Science.gov

Sample records for channel subunits sur2a

  1. Localization of sulfonylurea receptor subunits, SUR2A and SUR2B, in rat heart.

    PubMed

    Zhou, Ming; He, Hui-Jing; Suzuki, Ryoji; Liu, Ke-Xiang; Tanaka, Osamu; Sekiguchi, Masaki; Itoh, Hideaki; Kawahara, Katsumasa; Abe, Hiroshi

    2007-08-01

    To understand the possible functions and subcellular localizations of sulfonylurea receptors (SURs) in cardiac muscle, polyclonal anti-SUR2A and anti-SUR2B antisera were raised. Immunoblots revealed both SUR2A and SUR2B expression in mitochondrial fractions of rat heart and other cellular fractions such as microsomes and cell membranes. Immunostaining detected ubiquitous expression of both SUR2A and SUR2B in rat heart in the atria, ventricles, interatrial and interventricular septa, and smooth muscles and endothelia of the coronary arteries. Electron microscopy revealed SUR2A immunoreactivity in the cell membrane, endoplasmic reticulum (ER), and mitochondria. SUR2B immunoreactivity was mainly localized in the mitochondria as well as in the ER and cell membrane. Thus, SUR2A and SUR2B are not only the regulatory subunits of sarcolemmal K(ATP) channels but may also function as regulatory subunits in mitochondrial K(ATP) channels and play important roles in cardioprotection. PMID:17438353

  2. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  3. Quaternary structure of K[ssubscript ATP] channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering

    SciTech Connect

    Park, Sungjo; Terzic, Andre

    2010-05-25

    Heterodimeric nucleotide binding domains NBD1/NBD2 distinguish the ATP-binding cassette protein SUR2A, a recognized regulatory subunit of cardiac ATP-sensitive K{sup +} (K{sub ATP}) channels. The tandem function of these core domains ensures metabolism-dependent gating of the Kir6.2 channel pore, yet their structural arrangement has not been resolved. Here, purified monodisperse and interference-free recombinant particles were subjected to synchrotron radiation small-angle X-ray scattering (SAXS) in solution. Intensity function analysis of SAXS profiles resolved NBD1 and NBD2 as octamers. Implemented by ab initio simulated annealing, shape determination prioritized an oblong envelope wrapping NBD1 and NBD2 with respective dimensions of 168 x 80 x 37 {angstrom}{sup 3} and 175 x 81 x 37 {angstrom}{sup 3} based on symmetry constraints, validated by atomic force microscopy. Docking crystal structure homology models against SAXS data reconstructed the NBD ensemble surrounding an inner cleft suitable for Kir6.2 insertion. Human heart disease-associated mutations introduced in silico verified the criticality of the mapped protein-protein interface. The resolved quaternary structure delineates thereby a macromolecular arrangement of K{sub ATP} channel SUR2A regulatory domains.

  4. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study.

    PubMed

    Proks, Peter; de Wet, Heidi; Ashcroft, Frances M

    2014-11-01

    Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K(+) (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas. PMID:25348414

  5. Random assembly of SUR subunits in K(ATP) channel complexes.

    PubMed

    Cheng, Wayland W L; Tong, Ailing; Flagg, Thomas P; Nichols, Colin G

    2008-01-01

    Sulfonylurea receptors (SURs) associate with Kir6.x subunits to form tetradimeric K(ATP) channel complexes. SUR1 and SUR2 confer differential channel sensitivities to nucleotides and pharmacological agents, and are expressed in specific, but overlapping, tissues. This raises the question of whether these different SUR subtypes can assemble in the same channel complex and generate channels with hybrid properties. To test this, we engineered dimeric constructs of wild type or N160D mutant Kir6.2 fused to SUR1 or SUR2A. Dimeric fusions formed functional, ATP-sensitive, channels. Coexpression of weakly rectifying SUR1-Kir6.2 (WTF-1) with strongly rectifying SUR1-Kir6.2[N160D] (NDF-1) in COSm6 cells results in mixed subunit complexes that exhibit unique rectification properties. Coexpression of NDF-1 and SUR2A-Kir6.2 (WTF-2) results in similar complex rectification, reflecting the presence of SUR1- and SUR2A-containing dimers in the same channel. The data demonstrate clearly that SUR1 and SUR2A subunits associate randomly, and suggest that heteromeric channels will occur in native tissues. PMID:18690055

  6. Upregulation of cardioprotective SUR2A by sub-hypoxic drop in oxygen.

    PubMed

    Mohammed Abdul, Khaja Shameem; Jovanović, Sofija; Sukhodub, Andriy; Du, Qingyou; Jovanović, Aleksandar

    2014-11-01

    The effects of hypoxia on gene expression have been vigorously studied, but possible effects of small changes in oxygen tension have never been addressed. SUR2A is an atypical ABC protein serving as a regulatory subunit of sarcolemmal ATP-sensitive K(+) (KATP) channels. Up-regulation of SUR2A is associated with cardioprotection and improved physical endurance. Here, we have found that a 24h-long exposure to slightly decreased ambient fractional concentration of oxygen (20% oxygen), which is an equivalent to oxygen tension at 350m above sea level, significantly increased levels of SUR2A in the heart despite that this drop of oxygen did not affect levels of O2, CO2 and hematocrit in the blood or myocardial levels of ATP, lactate and NAD/NADH/NAD(+). Hearts from mice exposed to 20% oxygen were significantly more resistant to ischaemia-reperfusion when compared to control ones. Decrease in fractional oxygen concentration of just 0.9% was associated with phosphorylation of ERK1/2, but not Akt, which was essential for up-regulation of SUR2A. These findings indicate that a small drop in oxygen tension up-regulates SUR2A in the heart by activating ERK signaling pathway. This is the first report to suggest that a minimal change in oxygen tension could have a profound signaling effect. PMID:25064694

  7. Mild hypoxia in vivo regulates cardioprotective SUR2A: A role for Akt and LDH.

    PubMed

    Mohammed Abdul, Khaja Shameem; Jovanović, Sofija; Du, Qingyou; Sukhodub, Andriy; Jovanović, Aleksandar

    2015-05-01

    High-altitude residents have lower mortality rates for ischaemic heart disease and this is ascribed to cardiac gene remodelling by chronic hypoxia. SUR2A is a cardioprotective ABC protein serving as a subunit of sarcolemmal ATP-sensitive K(+) channels. The purpose of this study was to determine whether SUR2A is regulated by mild hypoxia in vivo and to elucidate the underlying mechanism. Mice were exposed to either 21% (control) or 18% (mild hypoxia) oxygen for 24h. Exposure to 18% oxygen did not affect partial pressure of O(2) (PO(2)) and CO(2) (PCO(2)) in the blood, haematocrit or level of ATP in the heart. However, hypoxia increased myocardial lactate dehydrogenase (LDH) and lactate as well as NAD(+) without affecting total NAD. SUR2A levels were significantly increased as well as myocardial resistance to ischaemia-reperfusion. Exposure to 18% oxygen did not phosphorylate extracellular signal regulated kinases (ERK1/2) or AMP activated protein kinase (AMPK), but it phosphorylated protein kinase B (Akt). An inhibitor of phosphoinositide 3-kinases (PI3K), LY294002 (0.2mg/mouse), abolished all observed effects of hypoxia. LDH inhibitors, galloflavin (50 μM) and sodium oxamate (80 mM) significantly decreased levels of SUR2A in heart embryonic H9c2 cells, while inactive mutant LDH form, gly193-M-LDH increased cellular sensitivity towards stress induced by 2,4-dinitrophenol (10mM). Treatment of H9c2 cells with sodium lactate (30 mM) increased intracellular lactate, but did not affect LDH activity or SUR2A levels. We conclude that PI3K/Akt signalling pathway and LDH play a crucial role in increase of cardiac SUR2A induced by in vivo exposure to 18% oxygen. PMID:25576887

  8. Na Channel β Subunits: Overachievers of the Ion Channel Family.

    PubMed

    Brackenbury, William J; Isom, Lori L

    2011-01-01

    Voltage-gated Na(+) channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na(+) current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington's disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy. PMID:22007171

  9. Staggering of subunits in NMDAR channels.

    PubMed Central

    Sobolevsky, Alexander I; Rooney, LeeAnn; Wollmuth, Lonnie P

    2002-01-01

    Functional N-methyl-D-aspartate receptors (NMDARs) are heteromultimers formed by NR1 and NR2 subunits. The M3 segment, as contributed by NR1, forms the core of the extracellular vestibule, including binding sites for channel blockers, and represents a critical molecular link between ligand binding and channel opening. Taking advantage of the substituted cysteine accessibility method along with channel block and multivalent coordination, we studied the contribution of the M3 segment in NR2C to the extracellular vestibule. We find that the M3 segment in NR2C, like that in NR1, contributes to the core of the extracellular vestibule. However, the M3 segments from the two subunits are staggered relative to each other in the vertical axis of the channel. Compared to NR1, homologous positions in NR2C, including those in the highly conserved SYTANLAAF motif, are located about four amino acids more externally. The staggering of subunits may represent a key structural feature underlying the distinct functional properties of NMDARs. PMID:12496098

  10. Modulation of the skeletal muscle sodium channel alpha-subunit by the beta 1-subunit.

    PubMed

    Wallner, M; Weigl, L; Meera, P; Lotan, I

    1993-12-28

    Co-expression of cloned sodium channel beta 1-subunit with the rat skeletal muscle-subunit (alpha microI) accelerated the macroscopic current decay, enhanced the current amplitude, shifted the steady state inactivation curve to more negative potentials and decreased the time required for complete recovery from inactivation. Sodium channels expressed from skeletal muscle mRNA showed a similar behaviour to that observed from alpha microI/beta 1, indicating that beta 1 restores 'physiological' behaviour. Northern blot analysis revealed that the Na+ channel beta 1-subunit is present in high abundance (about 0.1%) in rat heart, brain and skeletal muscle, and the hybridization with untranslated region of the 'brain' beta 1 cDNA to skeletal muscle and heart mRNA indicated that the different Na+ channel alpha-subunits in brain, skeletal muscle and heart may share a common beta 1-subunit. PMID:8282123

  11. Sodium channel β subunits: emerging targets in channelopathies

    PubMed Central

    O’Malley, Heather A.; Isom, Lori L.

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Originally called “auxiliary,” we now know that β subunit proteins are multifunctional signaling molecules that play roles in both excitable and non-excitable cell types, and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. While VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  12. Sodium channel β subunits: emerging targets in channelopathies.

    PubMed

    O'Malley, Heather A; Isom, Lori L

    2015-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Although β subunits were originally termed auxiliary, we now know that they are multifunctional signaling molecules that play roles in both excitable and nonexcitable cell types and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. Although VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  13. Thermosensitive TRPV Channel Subunits Coassemble into Heteromeric Channels with Intermediate Conductance and Gating Properties

    PubMed Central

    Cheng, Wei; Yang, Fan; Takanishi, Christina L.; Zheng, Jie

    2007-01-01

    Heat-sensitive transient receptor potential (TRP) channels (TRPV1–4) form the major cellular sensors for detecting temperature increases. Homomeric channels formed by thermosensitive TRPV subunits exhibit distinct temperature thresholds. While these subunits do share significant sequence similarity, whether they can coassemble into heteromeric channels has been controversial. In the present study we investigated the coassembly of TRPV subunits using both spectroscopy-based fluorescence resonance energy transfer (FRET) and single-channel recordings. Fluorescent protein–tagged TRPV subunits were coexpressed in HEK 293 cells; FRET between different subunits was measured as an indication of the formation of heteromeric channels. We observed strong FRET when fluorescence signals were collected selectively from the plasma membrane using a “spectra FRET” approach but much weaker or no FRET from intracellular fluorescence. In addition, no FRET was detected when TRPV subunits were coexpressed with members of the TRPM subfamily or CLC-0 chloride channel subunits. These results indicate that a substantial fraction of TRP channels in the plasma membrane of cotransfected cells were heteromeric. Single-channel recordings confirmed the existence of multiple heteromeric channel forms. Interestingly, heteromeric TRPV channels exhibit intermediate conductance levels and gating kinetic properties. As these subunits coexpress both in sensory neurons and in other tissues, including heart and brain, coassembly between TRPV subunits may contribute to greater functional diversity. PMID:17325193

  14. A new look at sodium channel β subunits.

    PubMed

    Namadurai, Sivakumar; Yereddi, Nikitha R; Cusdin, Fiona S; Huang, Christopher L H; Chirgadze, Dimitri Y; Jackson, Antony P

    2015-01-01

    Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits. PMID:25567098

  15. A new look at sodium channel β subunits

    PubMed Central

    Namadurai, Sivakumar; Yereddi, Nikitha R.; Cusdin, Fiona S.; Huang, Christopher L.-H.; Chirgadze, Dimitri Y.; Jackson, Antony P.

    2015-01-01

    Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits. PMID:25567098

  16. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  17. Kir3 channel ontogeny - the role of Gβγ subunits in channel assembly and trafficking.

    PubMed

    Zylbergold, Peter; Sleno, Rory; Khan, Shahriar M; Jacobi, Ashley M; Belhke, Mark A; Hébert, Terence E

    2014-01-01

    The role of Gβγ subunits in Kir3 channel gating is well characterized. Here, we have studied the role of Gβγ dimers during their initial contact with Kir3 channels, prior to their insertion into the plasma membrane. We show that distinct Gβγ subunits play an important role in orchestrating and fine-tuning parts of the Kir3 channel life cycle. Gβ1γ2, apart from its role in channel opening that it shares with other Gβγ subunit combinations, may play a unique role in protecting maturing channels from degradation as they transit to the cell surface. Taken together, our data suggest that Gβ1γ2 prolongs the lifetime of the Kir3.1/Kir3.2 heterotetramer, although further studies would be required to shed more light on these early Gβγ effects on Kir3 maturation and trafficking. PMID:24782712

  18. The action of calcium channel blockers on recombinant L-type calcium channel α1-subunits

    PubMed Central

    Morel, Nicole; Buryi, Vitali; Feron, Olivier; Gomez, Jean-Pierre; Christen, Marie-Odile; Godfraind, Théophile

    1998-01-01

    CHO cells expressing the α1C-a subunit (cardiac isoform) and the α1C-b subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for α1C isoforms.Inward current evoked by the transfected α1 subunit was recorded by the patch-clamp technique in the whole-cell configuration.Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of α1C-b-subunit than of α1C-a-subunit. This difference was more marked at a holding potential of −100 mV than at −50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms.Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on α1C-a than on α1C-b subunit at Vh of −100 mV and −50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages.[3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the α1C-b than for the α1C-a subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the α1C-a subunit than for the α1C-b subunit.These results indicate marked differences among Ca2+ channel blockers in their selectivity for the α1C-a and α1C-b subunits of the Ca2+ channel. PMID:9846638

  19. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    PubMed

    Morel, N; Buryi, V; Feron, O; Gomez, J P; Christen, M O; Godfraind, T

    1998-11-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of alpha(1C-)b-subunit than of alpha(1C-a)-subunit. This difference was more marked at a holding potential of -100 mV than at -50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms. 4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on alpha(1C-a) than on alpha(1C-b) subunit at Vh of -100 mV and -50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages. 5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the alpha(1C-b) than for the alpha(1C-a) subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the alpha(1C-a) subunit than for the alpha(1C-b) subunit. 6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the alpha(1C-a) and alpha(1C-b) subunits of the Ca2+ channel. PMID:9846638

  20. Individual IKs channels at the surface of mammalian cells contain two KCNE1 accessory subunits

    PubMed Central

    Plant, Leigh D.; Xiong, Dazhi; Dai, Hui; Goldstein, Steve A. N.

    2014-01-01

    KCNE1 (E1) β-subunits assemble with KCNQ1 (Q1) voltage-gated K+ channel α-subunits to form IKslow (IKs) channels in the heart and ear. The number of E1 subunits in IKs channels has been an issue of ongoing debate. Here, we use single-molecule spectroscopy to demonstrate that surface IKs channels with human subunits contain two E1 and four Q1 subunits. This stoichiometry does not vary. Thus, IKs channels in cells with elevated levels of E1 carry no more than two E1 subunits. Cells with low levels of E1 produce IKs channels with two E1 subunits and Q1 channels with no E1 subunits—channels with one E1 do not appear to form or are restricted from surface expression. The plethora of models of cardiac function, transgenic animals, and drug screens based on variable E1 stoichiometry do not reflect physiology. PMID:24591645

  1. Colocalization of HCN Channel Subunits in Rat Retinal Ganglion Cells

    PubMed Central

    Stradleigh, Tyler W.; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Greenberg, Kenneth P.; Krempely, Kalen S.; Ishida, Andrew T.

    2011-01-01

    The current-passing pore of mammalian hyperpolarization-activated, cyclic nucleotide-gated ("HCN") channels is formed by subunit isoforms denoted HCN1-4. In various brain areas, antibodies directed against multiple isoforms bind to single neurons and the current ("Ih") passed during hyperpolarizations differs from that of heterologously expressed homomeric channels. By contrast, retinal rod, cone, and bipolar cells appear to use homomeric HCN channels. Here, we assess the generality of this pattern by examining HCN1 and HCN4 immunoreactivity in rat retinal ganglion cells, measuring Ih in dissociated cells, and testing whether HCN1 and HCN4 protein coimmunoprecipitate. Nearly half of the ganglion cells in whole-mounted retinae bound antibodies against both isoforms. Consistent with colocalization and physical association, 8-bromo-cAMP shifted the voltage-sensitivity of Ih less than that of HCN4 channels and more than that of HCN1 channels, and HCN1 coimmunoprecipitated with HCN4 from membrane fraction proteins. Lastly, the immunopositive somata ranged in diameter from the smallest to the largest in rat retina, the dendrites of immunopositive cells arborized at various levels of the inner plexiform layer and over fields of different diameters, and Ih activated with similar kinetics and proportions of fast and slow components in small, medium, and large somata. These results show that different HCN subunits colocalize in single retinal ganglion cells, identify a subunit that can reconcile native Ih properties with the previously reported presence of HCN4 in these cells, and indicate that Ih is biophysically similar in morphologically diverse retinal ganglion cells and differs from Ih in rods, cones, and bipolar cells. PMID:21456027

  2. Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits

    PubMed Central

    Li, Q.; Yan, J.

    2016-01-01

    The large-conductance, Ca2+- and voltage-activated K+ (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1–β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings. PMID:27238261

  3. Differential mechanisms of Cantú syndrome–associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel

    PubMed Central

    Cooper, Paige E.; Sala-Rabanal, Monica; Lee, Sun Joo

    2015-01-01

    Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium (86Rb+) efflux assays, we show that KATP channels formed with P429L, A475V, or C1039Y mutants enhance KATP activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive KATP channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation. PMID:26621776

  4. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel.

    PubMed

    Cooper, Paige E; Sala-Rabanal, Monica; Lee, Sun Joo; Nichols, Colin G

    2015-12-01

    Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium ((86)Rb(+)) efflux assays, we show that K(ATP) channels formed with P429L, A475V, or C1039Y mutants enhance K(ATP) activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive K(ATP) channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation. PMID:26621776

  5. Deciphering the function of the CNGB1b subunit in olfactory CNG channels

    PubMed Central

    Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus

    2016-01-01

    Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron. PMID:27405959

  6. Deciphering the function of the CNGB1b subunit in olfactory CNG channels.

    PubMed

    Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus

    2016-01-01

    Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron. PMID:27405959

  7. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes.

    PubMed

    Tanaka, Y; Meera, P; Song, M; Knaus, H G; Toro, L

    1997-08-01

    1. Human large-conductance voltage- and calcium-sensitive K+ (maxi KCa) channels are composed of at least two subunits: the pore-forming subunit, alpha, and a modulatory subunit, beta. Expression of the beta subunit induces dramatic changes in alpha subunit function. It increases the apparent Ca2+ sensitivity and it allows dehydrosoyasaponin I (DHS-I) to upregulate the channel. 2. The functional coupling of maxi KCa channel alpha and beta subunits in freshly dissociated human coronary smooth muscle cells was assessed. To distinguish maxi KCa currents modulated by the beta subunit, we examined (a) their apparent Ca2+ sensitivity, as judged from the voltage necessary to half-activate the channel (V1/2), and (b) their activation by DHS-I. 3. In patches with unitary currents, the majority of channels were half-activated near -85 mV at 18 microM Ca2+, a value similar to that obtained when the human KCa channel alpha (HSLO) and beta (HKV,Ca beta) subunits are co-expressed. A small number of channels half-activated around 0 mV, suggesting the activity of the alpha subunit alone. 4. The properties of macroscopic currents were consistent with the view that most pore-forming alpha subunits were coupled to beta subunits, since the majority of currents had values for V1/2 near to -90 mV, and currents were potentiated by DHS-I. 5. We conclude that in human coronary artery smooth muscle cells, most maxi KCa channels are composed of alpha and beta subunits. The higher Ca2+ sensitivity of maxi KCa channels, resulting from their coupling to beta subunits, suggests an important role of this channel in regulating coronary tone. Their massive activation by micromolar Ca2+ concentrations may lead to a large hyperpolarization causing profound changes in coronary blood flow and cardiac function. PMID:9279807

  8. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes.

    PubMed Central

    Tanaka, Y; Meera, P; Song, M; Knaus, H G; Toro, L

    1997-01-01

    1. Human large-conductance voltage- and calcium-sensitive K+ (maxi KCa) channels are composed of at least two subunits: the pore-forming subunit, alpha, and a modulatory subunit, beta. Expression of the beta subunit induces dramatic changes in alpha subunit function. It increases the apparent Ca2+ sensitivity and it allows dehydrosoyasaponin I (DHS-I) to upregulate the channel. 2. The functional coupling of maxi KCa channel alpha and beta subunits in freshly dissociated human coronary smooth muscle cells was assessed. To distinguish maxi KCa currents modulated by the beta subunit, we examined (a) their apparent Ca2+ sensitivity, as judged from the voltage necessary to half-activate the channel (V1/2), and (b) their activation by DHS-I. 3. In patches with unitary currents, the majority of channels were half-activated near -85 mV at 18 microM Ca2+, a value similar to that obtained when the human KCa channel alpha (HSLO) and beta (HKV,Ca beta) subunits are co-expressed. A small number of channels half-activated around 0 mV, suggesting the activity of the alpha subunit alone. 4. The properties of macroscopic currents were consistent with the view that most pore-forming alpha subunits were coupled to beta subunits, since the majority of currents had values for V1/2 near to -90 mV, and currents were potentiated by DHS-I. 5. We conclude that in human coronary artery smooth muscle cells, most maxi KCa channels are composed of alpha and beta subunits. The higher Ca2+ sensitivity of maxi KCa channels, resulting from their coupling to beta subunits, suggests an important role of this channel in regulating coronary tone. Their massive activation by micromolar Ca2+ concentrations may lead to a large hyperpolarization causing profound changes in coronary blood flow and cardiac function. Images Figure 1 PMID:9279807

  9. On the multiple roles of the voltage gated sodium channel β1 subunit in genetic diseases

    PubMed Central

    Baroni, Debora; Moran, Oscar

    2015-01-01

    Voltage-gated sodium channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are composed of a pore-forming α-subunit and associated β-subunits. The β1-subunit was the first accessory subunit to be cloned. It can be important for controlling cell excitability and modulating multiple aspects of sodium channel physiology. Mutations of β1 are implicated in a wide variety of inherited pathologies, including epilepsy and cardiac conduction diseases. This review summarizes β1-subunit related channelopathies pointing out the current knowledge concerning their genetic background and their underlying molecular mechanisms. PMID:26042039

  10. Modulation of voltage-gated K+ channels by the sodium channel β1 subunit

    PubMed Central

    Nguyen, Hai M.; Miyazaki, Haruko; Hoshi, Naoto; Smith, Brian J.; Nukina, Nobuyuki; Goldin, Alan L.; Chandy, K. George

    2012-01-01

    Voltage-gated sodium (NaV) and potassium (KV) channels are critical components of neuronal action potential generation and propagation. Here, we report that NaVβ1 encoded by SCN1b, an integral subunit of NaV channels, coassembles with and modulates the biophysical properties of KV1 and KV7 channels, but not KV3 channels, in an isoform-specific manner. Distinct domains of NaVβ1 are involved in modulation of the different KV channels. Studies with channel chimeras demonstrate that NaVβ1-mediated changes in activation kinetics and voltage dependence of activation require interaction of NaVβ1 with the channel’s voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel’s pore domain. A molecular model based on docking studies shows NaVβ1 lying in the crevice between the voltage-sensing and pore domains of KV channels, making significant contacts with the S1 and S5 segments. Cross-modulation of NaV and KV channels by NaVβ1 may promote diversity and flexibility in the overall control of cellular excitability and signaling. PMID:23090990

  11. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  12. Crystal Structure and Molecular Imaging of the Nav Channel β3 Subunit Indicates a Trimeric Assembly*

    PubMed Central

    Namadurai, Sivakumar; Balasuriya, Dilshan; Rajappa, Rajit; Wiemhöfer, Martin; Stott, Katherine; Klingauf, Jurgen; Edwardson, J. Michael; Chirgadze, Dimitri Y.; Jackson, Antony P.

    2014-01-01

    The vertebrate sodium (Nav) channel is composed of an ion-conducting α subunit and associated β subunits. Here, we report the crystal structure of the human β3 subunit immunoglobulin (Ig) domain, a functionally important component of Nav channels in neurons and cardiomyocytes. Surprisingly, we found that the β3 subunit Ig domain assembles as a trimer in the crystal asymmetric unit. Analytical ultracentrifugation confirmed the presence of Ig domain monomers, dimers, and trimers in free solution, and atomic force microscopy imaging also detected full-length β3 subunit monomers, dimers, and trimers. Mutation of a cysteine residue critical for maintaining the trimer interface destabilized both dimers and trimers. Using fluorescence photoactivated localization microscopy, we detected full-length β3 subunit trimers on the plasma membrane of transfected HEK293 cells. We further show that β3 subunits can bind to more than one site on the Nav 1.5 α subunit and induce the formation of α subunit oligomers, including trimers. Our results suggest a new and unexpected role for the β3 subunits in Nav channel cross-linking and provide new structural insights into some pathological Nav channel mutations. PMID:24567321

  13. Generalized epilepsy with febrile seizures plus-associated sodium channel beta1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function.

    PubMed

    Xu, R; Thomas, E A; Gazina, E V; Richards, K L; Quick, M; Wallace, R H; Harkin, L A; Heron, S E; Berkovic, S F; Scheffer, I E; Mulley, J C; Petrou, S

    2007-08-10

    Two novel mutations (R85C and R85H) on the extracellular immunoglobulin-like domain of the sodium channel beta1 subunit have been identified in individuals from two families with generalized epilepsy with febrile seizures plus (GEFS+). The functional consequences of these two mutations were determined by co-expression of the human brain NaV1.2 alpha subunit with wild type or mutant beta1 subunits in human embryonic kidney (HEK)-293T cells. Patch clamp studies confirmed the regulatory role of beta1 in that relative to NaV1.2 alone the NaV1.2+beta1 currents had right-shifted voltage dependence of activation, fast and slow inactivation and reduced use dependence. In addition, the NaV1.2+beta1 current entered fast inactivation slightly faster than NaV1.2 channels alone. The beta1(R85C) subunit appears to be a complete loss of function in that none of the modulating effects of the wild type beta1 were observed when it was co-expressed with NaV1.2. Interestingly, the beta1(R85H) subunit also failed to modulate fast kinetics, however, it shifted the voltage dependence of steady state slow inactivation in the same way as the wild type beta1 subunit. Immunohistochemical studies revealed cell surface expression of the wild type beta1 subunit and undetectable levels of cell surface expression for both mutants. The functional studies suggest association of the beta1(R85H) subunit with the alpha subunit where its influence is limited to modulating steady state slow inactivation. In summary, the mutant beta1 subunits essentially fail to modulate alpha subunits which could increase neuronal excitability and underlie GEFS+ pathogenesis. PMID:17629415

  14. Voltage-gated Na+ channels: Potential for β subunits as therapeutic targets

    PubMed Central

    Brackenbury, William J.; Isom, Lori L.

    2012-01-01

    Background Voltage gated Na+ channels (VGSCs) contain a pore-forming α subunit and one or more β subunits. VGSCs are involved in a wide variety of pathophysiologies, including epilepsy, cardiac arrhythmia, Multiple Sclerosis, periodic paralysis, migraine, neuropathic and inflammatory pain, Huntington’s disease, and cancer. Increasing evidence implicates the β subunits as key players in these disorders. Objective The purpose of this report is to review the recent literature describing the multifunctional roles of VGSC β subunits in the context of their role(s) in disease. Methods An extensive review of the literature on β subunits was performed. Results/conclusion β subunits are multifunctional. As components of VGSC complexes, β subunits mediate signaling processes regulating electrical excitability, adhesion, migration, pathfinding, and transcription. β subunits may prove useful in disease diagnosis and therapy. PMID:18694383

  15. The dipole moment of membrane proteins: potassium channel protein and beta-subunit.

    PubMed

    Takashima, S

    2001-12-25

    The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins. PMID:11804731

  16. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits.

    PubMed

    Winters, J J; Isom, L L

    2016-01-01

    Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development. PMID:27586289

  17. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    PubMed Central

    Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693

  18. Identification of an intra-molecular disulfide bond in the sodium channel β1-subunit.

    PubMed

    Barbieri, Raffaella; Baroni, Debora; Moran, Oscar

    2012-04-01

    The sodium channel β1 subunit is non-covalently associated with the pore-forming α-subunits, and has been proposed to act as a modulator of channel activity, regulator of channel cell surface expression and cell adhesion molecule. Its importance is evident since mutations of the β1 subunit cause neurologic and cardiovascular disorders. The first described β1 subunit mutation is the C121W, that is related to generalized epilepsy with febrile seizures plus (GEFS+), a childhood genetic epilepsy syndrome. This mutation changed a conserved cysteine residue in position 121 into a tryptophan, putatively disrupting a disulfide bridge that should normally maintain the β1 extracellular immunoglobulin-like fold. Using the 2-D-diagonal-SDS-PAGE technique, we demonstrated the existence of this putative disulfide bridge in the Ig-like extracellular domain of the β1 subunit and its disruption in the epileptogenic C121W mutant. PMID:22425777

  19. Separation of heteromeric potassium channel Kcv towards probing subunit composition-regulated ion permeation and gating

    PubMed Central

    Tan, Qiulin; Shim, Ji Wook; Gu, Li-Qun

    2010-01-01

    The chlorella virus-encoded Kcv can form a homo-tetrameric potassium channel in lipid membranes. This miniature peptide can be synthesized in vitro, and the tetramer purified from the SDS polyacrylamide gel retains the K+ channel functionality. Combining this capability with the mass-tagging method, we propose a simple, straightforward approach that can generically manipulate individual subunits in the tetramer, thereby enabling the detection of contribution from individual subunits to the channel functions. Using this approach, we showed that the structural change from only one subunit in the selectivity filter is sufficient to cause permanent channel inactivation (“all-or-none” mechanism), whereas the mutation near the extracellular entrance additively modifies the ion permeation with the number of mutant subunits in the tetramer (“additive” mechanism). PMID:20303961

  20. Modulatory mechanisms and multiple functions of somatodendritic A-type K+ channel auxiliary subunits

    PubMed Central

    Jerng, Henry H.; Pfaffinger, Paul J.

    2014-01-01

    Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders. PMID:24723849

  1. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels.

    PubMed

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2014-10-15

    At depolarized membrane potentials, the conductance of some voltage-gated K(+) channels is reduced by C-type inactivation. This gating process is voltage independent in Kv1 and involves a conformational change in the selectivity filter that is mediated by cooperative subunit interactions. C-type inactivation in hERG1 K(+) channels is voltage-dependent, much faster in onset and greatly attenuates currents at positive potentials. Here we investigate the potential role of subunit interactions in C-type inactivation of hERG1 channels. Point mutations in hERG1 known to eliminate (G628C/S631C), inhibit (S620T or S631A) or enhance (T618A or M645C) C-type inactivation were introduced into subunits that were combined with wild-type subunits to form concatenated tetrameric channels with defined subunit composition and stoichiometry. Channels were heterologously expressed in Xenopus oocytes and the two-microelectrode voltage clamp was used to measure the kinetics and steady-state properties of inactivation of whole cell currents. The effect of S631A or T618A mutations on inactivation was a graded function of the number of mutant subunits within a concatenated tetramer as predicted by a sequential model of cooperative subunit interactions, whereas M645C subunits increased the rate of inactivation of concatemers, as predicted for subunits that act independently of one another. For mutations located within the inactivation gate proper (S620T or G628C/S631C), the presence of a single subunit in a concatenated hERG1 tetramer disrupted gating to the same extent as that observed for mutant homotetramers. Together, our findings indicate that the final step of C-type inactivation of hERG1 channels involves a concerted, all-or-none cooperative interaction between all four subunits, and that probing the mechanisms of channel gating with concatenated heterotypic channels should be interpreted with care, as conclusions regarding the nature of subunit interactions may depend on the

  2. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels

    PubMed Central

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2014-01-01

    At depolarized membrane potentials, the conductance of some voltage-gated K+ channels is reduced by C-type inactivation. This gating process is voltage independent in Kv1 and involves a conformational change in the selectivity filter that is mediated by cooperative subunit interactions. C-type inactivation in hERG1 K+ channels is voltage-dependent, much faster in onset and greatly attenuates currents at positive potentials. Here we investigate the potential role of subunit interactions in C-type inactivation of hERG1 channels. Point mutations in hERG1 known to eliminate (G628C/S631C), inhibit (S620T or S631A) or enhance (T618A or M645C) C-type inactivation were introduced into subunits that were combined with wild-type subunits to form concatenated tetrameric channels with defined subunit composition and stoichiometry. Channels were heterologously expressed in Xenopus oocytes and the two-microelectrode voltage clamp was used to measure the kinetics and steady-state properties of inactivation of whole cell currents. The effect of S631A or T618A mutations on inactivation was a graded function of the number of mutant subunits within a concatenated tetramer as predicted by a sequential model of cooperative subunit interactions, whereas M645C subunits increased the rate of inactivation of concatemers, as predicted for subunits that act independently of one another. For mutations located within the inactivation gate proper (S620T or G628C/S631C), the presence of a single subunit in a concatenated hERG1 tetramer disrupted gating to the same extent as that observed for mutant homotetramers. Together, our findings indicate that the final step of C-type inactivation of hERG1 channels involves a concerted, all-or-none cooperative interaction between all four subunits, and that probing the mechanisms of channel gating with concatenated heterotypic channels should be interpreted with care, as conclusions regarding the nature of subunit interactions may depend on the specific

  3. Three Homologous Subunits Form a High Affinity Peptide-gated Ion Channel in Hydra*

    PubMed Central

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D.; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J. P.; Holstein, Thomas W.; Gründer, Stefan

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na+ channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na+ channels (HyNaCs) 2–4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na+ channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na+ selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission. PMID:20159980

  4. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans.

    PubMed

    Putrenko, Igor; Zakikhani, Mahvash; Dent, Joseph A

    2005-02-25

    The genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists. These channels are blocked by d-tubocurarine but not by alpha-bungarotoxin. We provide evidence that two additional subunits, ACC-3 and ACC-4, interact with ACC-1 and ACC-2. The acetylcholine-binding domain of these channels appears to have diverged substantially from the acetylcholine-binding domain of nicotinic receptors. PMID:15579462

  5. Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating

    NASA Astrophysics Data System (ADS)

    Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J.

    2015-09-01

    High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca2+-and-voltage activated potassium channel (BK) is well-suited to discern nuanced differences in regulation arising from combinations of subunits. Here we examine whether assembly of two different classes of regulatory proteins, β and γ, in BK channels is exclusive or independent. Our results show that both γ1 and up to four β2-subunits can coexist in the same functional BK complex, with the gating shift caused by β2-subunits largely additive with that produced by the γ1-subunit(s). The multiplicity of β:γ combinations that can participate in a BK complex therefore allow a range of BK channels with distinct functional properties tuned by the specific stoichiometry of the contributing subunits.

  6. L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Moreno, Cristian; Itfinca, Mircea; Altier, Christophe; Armisén, Ricardo; Stutzin, Andres; Zamponi, Gerald W; Varela, Diego

    2011-01-01

    Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. PMID:21525790

  7. Conopeptide Vt3.1 Preferentially Inhibits BK Potassium Channels Containing β4 Subunits via Electrostatic Interactions*

    PubMed Central

    Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin

    2014-01-01

    BK channel β subunits (β1–β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology. PMID:24398688

  8. Developmentally-regulated sodium channel subunits are differentially sensitive to {alpha}-cyano containing pyrethroids

    SciTech Connect

    Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.; Shafer, Timothy J.

