB platform could be used as a part of an on-chip upstream sample preparation toolkit for portable microfluidic diagnostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Fully Integrated Dual-Channel On-Coil CMOS Receiver for Array Coils in 1.5-10.5 T MRI.

    PubMed

    Sporrer, Benjamin; Wu, Lianbo; Bettini, Luca; Vogt, Christian; Reber, Jonas; Marjanovic, Josip; Burger, Thomas; Brunner, David O; Pruessmann, Klaas P; Troster, Gerhard; Huang, Qiuting

    2017-12-01

    Magnetic resonance imaging (MRI) is among the most important medical imaging modalities. Coil arrays and receivers with high channel counts (16 and more) have to be deployed to obtain the image quality and acquisition speed required by modern clinical protocols. In this paper, we report the theoretical analysis, the system-level design, and the circuit implementation of the first receiver IC (RXIC) for clinical MRI fully integrated in a modern CMOS technology. The dual-channel RXIC sits directly on the sensor coil, thus eliminating any RF cable otherwise required to transport the information out of the magnetic field. The first stage LNA was implemented using a noise-canceling architecture providing a highly reflective input used to decouple the individual channels of the array. Digitization is performed directly on-chip at base-band by means of a delta-sigma modulator, allowing the subsequent optical transmission of data. The presented receiver, implemented in a CMOS technology, is compatible with MRI scanners up to . It reaches sub- noise figure for MRI units and features a dynamic range up to at a power consumption below per channel, with an area occupation of . Mounted on a small-sized printed circuit board (PCB), the receiver IC has been employed in a commercial MRI scanner to acquire in-vivo images matching the quality of traditional systems, demonstrating the first step toward multichannel wearable MRI array coils.

  6. An 11-Channel Radio Frequency Phased Array Coil for Magnetic Resonance Guided High Intensity Focused Ultrasound of the Breast

    PubMed Central

    Minalga, E.; Payne, A.; Merrill, R.; Todd, N.; Vijayakumar, S.; Kholmovski, E.; Parker, D. L.; Hadley, J. R.

    2012-01-01

    In this study, a radio-frequency (RF) phased array coil was built to image the breast in conjunction with a Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11-channels. The RF coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise-ratio (SNR) profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in SNR, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. PMID:22431301

  7. Multiplexed Western Blotting Using Microchip Electrophoresis.

    PubMed

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  8. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  9. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López Terrones, Marcos Alonso, E-mail: malt.marcos@gmail.com; Solís-Nájera, Sergio Enrique, E-mail: solisnajera@ciencias.unam.mx

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. Inmore » this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.« less

  10. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  11. Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector.

    PubMed

    Zinellu, Angelo; Caria, Marcello A; Tavera, Claudio; Sotgia, Salvatore; Chessa, Roberto; Deiana, Luca; Carru, Ciriaco

    2005-07-15

    Traditional clinical assays for nonprotein nitrogen compounds, such as creatine and creatinine, have focused on the use of enzymes or chemical reactions that allow measurement of each analyte separately. Most of these assays are mainly directed to urine quantification, so that their applicability on plasma samples is frequently hard to perform. This work describes a simple free zone capillary electrophoresis method for the simultaneous measurement of creatinine and creatine in human plasma. The effect of analytical parameters such as concentration and pH of Tris-phosphate running buffer and cartridge temperature on resolution, migration times, peak areas, and efficiency was investigated. Good separation was achieved using a 60.2-cm x 75-microm uncoated silica capillary, 75 mmol/L Tris-phosphate buffer, pH 2.25, at 15 degrees C, in less than 8 min. We compared the present method to a validated capillary electrophoresis assay, by measuring plasma creatinine in 120 normal subjects. The obtained data were compared by the Passing-Bablok regression and the Bland-Altman test. Moreover the performance of the developed method was assessed by measuring creatine and creatinine in 16 volunteers prior to and after a moderate physical exercise.

  12. Development of ultrahigh resolution alpha particle imaging detector using 1 mm channel size Si-PM array

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kawaguchi, Wataru

    2018-06-01

    For precise distribution measurements of alpha particles, a high-resolution alpha particle imaging detector is required. Although combining a thin scintillator with a silicon photomultiplier (Si-PM) array is a promising method for achieving high resolution, the spatial resolution is limited. Reducing the size of the Si-PM array is a possible approach to improving the spatial resolution of the alpha particle imaging detector. Consequently, we employed a 1 mm channel size Si-PM array combined with a thin ZnS(Ag) sheet to form an alpha particle imaging detector and evaluated the performance. For the developed alpha particle imaging detector, an Si-PM array with 1 mm x 1 mm channel size arranged 8 x 8 was optically coupled to a ZnS(Ag) sheet with a 1-mm-thick light guide between them. The size of the alpha particle imaging detector was 9.5 mm x 9.5 mm. The spatial resolution of the developed alpha particle imaging detector was 0.14 mm FWHM, and the energy resolution was 74% FWHM for 5.5 MeV alpha particles. The uniformity of the imaging detector at the central part of the field of view (FOV) was ±4.7%. The background count rate was 0.06 counts/min. We obtained various high-resolution phantom images for alpha particles with the developed system. We conclude that the developed imaging detector is promising for high-resolution distribution measurements of alpha particles.

  13. Array of aligned and dispersed carbon nanotubes and method of producing the array

    DOEpatents

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, TN; Hendricks, Troy R [Knoxville, TN

    2012-06-19

    An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.

  14. Array of aligned and dispersed carbon nanotubes and method of producing the array

    DOEpatents

    Ivanov, Ilia N; Simpson, John T; Hendricks, Troy R

    2013-06-11

    An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.

  15. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sourcesmore » and detectors through an external clock with adjustable delay.« less

  16. Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy.

    PubMed

    Wang, Kang; Xia, Xing-Hua

    2006-03-31

    The end of separation channel in a microchip was electrochemically mapped using the feedback imaging mode of scanning electrochemical microscopy (SECM). This method provides a convenient way for microchannel-electrode alignment in microchip capillary electrophoresis. Influence of electrode-to-channel positions on separation parameters in this capillary electrophoresis-electrochemical detection (CE-ED) was then investigated. For the trapezoid shaped microchannel, detection in the central area resulted in the best apparent separation efficiency and peak shape. In the electrode-to-channel distance ranging from 65 to 15mum, the limiting peak currents of dopamine increased with the decrease of the detection distance due to the limited diffusion and convection of the sample band. Results showed that radial position and axial distance of the detection electrode to microchannel was important for the improvement of separation parameters in CE amperometric detection.

  17. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  18. Optically controlled electrophoresis with a photoconductive substrate

    NASA Astrophysics Data System (ADS)

    Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa

    2018-05-01

    A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.

  19. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  20. IDENTIFICATION OF REACTIVE DYES IN SPENT DYEBATHS AND WASTEWATER BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis with diode array detection and mass spectrometry combined with solid-phase extraction were employed for the identification of reactive vinylsulfone and chlorotriazine dyes and their hydrolysis products in spent dyebaths and raw and treated wastewater. Re...

  1. A Two-dimensional Sixteen Channel Transmit/Receive Coil Array for Cardiac MRI at 7.0 Tesla: Design, Evaluation and Application

    PubMed Central

    Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf

    2012-01-01

    Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727

  2. A flexible 32-channel time-to-digital converter implemented in a Xilinx Zynq-7000 field programmable gate array

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Kuang, Jie; Liu, Chong; Cao, Qiang; Li, Deng

    2017-03-01

    A high performance multi-channel time-to-digital converter (TDC) is implemented in a Xilinx Zynq-7000 field programmable gate array (FPGA). It can be flexibly configured as either 32 TDC channels with 9.9 ps time-interval RMS precision, 16 TDC channels with 6.9 ps RMS precision, or 8 TDC channels with 5.8 ps RMS precision. All TDCs have a 380 M Samples/second measurement throughput and a 2.63 ns measurement dead time. The performance consistency and temperature dependence of TDC channels are also evaluated. Because Zynq-7000 FPGA family integrates a feature-rich dual-core ARM based processing system and 28 nm Xilinx programmable logic in a single device, the realization of high performance TDCs on it will make the platform more widely used in time-measuring related applications.

  3. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Duffy, Ciarán F; MacCraith, Brian; Diamond, Dermot; O'Kennedy, Richard; Arriaga, Edgar A

    2006-08-01

    The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.

  4. Innovative Multiphase Nanoparticle Composites Developed Using Electrophoresis And Electromigration

    DTIC Science & Technology

    2008-12-01

    Fig. 2. Surface of enamel steel sheet showing the array of fine cracks in the enamel . Copper metal was deposited on the...suspensions of enameling frit are used, a layer of glass particles can be built up that can be fused into a tightly bonded vitreous coating. 1...Prescribed by ANSI Std Z39-18 Electrophoresis has been particularly important in enameling because it can deposit a glassy frit layer uniformly

  5. Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis

    PubMed Central

    Lin, Che-Hsin; Wang, Yao-Nan; Fu, Lung-Ming

    2012-01-01

    An integrated microfluidic chip is proposed for rapid DNA digestion and time-resolved capillary electrophoresis (CE) analysis. The chip comprises two gel-filled chambers for DNA enrichment and purification, respectively, a T-form micromixer for DNA/restriction enzyme mixing, a serpentine channel for DNA digestion reaction, and a CE channel for on-line capillary electrophoresis analysis. The DNA and restriction enzyme are mixed electroomostically using a pinched-switching DC field. The experimental and numerical results show that a mixing performance of 97% is achieved within a distance of 1 mm from the T-junction when a driving voltage of 90 V/cm and a switching frequency of 4 Hz are applied. Successive mixing digestion and capillary electrophoresis operation clearly present the changes on digesting φx-174 DNA in different CE runs. The time-resolved electropherograms show that the proposed device enables a φx-174 DNA sample comprising 11 fragments to be concentrated and analyzed within 24 min. Overall, the results presented in this study show that the proposed microfluidic chip provides a rapid and effective tool for DNA digestion and CE analysis applications. PMID:22662085

  6. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    NASA Technical Reports Server (NTRS)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  7. DNA migration mechanism analyses for applications in capillary and microchip electrophoresis

    PubMed Central

    Forster, Ryan E.; Hert, Daniel G.; Chiesl, Thomas N.; Fredlake, Christopher P.; Barron, Annelise E.

    2009-01-01

    In 2009, electrophoretically driven DNA separations in slab gels and capillaries have the sepia tones of an old-fashioned technology in the eyes of many, even while they remain ubiquitously used, fill a unique niche, and arguably have yet to reach their full potential. For comic relief, what is old becomes new again: agarose slab gel separations are used to prepare DNA samples for “next-gen” sequencing platforms (e.g., the Illumina and 454 machines)—dsDNA molecules within a certain size range are “cut out” of a gel and recovered for subsequent “massively parallel” pyrosequencing. In this review, we give a Barron lab perspective on how our comprehension of DNA migration mechanisms in electrophoresis has evolved, since the first reports of DNA separations by CE (∼1989) until now, 20 years later. Fused silica capillaries, and borosilicate glass and plastic microchips, quietly offer increasing capacities for fast (and even “ultra-fast”), efficient DNA separations. While the channel-by-channel scaling of both old and new electrophoresis platforms provides key flexibility, it requires each unique DNA sample to be prepared in its own micro- or nanovolume. This Achille's heel of electrophoresis technologies left an opening through which pooled-sample, next-gen DNA sequencing technologies rushed. We shall see, over time, whether sharpening understanding of transitions in DNA migration modes in crosslinked gels, nanogel solutions, and uncrosslinked polymer solutions will allow electrophoretic DNA analysis technologies to flower again. Microchannel electrophoresis, after a quiet period of metamorphosis, may emerge sleeker and more powerful, to claim its own important niche applications. PMID:19582705

  8. A versatile all-channel stimulator for electrode arrays, with real-time control

    PubMed Central

    Wagenaar, Daniel A; Potter, Steve M

    2008-01-01

    Over the last few decades, technology to record through ever increasing numbers of electrodes has become available to electrophysiologists. For the study of distributed neural processing, however, the ability to stimulate through equal numbers of electrodes, and thus to attain bidirectional communication, is of paramount importance. Here, we present a stimulation system for multi-electrode arrays which interfaces with existing commercial recording hardware, and allows stimulation through any electrode in the array, with rapid switching between channels. The system is controlled through real-time Linux, making it extremely flexible: stimulation sequences can be constructed on-the-fly, and arbitrary stimulus waveforms can be used if desired. A key feature of this design is that it can be readily and inexpensively reproduced in other labs, since it interfaces to standard PC parallel ports and uses only off-the-shelf components. Moreover, adaptation for use with in vivo multi-electrode probes would be straightforward. In combination with our freely available data-acquisition software, MeaBench, this system can provide feedback stimulation in response to recorded action potentials within 15 ms. PMID:15876621

  9. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Tasks were undertaken in support of two objectives. They are: (1) to carry out electrophoresis experiments on cells in microgravity; and (2) assess the feasibility of using purified kidney cells from embryonic kidney cultures as a source of important cell products. Investigations were carried out in the following areas: (1) ground based electrophoresis technology; (2) cell culture technology; (3) electrophoresis of cells; (4) urokinase assay research; (5) zero-g electrophoresis; and (6) flow cytometry.

  10. Channel microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry:  transport-limited currents.

    PubMed

    Alden, J A; Feldman, M A; Hill, E; Prieto, F; Oyama, M; Coles, B A; Compton, R G; Dobson, P J; Leigh, P A

    1998-05-01

    A channel electrode array, with electrodes ranging in size from the millimeter to the submicrometer scale, is used for the amperometric interrogation of mechanistically complex electrode processes. In this way, the transport-limited current, measured as a function of both electrode size and electrolyte flow rate (convection), is shown to provide a highly sensitive probe of mechanism and kinetics. The application of "two-dimensional voltammetry" to diverse electrode processes, including E, ECE, ECEE, EC', and DISP2 reactions, is reported.

  11. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.

    PubMed

    Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael

    2014-04-01

    We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.

  12. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  13. Analysis of methylglyoxal in water and biological matrices by capillary zone electrophoresis with diode array detection.

    PubMed

    do Rosário, Pedro Miguel Alvaro; Cordeiro, Carlos A Alves; Freire, Ana Ponces; Nogueira, José M Florêncio

    2005-05-01

    We describe a new method for the determination of methylglyoxal in water and biological matrices, using o-phenylenediamine as derivatizing agent and solid-phase extraction followed by capillary zone electrophoresis with diode array detection. 25 mM sodium phosphate running buffers at pH 2.2, 30 kV, and 25 degrees C allowed the best instrumental conditions for the optimum separation of methylglyoxal in a suitable analytical time (< 10 min), using an uncoated fused-silica capillary of 75 microm inner diameter and an effective length of 45.1 cm with an extended light path and the wavelength set to 200 nm. Under optimized instrumental conditions, good reproducibility of the migration time (< 1.1%), precision (< 5%), an excellent linear dynamic range from 0.1 to 3.6 mg/L (r(2) = 0.9997), and low limits of detection (7.2 microg/L) were obtained for methylglyoxal measurements, using the internal standard methodology. Assays on laboratory-spiked tap and ground water samples allowed a remarkable accuracy, presenting yields of 95.0 +/- 4.3 and 94.0 +/- 1.1%, respectively, and good performance to determine methylglyoxal in beer and yeast cells suspensions matrices was also obtained at trace level. The present methodology is a cost-effective alternative for routine quality control analysis, showing to be reliable, sensitive, and with a low sample volume requirement to monitor methylglyoxal in water and biological matrices.

  14. Amperometric detector designs for capillary electrophoresis microchips.

    PubMed

    Castaño-Alvarez, Mario; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2006-03-24

    Electrochemical (EC) detection is a sensitive and miniaturisable detection mode for capillary electrophoresis (CE) microchips. Detection cell design is very important in order to ensure electrical isolation from the high separation voltage. Amperometric detectors with different designs have been developed for coupling EC detection to CE-microchips. Different working electrode alignment: in-channel or end-channel has been tested in conjunction with several materials: gold, platinum or carbon. The end-channel detector was based on a platinum or gold wire manually aligned at the exit of the separation channel. Thick- (screen-printed carbon electrode) and thin-film (sputtered gold film) electrodes have also been employed with this configuration, but with a different design that allowed the rapid replacement of the electrode. The in-channel detector was based on a gold film within the separation channel. A gold-based dual electrode detector, which combined for the first time in- and end-channel detection, has been also tested. These amperometric detectors have been evaluated in combination to poly(methylmethacrylate) (PMMA) and Topas (thermoplastic olefin polymer of amorphous structure) CE-microchips. Topas is a new and promising cyclic olefin copolymer with high chemical resistance. Relevant parameters of the polymer microchip separation such as precision, efficiency or resolution and amperometric detection were studied with the different detector designs using p-aminophenol and L-ascorbic acid as model analytes in Tris-based buffer pH 9.0.

  15. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields.

  16. Development in electrophoresis: instrumentation for two-dimensional gel electrophoresis of protein separation and application of capillary electrophoresis in micro-bioanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Aoshuang

    2008-01-01

    This dissertation begins with a general introduction of topics related to this work. The following chapters contain three scientific manuscripts, each presented in a separate chapter with accompanying tables, figures, and literature citations. The final chapter summarizes the work and provides some prospective on this work. This introduction starts with a brief treatment of the basic principles of electrophoresis separation, followed by a discussion of gel electrophoresis and particularly polyacrylamide gel electrophoresis for protein separation, a summary of common capillary electrophoresis separation modes, and a brief treatment of micro-bioanalysis application of capillary electrophoresis, and ends with an overview of proteinmore » conformation and dynamics.« less

  17. Native and sodium dodecyl sulfate-capillary gel electrophoresis of proteins on a single microchip.

    PubMed

    Tsai, Shuo-Wen; Loughran, Michael; Suzuki, Hiroaki; Karube, Isao

    2004-02-01

    Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.

  18. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  19. A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen

    2017-01-01

    A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.

  20. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  1. Microfluidic free-flow electrophoresis for the discovery and characterisation of calmodulin binding partners

    NASA Astrophysics Data System (ADS)

    Herling, Therese; Linse, Sara; Knowles, Tuomas

    2015-03-01

    Non-covalent and transient protein-ligand interactions are integral to cellular function and malfunction. Key steps in signalling and regulatory pathways rely on reversible non-covalent protein-protein binding or ion chelation. Here we present a microfluidic free-flow electrophoresis method for detecting and characterising protein-ligand interactions in solution. We apply this method to probe the binding equilibria of calmodulin, a central protein to calcium signalling pathways. In this study we characterise the specific binding of calmodulin to phosphorylase kinase, a known target, and creatine kinase, which we identify as a putative binding partner through a protein array screen and surface plasmon resonance experiments. We verify the interaction between calmodulin and creatine kinase in solution using free-flow electrophoresis and investigate the effect of calcium and sodium chloride on the calmodulin-ligand binding affinity in free solution without the presence of a potentially interfering surface. Our results demonstrate the general applicability of quantitative microfluidic electrophoresis to characterise binding equilibria between biomolecules in solution.

  2. System and method for chromatography and electrophoresis using circular optical scanning

    DOEpatents

    Balch, Joseph W.; Brewer, Laurence R.; Davidson, James C.; Kimbrough, Joseph R.

    2001-01-01

    A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.

  3. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    PubMed Central

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  4. 16-channel arrayed waveguide grating (AWG) demultiplexer design on SOI wafer for application in CWDM-PON

    NASA Astrophysics Data System (ADS)

    Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin

    2015-01-01

    Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).

  5. Protein Electrophoresis/Immunofixation Electrophoresis

    MedlinePlus

    ... underlying disease. Follow-up tests may include, for example, albumin , immunoelectrophoresis, serum free light chains , quantitative immunoglobuins , ... the disease and the effectiveness of treatment. Some examples of when an electrophoresis test may be ordered ...

  6. Axially shaped channel and integral flow trippers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.; Matzner, B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the uppermore » and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less

  7. Axially shaped channel and integral flow trippers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.

    1992-02-11

    This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connectingmore » the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less

  8. Optimum SNR data compression in hardware using an Eigencoil array.

    PubMed

    King, Scott B; Varosi, Steve M; Duensing, G Randy

    2010-05-01

    With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.