    2008-09-15

    Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) and {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1} channels. These

  9. Multiple pathways regulate the expression of genes encoding sodium channel subunits in developing neurons.

    PubMed

    Giraud, P; Alcaraz, G; Jullien, F; Sampo, B; Jover, E; Couraud, F; Dargent, B

    1998-05-01

    In primary cultures of fetal neurons, activation of sodium channels with either alpha-scorpion toxin or veratridine caused a rapid and persistent decrease of mRNAs encoding beta2 and different sodium channel alpha mRNAs. In contrast, beta1 subunit mRNA was up-regulated by sodium channel activation. This phenomenon was calcium-independent. The effects of activating toxins on mRNAs of different sodium channel subunits were mimicked by membrane depolarization. An important aspect of this study was the demonstration that cAMP also caused rapid reduction of alphaI, alphaII and alphaIII mRNA levels whereas beta1 subunit mRNA was up regulated and beta2 subunit mRNA was not affected. Sodium channel activation by veratridine was shown to increase cAMP immunoreactivity in cultured neurons, but alphaII mRNA down-regulation induced by activating toxins was not reversed by protein kinase A antagonists, indicating that this phenomenon is not protein kinase A dependent. The effects of cAMP and membrane depolarisation were antagonized by the PKA inhibitor H89. These results are indicative of the existence of multiple and independent regulatory pathways modulating the expression of sodium channel genes in the developing central nervous system. PMID:9602139

  10. Formation of novel TRPC channels by complex subunit interactions in embryonic brain.

    PubMed

    Strübing, Carsten; Krapivinsky, Grigory; Krapivinsky, Luba; Clapham, David E

    2003-10-01

    Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely undefined. We performed a systematic biochemical study of TRPC interactions in mammalian brain and identified previously unrecognized channel heteromers composed of TRPC1, TRPC4, or TRPC5 and the diacylglycerol-activated TRPC3 or TRPC6 subunits. The novel TRPC heteromers were found exclusively in embryonic brain. In heterologous systems, we demonstrated that assembly of these novel heteromers required the combination of TRPC1 plus TRPC4 or TRPC5 subunits along with diacylglycerol-sensitive subunits in the channel complexes. Functional interaction of the TRPC subunits was verified using a dominant negative TRPC5 mutant (TRPC5DN). Co-expression of TRPC5DN suppressed currents through TRPC5- and TRPC4-containing complexes; TRPC3-associated currents were unaffected by TRPC5DN unless TRPC1 was also co-expressed. This complex assembly mechanism increases the diversity of TRPC channels in mammalian brain and may generate novel heteromers that have specific roles in the developing brain. PMID:12857742

  11. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  12. Interaction of KCNE subunits with the KCNQ1 K+ channel pore

    PubMed Central

    Panaghie, Gianina; Tai, Kwok-Keung; Abbott, Geoffrey W

    2006-01-01

    KCNQ1 α subunits form functionally distinct potassium channels by coassembling with KCNE ancillary subunits MinK and MiRP2. MinK-KCNQ1 channels generate the slowly activating, voltage-dependent cardiac IKs current. MiRP2-KCNQ1 channels form a constitutively active current in the colon. The structural basis for these contrasting channel properties, and the mechanisms of α subunit modulation by KCNE subunits, are not fully understood. Here, scanning mutagenesis located a tryptophan-tolerant region at positions 338–340 within the KCNQ1 pore-lining S6 domain, suggesting an exposed region possibly amenable to interaction with transmembrane ancillary subunits. This hypothesis was tested using concomitant mutagenesis in KCNQ1 and in the membrane-localized ‘activation triplet’ regions of MinK and MiRP2 to identify pairs of residues that interact to control KCNQ1 activation. Three pairs of mutations exerted dramatic effects, ablating channel function or either removing or restoring control of KCNQ1 activation. The results place KCNE subunits close to the KCNQ1 pore, indicating interaction of MiRP2-72 with KCNQ1-338; and MinK-59,58 with KCNQ1-339, 340. These data are consistent either with perturbation of the S6 domain by MinK or MiRP2, dissimilar positioning of MinK and MiRP2 within the channel complex, or both. Further, the results suggest specifically that two of the interactions, MiRP2-72/KCNQ1-338 and MinK-58/KCNQ1-340, are required for the contrasting gating effects of MinK and MiRP2. PMID:16308347

  13. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-05-15

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102

  14. Effect of Cavβ Subunits on Structural Organization of Cav1.2 Calcium Channels

    PubMed Central

    Duong, Son Q.; Thomas, Sam; Harry, Jo Beth; Patel, Chirag; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Background Voltage-gated Cav1.2 calcium channels play a crucial role in Ca2+ signaling. The pore-forming α1C subunit is regulated by accessory Cavβ subunits, cytoplasmic proteins of various size encoded by four different genes (Cavβ1 - β4) and expressed in a tissue-specific manner. Methods and Results Here we investigated the effect of three major Cavβ types, β1b, β2d and β3, on the structure of Cav1.2 in the plasma membrane of live cells. Total internal reflection fluorescence microscopy showed that the tendency of Cav1.2 to form clusters depends on the type of the Cavβ subunit present. The highest density of Cav1.2 clusters in the plasma membrane and the smallest cluster size were observed with neuronal/cardiac β1b present. Cav1.2 channels containing β3, the predominant Cavβ subunit of vascular smooth muscle cells, were organized in a significantly smaller number of larger clusters. The inter- and intramolecular distances between α1C and Cavβ in the plasma membrane of live cells were measured by three-color FRET microscopy. The results confirm that the proximity of Cav1.2 channels in the plasma membrane depends on the Cavβ type. The presence of different Cavβ subunits does not result in significant differences in the intramolecular distance between the termini of α1C, but significantly affects the distance between the termini of neighbor α1C subunits, which varies from 67 Å with β1b to 79 Å with β3. Conclusions Thus, our results show that the structural organization of Cav1.2 channels in the plasma membrane depends on the type of Cavβ subunits present. PMID:19492014

  15. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    PubMed

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits. PMID:19228957

  16. Regulation of persistent Na current by interactions between β subunits of voltage-gated Na channels

    PubMed Central

    Aman, Teresa K.; Grieco-Calub, Tina M.; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A.; Isom, Lori L.; Raman, Indira M.

    2009-01-01

    The β subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming α subunits, as well as their trafficking and localization. In heterologous expression systems, β1, β2, and β3 subunits influence inactivation and persistent current in different ways. To test how the β4 protein regulates Na channel gating, we transfected β4 into HEK cells stably expressing NaV1.1. Unlike a free peptide with a sequence from the β4 cytoplasmic domain, the full-length β4 protein did not block open channels. Instead, β4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of non-inactivating current. Consequently, persistent current tripled in amplitude. Expression of β1 or chimeric subunits including the β1 extracellular domain, however, favored inactivation. Co-expressing NaV1.1 and β4 with β1 produced tiny persistent currents, indicating that β1 overcomes the effects of β4 in heterotrimeric channels. In contrast, β1C121W, which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by β4, and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with β4, persistent current was slightly but significantly increased. Moreover, in β4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that β1 and β4 have antagonistic roles, the former favoring inactivation and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted β1 subunits. PMID:19228957

  17. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels

    PubMed Central

    Yu, Haibo; Lin, Zhihong; Mattmann, Margrith E.; Zou, Beiyan; Terrenoire, Cecile; Zhang, Hongkang; Wu, Meng; McManus, Owen B.; Kass, Robert S.; Lindsley, Craig W.; Hopkins, Corey R.; Li, Min

    2013-01-01

    Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1–KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in diseases in brain, heart, and the respiratory system. In addition to complexities arising from existence of five KCNE subunits, KCNE1 to KCNE5, recent studies in heterologous systems suggest unorthodox stoichiometric dynamics in subunit assembly is dependent on KCNE expression levels. The resultant KCNQ1–KCNE channel complexes may have a range of zero to two or even up to four KCNE subunits coassembling per KCNQ1 tetramer. These findings underscore the need to assess the selectivity of small-molecule KCNQ1 modulators on these different assemblies. Here we report a unique small-molecule gating modulator, ML277, that potentiates both homomultimeric KCNQ1 channels and unsaturated heteromultimeric (KCNQ1)4(KCNE1)n (n < 4) channels. Progressive increase of KCNE1 or KCNE3 expression reduces efficacy of ML277 and eventually abolishes ML277-mediated augmentation. In cardiomyocytes, the slowly activating delayed rectifier potassium current, or IKs, is believed to be a heteromultimeric combination of KCNQ1 and KCNE1, but it is not entirely clear whether IKs is mediated by KCNE-saturated KCNQ1 channels or by channels with intermediate stoichiometries. We found ML277 effectively augments IKs current of cultured human cardiomyocytes and shortens action potential duration. These data indicate that unsaturated heteromultimeric (KCNQ1)4(KCNE1)n channels are present as components of IKs and are pharmacologically distinct from KCNE-saturated KCNQ1–KCNE1 channels. PMID:23650380

  18. Subunit composition of mammalian transient receptor potential channels in living cells.

    PubMed

    Hofmann, Thomas; Schaefer, Michael; Schultz, Günter; Gudermann, Thomas

    2002-05-28

    Hormones, neurotransmitters, and growth factors give rise to calcium entry via receptor-activated cation channels that are activated downstream of phospholipase C activity. Members of the transient receptor potential channel (TRPC) family have been characterized as molecular substrates mediating receptor-activated cation influx. TRPC channels are assumed to be composed of multiple TRPC proteins. However, the cellular principles governing the assembly of TRPC proteins into homo- or heteromeric ion channels still remain elusive. By pursuing four independent experimental approaches--i.e., subcellular cotrafficking of TRPC subunits, differential functional suppression by dominant-negative subunits, fluorescence resonance energy transfer between labeled TRPC subunits, and coimmunoprecipitation--we investigate the combinatorial rules of TRPC assembly. Our data show that (i) TRPC2 does not interact with any known TRPC protein and (ii) TRPC1 has the ability to form channel complexes together with TRPC4 and TRPC5. (iii) All other TRPCs exclusively assemble into homo- or heterotetramers within the confines of TRPC subfamilies--e.g., TRPC4/5 or TRPC3/6/7. The principles of TRPC channel formation offer the conceptual framework to assess the physiological role of distinct TRPC proteins in living cells. PMID:12032305

  19. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog.

    PubMed

    Wallner, M; Meera, P; Toro, L

    1999-03-30

    Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane beta subunit (beta2) that yields inactivating MaxiK currents on coexpression with the pore-forming alpha subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the beta2 subunit abolished inactivation of the alpha subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle beta1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the beta2 subunit causes inactivation of the MaxiK channel alpha subunit by occluding its K+-conducting pore resembling the inactivation caused by the "ball" peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different beta subunits. PMID:10097176

  20. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: A transmembrane β-subunit homolog

    PubMed Central

    Wallner, Martin; Meera, Pratap; Toro, Ligia

    1999-01-01

    Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane β subunit (β2) that yields inactivating MaxiK currents on coexpression with the pore-forming α subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the β2 subunit abolished inactivation of the α subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle β1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the β2 subunit causes inactivation of the MaxiK channel α subunit by occluding its K+-conducting pore resembling the inactivation caused by the “ball” peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different β subunits. PMID:10097176

  1. Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional*

    PubMed Central

    Steinke, Kim Vanessa; Gorinski, Nataliya; Wojciechowski, Daniel; Todorov, Vladimir; Guseva, Daria; Ponimaskin, Evgeni; Fahlke, Christoph; Fischer, Martin

    2015-01-01

    CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels. PMID:26013830

  2. Endogenous KCNE Subunits Govern Kv2.1 K+ Channel Activation Kinetics in Xenopus Oocyte Studies

    PubMed Central

    Gordon, Earl; Roepke, Torsten K.; Abbott, Geoffrey W.

    2006-01-01

    Kv2.1 is a voltage-gated potassium (Kv) channel that generates delayed rectifier currents in mammalian heart and brain. The biophysical properties of Kv2.1 and other ion channels have been characterized by functional expression in heterologous systems, and most commonly in Xenopus laevis oocytes. A number of previous oocyte-based studies of mammalian potassium channels have revealed expression-level-dependent changes in channel properties, leading to the suggestion that endogenous oocyte factors regulate channel gating. Here, we show that endogenous oocyte potassium channel KCNE ancillary subunits xMinK and xMiRP2 slow the activation of oocyte-expressed mammalian Kv2.1 channels two-to-fourfold. This produces a sigmoidal relationship between Kv2.1 current density and activation rate in oocyte-based two-electrode voltage clamp studies. The effect of endogenous xMiRP2 and xMinK on Kv2.1 activation is diluted at high Kv2.1 expression levels, or by RNAi knockdown of either endogenous subunit. RNAi knockdown of both xMiRP2 and xMinK eliminates the correlation between Kv2.1 expression level and activation kinetics. The data demonstrate a molecular basis for expression-level-dependent changes in Kv channel gating observed in heterologous expression studies. PMID:16326911

  3. Human and rodent MaxiK channel beta-subunit genes: cloning and characterization.

    PubMed

    Jiang, Z; Wallner, M; Meera, P; Toro, L

    1999-01-01

    Voltage- and Ca2+-sensitive K+ (MaxiK) channels play key roles in controlling neuronal excitability and vascular tone. We cloned and analyzed human and rodent genes for the modulatory beta subunit, KCNMB1. The human and mouse beta-subunit genes are approximately 11 and approximately 9 kb in length, respectively, and have a four exon-three intron structure. Primer extension assay localized the transcription initiation site at 442 (human) or 440 (mouse) bp upstream of the translation initiation codon, agreeing with the transcript size in Northern blots. Both genes have a TATA-less putative promoter region, with a transcription initiator-like region, and motifs characteristic of regulated promoters, including muscle-specific enhancing factors-1 and -2. Consistent with a tissue-specific expression of KCNMB1, regulated at the transcriptional level, beta-subunit transcripts are abundant in smooth muscle and heart, but scarce in lymphatic tissues, brain, and liver. Expressed rat and mouse beta subunits increase the apparent Ca2+ sensitivity of the human MaxiK channel alpha subunit. PMID:9888999

  4. Achromatopsia-associated mutation in the human cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit alters the ligand sensitivity and pore properties of heteromeric channels.

    PubMed

    Peng, Changhong; Rich, Elizabeth D; Varnum, Michael D

    2003-09-01

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to form by assembly of two different subunit types, CNGA3 and CNGB3. Recently, mutations in the gene encoding the CNGB3 subunit have been linked to achromatopsia in humans. Here we describe the functional consequences of two achromatopsia-associated mutations in human CNGB3 (hCNGB3). Co-expression in Xenopus oocytes of human CNGA3 (hCNGA3) subunits with hCNGB3 subunits containing an achromatopsia-associated mutation in the S6 transmembrane domain (S435F) generated functional heteromeric channels that exhibited an increase in apparent affinity for both cAMP and cGMP compared with wild type heteromeric channels. In contrast, co-expression of a presumptive null mutation of hCNGB3 (T383f.s.Delta C) with hCNGA3 produced channels with properties indistinguishable from homomeric hCNGA3 channels. The effect of hCNGB3 S435F subunits on cell-surface expression of green fluorescent protein-tagged hCNGA3 subunits and of non-tagged hCNGA3 subunits on surface expression of green fluorescent protein-hCNGB3 S435F subunits were similar to those observed for wild type hCNGB3 subunits, suggesting that the mutation does not grossly disturb subunit assembly or plasma membrane targeting. The S435F mutation was also found to produce changes in the pore properties of the channel, including decreased single channel conductance and decreased sensitivity to block by l-cis-diltiazem. Overall, these results suggest that the functional properties of cone CNG channels may be altered in patients with the S435F mutation, providing evidence supporting the pathogenicity of this mutation in humans. Thus, achromatopsia may arise from a disturbance of cone CNG channel gating and permeation or from the absence of functional CNGB3 subunits. PMID:12815043

  5. The impact of splice isoforms on voltage-gated calcium channel α1 subunits

    PubMed Central

    Jurkat-Rott, Karin; Lehmann-Horn, Frank

    2004-01-01

    Semi-conserved exon boundaries in members of the CACNA1 gene family result in recurring pre-mRNA splicing patterns. The resulting variations in the encoded pore-forming subunit of the voltage-gated calcium channel affect functionally significant regions, such as the vicinity of the voltage-sensing S4 segments or the intracellular loops that are important for protein interaction. In addition to generating functional diversity, RNA splicing regulates the quantitative expression of other splice isoforms of the same gene by producing transcripts with premature stop codons which encode two-domain or three-domain channels. An overview of some of the known splice isoforms of the α1 calcium channel subunits and their significance is given. PMID:14645450

  6. The impact of splice isoforms on voltage-gated calcium channel alpha1 subunits.

    PubMed

    Jurkat-Rott, Karin; Lehmann-Horn, Frank

    2004-02-01

    Semi-conserved exon boundaries in members of the CACNA1 gene family result in recurring pre-mRNA splicing patterns. The resulting variations in the encoded pore-forming subunit of the voltage-gated calcium channel affect functionally significant regions, such as the vicinity of the voltage-sensing S4 segments or the intracellular loops that are important for protein interaction. In addition to generating functional diversity, RNA splicing regulates the quantitative expression of other splice isoforms of the same gene by producing transcripts with premature stop codons which encode two-domain or three-domain channels. An overview of some of the known splice isoforms of the alpha(1) calcium channel subunits and their significance is given. PMID:14645450

  7. Crystallographic insights into sodium-channel modulation by the β4 subunit.

    PubMed

    Gilchrist, John; Das, Samir; Van Petegem, Filip; Bosmans, Frank

    2013-12-17

    Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, β-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether β-subunits also influence ligand interactions, we found that β4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular β4 domain and identified (58)Cys as an exposed residue that, when mutated, eliminates the influence of β4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of β4. Disrupting this bridge by introducing a β1 mutation implicated in epilepsy repositions the (58)Cys-containing loop and disrupts β4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of β-subunit-related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant β-subunit behavior. PMID:24297919

  8. SCN4B-Encoded Sodium Channel β4 Subunit in Congenital Long-QT Syndrome

    PubMed Central

    Medeiros-Domingo, Argelia; Kaku, Toshihiko; Tester, David J.; Iturralde-Torres, Pedro; Itty, Ajit; Ye, Bin; Valdivia, Carmen; Ueda, Kazuo; Canizales-Quinteros, Samuel; Tusié-Luna, Maria Teresa; Makielski, Jonathan C.; Ackerman, Michael J.

    2012-01-01

    Background Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming α-subunit associated with 1 or more auxiliary β-subunits. Four different β-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. Methods and Results We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Navβ-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel α-subunit (hNaV1.5). Compared with the wild-type, L179F-β4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-β4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. Conclusions We provide the seminal report of SCN4B-encoded Navβ4 as a novel LQT3-susceptibility gene. PMID:17592081

  9. Zinc is both an intracellular and extracellular regulator of KATP channel function.

    PubMed

    Prost, Anne-Lise; Bloc, Alain; Hussy, Nicolas; Derand, Renaud; Vivaudou, Michel

    2004-08-15

    Extracellular Zn(2+) has been identified as an activator of pancreatic K(ATP) channels. We further examined the action of Zn(2+) on recombinant K(ATP) channels formed with the inward rectifier K(+) channel subunit Kir6.2 associated with either the pancreatic/neuronal sulphonylurea receptor 1 (SUR1) subunit or the cardiac SUR2A subunit. Zn(2+), applied at either the extracellular or intracellular side of the membrane appeared as a potent, reversible activator of K(ATP) channels. External Zn(2+), at micromolar concentrations, activated SUR1/Kir6.2 but induced a small inhibition of SUR2A/Kir6.2 channels. Cytosolic Zn(2+) dose-dependently stimulated both SUR1/Kir6.2 and SUR2A/Kir6.2 channels, with half-maximal effects at 1.8 and 60 microm, respectively, but it did not affect the Kir6.2 subunit expressed alone. These observations point to an action of both external and internal Zn(2+) on the SUR subunit. Effects of internal Zn(2+) were not due to Zn(2+) leaking out, since they were unaffected by the presence of a Zn(2+) chelator on the external side. Similarly, internal chelators did not affect activation by external Zn(2+). Therefore, Zn(2+) is an endogenous K(ATP) channel opener being active on both sides of the membrane, with potentially distinct sites of action located on the SUR subunit. These findings uncover a novel regulatory pathway targeting K(ATP) channels, and suggest a new role for Zn(2+) as an intracellular signalling molecule. PMID:15218066

  10. Zinc is both an intracellular and extracellular regulator of KATP channel function

    PubMed Central

    Prost, Anne-Lise; Bloc, Alain; Hussy, Nicolas; Derand, Renaud; Vivaudou, Michel

    2004-01-01

    Extracellular Zn2+ has been identified as an activator of pancreatic KATP channels. We further examined the action of Zn2+ on recombinant KATP channels formed with the inward rectifier K+ channel subunit Kir6.2 associated with either the pancreatic/neuronal sulphonylurea receptor 1 (SUR1) subunit or the cardiac SUR2A subunit. Zn2+, applied at either the extracellular or intracellular side of the membrane appeared as a potent, reversible activator of KATP channels. External Zn2+, at micromolar concentrations, activated SUR1/Kir6.2 but induced a small inhibition of SUR2A/Kir6.2 channels. Cytosolic Zn2+ dose-dependently stimulated both SUR1/Kir6.2 and SUR2A/Kir6.2 channels, with half-maximal effects at 1.8 and 60 μm, respectively, but it did not affect the Kir6.2 subunit expressed alone. These observations point to an action of both external and internal Zn2+ on the SUR subunit. Effects of internal Zn2+ were not due to Zn2+ leaking out, since they were unaffected by the presence of a Zn2+ chelator on the external side. Similarly, internal chelators did not affect activation by external Zn2+. Therefore, Zn2+ is an endogenous KATP channel opener being active on both sides of the membrane, with potentially distinct sites of action located on the SUR subunit. These findings uncover a novel regulatory pathway targeting KATP channels, and suggest a new role for Zn2+ as an intracellular signalling molecule. PMID:15218066

  11. Acid-sensing ion channels (ASICs) are differentially modulated by anions dependent on their subunit composition

    PubMed Central

    Kusama, Nobuyoshi; Gautam, Mamta; Harding, Anne Marie S.; Snyder, Peter M.

    2013-01-01

    Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. ASIC1a channels possess intersubunit Cl−-binding sites in the extracellular domain, which are highly conserved between ASIC subunits. We previously found that anions modulate ASIC1a gating via these sites. Here we investigated the effect of anion substitution on native ASICs in rat sensory neurons and heterologously expressed ASIC2a and ASIC3 channels by whole cell patch clamp. Similar to ASIC1a, anions modulated the kinetics of desensitization of other ASIC channels. However, unlike ASIC1a, anions also modulated the pH dependence of activation. Moreover, the order of efficacy of different anions to modulate ASIC2a and -3 was very different from that of ASIC1a. More surprising, mutations of conserved residues that form an intersubunit Cl−-binding site in ASIC1a only partially abrogated the effects of anion modulation of ASIC2a and had no effect on anion modulation of ASIC3. The effects of anions on native ASICs in rat dorsal root ganglion neurons mimicked those in heterologously expressed ASIC1a/3 heteromeric channels. Our data show that anions modulate a variety of ASIC properties and are dependent on the subunit composition, and the mechanism of modulation for ASIC2a and -3 is distinct from that of ASIC1a. We speculate that modulation of ASIC gating by Cl− is a novel mechanism to sense shifts in extracellular fluid composition. PMID:23135698

  12. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions

    PubMed Central

    Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho

    2015-01-01

    Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of

  13. Differential N termini in epithelial Na+ channel δ-subunit isoforms modulate channel trafficking to the membrane.

    PubMed

    Wesch, Diana; Althaus, Mike; Miranda, Pablo; Cruz-Muros, Ignacio; Fronius, Martin; González-Hernández, Tomás; Clauss, Wolfgang G; Alvarez de la Rosa, Diego; Giraldez, Teresa

    2012-03-15

    The epithelial Na(+) channel (ENaC) is a heteromultimeric ion channel that plays a key role in Na(+) reabsorption across tight epithelia. The canonical ENaC is formed by three analogous subunits, α, β, and γ. A fourth ENaC subunit, named δ, is expressed in the nervous system of primates, where its role is unknown. The human δ-ENaC gene generates at least two splice isoforms, δ(1) and δ(2) , differing in the N-terminal sequence. Neurons in diverse areas of the human and monkey brain differentially express either δ(1) or δ(2) , with few cells coexpressing both isoforms, which suggests that they may play specific physiological roles. Here we show that heterologous expression of δ(1) in Xenopus oocytes and HEK293 cells produces higher current levels than δ(2) . Patch-clamp experiments showed no differences in single channel current magnitude and open probability between isoforms. Steady-state plasma membrane abundance accounts for the dissimilarity in macroscopic current levels. Differential trafficking between isoforms is independent of β- and γ-subunits, PY-motif-mediated endocytosis, or the presence of additional lysine residues in δ(2)-N terminus. Analysis of δ(2)-N terminus identified two sequences that independently reduce channel abundance in the plasma membrane. The δ(1) higher abundance is consistent with an increased insertion rate into the membrane, since endocytosis rates of both isoforms are indistinguishable. Finally, we conclude that δ-ENaC undergoes dynamin-independent endocytosis as opposed to αβγ-channels. PMID:22159085

  14. Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit.

    PubMed

    Shi, Shujie; Luke, Cliff J; Miedel, Mark T; Silverman, Gary A; Kleyman, Thomas R

    2016-07-01

    Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces. PMID:27189943

  15. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels.

    PubMed Central

    Hugnot, J P; Salinas, M; Lesage, F; Guillemare, E; de Weille, J; Heurteaux, C; Mattéi, M G; Lazdunski, M

    1996-01-01

    Outward rectifier K+ channels have a characteristic structure with six transmembrane segments and one pore region. A new member of this family of transmembrane proteins has been cloned and called Kv8.1. Kv8.1 is essentially present in the brain where it is located mainly in layers II, IV and VI of the cerebral cortex, in hippocampus, in CA1-CA4 pyramidal cell layer as well in granule cells of the dentate gyrus, in the granule cell layer and in the Purkinje cell layer of the cerebellum. The Kv8.1 gene is in the 8q22.3-8q24.1 region of the human genome. Although Kv8.1 has the hallmarks of functional subunits of outward rectifier K+ channels, injection of its cRNA in Xenopus oocytes does not produce K+ currents. However Kv8.1 abolishes the functional expression of members of the Kv2 and Kv3 subfamilies, suggesting that the functional role of Kv8.1 might be to inhibit the function of a particular class of outward rectifier K+ channel types. Immunoprecipitation studies have demonstrated that inhibition occurs by formation of heteropolymeric channels, and results obtained with Kv8.1 chimeras have indicated that association of Kv8.1 with other types of subunits is via its N-terminal domain. Images PMID:8670833

  16. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.

    PubMed

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-12-26

    G protein-gated inwardly rectifying K(+) (Girk/K(IR)3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABA(B) receptor and Girk1/Girk2 heteromer as a model system. Girk1 did not increase the protein levels or alter the trafficking of Girk2-containing channels to the cell surface in transfected cells or hippocampal neurons, indicating that its potentiating influence involves enhancement of channel activity. Structural elements in both the distal carboxyl-terminal domain and channel core were identified as key determinants of robust channel activity. In the distal carboxyl-terminal domain, residue Q404 was identified as a key determinant of receptor-induced channel activity. In the Girk1 core, three unique residues in the pore (P) loop (F137, A142, Y150) were identified as a collective potentiating influence on both receptor-dependent and receptor-independent channel activity, exerting their influence, at least in part, by enhancing mean open time and single-channel conductance. Interestingly, the potentiating influence of the Girk1 P-loop is tempered by residue F162 in the second membrane-spanning domain. Thus, discontinuous and sometime opposing elements in Girk1 underlie the Girk1-dependent potentiation of receptor-dependent and receptor-independent heteromeric channel activity. PMID:23236146

  17. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    PubMed Central

    2011-01-01

    Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV) channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa) channels, which suggests that ion channel regulatory partners have evolved distinct lineage-specific characteristics

  18. Crystallographic insights into sodium-channel modulation by the β4 subunit

    PubMed Central

    Gilchrist, John; Das, Samir; Van Petegem, Filip; Bosmans, Frank

    2013-01-01

    Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, β-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether β-subunits also influence ligand interactions, we found that β4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular β4 domain and identified 58Cys as an exposed residue that, when mutated, eliminates the influence of β4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of β4. Disrupting this bridge by introducing a β1 mutation implicated in epilepsy repositions the 58Cys-containing loop and disrupts β4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of β-subunit–related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant β-subunit behavior. PMID:24297919

  19. MiRP3 acts as an accessory subunit with the BK potassium channel

    PubMed Central

    Levy, Daniel I.; Wanderling, Sherry; Biemesderfer, Daniel; Goldstein, Steve A. N.

    2008-01-01

    MinK-related peptides (MiRPs) are single-span membrane proteins that assemble with specific voltage-gated K+ (Kv) channel α-subunits to establish gating kinetics, unitary conductance, expression level, and pharmacology of the mixed complex. MiRP3 (encoded by the KCNE4 gene) has been shown to alter the behavior of some Kv α-subunits in vitro but its natural partners and physiologic functions are unknown. Seeking in vivo partners for MiRP3, immunohistochemistry was used to localize its expression to a unique subcellular site, the apical membrane of renal intercalated cells, where one potassium channel type has been recorded, the calcium- and voltage-gated channel BK. Overlapping staining of these two proteins was found in rabbit intercalated cells, and MiRP3 and BK subunits expressed in tissue culture cells were found to form detergent-stable complexes. Electrophysiologic and biochemical evaluation showed MiRP3 to act on BK to reduce current density in two fashions: shifting the current-voltage relationship to more depolarized voltages in a calcium-dependent fashion (∼10 mV at normal intracellular calcium levels) and accelerating degradation of MiRP3-BK complexes. The findings suggest a role for MiRP3 modulation of BK-dependent urinary potassium excretion. PMID:18463315

  20. G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels.

    PubMed

    García, D E; Li, B; García-Ferreiro, R E; Hernández-Ochoa, E O; Yan, K; Gautam, N; Catterall, W A; Mackie, K; Hille, B

    1998-11-15

    We investigated which subtypes of G-protein beta subunits participate in voltage-dependent modulation of N-type calcium channels. Calcium currents were recorded from cultured rat superior cervical ganglion neurons injected intranuclearly with DNA encoding five different G-protein beta subunits. Gbeta1 and Gbeta2 strongly mimicked the fast voltage-dependent inhibition of calcium channels produced by many G-protein-coupled receptors. The Gbeta5 subunit produced much weaker effects than Gbeta1 and Gbeta2, whereas Gbeta3 and Gbeta4 were nearly inactive in these electrophysiological studies. The specificity implied by these results was confirmed and extended using the yeast two-hybrid system to test for protein-protein interactions. Here, Gbeta1 or Gbeta2 coupled to the GAL4-activation domain interacted strongly with a channel sequence corresponding to the intracellular loop connecting domains I and II of a alpha1 subunit of the class B calcium channel fused to the GAL4 DNA-binding domain. In this assay, the Gbeta5 subunit interacted weakly, and Gbeta3 and Gbeta4 failed to interact. Together, these results suggest that Gbeta1 and/or Gbeta2 subunits account for most of the voltage-dependent inhibition of N-type calcium channels and that the linker between domains I and II of the calcium channel alpha1 subunit is a principal receptor for this inhibition. PMID:9801356

  1. Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels

    PubMed Central

    Ullrich, Florian; Xu, Rong; Heinemann, Stefan H.; Hou, Shangwei

    2015-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a critical role in modulating the function of numerous ion channels, including large-conductance Ca2+- and voltage-dependent K+ (BK, Slo1) channels. Slo1 BK channel complexes include four pore-forming Slo1 (α) subunits as well as various regulatory auxiliary subunits (β and γ) that are expressed in different tissues. We examined the molecular and biophysical mechanisms underlying the effects of brain-derived PIP2 on human Slo1 BK channel complexes with different subunit compositions that were heterologously expressed in human embryonic kidney cells. PIP2 inhibited macroscopic currents through Slo1 channels without auxiliary subunits and through Slo1 + γ1 complexes. In contrast, PIP2 markedly increased macroscopic currents through Slo1 + β1 and Slo1 + β4 channel complexes and failed to alter macroscopic currents through Slo1 + β2 and Slo1 + β2 Δ2–19 channel complexes. Results obtained at various membrane potentials and divalent cation concentrations suggest that PIP2 promotes opening of the ion conduction gate in all channel types, regardless of the specific subunit composition. However, in the absence of β subunits positioned near the voltage-sensor domains (VSDs), as in Slo1 and probably Slo1 + γ1, PIP2 augments the negative surface charge on the cytoplasmic side of the membrane, thereby shifting the voltage dependence of VSD-mediated activation in the positive direction. When β1 or β4 subunits occupy the space surrounding the VSDs, only the stimulatory effect of PIP2 is evident. The subunit compositions of native Slo1 BK channels differ in various cell types; thus, PIP2 may exert distinct tissue- and divalent cation–dependent modulatory influences. PMID:25825171

  2. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide

    PubMed Central

    Henn, Matthew C; Janjua, M Burhan; Kanter, Evelyn M; Makepeace, Carol M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2015-01-01

    Background ATP-sensitive potassium (KATP) channel openers provide cardioprotection in multiple models. Ion flux at an unidentified mitochondrial KATP channel has been proposed as the mechanism. The renal outer medullary kidney potassium channel subunit, potassium inward rectifying (Kir)1.1, has been implicated as a mitochondrial channel pore-forming subunit. We hypothesized that subunit Kir1.1 is involved in cardioprotection (maintenance of volume homeostasis and contractility) of the KATP channel opener diazoxide (DZX) during stress (exposure to hyperkalemic cardioplegia [CPG]) at the myocyte and mitochondrial levels. Methods and Results Kir subunit inhibitor Tertiapin Q (TPN-Q) was utilized to evaluate response to stress. Mouse ventricular mitochondrial volume was measured in the following groups: isolation buffer; 200 μmol/L of ATP; 100 μmol/L of DZX+200 μmol/L of ATP; or 100 μmol/L of DZX+200 μmol/L of ATP+TPN-Q (500 or 100 nmol/L). Myocytes were exposed to Tyrode’s solution (5 minutes), test solution (Tyrode’s, cardioplegia [CPG], CPG+DZX, CPG+DZX+TPN-Q, Tyrode’s+TPN-Q, or CPG+TPN-Q), N=12 for all (10 minutes); followed by Tyrode’s (5 minutes). Volumes were compared. TPN-Q, with or without DZX, did not alter mitochondrial or myocyte volume. Stress (CPG) resulted in myocyte swelling and reduced contractility that was prevented by DZX. TPN-Q prevented the cardioprotection afforded by DZX (volume homeostasis and maintenance of contractility). Conclusions TPN-Q inhibited myocyte cardioprotection provided by DZX during stress; however, it did not alter mitochondrial volume. Because TPN-Q inhibits Kir1.1, Kir3.1, and Kir3.4, these data support that any of these Kir subunits could be involved in the cardioprotection afforded by diazoxide. However, these data suggest that mitochondrial swelling by diazoxide does not involve Kir1.1, 3.1, or 3.4. PMID:26304939

  3. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1

    PubMed Central

    Lee, Seok-Yong; Letts, James A.; MacKinnon, Roderick

    2008-01-01

    In voltage-gated Na+, K+, and Ca2+ channels, four voltage-sensor domains operate on a central pore domain in response to membrane voltage. In contrast, the voltage-gated proton channel (Hv) contains only a voltage-sensor domain, lacking a separate pore domain. The subunit stoichiometry and organization of Hv has been unknown. Here, we show that human Hv1 forms a dimer in the membrane and define regions that are close to the dimer interface by using cysteine cross-linking. Two dimeric interfaces appear to exist in Hv1, one mediated by S1 and the adjacent extracellular loop, and the other mediated by a putative intracellular coiled-coil domain. It may be significant that Hv1 uses for its dimer interface a surface that corresponds to the interface between the voltage sensor and pore in Kv channels. PMID:18509058

  4. Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit

    SciTech Connect

    Pan, Y.; Weng, J; Kabaleeswaran, V; Li, H; Cao, Y; Bholse, R; Zhou, M

    2008-01-01

    The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structure of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.

  5. A novel auxiliary subunit critical to BK channel function in C. elegans

    PubMed Central

    Chen, Bojun; Ge, Qian; Xia, Xiao-Ming; Liu, Ping; Wang, Sijie J.; Zhan, Haiying; Eipper, Betty A.; Wang, Zhao-Wen

    2010-01-01

    The BK channel is a Ca2+- and voltage-gated potassium channel with many important physiological functions. To identify proteins important to its function in vivo, we screened for C. elegans mutants that suppressed a lethargic phenotype caused by expressing a gain-of-function (gf) isoform of the BK channel α-subunit SLO-1. BKIP-1, a small peptide with no significant homology to any previously characterized molecules was thus identified. BKIP-1 and SLO-1 showed similar expression and subcellular localization patterns, and appeared to interact physically through discrete domains. bkip-1 loss-of-function (lf) mutants phenocopied slo-1(lf) mutants in behavior and synaptic transmission, and suppressed the lethargy, egg-laying defect, and deficient neurotransmitter release caused by SLO-1(gf). In heterologous expression systems, BKIP-1 decreased the activation rate and shifted the conductance-voltage (G-V) relationship of SLO-1 in a Ca2+-dependent manner, and increased SLO-1 surface expression. Thus, BKIP-1 is a novel auxiliary subunit critical to SLO-1 function in vivo. PMID:21148004

  6. Evans Blue is not a suitable inhibitor of the epithelial sodium channel δ-subunit.

    PubMed

    Perniss, Alexander; Wolf, Annemarie; Wichmann, Lukas; Schönberger, Matthias; Althaus, Mike

    2015-10-23

    The Epithelial Sodium Channel (ENaC) is a heterotrimeric ion channel which can be either formed by assembly of its α-, β- and γ-subunits or, alternatively, its δ-, β- and γ-subunits. The physiological function of αβγ-ENaC is well established, but the function of δβγ-ENaC remains elusive. The azo-dye Evans Blue (EvB) has been routinely used to discriminate between the two channel isoforms by decreasing transmembrane currents and amiloride-sensitive current fractions of δβγ-ENaC expressing Xenopus oocytes. Even though these results could be reproduced, it was found by precipitation experiments and spectroscopic methods that the cationic amiloride and the anionic EvB directly interact in solution, forming a strong complex. Thereby a large amount of pharmacologically available amiloride is removed from physiological buffer solutions and the effective amiloride concentration is reduced. This interaction did not occur in the presence of albumin. In microelectrode recordings, EvB was able to abrogate the block of δβγ-ENaC by amiloride or its derivative benzamil. In sum, EvB reduces amiloride-sensitive ion current fractions in electrophysiological experiments. This is not a result of a specific inhibition of δβγ-ENaC but rather represents a pharmacological artefact. EvB should therefore not be used as an inhibitor of δ-ENaC. PMID:26365349

  7. β1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel.

    PubMed

    Castillo, Juan P; Sánchez-Rodríguez, Jorge E; Hyde, H Clark; Zaelzer, Cristian A; Aguayo, Daniel; Sepúlveda, Romina V; Luk, Louis Y P; Kent, Stephen B H; Gonzalez-Nilo, Fernando D; Bezanilla, Francisco; Latorre, Ramón

    2016-06-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are involved in a large variety of physiological processes. Regulatory β-subunits are one of the mechanisms responsible for creating BK channel diversity fundamental to the adequate function of many tissues. However, little is known about the structure of its voltage sensor domain. Here, we present the external architectural details of BK channels using lanthanide-based resonance energy transfer (LRET). We used a genetically encoded lanthanide-binding tag (LBT) to bind terbium as a LRET donor and a fluorophore-labeled iberiotoxin as the LRET acceptor for measurements of distances within the BK channel structure in a living cell. By introducing LBTs in the extracellular region of the α- or β1-subunit, we determined (i) a basic extracellular map of the BK channel, (ii) β1-subunit-induced rearrangements of the voltage sensor in α-subunits, and (iii) the relative position of the β1-subunit within the α/β1-subunit complex. PMID:27217576

  8. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B.

    PubMed

    Wallace, R H; Scheffer, I E; Parasivam, G; Barnett, S; Wallace, G B; Sutherland, G R; Berkovic, S F; Mulley, J C

    2002-05-14

    Generalized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome. PMID:12011299

  9. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity.