  9. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  10. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    NASA Astrophysics Data System (ADS)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  11. Single- and multi-channel underwater acoustic communication channel capacity: a computational study.

    PubMed

    Hayward, Thomas J; Yang, T C

    2007-09-01

    Acoustic communication channel capacity determines the maximum data rate that can be supported by an acoustic channel for a given source power and source/receiver configuration. In this paper, broadband acoustic propagation modeling is applied to estimate the channel capacity for a time-invariant shallow-water waveguide for a single source-receiver pair and for vertical source and receiver arrays. Without bandwidth constraints, estimated single-input, single-output (SISO) capacities approach 10 megabitss at 1 km range, but beyond 2 km range they decay at a rate consistent with previous estimates by Peloquin and Leinhos (unpublished, 1997), which were based on a sonar equation calculation. Channel capacities subject to source bandwidth constraints are approximately 30-90% lower than for the unconstrained case, and exhibit a significant wind speed dependence. Channel capacity is investigated for single-input, multi-output (SIMO) and multi-input, multi-output (MIMO) systems, both for finite arrays and in the limit of a dense array spanning the entire water column. The limiting values of the SIMO and MIMO channel capacities for the modeled environment are found to be about four times higher and up to 200-400 times higher, respectively, than for the SISO case. Implications for underwater acoustic communication systems are discussed.

  12. Kidney Cell Electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  13. Method of reduction of the number of driving system channels for phased-array transducers using isolation transformers.

    PubMed

    Fjield, T; Hynynen, K

    2000-01-01

    Phased-array technology offers an incredible advantage to therapeutic ultrasound due to the ability to electronically steer foci, create multiple foci, or to create an enlarged focal region by using phase cancellation. However, to take advantage of this flexibility, the phased-arrays generally consist of many elements. Each of these elements requires its own radio-frequency generator with independent amplitude and phase control, resulting in a large, complex, and expensive driving system. A method is presented here where in certain cases the number of amplifier channels can be reduced to a fraction of the number of transducer elements, thereby simplifying the driving system and reducing the overall system complexity and cost, by using isolation transformers to produce 180 degrees phase shifts.

  14. Increased Vessel Depiction of the Carotid Bifurcation with a Specialized 16-Channel Phased Array Coil at 3T

    PubMed Central

    Tate, Quinn; Kim, Seong-Eun; Treiman, Gerald; Parker, Dennis L.; Hadley, J. Rock

    2012-01-01

    The purpose of this work was to design and construct a multi-channel receive-only RF coil for 3 Tesla magnetic resonance imaging of the human carotid artery and bifurcation with optimized signal to noise ratio in the carotid vessels along the full extent of the neck. A neck phantom designed to match the anatomy of a subject with a neck representing the body habitus often seen in subjects with carotid arterial disease, was constructed. Sixteen circular coil elements were arranged on a semi-rigid fiberglass former that closely fit the shape of the phantom, resulting in a 16-channel bilateral phased array coil. Comparisons were made between this coil and a typical 4-channel carotid coil in a study of 10 carotid vessels in 5 healthy volunteers. The 16-channel carotid coil showed a 73% average improvement in signal to noise ratio (SNR) at the carotid bifurcation. This coil also maintained an SNR greater than the peak SNR of the 4-channel coil over a vessel length of 10 cm. The resulting increase in SNR improved vessel depiction of the carotid arteries over an extended field of view, and demonstrated better image quality for higher parallel imaging reduction factors compared to the 4-channel coil. PMID:22777692

  15. Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing

    2014-12-01

    In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.

  16. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  17. Diagnosis of schistosomiasis japonica with interfacial co-assembly-based multi-channel electrochemical immunosensor arrays

    NASA Astrophysics Data System (ADS)

    Deng, Wangping; Xu, Bin; Hu, Haiyan; Li, Jianyong; Hu, Wei; Song, Shiping; Feng, Zheng; Fan, Chunhai

    2013-05-01

    Schistosomiasis control remains to be an important and challenging task in the world. However, lack of quick, simple, sensitive and specific sero-diagnostic test is still a hurdle in the control practice. The commonly employed enzyme-linked immuno-sorbent assay (ELISA) relies on the native soluble egg antigen (SEA) that is limited in supply. Here we developed an electrochemical immunosensor array (ECISA) assay with an interfacial co-assembly strategy. A recombinant Schistosoma japonicum (Sj) calcium-binding protein (SjE16) was used as a principal antigen, while the SEA as a minor, co-assembling agent, with a ratio of 8:1 (SjE16: SEA, Sj16EA), which was co-immobilized on a disposable 16-channel screen-printed carbon electrode array. A portable electrochemical detector was employed to detect antibodies in serum samples. The sensitivity of ECISA reached 100% with minimal cross-reactions. Therefore, we have demonstrated that this rapid, sensitive and specific ECISA technique has the potential to perform large-scale on-site screening of Sj infection.

  18. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  19. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  20. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1980-01-01

    The following aspects of kidney cell electrophoresis are discussed: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characterization of kidney cells.

  1. Recent advances in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Egen, Ned B.; Couasnon, Pascal; Sammons, David W.

    1987-01-01

    Various approaches for preparative electrophoresis, and three new instruments for preparative electrophoresis are discussed. Consideration is given to isoelectric focusing, isotachophoresis, and zone electrophoresis, three gel-based electrophoresis methods. The design, functions, and performance of the Elphor VaP 21 device of Hannig (1982), the shear-stabilized BIOSTREAM separator of Thompson (1983), and the recycling isoelectric focusing device are described.

  2. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  3. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  4. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  5. A simple preparative free-flow electrophoresis joined with gratis gravity: I. Gas cushion injector and self-balance collector instead of multiple channel pump.

    PubMed

    Chen, Su; Palmer, James F; Zhang, Wei; Shao, Jing; Li, Si; Fan, Liu-Yin; Sun, Ren; Dong, Yu-Chao; Cao, Cheng-Xi

    2009-06-01

    This paper describes a novel free-flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self-balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one-channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity-induced pressure due to the difference of buffer surfaces in the GCI and self-balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.

  6. Integration of Microdialysis Sampling and Microchip Electrophoresis with Electrochemical Detection

    PubMed Central

    Mecker, Laura C.; Martin, R. Scott

    2009-01-01

    Here we describe the fabrication, optimization, and application of a microfluidic device that integrates microdialysis (MD) sampling, microchip electrophoresis (ME), and electrochemical detection (EC). The manner in which the chip is produced is reproducible and enables the fixed alignment of the MD/ME and ME/EC interfaces. Poly(dimethylsiloxane) (PDMS) -based valves were used for the discrete injection of sample from the hydrodynamic MD dialysate stream into a separation channel for analysis with ME. To enable the integration of ME with EC detection, a palladium decoupler was used to isolate the high voltages associated with electrophoresis from micron-sized carbon ink detection electrodes. Optimization of the ME/EC interface was needed to allow the use of biologically appropriate perfusate buffers containing high salt content. This optimization included changes in the fabrication procedure, increases in the decoupler surface area, and a programmed voltage shutoff. The ability of the MD/ME/EC system to sample a biological system was demonstrated by using a linear probe to monitor the stimulated release of dopamine from a confluent layer of PC 12 cells. To our knowledge, this is the first report of a microchip-based system that couples microdialysis sampling with microchip electrophoresis and electrochemical detection. PMID:19551945

  7. Factors affecting the separation performance of proteins in capillary electrophoresis.

    PubMed

    Zhu, Yueping; Li, Zhenqing; Wang, Ping; Shen, Lisong; Zhang, Dawei; Yamaguchi, Yoshinori

    2018-04-15

    Capillary electrophoresis (CE) is an effective tool for protein separation and analysis. Compared with capillary gel electrophoresis (CGE), non-gel sieving capillary electrophoresis (NGSCE) processes the superiority on operation, repeatability and automaticity. Herein, we investigated the effect of polymer molecular weight and concentration, electric field strength, and the effective length of the capillary on the separation performance of proteins, and find that (1) polymer with high molecular weight and concentration favors the separation of proteins, although concentrated polymer hinders its injection into the channel of the capillary due to its high viscosity. (2) The resolution between the adjacent proteins decreases with the increase of electric field strength. (3) When the effective length of the capillary is long, the separation performance improves at the cost of separation time. (4) 1.4% (w/v) hydroxyethyl cellulose (HEC), 100 V/cm voltage and 12 cm effective length offers the best separation for the proteins with molecular weight from 14,400 Da to 97,400 Da. Finally, we employed the optimal electrophoretic conditions to resolve Lysozyme, Ovalbumin, BSA and their mixtures, and found that they were baseline resolved within 15 min. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    PubMed

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  9. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes’ hearing problem: an innovation in multi-channel-array skin-hearing technology

    PubMed Central

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-01-01

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. PMID:25317171

  10. Improved Electrophoresis Cell

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Several proposed modifications are expected to improve performance of a continous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.

  11. Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  12. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  13. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  14. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.

    PubMed

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrophoresis in space.

    PubMed

    Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G

    1999-01-01

    Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to

  16. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.

    PubMed

    Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.

  17. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-03-01

    A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.

  18. Fabrication of Nanopipette Arrays for Biosensing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2015-01-01

    Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal ("AN-metal," such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200.degree. C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 .mu.m, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(.gtoreq.1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.

  19. Development of stable low-electroosmotic mobility coatings. [for use in electrophoresis systems in space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1979-01-01

    Long-time rinsings of the Z6040-methlycellulose coating used successfully on the ASTP MA=011 experiment indicate the permanency of this coating is inadequate for continuous flowing systems. Two approaches are described for developing coatings which are stable under continuous fluid movement and which exhibit finite and predictable electroosmotic mobility values while being effective on different types of surfaces, such as glass, plastics, and ceramic alumina, such as is currently used as the electrophoresis channel in the GE-SPAR-CPE apparatus. The surface charge modification of polystyrene latex, especially by protein absorption, to be used as model materials for ground-based electrophoresis experiments, and the preliminary work directed towards the seeded polymerization of large-particle-size monodisperse latexes in a microgravity environment are discussed.

  20. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.

    PubMed

    Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J

    2007-07-01

    To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.

  1. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  2. Automatic multiple applicator electrophoresis

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W.

    1977-01-01

    Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.

  3. Saturation measurement accuracy in clinical near-infrared cerebral oximeters with a 3D-printed channel array phantom

    NASA Astrophysics Data System (ADS)

    Afshari, Ali; Ghassemi, Pejhman; Halprin, Molly; Lin, Jonathan; Weininger, Sandy; Gandjbakhche, Amir H.; Wang, Jianting; Pfefer, Joshua

    2018-02-01

    Clinical cerebral oximeters based on near-infrared spectroscopy (NIRS) are a commonly used, non-invasive tool for intraoperative monitoring of hemoglobin saturation. Research to verify performance of cerebral oximeters in human subject trials has shown differences between commercially available devices. Test methods based on tissue-simulating phantoms have been proposed to augment clinical findings. While prior studies have focused on liquid phantoms, this work is aimed at developing methods based on solid polymer phantoms that are stable. Specifically, we have designed and fabricated a neonatal/pediatric head mimicking layered phantoms based on a 3D-printed cerebral matrix incorporating an array of vessel-simulating linear channels. Superficial layers incorporating homogeneous molded polydimethylsiloxane (PDMS) slabs were fabricated to represent CSF, scalp and skull regions. The cerebral matrix was filled with bovine blood desaturated with sodium dithionite to achieve oxygenation levels across the 40-90% range. Measurements were performed with a commercially available cerebral oximeter using two probes with different illumination-collection geometries, as designed for neonatal and pediatric patients. Reference measurements of samples were performed with a CO-oximeter before injection and after extraction. Results from applied cerebral oximeters indicate a strong sensitivity to the thickness of the superficial layer of the phantom. Better correlation with the reference CO-oximeter results were obtained in the superficial layer thickness of 0.8-2.5 mm range. Channel array phantoms with modular superficial layers represent a promising approach for performance testing of NIRS-based cerebral oximeters.

  4. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  5. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  6. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOEpatents

    Davidson, J. Courtney; Balch, Joseph W.

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  7. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  8. A 1-MHz 2-D CMUT array for HIFU thermal ablation

    NASA Astrophysics Data System (ADS)

    Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre

    2017-03-01

    We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.

  9. Electrophoresis of biological materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The selection of biological products was studied for electrophoresis in space. Free flow electrophoresis, isoelectric focusing, and isotachophoresis are described. The candidates discussed include: immunoglobulins and gamma globulins; isolated islet of langerhans from pancreas; bone marrow; tumor cells; kidney cells, cryoprecipitate; and column separated cultures.

  10. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  11. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.

    2006-10-17

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  12. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, Gary X

    2008-10-01

    Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.

  13. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  14. High channel count microphone array accurately and precisely localizes ultrasonic signals from freely-moving mice.

    PubMed

    Warren, Megan R; Sangiamo, Daniel T; Neunuebel, Joshua P

    2018-03-01

    An integral component in the assessment of vocal behavior in groups of freely interacting animals is the ability to determine which animal is producing each vocal signal. This process is facilitated by using microphone arrays with multiple channels. Here, we made important refinements to a state-of-the-art microphone array based system used to localize vocal signals produced by freely interacting laboratory mice. Key changes to the system included increasing the number of microphones as well as refining the methodology for localizing and assigning vocal signals to individual mice. We systematically demonstrate that the improvements in the methodology for localizing mouse vocal signals led to an increase in the number of signals detected as well as the number of signals accurately assigned to an animal. These changes facilitated the acquisition of larger and more comprehensive data sets that better represent the vocal activity within an experiment. Furthermore, this system will allow more thorough analyses of the role that vocal signals play in social communication. We expect that such advances will broaden our understanding of social communication deficits in mouse models of neurological disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Separating light absorption layer from channel in ZnO vertical nanorod arrays based photodetectors for high-performance image sensors

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Congjun; Xu, Zhihao; Wang, Fei; Wang, Min

    2018-05-01

    Photoconductor arrays with both high responsivity and large ON/OFF ratios are of great importance for the application of image sensors. Herein, a ZnO vertical nanorod array based photoconductor with a light absorption layer separated from the device channel has been designed, in which the photo-generated carriers along the axial ZnO nanorods drive to the external electrodes through nanorod-nanorod junctions in the dense layer at the bottom. This design allows us to enhance the photocurrent with unchanged dark current by increasing the ratio between the ZnO nanorod length and the thickness of the dense layer to achieve both high responsivity and large ON/OFF ratios. As a result, the as-fabricated devices possess a high responsivity of 1.3 × 105 A/W, a high ON/OFF ratio of 790, a high detectivity of 1.3 × 1013 Jones, and a low detectable light intensity of 1 μW/cm2. More importantly, the developed approach enables the integration of ZnO vertical nanorod array based photodetectors as image sensors with uniform device-to-device performance.

  16. Amperometric Detection in Microchip Electrophoresis Devices: Effect of Electrode Material and Alignment on Analytical Performance

    PubMed Central

    Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.

    2012-01-01

    The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847

  17. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.

    PubMed

    Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L

    2009-09-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.

  18. Techniques For Focusing In Zone Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.

    1994-01-01

    In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.

  19. Integrated titer plate-injector head for microdrop array preparation, storage and transfer

    DOEpatents

    Swierkowski, Stefan P.

    2000-01-01

    An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.

  20. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  1. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Uniform Laser Excitation And Detection In Capillary Array Electrophoresis System And Method.

    DOEpatents

    Li, Qingbo; Zhou, Songsan; Liu, Changsheng

    2003-10-07

    A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.

  3. Dense Array Optimization of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  4. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    DOEpatents

    Lewis, Nathan S [La Canada, CA; Freund, Michael S [Winnipeg, CA; Briglin, Shawn S [Chittenango, NY; Tokumaru, Phillip [Moorpark, CA; Martin, Charles R [Gainesville, FL; Mitchell, David [Newtown, PA

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  5. Supramolecular gel electrophoresis of large DNA fragments.

    PubMed

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrophoresis for biological production

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1977-01-01

    Preparative electrophoresis may provide a unique method for meeting ever more stringent purity requirements. Prolonged near zero gravity in space may permit the operation of preparative electrophoresis equipment with 100 times greater throughput than is currently available. Some experiments with influenza Virus Antigen, Erythropoietin and Antihemophaliac Factor, along with process and economic projections, are briefly reviewed.

  7. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  8. Lectin-Array Blotting.

    PubMed

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. A gel as an array of channels.

    PubMed

    Zimm, B H

    1996-06-01

    We consider the theory of charged point molecules ('probes') being pulled by an electric field through a two-dimensional net of channels that represents a piece of gel. Associated with the position in the net is a free energy of interaction between the probe and the net; this free energy fluctuates randomly with the position of the probe in the net. The free energy is intended to represent weak interactions between the probe and the gel, such as entropy associated with the restriction of the freedom of motion of the probe by the gel, or electrostatic interactions between the probe and charges fixed to the gel. The free energy can be thought of as a surface with the appearance of a rough, hilly landscape spread over the net; the roughness is measured by the standard deviation of the free-energy distribution. Two variations of the model are examined: (1) the net is assumed to have all channels open, or (2) only channels parallel to the electric field are open and all the cross-connecting channels are closed. Model (1) is more realistic but presents a two-dimensional mathematical problem which can only be solved by slow iteration methods, while model (2) is less realistic but presents a one-dimensional problem that can be reduced to simple quadratures and is easy to solve by numerical integration. In both models the mobility of the probe decreases as the roughness parameter is increased, but the effect is larger in the less realistic model (2) if the same free-energy surface is used in both. The mobility in model (2) is reduced both by high points in the rough surface ('bumps') and by low points ('traps'), while in model (1) only the traps are effective, since the probes can flow around the bumps through the cross channels. The mobility in model (2) can be made to agree with model (1) simply by cutting off the bumps of the surface. Thus the simple model (2) can be used in place of the more realistic model (1) that is more difficult to compute.

  10. Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser induced fluorescence detection

    PubMed Central

    Nikcevic, Irena; Piruska, Aigars; Wehmeyer, Kenneth R.; Seliskar, Carl J.; Limbach, Patrick A.; Heineman, William R.

    2010-01-01

    Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser induced fluorescence detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be analyzed on parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pKa determination of small molecule analytes is demonstrated with the multilane microchip. PMID:20737446

  11. PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation.

    PubMed

    Köhler, Stefan; Weilbeer, Claudia; Howitz, Steffen; Becker, Holger; Beushausen, Volker; Belder, Detlev

    2011-01-21

    In this work, a microfluidic free-flow electrophoresis device with a novel approach for preventing gas bubbles from entering the separation area is presented. This is achieved by integrating partitioning bars to reduce the channel depth between electrode channels and separation chamber in order to obtain electrical contact and simultaneously prevent bubbles from entering the separation area. The three-layer sandwich chip features a reusable carrier plate with integrated ports for fluidic connection combined with a softlithographically cast microfluidic PDMS layer and a sealing glass slide. This design allows for a straightforward and rapid chip prototyping process. The performance of the device is demonstrated by free-flow zone electrophoretic separations of fluorescent dye mixtures as well as by the separation of labeled amines and amino acids with separation voltages up to 297 V.

  12. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  13. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  14. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  15. Monolithic integration of an InP-based 4 × 25 GHz photodiode array to an O-band arrayed waveguide grating demultiplexer

    NASA Astrophysics Data System (ADS)

    Ye, Han; Han, Qin; Lv, Qianqian; Pan, Pan; An, Junming; Yang, Xiaohong

    2017-12-01

    We demonstrate the monolithic integration of a uni-traveling carrier photodiode array with a 4 channel, O-band arrayed waveguide grating demultiplexer on the InP platform by the selective area growth technique. An extended coupling layer at the butt-joint is adopted to ensure both good fabrication compatibility and high photodiode quantum efficiency of 77%. The fabricated integrated chip exhibits a uniform bandwidth over 25 GHz for each channel and a crosstalk below -22 dB.

  16. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection.

    PubMed

    Cunha, Rafael R; Chaves, Sandro C; Ribeiro, Michelle M A C; Torres, Lívia M F C; Muñoz, Rodrigo A A; Dos Santos, Wallans T P; Richter, Eduardo M

    2015-05-01

    Paracetamol, caffeine and ibuprofen are found in over-the-counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high-performance liquid chromatography with diode-array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high-performance liquid chromatography with diode-array detection was achieved on a C18 column (250×4.6 mm(2), 5 μm) with a gradient mobile phase comprising 20-100% acetonitrile in 40 mmol L(-1) phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused-silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L(-1) 3,4-dimethoxycinnamate and 10 mmol L(-1) β-alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L(-1) by liquid chromatography and 39, 32, and 49 μmol L(-1) by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92-107% for both proposed methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    PubMed Central

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696

  18. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.

    PubMed

    Tan, J Y; Chua, C K; Leong, K F

    2013-02-01

    Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.

  19. New design concept of monopole antenna array for UHF 7T MRI.

    PubMed

    Hong, Suk-Min; Park, Joshua Haekyun; Woo, Myung-Kyun; Kim, Young-Bo; Cho, Zang-Hee

    2014-05-01

    We have developed and evaluated a monopole antenna array that can increase sensitivity at the center of the brain for 7T MRI applications. We have developed a monopole antenna array that has half the length of a conventional dipole antenna with eight channels for brain imaging with a 7T MRI. The eight-channel monopole antenna array and conventional eight-channel transceiver surface coil array were evaluated and compared in terms of transmit properties, specific absorption ratio (SAR), and sensitivity. The sensitivity maps were generated by dividing the SNR map by the flip angle distribution. A single surface coil provides asymmetric sensitivity resulting in reduced sensitivity at the center of the brain. In contrast, a single monopole antenna provides higher sensitivity at the center of the brain. Moreover, the monopole antenna array provides uniform sensitivity over the entire brain, and the sensitivity gain was 1.5 times higher at the center of the brain compared with the surface coil array. The monopole antenna array is a promising candidate for MRI applications, especially for brain imaging in a 7T MRI because it provides increased sensitivity at the center of the brain. Copyright © 2013 Wiley Periodicals, Inc.

  20. DNA gel electrophoresis: the reptation model(s).

    PubMed

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  1. RF surface receive array coils: the art of an LC circuit.

    PubMed

    Fujita, Hiroyuki; Zheng, Tsinghua; Yang, Xiaoyu; Finnerty, Matthew J; Handa, Shinya

    2013-07-01

    The radiofrequency (RF) receive array coil is a complicated device with many inductors and capacitors and serves as one of the most critical magnetic resonance imaging (MRI) electronic devices. It directly determines the achievable level of signal-to-noise ratio (SNR). Simply put, however, the RF coil is nothing but an LC circuit. The receive array coil was first proposed more than 20 years ago, evolving from a simple arrangement with a few electronic channels to a complicated system of 128 channels, enabling highly sophisticated parallel imaging, at different field strengths. This article summarizes the basic concepts pertaining to RF receive coil arrays and their associated SNR and reviews the theories behind the major components of such arrays. This includes discussions of the intrinsic SNR of a receive coil, the matching circuits, low-noise preamplifiers, coupling/decoupling amongst coils, the coupling between receive and transmit coils, decoupling via preamplifiers, and baluns. An 8-channel receive array coil on a cylindrical former serves as a useful example for demonstrating various points in the review. Copyright © 2013 Wiley Periodicals, Inc.

  2. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    PubMed

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. A 32-Channel Phased-Array Receive with Asymmetric Birdcage Transmit RF Coil for Hyperpolarized Xenon-129 Lung Imaging

    PubMed Central

    Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William

    2012-01-01

    Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336

  4. Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.

    2017-06-01

    The market of Silicon Photomultipliers (SiPMs) consists of many manufacturers that produce their detectors in different technology. Hamamatsu (Japan) and SensL (Ireland) seems to be the most popular companies that produce large SiPM arrays. The aim of this work is characterization and comparison of 4×4 channel SiPM arrays produced by these two producers. Both of the tested SiPMs are made in through-silicon via (TSV) technology, consist of 16, 3×3 mm avalanche photodiode (APD) cells and have fill factor slightly above 60%. The largest difference is a single APD cell size and hence total number of APD cells (55,424 for Hamamatsu, 76,640 for SensL). In the case of SensL SiPM, its spectral response characteristics is shifted slightly toward shorter wavelengths with maximum at 420 nm (450 nm for Hamamatsu). The presented measurements cover selection of the SiPM optimum operating voltage (in respect to energy resolution), verification of the excess noise factor and check of the linearity characteristics. Moreover, the gamma spectrometry with LSO, BGO and CsI:Tl scintillators together with pulse characteristics for these crystals (rise time and fall time) is reported, as well as temperature dependence. The presented measurements show better performance of the SensL array comparing to the Hamamatsu detector.

  5. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  6. Automated extraction of direct, reactive, and vat dyes from cellulosic fibers for forensic analysis by capillary electrophoresis.

    PubMed

    Dockery, C R; Stefan, A R; Nieuwland, A A; Roberson, S N; Baguley, B M; Hendrix, J E; Morgan, S L

    2009-08-01

    Systematic designed experiments were employed to find the optimum conditions for extraction of direct, reactive, and vat dyes from cotton fibers prior to forensic characterization. Automated microextractions were coupled with measurements of extraction efficiencies on a microplate reader UV-visible spectrophotometer to enable rapid screening of extraction efficiency as a function of solvent composition. Solvent extraction conditions were also developed to be compatible with subsequent forensic characterization of extracted dyes by capillary electrophoresis with UV-visible diode array detection. The capillary electrophoresis electrolyte successfully used in this work consists of 5 mM ammonium acetate in 40:60 acetonitrile-water at pH 9.3, with the addition of sodium dithionite reducing agent to facilitate analysis of vat dyes. The ultimate goal of these research efforts is enhanced discrimination of trace fiber evidence by analysis of extracted dyes.

  7. Bioprocessing: Prospects for space electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  8. Monolithic Integration of Two-Dimensional Liquid Chromatography-Capillary Electrophoresis and Electrospray Ionization on a Microfluidic Device

    PubMed Central

    Chambers, Andrew G.; Mellors, J. Scott; Henley, W. Hampton; Ramsey, J. Michael

    2011-01-01

    A microfluidic device capable of two-dimensional reversed-phase liquid chromatography-capillary electrophoresis with integrated electrospray ionization (LC-CE-ESI) for mass spectrometry (MS)-based proteomic applications is described. Traditional instrumentation was used for the LC sample injection and delivery of the LC mobile phase. The glass microfabricated device incorporated a sample-trapping region and an LC channel packed with reversed-phase particles. Rapid electrokinetic injections of the LC effluent into the CE dimension were performed at a cross channel intersection. The CE separation channel terminated at a corner of the square device, which functioned as an integrated electrospray tip. In addition to LC-CE-ESI, this device was used for LC-ESI without any instrumental modifications. To evaluate the system, LC-MS and LC-CE-MS analysis of protein digests were performed and compared. PMID:21214194

  9. Nonlinear Blind Compensation for Array Signal Processing Application

    PubMed Central

    Ma, Hong; Jin, Jiang; Zhang, Hua

    2018-01-01

    Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571

  10. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  11. Effects of wind waves on horizontal array performance in shallow-water conditions

    NASA Astrophysics Data System (ADS)

    Zavol'skii, N. A.; Malekhanov, A. I.; Raevskii, M. A.; Smirnov, A. V.

    2017-09-01

    We analyze the influence of statistical effects of the propagation of an acoustic signal excited by a tone source in a shallow-water channel with a rough sea surface on the efficiency of a horizontal phased array. As the array characteristics, we consider the angular function of the array response for a given direction to the source and the coefficient of amplification of the signal-to-noise ratio (array gain). Numerical simulation was conducted in to the winter hydrological conditions of the Barents Sea in a wide range of parameters determining the spatial signal coherence. The results show the main physical effects of the influence of wind waves on the array characteristics and make it possible to quantitatively predict the efficiency of a large horizontal array in realistic shallow-water channels.

  12. Experimental implementation of array-compressed parallel transmission at 7 tesla.

    PubMed

    Yan, Xinqiang; Cao, Zhipeng; Grissom, William A

    2016-06-01

    To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  14. Electrophoresis experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1991-01-01

    The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  15. Electrophoresis as a management tool

    USGS Publications Warehouse

    Morgan, R.P.; Chapman, J.A.; Noe, L.A.; Henny, C.J.

    1974-01-01

    The theme of this 1974 Northeast Fish and Wildlife Conference is 'A New Era'. Indeed, it is a new era for improved techniques to assist in management of our fish and wildlife resources for the maximum benefit of all. In some cases, the new techniques are primarily used in research.on fish and wildlife, and the results from the research are used to aid management and enforcement agencies in the decision-making process. One of the newer techniques that is being applied to problems in fisheries and wildlife is electrophoresis. In this paper, we review briefly the techniques of electrophoresis and illustrate research problems in wildlife and fisheries where the use of electrophoresis is now assisting or may potentially aid in management decisions.

  16. The development of a multichannel electrode array for retinal prostheses.

    PubMed

    Terasawa, Yasuo; Tashiro, Hiroyuki; Uehara, Akihiro; Saitoh, Tohru; Ozawa, Motoki; Tokuda, Takashi; Ohta, Jun

    2006-01-01

    The development of a multielectrode array is the key issue for retinal prostheses. We developed a 10 x 10 platinum electrode array that consists of an 8-microm polyimide layer sandwiched between 5-microm polymonochloro-para-xylylene (parylene-C) layers. Each electrode was formed as a 30-microm-high bump by Pt/Au double-layer electroplating. We estimated the charge delivery capability (CDC) of the electrode by measuring the CDCs of two-channel electrode arrays. The dimensions of each electrode of the two-channel array were the same as those of each electrode formed on the 10 x 10 array. The results suggest that for cathodic-first (CF) pulses, 80% of electrodes surpassed our development target of 318 microC/cm2, which corresponds to the charge density of pulses of 500 micros duration and 200 microA amplitude for a 200-microm-diameter planar electrode.

  17. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  18. Protein Separation by Capillary Gel Electrophoresis: A Review

    PubMed Central

    Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong

    2011-01-01

    Capillary gel electrophoresis (CGE) has been used for protein separation for more than two decades. Due to the technology advancement, current CGE methods are becoming more and more robust and reliable for protein analysis, and some of the methods have been routinely used for the analysis of protein-based pharmaceuticals and quality controls. In light of this progress, we survey 147 papers related to CGE separations of proteins and present an overview of this technology. We first introduce briefly the early development of CGE. We then review the methodology, in which we specifically describe the matrices, coatings, and detection strategies used in CGE. CGE using microfabricated channels and incorporation of CGE with two-dimensional protein separations are also discussed in this section. We finally present a few representative applications of CGE for separating proteins in real-world samples. PMID:22122927

  19. Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles.

    PubMed

    He, Yun; Zhang, Yan; Yan, Nan; Zhu, Yutian; Jiang, Wei; Shi, Dean

    2017-10-12

    Well-defined polymeric particles with not only a controllable shape and internal nanostructures but also stimuli-responsive functions have attracted intensive attention because of their great potential in various fields. Herein, we created unique sieve-like particles with lattice arrayed switchable channels via the confined self-assembly of poly(4-vinylpyridine)-b-polystyrene-b-poly(4-vinylpyridine) (P4VP-b-PS-b-P4VP) triblock copolymers within the emulsion droplets and the subsequent swelling treatment in ethanol. It is worth noting that the hexagonally packed P4VP channels in the sieve-like particles are switched on and off by changing the solvent type, i.e., P4VP channels are switched on in ethanol and switched off in water, which can operate as a solvent-controlled chemical gate. Moreover, the well-defined sieve-like particles can be further used as scaffolds to guide the spatial arrangement of gold nanoparticles, which generates hybrid nanomaterials with controllable morphology and ordered spatial arrangement of AuNPs.

  20. Characterization of Nanofluidic Entropic Trap Array for DNA Separation

    NASA Astrophysics Data System (ADS)

    Han, Jongyoon

    2003-03-01

    Micromachined nanoscale fluidic structures can provide new opportunities in biomolecule manipulation and sorting, because their chemical and physical properties can be controlled easily unlike random nanoporous materials. As an example of regular nanostructures used for biomolecule manipulation and sorting, a nanofluidic entropic trap array for DNA separation is presented. Nanofluidic channels as thin as 75nm were used as a molecular sieve instead of agarose gel for DNA separation. The interaction between DNA molecules and the nanofluidic structure determines the DNA migration speed, which was used to separate DNA molecules in a dc electrophoresis. Separation of long DNA (up to 200kbp) has been achieved within 30 minutes, using less than a picogram quantities of DNA, with only 1.5cm long channels.[1] In addition to the efficiency improvement, nanofluidic DNA entropic traps have a regular structure that can be easily modeled theoretically. The theoretical model could be the basis for improving the system performance for further optimization in separation size range and resolution. The process of DNA moving out of the entropic trap was theoretically modeled, and the prediction of the theoretical model was compared with the experimental data.[2] The selectivity, resolution, and the separation range of DNA for a given entropic trap separation system was discussed in terms of the number of entropic traps, various structural parameters of the system, and the electric field. It is expected that this system could be used for analyzing a small amount of ultra-long DNA molecules. (1) Han, J.; Craighead, H. G. Science 2000, 288, 1026-1029. (2) Han, J.; Craighead, H. G. Anal. Chem. 2002, 74, 394-401.

  1. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersectionmore » geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.« less

  2. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    PubMed Central

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-01-01

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed. PMID:21520147

  3. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  4. Simulating Electrophoresis.

    ERIC Educational Resources Information Center

    Moertel, Cheryl; Frutiger, Bruce

    1996-01-01

    Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)

  5. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings

    PubMed Central

    Patel, Paras R.; Na, Kyounghwan; Zhang, Huanan; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Yoon, Euisik; Chestek, Cynthia A.

    2016-01-01

    Objective Single carbon fiber electrodes (d=8.4 μm) insulated with parylene-c and functionalized with PEDOT:pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ~150 μm pitch. Approach Two approaches were tested for the insertion of carbon fiber arrays. The first method used a PEG coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm – 1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. Main results Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in 5 rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in 3 acute rat surgeries. In one of those surgeries a stacked device with 3 layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. Significance From these studies we have found that carbon fibers spaced at ~150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response. PMID:26035638

  6. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  7. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  8. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master.

    PubMed

    Lobo-Júnior, Eulício O; Gabriel, Ellen F M; Dos Santos, Rodrigo A; de Souza, Fabrício R; Lopes, Wanderson D; Lima, Renato S; Gobbi, Angelo L; Coltro, Wendell K T

    2017-01-01

    This study describes a simple, rapid, and cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) (PVAc) emulsion as photoresist master. High-relief microfluidic structures were defined on poly(vinyl acetate) previously deposited on printed circuit boards surfaces without cleanroom facilities and sophisticated instrumentation. After a UV exposure, channels with heights ranging from 30 to 140 μm were obtained by controlling the emulsion mass deposited on the master surface. The developing stage was performed using water rather than the organic solvents that are applied for conventional masks. The surface morphology was characterized by optical imaging, profilometry, and SEM. Based on the achieved results, the proposed method offers suitable reproducibility for the prototyping of electrophoresis microchips in PDMS. The feasibility of the resulting PDMS electrophoresis chips was successfully demonstrated with the separation of major inorganic cations within 100 s using a contactless conductivity detection system. The separation efficiencies ranged from ca. 67 900 to 125 600 plates/m. Due to the satisfactory performance and simplified instrumentation, we believe this fabrication protocol presents potential to be implemented in any chemical, biochemical, or biological laboratory. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  10. Packaging and testing of multi-wavelength DFB laser array using REC technology

    NASA Astrophysics Data System (ADS)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  11. Coherent beam combining in atmospheric channels using gated backscatter.

    PubMed

    Naeh, Itay; Katzir, Abraham

    2016-02-01

    This paper introduces the concept of atmospheric channels and describes a possible approach for the coherent beam combining of lasers of an optical phased array (OPA) in a turbulent atmosphere. By using the recently introduced sparse spectrum harmonic augmentation method, a comprehensive simulative investigation was performed and the exceptional properties of the atmospheric channels were numerically demonstrated. Among the interesting properties are the ability to guide light in a confined manner in a refractive channel, the ability to gather different sources to the same channel, and the ability to maintain a constant relative phase within the channel between several sources. The newly introduced guiding properties combined with a suggested method for channel probing and phase measurement by aerosol backscattered radiation allows coherence improvement of the phased array's elements and energy refocusing at the location of the channel in order to increase power in the bucket without feedback from the target. The method relies on the electronic focusing, electronic scanning, and time gating of the OPA, combined with elements of the relative phase measurements.

  12. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  13. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  14. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1988-01-01

    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  15. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method.

    PubMed

    Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin

    2017-08-01

    Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Population patch clamp electrophysiology: a breakthrough technology for ion channel screening.

    PubMed

    Dale, Tim J; Townsend, Claire; Hollands, Emma C; Trezise, Derek J

    2007-10-01

    Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.

  17. Whole-machine calibration approach for phased array radar with self-test

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Yao, Zhi-Cheng; Zhang, Jin-Chang; Yang, Jian

    2017-06-01

    The performance of the missile-borne phased array radar is greatly influenced by the inter-channel amplitude and phase inconsistencies. In order to ensure its performance, the amplitude and the phase characteristics of radar should be calibrated. Commonly used methods mainly focus on antenna calibration, such as FFT, REV, etc. However, the radar channel also contains T / R components, channels, ADC and messenger. In order to achieve on-based phased array radar amplitude information for rapid machine calibration and compensation, we adopt a high-precision plane scanning test platform for phase amplitude test. A calibration approach for the whole channel system based on the radar frequency source test is proposed. Finally, the advantages and the application prospect of this approach are analysed.

  18. Simulation of sparse matrix array designs

    NASA Astrophysics Data System (ADS)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  19. Blending of phased array data

    NASA Astrophysics Data System (ADS)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  20. DNA ELECTROPHORESIS AT SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in themore » different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.« less

  1. Intersecting Channels near Olympica Fossae

    NASA Image and Video Library

    2016-09-21

    This complicated area contains various types of channels, pits and fractures. We can determine the relative ages of the pits and channels based on which features cross-cut others. Older channels appear smooth-edged and shallow. Younger channels and pits are deeper and more sharp-edged, as well as less sinuous than the shallower channels. What caused this array of various channels and intersecting pits? This region is covered in vast lava flows. The collapse pits here may be collapsed lava tubes or where overlying rock "drained" into voids created by extensional faulting. The older smoother channel that seems to source from this region may have carried an outflow of groundwater. It continues on for over 100 kilometers (62 miles). The orientation and shapes of these features make an interesting geological puzzle. http://photojournal.jpl.nasa.gov/catalog/PIA21066

  2. Pencil graphite leads as simple amperometric sensors for microchip electrophoresis.

    PubMed

    Natiele Tiago da Silva, Eiva; Marques Petroni, Jacqueline; Gabriel Lucca, Bruno; Souza Ferreira, Valdir

    2017-11-01

    In this work we demonstrate, for the first time, the use of inexpensive commercial pencil graphite leads as simple amperometric sensors for microchip electrophoresis. A PDMS support containing one channel was fabricated through soft lithography and sanded pencil graphite leads were inserted into this channel to be used as working electrodes. The electrochemical and morphological characterization of the sensor was carried out. The graphite electrode was coupled to PDMS microchips in end-channel configuration and electrophoretic experiments were performed using nitrite and ascorbate as probe analytes. The analytes were successfully separated and detected in well-defined peaks with satisfactory resolution using the microfluidic platform proposed. The repeatability of the pencil graphite electrode was satisfactory (RSD values of 1.6% for nitrite and 12.3% for ascorbate, regarding the peak currents) and its lifetime was estimated to be ca. 700 electrophoretic runs over a cost of ca. $ 0.05 per electrode. The limits of detection achieved with this system were 2.8 μM for nitrite and 5.7 μM for ascorbate. For proof of principle, the pencil graphite electrode was employed for the real analysis of well water samples and nitrite was successfully quantified at levels below its maximum contaminant level established in Brazil and US. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparative electrophoresis of living lymphocytes

    NASA Technical Reports Server (NTRS)

    Vanoss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low molecular weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of 0 gravity conditions. Another method that has been tested at 1 G, is the electrophoresis of lymphocytes in a upward direction in vertical columns. By both methods up to 10 to the 7th power lymphocytes can be separated at one time in a 30 cm glass column of 8 mm inside diameter, at 12 v/cm, in 2 hours. Due to convection and sedimentation problems, the separation at 1 G is less than ideal, but it is expected that at 0 gravity electrophoresis will prove to be a uniquely powerful cell separation tool. The technical feasibility of electrophoresing inert particles at 0 G has been proven earlier, during the flight of Apollo 16.