    PubMed

    Shiina, Yohei; Muto, Tomohiro; Zhang, Zhili; Baihaqie, Ahmad; Yoshizawa, Takamasa; Lee, Hye-In J; Park, Eulsoon; Tsukiji, Shinya; Takimoto, Koichi

    2016-01-01

    Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K(+) channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides. PMID:27198182

  10. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity

    PubMed Central

    Shiina, Yohei; Muto, Tomohiro; Zhang, Zhili; Baihaqie, Ahmad; Yoshizawa, Takamasa; Lee, Hye-in J.; Park, Eulsoon; Tsukiji, Shinya; Takimoto, Koichi

    2016-01-01

    Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K+ channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides. PMID:27198182

  11. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins.

    PubMed

    Barrallo-Gimeno, Alejandro; Gradogna, Antonella; Zanardi, Ilaria; Pusch, Michael; Estévez, Raúl

    2015-09-15

    The CLC family of chloride channels and transporters is composed by nine members, but only three of them, ClC-Ka/b, ClC-7 and ClC-2, have been found so far associated with auxiliary subunits. These CLC regulatory subunits are small proteins that present few common characteristics among them, both structurally and functionally, and their effects on the corresponding CLC protein are different. Barttin, a protein with two transmembrane domains, is essential for the membrane localization of ClC-K proteins and their activity in the kidney and inner ear. Ostm1 is a protein with a single transmembrane domain and a highly glycosylated N-terminus. Unlike the other two CLC auxiliary subunits, Ostm1 shows a reciprocal relationship with ClC-7 for their stability. The subcellular localization of Ostm1 depends on ClC-7 and not the other way around. ClC-2 is active on its own, but GlialCAM, a transmembrane cell adhesion molecule with two extracellular immunoglobulin (Ig)-like domains, regulates its subcellular localization and activity in glial cells. The common theme for these three proteins is their requirement for a proper homeostasis, since their malfunction leads to distinct diseases. We will review here their properties and their role in normal chloride physiology and the pathological consequences of their improper function. PMID:25762128

  12. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J

    2014-01-01

    Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed

  13. S-Glutathionylation of an Auxiliary Subunit Confers Redox Sensitivity to Kv4 Channel Inactivation

    PubMed Central

    Jerng, Henry H.; Pfaffinger, Paul J.

    2014-01-01

    Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast “ball-and-chain” N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed

  14. Protein partners of the calcium channel β subunit highlight new cellular functions.

    PubMed

    Rima, Mohamad; Daghsni, Marwa; Fajloun, Ziad; M'rad, Ridha; Brusés, Juan L; Ronjat, Michel; De Waard, Michel

    2016-07-01

    Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, β, α2δ and γ, among which the cytosolic β subunit (Cavβ) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavβ. However, a growing number of proteins have been found to interact with Cavβ, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavβ are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavβ protein partners, this review emphasizes the diverse cellular functions of Cavβ and summarizes both past findings as well as recent progress in the understanding of VGCC. PMID:27354560

  15. Cell surface expression and turnover of the alpha-subunit of the epithelial sodium channel.

    PubMed

    Kleyman, T R; Zuckerman, J B; Middleton, P; McNulty, K A; Hu, B; Su, X; An, B; Eaton, D C; Smith, P R

    2001-08-01

    The renal epithelial cell line A6, derived from Xenopus laevis, expresses epithelial Na(+) channels (ENaCs) and serves as a model system to study hormonal regulation and turnover of ENaCs. Our previous studies suggest that the alpha-subunit of Xenopus ENaC (alpha-xENaC) is detectable as 150- and 180-kDa polypeptides, putative immature and mature alpha-subunit heterodimers. The 150- and 180-kDa alpha-xENaC were present in distinct fractions after sedimentation of A6 cell lysate through a sucrose density gradient. Two anti-alpha-xENaC antibodies directed against distinct domains demonstrated that only 180-kDa alpha-xENaC was expressed at the apical cell surface. The half-life of cell surface-expressed alpha-xENaC was 24-30 h, suggesting that once ENaC matures and is expressed at the plasma membrane, its turnover is similar to that reported for mature cystic fibrosis transmembrane conductance regulator. No significant changes in apical surface expression of alpha-xENaC were observed after treatment of A6 cells with aldosterone for 24 h, despite a 5.3-fold increase in short-circuit current. This lack of change in surface expression is consistent with previous observations in A6 cells and suggests that aldosterone regulates ENaC gating and increases channel open probability. PMID:11457713

  16. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.

    PubMed

    Fernández-Mariño, Ana I; Valverde, Miguel A; Fernández-Fernández, José M

    2014-07-01

    Tungstate, a compound with antidiabetic, antiobesity, and antihypertensive properties, activates the large-conductance voltage- and Ca(2+)-dependent K(+) (BK) channel containing either β1 or β4 subunits. The BK activation by tungstate is Mg(2+)-dependent and promotes arterial vasodilation, but only in precontracted mouse arteries expressing β1. In this study, we further explored how the β1 subunit participates in tungstate activation of BK channels. Activation of heterologously expressed human BKαβ1 channels in inside-out patches is fully dependent on the Mg(2+) sensitivity of the BK α channel subunit even at high (10 μM) cytosolic Ca(2+) concentration. Alanine mutagenesis of β1 extracellular residues Y74 or S104, which destabilize the active voltage sensor, greatly decreased the tungstate-induced left-shift of the BKαβ1 G-V curves in either the absence or presence of physiologically relevant cytosolic Ca(2+) levels (10 μM). The weakened tungstate activation of the BKαβ1Y74A and BKαβ1S104A mutant channels was not related to decreased Mg(2+) sensitivity. These results, together with previously published reports, support the idea that the putative binding site for tungstate-mediated BK channel activation is located in the pore-forming α channel subunit, around the Mg(2+) binding site. The role of β1 in tungstate-induced channel activation seems to rely on its interaction with the BK α subunit to modulate channel activity. Loop residues that are essential for the regulation of voltage sensor activation and gating of the BK channel are also relevant for BK activation by tungstate. PMID:24158430

  17. Coexpression with Auxiliary β Subunits Modulates the Action of Tefluthrin on Rat Nav1.6 and Nav1.3 Sodium Channels

    PubMed Central

    Tan, Jianguo; Choi, Jin Sung; Soderlund, David M.

    2011-01-01

    We expressed the rat Nav1.3 and Nav1.6 sodium channel α subunit isoforms in Xenopus oocytes either alone or with the rat β1 and β2 auxiliary subunits in various combinations and assessed the sensitivity of the expressed channels to resting and use-dependent modification by the pyrethroid insecticide tefluthrin using the two-electrode voltage clamp technique. Coexpression with the β1 and β2 subunits, either individually or in combination, did not affecting the resting sensitivity of Nav1.6 channels to tefluthrin. Modification by tefluthrin of Nav1.6 channels in the absence of β subunits was not altered by the application of trains of high-frequency depolarizing prepulses. By contrast, coexpression of the Nav1.6 channel with the β1 subunit enhanced the extent of channel modification twofold following repeated depolarization. Coexpression of Nav1.6 with the β2 subunit also slightly enhanced modification following repeated depolarization, but coexpression of Nav1.6 with both β subunits caused enhanced modification following repeated depolarization that was indistinguishable from that found with Nav1.6+β1 channels. In contrast to Nav1.6, the resting modification by tefluthrin of Nav1.3 channels expressed in the absence of β subunits was reduced by repeated depolarization. However, tefluthrin modification of the Nav1.3 α subunit expressed with both β subunits was enhanced 1.7-fold by repeated depolarization, thereby confirming that β subunit modulation of use-dependent effects was not confined to the Nav1.6 isoform. These results show that the actions of pyrethroids on mammalian sodium channels in the Xenopus oocyte expression system are determined in part by the interactions of the sodium channel α subunit with the auxiliary β subunits that are part of the heteromultimeric sodium channel complexes found in neurons and other excitable cells. PMID:22577241

  18. Dual response of the KATP channels to staurosporine: a novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes.

    PubMed

    Mele, Antonietta; Camerino, Giulia M; Calzolaro, Sara; Cannone, Maria; Conte, Diana; Tricarico, Domenico

    2014-09-15

    We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle. PMID:24998494

  19. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction.

    PubMed

    Spampanato, J; Kearney, J A; de Haan, G; McEwen, D P; Escayg, A; Aradi, I; MacDonald, B T; Levin, S I; Soltesz, I; Benna, P; Montalenti, E; Isom, L L; Goldin, A L; Meisler, M H

    2004-11-01

    A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel alpha subunit. The mutation decreased modulation of the alpha subunit by beta1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of beta1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type alpha subunit with the beta1 or beta3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for beta subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the alpha and beta1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility. PMID:15525788

  20. The putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis

    PubMed Central

    Rocchetti, Alessandra; Sharma, Tripti; Wulfetange, Camilla; Scholz-Starke, Joachim; Grippa, Alexandra; Carpaneto, Armando; Dreyer, Ingo; Vitale, Alessandro; Czempinski, Katrin; Pedrazzini, Emanuela

    2012-01-01

    The permeation pore of K+ channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K+ channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked changes in growth under various conditions. Only under osmotic stress we observed reduced root growth of the kco3-1 null-allele line. This phenotype was complemented by expressing a KCO3 mutant with an inactive pore, indicating that the function of KCO3 under osmotic stress does not depend on its direct ability to transport ions. Constitutively overexpressed AtKCO3 or AtKCO3::GFP are efficiently sorted to the tonoplast indicating that the protein is approved by the endoplasmic reticulum quality control. However, vacuoles isolated from transgenic plants do not have significant alterations in current density. Consistently, both AtKCO3 and AtKCO3::GFP are detected as homodimers upon velocity gradient centrifugation, an assembly state that would not allow for activity. We conclude that if AtKCO3 ever functions as a K+ channel, active tetramers are held by particularly weak interactions, are formed only in unknown specific conditions and may require partner proteins. PMID:23162563

  1. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance.

    PubMed

    Nishizaki, Tomoyuki

    2003-06-10

    The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability. PMID:12829329

  2. The KCNE2 K⁺ channel regulatory subunit: Ubiquitous influence, complex pathobiology.

    PubMed

    Abbott, Geoffrey W

    2015-09-15

    The KCNE single-span transmembrane subunits are encoded by five-member gene families in the human and mouse genomes. Primarily recognized for co-assembling with and functionally regulating the voltage-gated potassium channels, the broad influence of KCNE subunits in mammalian physiology belies their small size. KCNE2 has been widely studied since we first discovered one of its roles in the heart and its association with inherited and acquired human Long QT syndrome. Since then, physiological analyses together with human and mouse genetics studies have uncovered a startling array of functions for KCNE2, in the heart, stomach, thyroid and choroid plexus. The other side of this coin is the variety of interconnected disease manifestations caused by KCNE2 disruption, involving both excitable cells such as cardiomyocytes, and non-excitable, polarized epithelia. Kcne2 deletion in mice has been particularly instrumental in illustrating the potential ramifications within a monogenic arrhythmia syndrome, with removal of one piece revealing the unexpected complexity of the puzzle. Here, we review current knowledge of the function and pathobiology of KCNE2. PMID:26123744

  3. Localization of two potassium channel {beta} subunit genes, KCNA1B and KCNA2B

    SciTech Connect

    Schultz, D.; Smith, L.; Thayer, M.

    1996-02-01

    The gating properties and current amplitudes of mammalian voltage-activated Shaker potassium channels are modulated by at least two associated {beta} subunits (Kv{beta}1.1 and Kv{beta}1.2). The human Kv{beta}1.1 gene (KCNA1B) resides on chromosome 3, as indicated by somatic cell hybrid mapping. More precise localization of KCNA1B to 3q26.1 was obtained with fluorescence in situ hybridization (FISH) and was corroborated by PCR screening of the CEPH YAC library. The human Kv{beta}1.2 gene (KCNA2B) resides on chromosome 1, as indicated by somatic cell hybrid mapping, and has been localized by FISH to 1p36.3. 20 refs., 2 figs.

  4. Characterization of the first honeybee Ca²⁺ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation.

    PubMed

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Raymond, Valérie; Démares, Fabien; Quintavalle, Annabelle; Bellis, Michel; Le Conte, Yves; Chahine, Mohamed; Charnet, Pierre

    2013-07-01

    The honeybee is a model system to study learning and memory, and Ca(2+) signals play a key role in these processes. We have cloned, expressed, and characterized the first honeybee Ca(2+) channel subunit. We identified two splice variants of the Apis CaVβ Ca(2+) channel subunit (Am-CaVβ) and demonstrated expression in muscle and neurons. Although AmCaVβ shares with vertebrate CaVβ subunits the SH3 and GK domains, it beholds a unique N terminus that is alternatively spliced in the first exon to produce a long (a) and short (b) variant. When expressed with the CaV2 channels both, AmCaVβa and AmCaVβb, increase current amplitude, shift the voltage-sensitivity of the channel, and slow channel inactivation as the vertebrate CaVβ2a subunit does. However, as opposed to CaVβ2a, slow inactivation induced by Am-CaVβa was insensitive to palmitoylation but displayed a unique PI3K sensitivity. Inactivation produced by the b variant was PI3K-insensitive but staurosporine/H89-sensitive. Deletion of the first exon suppressed the sensitivity to PI3K inhibitors, staurosporine, or H89. Recording of Ba(2+) currents in Apis neurons or muscle cells evidenced a sensitivity to PI3K inhibitors and H89, suggesting that both AmCaVβ variants may be important to couple cell signaling to Ca(2+) entry in vivo. Functional interactions with phospho-inositide and identification of phosphorylation sites in AmCaVβa and AmCaVβb N termini, respectively, suggest that AmCaVβ splicing promoted two novel and alternative modes of regulation of channel activity with specific signaling pathways. This is the first description of a splicing-dependent kinase switch in the regulation of Ca(2+) channel activity by CaVβ subunit. PMID:23588376

  5. Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability.

    PubMed

    Kiernan, Matthew C; Krishnan, Arun V; Lin, Cindy S-Y; Burke, David; Berkovic, Samuel F

    2005-08-01

    To determine the effect of an established mutation of the beta1 subunit of Na(+) channels on nerve excitability, studies were undertaken in patients diagnosed with generalized epilepsy with febrile seizures plus (GEFS+). Multiple nerve excitability measurements were used to investigate the membrane properties of sensory and motor axons in five patients (aged 18-55 years) who were currently experiencing no seizures and were not on anticonvulsants. There was no history of paraesthesiae, fasciculation or cramps to suggest hyperexcitability of peripheral nerve axons. The median nerve was stimulated at the wrist, and compound muscle action potentials (CMAPs) were recorded from abductor pollicis brevis and the antidromic compound sensory nerve action potential (CSAPs) from digit 2. Stimulus-response behaviour, strength-duration time constant, threshold electrotonus, current-threshold relationship and the recovery of excitability following a supramaximal conditioning stimulus were recorded using threshold tracking. Compared with normal controls (n = 29), the axons of patients were of higher threshold. CMAPs and CSAPs were relatively small, although individual values remained within the normal ranges. Refractoriness and relative refractory period (markers of transient Na(+) channel function) were significantly reduced in GEFS+ patients with established mutations in SCN1B (P < 0.05), and strength-duration time constants (dependent on persistent Na(+) conductances) were reduced. It is suggested that, in peripheral nerve axons, the mutation underlying GEFS+ reduces the number of functioning Na(+) channels at the node of Ranvier and that this rather than any change in gating of individual channels dominates axonal excitability in these patients. PMID:15857929

  6. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury.

    PubMed

    Rose, Kirstin; Ooi, Lezanne; Dalle, Carine; Robertson, Brian; Wood, Ian C; Gamper, Nikita

    2011-04-01

    Neuropathic pain is a severe health problem for which there is a lack of effective therapy. A frequent underlying condition of neuropathic pain is a sustained overexcitability of pain-sensing (nociceptive) sensory fibres. Therefore, the identification of mechanisms for such abnormal neuronal excitability is of utmost importance for understanding neuropathic pain. Despite much effort, an inclusive model explaining peripheral overexcitability is missing. We investigated transcriptional regulation of the Kcnq2 gene, which encodes the Kv7.2 subunit of membrane potential-stabilizing M channel, in peripheral sensory neurons in a model of neuropathic pain-partial sciatic nerve ligation (PSNL). We show that Kcnq2 is the major Kcnq gene transcript in dorsal root ganglion (DRG); immunostaining and patch-clamp recordings from acute ganglionic slices verified functional expression of Kv7.2 in small-diameter nociceptive DRG neurons. Neuropathic injury induced substantial downregulation of Kv7.2 expression. Levels of repressor element 1-silencing transcription factor (REST), which is known to suppress Kcnq2 expression, were upregulated in response to neuropathic injury identifying the likely mechanism of Kcnq2 regulation. Behavioural experiments demonstrated that neuropathic hyperalgesia following PSNL developed faster than the downregulation of Kcnq2 expression could be detected, suggesting that this transcriptional mechanism may contribute to the maintenance rather than the initiation of neuropathic pain. Importantly, the decrease in the peripheral M channel abundance could be functionally compensated by peripherally applied M channel opener flupirtine, which alleviated neuropathic hyperalgesia. Our work suggests a novel mechanism for neuropathic overexcitability and brings focus on M channels and REST as peripheral targets for the treatment of neuropathic pain. PMID:21345591

  7. O2-sensitive K+ channels: role of the Kv1.2 -subunit in mediating the hypoxic response.

    PubMed

    Conforti, L; Bodi, I; Nisbet, J W; Millhorn, D E

    2000-05-01

    One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 alpha-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 alpha-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at approximately 80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 alpha-subunit is important in conferring O2 sensitivity to this channel. PMID:10790158

  8. O2-sensitive K+ channels: role of the Kv1.2 α-subunit in mediating the hypoxic response

    PubMed Central

    Conforti, Laura; Bodi, Ilona; Nisbet, John W; Millhorn, David E

    2000-01-01

    One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 α-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 α-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at ≈80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 α-subunit is important in conferring O2 sensitivity to this channel. PMID:10790158

  9. Deep resequencing of the voltage-gated potassium channel subunit KCNE3 gene in chronic tinnitus

    PubMed Central

    2011-01-01

    Membrane-stabilizing drugs have long been used for the treatment of chronic tinnitus, suggesting an underlying disturbance of sensory excitability due to changes in ion conductance. The present study addresses the potassium channel subunit gene KCNE3 as a potential candidate for tinnitus susceptibility. 288 Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCNE3 open reading frame and in the adjacent region by direct sequencing. Allele frequencies were determined for 11 known variants of which two (F66F and R83H) were polymorphic but were not associated with the disorder. No novel variants were identified and only three carriers of R83H were noted. However, owing to a lack of power, our study can neither rule out effects of KCNE3 on the risk for developing chronic tinnitus, nor can it exclude a role in predicting the severity of tinnitus. More extensive investigations are invited, including tests for possible effects of variation in this ion channel protein on the response to treatment. PMID:21899751

  10. Characterization of and modulation by a beta-subunit of a human maxi KCa channel cloned from myometrium.

    PubMed

    Wallner, M; Meera, P; Ottolia, M; Kaczorowski, G J; Latorre, R; Garcia, M L; Stefani, E; Toro, L

    1995-01-01

    cDNAs encoding functional maxi KCa channel alpha-subunits (hslo) were cloned from human myometrium. Northern blot analysis revealed a high abundance of mRNA in human uterine smooth muscle. Calcium- and voltage-activated K+ currents were recorded from Xenopus laevis oocytes injected with hslo cRNA and compared with currents after reconstitution of oocyte membranes expressing cloned maxi KCa channels. The expressed channels displayed characteristics of native maxi KCa channels, including large conductance (280 pS in symmetrical 110 mM K+), calcium sensitivity, kinetics and pharmacology. Currents were activated by niflumic acid; blocked by tetraethylammonium, charybdotoxin and iberiotoxin; and were insensitive to lemakalim, pinacidil, apamin and 4-aminopyridine. Coexpression with the beta-subunit, cloned from bovine trachea smooth muscle, dramatically increased the apparent calcium sensitivity as evident from a leftward shift of the voltage-activation curves. Half maximal activation (V1/2), measured in 10 microM Ca2+, was 12 +/- 18 mV (+/- SD, n = 62) for the alpha-subunit alone and -87 +/- 10 mV (+/- SD, n = 39) in presence of the beta-subunit. PMID:8821792

  11. Dynamic phospholipid interaction of β2e subunit regulates the gating of voltage-gated Ca2+ channels

    PubMed Central

    Kim, Dong-Il; Park, Yongsoo; Jang, Deok-Jin

    2015-01-01

    High voltage-activated Ca2+ (CaV) channels are protein complexes containing pore-forming α1 and auxiliary β and α2δ subunits. The subcellular localization and membrane interactions of the β subunits play a crucial role in regulating CaV channel inactivation and its lipid sensitivity. Here, we investigated the effects of membrane phosphoinositide (PI) turnover on CaV2.2 channel function. The β2 isoform β2e associates with the membrane through electrostatic and hydrophobic interactions. Using chimeric β subunits and liposome-binding assays, we determined that interaction between the N-terminal 23 amino acids of β2e and anionic phospholipids was sufficient for β2e membrane targeting. Binding of the β2e subunit N terminus to liposomes was significantly increased by inclusion of 1% phosphatidylinositol 4,5-bisphosphate (PIP2) in the liposomes, suggesting that, in addition to phosphatidylserine, PIs are responsible for β2e targeting to the plasma membrane. Membrane binding of the β2e subunit slowed CaV2.2 current inactivation. When membrane phosphatidylinositol 4-phosphate and PIP2 were depleted by rapamycin-induced translocation of pseudojanin to the membrane, however, channel opening was decreased and fast inactivation of CaV2.2(β2e) currents was enhanced. Activation of the M1 muscarinic receptor elicited transient and reversible translocation of β2e subunits from membrane to cytosol, but not that of β2a or β3, resulting in fast inactivation of CaV2.2 channels with β2e. These results suggest that membrane targeting of the β2e subunit, which is mediated by nonspecific electrostatic insertion, is dynamically regulated by receptor stimulation, and that the reversible association of β2e with membrane PIs results in functional changes in CaV channel gating. The phospholipid–protein interaction observed here provides structural insight into mechanisms of membrane–protein association and the role of phospholipids in ion channel regulation. PMID

  12. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    PubMed Central

    Chopra, Sameer S; Watanabe, Hiroshi; Zhong, Tao P; Roden, Dan M

    2007-01-01

    Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish). Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3) and duplicate genes for beta4 (zbeta4.1, zbeta4.2). Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The identification of conserved

  13. Smooth muscle cell α2δ-1 subunits are essential for vasoregulation by CaV1.2 channels

    PubMed Central

    Bannister, John P.; Adebiyi, Adebowale; Zhao, Guiling; Narayanan, Damodaran; Thomas, Candice M.; Feng, Jessie Y.; Jaggar, Jonathan H.

    2009-01-01

    Rationale Voltage-dependent L-type (CaV1.2) Ca2+ channels are a heteromeric complex formed from pore forming α1 and auxiliary α2δ and β subunits. CaV1.2 channels are the principal Ca2+ influx pathway in arterial myocytes and regulate multiple physiological functions, including contraction. The macromolecular composition of arterial myocyte CaV1.2 channels remains poorly understood, with no studies having examined the molecular identity or physiological functions of α2δ subunits. Objective Investigate the functional significance of α2δ subunits in myocytes of resistance-size (100–200 μm diameter) cerebral arteries. Methods and Results α2δ-1 was the only α2δ isoform expressed in cerebral artery myocytes. Pregabalin, an α2δ-1/-2 ligand, and an α2δ-1 antibody, inhibited CaV1.2 currents in isolated myocytes. Acute pregabalin application reversibly dilated pressurized arteries. Using a novel application of surface biotinylation, data indicated that >95 % of CaV1.2 α1 and α2δ-1 subunits are present in the arterial myocyte plasma membrane. α2δ-1 knockdown using shRNA reduced plasma membrane-localized CaV1.2 α1 subunits, caused a corresponding elevation in cytosolic CaV1.2 α1 subunits, decreased intracellular Ca2+ concentration, inhibited pressure-induced vasoconstriction (“myogenic tone”), and attenuated pregabalin-induced vasodilation. Prolonged (24 hour) pregabalin exposure did not alter total α2δ-1 or CaV1.2 α1 proteins, but decreased plasma membrane expression of each subunit, which reduced myogenic tone. Conclusions α2δ-1 is essential for plasma membrane expression of arterial myocyte CaV1.2 α1 subunits. α2δ-1 targeting can block CaV1.2 channels directly and inhibit surface expression of CaV1.2 α1 subunits, leading to vasodilation. These data identify α2δ-1 as a novel molecular target in arterial myocytes, manipulation of which regulates contractility. PMID:19797702

  14. Properties of human brain sodium channel α-subunits expressed in HEK293 cells and their modulation by carbamazepine, phenytoin and lamotrigine

    PubMed Central

    Qiao, Xin; Sun, Guangchun; Clare, Jeffrey J; Werkman, Taco R; Wadman, Wytse J

    2014-01-01

    Background and purpose Voltage-activated Na+ channels contain one distinct α-subunit. In the brain NaV1.1, NaV1.2, NaV1.3 and NaV1.6 are the four most abundantly expressed α-subunits. The antiepileptic drugs (AEDs) carbamazepine, phenytoin and lamotrigine have voltage-gated Na+ channels as their primary therapeutic targets. This study provides a systematic comparison of the biophysical properties of these four α-subunits and characterizes their interaction with carbamazepine, phenytoin and lamotrigine. Experimental approach Na+ currents were recorded in voltage-clamp mode in HEK293 cells stably expressing one of the four α-subunits. Key results NaV1.2 and NaV1.3 subunits have a relatively slow recovery from inactivation, compared with the other subunits and NaV1.1 subunits generate the largest window current. Lamotrigine evokes a larger maximal shift of the steady-state inactivation relationship than carbamazepine or phenytoin. Carbamazepine shows the highest binding rate to the α-subunits. Lamotrigine binding to NaV1.1 subunits is faster than to the other α-subunits. Lamotrigine unbinding from the α-subunits is slower than that of carbamazepine and phenytoin. Conclusions and implications The four Na+ channel α-subunits show subtle differences in their biophysical properties, which, in combination with their (sub)cellular expression patterns in the brain, could contribute to differences in neuronal excitability. We also observed differences in the parameters that characterize AED binding to the Na+ channel subunits. Particularly, lamotrigine binding to the four α-subunits suggests a subunit-specific response. Such differences will have consequences for the clinical efficacy of AEDs. Knowledge of the biophysical and binding parameters could be employed to optimize therapeutic strategies and drug development. PMID:24283699

  15. Functional Expression of Rat Nav1.6 Voltage-Gated Sodium Channels in HEK293 Cells: Modulation by the Auxiliary β1 Subunit

    PubMed Central

    He, Bingjun; Soderlund, David M.

    2014-01-01

    The Nav1.6 voltage-gated sodium channel α subunit isoform is abundantly expressed in the adult rat brain. To assess the functional modulation of Nav1.6 channels by the auxiliary β1 subunit we expressed the rat Nav1.6 sodium channel α subunit by stable transformation in HEK293 cells either alone or in combination with the rat β1 subunit and assessed the properties of the reconstituted channels by recording sodium currents using the whole-cell patch clamp technique. Coexpression with the β1 subunit accelerated the inactivation of sodium currents and shifted the voltage dependence of channel activation and steady-state fast inactivation by approximately 5–7 mV in the direction of depolarization. By contrast the β1 subunit had no effect on the stability of sodium currents following repeated depolarizations at high frequencies. Our results define modulatory effects of the β1 subunit on the properties of rat Nav1.6-mediated sodium currents reconstituted in HEK293 cells that differ from effects measured previously in the Xenopus oocyte expression system. We also identify differences in the kinetic and gating properties of the rat Nav1.6 channel expressed in the absence of the β1 subunit compared to the properties of the orthologous mouse and human channels expressed in this system. PMID:24404202

  16. Helicobacter pylori VacA Toxin/Subunit p34: Targeting of an Anion Channel to the Inner Mitochondrial Membrane

    PubMed Central

    Harsman, Anke; Papatheodorou, Panagiotis; Reljic, Boris; Dian-Lothrop, Elke A.; Galmiche, Antoine; Kepp, Oliver; Becker, Lars; Günnewig, Kathrin; Wagner, Richard; Rassow, Joachim

    2010-01-01

    The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% β-strands, similar to pore-forming β-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal. PMID:20442789

  17. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  18. Electrophysiological characterization of spinal neuron sensitization by elevated calcium channel alpha-2-delta-1 subunit protein

    PubMed Central

    Zhou, Chunyi; Luo, Z. David

    2013-01-01

    Background Voltage-gated calcium channel α2δ1 subunit is the binding site for gabapentin, an effective drug in controlling neuropathic pain states including thermal hyperalgesia. Hyperalgesia to noxious thermal stimuli in both spinal-nerve-ligated (SNL) and voltage-gated calcium channel α2δ1 over-expressing transgenic (Tg) mice correlates with higher α2δ1 levels in dorsal root ganglia and dorsal spinal cord. In this study, we investigated whether abnormal synaptic transmission is responsible for thermal hyperalgesia induced by elevated α2δ1 expression in these models. Methods Behavioral sensitivities to thermal stimuli were test in L4 SNL and sham mice, as well as in α2δ1 Tg and wild-type mice. Miniature excitatory (mEPSC) and inhibitory (mIPSC) postsynaptic currents were recorded in superficial dorsal spinal cord neurons from these models using whole-cell patch clamp slice recording techniques. Results The frequency, but not amplitude, of mEPSC in superficial dorsal horn neurons was increased in SNL and α2δ1 Tg mice, which could be attenuated by gabapentin dose dependently. Intrathecal α2δ1 antisense oligodeoxynucleotide treatment diminished increased mEPSC frequency and gabapentin's inhibitory effects in elevated mEPSC frequency in the SNL mice. In contrast, neither the frequency, nor the amplitude, of mIPSC was altered in superficial dorsal horn neurons from the SNL and α2δ1 Tg mice. Conclusions Our findings support a role of peripheral nerve injury-induced α2δ1 in enhancing presynaptic excitatory input onto superficial dorsal spinal cord neurons that contributes to nociception development. PMID:24151064

  19. Differential Effects of Voltage-Gated Calcium Channel Blockers on Calcium Channel Alpha-2-Delta-1 Subunit Protein Mediated Nociception

    PubMed Central

    Chang, E.; Chen, X.; Kim, M.; Gong, N.; Bhatia, S.; Luo, Z.D.

    2014-01-01

    Background Overexpression of the voltage gated calcium channel (VGCC) alpha-2-delta1 subunit protein (Cavα2δ1) has been shown to cause pain states. However, whether VGCC are involved in pain states driven by abnormal Cavα2δ1 expression is not known. Methods Intrathecal injection of N-, P/Q-, and L-type VGCC blockers were tested in two models: a transgenic neuronal Cavα2δ1 overexpression (TG) model with behavioral hypersensitivity and a spinal nerve ligation (SNL) model with Cavα2δ1 overexpression in sensory pathways and neuropathy pain states. Results The nociceptive response to mechanical stimuli was significantly attenuated in both models with ω-conotoxin GVIA (an N-type VGCC blocker) and nifedipine (a L-type VGCC blocker), in which ω-conotoxin GVIA appeared more potent than nifedipine. Treatments with ω-agatoxin IVA (P-VGCC blocker), but not ω-conotoxin MVIIC (Q-VGCC blocker) had similar potency in the TG model as the N-type VGCC blocker, while both ω-agatoxin IVA and ω-conotoxin MVIIC had minimal effects in the SNL model compared to controls. Conclusion These findings suggest that, at the spinal level, N- and L-type VGCC are likely involved in behavioral hypersensitivity states driven by Cavα2δ1 overexpression. Q-type VGCC have minimal effects in both models. The anti-nociceptive effects of P-type VGCC blocker in the Cavα2δ1 TG mice, but minimally at the SNL model with presynaptic Cavα2δ1 upregulation, suggest that its potential action site(s) is at the post-synaptic and/or supraspinal level. These findings support that N-, L- and P/Q-type VGCC have differential contributions to behavioral hypersensitivity modulated by Cavα2δ1 dysregulation at the spinal cord level. PMID:25158907

  20. Properties, expression and potential roles of cardiac K+ channel accessory subunits: MinK, MiRPs, KChIP, and KChAP.

    PubMed

    Pourrier, M; Schram, G; Nattel, S

    2003-08-01

    Over the past 10 years, cDNAs encoding a wide range of pore-forming K(+)-channel alpha-subunits have been cloned and found to result in currents with many properties of endogenous cardiac K(+) channels upon homomeric expression in heterologous systems. However, a variety of remaining discrepancies have led to a search for other subunits that might be involved in the formation of native channels. Over the past few years, a series of accessory subunits has been discovered that modify current properties upon coexpression with alpha-subunits. One of these, the minimal K(+)-channel subunit minK, is essential for formation of the cardiac slow delayed-rectifier K(+) current, I(Ks), and may also interact in functionally important ways with other alpha-subunits. Another, the K(+)-channel interacting protein KChIP appears critical in formation of native transient outward current (I(to)) channels. The roles of 2 other accessory subunits, the minK-related peptide MiRP and the K(+)-channel accessory protein, KChAP, remain unclear. This article reviews the available knowledge regarding the accessory subunits minK, MiRP, KChIP and KChAP, dealing with their structure, effects on currents carried by coexpressed alpha-subunits, expression in cardiac tissues and potential physiological function. On the basis of the available information, we attempt to assess the potential involvement of these accessory K(+)-channel subunits in cardiac pathophysiology and in developing new therapeutic approaches. PMID:14502427

  1. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice.

    PubMed

    Kreifeldt, Max; Le, David; Treistman, Steven N; Koob, George F; Contet, Candice

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout (KO) mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC) and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE) or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 KO mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 KO mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the treatment of alcoholism

  2. Cocaine sensitization increases Ih current channel subunit 2 (HCN2) protein expression in structures of the Mesocorticolimbic System

    PubMed Central

    Santos-Vera, Bermary; Vázquez-Torres, Rafael; García Marrero, Hermes G.; Ramos Acevedo, Juan M.; Arencibia-Albite, Francisco; Vélez-Hernández, María E.; Miranda, Jorge D.; Jiménez-Rivera, Carlos A.

    2013-01-01

    Alteration of the biological activity among neuronal components of the Mesocorticolimbic (MCL) system has been implicated in the pathophysiology of drug abuse. Changes in the electrophysiological properties of neurons involved in the reward circuit seem to be of utmost importance in addiction. The Hyperpolarization-Activated Cyclic-Nucleotide Current, Ih, is a prominent mixed cation current present in neurons. The biophysical properties of the Ih and its potential modulatory role in cell excitability depend on the expression profile of the Hyperpolarization-activated cyclic nucleotide gated channel (HCN) subunits. We investigated whether cocaine-induced behavioral sensitization, an animal model of drug addiction, elicits region-specific changes in the expression of the HCN2 channel’s subunit in the MCL system. Tissue samples from the ventral tegmental area, prefrontal cortex, nucleus accumbens and hippocampus were analyzed using Western Blot. Our findings demonstrate that cocaine treatment induced a significant increase in the expression profile of the HCN2 subunit in both, its glycosylated and non-glycosylated protein isoforms, in all areas tested. The increase in the glycosylated isoform was only observed in the ventral tegmental area. Together, these data suggest that the observed changes in MCL excitability during cocaine addiction might be associated to alterations in the subunit composition of their HCN channels. PMID:23203153

  3. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  4. Large Conductance Voltage- and Ca2+-gated Potassium (BK) Channel β4 Subunit Influences Sensitivity and Tolerance to Alcohol by Altering Its Response to Kinases*

    PubMed Central

    Velázquez-Marrero, Cristina; Seale, Garrett E.; Treistman, Steven N.; Martin, Gilles E.

    2014-01-01

    Tolerance is a well described component of alcohol abuse and addiction. The large conductance voltage- and Ca2+-gated potassium channel (BK) has been very useful for studying molecular tolerance. The influence of association with the β4 subunit can be observed at the level of individual channels, action potentials in brain slices, and finally, drinking behavior in the mouse. Previously, we showed that 50 mm alcohol increases both α and αβ4 BK channel open probability, but only α BK develops acute tolerance to this effect. Currently, we explore the possibility that the influence of the β4 subunit on tolerance may result from a striking effect of β4 on kinase modulation of the BK channel. We examine the influence of the β4 subunit on PKA, CaMKII, and phosphatase modulation of channel activity, and on molecular tolerance to alcohol. We record from human BK channels heterologously expressed in HEK 293 cells composed of its core subunit, α alone (Insertless), or co-expressed with the β4 BK auxiliary subunit, as well as, acutely dissociated nucleus accumbens neurons using the cell-attached patch clamp configuration. Our results indicate that BK channels are strongly modulated by activation of specific kinases (PKA and CaMKII) and phosphatases. The presence of the β4 subunit greatly influences this modulation, allowing a variety of outcomes for BK channel activity in response to acute alcohol. PMID:25190810

  5. New Determinant for the CaVβ2 Subunit Modulation of the CaV1.2 Calcium Channel*

    PubMed Central

    Lao, Qi Zong; Kobrinsky, Evgeny; Harry, Jo Beth; Ravindran, Arippa; Soldatov, Nikolai M.

    2008-01-01

    Cavβ subunits support voltage gating of Cav1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Cavβ binds to the α-interaction domain (AID) and the IQ motif of the pore-forming α1C subunit, but these two interactions do not explain why the cardiac Cavβ2 subunit splice variants differentially modulate inactivation of Ca2+ currents (ICa). Previously we described β2Δg, a functionally active splice variant of human Cavβ2 lacking MAGUK. By deletion analysis of β2Δg, we have now identified a 41-amino acid C-terminal essential determinant (β2CED) that stimulates ICa in the absence of Cavβ subunits and conveys a +20-mV shift in the peak of the ICa-voltage relationship. The β2CED is targeted by α1C to the plasma membrane, forms a complex with α1C but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the α1C subunit C terminus as a functionally relevant β2CED binding site. The β2CED interacts with LA/IQ in a Ca2+- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Cavβ2/α1C interactions is sufficient to support ICa. However, β2CED does not support Ca2+-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca2+-induced inactivation. The β2CED is conserved only in Cavβ2 subunits. Thus, β2CED constitutes a previously unknown integrative part of the multifactorial mechanism of Cavβ2-subunit differential modulation of the Cav1.2 calcium channel that in β2Δg occurs without MAGUK. PMID:18411278

  6. β1- and β3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells

    PubMed Central

    Laedermann, Cédric J.; Syam, Ninda; Pertin, Marie; Decosterd, Isabelle

    2013-01-01

    Voltage-gated sodium channels (Navs) are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V½ of steady-state activation and inactivation and increased Nav1.7-mediated INa density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at ~250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa) was observed. This higher band shifted to an intermediate band (~260 kDa) when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression. PMID:24009557

  7. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  8. Identification of domains influencing assembly and ion channel properties in α7 nicotinic receptor and 5-HT3 receptor subunit chimaeras

    PubMed Central

    Gee, V J; Kracun, S; Cooper, S T; Gibb, A J; Millar, N S

    2007-01-01

    Background and purpose: Nicotinic acetylcholine receptors (nAChRs) and 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are members of the superfamily of neurotransmitter-gated ion channels. Both contain five subunits which assemble to form either homomeric or heteromeric subunit complexes. With the aim of identifying the influence of subunit domains upon receptor assembly and function, a series of chimaeras have been constructed containing regions of the neuronal nAChR α7 subunit and the 5-HT3 receptor 3A subunit. Experimental approach: A series of subunit chimaeras containing α7 and 5-HT3A subunit domains have been constructed and expressed in cultured mammalian cells. Properties of the expressed receptors have been examined by means of radioligand binding, agonist-induced changes in intracellular calcium and patch-clamp electrophysiology. Key results: Subunit domains which influence properties such as rectification, desensitization and conductance have been identified. In addition, the influence of subunit domains upon subunit folding, receptor assembly and cell-surface expression has been identified. Co-expression studies with the nAChR-associated protein RIC-3 revealed that, in contrast to the potentiating effect of RIC-3 on α7 nAChRs, RIC-3 caused reduced levels of cell-surface expression of some α7/5-HT3A chimaeras. Conclusions and implications: Evidence has been obtained which demonstrates that subunit transmembrane domains are critical for efficient subunit folding and assembly. In addition, functional characterization of subunit chimaeras revealed that both extracellular and cytoplasmic domains exert a dramatic and significant influence upon single-channel conductance. These data support a role for regions other than hydrophobic transmembrane domains in determining ion channel properties. PMID:17721553

  9. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain

    PubMed Central

    Holmqvist, Mats H.; Cao, Jie; Hernandez-Pineda, Ricardo; Jacobson, Michael D.; Carroll, Karen I.; Sung, M. Amy; Betty, Maria; Ge, Pei; Gilbride, Kevin J.; Brown, Melissa E.; Jurman, Mark E.; Lawson, Deborah; Silos-Santiago, Inmaculada; Xie, Yu; Covarrubias, Manuel; Rhodes, Kenneth J.; Distefano, Peter S.; An, W. Frank

    2002-01-01

    The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 α-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1–3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific “ball” domain of the Kvβ1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability. PMID:11805342

  10. A shared mechanism for lipid- and β-subunit-coordinated stabilization of the activated K+ channel voltage sensor

    PubMed Central

    Choi, Eun; Abbott, Geoffrey W.

    2010-01-01

    The low-dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage-sensing fourth transmembrane domain (S4) of voltage-gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho-head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K+ channel α subunit exhibits predominantly constitutive activation when in complexes with transmembrane β subunits, MinK-related peptide (MiRP) 1 (KCNE2) or MiRP2 (KCNE3). Here, using a 2-electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1-MiRP2 constitutive activation. Double-mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2-D54 and KCNQ1-R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor.—Choi, E., Abbott, G. W. A shared mechanism for lipid- and β-subunit-coordinated stabilization of the activated K+ channel voltage sensor. PMID:20040519

  11. A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K+ channel voltage sensor.

    PubMed

    Choi, Eun; Abbott, Geoffrey W

    2010-05-01

    The low-dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage-sensing fourth transmembrane domain (S4) of voltage-gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho-head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K(+) channel alpha subunit exhibits predominantly constitutive activation when in complexes with transmembrane beta subunits, MinK-related peptide (MiRP) 1 (KCNE2) or MiRP2 (KCNE3). Here, using a 2-electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1-MiRP2 constitutive activation. Double-mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2-D54 and KCNQ1-R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor. PMID:20040519

  12. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner

    PubMed Central

    Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David

    2015-01-01

    G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263

  13. Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1

    PubMed Central

    Brew, Helen M; Hallows, Janice L; Tempel, Bruce L

    2003-01-01

    A low voltage-activated potassium current, IKL, is found in auditory neuron types that have low excitability and precisely preserve the temporal pattern of activity present in their presynaptic inputs. The gene Kcnal codes for Kv1.1 potassium channel subunits, which combine in expression systems to produce channel tetramers with properties similar to those of IKL, including sensitivity to dendrotoxin (DTX). Kv1.1 is strongly expressed in neurons with IKL, including auditory neurons of the medial nucleus of the trapezoid body (MNTB). We therefore decided to investigate how the absence of Kv1.1 affected channel properties and function in MNTB neurons from mice lacking Kcnal. We used the whole cell version of the patch clamp technique to record from MNTB neurons in brainstem slices from Kcnal-null (−/−) mice and their wild-type (+/+) and heterozygous (+/−) littermates. There was an IKL in voltage-clamped −/− MNTB neurons, but it was about half the amplitude of the IKL in +/+ neurons, with otherwise similar properties. Consistent with this, −/− MNTB neurons were more excitable than their +/+ counterparts; they fired more than twice as many action potentials (APs) during current steps, and the threshold current amplitude required to generate an AP was roughly halved. +/− MNTB neurons had excitability and IKL amplitudes identical to the +/+ neurons. The IKL remaining in −/− neurons was blocked by DTX, suggesting the underlying channels contained subunits Kv1.2 and/or Kv1.6 (also DTX-sensitive). DTX increased excitability further in the already hyperexcitable −/− MNTB neurons, suggesting that −/−IKL limited excitability despite its reduced amplitude in the absence of Kv1.1 subunits. PMID:12611922

  14. Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N terminus

    PubMed Central

    Wallner, Martin; Meera, Pratap; Toro, Ligia

    1996-01-01

    The pore-forming α subunit of large conductance voltage- and Ca2+-sensitive K (MaxiK) channels is regulated by a β subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming α subunit necessary for β-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to β-subunit modulation, and analyzed the topology of the α subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel α subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1–S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers β-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function. PMID:8962157

  15. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus.

    PubMed

    Wallner, M; Meera, P; Toro, L

    1996-12-10

    The pore-forming alpha subunit of large conductance voltage- and Ca(2+)-sensitive K (MaxiK) channels is regulated by a beta subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming alpha subunit necessary for beta-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to beta-subunit modulation, and analyzed the topology of the alpha subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel alpha subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1-S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers beta-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function. PMID:8962157

  16. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel

    PubMed Central

    Kang, Lijun; Gao, Jingwei; Schafer, William R.; Xie, Zhixiong; Xu, X. Z. Shawn

    2010-01-01

    Summary Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none of them has been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using C. elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of micro-seconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results identify TRP-4 as the first TRP protein that functions as an essential pore-forming subunit of a native mechanotransduction channel. PMID:20696377

  17. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin.

    PubMed

    Meera, P; Wallner, M; Toro, L

    2000-05-01

    Large conductance voltage and Ca(2+)-activated K(+) (MaxiK) channels couple intracellular Ca(2+) with cellular excitability. They are composed of a pore-forming alpha subunit and modulatory beta subunits. The pore blockers charybdotoxin (CTx) and iberiotoxin (IbTx), at nanomolar concentrations, have been invaluable in unraveling MaxiK channel physiological role in vertebrates. However in mammalian brain, CTx-insensitive MaxiK channels have been described [Reinhart, P. H., Chung, S. & Levitan, I. B. (1989) Neuron 2, 1031-1041], but their molecular basis is unknown. Here we report a human MaxiK channel beta-subunit (beta4), highly expressed in brain, which renders the MaxiK channel alpha-subunit resistant to nanomolar concentrations of CTx and IbTx. The resistance of MaxiK channel to toxin block, a phenotype conferred by the beta4 extracellular loop, results from a dramatic ( approximately 1,000 fold) slowdown of the toxin association. However once bound, the toxin block is apparently irreversible. Thus, unusually high toxin concentrations and long exposure times are necessary to determine the role of "CTx/IbTx-insensitive" MaxiK channels formed by alpha + beta4 subunits. PMID:10792058

  18. A neuronal β subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin

    PubMed Central

    Meera, Pratap; Wallner, Martin; Toro, Ligia

    2000-01-01

    Large conductance voltage and Ca2+-activated K+ (MaxiK) channels couple intracellular Ca2+ with cellular excitability. They are composed of a pore-forming α subunit and modulatory β subunits. The pore blockers charybdotoxin (CTx) and iberiotoxin (IbTx), at nanomolar concentrations, have been invaluable in unraveling MaxiK channel physiological role in vertebrates. However in mammalian brain, CTx-insensitive MaxiK channels have been described [Reinhart, P. H., Chung, S. & Levitan, I. B. (1989) Neuron 2, 1031–1041], but their molecular basis is unknown. Here we report a human MaxiK channel β-subunit (β4), highly expressed in brain, which renders the MaxiK channel α-subunit resistant to nanomolar concentrations of CTx and IbTx. The resistance of MaxiK channel to toxin block, a phenotype conferred by the β4 extracellular loop, results from a dramatic (≈1,000 fold) slowdown of the toxin association. However once bound, the toxin block is apparently irreversible. Thus, unusually high toxin concentrations and long exposure times are necessary to determine the role of “CTx/IbTx-insensitive” MaxiK channels formed by α + β4 subunits. PMID:10792058

  19. A distinct three-helix centipede toxin SSD609 inhibits Iks channels by interacting with the KCNE1 auxiliary subunit

    PubMed Central

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (Iks) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed Iks current inhibition. Here, chemically synthesized SSD609 was shown to exert Iks inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K+ current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  20. Inter-Subunit Interactions across the Upper Voltage Sensing-Pore Domain Interface Contribute to the Concerted Pore Opening Transition of Kv Channels

    PubMed Central

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels. PMID:24340010

  1. Effects of the novel BK (KCa1.1) channel opener GoSlo-SR-5-130 are dependent on the presence of BKβ subunits

    PubMed Central

    Large, R J; Kshatri, A; Webb, T I; Roy, S; Akande, A; Bradley, E; Sergeant, G P; Thornbury, K D; McHale, N G; Hollywood, M A

    2015-01-01

    Background and Purpose GoSlo-SR compounds are efficacious BK (KCa1.1) channel openers, but little is known about their mechanism of action or effect on bladder contractility. We examined the effects of two closely related compounds on BK currents and bladder contractions. Experimental Approach A combination of electrophysiology, molecular biology and synthetic chemistry was used to examine the effects of two novel channel agonists on BK channels from bladder smooth muscle cells and in HEK cells expressing BKα alone or in combination with either β1 or β4 subunits. Key Results GoSlo-SR-5-6 shifted the voltage required for half maximal activation (V1/2) of BK channels approximately −100 mV, irrespective of the presence of regulatory β subunits. The deaminated derivative, GoSlo-SR-5-130, also shifted the activation V1/2 in smooth muscle cells by approximately −100 mV; however, this was reduced by ∼80% in HEK cells expressing only BKα subunits. When β1 or β4 subunits were co-expressed with BKα, efficacy was restored. GoSlo-SR-5-130 caused a concentration-dependent reduction in spontaneous bladder contraction amplitude and this was abolished by iberiotoxin, consistent with an effect on BK channels. Conclusions and Implications GoSlo-SR-5-130 required β1 or β4 subunits to mediate its full effects, whereas GoSlo-SR-5-6 worked equally well in the absence or presence of β subunits. GoSlo-SR-5-130 inhibited spontaneous bladder contractions by activating BK channels. The novel BK channel opener, GoSlo-SR-5-130, is approximately fivefold more efficacious on BK channels with regulatory β subunits and may be a useful scaffold in the development of drugs to treat diseases such as overactive bladder. PMID:25598230

  2. Ca(2+)-dependent inactivation of a cloned cardiac Ca2+ channel alpha 1 subunit (alpha 1C) expressed in Xenopus oocytes.

    PubMed Central

    Neely, A; Olcese, R; Wei, X; Birnbaumer, L; Stefani, E

    1994-01-01

    The alpha 1 subunit of cardiac Ca2+ channel, expressed alone or coexpressed with the corresponding beta subunit in Xenopus laevis oocytes, elicits rapidly inactivating Ca2+ currents. The inactivation has the following properties: 1) It is practically absent in external Ba2+; 2) it increases with Ca2+ current amplitudes; 3) it is faster at more negative potentials for comparable Ca2+ current amplitudes; 4) it is independent of channel density; and 5) it does not require the beta subunit. These findings indicate that the Ca2+ binding site responsible for inactivation is encoded in the alpha 1 subunit and suggest that it is located near the inner channel mouth but outside the membrane electric field. PMID:8075326

  3. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility.

    PubMed

    Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H; Rodgers, Karla K; Smith, Marci L; Wang, Jin-Shan; Pittler, Steven J; Kefalov, Vladimir J

    2016-04-15

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377

  4. An epilepsy mutation in the beta1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin.

    PubMed

    Lucas, Paul T; Meadows, Laurence S; Nicholls, Jane; Ragsdale, David S

    2005-05-01

    The antiepileptic drug phenytoin inhibits voltage-gated sodium channels. Phenytoin block is enhanced at depolarized membrane potentials and during high frequency channel activation. These properties, which are important for the clinical efficacy of the drug, depend on voltage-dependent channel gating. In this study, we examined the action of phenytoin on sodium channels, comprising a mutant auxiliary beta1 subunit (mutation C121Wbeta1), which causes the inherited epilepsy syndrome, generalized epilepsy with febrile seizures plus (GEFS+). Whole cell sodium currents in Chinese hamster ovary (CHO) cells coexpressing human Na(v)1.3 sodium channels and C121Wbeta1 exhibited altered gating properties, compared to currents in cells coexpressing Na(v)1.3 and wild type beta1. In addition mutant channels were less sensitive to inhibition by phenytoin, showing reduced tonic block at -70mV (EC(50)=26microM for C121Wbeta1 versus 11microM for wild type beta1) and less frequency-dependent inhibition in response to a 20Hz pulse train ( approximately 40% inhibition for C121Wbeta1 versus approximately 70% inhibition for wild type beta1, with 50microM phenytoin). Mutant and wild type channels did not differ in inactivated state affinity for phenytoin, suggesting that their pharmacological differences were secondary to their differences in voltage-dependent gating, rather than being caused by direct effects of the mutation on the drug receptor. Together, these data show that a sodium channel mutation responsible for epilepsy can also alter channel response to antiepileptic drugs. PMID:15922564

  5. Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels

    PubMed Central

    Bankston, John R.; Camp, Stacey S.; DiMaio, Frank; Lewis, Alan S.; Chetkovich, Dane M.; Zagotta, William N.

    2012-01-01

    Ion channels operate in intact tissues as part of large macromolecular complexes that can include cytoskeletal proteins, scaffolding proteins, signaling molecules, and a litany of other molecules. The proteins that make up these complexes can influence the trafficking, localization, and biophysical properties of the channel. TRIP8b (tetratricopetide repeat-containing Rab8b-interacting protein) is a recently discovered accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that contributes to the substantial dendritic localization of HCN channels in many types of neurons. TRIP8b interacts with the carboxyl-terminal region of HCN channels and regulates their cell-surface expression level and cyclic nucleotide dependence. Here we examine the molecular determinants of TRIP8b binding to HCN2 channels. Using a single-molecule fluorescence bleaching method, we found that TRIP8b and HCN2 form an obligate 4:4 complex in intact channels. Fluorescence-detection size-exclusion chromatography and fluorescence anisotropy allowed us to confirm that two different domains in the carboxyl-terminal portion of TRIP8b—the tetratricopepide repeat region and the TRIP8b conserved region—interact with two different regions of the HCN carboxyl-terminal region: the carboxyl-terminal three amino acids (SNL) and the cyclic nucleotide-binding domain, respectively. And finally, using X-ray crystallography, we determined the atomic structure of the tetratricopepide region of TRIP8b in complex with a peptide of the carboxy-terminus of HCN2. Together, these experiments begin to uncover the mechanism for TRIP8b binding and regulation of HCN channels. PMID:22550182

  6. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.

    PubMed

    King, Benjamin L; Shi, Ling Fang; Kao, Peter; Clusin, William T

    2016-03-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. PMID:26687710

  7. A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release

    PubMed Central

    Jose, Antony M.; Bany, I. Amy; Chase, Daniel L.; Koelle, Michael R.

    2007-01-01

    Transient receptor potential (TRP) channel subunits form homotetramers that function in sensory transduction. Heteromeric channels also form, but their physiological subunit compositions and functions are largely unknown. We found a dominant-negative mutant of the C. elegans TRPV (vanilloid-type) subunit OCR-2 that apparently incorporates into and inactivates OCR-2 homomers as well as heteromers with the TRPV subunits OCR-1 and -4, resulting in a premature egg-laying defect. This defect is reproduced by knocking out all three OCR genes, but not by any single knockout. Thus a mixture of redundant heteromeric channels prevents premature egg laying. These channels, as well as the G-protein Gαo, function in neuroendocrine cells to promote release of neurotransmitters that block egg laying until eggs filling the uterus deform the neuroendocrine cells. The TRPV channel OSM-9, previously suggested to be an obligate heteromeric partner of OCR-2 in sensory neurons, is expressed in the neuroendocrine cells but has no detectable role in egg laying. Our results identify a specific set of heteromeric TRPV channels that redundantly regulate neuroendocrine function and show that a subunit combination that functions in sensory neurons is also present in neuroendocrine cells but has no detectable function in these cells. PMID:17057248

  8. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus.

    PubMed

    Chouinard, S W; Wilson, G F; Schlimgen, A K; Ganetzky, B

    1995-07-18

    Genetic and physiological studies of the Drosophila Hyperkinetic (Hk) mutant revealed defects in the function or regulation of K+ channels encoded by the Shaker (Sh) locus. The Hk polypeptide, determined from analysis of cDNA clones, is a homologue of mammalian K+ channel beta subunits (Kv beta). Coexpression of Hk with Sh in Xenopus oocytes increases current amplitudes and changes the voltage dependence and kinetics of activation and inactivation, consistent with predicted functions of Hk in vivo. Sequence alignments show that Hk, together with mammalian Kv beta, represents an additional branch of the aldo-keto reductase superfamily. These results are relevant to understanding the function and evolutionary origin of Kv beta. PMID:7542775

  9. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    PubMed

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits. PMID:27397895

  10. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+channel beta4a subunit.

    PubMed

    Vendel, Andrew C; Rithner, Christopher D; Lyons, Barbara A; Horne, William A

    2006-02-01

    Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating. PMID:16385006

  11. Western blot analysis of BK channel β1‐subunit expression should be interpreted cautiously when using commercially available antibodies

    PubMed Central

    Bhattarai, Yogesh; Fernandes, Roxanne; Kadrofske, Mark M.; Lockwood, Lizbeth R.; Galligan, James J.; Xu, Hui

    2014-01-01

    Abstract Large conductance Ca2+‐activated K+ (BK) channels consist of pore‐forming α‐ and accessory β‐subunits. There are four β‐subunit subtypes (β1–β4), BK β1‐subunit is specific for smooth muscle cells (SMC). Reduced BK β1‐subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1‐subunit reduces channel activity and increases SMC contractility. Several anti‐BK β1‐subunit antibodies are commercially available; however, the specificity of most antibodies has not been tested or confirmed in the tissues from BK β1‐subunit knockout (KO) mice. In this study, we tested the specificity and sensitivity of six commercially available antibodies from five manufacturers. We performed western blot analysis on BK β1‐subunit enriched tissues (mesenteric arteries and colons) and non‐SM tissue (cortex of kidney) from wild‐type (WT) and BK β1‐KO mice. We found that antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1‐KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice, suggesting that these antibodies may lack specificity for the BK β1‐subunit. The absence of BK β1‐subunit mRNA expression in arteries, colons, and kidneys from BK β1‐KO mice was confirmed by RT‐PCR analysis. We conclude that these commercially available antibodies might not be reliable tools for studying BK β1‐subunit expression in murine tissues under the denaturing conditions that we have used. Data obtained using commercially available antibodies should be interpreted cautiously. Our studies underscore the importance of proper negative controls in western blot analyses. PMID:25355855

  12. CaMKII associates with CaV1.2 L-type calcium channels via selected β subunits to enhance regulatory phosphorylation

    PubMed Central

    Abiria, Sunday A.; Colbran, Roger J.

    2010-01-01

    Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type Calcium Channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel β1b or β2a subunits, but not with the β3 or β4 subunits (Grueter et al 2008, Biochemistry, 47:1760–1767). CaMKII-dependent facilitation of CaV1.2 LTCCs requires Thr498 phosphorylation in the β2a subunit (Grueter et al, 2006, Mol Cell, 23:641–650), but the relationship of this modulation to CaMKII interactions with LTCC subunits is unknown. Here we show that CaMKII co-immunoprecipitates with forebrain LTCCs that contain CaV1.2α1 and β1 or β2 subunits, but is not detected in LTCC complexes containing β4 subunits.4 CaMKIIα can be specifically tethered to the I/II linker of CaV1.2α1 subunits in vitro by the β1b or β2a subunits. Efficient targeting of CaMKIIα to the full-length CaV1.2α1 subunit in transfected HEK293 cells requires CaMKII binding to the β2a subunit. Moreover, disruption of CaMKII binding substantially reduced phosphorylation of β2a at Thr498 within the LTCC complex, without altering overall phosphorylation of Cav1.2α1 and β subunits. These findings demonstrate a biochemical mechanism underlying LTCC facilitation by CaMKII. PMID:19840220

  13. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs.

    PubMed

    Planells-Cases, Rosa; Lutter, Darius; Guyader, Charlotte; Gerhards, Nora M; Ullrich, Florian; Elger, Deborah A; Kucukosmanoglu, Asli; Xu, Guotai; Voss, Felizia K; Reincke, S Momsen; Stauber, Tobias; Blomen, Vincent A; Vis, Daniel J; Wessels, Lodewyk F; Brummelkamp, Thijn R; Borst, Piet; Rottenberg, Sven; Jentsch, Thomas J

    2015-12-14

    Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors. PMID:26530471

  14. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation

    PubMed Central

    2012-01-01

    Background Atrial fibrillation (AF) is the most common arrhythmia. The potassium current IKs is essential for cardiac repolarization. Gain-of-function mutations in KV7.1, the pore-forming α-subunit of the IKs channel, have been associated with AF. We hypothesized that early-onset lone AF is associated with mutations in the IKs channel regulatory subunit KCNE1. Methods In 209 unrelated early-onset lone AF patients (< 40 years) the entire coding sequence of KCNE1 was bidirectionally sequenced. We analyzed the identified KCNE1 mutants electrophysiologically in heterologous expression systems. Results Two non-synonymous mutations G25V and G60D were found in KCNE1 that were not present in the control group (n = 432 alleles) and that have not previously been reported in any publicly available databases or in the exom variant server holding exom data from more than 10.000 alleles. Proband 1 (female, age 45, G25V) had onset of paroxysmal AF at the age of 39 years. Proband 2 (G60D) was diagnosed with lone AF at the age of 33 years. The patient has inherited the mutation from his mother, who also has AF. Both probands had no mutations in genes previously associated with AF. In heterologous expression systems, both mutants showed significant gain-of-function for IKs both with respect to steady-state current levels, kinetic parameters, and heart rate-dependent modulation. Conclusions Mutations in KV7.1 leading to gain-of-function of IKs current have previously been described in lone AF, yet this is the first time a mutation in the beta-subunit KCNE1 is associated with the disease. This finding further supports the hypothesis that increased potassium current enhances AF susceptibility. PMID:22471742

  15. Differential gene expression profiles of two excitable rat cell lines after over-expression of WT- and C121W-β1 sodium channel subunits.

    PubMed

    Baroni, D; Moran, O

    2015-06-25

    Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β-Subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. In neuroectoderm GH3 and cardiac H9C2 cells, the over-expression of β1 subunit augments α subunit mRNA and protein levels as well as sodium current density. Interestingly, the introduction of the epileptogenic C121W-β1 subunit produces additional changes in the α-subunit expression pattern of H9C2 cells, leaving unaltered the sodium channel isoform composition of GH3 cells. The challenge of the present work was to identify those genes that were differentially expressed in response to WT- or C121W-β1 subunit over-expression in the two rat cell lines under analysis. Hence, we analyzed the total mRNA extracted from control-untransfected and from WT- and C121W-β1-transfected GH3 and H9C2 cells by DNA-microarray. We found that, in agreement with their different embryonal origin, the over-expression of WT- and C121W-β1 subunits modifies the expression of different gene sets in GH3 and H9C2 cells. Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W β1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel β1 subunit in the control of NaCh gene expression, and highlight once

  16. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.

    PubMed

    Xie, Li; Liang, Tao; Kang, Youhou; Lin, Xianguang; Sobbi, Roozbeh; Xie, Huanli; Chao, Christin; Backx, Peter; Feng, Zhong-Ping; Shyng, Show-Ling; Gaisano, Herbert Y

    2014-10-01

    Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating

  17. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels.

    PubMed

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-09-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl(-) channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  18. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  19. A critical GxxxA motif in the γ6 calcium channel subunit mediates its inhibitory effect on Cav3.1 calcium current

    PubMed Central

    Lin, Zuojun; Witschas, Katja; Garcia, Thomas; Chen, Ren-Shiang; Hansen, Jared P; Sellers, Zachary M; Kuzmenkina, Elza; Herzig, Stefan; Best, Philip M

    2008-01-01

    The eight members of the calcium channel γ subunit family are integral membrane proteins that regulate the expression and behaviour of voltage and ligand gated ion channels. While a subgroup consisting of γ2, γ3, γ4 and γ8 (the TARPs) modulate AMPA receptor localization and function, the γ1 and γ6 subunits conform to the original description of these proteins as regulators of voltage gated calcium channels. We have previously shown that the γ6 subunit is highly expressed in atrial myocytes and that it is capable of acting as a negative modulator of low voltage activated calcium current. In this study we extend our understanding of γ6 subunit modulation of low voltage activated calcium current. Using engineered chimeric constructs, we demonstrate that the first transmembrane domain (TM1) of γ6 is necessary for its inhibitory effect on Cav3.1 current. Mutational analysis is then used to identify a unique GxxxA motif within TM1 that is required for the function of the subunit strongly suggesting the involvement of helix–helix interactions in its effects. Results from co-immunoprecipitation experiments confirm a physical association of γ6 with the Cav3.1 channel in both HEK cells and atrial myocytes. Single channel analysis reveals that binding of γ6 reduces channel availability for activation. Taken together, the results of this study provide both a molecular and a mechanistic framework for understanding the unique ability of the γ6 calcium channel subunit to modulate low voltage activated (Cav3.1) calcium current density. PMID:18818244

  20. Independent and Joint Modulation of Rat Nav1.6 Voltage-Gated Sodium Channels by Coexpression with the Auxiliary β1 and β2 Subunits

    PubMed Central

    Tan, Jianguo; Soderlund, David M.

    2011-01-01

    The Nav1.6 voltage-gated sodium channel α subunit isoform is the most abundant isoform in the brain and is implicated in the transmission of high frequency action potentials. Purification and immunocytochemical studies imply that Nav1.6 exist predominantly as Nav1.6+β1+β2 heterotrimeric complexes. We assessed the independent and joint effects of the rat β1 and β2 subunits on the gating and kinetic properties of rat Nav1.6 channels by recording whole-cell currents in the two-electrode voltage clamp configuration following transient expression in Xenopus oocytes. The β1 subunit accelerated fast inactivation of sodium currents but had no effect on the voltage dependence of their activation and steady-state inactivation and also prevented the decline of currents following trains of high-frequency depolarizing prepulses. The β2 subunit selectively retarded the fast phase of fast inactivation and shifted the voltage dependence of activation towards depolarization without affecting other gating properties and had no effect on the decline of currents following repeated depolarization. The β1 and β2 subunits expressed together accelerated both kinetic phases of fast inactivation, shifted the voltage dependence of activation towards hyperpolarization, and gave currents with a persistent component typical of those recorded from neurons expressing Nav1.6 sodium channels. These results identify unique effects of the β1 and β2 subunits and demonstrate that joint modulation by both auxiliary subunits gives channel properties that are not predicted by the effects of individual subunits. PMID:21439942

  1. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin

    PubMed Central

    Hanner, Markus; Schmalhofer, William A.; Munujos, Petraki; Knaus, Hans-Günther; Kaczorowski, Gregory J.; Garcia, Maria L.

    1997-01-01

    Transient expression of either α or α+β subunits of the high-conductance Ca2+-activated K+ (maxi-K) channel has been achieved in COS-1 cells. Expression has been studied using charybdotoxin (ChTX), a peptidyl inhibitor that binds in the pore on the α subunit. Although some properties of monoiodotyrosine-ChTX (125I-ChTX) binding to membranes derived from each type of transfected cells appear to be identical, other parameters of the binding reaction are markedly different. Under low ionic strength conditions, the affinity constant for 125I-ChTX measured under equilibrium binding conditions is increased ca. 50-fold in the presence of the β subunit. The rate constant for 125I-ChTX association is enhanced ca. 5-fold, whereas the dissociation rate constant is decreased more than 7-fold when the β subunit is present. These data indicate that functional coassembly of maxi-K channel subunits can be obtained in a transient expression system, and that the β subunit has profound effects on 125I-ChTX binding. We postulate that certain negatively charged residues in the large extracellular loop of β attract the positively charged 125I-ChTX to its binding site on α through electrostatic interactions, and account for effects observed on ligand association kinetics. Moreover, another residue(s) in the loop of β must contribute to stabilization of the toxin-bound state, either by a direct interaction with toxin, or through an allosteric effect on the α subunit. Certain regions in the extracellular loop of the β subunit may be in close proximity to the pore of the channel, and could play an important role in maxi-K channel function. PMID:9096310

  2. The Cyclooctadepsipeptide Anthelmintic Emodepside Differentially Modulates Nematode, Insect and Human Calcium-Activated Potassium (SLO) Channel Alpha Subunits

    PubMed Central

    Schoenhense, Eva; Harder, Achim; Raming, Klaus; O’Kelly, Ita; Ndukwe, Kelechi; O’Connor, Vincent; Walker, Robert J.; Holden-Dye, Lindy

    2015-01-01

    The anthelmintic emodepside paralyses adult filarial worms, via a mode of action distinct from previous anthelmintics and has recently garnered interest as a new treatment for onchocerciasis. Whole organism data suggest its anthelmintic action is underpinned by a selective activation of the nematode isoform of an evolutionary conserved Ca2+-activated K+ channel, SLO-1. To test this at the molecular level we compared the actions of emodepside at heterologously expressed SLO-1 alpha subunit orthologues from nematode (Caenorhabditis elegans), Drosophila melanogaster and human using whole cell voltage clamp. Intriguingly we found that emodepside modulated nematode (Ce slo-1), insect (Drosophila, Dm slo) and human (hum kcnma1)SLO channels but that there are discrete differences in the features of the modulation that are consistent with its anthelmintic efficacy. Nematode SLO-1 currents required 100 μM intracellular Ca2+ and were strongly facilitated by emodepside (100 nM; +73.0 ± 17.4%; n = 9; p<0.001). Drosophila Slo currents on the other hand were activated by emodepside (10 μM) in the presence of 52 nM Ca2+ but were inhibited in the presence of 290 nM Ca2+ and exhibited a characteristic loss of rectification. Human Slo required 300nM Ca2+ and emodepside transiently facilitated currents (100nM; +33.5 ± 9%; n = 8; p<0.05) followed by a sustained inhibition (-52.6 ± 9.8%; n = 8; p<0.001). This first cross phyla comparison of the actions of emodepside at nematode, insect and human channels provides new mechanistic insight into the compound’s complex modulation of SLO channels. Consistent with whole organism behavioural studies on C. elegans, it indicates its anthelmintic action derives from a strong activation of SLO current, not observed in the human channel. These data provide an important benchmark for the wider deployment of emodepside as an anthelmintic treatment. PMID:26437177

  3. Requirement for functional BK channels in maintaining oscillation in venomotor tone revealed by species differences in expression of the β1 accessory subunits

    PubMed Central

    Xu, Hui; Kandlikar, Sachin S; Westcott, Erika B; Fink, Gregory D; Galligan, James J

    2011-01-01

    We determined the possible role of large-conductance Ca2+-activated K+ (BK) channels in regulation of venous tone in small capacitance veins and blood pressure. In rat mesenteric venous smooth muscle cells (MV SMC), BK channel α- and β1-subunits were co-expressed, unitary BK currents were detected, and single channel currents were sensitive to voltage and [Ca2+]i. Rat MV SMCs displayed Ca2+ sparks and iberiotoxin (IBTX)-sensitive spontaneous transient outward currents (STOCs). Under resting conditions in vitro, rat MV exhibited nifedipine-sensitive spontaneous oscillatory constrictions. Blockade of BK channels by paxilline and Ca2+ sparks by ryanodine constricted rat MV. Nifedipine caused venodilation and blocked paxilline-, KCl (20 mM) and BayK 8644-induced contraction. Acute inhibition of BK channels with IBTX in vivo increased blood pressure and reduced venous capacitance, measured as an increase in mean circulatory filling pressure in conscious rats. BK channel α-subunits and L-type Ca2+ channel α1-C subunits are expressed in murine MV. However, these channels are not functional as murine MV lacked nifedipine-sensitive basal tone and rhythmic constrictions. Murine MV were also insensitive to paxilline, ryanodine, KCl and BayK8644, consistent with our previous studies showing that murine MV do not have BK β1-subunits. These data show that not only there are species-dependent properties in ion channel control of venomotor tone, but also that BK channels are required for rhythmic oscillations in venous tone. PMID:21885988

  4. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle.

    PubMed

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. PMID:25981458

  5. ASIC2 Subunits Target Acid-Sensing Ion Channels to the Synapse via an Association with PSD-95

    PubMed Central

    Zha, Xiang-ming; Costa, Vivian; Harding, Anne Marie S.; Reznikov, Leah; Benson, Christopher J.; Welsh, Michael J.

    2009-01-01

    Acid-sensing ion channel-1a (ASIC1a) mediates H+-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not co-immunoprecipitate with PSD-95. We found that ASIC2 and ASIC1a associated in brain, and through its interaction with PSD-95, ASIC2 increased ASIC1a localization in dendritic spines. Consistent with earlier work showing that acidic pH elevated spine [Ca2+]i by activating ASIC1a, loss of ASIC2 decreased the percentage of spines responding to acid. Moreover, like a reduction of ASIC1a, the number of spine synapses fell in ASIC2-/- neurons. These results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function. PMID:19571134

  6. Auxiliary subunits operate as a molecular switch in determining gating behaviour of the unitary N-type Ca2+ channel current in Xenopus oocytes

    PubMed Central

    Wakamori, Minoru; Mikala, Gabor; Mori, Yasuo

    1999-01-01

    We systematically examined the biophysical properties of ω-conotoxin GVIA-sensitive neuronal N-type channels composed of various combinations of the α1B, α2/δ and β1b subunits in Xenopus oocytes. Whole-cell recordings demonstrated that coexpression of the β1b subunit decelerated inactivation, whereas the α2/δ accelerated both activation and inactivation, and cancelled the kinetic effects of the β1b. The α2/δ and the β1b controlled voltage dependence of activation differently: the β1b significantly shifted the current-voltage relationship towards the hyperpolarizing direction; however, the α2/δ shifted the relationship only slightly in the depolarizing direction. The extent of voltage-dependent inactivation was modified solely by the β1b. Unitary currents measured using a cell-attached patch showed stable patterns of opening that were markedly different among subunit combinations in their kinetic parameters. The α2/δ and the β1b subunits also acted antagonistically in regulating gating patterns of unitary N-type channels. Open time was shortened by the α2/δ, while the fraction of long opening was enhanced by the β1b. The α2/δ decreased opening probability (Po), while the β1b increased Po. α1Bα2/δβ1b produced unitary activity with an open time distribution value in between those of α1Bα2/δ and α1Bβ1b. However, both the α2/δ and the β1b subunits reduced the number of null traces. These results suggest that the auxiliary subunits alone and in combination contribute differently in forming gating apparatuses in the N-type channel, raising the possibility that subunit interaction contributes to the generation of functional diversity of N-type channels in native neuronal preparations also. PMID:10358108

  7. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding

    PubMed Central

    Yereddi, Nikitha R.; Cusdin, Fiona S.; Namadurai, Sivakumar; Packman, Len C.; Monie, Tom P.; Slavny, Peter; Clare, Jeffrey J.; Powell, Andrew J.; Jackson, Antony P.