  4. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    PubMed

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  5. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings

    NASA Astrophysics Data System (ADS)

    O'Shea, Daniel J.; Shenoy, Krishna V.

    2018-04-01

    Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.

  6. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  7. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  8. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  9. Microfluidic array platform for simultaneous lipid bilayer membrane formation.

    PubMed

    Zagnoni, M; Sandison, M E; Morgan, H

    2009-01-01

    In recent years, protein array technologies have found widespread applications in proteomics. However, new methods for high-throughput analysis of protein-protein and protein-compound interactions are still required. In this paper, an array of lipid bilayer membranes formed within a microfluidic system with integrated electrodes is presented. The system is comprised of three layers that are clamped together, thus rendering the device cleanable and reusable. The device microfluidics enable the simultaneous formation of an array of lipid bilayers using a previously developed air-exposure technique, thereby avoiding the need to manually form individual bilayers. The Ag/AgCl electrodes allow for ion channel measurements, each of the sites being independently addressable. Typically, a 50% yield in simultaneous lipid bilayer formation over 12 sites was obtained and ion channel recordings have been acquired over multiple sites. This system has great potential for the development of an automatable platform of suspended lipid bilayer arrays.

  10. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses.

    PubMed

    Graessl, Andreas; Muhle, Maximilian; Schwerter, Michael; Rieger, Jan; Oezerdem, Celal; Santoro, Davide; Lysiak, Darius; Winter, Lukas; Hezel, Fabian; Waiczies, Sonia; Guthoff, Rudolf F; Falke, Karen; Hosten, Norbert; Hadlich, Stefan; Krueger, Paul-Christian; Langner, Soenke; Stachs, Oliver; Niendorf, Thoralf

    2014-05-01

    This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 ± 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 ± 6 years) were investigated. All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good

  11. Two Electrophoresis Experiments for Freshmen in the Health Professions.

    ERIC Educational Resources Information Center

    Brabson, G. Dana; Waugh, David S.

    1986-01-01

    Describes procedures involved with paper electrophoresis separation of amino acids, gel electrophoresis separation of DNA, and design of an electrophoresis tank. Describes experiments using paper (amino acids) and gel (deoxyribonucleic acid fragments). Provides material lists, procedures, and discussion. (JM)

  12. Integrated on-line system for DNA sequencing by capillary electrophoresis: From template to called bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ton, H.; Yeung, E.S.

    1997-02-15

    An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less

  13. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  14. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  15. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Cao, Dandan; Ding, Zhichao

    2018-03-01

    An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.

  17. Double emulsions from a capillary array injection microfluidic device.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Ding, Haibo; Rong, Fei; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    A facile microfluidic device was developed by inserting an annular capillary array into a collection channel for single-step emulsification of double emulsions. By inserting multiple inner-phase solutions into the capillary array, multicomponent double emulsions or microcapsules with inner droplets of different content could also be obtained from the device.

  18. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including plasma...

  19. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including plasma...

  20. Sub-1-V-60 nm vertical body channel MOSFET-based six-transistor static random access memory array with wide noise margin and excellent power delay product and its optimization with the cell ratio on static random access memory cell

    NASA Astrophysics Data System (ADS)

    Ogasawara, Ryosuke; Endoh, Tetsuo

    2018-04-01

    In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.

  1. A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, William; Arnold, James E. (Technical Monitor)

    2002-01-01

    A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic

  2. A compactly integrated laser-induced fluorescence detector for microchip electrophoresis.

    PubMed

    Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Uchiyama, Katsumi; Hobo, Toshiyuki

    2004-06-01

    A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.

  3. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments.

    PubMed

    Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M

    2000-02-25

    The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.

  4. High-definition polymeric membranes: construction of 3D lithographed channel arrays through control of natural building blocks dynamics.

    PubMed

    Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa

    2010-02-01

    The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.

  5. Getting the Most out of Electrophoresis Units

    ERIC Educational Resources Information Center

    Mulvihill, Charlotte

    2007-01-01

    At Oklahoma City Community College, they have developed gel electrophoresis activities that support active learning of many scientific concepts, including: pH, electrolysis, oxidation reduction, electrical currents, potentials, conductivity, molarity, gel electrophoresis, DNA and protein separation, and DNA fingerprinting. This article presents…

  6. Plasmonic Nanoholes in a Multi-Channel Microarray Format for Parallel Kinetic Assays and Differential Sensing

    PubMed Central

    Im, Hyungsoon; Lesuffleur, Antoine; Lindquist, Nathan C.; Oh, Sang-Hyun

    2009-01-01

    We present nanohole arrays in a gold film integrated with a 6-channel microfluidic chip for parallel measurements of molecular binding kinetics. Surface plasmon resonance effects in the nanohole arrays enable real-time label-free measurements of molecular binding events in each channel, while adjacent negative reference channels can record measurement artifacts such as bulk solution index changes, temperature variations, or changing light absorption in the liquid. Using this platform, streptavidin-biotin specific binding kinetics are measured at various concentrations with negative controls. A high-density microarray of 252 biosensing pixels is also demonstrated with a packing density of 106 sensing elements/cm2, which can potentially be coupled with a massively parallel array of microfluidic channels for protein microarray applications. PMID:19284776

  7. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.

    In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID)more » MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.« less

  8. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    DOE PAGES

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; ...

    2017-10-16

    In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID)more » MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.« less

  9. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    NASA Astrophysics Data System (ADS)

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; Colombo, Anthony P.; Jau, Yuan-Yu; Berry, Christopher; McKay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter D. D.

    2017-12-01

    We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.

  10. Development of nine-channel 10-micrometer (Hg, Cd)Te pushbroom IR/CCD system

    NASA Technical Reports Server (NTRS)

    White, W. J.; Wasa, S.

    1977-01-01

    The engineering development of the 9-channel detector array is documented. The development of the array demonstrates the feasibility of a self scanned multi-element infrared detector focal plane. Procedures for operating the array are outlined.

  11. An Embedded 4-Channel Receive-Only RF Coil Array for fMRI Experiments of the Somatosensory Pathway in Conscious Awake Marmosets at 7T

    PubMed Central

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219

  12. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes.

    PubMed

    Henderson, Rowan D; Guijt, Rosanne M; Haddad, Paul R; Hilder, Emily F; Lewis, Trevor W; Breadmore, Michael C

    2010-07-21

    This work describes the development of a fully polymeric microchip with integrated polymeric electrodes suitable for performing microchip electrophoresis. The polymer electrodes were fabricated in a thin film of the conducting polymer, polyaniline (PANI), by flash lithography using a studio camera flash and a transparency mask. During flash welding, exposed regions welded into non-conducting regions forming a conducting polymer circuit in the non-exposed regions. Using a structured layer of dry film photoresist for sealing, a polydimethylsiloxane (PDMS) substrate containing channels and reservoirs was bound to the PANI film to form an integrated microfluidic device. The conducting regions of the PANI film were shown to be capable of carrying the high voltages of up to 2000 V required for chip electrophoresis, and were stable for up to 30 minutes under these conditions. The PANI electrodes were used for the electrophoretic separation of three sugars labelled with 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) in the dry film resist-PDMS hybrid device. Highly efficient separations comparable to those achieved in similar microchips using platinum electrodes confirm the potential of polyaniline as a new material suitable for high voltage electrodes in Lab-on-a-chip devices.

  13. Development of the Langmuir Electric Field Array (LEFA)

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, R. G.; Eack, K.; Eastvedt, E.; Edens, H. E.; Hager, W. W.; Hunyady, S.; Alvidrez, V.; Lapierre, J.; Morris, K.; Vaive, G.; Wang, T.; Zhang, J.

    2009-12-01

    An electric-field-change (ΔE) sensor (also called a ``slow antenna'') is a long proven instrument in atmospheric electricity research. While there is still value to be derived from single-station measurements of ΔE, multi-station measurements better constrain the data interpretation. Modern publications still cite the work of Krehbiel [et al] for the insights gleaned from the 8-station array they deployed in 1979. In particular, with four independent measurements, one can locate the center of charge discharged in a cloud-to-ground (CG) flash. With seven measurements, one can locate the two charge centers connected during an intra-cloud (IC) flash. The measurements become more interesting when multi-station ΔE data is combined with radio-frequency emission data from a lightning mapping array (LMA). The ΔE array allows an independent check of the assumptions about charge layers made in the interpretation of LMA data, as well as giving greater visibility into the effects of positive streamers. The Langmuir Electric Field Array (LEFA) is designed to accommodate the very large amplitude range of ΔE data characteristic of lightning. Such design is more important in an array than a single station, as the goal is explicitly to correlate data from ten stations spaced some kilometers apart. To address the dynamic range challenge, every ΔE sensor is a set of three independent sensors, integrated into a 19-inch-steel-mixing bowl. The electronic gain is a factor of 4 greater for the sensitive (S) channel than for the medium (M) channel, and 20X greater for the (S) channel compared to the insensitive (I) channel. Further, the electrode sensor areas decrease by factors of 5, moving from S, to M, to I, so that the (S) channel is hundreds of times more sensitive than the (I) channel. Since each channel is digitized with 16-bits of resolution, the ideal full range of the instrument is roughly equal to a single channel digitized at 24 bits. Digitizing the same signal at three

  14. Inertial focusing in a straight channel with asymmetrical expansion-contraction cavity arrays using two secondary flows

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, M.; Li, W. H.; Alici, G.

    2013-08-01

    The focusing of particles has a variety of applications in industry and biomedicine, including wastewater purification, fermentation filtration, and pathogen detection in flow cytometry, etc. In this paper a novel inertial microfluidic device using two secondary flows to focus particles is presented. The geometry of the proposed microfluidic channel is a simple straight channel with asymmetrically patterned triangular expansion-contraction cavity arrays. Three different focusing patterns were observed under different flow conditions: (1) a single focusing streak on the cavity side; (2) double focusing streaks on both sides; (3) half of the particles were focused on the opposite side of the cavity, while the other particles were trapped by a horizontal vortex in the cavity. The focusing performance was studied comprehensively up to flow rates of 700 µl min-1. The focusing mechanism was investigated by analysing the balance of forces between the inertial lift forces and secondary flow drag in the cross section. The influence of particle size and cavity geometry on the focusing performance was also studied. The experimental results showed that more precise focusing could be obtained with large particles, some of which even showed a single-particle focusing streak in the horizontal plane. Meanwhile, the focusing patterns and their working conditions could be adjusted by the geometry of the cavity. This novel inertial microfluidic device could offer a continuous, sheathless, and high-throughput performance, which can be potentially applied to high-speed flow cytometry or the extraction of blood cells.

  15. IF digitization receiver of wideband digital array radar test-bed

    NASA Astrophysics Data System (ADS)

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping

    2014-10-01

    In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.

  16. NECTAr: New electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Vorobiov, S.; Bolmont, J.; Corona, P.; Delagnes, E.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Sanuy, A.; Toussenel, F.; Vincent, P.

    2011-05-01

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few μs readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  17. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  18. Comparison of Lipoprotein Electrophoresis and Apolipoprotein E Genotyping in Investigating Dysbetalipoproteinemia.

    PubMed

    Ahmed, Farhan; El-Kadiki, Alia; Gibbons, Stephen

    2017-06-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia.

  19. Ink-native electrophoresis: an alternative to blue-native electrophoresis more suitable for in-gel detection of enzymatic activity.

    PubMed

    Kaneko, Keisuke; Sueyoshi, Noriyuki; Kameshita, Isamu; Ishida, Atsuhiko

    2013-09-15

    Blue-native electrophoresis (BNE) is a useful technique for analyzing protein complexes, but the Coomassie brilliant blue (CBB) dye used in BNE often hampers in-gel detection of enzymatic activity. Here we report an improved method, termed ink-native electrophoresis (INE), in which Pelikan 4001 fountain pen ink is used as a charge-shifting agent instead of CBB. INE is more suitable than BNE for in-gel detection of protein kinase activity after polyacrylamide gel electrophoresis (PAGE), and its performance in protein complex separation is comparable to that of conventional BNE. INE may provide a powerful tool to isolate and analyze various protein complexes. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    PubMed Central

    2015-01-01

    A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952

  1. Characterization of Large-Area SiPM Array for PET Applications

    NASA Astrophysics Data System (ADS)

    Du, Junwei; Yang, Yongfeng; Bai, Xiaowei; Judenhofer, Martin S.; Berg, Eric; Di, Kun; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2016-02-01

    The performance of an 8 ×8 array of 6.0 ×6.0 mm2 (active area) SiPMs was evaluated for PET applications using crystal arrays with different pitch sizes (3.4, 1.5, 1.35, and 1.2 mm) and custom designed five-channel front-end readout electronics (four channels for position information and one channel for timing information). The total area of this SiPM array is 57.4 ×57.4 mm2, and the pitch size is 7.2 mm. It was fabricated using enhanced blue sensitivity SiPMs (MicroFB-60035-SMT) with peak spectral sensitivity at 420 nm. The performance of the SiPM array was characterized by measuring flood histogram decoding quality, energy resolution, timing resolution and saturation at several bias voltages (from 25.0 to 30.0 V in 0.5 V intervals) and two different temperatures ( 5° C and 20°C). Results show that the best flood histogram was obtained at a bias voltage of 28.0 V and 5°C and an array of polished LSO crystals with a pitch as small as 1.2 mm can be resolved. No saturation was observed up to a bias voltage of 29.5 V during the experiments, due to adequate light sharing between SiPMs. Energy resolution and timing resolution at 5°C ranged from 12.7 ±0.8% to 14.6 ±1.4% and 1.58 ±0.13 ns to 2.50 ±0.44 ns, for crystal array pitch sizes of 3.4 and 1.2 mm, respectively. Superior flood histogram quality, energy resolution and timing resolution were obtained with larger crystal array pitch sizes and at lower temperature. Based on our findings, we conclude that this large-area SiPM array can serve as a suitable photodetector for high-resolution small-animal PET or dedicated human brain PET scanners.

  2. Electrophoresis operations in space

    NASA Technical Reports Server (NTRS)

    Richman, D. W.

    1982-01-01

    Application of electrophoresis in space processing is described. Spaceborne experiments in areas such as biological products and FDA approved drugs are discussed. These experiments will be carried on shuttle payloads.

  3. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    PubMed Central

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  4. A 4×8-Gbps VCSEL array driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Di; Liu, Chonghan; Chen, Jinghong

    This paper describes the design, fabrication and experiment results of a 4×8-Gbps Vertical-Cavity Surface-Emitting Laser (VCSEL) array driver ASIC with the adjustable active-shunt peaking technique and the novel balanced output structure under the Silicon-on-Sapphire (SOS) process, and a custom array optical transmitter module, featuring a compact size of 10 mm×15 mm×5.3 mm. Both the array driver ASIC and the module have been fully tested after integration as a complete parallel transmitter. Optical eye diagram of each channel passes the eye mask at 8 Gbps/ch with adjacent channel working simultaneously with a power consumption of 150 mW/ch. As a result, themore » optical transmission of Bit-Error Rate (BER) less than 10E-12 is achieved at an aggregated data rate of 4×8-Gbps.« less

  5. A 4×8-Gbps VCSEL array driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission

    DOE PAGES

    Guo, Di; Liu, Chonghan; Chen, Jinghong; ...

    2016-03-21

    This paper describes the design, fabrication and experiment results of a 4×8-Gbps Vertical-Cavity Surface-Emitting Laser (VCSEL) array driver ASIC with the adjustable active-shunt peaking technique and the novel balanced output structure under the Silicon-on-Sapphire (SOS) process, and a custom array optical transmitter module, featuring a compact size of 10 mm×15 mm×5.3 mm. Both the array driver ASIC and the module have been fully tested after integration as a complete parallel transmitter. Optical eye diagram of each channel passes the eye mask at 8 Gbps/ch with adjacent channel working simultaneously with a power consumption of 150 mW/ch. As a result, themore » optical transmission of Bit-Error Rate (BER) less than 10E-12 is achieved at an aggregated data rate of 4×8-Gbps.« less

  6. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  7. Near-infrared laser-induced fluorescence detection in capillary electrophoresis.

    PubMed

    McWhorter, S; Soper, S A

    2000-04-01

    As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.

  8. An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T.

    PubMed

    Rietsch, Stefan H G; Pfaffenrot, Viktor; Bitz, Andreas K; Orzada, Stephan; Brunheim, Sascha; Lazik-Palm, Andrea; Theysohn, Jens M; Ladd, Mark E; Quick, Harald H; Kraff, Oliver

    2017-12-01

    In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B 1 + of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming. © 2017 American Association of Physicists in Medicine.

  9. Urine protein electrophoresis test

    MedlinePlus

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  10. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  11. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    NASA Astrophysics Data System (ADS)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  12. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  13. Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems.

    PubMed

    Edwards, Darin; Sommerhage, Frank; Berry, Bonnie; Nummer, Hanna; Raquet, Martina; Clymer, Brad; Stancescu, Maria; Hickman, James J

    2017-12-11

    Microelectrode arrays (MEAs) are innovative tools used to perform electrophysiological experiments for the study of electrical activity and connectivity in populations of neurons from dissociated cultures. Reliance upon neurons derived from embryonic tissue is a common limitation of neuronal/MEA hybrid systems and perhaps of neuroscience research in general, and the use of adult neurons could model fully functional in vivo parameters more closely. Spontaneous network activity was concurrently recorded from both embryonic and adult rat neurons cultured on MEAs for up to 10 weeks in vitro to characterize the synaptic connections between cell types. The cultures were exposed to synaptic transmission antagonists against NMDA and AMPA channels, which revealed significantly different receptor profiles of adult and embryonic networks in vitro. In addition, both embryonic and adult neurons were evaluated for NMDA and AMPA channel subunit expression over five weeks in vitro. The results established that neurons derived from embryonic tissue did not express mature synaptic channels for several weeks in vitro under defined conditions. Consequently, the embryonic response to synaptic antagonists was significantly different than that of neurons derived from adult tissue sources. These results are especially significant because most studies reported with embryonic hippocampal neurons do not begin at two to four weeks in culture. In addition, the utilization of MEAs in lieu of patch-clamp electrophysiology avoided a large-scale, labor-intensive study. These results establish the utility of this unique hybrid system derived from adult hippocampal tissue in combination with MEAs and offer a more appropriate representation of in vivo function for drug discovery. It has application for neuronal development and regeneration as well as for investigations into neurodegenerative disease, traumatic brain injury, and stroke.

  14. [Advances of the coatings used in columns for capillary electrophoresis and in nanochannels of chips].

    PubMed

    Liu, Chunye; Chen, Jierong

    2005-01-01

    An overview is provided on the advancement and development of coating preparation methodology and materials used in capillaries and channels in microfluidic chip. Discussion is also given on the effects of coatings in the resolutions of separation and the reproducibility of separations. Dynamic coatings and linked coatings, classified as homo-polymers, copolymers and heterocyclic compounds, are further discussed, and so are the methods for the preparation of the coatings by cross-linked reaction, sol-gel process, photomodification and chemical deposition, etc. The discussion will be useful for the optimization of capillary columns that are used in capillary electrophoresis and nanochannels of chip.

  15. Sparse aperiodic arrays for optical beam forming and LIDAR.

    PubMed

    Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E

    2017-02-06

    We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.

  16. Capillary electrophoresis: principles and applications in illicit drug analysis.

    PubMed

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  17. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels.

    PubMed

    Dragas, Jelena; Viswam, Vijay; Shadmani, Amir; Chen, Yihui; Bounik, Raziyeh; Stettler, Alexander; Radivojevic, Milos; Geissler, Sydney; Obien, Marie; Müller, Jan; Hierlemann, Andreas

    2017-06-01

    Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm 2 ) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.