    2013-01-01

    The β subunits of voltage-gated sodium (Nav) channels possess an extracellular immunoglobulin (Ig) domain that is related to the L1 family of cell-adhesion molecules (CAMs). Here we show that in HEK293 cells, secretion of the free Ig domain of the β3 subunit is reduced significantly when it is coexpressed with the full-length β3 and β1 subunits but not with the β2 subunit. Using immunoprecipitation, we show that the β3 subunit can mediate trans homophilic-binding via its Ig domain and that the β3-Ig domain can associate heterophilically with the β1 subunit. Evolutionary tracing analysis and structural modeling identified a cluster of surface-localized amino acids fully conserved between the Ig domains of all known β3 and β1 sequences. A notable feature of this conserved surface cluster is the presence of two adjacent cysteine residues that previously we have suggested may form a disulfide bond. We now confirm the presence of the disulfide bond in β3 using mass spectrometry, and we show that its integrity is essential for the association of the full-length, membrane-anchored β3 subunit with itself. However, selective reduction of this surface disulfide bond did not inhibit homophilic binding of the purified β3-Ig domain in free solution. Hence, the disulfide bond itself is unlikely to be part of the homophilic binding site. Rather, we suggest that its integrity ensures the Ig domain of the membrane-tethered β3 subunit adopts the correct orientation for productive association to occur in vivo.—Yereddi, N. R., Cusdin, F. S., Namadurai, S., Packman, L. C., Monie, T. P., Slavny, P., Clare, J. C., Powell, A. J., Jackson, A. P. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding. PMID:23118027

  8. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature

    PubMed Central

    2015-01-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m3 → m4). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741

  9. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    PubMed

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741

  10. Effects of MiRP1 and DPP6 β-subunits on the blockade induced by flecainide of KV4.3/KChIP2 channels

    PubMed Central

    Radicke, S; Vaquero, M; Caballero, R; Gómez, R; Núñez, L; Tamargo, J; Ravens, U; Wettwer, E; Delpón, E

    2008-01-01

    Background and purpose: The human cardiac transient outward potassium current (Ito) is believed to be composed of the pore-forming KV4.3 α-subunit, coassembled with modulatory β-subunits as KChIP2, MiRP1 and DPP6 proteins. β-Subunits can alter the pharmacological response of Ito; therefore, we analysed the effects of flecainide on KV4.3/KChIP2 channels coassembled with MiRP1 and/or DPP6 β-subunits. Experimental approach: Currents were recorded in Chinese hamster ovary cells stably expressing KV4.3/KChIP2 channels, and transiently transfected with either MiRP1, DPP6 or both, using the whole-cell patch-clamp technique. Key results: In control conditions, KV4.3/KChIP2/MiRP1 channels exhibited the slowest activation and inactivation kinetics and showed an ‘overshoot' in the time course of recovery from inactivation. The midpoint values (Vh) of the activation and inactivation curves for KV4.3/KChIP2/DPP6 and KV4.3/KChIP2/MiRP1/DPP6 channels were ≈10 mV more negative than Vh values for KV4.3/KChIP2 and KV4.3/KChIP2/MiRP1 channels. Flecainide (0.1–100 μM) produced a similar concentration-dependent blockade of total integrated current flow (IC50 ≈10 μM) in all the channel complexes. However, the IC50 values for peak current amplitude and inactivated channel block were significantly different. Flecainide shifted the Vh values of both the activation and inactivation curves to more negative potentials and apparently accelerated inactivation kinetics in all channels. Moreover, flecainide slowed recovery from inactivation in all the channel complexes and suppressed the ‘overshoot' in KV4.3/KChIP2/MiRP1 channels. Conclusions and implications: Flecainide directly binds to the KV4.3 α-subunit when the channels are in the open and inactivated state and the presence of the β-subunits modulates the blockade by altering the gating function. PMID:18536731

  11. Computational analysis of the R85C and R85H epilepsy mutations in Na+ channel beta1 subunits.

    PubMed

    Thomas, E A; Xu, R; Petrou, S

    2007-07-29

    Mutations in Na+ channels cause a variety of epilepsy syndromes. Analysis of these mutations shows a range of simultaneous functional consequences, each of which may increase or decrease membrane excitability, making it difficult to predict the combined effect on neuron firing. This may be addressed by building mathematical models of Na+ channel gating and using them in neuron models to predict responses to natural stimuli. The R85C and R85H mutations of the beta1 subunit cause generalized epilepsy syndromes in humans, and an experimental study showed that these mutations shift steady-state activation in the negative direction, which predicts increased excitability, and shift fast inactivation in the negative direction, which predicts decreased excitability. In addition, the R85C also shifts slow inactivation in the negative direction. To predict changes in neuron excitability resulting from these contradictory effects we built Na+ channel models based on our earlier data and on new measurements of the rate of slow inactivation over a range of potentials. Use of these Na+ channel models in simple neuron models revealed that both mutations cause an increase in excitability but the R85H mutation was more excitable. This is due to differences in steady-state slow inactivation and to subtle differences in fast kinetics captured by the model fitting process. To understand the effect of changes in different gating processes and to provide a simple guide for interpreting changes caused by mutations, we performed a sensitivity analysis. Using the wild-type model we shifted each activation curve by +/-5 mV or altered gating rates up or down by 20%. Excitability was most sensitive to changes in voltage dependence of activation, followed by voltage dependence of inactivation and then slow inactivation. By contrast, excitability was relatively insensitive to gating rates. PMID:17604911

  12. Subunit and frequency-dependent inhibition of Acid Sensing Ion Channels by local anesthetic tetracaine

    PubMed Central

    2013-01-01

    Background Extracellular acidosis is a prominent feature of multiple pathological conditions, correlating with pain sensation. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are distributed throughout the central and peripheral nervous systems. Activation of ASICs, particularly ASIC3 and ASIC1a channels, by acidic pH and the resultant depolarization of nociceptive primary sensory neurons, participates in nociception. Agents that inhibit the activation of ASICs are thus expected to be analgesic. Here, we studied the effect of local anesthetic tetracaine on ASIC currents. Results Tetracaine inhibited the peak ASIC3 current in a concentration-dependent manner with an IC50 of 9.96 ± 1.88 mM. The degree of inhibition by tetracaine was dependent on the extracellular pH but independent of the membrane potential. Furthermore, 3 mM tetracaine also inhibited 29.83% of the sustained ASIC3 current. In addition to ASIC3, tetracaine inhibited the ASIC1a and ASIC1β currents. The inhibition of the ASIC1a current was influenced by the frequency of channel activation. In contrast to ASIC3, ASIC1a, and ASIC1β currents, ASIC2a current was not inhibited by tetracaine. In cultured mouse dorsal root ganglion neurons, 1–3 mM tetracaine inhibited both the transient and sustained ASIC currents. At pH4.5, 3 mM tetracaine reduced the peak ASIC current to 60.06 ± 4.51%, and the sustained current to 48.24 ± 7.02% of the control values in dorsal root ganglion neurons. In contrast to ASICs, voltage-gated sodium channels were inhibited by acid, with 55.15% inhibition at pH6.0 and complete inhibition at pH5.0. Conclusions These findings disclose a potential new mechanism underlying the analgesic effects of local anesthetics, particularly in acidic conditions where their primary target (i.e. voltage-gated Na+ channel) has been suppressed by protons. PMID:23758830

  13. Kir2.4 and Kir2.1 K+ channel subunits co-assemble: a potential new contributor to inward rectifier current heterogeneity

    PubMed Central

    Schram, Gernot; Melnyk, Peter; Pourrier, Marc; Wang, Zhiguo; Nattel, Stanley

    2002-01-01

    Heteromeric channel assembly is a potential source of physiological variability. The potential significance of Kir2 subunit heterotetramerization has been controversial, but recent findings suggest that heteromultimerization of Kir2.1-3 may be significant. This study was designed to investigate whether the recently described Kir2.4 subunit can form heterotetramers with the important subunit Kir2.1, and if so, to investigate whether the resulting heterotetrameric channels are functional. Co-expression of either dominant negative Kir2.1 or Kir2.4 subunits in Xenopus oocytes with either wild-type Kir2.1 or 2.4 strongly decreased resulting current amplitude. To examine physical association between Kir2.1 and Kir2.4, Cos-7 cells were co-transfected with a His6-tagged Kir2.1 subunit (Kir2.1-His6) and a FLAG-tagged Kir2.4 subunit (Kir2.4-FLAG). After pulldown with a His6-binding resin, Kir2.4-FLAG could be detected in the eluted cell lysate by Western blotting, indicating co-assembly of Kir2.1-His6 and Kir2.4-FLAG. Expression of a tandem construct containing covalently linked Kir2.1 and 2.4 subunits led to robust current expression. Kir2.1-Kir2.4 tandem subunit expression, as well as co-injection of Kir2.1 and Kir2.4 cRNA into Xenopus oocytes, produced currents with barium sensitivity greater than that of Kir2.1 or Kir2.4 subunit expression alone. These results show that Kir2.4 subunits can co-assemble with Kir2.1 subunits, and that co-assembled channels are functional, with properties different from those of Kir2.4 or Kir2.1 alone. Since Kir2.1 and Kir2.4 mRNAs have been shown to co-localize in the CNS, Kir2.1 and Kir2.4 heteromultimers might play a role in the heterogeneity of native inward rectifier currents. PMID:12381809

  14. Disruption of the potassium channel regulatory subunit KCNE2 causes iron-deficient anemia

    PubMed Central

    Salsbury, Grace; Cambridge, Emma L.; McIntyre, Zoe; Arends, Mark J.; Karp, Natasha A.; Isherwood, Christopher; Shannon, Carl; Hooks, Yvette; Ramirez-Solis, Ramiro; Adams, David J.; White, Jacqueline K.; Speak, Anneliese O.

    2014-01-01

    Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype. PMID:25127743

  15. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents.

    PubMed

    Mani, Bharath K; Robakowski, Christina; Brueggemann, Lyubov I; Cribbs, Leanne L; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L

    2016-03-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4. PMID:26700561

  16. A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels.

    PubMed

    Meera, P; Wallner, M; Jiang, Z; Toro, L

    1996-03-11

    KV,Ca beta subunit dramatically increases the apparent calcium sensitivity of the alpha subunit of MaxiK channels when probed in the micromolar [Ca2+]i range. Analysis in a wide range of [Ca2+]i revealed that this functional coupling is exquisitely modulated by [Ca2+]i. Ca2+ ions switch MaxiK alpha+beta complex into a functionally coupled state at concentrations beyond resting [Ca2+]i. At [Ca2+] < or = 100 nM, MaxiK activity becomes independent of Ca2+, is purely voltage-activated, and its functional coupling with its beta subunit is released. The functional switch develops at [Ca2+]i that occur during cellular excitation, providing the molecular basis of how MaxiK channels regulate smooth muscle excitability and neurotransmitter release. PMID:8612769

  17. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  18. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  19. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart.

    PubMed Central

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from the rabbit heart alpha 1 include a shortened N-terminus, a unique C-terminal insertion, and both forms of an alternatively spliced motif IV S3 region. The shortened N-terminus provides optimal access to consensus sequences thought to facilitate translation. Northern blot analysis revealed a single hybridizing mRNA species of 9.4 kb. The gene for the human heart alpha 1 subunit was localized specifically to the distal region of chromosome 12p13. The cloned alpha 1 subunit was expressed in Xenopus oocytes and single-channel analyses revealed native-like pharmacology and channel properties. Images Fig. 3 Fig. 4 Fig. 5 PMID:8392192

  20. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    PubMed Central

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  1. Catalytic mechanism and substrate specificity of the β-subunit of the voltage-gated potassium (Kv) channel

    PubMed Central

    Tipparaju, Srinivas M.; Barski, Oleg A.; Srivastava, Sanjay; Bhatnagar, Aruni

    2008-01-01

    The β-subunits of voltage-gated potassium (Kv) channels are members of aldo-keto reductase (AKR) superfamily. These proteins regulate inactivation and membrane localization of Kv1 and Kv4 channels. The Kvβ proteins bind to pyridine nucleotides with high affinity; however, their catalytic properties remain unclear. Here we report that recombinant rat Kvβ2 catalyzes the reduction of a wide range of aldehydes and ketones. The rate of catalysis was slower (0.06 to 0.2 min−1) than that of other AKRs, but displayed the expected hyperbolic dependence on substrate concentration, with no evidence of allosteric cooperativity. Catalysis was prevented by site-directed substitution of Tyr-90 with phenylalanine, indicating that the acid-base catalytic residue, identified in other AKRs, has a conserved function in Kvβ2. The protein catalyzed the reduction of a broad range of carbonyls including aromatic carbonyls, electrophilic aldehydes and prostaglandins, phospholipid and sugar aldehydes. Little or no activity was detected with carbonyl steroids. Initial velocity profiles were consistent with an ordered bi-bi rapid-equilibrium mechanism in which NADPH binding precedes carbonyl binding. Significant primary kinetic isotope effects (2.0 – 3.1) were observed under single and multiple turnover conditions, indicating that the bond-breaking chemical step is rate-limiting. Structure-activity relationships with a series of para-substituted benzaldehydes indicated that the electronic interactions predominate during substrate binding and that no significant charge develops during the transition state. These data strengthen the view that Kvβ proteins are catalytically-active AKRs that impart redox-sensitivity to Kv channels. PMID:18672894

  2. Functional and biochemical analysis of a sodium channel beta1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1.

    PubMed

    Meadows, Laurence S; Malhotra, Jyoti; Loukas, Andrew; Thyagarajan, Veena; Kazen-Gillespie, Kristin A; Koopman, Matthew C; Kriegler, Steven; Isom, Lori L; Ragsdale, David S

    2002-12-15

    Generalized epilepsy with febrile seizures plus type 1 is an inherited human epileptic syndrome, associated with a cysteine-to-tryptophan (C121W) mutation in the extracellular immunoglobin domain of the auxiliary beta1 subunit of the voltage-gated sodium channel. The mutation disrupts beta1 function, but how this leads to epilepsy is not understood. In this study, we make several observations that may be relevant for understanding why this beta1 mutation results in seizures. First, using electrophysiological recordings from mammalian cell lines, coexpressing sodium channel alpha subunits and either wild-type beta1 or C121Wbeta1, we show that loss of beta1 functional modulation, caused by the C121W mutation, leads to increased sodium channel availability at hyperpolarized membrane potentials and reduced sodium channel rundown during high-frequency channel activity, compared with channels coexpressed with wild-type beta1. In contrast, neither wild-type beta1 nor C121Wbeta1 significantly affected sodium current time course or the voltage dependence of channel activation. We also show, using a Drosophila S2 cell adhesion assay, that the C121W mutation disrupts beta1-beta1 homophilic cell adhesion, suggesting that the mutation may alter the ability of beta1 to mediate protein-protein interactions critical for sodium channel localization. Finally, we demonstrate that neither functional modulation nor cell adhesion mediated by wild-type beta1 is occluded by coexpression of C121Wbeta1, arguing against the idea that the mutant beta1 acts as a dominant-negative subunit. Together, these data suggest that C121Wbeta1 causes subtle effects on channel function and subcellular distribution that bias neurons toward hyperexcitabity and epileptogenesis. PMID:12486163

  3. Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability.

    PubMed

    Wang, Bin; Bugay, Vladislav; Ling, Ling; Chuang, Hui-Hsui; Jaffe, David B; Brenner, Robert

    2016-08-01

    BK channels are large-conductance calcium- and voltage-activated potassium channels with diverse properties. Knockout of the accessory BK β4-subunit in hippocampus dentate gyrus granule neurons causes BK channels to change properties from slow-gated type II channels to fast-gated type I channels that sharpen the action potential, increase the fast afterhyperpolarization (fAHP) amplitude, and increase spike frequency. Here we studied the calcium channels that contribute to fast-gated BK channel activation and increased excitability of β4 knockout neurons. By using pharmacological blockers during current-clamp recording, we find that BK channel activation during the fAHP is dependent on ryanodine receptor activation. In contrast, L-type calcium channel blocker (nifedipine) affects the BK channel-dependent repolarization phase of the action potential but has no effect on the fAHP. Reducing BK channel activation during the repolarization phase with nifedipine, or during the fAHP with ryanodine, indicated that it is the BK-mediated increase of the fAHP that confers proexcitatory effects. The proexcitatory role of the fAHP was corroborated using dynamic current clamp. Increase or decrease of the fAHP amplitude during spiking revealed an inverse relationship between fAHP amplitude and interspike interval. Finally, we show that the seizure-prone ryanodine receptor gain-of-function (R2474S) knockin mice have an unaltered repolarization phase but larger fAHP and increased AP frequency compared with their control littermates. In summary, these results indicate that an important role of the β4-subunit is to reduce ryanodine receptor-BK channel functional coupling during the fAHP component of the action potential, thereby decreasing excitability of dentate gyrus neurons. PMID:27146987

  4. The effects of eslicarbazepine on persistent Na⁺ current and the role of the Na⁺ channel β subunits.

    PubMed

    Doeser, Anna; Soares-da-Silva, Patricio; Beck, Heinz; Uebachs, Mischa

    2014-02-01

    Eslicarbazepine is the major active metabolite of eslicarbazepine acetate, a once-daily antiepileptic drug approved in Europe as adjunctive therapy for refractory partial-onset seizures in adults. This study was aimed to determine the effects of eslicarbazepine on persistent Na(+) currents (INaP) and the role of β subunits in modulating these effects. To study the role of β subunits of the Na(+) channel we used a mouse line genetically lacking either the β1 or β2 subunit, encoded by the SCN1B or SCN2B gene, respectively. Whole cell patch-clamp recordings were performed on CA1 neurons in hippocampal slices under control conditions and application of 300 μM eslicarbazepine. We examined INaP in acutely isolated CA1 neurons and repetitive firing in hippocampal slices of mice lacking β subunits and corresponding wild-type littermates. We found that eslicarbazepine caused a significant reduction of maximal INaP conductance and an efficient reduction of the firing rate in wild-type mice. We have shown previously a paradoxical increase of conductance of INaP caused by carbamazepine in mice lacking β1 subunits in the subthreshold range, leading to a failure in affecting neuronal firing (Uebachs et al., 2010). In contrast, eslicarbazepine did not cause this paradoxical effect on INaP in SCN1B null mice. Consequently, the effects of eslicarbazepine on repetitive firing were maintained in these animals. These results indicate that eslicarbazepine exerts effects on INaP similar to those known for carbamazepine. However, in animals lacking the β1 Na(+) channel subunit these effects are maintained. Therefore, eslicarbazepine potentially overcomes a previously described putative mechanism of resistance to established Na(+) channel acting antiepileptic drugs. PMID:24368131

  5. Differential Protein Kinase C-dependent Modulation of Kv7.4 and Kv7.5 Subunits of Vascular Kv7 Channels*

    PubMed Central

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Cribbs, Leanne L.; Freda, Jessica; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L.

    2014-01-01

    The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels. PMID:24297175

  6. Design of Mutant β2 Subunits as Decoy Molecules to Reduce the Expression of Functional Ca2+ Channels in Cardiac Cells

    PubMed Central

    Télémaque, Sabine; Sonkusare, Swapnil; Grain, Terrie; Rhee, Sung W.; Stimers, Joseph R.; Rusch, Nancy J.; Marsh, James D.

    2016-01-01

    Calcium influx through long-lasting (“L-type”) Ca2+ channels (CaV) drives excitation-contraction in the normal heart. Dysregulation of this process contributes to Ca2+ overload, and interventions that reduce expression of the pore-forming α1 subunit may alleviate cytosolic Ca2+ excess. As a molecular approach to disrupt the assembly of CaV1.2 (α1C) channels at the cell membrane, we targeted the Ca2+ channel β2 subunit, an intracellular chaperone that interacts with α1C via its β interaction domain (BID) to promote CaV1.2 channel expression. Recombinant adenovirus expressing either the full β2 subunit (Full-β2) or truncated β2 subunit constructs lacking either the C terminus, N terminus, or both (N-BID, C-BID, and BID, respectively) fused to green fluorescent protein were developed as potential decoys and overexpressed in HL-1 cells. Fluorescence microscopy revealed that the localization of Full-β2 at the surface membrane was associated with increased Ca2+ current mainly attributed to CaV1.2 channels. In contrast, truncated N-BID and C-BID constructs showed punctate intracellular expression, and BID showed a diffuse cytosolic distribution. Total expression of the α1C protein of CaV1.2 channels was similar between groups, but HL-1 cells overexpressing C-BID and BID exhibited reduced Ca2+ current. C-BID and BID also attenuated Ca2+ current associated with another L-type Ca2+ channel, CaV1.3, but they did not reduce transient Ca2+ currents attributed to CaV3 channels. These results suggest that β2 subunit mutants lacking the N terminus may preferentially disrupt the proper localization of L-type Ca2+ channels in the cell membrane. Cardiac-specific delivery of these decoy molecules in vivo may represent a gene-based treatment for pathologies involving Ca2+ overload. PMID:18184831

  7. The β1-subunit of Na+/K+-ATPase interacts with BKCa channels and affects their steady-state expression on the cell surface

    PubMed Central

    Jha, Smita; Dryer, Stuart E.

    2009-01-01

    Large conductance Ca2+- activated K+ channels (BKCa) encoded by the Slo1 gene play a role in the physiological regulation of many cell types. Here, we show that the β1 subunit of Na+/K+-ATPase (NKβ1) interacts with the cytoplasmic COOH-terminal region of Slo1 proteins. Reduced expression of endogenous NKβ1 markedly inhibits evoked BKCa currents with no apparent effect on their gating. In addition, NKβ1 down-regulated cells show decreased density of Slo1 subunits on the cell surface. PMID:19729011

  8. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding.

    PubMed

    Yereddi, Nikitha R; Cusdin, Fiona S; Namadurai, Sivakumar; Packman, Len C; Monie, Tom P; Slavny, Peter; Clare, Jeffrey J; Powell, Andrew J; Jackson, Antony P

    2013-02-01

    The β subunits of voltage-gated sodium (Na(v)) channels possess an extracellular immunoglobulin (Ig) domain that is related to the L1 family of cell-adhesion molecules (CAMs). Here we show that in HEK293 cells, secretion of the free Ig domain of the β3 subunit is reduced significantly when it is coexpressed with the full-length β3 and β1 subunits but not with the β2 subunit. Using immunoprecipitation, we show that the β3 subunit can mediate trans homophilic-binding via its Ig domain and that the β3-Ig domain can associate heterophilically with the β1 subunit. Evolutionary tracing analysis and structural modeling identified a cluster of surface-localized amino acids fully conserved between the Ig domains of all known β3 and β1 sequences. A notable feature of this conserved surface cluster is the presence of two adjacent cysteine residues that previously we have suggested may form a disulfide bond. We now confirm the presence of the disulfide bond in β3 using mass spectrometry, and we show that its integrity is essential for the association of the full-length, membrane-anchored β3 subunit with itself. However, selective reduction of this surface disulfide bond did not inhibit homophilic binding of the purified β3-Ig domain in free solution. Hence, the disulfide bond itself is unlikely to be part of the homophilic binding site. Rather, we suggest that its integrity ensures the Ig domain of the membrane-tethered β3 subunit adopts the correct orientation for productive association to occur in vivo. PMID:23118027

  9. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus).

    PubMed

    Jiang, Jie; Zheng, Zonglin; Wang, Kaiyu; Wang, Jun; He, Yang; Wang, Erlong; Chen, Defang; Ouyang, Ping; Geng, Yi; Huang, Xiaoli

    2015-01-01

    Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund's Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish. PMID:26602918

  10. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus)

    PubMed Central

    Jiang, Jie; Zheng, Zonglin; Wang, Kaiyu; Wang, Jun; He, Yang; Wang, Erlong; Chen, Defang; Ouyang, Ping; Geng, Yi; Huang, Xiaoli

    2015-01-01

    Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund’s Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish. PMID:26602918

  11. Liddle-Mutation of the β-Subunit, but not the γ-Subunit, Attenuates Protein Kinase C-Mediated Inhibition of Human Epithelial Sodium Channels (hENaC).

    PubMed

    Robins, Gerard G; Sandle, Geoffrey I

    2016-06-01

    Mammalian distal nephron and distal colon, prime sites for Na(+) homeostasis, contain amiloride-sensitive epithelial sodium channels (ENaC). Protein kinase C (PKC) inhibits ENaC by phosphorylating serine and threonine residues within COOH termini of the β- and/or γ-subunits. Although some of these phosphorylation sites are close to the PY motifs, it is unclear whether they remain susceptible to PKC in Liddle-mutated ENaC β- and/or γ-subunits, where PY motifs are truncated, resulting in increased apical ENaC expression. We therefore studied the effects of PKC in wild-type and Liddle-mutated human epithelial Na(+) channels (hENaC) expressed in Xenopus oocytes, using the dual-electrode voltage clamp technique. PKC activation using 500 nmol/l phorbol 12-myristate 13-acetate (PMA) decreased amiloride-sensitive Na(+) currents by 80 % in oocytes expressing wild-type hENaC, an effect largely prevented by co-exposure to 50 µmol/l calphostin C (a specific inhibitor of PKC), whereas 500 nmol/l phorbol didecanoate (PDD), an inactive phorbol ester which does not stimulate PKC, had no effect. In oocytes expressing hENaC containing the Liddle-mutated β-subunit, PMA elicited a 54 % decrease in amiloride-sensitive Na(+) currents, significantly (P < 0.0025) less than that in oocytes expressing wild-type hENaC. By contrast, in oocytes expressing hENaC containing the Liddle-mutated γ-subunit, PMA elicited a 68 % decrease in amiloride-sensitive Na(+) current, similar (P = 0.10) to that in oocytes expressing wild-type hENaC. We conclude that hENaC incorporating the Liddle-mutated β-subunit lacks one or more PKC phosphorylation sites, thereby significantly reducing the inhibitory effect of PKC on Na(+) channel activity, whereas hENaC incorporating Liddle-mutated γ-subunits remains as susceptible to PKC as wild-type hENaC. PMID:26759146

  12. Expression and function of the epithelial sodium channel δ-subunit in human respiratory epithelial cells in vitro.

    PubMed

    Schwagerus, Elena; Sladek, Svenja; Buckley, Stephen T; Armas-Capote, Natalia; Alvarez de la Rosa, Diego; Harvey, Brian J; Fischer, Horst; Illek, Beate; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2015-11-01

    Using human airway epithelial cell lines (i.e. NCI-H441 and Calu-3) as well as human alveolar epithelial type I-like (ATI) cells in primary culture, we studied the contribution of the epithelial sodium channel δ-subunit (δ-ENaC) to transepithelial sodium transport in human lung in vitro. Endogenous δ-ENaC protein was present in all three cell types tested; however, protein abundance was low, and no expression was detected in the apical cell membrane of these cells. Similarly, known modulators of δ-ENaC activity, such as capsazepine and icilin (activators) and Evans blue (inhibitor), did not show effects on short-circuit current (I SC), suggesting that δ-ENaC is not involved in the modulation of transcellular sodium absorption in NCI-H441 cell monolayers. Over-expression of δ-ENaC in NCI-H441 cells resulted in detectable protein expression in the apical cell membrane, as well as capsazepine and icilin-stimulated increases in I SC that were effectively blocked by Evans blue and that were consistent with δ-ENaC activation and inhibition, respectively. Consequently, these observations suggest that δ-ENaC expression is low in NCI-H441, Calu-3, and ATI cells and does not contribute to transepithelial sodium absorption. PMID:25677639

  13. The diagnosis of Liddle syndrome by identification of a mutation in the beta subunit of the epithelial sodium channel.

    PubMed Central

    Jackson, S N; Williams, B; Houtman, P; Trembath, R C

    1998-01-01

    Hypertension is a common multifactorial disorder associated with considerable morbidity and mortality. The kidney plays a major role in the long term regulation of blood pressure. Liddle syndrome (pseudo-hyperaldosteronism) is one of a number of monogenic disorders of salt and water transport. In a kindred with at least four affected members suffering from Liddle syndrome, we confirmed by direct DNA sequencing the identity of a novel heterozygous mutation in h betaENaC, the gene encoding the beta subunit of the amiloride sensitive epithelial sodium channel which is expressed in the distal nephron. Single stranded conformational polymorphism analysis showed cosegregation of the mutant allele within the kindred with the Liddle phenotype. An insertion of an additional cytosine into a string of six located between codons 593 and 595 results in a sequence frameshift and is predicted to produce a protein truncated by 34 amino acids. The availability of a molecular diagnostic tool has implications for the management of hypertension and genetic counselling in families with Liddle syndrome. Images PMID:9643296

  14. Deletion of GIRK2 Subunit of GIRK Channels Alters the 5-HT1A Receptor-Mediated Signaling and Results in a Depression-Resistant Behavior

    PubMed Central

    Llamosas, Nerea; Bruzos-Cidón, Cristina; Rodríguez, José Julio; Ugedo, Luisa

    2015-01-01

    Background: Targeting dorsal raphe 5-HT1A receptors, which are coupled to G-protein inwardly rectifying potassium (GIRK) channels, has revealed their contribution not only to behavioral and functional aspects of depression but also to the clinical response to its treatment. Although GIRK channels containing GIRK2 subunits play an important role controlling excitability of several brain areas, their impact on the dorsal raphe activity is still unknown. Thus, the goal of the present study was to investigate the involvement of GIRK2 subunit-containing GIRK channels in depression-related behaviors and physiology of serotonergic neurotransmission. Methods: Behavioral, functional, including in vivo extracellular recordings of dorsal raphe neurons, and neurogenesis studies were carried out in wild-type and GIRK2 mutant mice. Results: Deletion of the GIRK2 subunit promoted a depression-resistant phenotype and determined the behavioral response to the antidepressant citalopram without altering hippocampal neurogenesis. In dorsal raphe neurons of GIRK2 knockout mice, and also using GIRK channel blocker tertiapin-Q, the basal firing rate was higher than that obtained in wild-type animals, although no differences were observed in other firing parameters. 5-HT1A receptors were desensitized in GIRK2 knockout mice, as demonstrated by a lower sensitivity of dorsal raphe neurons to the inhibitory effect of the 5-HT1A receptor agonist, 8-OH-DPAT, and the antidepressant citalopram. Conclusions: Our results indicate that GIRK channels formed by GIRK2 subunits determine depression-related behaviors as well as basal and 5-HT1A receptor-mediated dorsal raphe neuronal activity, becoming alternative therapeutic targets for psychiatric diseases underlying dysfunctional serotonin transmission. PMID:25956878

  15. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel.

    PubMed

    Szpyt, John; Lorenzon, Nancy; Perez, Claudio F; Norris, Ethan; Allen, Paul D; Beam, Kurt G; Samsó, Montserrat

    2012-12-21

    The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling. PMID:23118233

  16. The Stoichiometry and Biophysical Properties of the Kv4 Potassium Channel Complex with K+ Channel-interacting Protein (KChIP) Subunits Are Variable, Depending on the Relative Expression Level*

    PubMed Central

    Kitazawa, Masahiro; Kubo, Yoshihiro; Nakajo, Koichi

    2014-01-01

    Kv4 is a voltage-gated K+ channel, which underlies somatodendritic subthreshold A-type current (ISA) and cardiac transient outward K+ (Ito) current. Various ion channel properties of Kv4 are known to be modulated by its auxiliary subunits, such as K+ channel-interacting protein (KChIP) or dipeptidyl peptidase-like protein. KChIP is a cytoplasmic protein and increases the current amplitude, decelerates the inactivation, and accelerates the recovery from inactivation of Kv4. Crystal structure analysis demonstrated that Kv4 and KChIP form an octameric complex with four Kv4 subunits and four KChIP subunits. However, it remains unknown whether the Kv4·KChIP complex can have a different stoichiometry other than 4:4. In this study, we expressed Kv4.2 and KChIP4 with various ratios in Xenopus oocytes and observed that the biophysical properties of Kv4.2 gradually changed with the increase in co-expressed KChIP4. The tandem repeat constructs of Kv4.2 and KChIP4 revealed that the 4:4 (Kv4.2/KChIP4) channel shows faster recovery than the 4:2 channel, suggesting that the biophysical properties of Kv4.2 change, depending on the number of bound KChIP4s. Subunit counting by single-molecule imaging revealed that the bound number of KChIP4 in each Kv4.2·KChIP4 complex was dependent on the expression level of KChIP4. Taken together, we conclude that the stoichiometry of Kv4·KChIP complex is variable, and the biophysical properties of Kv4 change depending on the number of bound KChIP subunits. PMID:24811166

  17. Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K/sup +/ channel subunits and target size analysis

    SciTech Connect

    Seagar, M.J.; Labbe-Jullie, C.; Granier, C.; Goll, A.; Glossmann, H.; Rietschoten, J.V.; Couraud, F.

    1986-07-01

    Two photoreactive apamin derivatives were prepared with an aryl azide group coupled at different positions on the neurotoxin molecule. These ligands were used to identify membrane components in the environment of the neuronal binding site that is associated with a Ca/sup 2 +/-activated K/sup +/ channel. /sup 125/I-(..cap alpha..-ANPAA-Cys/sub 1/)apamin labeled a single M/sub r/ 86,000 chain in cultured neurons whereas two bands corresponding to M/sub r/ 86,000 and 59,000 were detected in synaptic membrane preparations, suggesting that the M/sub r/ 59,000 polypeptide may be a degradation product. Randomly modified /sup 125/I-ANPAA-apamin gave a cross-linking profile equivalent to the sum of those obtained with the two defined derivatives. The apamin binding site seems to be located at the frontier between three or more putative K/sup +/ channel subunits which are only accessible from limited regions of the receptor-associated photoprobe. Irradiation of frozen rat brain membranes with high-energy electrons led to a reduction in /sup 125/I-apamin receptor capacity, yielding a target size for the functional binding unit of M/sub r/ 84,000-115,000, which could be constituted by the M/sub r/ 86,000 subunit alone or by the M/sub r/ 86,000 subunit in conjunction with one of the two smaller subunits.

  18. Sodium channel β1 subunit localizes to axon initial segments of excitatory and inhibitory neurons and shows regional heterogeneity in mouse brain.

    PubMed

    Wimmer, Verena C; Harty, Rosemary C; Richards, Kay L; Phillips, A Marie; Miyazaki, Haruko; Nukina, Nobuyuki; Petrou, Steven

    2015-04-01

    The β1 subunit of voltage-gated sodium channels, Nav β1, plays multiple roles in neurons spanning electrophysiological modulation of sodium channel α subunits to cell adhesion and neurite outgrowth. This study used immunohistochemistry to investigate Nav β1 subneuronal and regional expression. Nav β1 was enriched at axon initial segments (AIS) and nodes of Ranvier. Nav β1 expression at the AIS was detected throughout the brain, predominantly in the hippocampus, cortex, and cerebellum. Despite expression of Nav β1 in both excitatory and inhibitory AIS, it displayed a marked and fine-grained heterogeneity of expression. Such heterogeneity could have important implications for the tuning of single neuronal and regional excitability, especially in view of the fact that Nav β1 coexpressed with Nav 1.1, Nav 1.2, and Nav 1.6 subunits. The disruption of Nav β1 AIS expression by a human epilepsy-causing C121W genetic mutation in Nav β1 was also investigated using a mouse model. AIS expression of Nav β1 was reduced by approximately 50% in mice heterozygous for the C121W mutation and was abolished in homozygotes, suggesting that loss of Nav α subunit modulation by Nav β1 contributes to the mechanism of epileptogenesis in these animals as well as in patients. PMID:25421039

  19. Disruption of the β subunit of the epithelial Na+ channel in mice: Hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype

    PubMed Central

    McDonald, Fiona J.; Yang, Baoli; Hrstka, Ron F.; Drummond, Heather A.; Tarr, Deirdre E.; McCray, Paul B.; Stokes, John B.; Welsh, Michael J.; Williamson, Roger A.

    1999-01-01

    The epithelial Na+ channel (ENaC) is composed of three homologous subunits: α, β and γ. We used gene targeting to disrupt the β subunit gene of ENaC in mice. The βENaC-deficient mice showed normal prenatal development but died within 2 days after birth, most likely of hyperkalemia. In the −/− mice, we found an increased urine Na+ concentration despite hyponatremia and a decreased urine K+ concentration despite hyperkalemia. Moreover, serum aldosterone levels were increased. In contrast to αENaC-deficient mice, which die because of defective lung liquid clearance, neonatal βENaC deficient mice did not die of respiratory failure and showed only a small increase in wet lung weight that had little, if any, adverse physiologic consequence. The results indicate that, in vivo, the β subunit is required for ENaC function in the renal collecting duct, but, in contrast to the α subunit, the β subunit is not required for the transition from a liquid-filled to an air-filled lung. The phenotype of the βENaC-deficient mice is similar to that of humans with pseudohypoaldosteronism type 1 and may provide a useful model to study the pathogenesis and treatment of this disorder. PMID:9990092

  20. T594M mutation of the epithelial sodium channel beta-subunit gene in pre-eclampsia and eclampsia in Black South African women.

    PubMed

    Pegoraro, R J; Roberts, C B; Rom, L; Moodley, J

    2004-09-01

    The possible role of the beta-subunit of the epithelial sodium channel T594M polymorphism in hypertensive disorders of pregnancy has not been examined. This study compared Black South African women with pre-eclampsia (n= 204), early onset pre-eclampsia (n= 67), eclampsia (n= 120) and gestational hypertension (n= 78) with 338 women from the same ethnic group who had full-term normotensive pregnancies, for the presence of the T594M polymorphism. The variant allele was detected in 1.7% to 3.8% of the various patient groups and in 3.6% of the control group reflecting no significant difference. These results suggest that the T594M polymorphism in the sodium channel beta-subunit is not associated with the pathogenesis of pre-eclampsia or gestational hypertension. PMID:15327619

  1. Functional properties of the CaV1.2 calcium channel activated by calmodulin in the absence of alpha2delta subunits.

    PubMed

    Ravindran, Arippa; Kobrinsky, Evgeny; Lao, Qi Zong; Soldatov, Nikolai M

    2009-01-01

    Voltage-activated CaV1.2 calcium channels require association of the pore-forming alpha1C subunit with accessory CaVbeta and alpha2delta subunits. Binding of a single calmodulin (CaM) to alpha1C supports Ca2+-dependent inactivation (CDI). The human CaV1.2 channel is silent in the absence of CaVbeta and/or alpha2delta. Recently, we found that coexpression of exogenous CaM (CaMex) supports plasma membrane targeting, gating facilitation and CDI of the channel in the absence of CaVbeta. Here we discovered that CaMex and its Ca2+-insensitive mutant (CaM1234) rendered active alpha1C/CaVbeta channel in the absence of alpha2delta. Coexpression of CaMex with alpha1C and beta2d in calcium-channel-free COS-1 cells recovered gating of the channel and supported CDI. Voltage-dependence of activation was shifted by approximately +40 mV to depolarization potentials. The calcium current reached maximum at +40 mV (20 mM Ca2+) and exhibited approximately 3 times slower activation and 5 times slower inactivation kinetics compared to the wild-type channel. Furthermore, both CaMex and CaM1234 accelerated recovery from inactivation and induced facilitation of the calcium current by strong depolarization prepulse, the properties absent from the human vascular/neuronal CaV1.2 channel. The data suggest a previously unknown action of CaM that in the presence of CaVbeta; translates into activation of the alpha2delta-deficient calcium channel and alteration of its properties. PMID:19106618

  2. Functional properties of the Cav1.2 calcium channel activated by calmodulin in the absence of α2δ subunits

    PubMed Central

    Ravindran, Arippa; Kobrinsky, Evgeny; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Voltage-activated Cav1.2 calcium channels require association of the pore-forming α1C subunit with accessory Cavβ and α2δ subunits. Binding of a single calmodulin (CaM) to α1C supports Ca2+-dependent inactivation (CDI). The human Cav1.2 channel is silent in the absence of Cavβ and/or α2δ. Recently, we found that coexpression of exogenous CaM (CaMex) supports plasma membrane targeting, gating facilitation and CDI of the channel in the absence of Cavβ. Here we discovered that CaMex and its Ca2+-insensitive mutant (CaM1234) rendered active α1C/Cavβ channel in the absence of α2δ. Coexpression of CaMex with α1C and β2d in calcium-channel-free COS-1 cells recovered gating of the channel and supported CDI. Voltage-dependence of activation was shifted by ≈ +40 mV to depolarization potentials. The calcium current reached maximum at +40 mV (20 mM Ca2+) and exhibited approximately 3 times slower activation and 5 times slower inactivation kinetics compared to the wild-type channel. Furthermore, both CaMex and CaM1234 accelerated recovery from inactivation and induced facilitation of the calcium current by strong depolarization prepulse, the properties absent from the human vascular/neuronal Cav1.2 channel. The data suggest a previously unknown action of CaM that in the presence of Cavβ translates into activation of the α2δ-deficient calcium channel and alteration of its properties. PMID:19106618

  3. Ca2+ controls gating of voltage-gated calcium channels by releasing the β2e subunit from the plasma membrane.

    PubMed

    Kim, Dong-Il; Kweon, Hae-Jin; Park, Yongsoo; Jang, Deok-Jin; Suh, Byung-Chang

    2016-01-01

    Voltage-gated calcium (Cav) channels, which are regulated by membrane potential, cytosolic Ca(2+), phosphorylation, and membrane phospholipids, govern Ca(2+) entry into excitable cells. Cav channels contain a pore-forming α1 subunit, an auxiliary α2δ subunit, and a regulatory β subunit, each encoded by several genes in mammals. In addition to a domain that interacts with the α1 subunit, β2e and β2a also interact with the cytoplasmic face of the plasma membrane through an electrostatic interaction for β2e and posttranslational acylation for β2a. We found that an increase in cytosolic Ca(2+) promoted the release of β2e from the membrane without requiring substantial depletion of the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane. Experiments with liposomes indicated that Ca(2+) disrupted the interaction of the β2e amino-terminal peptide with membranes containing PIP2 Ca(2+) binding to calmodulin (CaM) leads to CaM-mediated inactivation of Cav currents. Although Cav2.2 coexpressed with β2a required Ca(2+)-dependent activation of CaM for Ca(2+)-mediated reduction in channel activity, Cav2.2 coexpressed with β2e exhibited Ca(2+)-dependent inactivation of the channel even in the presence of Ca(2+)-insensitive CaM. Inducible depletion of PIP2 reduced Cav2.2 currents, and in cells coexpressing β2e, but not a form that lacks the polybasic region, increased intracellular Ca(2+) further reduced Cav2.2 currents. Many hormone- or neurotransmitter-activated receptors stimulate PIP2 hydrolysis and increase cytosolic Ca(2+); thus, our findings suggest that β2e may integrate such receptor-mediated signals to limit Cav activity. PMID:27382026

  4. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels.