  18. Preparation and UV-Vis photodegradation of gaseous benzene by TiO2 nanotube arrays supporting V2O5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Song, Yanbao; Yang, Yunxia; Chen, Wen; Li, Xiaoyu; Wang, Zongsheng

    2015-07-01

    TiO2-based catalysts effective in visible radiation for eliminating organic pollutants have attracted intense research activity as a future generation photocatalytic material. However, recombination of electron-hole pairs through trapping/de-trapping as well as the disadvantages of recycling and separation/filtration of powders lead to the limitation of powder TiO2 materials. TiO2 nanotube array films supporting vanadium pentoxide nanoparticles (VTNTs) were synthesized by electrophoresis deposition method with the prepared TiO2 nanotube arrays as the cathode and V2O5 sol as the electrolyte. The results indicate that the formation of Ti-O-V bonds and intimate interaction between host-guest interfaces help to enhance the hybrids’ photodegradation activity of gaseous benzene. Importantly, hybrid film catalysts prepared with 0.05 mol/L V2O5 sol for 10 min electrophoresis deposition perform a 98% conversion rate of benzene and 1028.8 mg/m3CO2 production in 80 min under UV-Vis irradiation.

  19. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  20. Twenty-four-micrometer-pitch microelectrode array with 6912-channel readout at 12 kHz via highly scalable implementation for high-spatial-resolution mapping of action potentials.

    PubMed

    Ogi, Jun; Kato, Yuri; Matoba, Yoshihisa; Yamane, Chigusa; Nagahata, Kazunori; Nakashima, Yusaku; Kishimoto, Takuya; Hashimoto, Shigeki; Maari, Koichi; Oike, Yusuke; Ezaki, Takayuki

    2017-12-19

    A 24-μm-pitch microelectrode array (MEA) with 6912 readout channels at 12 kHz and 23.2-μV rms random noise is presented. The aim is to reduce noise in a "highly scalable" MEA with a complementary metal-oxide-semiconductor integration circuit (CMOS-MEA), in which a large number of readout channels and a high electrode density can be expected. Despite the small dimension and the simplicity of the in-pixel circuit for the high electrode-density and the relatively large number of readout channels of the prototype CMOS-MEA chip developed in this work, the noise within the chip is successfully reduced to less than half that reported in a previous work, for a device with similar in-pixel circuit simplicity and a large number of readout channels. Further, the action potential was clearly observed on cardiomyocytes using the CMOS-MEA. These results indicate the high-scalability of the CMOS-MEA. The highly scalable CMOS-MEA provides high-spatial-resolution mapping of cell action potentials, and the mapping can aid understanding of complex activities in cells, including neuron network activities.

  1. NECTAR: New electronics for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Naumann, Christopher Lindsay; Bolmont, J.; Corona, P.; Delagnes, E.; Dzahini, D.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Nayman, P.; Rarbi, F.; Ribo, M.; Sanuy, A.; Siero, X.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium is currently in the preparatory phase for the development of the next-generation Cherenkov Telescope Array (CTA [1]), based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS. To achieve an unprecedented sensitivity and energy range for TeV gamma rays, a new kind of flexible and powerful yet inexpensive front-end hardware will be required for the order of 105 channels of photodetectors in up to 100 telescopes. One possible solution is the NECTAr (New Electronics for the Cherenkov Telescope Array) system, based on the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC for very fast readout performance and a significant reduction of the cost and the lower consumption per channel, while offering a high degree of flexibility both for the triggering and the readout of the telescope. The current status of its development is presented, along with newest results from measurements and simulation studies.

  2. Capillary electrophoresis of inorganic anions.

    PubMed

    Kaniansky, D; Masár, M; Marák, J; Bodor, R

    1999-02-26

    This review deals with the separation mechanisms applied to the separation of inorganic anions by capillary electrophoresis (CE) techniques. It covers various CE techniques that are suitable for the separation and/or determination of inorganic anions in various matrices, including capillary zone electrophoresis, micellar electrokinetic chromatography, electrochromatography and capillary isotachophoresis. Detection and sample preparation techniques used in CE separations are also reviewed. An extensive part of this review deals with applications of CE techniques in various fields (environmental, food and plant materials, biological and biomedical, technical materials and industrial processes). Attention is paid to speciations of anions of arsenic, selenium, chromium, phosphorus, sulfur and halogen elements by CE.

  3. Optimization of the Separation of NDA-Derivatized Methylarginines by Capillary and Microchip Electrophoresis

    PubMed Central

    Linz, Thomas H.; Snyder, Christa M.; Lunte, Susan M.

    2013-01-01

    The methylated arginines (MAs) monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) have been shown to be independent predictors of cardiovascular disease. This article describes progress regarding the development of an analytical method capable of rapidly analyzing MAs using capillary electrophoresis (CE) and microchip electrophoresis (MCE) with laser-induced fluorescence (LIF) detection. Several parameters including buffer composition and separation voltage were optimized to achieve an ideal separation. The analytes of interest were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) to produce fluorescent 1-cyanobenz[f]isoindole (CBI) derivatives and then subjected to CE analysis. Baseline resolution of SDMA, ADMA, MMA, and arginine was achieved in less than 8 min. The limits of detection for SDMA, ADMA, MMA, and arginine were determined to be 15, 20, 25, and 5 nM, respectively, which are well below the expected plasma concentrations. The CE separation method was then transferred to a glass MCE device with LIF detection. MAs were baseline resolved in 3 min on-chip using a 14 cm separation channel with detection limits of approximately 10 nM for each species. To the best of the authors’ knowledge, this is the first report of the separation of MAs by MCE. PMID:22357605

  4. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    NASA Astrophysics Data System (ADS)

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-09-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.

  5. Experimental and numerical research of synthetic jet array

    NASA Astrophysics Data System (ADS)

    Dančová, Petra; Novosád, Jan; Vít, Tomáš; Trávníček, Zdeněk

    2016-03-01

    This paper describes the additional research of the synthetic jet array in a channel flow and continues the paper of authors Dančová, Trávníček and Vít, [1]. Numerical simulations support the experiments from [1] and the influence of the new slope of the synthetic jet orifices is studied here. This research will be used for preparation of the experiments with inclined orifices of the synthetic jet array.

  6. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    DTIC Science & Technology

    2017-01-16

    Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized

  7. Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet.

    PubMed

    Musyimi, Harrison K; Guy, Jason; Narcisse, Damien A; Soper, Steven A; Murray, Kermit K

    2005-12-01

    We report on the coupling of a polymer-based microfluidic chip to a MALDI-TOF MS using a rotating ball interface. The microfluidic chips were fabricated by micromilling a mold insert into a brass plate, which was then used for replicating polymer microparts via hot embossing. Assembly of the chip was accomplished by thermally annealing a cover slip to the embossed substrate to enclose the channels. The linear separation channel was 50 microm wide, 100 microm deep, and possessed an 8 cm effective length separation channel with a double-T injector (V(inj) = 10 nL). The exit of the separation channel was machined to allow direct contact deposition of effluent onto a specially constructed rotating ball inlet to the mass spectrometer. Matrix addition was accomplished in-line on the surface of the ball. The coupling utilized the ball as the cathode transfer electrode to transport sample into the vacuum for desorption with a 355 nm Nd:YAG laser and analyzed on a TOF mass spectrometer. The ball was cleaned online after every rotation. The ability to couple poly(methylmethacrylate) microchip electrophoresis devices for the separation of peptides and peptide fragments produced from a protein digest with subsequent online MALDI MS detection was demonstrated.

  8. Preparation of arrays of long carbon nanotubes using catalyst structure

    DOEpatents

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  9. Coherently coupled high-power fiber arrays

    NASA Astrophysics Data System (ADS)

    Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael

    2006-02-01

    A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.

  10. DNA Sequencing Using capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linkedmore » polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  11. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  12. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.

    PubMed

    Fogarty, Barbara A; Heppert, Kathleen E; Cory, Theodore J; Hulbutta, Kalonie R; Martin, R Scott; Lunte, Susan M

    2005-06-01

    The use of CO(2) laser ablation for the patterning of capillary electrophoresis (CE) microchannels in poly(dimethylsiloxane)(PDMS) is described. Low-cost polymer devices were produced using a relatively inexpensive CO(2) laser system that facilitated rapid patterning and ablation of microchannels. Device designs were created using a commercially available software package. The effects of PDMS thickness, laser focusing, power, and speed on the resulting channel dimensions were investigated. Using optimized settings, the smallest channels that could be produced averaged 33 microm in depth (11.1% RSD, N= 6) and 110 microm in width (5.7% RSD, N= 6). The use of a PDMS substrate allowed reversible sealing of microchip components at room temperature without the need for cleanroom facilities. Using a layer of pre-cured polymer, devices were designed, ablated, and assembled within minutes. The final devices were used for microchip CE separation and detection of the fluorescently labeled neurotransmitters aspartate and glutamate.

  13. 1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme.

    PubMed

    Cheng, Yuanbing; Wang, Qi Jie; Pan, Jiaoqing

    2014-12-15

    We demonstrate a cost-effective 1.55 µm low chirp 4 × 25 Gbit/s electroabsorption modulated laser (EML) array with 0.8 nm channel spacing by varying ridge width of the lasers and using selective area growth (SAG) integration scheme. The devices for all the 4 channels within the EML array show uniform threshold currents around 18 mA and high SMSRs over 45 dB. The output optical power of each channel is about 9 mW at an injection current of 100 mA. The typical chirp value of single EML measured by a fiber resonance method varied from 2.2 to -4 as the bias voltage was increased from 0 V to 2.5 V. These results show that the EML array is a suitable light source for 100 Gbit/s optical transmissions.

  14. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  15. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  16. Ligase Detection Reaction for the Analysis of Point Mutations using Free Solution Conjugate Electrophoresis in a Polymer Microfluidic Device

    PubMed Central

    Sinville, Rondedrick; Coyne, Jennifer; Meagher, Robert J.; Cheng, Yu-Wei; Barany, Francis; Barron, Annelise; Soper, Steven A.

    2010-01-01

    We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide “drag-tags” onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently-labeled LDR/drag-tagged (LDR-dt) products in a multiplexed, single-tube format with mutant:wild-type ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a poly(methylmethacrylate), PMMA, microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the electroosmotic flow (EOF). Typical analysis times for LDR-dt conjugates were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40. PMID:19053073

  17. Improving efficiency of a small forensic DNA laboratory: validation of robotic assays and evaluation of microcapillary array device.

    PubMed

    Crouse, Cecelia A; Yeung, Stephanie; Greenspoon, Susan; McGuckian, Amy; Sikorsky, Julie; Ban, Jeff; Mathies, Richard

    2005-08-01

    To present validation studies performed for the implementation of existing and new technologies to increase the efficiency in the forensic DNA Section of the Palm Beach County Sheriff's Office (PBSO) Crime Laboratory. Using federally funded grants, internal support, and an external Process Mapping Team, the PBSO collaborated with forensic vendors, universities, and other forensic laboratories to enhance DNA testing procedures, including validation of the DNA IQ magnetic bead extraction system, robotic DNA extraction using the BioMek2000, the ABI7000 Sequence Detection System, and is currently evaluating a micro Capillary Array Electrophoresis device. The PBSO successfully validated and implemented both manual and automated Promega DNA IQ magnetic bead extractions system, which have increased DNA profile results from samples with low DNA template concentrations. The Beckman BioMek2000 DNA robotic workstation has been validated for blood, tissue, bone, hair, epithelial cells (touch evidence), and mixed stains such as semen. There has been a dramatic increase in the number of samples tested per case since implementation of the robotic extraction protocols. The validation of the ABI7000 real-time quantitative polymerase chain reaction (qPCR) technology and the single multiplex short tandem repeat (STR) PowerPlex16 BIO amplification system has provided both a time and a financial benefit. In addition, the qPCR system allows more accurate DNA concentration data and the PowerPlex 16 BIO multiplex generates DNA profiles data in half the time when compared to PowerPlex1.1 and PowerPlex2.1 STR systems. The PBSO's future efficiency requirements are being addressed through collaboration with the University of California at Berkeley and the Virginia Division of Forensic Science to validate microcapillary array electrophoresis instrumentation. Initial data demonstrated the electrophoresis of 96 samples in less than twenty minutes. The PBSO demonstrated, through the validation of

  18. Digitally Controlled Slot Coupled Patch Array

    NASA Technical Reports Server (NTRS)

    D'Arista, Thomas; Pauly, Jerry

    2010-01-01

    A four-element array conformed to a singly curved conducting surface has been demonstrated to provide 2 dB axial ratio of 14 percent, while maintaining VSWR (voltage standing wave ratio) of 2:1 and gain of 13 dBiC. The array is digitally controlled and can be scanned with the LMS Adaptive Algorithm using the power spectrum as the objective, as well as the Direction of Arrival (DoA) of the beam to set the amplitude of the power spectrum. The total height of the array above the conducting surface is 1.5 inches (3.8 cm). A uniquely configured microstrip-coupled aperture over a conducting surface produced supergain characteristics, achieving 12.5 dBiC across the 2-to-2.13- GHz and 2.2-to-2.3-GHz frequency bands. This design is optimized to retain VSWR and axial ratio across the band as well. The four elements are uniquely configured with respect to one another for performance enhancement, and the appropriate phase excitation to each element for scan can be found either by analytical beam synthesis using the genetic algorithm with the measured or simulated far field radiation pattern, or an adaptive algorithm implemented with the digitized signal. The commercially available tuners and field-programmable gate array (FPGA) boards utilized required precise phase coherent configuration control, and with custom code developed by Nokomis, Inc., were shown to be fully functional in a two-channel configuration controlled by FPGA boards. A four-channel tuner configuration and oscilloscope configuration were also demonstrated although algorithm post-processing was required.

  19. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  20. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil.

    PubMed

    Godoy-Caballero, María del Pilar; Acedo-Valenzuela, María Isabel; Galeano-Díaz, Teresa; Costa-García, Agustín; Fernández-Abedul, María Teresa

    2012-11-07

    The relevance of the development of microchip electrophoresis applications in the field of food analysis is considered in this work. A novel method to determine important phenolic compounds in extra virgin olive oil samples using a miniaturized chemical analysis system is presented in this paper. Three interesting phenolic compounds in olive oil and fruit (tyrosol, hydroxytyrosol and oleuropein glucoside) were studied by end-channel amperometric detection using a 100 μm gold wire as working electrode in glass microchip electrophoresis. The electrochemical behavior of these compounds was studied and the medium to carry out their detection was selected (0.1 M aqueous sulfuric acid). The best conditions for the separation were achieved in sodium tetraborate (10% methanol, pH 9.50) with different concentrations for the sample and the running buffer in order to allow the sample stacking phenomenon. The injection was carried out using 600 V for 3 s and the separation voltage was set at 1000 V. The quality of the method was evaluated through its analytical figures of merit and by its performance on real extra virgin olive oil samples. Determination of these compounds was carried out using the standard addition calibration method with good recoveries.

  1. Microchip electrophoresis for wine analysis.

    PubMed

    Gomez, Federico J V; Silva, M Fernanda

    2016-12-01

    The present critical review provides a summary of representative articles describing the analysis of wine by microchip electrophoresis. Special emphasis has been given to those compounds able to provide background information to achieve the differentiation of wines according to botanical origin, provenance, vintage and quality or assure wine authentication. This review focuses on capillary electrophoresis (CE) microchips dedicated to the analysis of wine covering all the contributions concerning this area. The most relevant compounds in wine analysis such as phenols, organic acids, inorganic species, aldehydes, sugars, alcohols, and neuroactive amines were considered. Moreover, a special section is dedicated to the potential of CE microchip for wine classification. Indeed, potential directions for the future are discussed.

  2. Imaging photomultiplier array with integrated amplifiers and high-speed USB interfacea)

    NASA Astrophysics Data System (ADS)

    Blacksell, M.; Wach, J.; Anderson, D.; Howard, J.; Collis, S. M.; Blackwell, B. D.; Andruczyk, D.; James, B. W.

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16bits simultaneous acquisition of 16 signal channels at rates up to 2MS/s per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  3. Imaging photomultiplier array with integrated amplifiers and high-speed USB interface.

    PubMed

    Blacksell, M; Wach, J; Anderson, D; Howard, J; Collis, S M; Blackwell, B D; Andruczyk, D; James, B W

    2008-10-01

    Multianode photomultiplier tube (PMT) arrays are finding application as convenient high-speed light sensitive devices for plasma imaging. This paper describes the development of a USB-based "plug-n-play" 16-channel PMT camera with 16 bits simultaneous acquisition of 16 signal channels at rates up to 2 MSs per channel. The preamplifiers and digital hardware are packaged in a compact housing which incorporates magnetic shielding, on-board generation of the high-voltage PMT bias, an optical filter mount and slits, and F-mount lens adaptor. Triggering, timing, and acquisition are handled by four field-programmable gate arrays (FPGAs) under instruction from a master FPGA controlled by a computer with a LABVIEW interface. We present technical design details and specifications and illustrate performance with high-speed images obtained on the H-1 heliac at the ANU.

  4. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  5. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  6. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.

    PubMed

    Pearce, Thomas M; Wilson, J Adam; Oakes, S George; Chiu, Shing-Yan; Williams, Justin C

    2005-01-01

    A device for cell culture is presented that combines MEMS technology and liquid-phase photolithography to create a microfluidic chip that influences and records electrical cellular activity. A photopolymer channel network is formed on top of a multichannel microelectrode array. Preliminary results indicated successful local thermal control within microfluidic channels and control of lamina position over the electrode array. To demonstrate the biological application of such a device, adult dissociated dorsal root ganglion neurons with a subpopulation of thermally-sensitive cells are attached onto the electrode array. Using laminar flow, dynamic control of local temperature of the neural cells was achieved while maintaining a constant chemical culture medium. Recording the expected altered cellular activity confirms the success of the integrated device.

  7. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  8. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation

    NASA Astrophysics Data System (ADS)

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-03-01

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels. Electronic supplementary information (ESI) available: The XPS spectrum of the as-prepared Janus arrays after the MHA modification; the SEM images of the PFS-MHA Janus Si pillar arrays fabricated through oblique evaporation of gold along the short axis of the elliptical pillars; images of the cross-shaped MF channel and Rhodamine aqueous solution injecting in a cross-shaped MF

  9. Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers.

    PubMed

    Sonker, Mukul; Knob, Radim; Sahore, Vishal; Woolley, Adam T

    2017-07-01

    Integration in microfluidics is important for achieving automation. Sample preconcentration integrated with separation in a microfluidic setup can have a substantial impact on rapid analysis of low-abundance disease biomarkers. Here, we have developed a microfluidic device that uses pH-mediated solid-phase extraction (SPE) for the enrichment and elution of preterm birth (PTB) biomarkers. Furthermore, this SPE module was integrated with microchip electrophoresis for combined enrichment and separation of multiple analytes, including a PTB peptide biomarker (P1). A reversed-phase octyl methacrylate monolith was polymerized as the SPE medium in polyethylene glycol diacrylate modified cyclic olefin copolymer microfluidic channels. Eluent for pH-mediated SPE of PTB biomarkers on the monolith was optimized using different pH values and ionic concentrations. Nearly 50-fold enrichment was observed in single channel SPE devices for a low nanomolar solution of P1, with great elution time reproducibility (<7% RSD). The monolith binding capacity was determined to be 400 pg (0.2 pmol). A mixture of a model peptide (FA) and a PTB biomarker (P1) was extracted, eluted, injected, and then separated by microchip electrophoresis in our integrated device with ∼15-fold enrichment. This device shows important progress towards an integrated electrokinetically operated platform for preconcentration and separation of biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Affinity capillary electrophoresis for studying interactions in life sciences.

    PubMed

    Olabi, Mais; Stein, Matthias; Wätzig, Hermann

    2018-05-10

    Affinity capillary electrophoresis (ACE) analyzes noncovalent interactions between ligands and analytes based on changes in their electrophoretic mobility. This technique has been widely used to investigate various biomolecules, mainly proteins, polysaccharides and hormones. ACE is becoming a technique of choice to validate high throughput screening results, since it is very predictively working in realistic and relevant media, e.g. in body fluids. It is highly recommended to incorporate ACE as a powerful analytical tool to properly prepare animal testing and preclinical studies. The interacting molecules can be found free in solution or can be immobilized to a solid support. Thus, ACE is classified in two modes, free solution ACE and immobilized ACE. Every ACE mode has advantages and disadvantages. Each can be used for a variety of applications. This review covers literature of scopus and SciFinder data base in the period from 2016 until beginning 2018, including the keywords "affinity capillary electrophoresis", "immunoaffinity capillary electrophoresis", "immunoassay capillary electrophoresis" and "immunosorbent capillary electrophoresis". More than 200 articles have been found and 112 have been selected and thoroughly discussed. During this period, the data processing and the underlying calculations in mobility shift ACE (ms ACE), frontal analysis ACE (FA ACE) and plug-plug kinetic capillary electrophoresis (ppKCE) as mostly applied free solution techniques have substantially improved. The range of applications in diverse free solution and immobilized ACE techniques has been considerably broadened. Copyright © 2018. Published by Elsevier Inc.

  11. Energy conversion device with support member having pore channels

    DOEpatents

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  12. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  13. Subspace Dimensionality: A Tool for Automated QC in Seismic Array Processing

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2013-12-01

    Because of the great resolving power of seismic arrays, the application of automated processing to array data is critically important in treaty verification work. A significant problem in array analysis is the inclusion of bad sensor channels in the beamforming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by node basis, so the dimensionality of the node traffic is instead monitoried for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. In the established template application, a detector functions in a manner analogous to waveform cross-correlation, applying a statistical test to assess the similarity of the incoming data stream to known templates for events of interest. In our approach, we seek not to detect matching signals, but instead, we examine the signal subspace dimensionality in much the same way that the method addresses node traffic anomalies in large computer systems. Signal anomalies recorded on seismic arrays affect the dimensional structure of the array-wide time-series. We have shown previously that this observation is useful in identifying real seismic events, either by looking at the raw signal or derivatives thereof (entropy, kurtosis), but here we explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for

  14. Miniaturized ultrasound imaging probes enabled by CMUT arrays with integrated frontend electronic circuits.

    PubMed

    Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.

  15. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    PubMed Central

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  16. G-Channel Restoration for RWB CFA with Double-Exposed W Channel

    PubMed Central

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-01-01

    In this paper, we propose a green (G)-channel restoration for a red–white–blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red–blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels. PMID:28165425

  17. G-Channel Restoration for RWB CFA with Double-Exposed W Channel.

    PubMed

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-02-05

    In this paper, we propose a green (G)-channel restoration for a red-white-blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red-blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels.

  18. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers

    PubMed Central

    Moody, Katherine Lynn; Hollingsworth, Neal A.; Zhao, Feng; Nielsen, Jon-Fredrik; Noll, Douglas C.; Wright, Steven M.; McDougall, Mary Preston

    2014-01-01

    Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system. PMID:25072190

  19. Use of a Corona Discharge to Selectively Pattern a Hydrophilic/Hydrophobic Interface for Integrating Segmented Flow with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott

    2011-01-01

    Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004

  20. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  1. Writing and applications of fiber Bragg grating arrays

    NASA Astrophysics Data System (ADS)

    LaRochelle, Sophie; Cortes, Pierre-Yves; Fathallah, H.; Rusch, Leslie A.; Jaafar, H. B.

    2000-12-01

    Multiple Bragg gratings are written in a single fibre strand with accurate positioning to achieve predetermined time delays between optical channels. Applications of fibre Bragg grating arrays include encoders/decoders with series of identical gratings for optical code-division multiple access.

  2. A novel piezoelectric quartz micro-array immunosensor for detection of immunoglobulinE.

    PubMed

    Yao, Chunyan; Chen, Qinghai; Chen, Ming; Zhang, Bo; Luo, Yang; Huang, Qing; Huang, Junfu; Fu, Weiling

    2006-12-01

    A novel multi-channel 2 x 5 model of piezoelectric (PZ) micro-array immunosensor has been developed for quantitative detection of human immunoglobulinE (IgE) in serum. Every crystal unit of the fabricated piezoelectric IgE micro-array immunosensor can oscillate without interfering each other. A multi-channel 2 x 5 model micro-array immunosensor as compared with the traditional one-channel immunosensor can provide eight times higher detection speeds for IgE assay. The anti-IgE antibody is deposited on the gold electrode's surface of 10 MHz AT-cut quartz crystals by SPA (staphylococcal protein A), and serves as an antibody recognizing layer. The highly ordered antibody monolayers ensure well-controlled surface structure and offer many advantages to the performance of the sensor. The uniform amount of antibody monolayer coated by the SPA is good, and non-specific reaction caused by other immunoglobulin in sample is found. The fabricated PZ immunosensor can be used for human IgE determination in the range of 5-300 IU/ml with high precision (CV is 4%). 50 human serum samples were detected by the micro-array immunosensor, and the results agreed well with those given by the commercially ELISA test kits. The correlation coefficient is 0.94 between ELISA and PZ immunosensor. After regeneration with NaOH the coated immunosensor can be reused 6 times without appreciable loss of activity.

  3. Design Study of a Multi-channel Array Particle Spectrometer for Space Missions

    NASA Astrophysics Data System (ADS)

    Trindade, Andreia; Assis, P.; Brogueira, P.; Gonçalves, P.; Keating, A.; Pimenta, M.; Rodrigues, P.; Trindade, A.

    In this work, a novel particle spectrometer is proposed to fulfil the need to map the space radiation environment for future space missions and to provide more accurate scientific data. The concept of the instrument brings together new radiation-hard technologies, for the photo-sensors and scintillating materials that will improve the quality of the data, while taking into account the limited resources such as mass, power and accommodation, allocated for space radiation monitors. The Multi-channel Array Particle Spectrometer (MAPS), can measure fluxes and energy dis-tributions of protons, ions, electrons and gammas in a wide energy range based on the 3D reconstruction of the particle track through the detector and its deposited energy in the active volume. It consists on a 8 x 8 segmented scintillator block built from 3.2 x 3.2 x 20 mm3 indi-vidual LYSO:Ce rods that are readout at both ends by two 64 pixel Silicon Photo-Multipliers (SiPMs) matrices, a new generation of high gain (105-106) avalanche photodiodes working in controlled Geiger mode, that collect the scintillating light produced by the interactions of the charged particles in the crystals. Each SiPM matrix is readout by a 64 channel mixed sig-nal analog-digital ASIC, offering both particle identification and particle counting capabilities. Power cycling design of the ASIC allows to activate the particle identification block only during a pre-determined time slice, keeping the total power budget of less than 1 mW/channel. An on-board FPGA sorts the serialized data from the two ASICs and computes the trigger primitives in real-time and in an event-by-event basis. Whenever a charged particle crosses the segmented volume of the detector, the XY coordinates, given by the pixelized crystal positions, and the deposited energy in each crystal is recorded. The double readout scheme allows to compute the light collection asymmetry between both ends of the crystal and to use that information to record the

  4. Extended focal-plane array development for the International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Stephen J.; Bandler, Simon R.; Beyer, Joern; Chervenak, James A.; Drung, Dietmar; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Scott Porter, F.; Sadleir, John E.

    2009-12-01

    We are developing arrays of transition-edge sensors (TES's) for the International X-ray observatory (IXO). The IXO microcalorimeter array will consist of a central 40×40 core of 300 μm pitch pixels with a resolution of 2.5 eV from 0.3-10 keV. To maximize the science return from the mission, an outer extended array is also required. This 52×52 array (2304 elements surrounding the core) of 600 μm pitch pixels increases the field-of-view from 2' to 5.4' with a resolution of 10 eV. However, significantly increasing the number of readout channels is unfavorable due to the increase in mass and power of the readout chain as well as adding complexity at the focal plane. Consequently, we are developing position-sensitive devices which maintain the same plate scale but at a reduced number of readout channels. One option is to use multiple absorber elements with different thermal conductances to a single TES. Position discrimination is achieved from differences in the pulse rise-time. Another new option is to inductively couple several TES's to a single SQUID. Position discrimination can be achieved by using different combinations of coupling polarity, inductive couplings and heat sink conductances. We present first results demonstrating <9 eV across four 500 μm pixels coupled to a single SQUID. A further possibility is to increase the number of channels to be time-division multiplexed in a single column at some expense in resolution. In this paper we discuss experimental results and trade-offs for these extended array options.

  5. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  6. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  7. Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission.

    PubMed

    Marzo, Asier; Corkett, Tom; Drinkwater, Bruce W

    2018-01-01

    Modern ultrasonic phased-array controllers are electronic systems capable of delaying the transmitted or received signals of multiple transducers. Configurable transmit-receive array systems, capable of electronic steering and shaping of the beam in near real-time, are available commercially, for example, for medical imaging. However, emerging applications, such as ultrasonic haptics, parametric audio, or ultrasonic levitation, require only a small subset of the capabilities provided by the existing controllers. To meet this need, we present Ultraino, a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound. Our system is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications. The software can be used to define array geometries, simulate the acoustic field in real time, and control the connected driver boards. The driver board design is based on an Arduino Mega and can control 64 channels with a square wave of up to 17 Vpp and /5 phase resolution. Multiple boards can be chained together to increase the number of channels. The 40-kHz arrays with flat and spherical geometries are demonstrated for parametric audio generation, acoustic levitation, and haptic feedback.

  8. Apparatus for electrophoresis separation

    DOEpatents

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  9. Four-channel magnetic resonance imaging receiver using frequency domain multiplexing.

    PubMed

    He, Wang; Qin, Xu; Jiejing, Ren; Gengying, Li

    2007-01-01

    An alternative technique that uses frequency domain multiplexing to acquire phased array magnetic resonance images is discussed in detail. The proposed method has advantages over traditional independent receiver chains in that it utilizes an analog-to-digital converter and a single-chip multicarrier receiver with high performance to reduce the size and cost of the phased array receiver system. A practical four-channel digital receiver using frequency domain multiplexing was implemented and verified on a home-built 0.3 T magnetic resonance imaging system. The experimental results confirmed that the cross talk between each channel was below -60 dB, the phase fluctuations were about 1 degrees , and there was no obvious signal-to-noise ratio degradation. It is demonstrated that the frequency domain multiplexing is a valuable and economical technique, particularly for array coil systems where the multichannel receiver is indispensable and dynamic range is not a critical problem.

  10. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    PubMed

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P < 0.05). 4-AP superfusion significantly prolonged FAPD. In pace/amiodarone groups, 4-Ap superfusion extended fAPD. MEA was a sensitive and stable reporter for the measurement of the tissue action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical

  11. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    PubMed

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  12. DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K+ Channels.

    PubMed

    Kurokawa, Tatsuki; Kiyonaka, Shigeki; Nakata, Eiji; Endo, Masayuki; Koyama, Shohei; Mori, Emiko; Tran, Nam Ha; Dinh, Huyen; Suzuki, Yuki; Hidaka, Kumi; Kawata, Masaaki; Sato, Chikara; Sugiyama, Hiroshi; Morii, Takashi; Mori, Yasuo

    2018-03-01

    In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K + channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K + channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Serum protein fractionation using supported molecular matrix electrophoresis.

    PubMed

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis

    PubMed Central

    Nikcevic, Irena; Lee, Se Hwan; Piruska, Aigars; Ahn, Chong H.; Ridgway, Thomas H.; Limbach, Patrick A.; Wehmeyer, K. R.; Heineman, William R.; Seliskar, Carl J.

    2009-01-01

    Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electron microscope imaging, surface quality measurements, selected thermal/electrical properties as indicated by measurement of the current versus applied voltage (I–V) characteristic, and the influence of channel surface treatments. Electroosmotic flow was also evaluated for untreated and O2 reactive ion etching (RIE) treated surface microchips. The performance characteristics of single lane plastic microchip capillary electrophoresis (MCE) separations were evaluated using a mixture of two dyes - fluorescein (FL) and fluorescein isothiocyanate (FITC). To overcome non-wettability of the native IM-PMMA surface, a modifier, polyethylene oxide was added to the buffer as a dynamic coating. Chip performance reproducibility was studied for chips with and without surface modification via the process of RIE with O2 and by varying the hole position for the reservoir in the cover plate or on the pattern side of the chip. Additionally, the importance of reconditioning steps to achieve optimal performance reproducibility was also examined. It was found that more reproducible quantitative results were obtained when normalized values of migration time, peak area and peak height of FL and FITC were used instead of actual measured parameters PMID:17477932

  15. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  16. Electrophoresis for Under Five Dollars.

    ERIC Educational Resources Information Center

    Lumetta, Vincent J.; Doktycz, Mitchel J.

    1994-01-01

    Equipped with a little more than batteries, food-dye, and sieving media, teachers can demonstrate an essential process used in biochemical research. An activity is provided to aid in helping students to understand electrophoresis. (ZWH)

  17. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  18. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

    1982-01-01

    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

  19. A new electrowetting lab-on-a-chip platform based on programmable and virtual wall-less channels

    NASA Astrophysics Data System (ADS)

    Banerjee, Ananda; Kreit, Eric; Dhindsa, Manjeet; Heikenfeld, Jason; Papautsky, Ian

    2011-02-01

    Microscale liquid handling based on electrowetting has been previously demonstrated by several groups. Such liquid manipulation however is limited to control of individual droplets, aptly termed digital microfluidics. The inability to form continuous channels thus prevents conventional microfluidic sample manipulation and analysis approaches, such as electroosmosis and electrophoresis. In this paper, we discuss our recent progress on the development of electrowettingbased virtual channels. These channels can be created and reconfigured on-demand and preserve their shape without external stimulus. We also discuss recent progress towards demonstrating electroosmotic flows in such microchannels for fluid transport. This would permit a variety of basic functionalities in this new platform including sample transport and mixing between various functional areas of the chip.

  20. Turbine component cooling channel mesh with intersection chambers

    DOEpatents

    Lee, Ching-Pang; Marra, John J

    2014-05-06

    A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

  1. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  2. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  3. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.

    PubMed

    Zhang, Qingquan; Zeng, Shaojiang; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    This article presents a simple method for trapping arrays of droplets relying on the designed microstructures of the microfluidic device, and this has been successfully used for parallel gas-liquid chemical reaction. In this approach, the trapping structure is composed of main channel, lateral channel and trapping region. Under a negative pressure, array droplets can be generated and trapped in the microstructure simultaneously, without the use of surfactant and the precise control of the flow velocity. By using a multi-layer microdevice containing the microstructures, single (pH gradient) and multiple gas-liquid reactions (metal ion-NH3 complex reaction) can be performed in array droplets through the transmembrane diffusion of the gas. The droplets with quantitative concentration gradient can be formed by only replacing the specific membrane. The established method is simple, robust and easy to operate, demonstrating the potential of this device for droplet-based high-throughput screening.

  4. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    PubMed

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.

  5. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  6. Voltage-gated K+ channel modulators as neuroprotective agents.

    PubMed

    Leung, Yuk-Man

    2010-05-22

    A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.

  7. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  8. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    PubMed Central

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  9. Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements

    NASA Astrophysics Data System (ADS)

    Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick

    2002-03-01

    Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.

  10. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.

    PubMed

    Lin, Che-Hsin; Lee, Gwo-Bin; Fu, Lung-Ming; Chen, Shu-Hui

    2004-07-30

    This paper presents a novel micro-capillary electrophoresis (CE) chip with embedded optical fibers for the on-line detection of DNA samples. The optical fibers are pre-etched and then inserted directly into fiber channels incorporated within low-cost soda-lime glass substrates. The embedded optical fibers are precisely aligned with the microfluidic channels such that the induced fluorescence signals from labeled bio-samples can be detected. This arrangement avoids the requirement for delicate optical alignment procedures and equipment. Surface modification of the CE channels is accomplished by means of a simple and reliable organic-based spin-on-glass (SOG) method. The zeta potential distribution and the corresponding electroosmotic mobility of the fluid are simulated numerically for the modified and non-modified channel surfaces, and then both sets of results are verified experimentally. The present results indicate that the value of the zeta potential for a surface with an SOG coating is 19.3 times smaller than that of an untreated surface. A phiX-174 DNA marker fluid is used to evaluate the injection and separation performance of the developed micro-CE device. Furthermore, the long-term stability of the SOG-coated surface is also investigated. The experimental data reveal that the microchip device is capable of providing highly efficient separations of bio-molecules, and that the SOG layer retains its low zeta potential characteristics for at least 45 days. The present results confirm the effectiveness of the proposed micro-CE chip in performing the on-line detection of DNA samples, and indicate that the SOG process represents a simple and reliable solution for the surface modification of glass-based microchannels.

  11. Arrays of Miniature Microphones for Aeroacoustic Testing

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Sealey, Bradley S.; Bartram, Scott M.; Zuckewar, Allan J.; Comeaux, Toby; Adams, James K.

    2007-01-01

    A phased-array system comprised of custom-made and commercially available microelectromechanical system (MEMS) silicon microphones and custom ancillary hardware has been developed for use in aeroacoustic testing in hard-walled and acoustically treated wind tunnels. Recent advances in the areas of multi-channel signal processing and beam forming have driven the construction of phased arrays containing ever-greater numbers of microphones. Traditional obstacles to this trend have been posed by (1) the high costs of conventional condenser microphones, associated cabling, and support electronics and (2) the difficulty of mounting conventional microphones in the precise locations required for high-density arrays. The present development overcomes these obstacles. One of the hallmarks of the new system is a series of fabricated platforms on which multiple microphones can be mounted. These mounting platforms, consisting of flexible polyimide circuit-board material (see left side of figure), include all the necessary microphone power and signal interconnects. A single bus line connects all microphones to a common power supply, while the signal lines terminate in one or more data buses on the sides of the circuit board. To minimize cross talk between array channels, ground lines are interposed as shields between all the data bus signal lines. The MEMS microphones are electrically connected to the boards via solder pads that are built into the printed wiring. These flexible circuit boards share many characteristics with their traditional rigid counterparts, but can be manufactured much thinner, as small as 0.1 millimeter, and much lighter with boards weighing as much as 75 percent less than traditional rigid ones. For a typical hard-walled wind-tunnel installation, the flexible printed-circuit board is bonded to the tunnel wall and covered with a face sheet that contains precise cutouts for the microphones. Once the face sheet is mounted, a smooth surface is established over

  12. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  13. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Harris, J. T.; Friedrich, S.

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100-2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays - currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I-V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  14. Dynamic computer simulations of electrophoresis: three decades of active research.

    PubMed

    Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A

    2009-06-01

    Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.

  15. Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis.

    PubMed

    Mozafari, Mona; El Deeb, Sami; Krull, Friederike; Wildgruber, Robert; Weber, Gerhard; Reiter, Christian G; Wätzig, Hermann

    2018-02-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  17. Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.

    PubMed

    Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C

    2012-10-01

    Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.

  18. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  19. Sequencing of oligosaccharides using enzyme array digestion with electrochemical and fluorescent detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, M.; Lee, C.S.

    1997-12-31

    The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymesmore » to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.« less

  20. 113Gb/s (10 x 11.3Gb/s) ultra-low power EAM driver array.

    PubMed

    Vaernewyck, Renato; Bauwelinck, Johan; Yin, Xin; Pierco, Ramses; Verbrugghe, Jochen; Torfs, Guy; Li, Zhisheng; Qiu, Xing-Zhi; Vandewege, Jan; Cronin, Richard; Borghesani, Anna; Moodie, David

    2013-01-14

    This paper presents an ultra-low power SiGe BiCMOS IC for driving a 10 channel electro-absorption modulator (EAM) array at 113Gb/s for wavelength division multiplexing passive optical network (WDM-PON) applications. With an output swing of 2.5V(pp), the EAM driver array consumes only 2.2W or 220mW per channel, 50% below the state of the art. Both the output swing and bias are configurable between 1.5 and 3.0V(pp) and 0.75-2.15V respectively.

  1. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.

    PubMed

    Attiya, S; Jemere, A B; Tang, T; Fitzpatrick, G; Seiler, K; Chiem, N; Harrison, D J

    2001-01-01

    An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.

  2. A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro

    PubMed Central

    Ballini, Marco; Müller, Jan; Livi, Paolo; Chen, Yihui; Frey, Urs; Stettler, Alexander; Shadmani, Amir; Viswam, Vijay; Jones, Ian Lloyd; Jäckel, David; Radivojevic, Milos; Lewandowska, Marta K.; Gong, Wei; Fiscella, Michele; Bakkum, Douglas J.; Heer, Flavio; Hierlemann, Andreas

    2017-01-01

    To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 × 2.10 mm2) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μVrms in the action-potential band (300 Hz–10 kHz) and 5.4 μVrms in the local-field-potential band (1 Hz–300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures. PMID:28502989

  3. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  4. A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua

    This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less

  5. A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology

    DOE PAGES

    Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua; ...