    PubMed Central

    Wollmuth, L P; Kuner, T; Seeburg, P H; Sakmann, B

    1996-01-01

    1. The molecular determinants for the narrow constriction of recombinant N-methyl-D-aspartate (NMDA) receptor channels composed of wild-type and mutant NR1- and NR2A-subunits were studied in Xenopus oocytes. 2. The relative permeability of differently sized organic cations was used as an indicator of the size of the narrow constriction. From measured reversal potentials under bi-ionic conditions with K+ as the reference solution, permeability ratios were calculated with the Lewis equation. 3. For wild-type NMDA receptor channels, five organic cations showed clear reversal potentials, with permeability ratios (PX/PK): ammonium, 1.28; methylammonium, 0.48; dimethylammonium (DMA), 0.20; diethylammonium, 0.07; and dimethylethanol-ammonium, 0.02. 4. Mutation of the N-site asparagine (N) to glutamine (Q) at homologous positions in either NR1 (position 598) or NR2A (position 595) increased the permeability of DMA relative to wild-type channels about equally. However, for larger sized organic cations, the NR1(N598Q) mutation had stronger effects on increasing their permeability whereas the NR2A(N595Q) mutation was without effect. These changes in organic cation permeability suggest that the NR1(N598Q) mutation increases the pore size while the NR2A(N595Q) mutation does not. 5. Channels in which the NR1 N-site asparagine was replaced by the smaller glycine (G), NR1(N598G)-NR2A, showed the largest increase in pore size of all sites examined in either subunit. In contrast, in the NR2A-subunit the same N-site substitution to glycine produced only small effects on pore size. 6. For the NR2A-subunit, an asparagine residue (position 596) on the C-terminal side of the N-site, when mutated to larger or smaller sized amino acids, produced large, volume-specific effects on pore size. The mutant channel NR1-NR2A(N596G) had the largest increase in pore size of all sites examined in the NR2A-subunit. In contrast, mutation of the homologous position in the NR1-subunit had no effect on

  5. Dendrotoxin acceptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage-activated K+ channels.

    PubMed Central

    Parcej, D N; Dolly, J O

    1989-01-01

    Dendrotoxin is a snake polypeptide that blocks selectively and potently certain voltage-sensitive, fast-activating K+ channels in the nervous system, where it binds with high affinity to membranous acceptors. Herein, the acceptor protein for dendrotoxin in bovine synaptic membranes is solubilized in active form and its complete purification achieved by affinity chromatography, involving a novel elution procedure. This putative K+-channel constituent is shown to be a large oligomeric glycoprotein containing two major subunits, with Mr values of 75,000 and 37,000. Images Fig. 2. PMID:2930493

  6. Role of ATP-sensitive K+ channels in cardiac arrhythmias.

    PubMed

    Nakaya, Haruaki

    2014-05-01

    The sarcolemmal adenosine triphosphate (ATP)-sensitive K(+) (sarcKATP) channel in the heart is a hetero-octamer comprising the pore-forming subunit Kir6.2 and the regulatory subunit sulfonylurea receptor SUR2A. By functional analysis of genetically engineered mice lacking sarcKATP channels, the pathophysiological roles of the K(+) channel in the heart have been extensively evaluated. Although mitochondrial KATP (mitoKATP) channel is proposed to be an important effector for the protection of ischemic myocardium and the inhibition of ischemia/reperfusion-induced ventricular arrhythmias, the molecular identity of mitoKATP channel has not been established. Although selective sarcKATP-channel blockers can prevent ischemia/reperfusion-induced ventricular arrhythmias by inhibiting the action potential shortening in the acute phase, the drugs may aggravate the ischemic damages due to intracellular Ca(2+) overload. The sarcKATP channel is also mandatory for optimal adaptation to hemodynamic stress such as sympathetic activation. Dysfunction of mutated sarcKATP channels in atrial cells may lead to electrical instability and atrial fibrillation. Recently, it has been proposed that the gain-of-function mutation of cardiac Kir6.1 channel can be a pathogenic substrate for J wave syndromes, a cause of idiopathic ventricular fibrillation as early repolarization syndrome or Brugada syndrome, whereas loss of function of the channel mutations can underlie sudden infant death syndrome. However, precise role of Kir6.1 channels in cardiac cells remains to be defined and further study may be needed to clarify the role of Kir6.1 channel in the heart. PMID:24367007

  7. Exposure to predator odor and resulting anxiety enhances the expression of the α2 δ subunit of voltage-sensitive calcium channels in the amygdala.

    PubMed

    Nasca, Carla; Orlando, Rosamaria; Marchiafava, Moreno; Boldrini, Paolo; Battaglia, Giuseppe; Scaccianoce, Sergio; Matrisciano, Francesco; Pittaluga, Anna; Nicoletti, Ferdinando

    2013-06-01

    The α2 δ subunit of voltage-sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2 δ subunit is up-regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2 δ subunit are associated with pathological states. Here, we examined the expression of the α2 δ-1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety-like behavior in the following 72 h, as shown by the light-dark test. Anxiety was associated with an increased expression of the α2 δ-1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2 δ-1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety-like behavior in TMT-exposed mice, but not in control mice. These data offer the first demonstration that the α2 δ-1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease-dependent drug in the treatment of anxiety disorders. PMID:22849384

  8. Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels

    PubMed Central

    David, Jens-Peter; Stas, Jeroen I.; Schmitt, Nicole; Bocksteins, Elke

    2015-01-01

    The diversity of the voltage-gated K+ (Kv) channel subfamily Kv2 is increased by interactions with auxiliary β-subunits and by assembly with members of the modulatory so-called silent Kv subfamilies (Kv5-Kv6 and Kv8-Kv9). However, it has not yet been investigated whether these two types of modulating subunits can associate within and modify a single channel complex simultaneously. Here, we demonstrate that the transmembrane β-subunit KCNE5 modifies the Kv2.1/Kv6.4 current extensively, whereas KCNE2 and KCNE4 only exert minor effects. Co-expression of KCNE5 with Kv2.1 and Kv6.4 did not alter the Kv2.1/Kv6.4 current density but modulated the biophysical properties significantly; KCNE5 accelerated the activation, slowed the deactivation and steepened the slope of the voltage-dependence of the Kv2.1/Kv6.4 inactivation by accelerating recovery of the closed-state inactivation. In contrast, KCNE5 reduced the current density ~2-fold without affecting the biophysical properties of Kv2.1 homotetramers. Co-localization of Kv2.1, Kv6.4 and KCNE5 was demonstrated with immunocytochemistry and formation of Kv2.1/Kv6.4/KCNE5 and Kv2.1/KCNE5 complexes was confirmed by Fluorescence Resonance Energy Transfer experiments performed in HEK293 cells. These results suggest that a triple complex consisting of Kv2.1, Kv6.4 and KCNE5 subunits can be formed. In vivo, formation of such tripartite Kv2.1/Kv6.4/KCNE5 channel complexes might contribute to tissue-specific fine-tuning of excitability. PMID:26242757

  9. Role of N-Terminal Domain and Accessory Subunits in Controlling Deactivation-Inactivation Coupling of Kv4.2 Channels

    PubMed Central

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-01-01

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2Δ2–10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2Δ2–10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs. PMID:17981906

  10. Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits?

    PubMed

    Baldelli, Pietro; Hernández-Guijo, Jesus Miguel; Carabelli, Valentina; Novara, Monica; Cesetti, Tiziana; Andrés-Mateos, Eva; Montiel, Carmen; Carbone, Emilio

    2004-02-01

    Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release. PMID:15034224

  11. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity.

    PubMed

    Fatehi, Mohammad; Carter, Chris R J; Youssef, Nermeen; Hunter, Beth E; Holt, Andrew; Light, Peter E

    2015-01-01

    ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue-residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  12. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity

    PubMed Central

    Fatehi, Mohammad; Carter, Chris R.J.; Youssef, Nermeen; Hunter, Beth E.; Holt, Andrew; Light, Peter E.

    2015-01-01

    ATP-sensitive K+ (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue–residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  13. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers.

    PubMed Central

    Kofuji, P; Davidson, N; Lester, H A

    1995-01-01

    Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits G beta 1 and G gamma 2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by G beta gamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels. PMID:7604029

  14. Human autoantibodies specific for the α1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons

    PubMed Central

    Pinto, Ashwin; Gillard, Samantha; Moss, Fraser; Whyte, Kathryn; Brust, Paul; Williams, Mark; Stauderman, Ken; Harpold, Michael; Lang, Bethan; Newsom-Davis, John; Bleakman, David; Lodge, David; Boot, John

    1998-01-01

    The pharmacological properties of voltage-dependent calcium channel (VDCC) subtypes appear mainly to be determined by the α1 pore-forming subunit but, whether P-and Q-type VDCCs are encoded by the same α1 gene presently is unresolved. To investigate this, we used IgG antibodies to presynaptic VDCCs at motor nerve terminals that underlie muscle weakness in the autoimmune Lambert–Eaton myasthenic syndrome (LEMS). We first studied their action on changes in intracellular free Ca2+ concentration [Ca2+]i in human embryonic kidney (HEK293) cell lines expressing different combinations of human recombinant VDCC subunits. Incubation for 18 h with LEMS IgG (2 mg/ml) caused a significant dose-dependent reduction in the K+-stimulated [Ca2+]i increase in the α1A cell line but not in the α1B, α1C, α1D, and α1E cell lines, establishing the α1A subunit as the target for these autoantibodies. Exploiting this specificity, we incubated cultured rat cerebellar neurones with LEMS IgG and observed a reduction in P-type current in Purkinje cells and both P- and Q-type currents in granule cells. These data are consistent with the hypothesis that the α1A gene encodes for the pore-forming subunit of both P-type and Q-type VDCCs. PMID:9653186

  15. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin.

    PubMed

    Field, Mark J; Cox, Peter J; Stott, Emma; Melrose, Heather; Offord, James; Su, Ti-Zhi; Bramwell, Steve; Corradini, Laura; England, Steven; Winks, Joanna; Kinloch, Ross A; Hendrich, Jan; Dolphin, Annette C; Webb, Tony; Williams, Dic

    2006-11-14

    Neuropathic pain is a debilitating condition affecting millions of people around the world and is defined as pain that follows a lesion or dysfunction of the nervous system. This type of pain is difficult to treat, but the novel compounds pregabalin (Lyrica) and gabapentin (Neurontin) have proven clinical efficacy. Unlike traditional analgesics such as nonsteroidal antiinflammatory drugs or narcotics, these agents have no frank antiinflammatory actions and no effect on physiological pain. Although extensive preclinical studies have led to a number of suggestions, until recently their mechanism of action has not been clearly defined. Here, we describe studies on the analgesic effects of pregabalin in a mutant mouse containing a single-point mutation within the gene encoding a specific auxiliary subunit protein (alpha2-delta-1) of voltage-dependent calcium channels. The mice demonstrate normal pain phenotypes and typical responses to other analgesic drugs. We show that the mutation leads to a significant reduction in the binding affinity of pregabalin in the brain and spinal cord and the loss of its analgesic efficacy. These studies show conclusively that the analgesic actions of pregabalin are mediated through the alpha2-delta-1 subunit of voltage-gated calcium channels and establish this subunit as a therapeutic target for pain control. PMID:17088553

  16. Modulation of the human cardiac sodium channel alpha-subunit by cAMP-dependent protein kinase and the responsible sequence domain.

    PubMed Central

    Frohnwieser, B; Chen, L Q; Schreibmayer, W; Kallen, R G

    1997-01-01

    1. In order to investigate the modulation of human hH1 sodium channel alpha-subunits by cAMP-dependent protein kinase (PKA), the channel was expressed in oocytes of Xenopus laevis. 2. Cytosolic injection of cAMP, as well as of SP-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (SP-cAMPS, the S-diastereoisomeric configuration of the compound with respect to the phosphorus atom), resulted in a marked and significant increase in peak sodium current (INa,p). Cytosolic injections of RP-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (RP-cAMPS; a compound inhibitory to PKA) had no effect on peak current. 3. Kinetic parameters of steady-state activation, inactivation and recovery from inactivation were unchanged following stimulation of PKA activity, but a 42 +/- 5% (mean +/- S.E.M.) increase in maximal sodium conductance (delta gmax) could account for the observed increase in INa,p. 4. A set of chimerical sodium channels made from portions of the human cardiac hH1 alpha-subunit and the rat skeletal muscle SkM1 alpha-subunit (which is not affected by PKA stimulation) was generated. These were used to localize the structural determinant in the hH1 sequence responsible for PKA modulation of hH1. From our data we conclude that the effects of PKA on hH1 are conferred by the large cytosolic loop interconnecting transmembrane domains I and II, which is not conserved among sodium channel subtypes. Images Figure 1 Figure 5 Figure 6 PMID:9032680

  17. Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.

    PubMed

    He, Bingjun; Soderlund, David M

    2016-01-15

    We expressed rat Nav1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Nav1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~18 mV for tefluthrin and ~24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~10-14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Nav1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. PMID:26708501

  18. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    PubMed Central

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  19. Three mutations identified in the voltage-sensitive sodium channel alpha-subunit gene of permethrin-resistant human head lice reduce the permethrin sensitivity of house fly Vssc1 sodium channels expressed in Xenopus oocytes.

    PubMed

    SupYoon, Kyong; Symington, Steven B; Hyeock Lee, Si; Soderlund, David M; Marshall Clark, J

    2008-03-01

    Point mutations in the para-orthologous sodium channel alpha-subunit of the head louse (M815I, T917I, and L920F) are associated with permethrin resistance and DDT resistance. These mutations were inserted in all combinations using site-directed mutagenesis at the corresponding amino acid sequence positions (M827I, T929I, and L932F) of the house fly para-orthologous voltage-sensitive sodium channel alpha-subunit (Vssc1(WT)) gene and heterologously co-expressed with the sodium channel auxiliary subunit of house fly (Vsscbeta) in Xenopus oocytes. The double mutant possessing M827I and T929I (Vssc1(MITI)/Vsscbeta) caused a approximately 4.0mV hyperpolarizing shift and the triple mutant, Vssc1(MITILF)/Vsscbeta, caused a approximately 3.2mV depolarizing shift in the voltage dependence of activation curves. Vssc1(MITI)/Vsscbeta, Vssc1(TILF)/Vsscbeta, and Vssc1(MITILF)/Vsscbeta caused depolarizing shifts ( approximately 6.6, approximately 7.6, and approximately 8.8mV, respectively) in the voltage dependence of steady-state inactivation curves. The M827I and L932F mutations reduced permethrin sensitivity when expressed alone but the T929I mutation, either alone or in combination, virtually abolished permethrin sensitivity. Thus, the T929I mutation is the principal cause of permethrin resistance in head lice. Comparison of the expression rates of channels containing single, double and triple mutations with that of Vssc1(WT)/Vsscbeta channels indicates that the M827I mutation may play a role in rescuing the decreased expression of channels containing T929I. PMID:18252244

  20. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels.

    PubMed

    Sachse, Carolyn C; Kim, Young Hye; Agsten, Marianne; Huth, Tobias; Alzheimer, Christian; Kovacs, Dora M; Kim, Doo Yeon

    2013-06-01

    BACE1 and presenilin (PS)/γ-secretase play a major role in Alzheimer's disease pathogenesis by regulating amyloid-β peptide generation. We recently showed that these secretases also regulate the processing of voltage-gated sodium channel auxiliary β-subunits and thereby modulate membrane excitability. Here, we report that KCNE1 and KCNE2, auxiliary subunits of voltage-gated potassium channels, undergo sequential cleavage mediated by either α-secretase and PS/γ-secretase or BACE1 and PS/γ-secretase in cells. Elevated α-secretase or BACE1 activities increased C-terminal fragment (CTF) levels of KCNE1 and 2 in human embryonic kidney (HEK293T) and rat neuroblastoma (B104) cells. KCNE-CTFs were then further processed by PS/γ-secretase to KCNE intracellular domains. These KCNE cleavages were specifically blocked by chemical inhibitors of the secretases in the same cell models. We also verified our results in mouse cardiomyocytes and cultured primary neurons. Endogenous KCNE1- and KCNE2-CTF levels increased by 2- to 4-fold on PS/γ-secretase inhibition or BACE1 overexpression in these cells. Furthermore, the elevated BACE1 activity increased KCNE1 processing and shifted KCNE1/KCNQ1 channel activation curve to more positive potentials in HEK cells. KCNE1/KCNQ1 channel is a cardiac potassium channel complex, and the positive shift would lead to a decrease in membrane repolarization during cardiac action potential. Together, these results clearly showed that KCNE1 and KCNE2 cleavages are regulated by BACE1 and PS/γ-secretase activities under physiological conditions. Our results also suggest a functional role of KCNE cleavage in regulating voltage-gated potassium channels. PMID:23504710

  1. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels

    PubMed Central

    Sachse, Carolyn C.; Kim, Young Hye; Agsten, Marianne; Huth, Tobias; Alzheimer, Christian; Kovacs, Dora M.; Kim, Doo Yeon

    2013-01-01

    BACE1 and presenilin (PS)/γ-secretase play a major role in Alzheimer's disease pathogenesis by regulating amyloid-β peptide generation. We recently showed that these secretases also regulate the processing of voltage-gated sodium channel auxiliary β-subunits and thereby modulate membrane excitability. Here, we report that KCNE1 and KCNE2, auxiliary subunits of voltage-gated potassium channels, undergo sequential cleavage mediated by either α-secretase and PS/γ-secretase or BACE1 and PS/γ-secretase in cells. Elevated α-secretase or BACE1 activities increased C-terminal fragment (CTF) levels of KCNE1 and 2 in human embryonic kidney (HEK293T) and rat neuroblastoma (B104) cells. KCNE-CTFs were then further processed by PS/γ-secretase to KCNE intracellular domains. These KCNE cleavages were specifically blocked by chemical inhibitors of the secretases in the same cell models. We also verified our results in mouse cardiomyocytes and cultured primary neurons. Endogenous KCNE1- and KCNE2-CTF levels increased by 2- to 4-fold on PS/γ-secretase inhibition or BACE1 overexpression in these cells. Furthermore, the elevated BACE1 activity increased KCNE1 processing and shifted KCNE1/KCNQ1 channel activation curve to more positive potentials in HEK cells. KCNE1/KCNQ1 channel is a cardiac potassium channel complex, and the positive shift would lead to a decrease in membrane repolarization during cardiac action potential. Together, these results clearly showed that KCNE1 and KCNE2 cleavages are regulated by BACE1 and PS/γ-secretase activities under physiological conditions. Our results also suggest a functional role of KCNE cleavage in regulating voltage-gated potassium channels.—Sachse, C. C., Kim, Y. H., Agsten, M., Huth, T., Alzheimer, C., Kovacs, D. M., and Kim, D. Y. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. PMID:23504710

  2. High voltage-activated Ca2+ currents in rat supraoptic neurones: biophysical properties and expression of the various channel alpha1 subunits.

    PubMed

    Joux, N; Chevaleyre, V; Alonso, G; Boissin-Agasse, L; Moos, F C; Desarménien, M G; Hussy, N

    2001-07-01

    The diversity of Ca2+ currents was studied in voltage-clamped acutely dissociated neurones from the rat supraoptic nucleus (SON), and the expression of the various corresponding pore-forming alpha1 subunits determined by immunohistochemistry. We observed the presence of all high voltage-activated L-, N-, P/Q- and R-type currents. We did not observe low-voltage-activated T-type current. The multimodal current/voltage relationships of L- and R-type currents indicated further heterogeneity within these current types, each exhibiting two components that differed by a high (-20 mV) and a lower (-40 mV) threshold potential of activation. L- and R-type currents were fast activating and showed time-dependent inactivation, conversely to N- and P/Q-type currents, which activated more slowly and did not inactivate. The immunocytochemical staining indicated that the soma and proximal dendrites of SON neurones were immunoreactive for Cav1.2, Cav1.3 (forming L-type channels), Cav2.1 (P/Q-type), Cav2.2 (N-type) and Cav2.3 subunits (R-type). Each subunit exhibited further specificity in its distribution throughout the nucleus, and we particularly observed strong immunostaining of Cav1.3 and Cav2.3 subunits within the dendritic zone of the SON. These data show a high heterogeneity of Ca2+ channels in SON. neurones, both in their functional properties and cellular distribution. The lower threshold and rapidly activating L- and R-type currents should underlie major Ca2+ entry during action potentials, while the slower and higher threshold N- and P/Q-type currents should be preferentially recruited during burst activity. It will be of key interest to determine their respective role in the numerous Ca2+-dependent events that control the activity and physiology of SON neurones PMID:11442778

  3. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels

    PubMed Central

    2012-01-01

    Background Nicotinic acetylcholine receptors (nAChRs) play an important role as excitatory neurotransmitters in vertebrate and invertebrate species. In insects, nAChRs are the site of action of commercially important insecticides and, as a consequence, there is considerable interest in examining their functional properties. However, problems have been encountered in the successful functional expression of insect nAChRs, although a number of strategies have been developed in an attempt to overcome such difficulties. Ten nAChR subunits have been identified in the model insect Drosophila melanogaster (Dα1-Dα7 and Dβ1-Dβ3) and a similar number have been identified in other insect species. The focus of the present study is the Dα5, Dα6 and Dα7 subunits, which are distinguished by their sequence similarity to one another and also by their close similarity to the vertebrate α7 nAChR subunit. Results A full-length cDNA clone encoding the Drosophila nAChR Dα5 subunit has been isolated and the properties of Dα5-, Dα6- and Dα7-containing nAChRs examined in a variety of cell expression systems. We have demonstrated the functional expression, as homomeric nAChRs, of the Dα5 and Dα7 subunits in Xenopus oocytes by their co-expression with the molecular chaperone RIC-3. Also, using a similar approach, we have demonstrated the functional expression of a heteromeric ‘triplet’ nAChR (Dα5 + Dα6 + Dα7) with substantially higher apparent affinity for acetylcholine than is seen with other subunit combinations. In addition, specific cell-surface binding of [125I]-α-bungarotoxin was detected in both Drosophila and mammalian cell lines when Dα5 was co-expressed with Dα6 and RIC-3. In contrast, co-expression of additional subunits (including Dα7) with Dα5 and Dα6 prevented specific binding of [125I]-α-bungarotoxin in cell lines, suggesting that co-assembly with other nAChR subunits can block maturation of correctly folded nAChRs in some cellular

  4. A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit.

    PubMed

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  5. Loose protein packing around the extracellular half of the GABA(A) receptor beta1 subunit M2 channel-lining segment.

    PubMed

    Goren, Eric N; Reeves, David C; Akabas, Myles H

    2004-03-19

    GABA(A) receptors are ligand-gated ion channels formed by the pseudosymmetrical assembly of five homologous subunits around the central channel axis. The five M2 membrane-spanning segments largely line the channel. In the present work we probed the water surface accessibility of the beta(1) subunit M2 segment using the substituted cysteine accessibility method. We assayed the reaction of the negatively charged sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS(-)), by its effect on subsequent currents elicited by EC(50) and saturating GABA concentrations. pCMBS(-), applied with GABA, reacted with 14 of the 19 residues tested. At the M2 cytoplasmic end from 2' to 6' only beta(1)A252C (2') and beta(1)T256C (6') were pCMBS(-)-reactive in the presence of GABA. We infer that the M2 segments are tightly packed in this region. Toward the extracellular half of M2 all residues from beta(1)T262C (12') through beta(1)E270C (20') reacted with pCMBS(-) applied with GABA. We infer that this region is highly mobile and loosely packed against the rest of the protein. Based on differences in pCMBS(-) reaction rates two domains can be distinguished on the putative channel-lining side of M2. A faster reacting domain includes the 2', 9', 12', 13', and 16' residues. The slower reacting face contains the 6', 10', and 14' residues. We hypothesize that these may represent the channel-lining faces in the closed and open states and that gating involves an 80-100 degrees rotation of the M2 segments. These results are consistent with the loose packing of the M2 segments inferred from the structure of the homologous Torpedo nicotinic acetylcholine receptor. PMID:14715650

  6. Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation.

    PubMed

    Bravo-Zehnder, M; Orio, P; Norambuena, A; Wallner, M; Meera, P; Toro, L; Latorre, R; González, A

    2000-11-21

    The voltage- and Ca(2+)-activated K(+) (K(V,Ca)) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel K(V,Ca) alpha-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., K(V,Ca) beta-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells. PMID:11069304

  7. Apical sorting of a voltage- and Ca2+-activated K+ channel α-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation

    PubMed Central

    Bravo-Zehnder, Marcela; Orio, Patricio; Norambuena, Andrés; Wallner, Martin; Meera, Pratap; Toro, Ligia; Latorre, Ramón; González, Alfonso

    2000-01-01

    The voltage- and Ca2+-activated K+ (KV,Ca) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel KV,Ca α-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., KV,Ca β-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells. PMID:11069304

  8. KChIP-Like Auxiliary Subunits of Kv4 Channels Regulate Excitability of Muscle Cells and Control Male Turning Behavior during Mating in Caenorhabditis elegans

    PubMed Central

    Chen, Xin; Ruan, Mei-Yu

    2015-01-01

    Voltage-gated Kv4 channels control the excitability of neurons and cardiac myocytes by conducting rapidly activating-inactivating currents. The function of Kv4 channels is profoundly modulated by K+ channel interacting protein (KChIP) soluble auxiliary subunits. However, the in vivo mechanism of the modulation is not fully understood. Here, we identified three C. elegans KChIP-like (ceKChIP) proteins, NCS-4, NCS-5, and NCS-7. All three ceKChIPs alter electrical characteristics of SHL-1, a C. elegans Kv4 channel ortholog, currents by slowing down inactivation kinetics and shifting voltage dependence of activation to more hyperpolarizing potentials. Native SHL-1 current is completely abolished in cultured myocytes of Triple KO worms in which all three ceKChIP genes are deleted. Reexpression of NCS-4 partially restored expression of functional SHL-1 channels, whereas NCS-4(efm), a NCS-4 mutant with impaired Ca2+-binding ability, only enhanced expression of SHL-1 proteins, but failed to transport them from the Golgi apparatus to the cell membrane in body wall muscles of Triple KO worms. Moreover, translational reporter revealed that NCS-4 assembles with SHL-1 K+ channels in male diagonal muscles. Deletion of either ncs-4 or shl-1 significantly impairs male turning, a behavior controlled by diagonal muscles during mating. The phenotype of the ncs-4 null mutant could be rescued by reexpression of NCS-4, but not NCS-4(efm), further emphasizing the importance of Ca2+ binding to ceKChIPs in regulating native SHL-1 channel function. Together, these data reveal an evolutionarily conserved mechanism underlying the regulation of Kv4 channels by KChIPs and unravel critical roles of ceKChIPs in regulating muscle cell excitability and animal behavior in C. elegans. PMID:25653349

  9. Molecular characterization and gene expression of the channel catfish Ferritin H subunit after bacterial infection and iron treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferritins are the major iron storage protein in the cytoplasm of cells, responsible for regulating levels of intracellular iron. Ferritin genes are widely distributed in both prokaryotes and eukaryotes. In mammals, ferritin molecules are composed of heavy- (H) and light- (L) chain subunits; amphibia...

  10. Expression and Function of K(ATP) Channels in Normal and Osteoarthritic Human Chondrocytes: Possible Role in Glucose Sensing

    PubMed Central

    Rufino, Ana T; Rosa, Susana C; Judas, Fernando; Mobasheri, Ali; Lopes, M Celeste; Mendes, Alexandrina F

    2013-01-01

    ATP-sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose-sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels and membrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT-1 and GLUT-3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia-like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT-1 and GLUT-3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT-1 and GLUT-3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus that modulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes. J. Cell. Biochem. 114: 1879–1889, 2013. © 2013 Wiley Periodicals, Inc. PMID:23494827

  11. Loss of the calcium channel β4 subunit impairs parallel fibre volley and Purkinje cell firing in cerebellum of adult ataxic mice.

    PubMed

    Benedetti, Bruno; Benedetti, Ariane; Flucher, Bernhard E

    2016-06-01

    The auxiliary voltage-gated calcium channel subunit β4 supports targeting of calcium channels to the cell membrane, modulates ionic currents and promotes synaptic release in the central nervous system. β4 is abundant in cerebellum and its loss causes ataxia. However, the type of calcium channels and cerebellar functions affected by the loss of β4 are currently unknown. We therefore studied the structure and function of Purkinje cells in acute cerebellar slices of the β4 (-/-) ataxic (lethargic) mouse, finding that loss of β4 affected Purkinje cell input, morphology and pacemaker activity. In adult lethargic cerebellum evoked postsynaptic currents from parallel fibres were depressed, while paired-pulse facilitation and spontaneous synaptic currents were unaffected. Because climbing fibre input was spared, the parallel fibre/climbing fibre input ratio was reduced. The dendritic arbor of adult lethargic Purkinje cells displayed fewer and shorter dendrites, but a normal spine density. Accordingly, the width of the molecular and granular layers was reduced. These defects recapitulate the impaired cerebellar maturation observed upon Cav 2.1 ataxic mutations. However, unlike Cav 2.1 mutations, lethargic Purkinje cells also displayed a striking decrease in pacemaker firing frequency, without loss of firing regularity. All these deficiencies appear in late development, indicating the importance of β4 for the normal differentiation and function of mature Purkinje cells networks. The observed reduction of the parallel fibre input, the altered parallel fibre/climbing fibre ratio and the reduced Purkinje cell output can contribute to the severe motor impairment caused by the loss of the calcium channel β4 subunit in lethargic mice. PMID:27003325

  12. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    PubMed

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. PMID:26854211

  13. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis

    PubMed Central

    Nelson, Michaela; Millican-Slater, Rebecca; Forrest, Lorna C; Brackenbury, William J

    2014-01-01

    Voltage-gated Na+ channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na+ current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy. PMID:24729314

  14. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  15. Ontogenic Changes and Differential Localization of T-type Ca2+ Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum

    PubMed Central

    Aguado, Carolina; García-Madrona, Sebastián; Gil-Minguez, Mercedes; Luján, Rafael

    2016-01-01

    T-type calcium (Ca2+) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing

  16. Ontogenic Changes and Differential Localization of T-type Ca(2+) Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum.

    PubMed

    Aguado, Carolina; García-Madrona, Sebastián; Gil-Minguez, Mercedes; Luján, Rafael

    2016-01-01

    T-type calcium (Ca(2+)) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing

  17. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics.

    PubMed

    Stoetzer, C; Doll, T; Stueber, T; Herzog, C; Echtermeyer, F; Greulich, F; Rudat, C; Kispert, A; Wegner, F; Leffler, A

    2016-06-01

    The sodium channel α-subunit (Nav) Nav1.5 is regarded as the most prevalent cardiac sodium channel required for generation of action potentials in cardiomyocytes. Accordingly, Nav1.5 seems to be the main target molecule for local anesthetic (LA)-induced cardiotoxicity. However, recent reports demonstrated functional expression of several "neuronal" Nav's in cardiomyocytes being involved in cardiac contractility and rhythmogenesis. In this study, we examined the relevance of neuronal tetrodotoxin (TTX)-sensitive Nav's for inhibition of cardiac sodium channels by the cardiotoxic LAs ropivacaine and bupivacaine. Effects of LAs on recombinant Nav1.2, 1.3, 1.4, and 1.5 expressed in human embryonic kidney cell line 293 (HEK-293) cells, and on sodium currents in murine, cardiomyocytes were investigated by whole-cell patch clamp recordings. Expression analyses were performed by reverse transcription PCR (RT-PCR). Cultured cardiomyocytes from neonatal mice express messenger RNA (mRNA) for Nav1.2, 1.3, 1.5, 1.8, and 1.9 and generate TTX-sensitive sodium currents. Tonic and use-dependent block of sodium currents in cardiomyocytes by ropivacaine and bupivacaine were enhanced by 200 nM TTX. Inhibition of recombinant Nav1.5 channels was similar to that of TTX-resistant currents in cardiomyocytes but stronger as compared to inhibition of total sodium current in cardiomyocytes. Recombinant Nav1.2, 1.3, 1.4, and 1.5 channels displayed significant differences in regard to use-dependent block by ropivacaine. Finally, bupivacaine blocked sodium currents in cardiomyocytes as well as recombinant Nav1.5 currents significantly stronger in comparison to ropivacaine. Our data demonstrate for the first time that cardiac TTX-sensitive sodium channels are relevant for inhibition of cardiac sodium currents by LAs. PMID:27000037

  18. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    PubMed Central

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  19. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway.

    PubMed

    Chen, Yanhong; Zhu, Didi; Yuan, Jiamin; Han, Zhonglin; Wang, Yao; Qian, Zhiyong; Hou, Xiaofeng; Wu, Tingting; Zou, Jiangang

    2016-09-01

    The heterodimerized transcription factors CLOCK-BMAL1 regulate the cardiomyocyte circadian rhythms. The L-type calcium currents play important role in the cardiac electrogenesis and arrhythmogenesis. Whether and how the CLOCK-BMAL1 regulate the cardiac L-type calcium channels are yet to be determined. The functions of the L-type calcium channels were evaluated with patch clamping techniques. Recombinant adenoviruses of CLOCK and BMAL1 were used in the expression experiments. We reported that the expressions and functions of CACNA1C (the α-subunit of the L-type calcium channels) showed circadian rhythms, with the peak at zeitgeber time 3 (ZT3). The endocardial action potential durations 90 (APD90) were correspondingly longer at ZT3. The protein levels of the phosphorylated Akt at threonine 308 (pAkt T308) also showed circadian rhythms. Overexpressions of CLOCK-BMAL1 significantly reduced the levels of CACNA1C while increasing the levels of pAkt T308 and pik3r1. Furthermore, the inhibitory effects of CLOCK-BMAL1 on CACNA1C could be abolished by the Akt inhibitor MK2206 or the PDK1 inhibitor GSK2334470. Collectively, our findings suggested that the expressions of the cardiac CACNA1C were under the CLOCK-BMAL1 regulation, probably through the PI3K-Akt signal pathway. PMID:27376484

  20. G-protein-gated potassium (GIRK) channels containing the GIRK2 subunit are control hubs for pharmacologically induced hypothermic responses.

    PubMed

    Costa, Alberto C S; Stasko, Melissa R; Stoffel, Markus; Scott-McKean, Jonah J

    2005-08-24

    Hypothermic responses of rodents to the peripheral or intraventricular injection of many individual neurotransmitter receptor agonists have been well documented. Because many hypothermia-inducing agonists are also known to activate G-protein-gated potassium (GIRK) channels, we investigated the hypothermic response to several of these agents on Girk2 null mutant mice. Core body temperatures were measured through radiotelemetry, and animals were maintained in special temperature-regulated chambers to ensure the accuracy of the measurements. The resulting data indicate that the activation of GIRK2-containing potassium channels plays a significant role in hypothermia induced by the activation of serotonergic (5-HT(1A)), GABAergic (GABA(B)), muscarinic (m2), adenosine (A1), and mu, delta, and kappa opioid receptors. These channels also are involved in the alcohol-induced hypothermic response. These results have implications for the understanding of pharmacologically induced hypothermia and thermoregulatory mechanisms. PMID:16120781

  1. A Novel Role of the L-Type Calcium Channel α1D Subunit as a Gatekeeper for Intracellular Zinc Signaling: Zinc Wave

    PubMed Central

    Yamasaki, Satoru; Hasegawa, Aiko; Hojyo, Shintaro; Ohashi, Wakana; Fukada, Toshiyuki; Nishida, Keigo; Hirano, Toshio

    2012-01-01

    Recent studies have shown that zinc ion (Zn) can behave as an intracellular signaling molecule. We previously demonstrated that mast cells stimulated through the high-affinity IgE receptor (FcεRI) rapidly release intracellular Zn from the endoplasmic reticulum (ER), and we named this phenomenon the “Zn wave”. However, the molecules responsible for releasing Zn and the roles of the Zn wave were elusive. Here we identified the pore-forming α1 subunit of the Cav1.3 (α1D) L-type calcium channel (LTCC) as the gatekeeper for the Zn wave. LTCC antagonists inhibited the Zn wave, and an agonist was sufficient to induce it. Notably, α1D was mainly localized to the ER rather than the plasma membrane in mast cells, and the Zn wave was impaired by α1D knockdown. We further found that the LTCC-mediated Zn wave positively controlled cytokine gene induction by enhancing the DNA-binding activity of NF- κB. Consistent with this finding, LTCC antagonists inhibited the cytokine-mediated delayed-type allergic reaction in mice without affecting the immediate-type allergic reaction. These findings indicated that the LTCC α1D subunit located on the ER membrane has a novel function as a gatekeeper for the Zn wave, which is involved in regulating NF-κB signaling and the delayed-type allergic reaction. PMID:22745805

  2. Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of voltage-gated sodium channel β subunits

    PubMed Central

    Shimizu, Hideaki; Miyazaki, Haruko; Ohsawa, Noboru; Shoji, Shisako; Ishizuka-Katsura, Yoshiko; Tosaki, Asako; Oyama, Fumitaka; Terada, Takaho; Sakamoto, Kensaku; Shirouzu, Mikako; Sekine, Shun-ichi; Nukina, Nobuyuki; Yokoyama, Shigeyuki

    2016-01-01

    The β1, β2, and β4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the β4 extracellular domain revealed an antiparallel arrangement of the β4 molecules in the crystal lattice. The interface between the two antiparallel β4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the β4-mediated cell-cell adhesion revealed that the interface between the antiparallel β4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of β4 in cell-cell adhesion. This trans interaction mode is also employed in the β1-mediated cell-cell adhesion. Moreover, the β1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the β1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the β-subunit-mediated cell-cell adhesion has been established. PMID:27216889

  3. Autosomal dominant epilepsy with febrile seizures plus with missense mutations of the (Na+)-channel alpha 1 subunit gene, SCN1A.

    PubMed

    Ito, M; Nagafuji, H; Okazawa, H; Yamakawa, K; Sugawara, T; Mazaki-Miyazaki, E; Hirose, S; Fukuma, G; Mitsudome, A; Wada, K; Kaneko, S

    2002-01-01

    Evidence that febrile seizures have a strong genetic predisposition has been well documented. In families of probands with multiple febrile convulsions, an autosomal dominant inheritance with reduced penetrance is suspected. Four candidate loci for febrile seizures have been suggested to date; FEB1 on 8q13-q21, FEB2 on 19p, FEB3 on 2q23-q24, and FEB4 on 5q14-15. A missense mutation was identified in the voltage-gated sodium (Na(+))-channel beta 1 subunit gene, SCN1B at chromosome 19p13.1 in generalized epilepsy with the febrile seizures plus type 1 (GEFS+1) family. Several missense mutations of the (Na(+))-channel alpha 1 subunit (Nav1.1) gene, SCN1A were also identified in GEFS+2 families at chromosome 2q23-q24.3. The aim of this report is precisely to describe the phenotypes of Japanese patients with novel SCN1A mutations and to reevaluate the entity of GEFS+. Four family members over three generations and one isolated (phenotypically sporadic) case with SCN1A mutations were clinically investigated. The common seizure type in these patients was febrile and afebrile generalized tonic-clonic seizures (FS+). In addition to FS+, partial epilepsy phenotypes were suspected in all affected family members and electroencephalographically confirmed in three patients of two families. GEFS+ is genetically and clinically heterogeneous, and associated with generalized epilepsy and partial epilepsy as well. The spectrum of GEFS+ should be expanded to include partial epilepsies and better to be termed autosomal dominant epilepsy with febrile seizures plus (ADEFS+). PMID:11823106

  4. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease

    PubMed Central

    Marcsa, Boglárka; Dénes, Réka; Vörös, Krisztina; Rácz, Gergely; Sasvári-Székely, Mária; Rónai, Zsolt; Törő, Klára; Keszler, Gergely

    2015-01-01

    Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association. PMID:26146998

  5. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects.

    PubMed

    Zvejniece, Liga; Vavers, Edijs; Svalbe, Baiba; Veinberg, Grigory; Rizhanova, Kristina; Liepins, Vilnis; Kalvinsh, Ivars; Dambrova, Maija

    2015-10-01

    Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain

  6. Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons.

    PubMed

    Cheng, Chau-Fu; Wang, Wan-Chen; Huang, Chia-Yi; Du, Po-Hau; Yang, Jung-Hui; Tsaur, Meei-Ling

    2016-03-01

    Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons. PMID:26239200

  7. Kinetics of nucleotide binding to the β-subunit (AKR6A2) of the voltage-gated potassium (Kv) channel

    PubMed Central

    Barski, Oleg A.; Tipparaju, Srinivas M.; Bhatnagar, Aruni

    2009-01-01

    The β-subunits of the voltage-gated potassium (Kv) channels modulate the kinetics and the gating of Kv channels and assists in channel trafficking and membrane localization. These proteins are members of the AKR6 family. They share a common (α/β)8 barrel structural fold and avidly bind pyridine nucleotides. Low catalytic activity has been reported for these proteins. Kinetic studies with rat Kvβ2 revealed that the chemical step is largely responsible for the rate-limitation but nucleotide exchange could also contribute to the overall rate. Herein we report our investigations on the kinetics of cofactor exchange using nucleotide-free preparations of Kvβ2. Kinetic traces measuring quenching of Kvβ2 fluorescence by NADP+ were consistent with a two-step binding mechanism which includes rapid formation of a loose enzyme:cofactor complex followed by a slow conformational rearrangement to form a tight final complex. Closing of the nucleotide enfolding loop, which in the crystal structure folds over the bound cofactor, provides the structural basis for this rearrangement. The rate of the loop opening required to release the cofactor is similar for NADPH and NADP+ (0.9 min−1) and is of the same order of magnitude as the rate of the chemical step estimated previously from kinetic studies with 4-nitrobenzaldehyde (0.3–0.8 min−1, Tipparaju et al., Biochemistry 47 (2008) 8840–8854). Binding of NADPH is accompanied by a second conformational change that might be responsible for a 4-fold higher affinity observed with the reduced cofactor and the resulting difficulty in removing bound NADPH from the protein. These data provide evidence that nucleotide exchange occurs on a seconds to minutes time scale and set the upper limit for the maximal possible rate of catalysis by Kvβ2. Slow cofactor exchange is consistent with the role of the β-subunit as a metabolic sensor implicated in tonic regulation of potassium currents. PMID:19013139

  8. 2,2,2-Trifluoroethanol changes the transition kinetics and subunit interactions in the small bacterial mechanosensitive channel MscS.

    PubMed

    Akitake, Bradley; Spelbrink, Robin E J; Anishkin, Andriy; Killian, J Antoinette; de Kruijff, Ben; Sukharev, Sergei

    2007-04-15

    2,2,2-Trifluoroethanol (TFE), a low-dielectric solvent, has recently been used as a promising tool to probe the strength of intersubunit interactions in membrane proteins. An analysis of inner membrane proteins of Escherichia coli has identified several SDS-resistant protein complexes that separate into subunits upon exposure to TFE. One of these was the homo-heptameric stretch-activated mechanosensitive channel of small conductance (MscS), a ubiquitous component of the bacterial turgor-regulation system. Here we show that a substantial fraction of MscS retains its oligomeric state in cold lithium-dodecyl-sulfate gel electrophoresis. Exposure of MscS complexes to 10-15 vol % TFE in native membranes or nonionic detergent micelles before lithium-dodecyl-sulfate electrophoresis results in a complete dissociation into monomers, suggesting that at these concentrations TFE by itself disrupts or critically compromises intersubunit interactions. Patch-clamp analysis of giant E. coli spheroplasts expressing MscS shows that exposure to TFE in lower concentrations (0.5-5.0 vol %) causes leftward shifts of the dose-response curves when applied extracellularly, and rightward shifts when added from the cytoplasmic side. In the latter case, TFE increases the rate of tension-dependent inactivation and lengthens the process of recovery to the resting state. MscS responses to pressure ramps of different speeds indicate that in the presence of TFE most channels reside in the resting state and only at tensions near the activation threshold does TFE dramatically speed up inactivation. The effect of TFE is reversible as normal channel activity returns 15-30 min after a TFE washout. We interpret the observed midpoint shifts in terms of asymmetric partitioning of TFE into the membrane and distortion of the bilayer lateral pressure profile. We also relate the increased rate of inactivation and subunit separation with the capacity of TFE to perturb buried interhelical contacts in proteins

  9. 2,2,2-Trifluoroethanol Changes the Transition Kinetics and Subunit Interactions in the Small Bacterial Mechanosensitive Channel MscS

    PubMed Central

    Akitake, Bradley; Spelbrink, Robin E. J.; Anishkin, Andriy; Killian, J. Antoinette; de Kruijff, Ben; Sukharev, Sergei

    2007-01-01

    2,2,2-Trifluoroethanol (TFE), a low-dielectric solvent, has recently been used as a promising tool to probe the strength of intersubunit interactions in membrane proteins. An analysis of inner membrane proteins of Escherichia coli has identified several SDS-resistant protein complexes that separate into subunits upon exposure to TFE. One of these was the homo-heptameric stretch-activated mechanosensitive channel of small conductance (MscS), a ubiquitous component of the bacterial turgor-regulation system. Here we show that a substantial fraction of MscS retains its oligomeric state in cold lithium-dodecyl-sulfate gel electrophoresis. Exposure of MscS complexes to 10–15 vol % TFE in native membranes or nonionic detergent micelles before lithium-dodecyl-sulfate electrophoresis results in a complete dissociation into monomers, suggesting that at these concentrations TFE by itself disrupts or critically compromises intersubunit interactions. Patch-clamp analysis of giant E. coli spheroplasts expressing MscS shows that exposure to TFE in lower concentrations (0.5–5.0 vol %) causes leftward shifts of the dose-response curves when applied extracellularly, and rightward shifts when added from the cytoplasmic side. In the latter case, TFE increases the rate of tension-dependent inactivation and lengthens the process of recovery to the resting state. MscS responses to pressure ramps of different speeds indicate that in the presence of TFE most channels reside in the resting state and only at tensions near the activation threshold does TFE dramatically speed up inactivation. The effect of TFE is reversible as normal channel activity returns 15–30 min after a TFE washout. We interpret the observed midpoint shifts in terms of asymmetric partitioning of TFE into the membrane and distortion of the bilayer lateral pressure profile. We also relate the increased rate of inactivation and subunit separation with the capacity of TFE to perturb buried interhelical contacts in

  10. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome

    PubMed Central

    Paulais, Marc; Bloch-Faure, May; Picard, Nicolas; Jacques, Thibaut; Ramakrishnan, Suresh Krishna; Keck, Mathilde; Sohet, Fabien; Eladari, Dominique; Houillier, Pascal; Lourdel, Stéphane; Teulon, Jacques; Tucker, Stephen J.

    2011-01-01

    The heteromeric inwardly rectifying Kir4.1/Kir5.1 K+ channel underlies the basolateral K+ conductance in the distal nephron and is extremely sensitive to inhibition by intracellular pH. The functional importance of Kir4.1/Kir5.1 in renal ion transport has recently been highlighted by mutations in the human Kir4.1 gene (KCNJ10) that result in seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME)/epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) syndrome, a complex disorder that includes salt wasting and hypokalemic alkalosis. Here, we investigated the role of the Kir5.1 subunit in mice with a targeted disruption of the Kir5.1 gene (Kcnj16). The Kir5.1−/− mice displayed hypokalemic, hyperchloremic metabolic acidosis with hypercalciuria. The short-term responses to hydrochlorothiazide, an inhibitor of ion transport in the distal convoluted tubule (DCT), were also exaggerated, indicating excessive renal Na+ absorption in this segment. Furthermore, chronic treatment with hydrochlorothiazide normalized urinary excretion of Na+ and Ca2+, and abolished acidosis in Kir5.1−/− mice. Finally, in contrast to WT mice, electrophysiological recording of K+ channels in the DCT basolateral membrane of Kir5.1−/− mice revealed that, even though Kir5.1 is absent, there is an increased K+ conductance caused by the decreased pH sensitivity of the remaining homomeric Kir4.1 channels. In conclusion, disruption of Kcnj16 induces a severe renal phenotype that, apart from hypokalemia, is the opposite of the phenotype seen in SeSAME/EAST syndrome. These results highlight the important role that Kir5.1 plays as a pH-sensitive regulator of salt transport in the DCT, and the implication of these results for the correct genetic diagnosis of renal tubulopathies is discussed. PMID:21633011

  11. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.

    PubMed

    Paulais, Marc; Bloch-Faure, May; Picard, Nicolas; Jacques, Thibaut; Ramakrishnan, Suresh Krishna; Keck, Mathilde; Sohet, Fabien; Eladari, Dominique; Houillier, Pascal; Lourdel, Stéphane; Teulon, Jacques; Tucker, Stephen J

    2011-06-21

    The heteromeric inwardly rectifying Kir4.1/Kir5.1 K(+) channel underlies the basolateral K(+) conductance in the distal nephron and is extremely sensitive to inhibition by intracellular pH. The functional importance of Kir4.1/Kir5.1 in renal ion transport has recently been highlighted by mutations in the human Kir4.1 gene (KCNJ10) that result in seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME)/epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) syndrome, a complex disorder that includes salt wasting and hypokalemic alkalosis. Here, we investigated the role of the Kir5.1 subunit in mice with a targeted disruption of the Kir5.1 gene (Kcnj16). The Kir5.1(-/-) mice displayed hypokalemic, hyperchloremic metabolic acidosis with hypercalciuria. The short-term responses to hydrochlorothiazide, an inhibitor of ion transport in the distal convoluted tubule (DCT), were also exaggerated, indicating excessive renal Na(+) absorption in this segment. Furthermore, chronic treatment with hydrochlorothiazide normalized urinary excretion of Na(+) and Ca(2+), and abolished acidosis in Kir5.1(-/-) mice. Finally, in contrast to WT mice, electrophysiological recording of K(+) channels in the DCT basolateral membrane of Kir5.1(-/-) mice revealed that, even though Kir5.1 is absent, there is an increased K(+) conductance caused by the decreased pH sensitivity of the remaining homomeric Kir4.1 channels. In conclusion, disruption of Kcnj16 induces a severe renal phenotype that, apart from hypokalemia, is the opposite of the phenotype seen in SeSAME/EAST syndrome. These results highlight the important role that Kir5.1 plays as a pH-sensitive regulator of salt transport in the DCT, and the implication of these results for the correct genetic diagnosis of renal tubulopathies is discussed. PMID:21633011

  12. Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T cells

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Xiao; Liu, Wei-Xia; Tan, Xiao-Qiu; Xiong, Fei; Gu, Ning; Hao, Wei; Gao, Xue; Cao, Ji-Min

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron

  13. Structural and functional analysis of botulinum neurotoxin subunits for pH-dependent membrane channel formation and translocation.

    PubMed

    Chellappan, Gowri; Kumar, Raj; Santos, Erin; Goyal, Dipak; Cai, Shuowei; Singh, Bal Ram

    2015-10-01

    The structure-function relationship of Botulinum Neurotoxin (BoNT) proteins is greatly influenced by pH. While the low pH of endosome favors membrane interaction of the heavy chain (HC) for the formation of a membrane channel and translocation of the light chain (LC), the catalytic activity of the LC requires a neutral pH for cleavage of the soluble NSF attachment protein receptor (SNARE) complex in the cytosol. In this study, we monitored secondary structural characteristics of LC, HC and holotoxin at individual pHs 4.5 and 7.2 and at the transition pH4.5 to 7.2 to identify the structural signatures underlying their function. The HC showed higher thermal stability at pH4.5 with a melting temperature (Tm) of 60.4°C. The structural analysis of HC in the presence of liposomes showed no difference in ellipticity with that of HC at pH7.2 at 208 and 222 nm but a 25.2% decrease in ellipticity at 208 nm at acidic pH, indicating low pH-induced structural changes that might facilitate interaction with the membrane. Further, HC showed 18% release of K+ ions from liposomes at pH4.5 as against 6% at neutral pH, reinforcing its role in membrane channel formation. LC on the other hand, showed maximum ellipticity at pH7.2, a condition that is relevant to its endopeptidase activity in the cytosol of the neurons. Also, the similarity in the structures at pH7.2 and transition pH4.5 to 7.2 suggested that the flexibility acquired by the protein at low pH was reversible upon exposure to neutral pH for cleavage of SNARE proteins. PMID:26012869

  14. Ca2+/calmodulin-mediated fast desensitization by the B1b subunit of the CNG channel affects response termination but not sensitivity to recurring stimulation in olfactory sensory neurons

    PubMed Central

    Song, Yijun; Cygnar, Katherine D.; Sagdullaev, Botir; Valley, Matthew; Hirsh, Sarah; Stephan, Aaron; Reisert, Johannes; Zhao, Haiqing

    2008-01-01

    Summary Ca2+/calmodulin-mediated negative feedback is a prototypical regulatory mechanism for Ca2+ permeable ion channels. In olfactory sensory neurons (OSNs) such regulation on the cyclic nucleotide-gated (CNG) channel is considered a major mechanism of OSN adaptation. To determine the role of Ca2+/calmodulin desensitization of the olfactory CNG channel, we introduced a mutation in the channel subunit CNGB1b in mice that rendered the channel resistant to fast desensitization by Ca2+/calmodulin. Contrary to expectations, mutant OSNs showed normal receptor current adaptation to repeated stimulation. Rather, they displayed slower response termination and consequently, a reduced ability to transmit olfactory information to the olfactory bulb. They also displayed reduced response decline during sustained odorant exposure. These results suggest that Ca2+/calmodulin-mediated CNG channel fast desensitization is less important in regulating the sensitivity to recurring stimulation than previously thought and instead functions primarily to terminate OSN responses. PMID:18466748

  15. Solution NMR and calorimetric analysis of Rem2 binding to the Ca2+ channel β4 subunit: a low affinity interaction is required for inhibition of Cav2.1 Ca2+ currents.

    PubMed

    Xu, Xingfu; Zhang, Fangxiong; Zamponi, Gerald W; Horne, William A

    2015-05-01

    Rem, Rad, Kir/Gem (RGK) proteins, including Rem2, mediate profound inhibition of high-voltage activated Ca(2+) channels containing intracellular regulatory β subunits. All RGK proteins bind to voltage-gated Ca(2+) channel β subunit (Cavβ) subunits in vitro, but the necessity of the interaction for current inhibition remains controversial. This study applies NMR and calorimetric techniques to map the binding site for Rem2 on human Cavβ4a and measure its binding affinity. Our experiments revealed 2 binding surfaces on the β4 guanylate kinase domain contributing to a 156 ± 18 µM Kd interaction: a hydrophobic pocket lined by 4 critical residues (L173, N261, H262, and V303), mutation of any of which completely disrupted binding, and a nearby surface containing 3 residues (D206, L209, and D258) that when individually mutated decreased affinity. Voltage-gated Ca(2+) channel α1A subunit (Cav2.1) Ca(2+) currents were completely inhibited by Rem2 when co-expressed with wild-type Cavβ4a, but were unaffected by Rem2 when coexpressed with a Cavβ4a site 1 (L173A/V303A) or site 2 (D258A) mutant. These results provide direct evidence for a low-affinity Rem2/Cavβ4 interaction and show definitively that the interaction is required for Cav2.1 inhibition. PMID:25563298

  16. ATP-sensitive potassium channels in capillaries isolated from guinea-pig heart

    PubMed Central

    Schnitzler, Michael Mederos y; Derst, Christian; Daut, Jürgen; Preisig-Müller, Regina

    2000-01-01

    The full-length cDNAs of two different α-subunits (Kir6.1 and Kir6.2) and partial cDNAs of three different β-subunits (SUR1, SUR2A and SUR2B) of ATP-sensitive potassium (KATP) channels of the guinea-pig (gp) were obtained by screening a cDNA library from the ventricle of guinea-pig heart. Cell-specific reverse-transcriptase PCR with gene-specific intron-spanning primers showed that gpKir6.1, gpKir6.2 and gpSUR2B were expressed in a purified fraction of capillary endothelial cells. In cardiomyocytes, gpKir6.1, gpKir6.2, gpSUR1 and gpSUR2A were detected. Patch-clamp measurements were carried out in isolated capillary fragments consisting of 3–15 endothelial cells. The membrane capacitance measured in the whole-cell mode was 19.9 ± 1.0 pF and was independent of the length of the capillary fragment, which suggests that the endothelial cells were not electrically coupled under our experimental conditions. The perforated-patch technique was used to measure the steady-state current-voltage relation of capillary endothelial cells. Application of K+ channel openers (rilmakalim or diazoxide) or metabolic inhibition (250 μm 2,4-dinitrophenol plus 10 mM deoxyglucose) induced a current that reversed near the calculated K+ equilibrium potential. Rilmakalim (1 μm), diazoxide (300 μm) and metabolic inhibition increased the slope conductance measured at −55 mV by a factor of 9.0 (±1.8), 2.5 (±0.2) and 3.9 (±1.7), respectively. The effects were reversed by glibenclamide (1 μm). Our results suggest that capillary endothelial cells from guinea-pig heart express KATP channels composed of SUR2B and Kir6.1 and/or Kir6.2 subunits. The hyperpolarization elicited by the opening of KATP channels may lead to an increase in free cytosolic Ca2+, and thus modulate the synthesis of NO and the permeability of the capillary wall. PMID:10835035

  17. Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K+ channel to genetic predisposition to anorexia nervosa.

    PubMed

    Koronyo-Hamaoui, Maya; Frisch, Amos; Stein, Daniel; Denziger, Yardena; Leor, Shani; Michaelovsky, Elena; Laufer, Neil; Carel, Cynthia; Fennig, Silvana; Mimouni, Mark; Ram, Anca; Zubery, Eynat; Jeczmien, Pablo; Apter, Alan; Weizman, Abraham; Gak, Eva

    2007-01-01

    Since identification of the genetic component in anorexia nervosa (AN), genes that partake in serotonergic and dopaminergic systems and in hormonal and weight regulation have been suggested as potential candidates for AN susceptibility. We propose another set of candidate genes. Those are genes that are involved in the signaling pathway using NMDA-R and SK channels and have been suggested as possible effectors of NMDA-R driven signaling. The role of NMDA-R in the etiology of schizophrenia has already been substantiated on various levels. Several studies based on population and family groups have implicated SK3 in schizophrenia and more recently in AN as well. Our study group consisted of 90 AN family trios. We examined the transmission of two potentially functional polymorphisms, 5073T>G polymorphism in the gene encoding the NR2B subunit of NMDA-R and CAG repeats in the coding region of SK3 channel gene. Using HHRR and TDT approaches, we found that both polymorphisms were preferentially transmitted to AN offspring (TDT yielded chi(2)=5.01, p=0.025 for NR2B 5073G alleles and chi(2)=11.75, p<0.001 for SK3 L alleles including >19 repeats). Distribution analysis of the combined NR2B/SK3 genotypes suggests that the contribution of both polymorphisms to AN risk is independent and cumulative (OR=2.44 for NR2B GG genotype and OR=3.01 for SK3 SL and LL genotypes, and OR=6.8 for the combined NR2B/SK3 genotypes including high-risk alleles). These findings point to the contribution of genes associated with the NMDA-R signaling pathway to predisposition and development of AN. PMID:16157352

  18. Severe Salt-Losing Syndrome and Hyperkalemia Induced by Adult Nephron-Specific Knockout of the Epithelial Sodium Channel α-Subunit.

    PubMed

    Perrier, Romain; Boscardin, Emilie; Malsure, Sumedha; Sergi, Chloé; Maillard, Marc P; Loffing, Johannes; Loffing-Cueni, Dominique; Sørensen, Mads Vaarby; Koesters, Robert; Rossier, Bernard C; Frateschi, Simona; Hummler, Edith

    2016-08-01

    Systemic pseudohypoaldosteronism type 1 (PHA-1) is a severe salt-losing syndrome caused by loss-of-function mutations of the amiloride-sensitive epithelial sodium channel (ENaC) and characterized by neonatal life-threatening hypovolemia and hyperkalemia. The very high plasma aldosterone levels detected under hypovolemic or hyperkalemic challenge can lead to increased or decreased sodium reabsorption, respectively, through the Na(+)/Cl(-) cotransporter (NCC). However, the role of ENaC deficiency remains incompletely defined, because constitutive inactivation of individual ENaC subunits is neonatally lethal in mice. We generated adult inducible nephron-specific αENaC-knockout mice (Scnn1a(Pax8/LC1)) that exhibit hyperkalemia and body weight loss when kept on a regular-salt diet, thus mimicking PHA-1. Compared with control mice fed a regular-salt diet, knockout mice fed a regular-salt diet exhibited downregulated expression and phosphorylation of NCC protein, despite high plasma aldosterone levels. In knockout mice fed a high-sodium and reduced-potassium diet (rescue diet), although plasma aldosterone levels remained significantly increased, NCC expression returned to control levels, and body weight, plasma and urinary electrolyte concentrations, and excretion normalized. Finally, shift to a regular diet after the rescue diet reinstated the symptoms of severe PHA-1 syndrome and significantly reduced NCC phosphorylation. In conclusion, lack of ENaC-mediated sodium transport along the nephron cannot be compensated for by other sodium channels and/or transporters, only by a high-sodium and reduced-potassium diet. We further conclude that hyperkalemia becomes the determining factor in regulating NCC activity, regardless of sodium loss, in the ENaC-mediated salt-losing PHA-1 phenotype. PMID:26701978

  19. Channel architecture in maltoporin: dominance studies with lamB mutations influencing maltodextrin binding provide evidence for independent selectivity filters in each subunit.

    PubMed Central

    Ferenci, T; Lee, K S

    1989-01-01

    Maltoporin trimers constitute maltodextrin-selective channels in the outer membrane of Escherichia coli. To study the organization of the maltodextrin-binding site within trimers, dominance studies were undertaken with maltoporin variants of altered binding affinity. It has been established that amino acid substitutions at three dispersed regions of the maltoporin sequence (at residues 8, 82, and 360) resulted specifically in maltodextrin-binding defects and loss of maltodextrin channel selectivity; a substitution at residue 118 increased both binding affinity and maltodextrin transport. Strains heterodiploid for lamB were constructed in which these substitutions were encoded by chromosomal and plasmid-borne genes, and the relative level of maltoporin expression from these genes was estimated. Binding assays with bacteria forming maltoporin heterotrimers were performed in order to test for complementation between binding-negative alleles, negative dominance of negative over wild-type alleles, and possible dominance of negatives over the high-affinity allele. Double mutants with mutations affecting residues 8 and 118, 82 and 118, and 118 and 360 were constructed in vitro, and the dominance properties of the mutations in cis were also tested. There was no complementation between negatives and no negative dominance in heterotrimers. The high-affinity mutation was dominant over negatives in trans but not in cis. The affinity of binding sites in heterotrimer populations was characteristic of the high-affinity allele present and uninfluenced by the negative allele. These results are consistent with the presence of three discrete binding sites in a maltoporin trimer and suggest that the selectivity filter for maltodextrins is not at the interface between the three subunits. PMID:2521623

  20. Physical linkage of the human growth hormone gene cluster and the skeletal muscle sodium channel {alpha}-subunit gene (SCN4A) on chromosome 17

    SciTech Connect

    Bennani-Baiti, I.M.; Jones, B.K.; Liebhaber, S.A.; Cooke, N.E.

    1995-10-10

    The human growth hormone (GH) locus, a cluster of five genes, spans 47 kb on chromosome 17q22-q24. The skeletal muscle sodium channel {alpha}-subunit locus (SCN4A), a 32.5-kb gene, has previously been mapped to 17q23.1-q25.3. We demonstrate that both the GH gene cluster and the SCN4A gene colocalize to a single 525-kb yeast artificial chromosome (YAC) containing DNA derived from human chromosome 17. Restriction maps of two cosmids encompassing the 5{prime} terminus of the GH locus and including up to 40 kb of 5{prime}-flanking sequences demonstrate a perfect 20-kb overlap with previously published maps of the SCN4A gene. A 720-bp DNA segment, encompassing sequences 32.3 to 31.6 kb 5{prime} to GH, was sequenced and found to be identical to exon 14 of SCN4A. These data demonstrate that the SCN4A gene and the entire GH gene cluster are contained within 100 kb on chromosome 17 and are separated by only 21.5 kb. Remarkably, this physical linkage between GH and SCN4A also reveals that multiple elements critical to tissue-specific transcriptional activation of the GH gene lie within the SCN4A gene. 48 refs., 5 figs.

  1. Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (Cav 2.2) of N-type calcium channels

    PubMed Central

    Ino, Mitsuhiro; Yoshinaga, Takashi; Wakamori, Minoru; Miyamoto, Norimasa; Takahashi, Eiki; Sonoda, Jiro; Kagaya, Takaki; Oki, Tohru; Nagasu, Takeshi; Nishizawa, Yukio; Tanaka, Isao; Imoto, Keiji; Aizawa, Shinichi; Koch, Sheryl; Schwartz, Arnold; Niidome, Tetsuhiro; Sawada, Kohei; Mori, Yasuo

    2001-01-01

    N-type voltage-dependent Ca2+ channels (VDCCs), predominantly localized in the nervous system, have been considered to play an essential role in a variety of neuronal functions, including neurotransmitter release at sympathetic nerve terminals. As a direct approach to elucidating the physiological significance of N-type VDCCs, we have generated mice genetically deficient in the α1B subunit (Cav 2.2). The α1B-deficient null mice, surprisingly, have a normal life span and are free from apparent behavioral defects. A complete and selective elimination of N-type currents, sensitive to ω-conotoxin GVIA, was observed without significant changes in the activity of other VDCC types in neuronal preparations of mutant mice. The baroreflex response, mediated by the sympathetic nervous system, was markedly reduced after bilateral carotid occlusion. In isolated left atria prepared from N-type-deficient mice, the positive inotropic responses to electrical sympathetic neuronal stimulation were dramatically decreased compared with those of normal mice. In contrast, parasympathetic nervous activity in the mutant mice was nearly identical to that of wild-type mice. Interestingly, the mutant mice showed sustained elevation of heart rate and blood pressure. These results provide direct evidence that N-type VDCCs are indispensable for the function of the sympathetic nervous system in circulatory regulation and indicate that N-type VDCC-deficient mice will be a useful model for studying disorders attributable to sympathetic nerve dysfunction. PMID:11296258

  2. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    SciTech Connect

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  3. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1)

    PubMed Central

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A.; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M.

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature. PMID:25904995

  4. Kv4.2 and accessory dipeptidyl peptidase-like protein 10 (DPP10) subunit preferentially form a 4:2 (Kv4.2:DPP10) channel complex.

    PubMed

    Kitazawa, Masahiro; Kubo, Yoshihiro; Nakajo, Koichi

    2015-09-11

    Kv4 is a member of the voltage-gated K(+) channel family and forms a complex with various accessory subunits. Dipeptidyl aminopeptidase-like protein (DPP) is one of the auxiliary subunits for the Kv4 channel. Although DPP has been well characterized and is known to increase the current amplitude and accelerate the inactivation and recovery from inactivation of Kv4 current, it remains to be determined how many DPPs bind to one Kv4 channel. To examine whether the expression level of DPP changes the biophysical properties of Kv4, we expressed Kv4.2 and DPP10 in different ratios in Xenopus oocytes and analyzed the currents under two-electrode voltage clamp. The current amplitude and the speed of recovery from inactivation of Kv4.2 changed depending on the co-expression level of DPP10. This raised the possibility that the stoichiometry of the Kv4.2-DPP10 complex is variable and affects the biophysical properties of Kv4.2. We next determined the stoichiometry of DPP10 alone by subunit counting using single-molecule imaging. Approximately 70% of the DPP10 formed dimers in the plasma membrane, and the rest existed as monomers in the absence of Kv4.2. We next determined the stoichiometry of the Kv4.2-DPP10 complex; Kv4.2-mCherry and mEGFP-DPP10 were co-expressed in different ratios and the stoichiometries of Kv4.2-DPP10 complexes were evaluated by the subunit counting method. The stoichiometry of the Kv4.2-DPP10 complex was variable depending on the relative expression level of each subunit, with a preference for 4:2 stoichiometry. This preference may come from the bulky dimeric structure of the extracellular domain of DPP10. PMID:26209633

  5. Myorelaxant action of fluorine-containing pinacidil analog, flocalin, in bladder smooth muscle is mediated by inhibition of L-type calcium channels rather than activation of KATP channels.

    PubMed

    Philyppov, Igor B; Golub, Andriy А; Boldyriev, Oleksiy I; Shtefan, Natalia L; Totska, Khrystyna; Voitychuk, Oleg I; Shuba, Yaroslav M

    2016-06-01

    Flocalin (FLO) is a new ATP-sensitive K(+) (KATP) channel opener (KCO) derived from pinacidil (PIN) by adding fluorine group to the drug's structure. FLO acts as a potent cardioprotector against ischemia-reperfusion damage in isolated heart and whole animal models primarily via activating cardiac-specific Kir6.2/SUR2A KATP channels. Given that FLO also confers relaxation on several types of smooth muscles and can partially inhibit L-type Ca(2+) channels, in this study, we asked what is the mechanism of FLO action in bladder detrusor smooth muscle (DSM). The actions of FLO and PIN on contractility of rat and guinea pig DSM strips and membrane currents of isolated DSM cells were compared by tensiometry and patch clamp. Kir6 and SUR subunit expression in rat DSM was assayed by reverse transcription PCR (RT-PCR). In contrast to PIN (10 μM), FLO (10 μM) did not produce glibenclamide-sensitive DSM strips' relaxation and inhibition of spontaneous and electrically evoked contractions. However, FLO, but not PIN, inhibited contractions evoked by high K(+) depolarization. FLO (40 μM) did not change the level of isolated DSM cell's background K(+) current, but suppressed by 20 % L-type Ca(2+) current. Determining various Kir6 and SUR messenger RNA (mRNA) expressions in rat DSM by RT-PCR indicated that dominant KATP channel in rat DSM is of vascular type involving association of Kir6.1 and SUR2B subunits. Myorelaxant effects of FLO in bladder DSM are explained by partial blockade of L-type Ca(2+) channel-mediated Ca(2+) influx rather than by hyperpolarization associated with increased K(+) permeability. Thus, insertion of fluorine group in PIN's structure made the drug more discriminative between Kir6.2/SUR2A cardiac- and Kir6.1/SUR2B vascular-type KATP channels and rendered it partial L-type Ca(2+) channel-blocking potency. PMID:26976335

  6. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    SciTech Connect

    Beckers, M.C.; Ernst, E.; Gros, P.

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  7. Localization of the gene encoding the [alpha][sub 2]/[delta] subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca[sup 2+] channel to chromosome 7q21-q22 by somatic cell hybrid analysis

    SciTech Connect

    Powers, P.A.; Hogan, K.; Gregg, R.G. ); Scherer, S.W.; Tsui, L.C. Hospital for Sick Children, Ontario )

    1994-01-01

    Activation of voltage-dependent calcium channels (VDCCs) by membrane depolarization triggers key cellular responses such as contraction, secretion, excitation, and electrical signaling. The skeletal muscle L-type VDCC is a heteromultimer complex containing four subunits, [alpha][sub 1],[alpha][sub 2]/[delta],[beta][sub 1], and [gamma]. The [alpha][sub 2]/[delta] subunit, an integral component of the VDCC, appears to modulate the channel kinetics. The [alpha][sub 2]/[delta] gene is expressed in many tissues, including skeletal muscle, brain, heart, and lung, and cDNAs representing the skeletal muscle and brain isoforms have been isolated. DNA sequence comparisons indicate that these cDNAs are encoding by a single gene. 15 refs., 1 fig.

  8. Interdependent Roles for Accessory KChIP2, KChIP3 and KChIP4 Subunits in the Generation of Kv4-encoded IA Channels in Cortical Pyramidal Neurons

    PubMed Central

    Norris, Aaron J.; Foeger, Nicholas C.; Nerbonne, Jeanne M.

    2010-01-01

    The rapidly activating and inactivating voltage-dependent outward K+ (Kv) current, IA, is widely expressed in central and peripheral neurons. IA has long been recognized to play important roles in determining neuronal firing properties and regulating neuronal excitability. Previous work demonstrated that Kv4.2 and Kv4.3 α-subunits are the primary determinants of IA in mouse cortical pyramidal neurons. Accumulating evidence indicates that native neuronal Kv4 channels function in macromolecular protein complexes that contain accessory subunits and other regulatory molecules. The K+ Channel Interacting Proteins (KChIPs) are among the identified Kv4 channel accessory subunits and are thought to be important for the formation and functioning of neuronal Kv4 channel complexes. Molecular genetic, biochemical and electrophysiological approaches were exploited in the experiments described here to examine directly the roles of KChIPs in the generation of functional Kv4-encoded IA channels. These combined experiments revealed that KChIP2, KChIP3 and KChIP4 are robustly expressed in adult mouse posterior (visual) cortex and that all three proteins co-immunoprecipitate with Kv4.2. In addition, in cortical pyramidal neurons from mice lacking KChIP3 (KChIP3−/−), mean IA densities were reduced modestly, whereas in mean IA densities in KChIP2−/− and WT neurons were not significantly different. Interestingly, in both KChIP3−/− and KChIP2−/− cortices the expression levels of the other KChIPs (KChIP2 and 4 or KChIP3 and 4, respectively) were increased. In neurons expressing constructs to mediate simultaneous RNA interference-induced reductions in the expression of KChIP2, 3 and 4, IA densities were markedly reduced and Kv current remodeling was evident. PMID:20943905

  9. ATP-Sensitive Potassium (KATP) Channel Activation Decreases Intraocular Pressure in the Anterior Chamber of the Eye

    PubMed Central

    Chowdhury, Uttio Roy; Bahler, Cindy K.; Hann, Cheryl R.; Chang, Minhwang; Resch, Zachary T.; Romero, Michael F.