    2017-05-08

    This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less

  6. Evaluation of image quality of a 32-channel versus a 12-channel head coil at 1.5T for MR imaging of the brain.

    PubMed

    Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L

    2011-02-01

    Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.

  7. Correlator data analysis for the array feed compensation system

    NASA Technical Reports Server (NTRS)

    Iijima, B.; Fort, D.; Vilnrotter, V.

    1994-01-01

    The real-time array feed compensation system is currently being evaluated at DSS 13. This system recovers signal-to-noise ratio (SNR) loss due to mechanical antenna deformations by using an array of seven Ka-band (33.7-GHz) horns to collect the defocused signal fields. The received signals are downconverted and digitized, in-phase and quadrature samples are generated, and combining weights are applied before the samples are recombined. It is shown that when optimum combining weights are employed, the SNR of the combined signal approaches the sum of the channel SNR's. The optimum combining weights are estimated directly from the signals in each channel by the Real-Time Block 2 (RTB2) correlator; since it was designed for very-long-baseline interferometer (VLBI) applications, it can process broadband signals as well as tones to extract the required weight estimates. The estimation algorithms for the optimum combining weights are described for tones and broadband sources. Data recorded in correlator output files can also be used off-line to estimate combiner performance by estimating the SNR in each channel, which was done for data taken during a Jupiter track at DSS 13.

  8. New electronics for the Cherenkov Telescope Array (NECTAr)

    NASA Astrophysics Data System (ADS)

    Naumann, C. L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  9. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    PubMed Central

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  10. The Use of Signal Dimensionality for Automatic QC of Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.; Draganov, D.; Maceira, M.; Gomez, M.

    2014-12-01

    A significant problem in seismic array analysis is the inclusion of bad sensor channels in the beam-forming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by-node basis, so the dimensionality of the node traffic is instead monitored for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. We examine the signal dimension in similar way to the method addressing node traffic anomalies in large computer systems. We explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for identifying bad array elements. We show preliminary results applied to arrays in Kazakhstan (Makanchi) and Argentina (Malargue).

  11. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    PubMed

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Optimum sensor placement for microphone arrays

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.

    array sensors. A procedure is developed to evaluate a given array configuration based on the above-mentioned metrics. Constrained placement optimizations are performed that maximize SNR for both TDC and MFA capture methods. Results are compared for various acoustic environments and various enclosure sizes. General guidelines are presented for placement strategy and bandwidth dependence, as they relate to reverberation levels, ambient noise, and enclosure geometry. An overall performance function is described based on these metrics. Performance of the microphone array system is also constrained by the design limitations of the supporting hardware. Two newly developed hardware architectures are presented that support the described algorithms. A low- cost 8-channel system with off-the-shelf componentry was designed and its performance evaluated. A massively parallel 512-channel custom-built system is in development-its capabilities and the rationale for its design are described.

  13. Requirement for Chloride Channel Function during the Hepatitis C Virus Life Cycle

    PubMed Central

    Igloi, Zsofia; Mohl, Bjorn-Patrick; Lippiat, Jonathan D.; Harris, Mark

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation of the involvement of Cl− channels during the HCV life cycle. PMID:25609806

  14. Dielectrophoresis device and method having nonuniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2012-09-04

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  15. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  16. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    PubMed

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    PubMed Central

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N.; Dagel, Amber L.; Schwindt, Peter D. D.

    2016-01-01

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816

  18. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    DOE PAGES

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; ...

    2016-06-29

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz 1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.

  19. System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems

    NASA Astrophysics Data System (ADS)

    Czylwik, Andreas; Dekorsy, Armin

    2004-12-01

    Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.

  20. Automatic multiple-sample applicator and electrophoresis apparatus

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W. (Inventor)

    1977-01-01

    An apparatus for performing electrophoresis and a multiple-sample applicator is described. Electrophoresis is a physical process in which electrically charged molecules and colloidal particles, upon the application of a dc current, migrate along a gel or a membrane that is wetted with an electrolyte. A multiple-sample applicator is provided which coacts with a novel tank cover to permit an operator either to depress a single button, thus causing multiple samples to be deposited on the gel or on the membrane simultaneously, or to depress one or more sample applicators separately by means of a separate button for each applicator.

  1. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    PubMed

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-28

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  2. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.

    PubMed

    Dutta, Debashis

    2015-07-24

    The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015

  3. Capillary Electrophoresis - Optical Detection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatographymore » relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.« less

  4. Side Channel Attacks on STTRAM and Low Overhead Countermeasures

    DTIC Science & Technology

    2017-03-20

    introduce security vulnerabilities and expose the cache memory to side channel attacks. In this paper, we propose a side channel attack (SCA) model...where the adversary can monitor the supply current of the memory array to partially identify the sensi- tive cache data that is being read or written. We...propose solutions such as short retention STTRAM, obfuscation of SCA using 1-bit parity, multi-bit random write, and, neutral- izing the SCA using

  5. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.

    PubMed

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm 2 . The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.

  6. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays

    PubMed Central

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control. PMID:28442997

  7. Visible and infrared linear detector arrays for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bailey, Gary C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.

  8. Shielded microstrip array for 7T human MR imaging.

    PubMed

    Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang

    2010-01-01

    The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.

  9. Shielded Microstrip Array for 7T Human MR Imaging

    PubMed Central

    Wu, Bing; Wang, Chunsheng; Kelley, Douglas A. C.; Xu, Duan; Vigneron, Daniel B.; Nelson, Sarah J.

    2010-01-01

    The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or “cable resonance” behavior. PMID:19822470

  10. The NSLS 100 element solid state array detector

    PubMed Central

    Furenlid, L.R.; Kraner, H.W.; Rogers, L.C.; Cramer, S.P.; Stephani, D.; Beuttenmuller, R.H.; Beren, J.

    2015-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 element Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10×10 matrix of 4 mm×4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramining memory module provide for complete diagnostics and channel calibration. The entire instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. PMID:26722135

  11. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  12. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measurement of Single Channel Currents from Cardiac Gap Junctions

    NASA Astrophysics Data System (ADS)

    Veenstra, Richard D.; Dehaan, Robert L.

    1986-08-01

    Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.

  14. Drosophila TRP channels and animal behavior

    PubMed Central

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650

  15. Spatial arrangement of color filter array for multispectral image acquisition

    NASA Astrophysics Data System (ADS)

    Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat

    2011-03-01

    In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.

  16. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off

  17. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  18. A 7T Spine Array Based on Electric Dipole Transmitters

    PubMed Central

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut

    2015-01-01

    Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585

  19. Ceramic capillary electrophoresis chip for the measurement of inorganic ions in water samples.

    PubMed

    Fercher, Georg; Haller, Anna; Smetana, Walter; Vellekoop, Michael J

    2010-05-01

    We present a microchip capillary electrophoresis (CE) device build-up in low temperature co-fired ceramics (LTCC) multilayer technology for the analysis of major inorganic ions in water samples in less than 80 s. Contactless conductivity measurement is employed as a robust alternative to direct-contact conductivity detection schemes. The measurement electrodes are placed in a planar way at the top side of the CE chip and are realized by screen printing. Laser-cutting of channel and double-T injector structures is used to minimize irregularities and wall defects, elevating plate numbers per meter up to values of 110,000. Lowest limit of detection is 6 microM. The cost efficient LTCC module is attractive particularly for portable instruments in environmental applications because of its chemical inertness, hermeticity and easy three-dimensional integration capabilities of fluidic, electrical and mechanical components.

  20. Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil.

    PubMed

    Otazo, Ricardo; Tsai, Shang-Yueh; Lin, Fa-Hsuan; Posse, Stefan

    2007-12-01

    MR spectroscopic imaging (MRSI) with whole brain coverage in clinically feasible acquisition times still remains a major challenge. A combination of MRSI with parallel imaging has shown promise to reduce the long encoding times and 2D acceleration with a large array coil is expected to provide high acceleration capability. In this work a very high-speed method for 3D-MRSI based on the combination of proton echo planar spectroscopic imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed by constraining the singular value decomposition of the encoding matrix to reduce the effect of low-value and overlapped coil sensitivities. The effects of spectral heterogeneity and discontinuities in coil sensitivity across the spectroscopic voxels were minimized by unaliasing the point spread function. As a result the contamination from extracranial lipids was reduced 1.6-fold on average compared to standard SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 x 32 x 8 spatial matrix using a 32-channel array coil can be accelerated 8-fold (R = 4 x 2) along y-z to achieve a minimum acquisition time of 1 min. Maps of the concentrations of N-acetyl-aspartate, creatine, choline, and glutamate were obtained with moderate reduction in spatial-spectral quality. The short acquisition time makes the method suitable for volumetric metabolite mapping in clinical studies. (c) 2007 Wiley-Liss, Inc.

  1. Quantification of penicillin G during labor and delivery by capillary electrophoresis.

    PubMed

    Thomas, Andrea; Ukpoma, Omon K; Inman, Jennifer A; Kaul, Anil K; Beeson, James H; Roberts, Kenneth P

    2008-04-24

    In this study, a capillary electrophoresis (CE) method was developed as a means to measure levels of penicillin G (PCN G) in Group B Streptococcus (GBS) positive pregnant women during labor and delivery. Volunteers for this developmental study were administered five million units of PCN G at the onset of labor. Urine, blood, and amniotic fluid samples were collected during labor and post delivery. Samples were semi-purified by solid-phase extraction (SPE) using Waters tC18 SepPak 3cc cartridges with a sodium phosphate/methanol step gradient for elution. Capillary electrophoresis or reversed-phase high-performance liquid chromatography (RP-HPLC) with diode-array absorbance detection were used to separate the samples in less than 30 min. Quantification was accomplished by establishing a calibration curve with a linear dynamic range. The tC18 SPE methodology provided substantial sample clean-up with high recovery yields of PCN G ( approximately 90%). It was found that SPE was critical for maintaining the integrity of the separation column when using RP-HPLC, but was not necessary for sample analysis by CE where no stationary phase is present. Quantification results ranged from millimolar concentrations of PCN G in maternal urine to micromolar concentrations in amniotic fluid. Serum and cord blood levels of PCN G were below quantification limits, which is likely due to the prolonged delay in sample collection after antibiotic administration. These results show that CE can serve as a simple and effective means to characterize the pharmacokinetic distribution of PCN G from mother to unborn fetus during labor and delivery. It is anticipated that similar methodologies have the potential to provide a quick, simple, and cost-effective means of monitoring the clinical efficacy of PCN G and other drugs during pregnancy.

  2. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes.

    PubMed

    Wittig, Ilka; Karas, Michael; Schägger, Hermann

    2007-07-01

    Clear native electrophoresis and blue native electrophoresis are microscale techniques for the isolation of membrane protein complexes. The Coomassie Blue G-250 dye, used in blue native electrophoresis, interferes with in-gel fluorescence detection and in-gel catalytic activity assays. This problem can be overcome by omitting the dye in clear native electrophoresis. However, clear native electrophoresis suffers from enhanced protein aggregation and broadening of protein bands during electrophoresis and therefore has been used rarely. To preserve the advantages of both electrophoresis techniques we substituted Coomassie dye in the cathode buffer of blue native electrophoresis by non-colored mixtures of anionic and neutral detergents. Like Coomassie dye, these mixed micelles imposed a charge shift on the membrane proteins to enhance their anodic migration and improved membrane protein solubility during electrophoresis. This improved clear native electrophoresis offers a high resolution of membrane protein complexes comparable to that of blue native electrophoresis. We demonstrate the superiority of high resolution clear native electrophoresis for in-gel catalytic activity assays of mitochondrial complexes I-V. We present the first in-gel histochemical staining protocol for respiratory complex III. Moreover we demonstrate the special advantages of high resolution clear native electrophoresis for in-gel detection of fluorescent labeled proteins labeled by reactive fluorescent dyes and tagged by fluorescent proteins. The advantages of high resolution clear native electrophoresis make this technique superior for functional proteomics analyses.

  3. First steps towards small arrays of Mo/Au microcalorimeters

    NASA Astrophysics Data System (ADS)

    Olsen, J.; Kirk, E. C.; Thomsen, K.; van den Brandt, B.; Lerch, Ph; Scandella, L.; Zehnder, A.; Mango, S.; Ott, H. R.; Huber, M.; Hilton, G. C.; Martinis, J. M.

    2000-04-01

    We are developing small arrays of microcalorimeters based on transition edge sensors made with Mo/Au bilayers deposited on silicon nitride membranes and Au absorbers. The superconducting transition of the bilayers is adjusted to be around 130 mK with a transition width better than a millikelvin by use of the proximity effect between the Au and Mo films. We built a dilution refrigerator and wired it for 2 channel operation in order to study thermal coupling issues between thermometers within the array. The device fabrication procedure as well as preliminary results are presented.

  4. Western blotting using capillary electrophoresis.

    PubMed

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  5. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    PubMed

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  6. Regioisomeric and enantiomeric analyses of 24 designer cathinones and phenethylamines using ultra high performance liquid chromatography and capillary electrophoresis with added cyclodextrins.

    PubMed

    Li, Li; Lurie, Ira S

    2015-09-01

    DESIGNER: phenethylamines (PEAs) and cathinones have been encountered worldwide. Complete characterization of these substances can be challenging due to their chirality and variably substituted phenyl rings. In this study, 24 PEAs and cathinones were analyzed by ultra high performance liquid chromatography with photo diode array detection (UHPLC-PDA) on a variety of stationary phases, and by capillary electrophoresis on a dynamically coated capillary with PDA detection (CE-PDA). In the UHPLC-PDA study, a BEH Phenyl column resolved 18 of the 24 regioisomers in 8min, with good discrimination of the PEAs. In contrast, capillary zone electrophoresis (CZE) on a dynamically coated capillary partially or baseline resolved only 10 of the 24 regioisomers, but with improved discrimination of mono-substituted cathinones. A second series of CE-PDA experiments using 80mM (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) in the run buffer resolved all 24 regioisomers and all but two sets of enantiomers within 18min. Five illicit samples were successfully analyzed using the described methods. Published by Elsevier Ireland Ltd.

  7. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    NASA Technical Reports Server (NTRS)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  8. Improving sensitivity in micro-free flow electrophoresis using signal averaging

    PubMed Central

    Turgeon, Ryan T.; Bowser, Michael T.

    2009-01-01

    Microfluidic free-flow electrophoresis (μFFE) is a separation technique that separates continuous streams of analytes as they travel through an electric field in a planar flow channel. The continuous nature of the μFFE separation suggests that approaches more commonly applied in spectroscopy and imaging may be effective in improving sensitivity. The current paper describes the S/N improvements that can be achieved by simply averaging multiple images of a μFFE separation; 20–24-fold improvements in S/N were observed by averaging the signal from 500 images recorded for over 2 min. Up to an 80-fold improvement in S/N was observed by averaging 6500 images. Detection limits as low as 14 pM were achieved for fluorescein, which is impressive considering the non-ideal optical set-up used in these experiments. The limitation to this signal averaging approach was the stability of the μFFE separation. At separation times longer than 20 min bubbles began to form at the electrodes, which disrupted the flow profile through the device, giving rise to erratic peak positions. PMID:19319908

  9. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    PubMed

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Monitoring refolding of tailspike endorhamnosidase using capillary electrophoresis-laser induced tryptophan fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, P.K.; Lee, Cheng S.; King, J.A.

    1997-12-31

    The use of capillary electrophoresis equipped with laser-induced tryptophan fluorescence detection is presented for monitoring the refolding pathway of phage P22 tailspike endorhamnosidase. Upon initiation of refolding, tailspike polypeptides rapidly fold into structured monomeric intermediates with a high content of secondary structure. These monomeric species associate to form the triple-chain defined folding intermediates, the protrimers. Conversion of the protrimer into the native, sodium dodecyl sulfate (SDS) resistant tailspike protein is the rate-limiting step in the refolding pathway. Refolding kinetics and yield measured by capillary electrophoresis are in good agreement with those obtained via native gel electrophoresis, SDS polyacrylamide gel electrophoresismore » (SDS-PAGE) and fluorescence spectrophotometry. To enhance separation resolution between protrimer and native protein in capillary electrophoresis, the use of poly(ethylene oxide) is investigated for the introduction of a sieving separation mechanism. The increased viscosity of the electrophoresis buffer may also play a role in resolution enhancement.« less

  11. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    PubMed

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  12. oneChannelGUI: a graphical interface to Bioconductor tools, designed for life scientists who are not familiar with R language.

    PubMed

    Sanges, Remo; Cordero, Francesca; Calogero, Raffaele A

    2007-12-15

    OneChannelGUI is an add-on Bioconductor package providing a new set of functions extending the capability of the affylmGUI package. This library provides a graphical interface (GUI) for Bioconductor libraries to be used for quality control, normalization, filtering, statistical validation and data mining for single channel microarrays. Affymetrix 3' expression (IVT) arrays as well as the new whole transcript expression arrays, i.e. gene/exon 1.0 ST, are actually implemented. oneChannelGUI is available for most platforms on which R runs, i.e. Windows and Unix-like machines. http://www.bioconductor.org/packages/2.0/bioc/html/oneChannelGUI.html

  13. Noise Reduction with Microphone Arrays for Speaker Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Z

    Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identificationmore » algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?« less

  14. Code-division-multiplexed readout of large arrays of TES microcalorimeters

    NASA Astrophysics Data System (ADS)

    Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-09-01

    Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.

  15. Fluorescence Detection In Electrophoresis

    NASA Astrophysics Data System (ADS)

    Swarner, Susan

    1988-04-01

    Fluorescence detection is in common usage in forensic science laboratories for the visualization of three enzyme markers. The fluorogenic substrates, 4-methylumbelliferyl phosphate, 4-methylutbel-liveryl acetate, and fluorecein diacetate, are acted upon by the enzymes Erythrocyte Acid Phospha, tase, Esterase-D, and Carbonic Anhydrase-III, respectively, to produce compounds visible to the analyst when viewed with transmitted UV light at 365 nm. Additionally, the choice of fluorogenic corn, pounds may help detect a specific enzyme from a related enzyme. One of the responsibilities of a forensic science laboratory may be the analysis of blood for genetically controlled polymorphic enzymes and protein markers. The genetic markers are said to be polymorphic because each exhibits types which can be differentiated and allows for the inclusion or exclusion of possible-donors of the blood. Each genetic marker can be separated into these recognizable types by electrophoresis, a technique which separates compounds based on electrical charges. Electrophoresis is conducted by placing a portion or extract of each bloodstain into a support medium which will conduct electricity. This is known as a plate or membrane. By controlling the pH of the buffer and the potential that is applied to the plate, the analyst can achieve separation of the types within an enzyme marker. The types appear as differing patterns of bands. Once the bloodstain has been subjected to electrophoresis, the enzymes must be visualized. This is generally best accomplished by using the specific activity of the enzyme. For the enzymes described in the present work, the visualization is performed by over-layering the plate with a piece of filter paper that 'has been saturated with the appropriate non-fluorescent substrate and buffer. The bands of enzyme, which is now in discrete patterns, will act upon the non-fluorescent substrate to create a fluorescent compound. The plate is then viewed with transmitted UV

  16. Tubular fluoropolymer arrays with high piezoelectric response

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz

    2018-01-01

    Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.

  17. Integrated circuit-based instrumentation for microchip capillary electrophoresis.

    PubMed

    Behnam, M; Kaigala, G V; Khorasani, M; Martel, S; Elliott, D G; Backhouse, C J

    2010-09-01

    Although electrophoresis with laser-induced fluorescence (LIF) detection has tremendous potential in lab on chip-based point-of-care disease diagnostics, the wider use of microchip electrophoresis has been limited by the size and cost of the instrumentation. To address this challenge, the authors designed an integrated circuit (IC, i.e. a microelectronic chip, with total silicon area of <0.25 cm2, less than 5 mmx5 mm, and power consumption of 28 mW), which, with a minimal additional infrastructure, can perform microchip electrophoresis with LIF detection. The present work enables extremely compact and inexpensive portable systems consisting of one or more complementary metal-oxide-semiconductor (CMOS) chips and several other low-cost components. There are, to the authors' knowledge, no other reports of a CMOS-based LIF capillary electrophoresis instrument (i.e. high voltage generation, switching, control and interface circuit combined with LIF detection). This instrument is powered and controlled using a universal serial bus (USB) interface to a laptop computer. The authors demonstrate this IC in various configurations and can readily analyse the DNA produced by a standard medical diagnostic protocol (end-labelled polymerase chain reaction (PCR) product) with a limit of detection of approximately 1 ng/microl (approximately 1 ng of total DNA). The authors believe that this approach may ultimately enable lab-on-a-chip-based electrophoretic instruments that cost on the order of several dollars.

  18. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.

    PubMed

    Yap, Yiing C; Guijt, Rosanne M; Dickson, Tracey C; King, Anna E; Breadmore, Michael C

    2013-11-05

    With the introduction of hobby laser engravers/cutters, the use of CO2 laser micromachining on poly(methyl methacrylate) (PMMA) has the potential for flexible, low cost, rapid prototyping of microfluidic devices. Unfortunately, the feature size created by most entry-level CO2 laser micromachining systems is too large to become a functional tool in analytical microfluidics. In this paper, we report a novel method to reduce the feature size of microchannels and the bulges formed at the rim of the channel during CO2 laser micromachining by passing the laser beam through a stainless steel pinhole. Without the pinhole, the channel width was typically 300 μm wide. However, when 50 or 35 μm diameter pinholes were used, channel widths of 60 and 25 μm, respectively, could be obtained. The height of the bulge deposited directly next to the channel was reduced to less than 0.8 μm with the pinhole during ablation. Separations of fluorescent dyes on devices ablated with and without the pinhole were compared. On devices fabricated with the pinhole, the number of theoretical plates/m was 2.2-fold higher compared to devices fabricated without the pinhole, and efficiencies comparable to embossed PMMA and laser ablated glass chips were obtained. A mass-produced commercial hobby laser (retailing at ∼$2500), when equipped with a $500 pinhole, represents a rapid and low-cost approach to the rapid fabrication of rigid plastic microchips including the narrow microchannels required for microchip electrophoresis.

  19. A transmission imaging spectrograph and microfabricated channel system for DNA analysis.

    PubMed

    Simpson, J W; Ruiz-Martinez, M C; Mulhern, G T; Berka, J; Latimer, D R; Ball, J A; Rothberg, J M; Went, G T

    2000-01-01

    In this paper we present the development of a DNA analysis system using a microfabricated channel device and a novel transmission imaging spectrograph which can be efficiently incorporated into a high throughput genomics facility for both sizing and sequencing of DNA fragments. The device contains 48 channels etched on a glass substrate. The channels are sealed with a flat glass plate which also provides a series of apertures for sample loading and contact with buffer reservoirs. Samples can be easily loaded in volumes up to 640 nL without band broadening because of an efficient electrokinetic stacking at the electrophoresis channel entrance. The system uses a dual laser excitation source and a highly sensitive charge-coupled device (CCD) detector allowing for simultaneous detection of many fluorescent dyes. The sieving matrices for the separation of single-stranded DNA fragments are polymerized in situ in denaturing buffer systems. Examples of separation of single-stranded DNA fragments up to 500 bases in length are shown, including accurate sizing of GeneCalling fragments, and sequencing samples prepared with a reduced amount of dye terminators. An increase in sample throughput has been achieved by color multiplexing.

  20. Protein patterning in polycarbonate microfluidic channels

    NASA Astrophysics Data System (ADS)

    Thomson, David A.; Hayes, Jason P.; Thissen, Helmut

    2004-03-01

    In this work protein patterning has been achieved within a polycarbonate microfluidic device. Channel structures were first coated with plasma polymerized allylamine (ALAPP) followed by the "cloud point" deposition of polyethylene oxide (PEO), a protein repellent molecule. Excimer laser micromachining was used to pattern the PEO to control protein localization. Subsequent removal of a sacrificial layer of polycarbonate resulted in the patterned polymer coating only in the channels of a simple fluidic device. Following a final diffusion bonding fabrication step the devices were filled with a buffer containing Streptavidin conjugated with fluorescein, and visualized under a confocal fluorescent microscope. This confirmed that protein adhesion occurred only in laser patterned areas. The ability to control protein adhesion in microfludic channels leads to the possibility of generating arrays of proteins or cells within polymer microfludics for cheap automated biosensors and synthesis systems.

  1. Adaptive ground implemented phase array

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  2. Flow through a very porous obstacle in a shallow channel.

    PubMed

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  3. Flow through a very porous obstacle in a shallow channel

    PubMed Central

    Draper, S.; Nishino, T.; Borthwick, A. G. L.

    2017-01-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321

  4. Dielectrophoresis device and method having non-uniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B [Livermore, CA; Fintschenko, Yolanda [Livermore, CA; Simmons, Blake [San Francisco, CA

    2008-09-02

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  5. A study of cell electrophoresis as a means of purifying growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne

    1983-01-01

    Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.

  6. An image-based array trigger for imaging atmospheric Cherenkov telescope arrays

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary

    2018-05-01

    It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.

  7. In-channel electrochemical detection in the middle of microchannel under high electric field.

    PubMed

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  8. Large Format Arrays for Far Infrared and Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2004-01-01

    Some of the most compelling questions in modem astronomy are best addressed with submillimeter and millimeter observations. The question of the role of inflation in the early evolution of the universe is best addressed with large sensitive arrays of millimeter polarimeters. The study of the first generations of galaxies requires sensitive submillimeter imaging, which can help us to understand the history of energy release and nucleosynthesis in the universe. Our ability to address these questions is dramatically increasing, driven by dramatic steps in the sensitivity and size of available detector arrays. While the MIPS instrument on the SIRTF mission will revolutionize far infrared astronomy with its 1024 element array of photoconductors, thermal detectors remain the dominant technology for submillimeter and millimeter imaging and polarimetry. The last decade has seen the deployment of increasingly large arrays of bolometers, ranging from the 48 element arrays deployed on the KAO in the late 198Os, to the SHARC and SCUBA arrays in the 1990s. The past years have seen the deployment of a new generation of larger detector arrays in SHARC II (384 channels) and Bolocam (144 channels). These detectors are in operation and are beginning to make significant impacts on the field. Arrays of sensitive submillimeter bolometers on the SPIRE instrument on Herschel will allow the first large areas surveys of the sky, providing important insight into the evolution of galaxies. The next generation of detectors, led by SCUBA II, will increase the focal scale of these instruments by an order of magnitude. Two major missions are being planned by NASA for which further development of long wavelength detectors is essential, The SAFlR mission, a 10-m class telescope with large arrays of background limited detectors, will extend our reach into the epoch of initial galaxy formation. A major goal of modem cosmology is to test the inflationary paradigm in the early evolution of the universe

  9. Out-Phased Array Linearized Signaling (OPALS): A Practical Approach to Physical Layer Encryption

    DTIC Science & Technology

    2015-10-26

    Out-Phased Array Linearized Signaling ( OPALS ): A Practical Approach to Physical Layer Encryption Eric Tollefson, Bruce R. Jordan Jr., and Joseph D... OPALS ) which provides a practical approach to physical-layer encryption through spatial masking. Our approach modifies just the transmitter to employ...of the channel. With Out-Phased Array Linearized Signaling ( OPALS ), we propose a new masking technique that has some advantages of each of the

  10. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla.

    PubMed

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E; Polimeni, Jonathan R; Wiggins, Graham C; Triantafyllou, Christina; Wald, Lawrence L

    2008-06-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension. Copyright (c) 2008 Wiley-Liss, Inc.

  11. Development of FIR arrays with integrating amplifiers

    NASA Technical Reports Server (NTRS)

    Young, Erick T.

    1988-01-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  12. Development of FIR arrays with integrating amplifiers

    NASA Astrophysics Data System (ADS)

    Young, Erick T.

    1988-08-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  13. Selective stimulation of facial muscles with a penetrating electrode array in the feline model

    PubMed Central

    Sahyouni, Ronald; Bhatt, Jay; Djalilian, Hamid R.; Tang, William C.; Middlebrooks, John C.; Lin, Harrison W.

    2017-01-01

    Objective Permanent facial nerve injury is a difficult challenge for both patients and physicians given its potential for debilitating functional, cosmetic, and psychological sequelae. Although current surgical interventions have provided considerable advancements in facial nerve rehabilitation, they often fail to fully address all impairments. We aim to introduce an alternative approach to facial nerve rehabilitation. Study design Acute experiments in animals with normal facial function. Methods The study included three anesthetized cats. Four facial muscles (levator auris longus, orbicularis oculi, nasalis, and orbicularis oris) were monitored with a standard electromyographic (EMG) facial nerve monitoring system with needle electrodes. The main trunk of the facial nerve was exposed and a 16-channel penetrating electrode array was placed into the nerve. Electrical current pulses were delivered to each stimulating electrode individually. Elicited EMG voltage outputs were recorded for each muscle. Results Stimulation through individual channels selectively activated restricted nerve populations, resulting in selective contraction of individual muscles. Increasing stimulation current levels resulted in increasing EMG voltage responses. Typically, selective activation of two or more distinct muscles was successfully achieved via a single placement of the multi-channel electrode array by selection of appropriate stimulation channels. Conclusion We have established in the animal model the ability of a penetrating electrode array to selectively stimulate restricted fiber populations within the facial nerve and to selectively elicit contractions in specific muscles and regions of the face. These results show promise for the development of a facial nerve implant system. PMID:27312936

  14. Occurrence of Double Monoclonal Bands on Protein Electrophoresis: An Unusual Finding.

    PubMed

    Srinivasan, Vishrut K; Bhagat, Priyanka; Bansal, Frainey; Chhabra, Seema

    2016-06-01

    Various techniques of protein electrophoresis are used for detection of monoclonal proteins/paraproteins in serum and/or urine of patients with monoclonal gammopathies. These are detected as the so-called 'M' bands (monoclonal bands) on serum protein electrophoresis and/or immunofixation electrophoresis. In most cases, a single M-band is detected. However, more than one M-band can be detected in the samples of a minor proportion of patients. This condition is termed as 'double gammopathy' or 'biclonal gammopathy'. A knowledge of such an unusual occurrence is essential for recognition and appropriate interpretation of this entity.

  15. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibrationmore » curve of particles with known diameters and Ferguson plots.« less

  16. Coupled-mode analysis of gain and wavelength oscillation characteristics of diode laser phased arrays

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Ettenberg, M.; Ackley, D. E.

    1985-01-01

    The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.

  17. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  18. Versatile electrophoresis-based self-test platform.

    PubMed

    Guijt, Rosanne M

    2015-03-01

    Lab on a Chip technology offers the possibility to extract chemical information from a complex sample in a simple, automated way without the need for a laboratory setting. In the health care sector, this chemical information could be used as a diagnostic tool for example to inform dosing. In this issue, the research underpinning a family of electrophoresis-based point-of-care devices for self-testing of ionic analytes in various sample matrices is described [Electrophoresis 2015, 36, 712-721.]. Hardware, software, and methodological chances made to improve the overall analytical performance in terms of accuracy, precision, detection limit, and reliability are discussed. In addition to the main focus of lithium monitoring, new applications including the use of the platform for veterinary purposes, sodium, and for creatinine measurements are included. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfluidic [correction of microfludic] network.

    PubMed

    Li, Yan; Buch, Jesse S; Rosenberger, Frederick; DeVoe, Don L; Lee, Cheng S

    2004-02-01

    An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.

  20. Multi-wavelength VCSEL arrays using high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Haglund, Erik; Gustavsson, Johan S.; Sorin, Wayne V.; Bengtsson, Jörgen; Fattal, David; Haglund, Àsa; Tan, Michael; Larsson, Anders

    2017-02-01

    The use of a high-contrast grating (HCG) as the top mirror in a vertical-cavity surface-emitting laser (VCSEL) allows for setting the resonance wavelength by the grating parameters in a post-epitaxial growth fabrication process. Using this technique, we demonstrate electrically driven multi-wavelength VCSEL arrays at 980 nm wavelength. The VCSELs are GaAs-based and the suspended GaAs HCGs were fabricated using electron-beam lithography, dry etching and selective removal of an InGaP sacrificial layer. The air-coupled cavity design enabled 4-channel arrays with 5 nm wavelength spacing and sub-mA threshold currents thanks to the high HCG reflectance.

  1. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  2. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system

    PubMed Central

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  3. Quantitation in chiral capillary electrophoresis: theoretical and practical considerations.

    PubMed

    D'Hulst, A; Verbeke, N

    1994-06-01

    Capillary electrophoresis (CE) represents a decisive step forward in stereoselective analysis. The present paper deals with the theoretical aspects of the quantitation of peak separation in chiral CE. Because peak shape is very different in CE with respect to high performance liquid chromatography (HPLC), the resolution factor Rs, commonly used to describe the extent of separation between enantiomers as well as unrelated compounds, is demonstrated to be of limited value for the assessment of chiral separations in CE. Instead, the conjunct use of a relative chiral separation factor (RCS) and the percent chiral separation (% CS) is advocated. An array of examples is given to illustrate this. The practical aspects of method development using maltodextrins--which have been proposed previously as a major innovation in chiral selectors applicable in CE--are documented with the stereoselective analysis of coumarinic anticoagulant drugs. The possibilities of quantitation using CE were explored under two extreme conditions. Using ibuprofen, it has been demonstrated that enantiomeric excess determinations are possible down to a 1% level of optical contamination and stereoselective determinations are still possible with a good precision near the detection limit, increasing sample load by very long injection times. The theoretical aspects of this possibility are addressed in the discussion.

  4. A 7T spine array based on electric dipole transmitters.

    PubMed

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut

    2015-10-01

    The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  6. Transceiver-Phased Arrays for Human Brain Studies at 7 T

    PubMed Central

    2013-01-01

    The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332

  7. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons.

    PubMed

    Essaka, David C; Prendergast, Jillian; Keithley, Richard B; Palcic, Monica M; Hindsgaul, Ole; Schnaar, Ronald L; Dovichi, Norman J

    2012-03-20

    Metabolic cytometry is a form of chemical cytometry wherein metabolic cascades are monitored in single cells. We report the first example of metabolic cytometry where two different metabolic pathways are simultaneously monitored. Glycolipid catabolism in primary rat cerebella neurons was probed by incubation with tetramethylrhodamine-labeled GM1 (GM1-TMR). Simultaneously, both catabolism and anabolism were probed by coincubation with BODIPY-FL labeled LacCer (LacCer-BODIPY-FL). In a metabolic cytometry experiment, single cells were incubated with substrate, washed, aspirated into a capillary, and lysed. The components were separated by capillary electrophoresis equipped with a two-spectral channel laser-induced fluorescence detector. One channel monitored fluorescence generated by the metabolic products produced from GM1-TMR and the other monitored the metabolic products produced from LacCer-BODIPY-FL. The metabolic products were identified by comparison with the mobility of a set of standards. The detection system produced at least 6 orders of magnitude dynamic range in each spectral channel with negligible spectral crosstalk. Detection limits were 1 zmol for BODIPY-FL and 500 ymol for tetramethylrhodamine standard solutions.

  8. Agarose gel electrophoresis for the separation of DNA fragments.

    PubMed

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  9. Joachim kohn (1912-1987) and the origin of cellulose acetate electrophoresis.

    PubMed

    Rocco, Richard M

    2005-10-01

    The year 2006 marks the 50th anniversary of the discovery of cellulose acetate (CA) electrophoresis by Joachim Kohn, a pathologist at Queen Mary's Hospital in Roehampton, London. During a career in pathology that began in 1950 and spanned 37 years, Kohn published more than 50 papers in clinical laboratory medicine. He was the first to report the use of CA microbiology filters as solid supports for zone electrophoresis and the separation of hemoglobin phenotypes on CA membranes. Kohn also invented a new electrophoresis chamber and an 8-position stamp applicator especially for use with CA membranes. Beginning in 1957, Kohn pioneered the development of CA techniques for immunoelectrophoresis, counter immunoelectrophoresis, radial immunodiffusion, protein blotting, and immunofixation. He also designed a transport dressing for burn patients and was the first person to describe the use of an enzyme-based dipstick for measuring fingerstick blood glucose concentrations. This short review highlights Kohn's discovery of CA electrophoresis and his contributions to the development of this procedure.

  10. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.

    2016-11-01

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  11. A 60-GHz interferometer with a local oscillator integrated antenna array for divertor simulation experiments on GAMMA 10/PDX.

    PubMed

    Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A

    2016-11-01

    In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.

  12. Electrophoresis for the analysis of heparin purity and quality

    PubMed Central

    Volpi, Nicola; Maccari, Francesca; Suwan, Jiraporn; Linhardt, Robert J.

    2012-01-01

    The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 produced a global crisis resulting in extensive revisions to the pharmacopeia monographs and prompting the FDA to recommend the development of additional methods for the analysis of heparin purity. As a consequence, a wide variety of innovative analytical approaches have been developed for the quality assurance and purity of unfractionated and low-molecular-weight heparins. This review discusses recent developments in electrophoresis techniques available for the sensitive separation, detection, and partial structural characterization of heparin contaminants. In particular, this review summarizes recent publications on heparin quality and related impurity analysis using electrophoretic separations such as capillary electrophoresis (CE) of intact polysaccharides and hexosamines derived from their acidic hydrolysis, and polyacrylamide gel electrophoresis (PAGE) for the separation of heparin samples without and in the presence of its relatively specific depolymerization process with nitrous acid treatment. PMID:22736353

  13. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  14. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  15. The raw disk i/o performance of compaq storage works RAID arrays under tru64 unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselton, A C

    2000-10-19

    We report on the raw disk i/o performance of a set of Compaq StorageWorks RAID arrays connected to our cluster of Compaq ES40 computers via Fibre Channel. The best cumulative peak sustained data rate is l17MB/s per node for reads and 77MB/s per node for writes. This value occurs for a configuration in which a node has two Fibre Channel interfaces to a switch, which in turn has two connections to each of two Compaq StorageWorks RAID arrays. Each RAID array has two HSG80 RAID controllers controlling (together) two 5+p RAID chains. A 10% more space efficient arrangement using amore » single 1l+p RAID chain in place of the two 5+P chains is 25% slower for reads and 40% slower for writes.« less

  16. RAPID IDENTIFICATION OF MICROORGANISMS BY CONTINUOUS PARTICLE ELECTROPHORESIS.

    DTIC Science & Technology

    MICROORGANISMS, IDENTIFICATION), (*ELECTROPHORESIS, MICROORGANISMS), MOBILITY, PH FACTOR, OPTICAL SCANNING, ESCHERICHIA COLI, SHIGELLA FLEXNERI, BACILLUS CEREUS, SERRATIA MARCESCENS , BACILLUS SUBTILIS

  17. Reversible ratchet effects for vortices in conformal pinning arrays

    DOE PAGES

    Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson

    2015-05-04

    A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less

  18. 2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Robini, Marc C; Liebgott, Herve

    2016-12-01

    Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.

  19. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  20. Wafer-scale, massively parallel carbon nanotube arrays for realizing field effect transistors with current density exceeding silicon and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Arnold, Michael

    Calculations have indicated that aligned arrays of semiconducting carbon nanotubes (CNTs) promise to outperform conventional semiconducting materials in short-channel, aggressively scaled field effect transistors (FETs) like those used in semiconductor logic and high frequency amplifier technologies. These calculations have been based on extrapolation of measurements of FETs based on one CNT, in which ballistic transport approaching the quantum conductance limit of 2Go = 4e2/h has been achieved. However, constraints in CNT sorting, processing, alignment, and contacts give rise to non-idealities when CNTs are implemented in densely-packed parallel arrays, which has resulted in a conductance per CNT far from 2Go. The consequence has been that it has been very difficult to create high performance CNT array FETs, and CNT array FETs have not outperformed but rather underperformed channel materials such as Si by 6 x or more. Here, we report nearly ballistic CNT array FETs at a density of 50 CNTs um-1, created via CNT sorting, wafer-scale alignment and assembly, and treatment. The on-state conductance in the arrays is as high as 0.46 Go per CNT, and the conductance of the arrays reaches 1.7 mS um-1, which is 7 x higher than previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density reaches 900 uA um-1 and is similar to or exceeds that of Si FETs when compared at equivalent gate oxide thickness, off-state current density, and channel length. The on-state current density exceeds that of GaAs FETs, as well. This leap in CNT FET array performance is a significant advance towards the exploitation of CNTs in high-performance semiconductor electronics technologies.