    2011-01-01

    Purpose. ATP-sensitive potassium channel (KATP) openers target key cellular events, many of which have been implicated in glaucoma. The authors sought to determine whether KATP channel openers influence outflow facility in human anterior segment culture and intraocular pressure (IOP) in vivo. Methods. Anterior segments from human eyes were placed in perfusion organ culture and treated with the KATP channel openers diazoxide, nicorandil, and P1075 or the KATP channel closer glyburide (glibenclamide). The presence, functionality, and specificity of KATP channels were determined by RT-PCR, immunohistochemistry, and inside-out patch clamp in human trabecular meshwork (TM) tissue or primary cultures of normal human trabecular meshwork (NTM) cells. The effect of diazoxide on IOP in anesthetized Brown Norway rats was measured with a rebound tonometer. Results. KATP channel openers increased outflow facility in human anterior segments (0.14 ± 0.02 to 0.26 ± 0.09 μL/min/mm Hg; P < 0.001) compared with fellow control eyes (0.22 ± 0.11 to 0.21 ± 0.11 μL/min/mm Hg; P > 0.5). The effect was reversible, with outflow facility returning to baseline after drug removal. The addition of glyburide inhibited diazoxide from increasing outflow facility. Electrophysiology confirmed the presence and specificity of functional KATP channels. KATP channel subunits Kir6.1, Kir6.2, SUR2A, and SUR2B were expressed in TM and NTM cells. In vivo, diazoxide significantly lowered IOP in Brown Norway rats. Conclusions. Functional KATP channels are present in the trabecular meshwork. When activated by KATP channel openers, these channels increase outflow facility through the trabecular outflow pathway in human anterior segment organ culture and decrease IOP in Brown Norway rat eyes. PMID:21743021

  10. Single-channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits

    PubMed Central

    Ciuraszkiewicz, Anna; Schreibmayer, Wolfgang; Platzer, Dieter; Orr-Urtreger, Avi; Scholze, Petra; Huck, Sigismund

    2013-01-01

    Previous attempts to measure the functional properties of recombinant nicotinic acetylcholine receptors (nAChRs) composed of known receptor subunits have yielded conflicting results. The use of knockout mice that lack α5, β2, α5β2 or α5β2α7 nAChR subunits enabled us to measure the single-channel properties of distinct α3β4, α3β4α5 and α3β4β2 receptors in superior cervical ganglion (SCG) neurons. Using this approach, we found that α3β4 receptors had a principal conductance level of 32.6 ± 0.8 pS (mean ± SEM) and both higher and lower secondary conductance levels. α3β4α5 receptors had the same conductance as α3β4 receptors, but differed from α3β4 receptors by having an increased channel open time and increased burst duration. By contrast, α3β4β2 receptors differed from α3β4 and α3β4α5 receptors by having a significantly smaller conductance level (13.6 ± 0.5 pS). After dissecting the single-channel properties of these receptors using our knockout models, we then identified these properties – and hence the receptors themselves – in wild-type SCG neurons. This study is the first to identify the single-channel properties of distinct neuronal nicotinic receptors in their native environment. PMID:23613527

  11. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  12. Impact of Ancillary Subunits on Ventricular Repolarization

    PubMed Central

    Abbott, Geoffrey W.; Xu, Xianghua; Roepke, Torsten K.

    2007-01-01

    Voltage-gated potassium (Kv) channels generate the outward K+ ion currents that constitute the primary force in ventricular repolarization. Kv channels comprise tetramers of pore-forming α subunits and, in probably the majority of cases in vivo, ancillary or β subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane, and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as α subunits. Cytoplasmic ancillary subunits include the Kvβ subunits, which regulate a range of Kv channels and may link channel gating to redox potential; and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular Ito current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv α subunit subfamilies; and the putative 12-transmembrane domain KCR1 protein which modulates hERG. In some cases, such as the ventricular IKs channel complex, it is well-established that the KCNQ1 α subunit must co-assemble with the MinK (KCNE1) single transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating IKs current. In other cases it is not so clear-cut, and in particular the roles of the other MinK-related proteins (MiRPs 1–4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular IKr) in vivo. Some ancillary subunits may exhibit varied expression to shape

  13. cap alpha. /sub i/-3 cDNA encodes the. cap alpha. subunit of G/sub k/, the stimulatory G protein of receptor-regulated K/sup +/ channels

    SciTech Connect

    Codina, J.; Olate, J.; Abramowitz, J.; Mattera, R.; Cook, R.G.; Birnbaumer, L.

    1988-05-15

    cDNA cloning has identified the presence in the human genome of three genes encoding ..cap alpha.. subunits of pertussis toxin substrates, generically called G/sub i/. They are named ..cap alpha../sub i/-1, ..cap alpha../sub i/-2 and ..cap alpha../sub i/-3. However, none of these genes has been functionally identified with any of the ..cap alpha.. subunits of several possible G proteins, including pertussis toxin-sensitive G/sub p/'s, stimulatory to phospholipase C or A/sub 2/, G/sub i/, inhibitory to adenylyl cyclase, or G/sub k/, stimulatory to a type of K/sup +/ channels. The authors now report the nucleotide sequence and the complete predicted amino acid sequence of human liver ..cap alpha../sub i/-3 and the partial amino acid sequence of proteolytic fragments of the ..cap alpha.. subunit of human erythrocyte G/sub k/. The amino acid sequence of the proteolytic fragment is uniquely encoded by the cDNA of ..cap alpha../sub i/-3, thus identifying it as ..cap alpha../sub k/. The probable identity of ..cap alpha../sub i/-1 with ..cap alpha../sub p/ and possible roles for ..cap alpha../sub i/-2, as well as additional roles for ..cap alpha../sub i/-1 and ..cap alpha../sub i/-3 (..cap alpha../sub k/) are discussed.

  14. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein.

    PubMed

    Torkkeli, Päivi H; Liu, Hongxia; French, Andrew S

    2015-01-01

    Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular

  15. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein

    PubMed Central

    Torkkeli, Päivi H.; Liu, Hongxia; French, Andrew S.

    2015-01-01

    Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular

  16. Deletion of FoxO1 Leads to Shortening of QRS by Increasing Na+ Channel Activity through Enhanced Expression of both Cardiac NaV1.5 and β3 Subunit

    PubMed Central

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-01-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na+ channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na+ channel activity in mouse ventricular cardiomyocytes and assess the cardiac electrophysiological phenotype of mice with cardiac FoxO1 deletion. Tamoxifen-induced and cardiac-specific FoxO1 deletion was confirmed by polymerase chain reaction (PCR). Cardiac FoxO1 deletion failed to result in either cardiac functional changes or hypertrophy as assessed by echocardiography and individual ventricular cell capacitances, respectively. Western blotting showed that FoxO1 was significantly decreased while NaV1.5 protein level was significantly increased in mouse hearts with FoxO1 deletion. Reverse transcription-PCR (RT-PCR) revealed that FoxO1 deletion led to an increase in NaV1.5 and Na+ channel subunit β3 mRNA, but not β1, 2, 4, or connexin 43. Whole patch-clamp recordings demonstrated that cardiac Na+ currents were significantly augmented by FoxO1 deletion without affecting the steady-state activation and inactivation, leading to accelerated depolarization of action potentials in mouse ventricular cardiomyocytes. Electrocardiogram recordings showed that the QRS complex was significantly shortened and P wave amplitude was significantly increased in conscious and unrestrained mice with cardiac FoxO1 deletion. NaV1.5 expression was decreased in the peri-infarct (border-zone) of mice with myocardial infarction and FoxO1 accumulated in the cardiomyocyte nuclei of chronic ischemic human hearts. Our findings indicate that FoxO1 plays an important role in the regulation of NaV1.5 and β3 subunit expression as well as Na+ channel activity

  17. Hyperactivation of L-type voltage-gated Ca2+ channels in Caenorhabditis elegans striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the α1 subunit.

    PubMed

    Lainé, Viviane; Ségor, Jean Rony; Zhan, Hong; Bessereau, Jean-Louis; Jospin, Maelle

    2014-11-01

    Several human diseases, including hypokalemic periodic paralysis and Timothy syndrome, are caused by mutations in voltage-gated calcium channels. The effects of these mutations are not always well understood, partially because of difficulties in expressing these channels in heterologous systems. The use of Caenorhabditis elegans could be an alternative approach to determine the effects of mutations on voltage-gated calcium channel function because all the main types of voltage-gated calcium channels are found in C. elegans, a large panel of mutations already exists and efficient genetic tools are available to engineer customized mutations in any gene. In this study, we characterize the effects of two gain-of-function mutations in egl-19, which encodes the L-type calcium channel α1 subunit. One of these mutations, ad695, leads to the replacement of a hydrophobic residue in the IIIS4 segment. The other mutation, n2368, changes a conserved glycine of IS6 segment; this mutation has been identified in patients with Timothy syndrome. We show that both egl-19 (gain-of-function) mutants have defects in locomotion and morphology that are linked to higher muscle tone. Using in situ electrophysiological approaches in striated muscle cells, we provide evidence that this high muscle tone is due to a shift of the voltage dependency towards negative potentials, associated with a decrease of the inactivation rate of the L-type Ca(2+) current. Moreover, we show that the maximal conductance of the Ca(2+) current is decreased in the strongest mutant egl-19(n2368), and that this decrease is correlated with a mislocalization of the channel. PMID:25214488

  18. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go

    PubMed Central

    Xu, Ying; Orlandi, Cesare; Cao, Yan; Yang, Shengyan; Choi, Chan-Il; Pagadala, Vijayakanth; Birnbaumer, Lutz; Martemyanov, Kirill A.; Vardi, Noga

    2016-01-01

    Transmission from photoreceptors to ON bipolar cells in mammalian retina is mediated by a sign-inverting cascade. Upon binding glutamate, the metabotropic glutamate receptor mGluR6 activates the heterotrimeric G-protein Gαoβ3γ13, and this leads to closure of the TRPM1 channel (melastatin). TRPM1 is thought to be constitutively open, but the mechanism that leads to its closure is unclear. We investigated this question in mouse rod bipolar cells by dialyzing reagents that modify the activity of either Gαo or Gβγ and then observing their effects on the basal holding current. After opening the TRPM1 channels with light, a constitutively active mutant of Gαo closed the channel, but wild-type Gαo did not. After closing the channels by dark adaptation, phosducin or inactive Gαo (both sequester Gβγ) opened the channel while the active mutant of Gαo did not. Co-immunoprecipitation showed that TRPM1 interacts with Gβ3 and with the active and inactive forms of Gαo. Furthermore, bioluminescent energy transfer assays indicated that while Gαo interacts with both the N- and the C- termini of TRPM1, Gβγ interacts only with the N-terminus. Our physiological and biochemical results suggest that both Gαo and Gβγ bind TRPM1 channels and cooperate to close them. PMID:26883481

  20. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B.

    PubMed

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H; Prorok, Mary; Castellino, Francis J

    2009-08-01

    The conantokins are short, naturally occurring peptides that inhibit ion flow through N-methyl-d-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), shows high selectivity for antagonism of NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole-cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E(657)-I(814)) were replaced by the corresponding S2 region of NR2B (E(658)-I(815)), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M(739) of NR2B for the equivalent K(738) of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K(755) of NR2B for Y(754) of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes. PMID:19427876

  1. Intracellular segment between transmembrane helices S0 and S1 of BK channel α subunit contains two amphipathic helices connected by a flexible loop

    SciTech Connect

    Shi, Pan; Li, Dong; Lai, Chaohua; Zhang, Longhua; Tian, Changlin

    2013-08-02

    Highlights: •The loop between S0 and S1 of BK channel was overexpressed and purified in DPC. •NMR studies indicated BK-IS1 contained two helices connected by a flexible loop. •Mg{sup 2+} titration of BK-IS1 indicated two possible binding sites of divalent ions. -- Abstract: The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca{sup 2+} and Mg{sup 2+}, as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0–S6) including an extra helix S0. The intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg{sup 2+} coordination. In this study, BK-IS1 (44–113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide {sup 1}H–{sup 15}N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg{sup 2+}. Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.

  2. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes

    NASA Technical Reports Server (NTRS)

    Sukharev, Sergei

    2002-01-01

    The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic downshift. It has been identified in Escherichia coli as a product of the orphan yggB gene, now called mscS (Levina et al., 1999, EMBO J. 18:1730). Here I show that that the isolated 31-kDa MscS protein is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. MscS-6His complexes purified in the presence of octylglucoside and lipids migrate in a high-resolution gel-filtration column as particles of approximately 200 kDa. Consistent with that, the protein cross-linking patterns predict a hexamer. The channel reconstituted in soybean asolectin liposomes was activated by pressures of 20-60 mm Hg and displayed the same asymmetric I-V curve and slight anionic preference as in situ. At the same time, the single-channel conductance is proportional to the buffer conductivity in a wide range of salt concentrations. The rate of channel activation in response to increasing pressure gradient across the patch was slower than the rate of closure in response to decreasing steps of pressure gradient. Therefore, the open probability curves were recorded with descending series of pressures. Determination of the curvature of patches by video imaging permitted measurements of the channel activity as a function of membrane tension (gamma). Po(gamma) curves had the midpoint at 5.5 +/- 0.1 dyne/cm and gave estimates for the energy of opening DeltaG = 11.4 +/- 0.5 kT, and the transition-related area change DeltaA = 8.4 +/- 0.4 nm(2) when fitted with a two-state Boltzmann model. The correspondence between channel properties in the native and reconstituted systems is discussed.

  3. Purification and subunit structure of the (/sup 3/H)phenamil receptor associated with the renal apical Na/sup +/ channel

    SciTech Connect

    Barbry, P.; Chassande, O.; Vigne, P.; Frelin, C.; Ellory, C.; Cragoe, E.J. Jr.; Lazdunski, M.

    1987-07-01

    Sodium crosses the apical membrane of tight epithelia through a sodium channel, which is inhibited by the diuretic amiloride and by analogs such as phenamil. Target size analysis indicated that the functional size of the (/sup 3/H)phenamil binding sites associated with the epithelial Na/sup +/ channel from pig kidney is 90 +/- 10 kDa. The (/sup 3/H)phenamil receptor was solubilized by using 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The solubilized material displayed the same properties of interaction with amiloride and its derivatives as the membrane-bound receptor. A two-step purification of the epithelial Na/sup +/ channel was achieved by using QAE Sephadex chromatography and affinity chromatography on a Bandeiraea simplicifolia lectin column. It results in an 1100-fold purification of the Na/sup +/ channel as compared to pig kidney microsomes with a yield of 15% +/- 5%. The maximal specific activity was 3.7 nmol/mg of protein. NaDodSO/sub 4//polyacrylamide gel electrophoresis of the purified Na/sup +/ channel under nonreducing conditions showed the presence of a single major polypeptide chains of apparent molecular mass 185 kDa. Under disulfide-reducing conditions, the purified epithelial Na/sup +/ channel migrated as a single band of apparent molecular mass 105 kDa. It is suggested that the epithelial Na/sup +/ channel from pig kidney has a total molecular mass of 185 kDa and consists of two nearly identical 90- to 105-kDa polypeptide chains crosslinked by disulfide bridges.

  4. The pore region of the Kv1.2alpha subunit is an important component of recombinant Kv1.2 channel oxygen sensitivity.

    PubMed

    Conforti, Laura; Takimoto, Koichi; Petrovic, Milan; Pongs, Olaf; Millhorn, David

    2003-06-27

    Oxygen-sensitive K(+) channels are important elements in the cellular response to hypoxia. Although much progress has been made in identifying their molecular composition, the structural components associated to their O(2)-sensitivity are not yet understood. Recombinant Kv1.2 currents expressed in Xenopus oocytes are inhibited by a decrease in O(2) availability. On the contrary, heterologous Kv2.1 channels are O(2)-insensitive. To elucidate the protein segment responsible for the O(2)-sensitivity of Kv1.2 channels, we analyzed the response to anoxia of Kv1.2/Kv2.1 chimeric channels. Expression of chimeric Kv2.1 channels each containing the S4, the S1-S3 or the S6-COOH segments of Kv1.2 polypeptide resulted in a K(+) current insensitive to anoxia. In contrast, transferring the S5-S6 segment of Kv1.2 into Kv2.1 produced an O(2)-sensitive K(+) current. Finally, mutating a redox-sensitive methionine residue (M380) of Kv1.2 polypeptide did not affect O(2)-sensitivity. Thus, the pore and its surrounding regions of Kv1.2 polypeptide confer its hypoxic inhibition. This response is independent on the redox modulation of methionine residues in this protein segment. PMID:12804584

  5. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.

    PubMed

    Berecki, Géza; Motin, Leonid; Adams, David J

    2016-01-01

    Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human μ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba(2+) currents (IBa). Selective agonists of μ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via μ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein βγ (Gβγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5'-[β-thio]diphosphate trilithium salt and guanosine 5'-[γ-thio]triphosphate tetralithium salt. Coexpression of Gβγ-specific scavengers-namely, the carboxyl terminus of the G protein-coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin-attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gβγ subunits in a voltage-independent manner. PMID:26490245

  6. Preparation, Functional Characterization, and NMR Studies of Human KCNE1, a Voltage-Gated Potassium Channel Accessory Subunit Associated With Deafness and Long QT Syndrome†

    PubMed Central

    Tian, Changlin; Vanoye, Carlos G.; Kang, Congbao; Welch, Richard C.; Kim, Hak Jun; George, Alfred L.; Sanders, Charles R.

    2008-01-01

    KCNE1, also known as minK, is a member of the KCNE family of membrane proteins that modulate the function of KCNQ1 and certain other voltage-gated potassium channels (KV). Mutations in human KCNE1 cause congenital deafness and congenital long QT syndrome, an inherited predisposition to potentially life-threatening cardiac arrhythmias. Although its modulation of KCNQ1 function has been extensively characterized, many questions remain regarding KCNE1's structure and location within the channel complex. In this study KCNE1 was overexpressed in E. coli and purified. Micellar solutions of the protein were then microinjected into Xenopus oocytes expressing KCNQ1 channels, followed by electrophysiological recordings to test whether recombinant KCNE1 can co-assemble with the channel. Native-like modulation of channel properties was observed following injection of KCNE1 in lysomyristoylphosphatidylglycerol (LMPG) micelles, indicating that KCNE1 is not irreversibly misfolded and that LMPG is able to act as a vehicle for delivering membrane proteins into the membranes of viable cells. 1H,15N-TROSY NMR experiments indicated that LMPG micelles are well-suited for structural studies of KCNE1, leading to assignment of its backbone resonances and to relaxation studies. The chemical shift data confirmed that KCNE1's secondary structure includes several α-helices and demonstrated that its distal C-terminus is disordered. Surprisingly, for KCNE1 in LMPG micelles there appears to be a break in α-helicity at sites 59−61, near the middle of the transmembrane segment, a feature that is accompanied by increased local backbone mobility. Given that this segment overlaps with sites 57−59, which are known to play a critical role in modulating KCNQ1 channel activation kinetics, this unusual structural feature is likely of considerable functional relevance. PMID:17892302

  7. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit.

    PubMed

    Zhao, Wei; Wang, Limin; Han, Haibo; Jin, Kemin; Lin, Na; Guo, Ting; Chen, Yangde; Cheng, Heping; Lu, Fengmin; Fang, Weigang; Wang, Yu; Xing, Baocai; Zhang, Zhiqian

    2013-04-15

    The identification and targeted therapy of cells involved in hepatocellular carcinoma (HCC) recurrence remain challenging. Here, we generated a monoclonal antibody against recurrent HCC, 1B50-1, that bound the isoform 5 of the α2δ1 subunit of voltage-gated calcium channels and identified a subset of tumor-initiating cells (TICs) with stem cell-like properties. A surgical margin with cells detected by 1B50-1 predicted rapid recurrence. Furthermore, 1B50-1 had a therapeutic effect on HCC engraftments by eliminating TICs. Finally, α2δ1 knockdown reduced self-renewal and tumor formation capacities and induced apoptosis of TICs, whereas its overexpression led to enhanced sphere formation, which is regulated by calcium influx. Thus, α2δ1 is a functional liver TIC marker, and its inhibitors may serve as potential anti-HCC drugs. PMID:23597567

  8. Identification of Glycosylation Sites Essential for Surface Expression of the CaVα2δ1 Subunit and Modulation of the Cardiac CaV1.2 Channel Activity.

    PubMed

    Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie

    2016-02-26

    Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca(2+) channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca(2+) channels. PMID:26742847

  9. Short- and long-term plasticity in CA1 neurons from mice lacking h-channel auxiliary subunit TRIP8b.

    PubMed

    Brager, Darrin H; Lewis, Alan S; Chetkovich, Dane M; Johnston, Daniel

    2013-11-01

    Hyperpolarization-activated cyclic nucleotide-gated nonselective cation channels (HCN or h-channels) are important regulators of neuronal physiology contributing to passive membrane properties, such as resting membrane potential and input resistance (R(N)), and to intrinsic oscillatory activity and synaptic integration. The correct membrane targeting of h-channels is regulated in part by the auxiliary h-channel protein TRIP8b. The genetic deletion of TRIP8b results in a loss of functional h-channels, which affects the postsynaptic integrative properties of neurons. We investigated the impact of TRIP8b deletion on long-term potentiation (LTP) at the two major excitatory inputs to CA1 pyramidal neurons: Schaffer collateral (SC) and perforant path (PP). We found that SC LTP was not significantly different between neurons from wild-type and TRIP8b-knockout mice. There was, however, significantly more short-term potentiation in knockout neurons. We also found that the persistent increase in h-current (I(h)) that normally occurs after LTP induction was absent in knockout neurons. The lack of I(h) plasticity was not restricted to activity-dependent induction, because the depletion of intracellular calcium stores also failed to produce the expected increase in I(h). Interestingly, pairing of SC and PP inputs resulted in a form of LTP in knockout neurons that did not occur in wild-type neurons. These results suggest that the physiological impact of TRIP8b deletion is not restricted to the integrative properties of neurons but also includes both synaptic and intrinsic plasticity. PMID:23966674

  10. Thrombospondin-4 reduces binding affinity of [(3)H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed.

    PubMed

    Lana, Beatrice; Page, Karen M; Kadurin, Ivan; Ho, Shuxian; Nieto-Rostro, Manuela; Dolphin, Annette C

    2016-01-01

    The α2δ proteins are auxiliary subunits of voltage-gated calcium channels, and influence their trafficking and biophysical properties. The α2δ ligand gabapentin interacts with α2δ-1, and inhibits calcium channel trafficking. However, α2-1 has also been proposed to play a synaptogenic role, independent of calcium channel function. In this regard, α2δ-1 was identified as a ligand of thrombospondins, with the interaction involving the thrombospondin synaptogenic domain and the α2δ-1 von-Willebrand-factor domain. Co-immunoprecipitation between α2δ-1 and the synaptogenic domain of thrombospondin-2 was prevented by gabapentin. We therefore examined whether interaction of thrombospondin with α2δ-1 might reciprocally influence (3)H-gabapentin binding. We concentrated on thrombospondin-4, because, like α2δ-1, it is upregulated in neuropathic pain models. We found that in membranes from cells co-transfected with α2δ-1 and thrombospondin-4, there was a Mg(2+) -dependent reduction in affinity of (3)H-gabapentin binding to α2δ-1. This effect was lost for α2δ-1 with mutations in the von-Willebrand-factor-A domain. However, the effect on (3)H-gabapentin binding was not reproduced by the synaptogenic EGF-domain of thrombospondin-4. Partial co-immunoprecipitation could be demonstrated between thrombospondin-4 and α2δ-1 when co-transfected, but there was no co-immunoprecipitation with thrombospondin-4-EGF domain. Furthermore, we could not detect any association between these two proteins on the cell-surface, indicating the demonstrated interaction occurs intracellularly. PMID:27076051

  11. Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene) and the Regulatory Subunit KCNE2 from Equine Myocardium

    PubMed Central

    Pedersen, Philip Juul; Thomsen, Kirsten Brolin; Olander, Emma Rie; Hauser, Frank; Tejada, Maria de los Angeles; Poulsen, Kristian Lundgaard; Grubb, Soren; Buhl, Rikke; Calloe, Kirstine; Klaerke, Dan Arne

    2015-01-01

    The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death—conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS. PMID:26376488

  12. Thrombospondin-4 reduces binding affinity of [3H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed

    PubMed Central

    Lana, Beatrice; Page, Karen M.; Kadurin, Ivan; Ho, Shuxian; Nieto-Rostro, Manuela; Dolphin, Annette C.

    2016-01-01

    The α2δ proteins are auxiliary subunits of voltage-gated calcium channels, and influence their trafficking and biophysical properties. The α2δ ligand gabapentin interacts with α2δ-1, and inhibits calcium channel trafficking. However, α2-1 has also been proposed to play a synaptogenic role, independent of calcium channel function. In this regard, α2δ-1 was identified as a ligand of thrombospondins, with the interaction involving the thrombospondin synaptogenic domain and the α2δ-1 von-Willebrand-factor domain. Co-immunoprecipitation between α2δ-1 and the synaptogenic domain of thrombospondin-2 was prevented by gabapentin. We therefore examined whether interaction of thrombospondin with α2δ-1 might reciprocally influence 3H-gabapentin binding. We concentrated on thrombospondin-4, because, like α2δ-1, it is upregulated in neuropathic pain models. We found that in membranes from cells co-transfected with α2δ-1 and thrombospondin-4, there was a Mg2+ -dependent reduction in affinity of 3H-gabapentin binding to α2δ-1. This effect was lost for α2δ-1 with mutations in the von-Willebrand-factor-A domain. However, the effect on 3H-gabapentin binding was not reproduced by the synaptogenic EGF-domain of thrombospondin-4. Partial co-immunoprecipitation could be demonstrated between thrombospondin-4 and α2δ-1 when co-transfected, but there was no co-immunoprecipitation with thrombospondin-4-EGF domain. Furthermore, we could not detect any association between these two proteins on the cell-surface, indicating the demonstrated interaction occurs intracellularly. PMID:27076051

  13. Expression of Trp3 determines sensitivity of capacitative Ca2+ entry to nitric oxide and mitochondrial Ca2+ handling: evidence for a role of Trp3 as a subunit of capacitative Ca2+ entry channels.

    PubMed

    Thyagarajan, B; Poteser, M; Romanin, C; Kahr, H; Zhu, M X; Groschner, K

    2001-12-21

    The role of Trp3 in cellular regulation of Ca(2+) entry by NO was studied in human embryonic kidney (HEK) 293 cells. In vector-transfected HEK293 cells (controls), thapsigargin (TG)-induced (capacitative Ca(2+) entry (CCE)-mediated) intracellular Ca(2+) signals and Mn(2+) entry were markedly suppressed by the NO donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt (3 microm) or by authentic NO (100 microm). In cells overexpressing Trp3 (T3-9), TG-induced intracellular Ca(2+) signals exhibited an amplitude similar to that of controls but lacked sensitivity to inhibition by NO. Consistently, NO inhibited TG-induced Mn(2+) entry in controls but not in T3-9 cells. Moreover, CCE-mediated Mn(2+) entry into T3-9 cells exhibited a striking sensitivity to inhibition by extracellular Ca(2+), which was not detectable in controls. Suppression of mitochondrial Ca(2+) handling with the uncouplers carbonyl cyanide m-chlorophenyl hydrazone (300 nm) or antimycin A(1) (-AA(1)) mimicked the inhibitory effect of NO on CCE in controls but barely affected CCE in T3-9 cells. T3-9 cells exhibited enhanced carbachol-stimulated Ca(2+) entry and clearly detectable cation currents through Trp3 cation channels. NO as well as carbonyl cyanide m-chlorophenyl hydrazone slightly promoted carbachol-induced Ca(2+) entry into T3-9 cells. Simultaneous measurement of cytoplasmic Ca(2+) and membrane currents revealed that Trp3 cation currents are inhibited during Ca(2+) entry-induced elevation of cytoplasmic Ca(2+), and that this negative feedback regulation is blunted by NO. Our results demonstrate that overexpression of Trp3 generates phospholipase C-regulated cation channels, which exhibit regulatory properties different from those of endogenous CCE channels. Moreover, we show for the first time that Trp3 expression determines biophysical properties as well as regulation of CCE channels by NO and mitochondrial Ca(2+) handling. Thus, we propose Trp3 as a subunit of CCE channels. PMID:11600493

  14. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. PMID:26390982

  15. Immunolocalization and mRNA expression of the epithelial Na+ channel alpha-subunit in the kidney and urinary bladder of the marine toad, Bufo marinus, under hyperosmotic conditions.

    PubMed

    Konno, Norifumi; Hyodo, Susumu; Yamada, Toshiki; Matsuda, Kouhei; Uchiyama, Minoru

    2007-06-01

    The amiloride-sensitive epithelial sodium channel (ENaC) has previously been shown to be involved in the maintenance of body fluid volume and in Na(+) absorption across the skin and urinary bladder in amphibians. However, the function and distribution of ENaC have not been clearly described in amphibian kidney. We therefore cloned the ENaC alpha-subunit cDNA from kidney of the marine toad, Bufo marinus. The ENaC mRNA and protein were abundantly expressed in the kidney and in the urinary bladder and ventral pelvic skin. In an immunohistochemical study, the ENaC alpha-subunit protein was specifically localized to the apical membrane of the principal cells but not the intercalated cells from the late distal tubule to the collecting duct in the kidney or in the apical area of cells of urinary bladder epithelia. When toads were acclimated to dry and hyper-saline environments, the levels of ENaC mRNA expression in the kidney and urinary bladder decreased under hyper-saline acclimation, but not under dry conditions. Immunohistochemical observations indicated that the levels of ENaC protein expression were much lower in the apical area of renal distal tubules and urinary bladder epithelia of hyper-saline acclimated toad compared with controls. The present study suggests that Bufo ENaC is significantly expressed and functions during Na(+) reabsorption in the apical membrane domain in the distal nephron of normal and desiccated toads. Natriuresis may be caused by decreases in ENaC expression and its trafficking to the cell surface in the distal nephron, a response to prevent excessive Na(+) reabsorption in hyper-saline-acclimated toads. PMID:17333031

  16. Caveolin-3 is a direct molecular partner of the Cav1.1 subunit of the skeletal muscle L-type calcium channel.

    PubMed

    Couchoux, Harold; Bichraoui, Hicham; Chouabe, Christophe; Altafaj, Xavier; Bonvallet, Robert; Allard, Bruno; Ronjat, Michel; Berthier, Christine

    2011-05-01

    Caveolin-3 is the striated muscle specific isoform of the scaffolding protein family of caveolins and has been shown to interact with a variety of proteins, including ion channels. Mutations in the human CAV3 gene have been associated with several muscle disorders called caveolinopathies and among these, the P104L mutation (Cav-3(P104L)) leads to limb girdle muscular dystrophy of type 1C characterized by the loss of sarcolemmal caveolin. There is still no clear-cut explanation as to specifically how caveolin-3 mutations lead to skeletal muscle wasting. Previous results argued in favor of a role for caveolin-3 in dihydropyridine receptor (DHPR) functional regulation and/or T-tubular membrane localization. It appeared worth closely examining such a functional link and investigating if it could result from the direct physical interaction of the two proteins. Transient expression of Cav-3(P104L) or caveolin-3 specific siRNAs in C2C12 myotubes both led to a significant decrease of the L-type Ca(2+) channel maximal conductance. Immunolabeling analysis of adult skeletal muscle fibers revealed the colocalization of a pool of caveolin-3 with the DHPR within the T-tubular membrane. Caveolin-3 was also shown to be present in DHPR-containing triadic membrane preparations from which both proteins co-immunoprecipitated. Using GST-fusion proteins, the I-II loop of Ca(v)1.1 was identified as the domain interacting with caveolin-3, with an apparent affinity of 60nM. The present study thus revealed a direct molecular interaction between caveolin-3 and the DHPR which is likely to underlie their functional link and whose loss might therefore be involved in pathophysiological mechanisms associated to muscle caveolinopathies. PMID:21262376

  17. Dynamic regulation of β1 subunit trafficking controls vascular contractility

    PubMed Central

    Leo, M. Dennis; Bannister, John P.; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E.; Gabrick, Kyle S.; Boop, Frederick A.; Jaggar, Jonathan H.

    2014-01-01

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca2+ sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types. PMID:24464482

  18. Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons.

    PubMed

    Hyun, Jung Ho; Eom, Kisang; Lee, Kyu-Hee; Ho, Won-Kyung; Lee, Suk-Ho

    2013-11-15

    The intrinsic excitability of neurons plays a critical role in the encoding of memory at Hebbian synapses and in the coupling of synaptic inputs to spike generation. It has not been studied whether somatic firing at a physiologically relevant frequency can induce intrinsic plasticity in hippocampal CA3 pyramidal cells (CA3-PCs). Here, we show that a conditioning train of 20 action potentials (APs) at 10 Hz causes a persistent reduction in the input conductance and an acceleration of the AP onset time in CA3-PCs, but not in CA1-PCs. Induction of such long-term potentiation of intrinsic excitability (LTP-IE) was accompanied by a reduction in the D-type K(+) current, and was abolished by the inhibition of endocytosis or protein tyrosine kinase (PTK). Consistently, the CA3-PCs from Kv1.2 knock-out mice displayed no LTP-IE with the same conditioning. Furthermore, the induction of LTP-IE depended on the back-propagating APs (bAPs) and intact distal apical dendrites. These results indicate that LTP-IE is mediated by the internalization of Kv1.2 channels from the distal regions of apical dendrites, which is triggered by bAP-induced dendritic Ca(2+) signalling and the consequent activation of PTK. PMID:23981714

  19. Altered expression of the voltage-gated calcium channel subunit α2δ-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    PubMed Central

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C.S.; Jiruska, P.; Jefferys, J.G.R.; Dolphin, A.C.

    2014-01-01

    The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining. PMID:24641886

  20. Oxidant regulated inter-subunit disulfide bond formation between ASIC1a subunits

    PubMed Central

    Zha, Xiang-ming; Wang, Runping; Collier, Dan M.; Snyder, Peter M.; Wemmie, John A.; Welsh, Michael J.

    2009-01-01

    The acid-sensing ion channel-1a (ASIC1a) is composed of 3 subunits and is activated by a decrease in extracellular pH. It plays an important role in diseases associated with a reduced pH and production of oxidants. Previous work showed that oxidants reduce ASIC1a currents. However, the effects on channel structure and composition are unknown. We found that ASIC1a formed inter-subunit disulfide bonds and the oxidant H2O2 increased this link between subunits. Cys-495 in the ASIC1a C terminus was particularly important for inter-subunit disulfide bond formation, although other C-terminal cysteines contributed. Inter-subunit disulfide bonds also produced some ASIC1a complexes larger than trimers. Inter-subunit disulfide bond formation reduced the proportion of ASIC1a located on the cell surface and contributed to the H2O2-induced decrease in H+-gated current. These results indicate that channel function is controlled by disulfide bond formation between intracellular residues on distinct ASIC1a subunits. They also suggest a mechanism by which the redox state can dynamically regulate membrane protein activity by forming intracellular bridges. PMID:19218436

  1. Quantifying the cooperative subunit action in a multimeric membrane receptor

    PubMed Central

    Wongsamitkul, Nisa; Nache, Vasilica; Eick, Thomas; Hummert, Sabine; Schulz, Eckhard; Schmauder, Ralf; Schirmeyer, Jana; Zimmer, Thomas; Benndorf, Klaus

    2016-01-01

    In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels. PMID:26858151

  2. Interactions of disulfide-deficient selenocysteine analogs of μ-conotoxin BuIIIB with the α-subunit of the voltage-gated sodium channel subtype 1.3.

    PubMed

    Green, Brad R; Zhang, Min-Min; Chhabra, Sandeep; Robinson, Samuel D; Wilson, Michael J; Redding, Addison; Olivera, Baldomero M; Yoshikami, Doju; Bulaj, Grzegorz; Norton, Raymond S

    2014-07-01

    Inhibitors of the α-subunit of the voltage-gated sodium channel subtype 1.3 (NaV 1.3) are of interest as pharmacological tools for the study of neuropathic pain associated with spinal cord injury and have potential therapeutic applications. The recently described μ-conotoxin BuIIIB (μ-BuIIIB) from Conus bullatus was shown to block NaV 1.3 with submicromolar potency (Kd = 0.2 μm), making it one of the most potent peptidic inhibitors of this subtype described to date. However, oxidative folding of μ-BuIIIB results in numerous folding isoforms, making it difficult to obtain sufficient quantities of the active form of the peptide for detailed structure-activity studies. In the present study, we report the synthesis and characterization of μ-BuIIIB analogs incorporating a disulfide-deficient, diselenide-containing scaffold designed to simplify synthesis and facilitate structure-activity studies directed at identifying amino acid residues involved in NaV 1.3 blockade. Our results indicate that, similar to other μ-conotoxins, the C-terminal residues (Trp16, Arg18 and His20) are most crucial for NaV 1 blockade. At the N-terminus, replacement of Glu3 by Ala resulted in an analog with an increased potency for NaV 1.3 (Kd = 0.07 μm), implicating this position as a potential site for modification for increased potency and/or selectivity. Further examination of this position showed that increased negative charge, through γ-carboxyglutamate replacement, decreased potency (Kd = 0.33 μm), whereas replacement with positively-charged 2,4-diamonobutyric acid increased potency (Kd = 0.036 μm). These results provide a foundation for the design and synthesis of μ-BuIIIB-based analogs with increased potency against NaV 1.3. PMID:24814369

  3. Single-Channel Properties of IKs Potassium Channels

    PubMed Central

    Yang, Youshan; Sigworth, Fred J.

    1998-01-01

    Expressed in Xenopus oocytes, KvLQT1 channel subunits yield a small, rapidly activating, voltage- dependent potassium conductance. When coexpressed with the minK gene product, a slowly activating and much larger potassium current results. Using fluctuation analysis and single-channel recordings, we have studied the currents formed by human KvLQT1 subunits alone and in conjunction with human or rat minK subunits. With low external K+, the single-channel conductances of these three channel types are estimated to be 0.7, 4.5, and 6.5 pS, respectively, based on noise analysis at 20 kHz bandwidth of currents at +50 mV. Power spectra computed over the range 0.1 Hz–20 kHz show a weak frequency dependence, consistent with current interruptions occurring on a broad range of time scales. The broad spectrum causes the apparent single-channel current value to depend on the bandwidth of the recording, and is mirrored in very “flickery” single-channel events of the channels from coexpressed KvLQT1 and human minK subunits. The increase in macroscopic current due to the presence of the minK subunit is accounted for by the increased apparent single-channel conductance it confers on the expressed channels. The rat minK subunit also confers the property that the outward single-channel current is increased by external potassium ions. PMID:9834139

  4. Differential expression of gill Na+,K+-ATPaseα - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Madsen, Steffen S.; McCormick, Stephen D.; Andersson, Eva; Bjornsson, Bjorn Thrandur; Prunet, Patrick; Stefansson, Sigurd O.

    2007-01-01

    This study examines changes in gill Na+,K+-ATPase (NKA) α- and β-subunit isoforms, Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3, -β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a, -α1b and -α3 isoforms may be important for potential functional

  5. Functional consequences of Kir2.1/Kir2.2 subunit heteromerization.

    PubMed

    Panama, Brian K; McLerie, Meredith; Lopatin, Anatoli N

    2010-10-01

    Kir2 subunits form channels that underlie classical strongly inwardly rectifying potassium currents. While homomeric Kir2 channels display a number of distinct and physiologically important properties, the functional properties of heteromeric Kir2 assemblies, as well as the stoichiometries and the arrangements of Kir2 subunits in native channels, remain largely unknown. Therefore, we have implemented a concatemeric approach, whereby all four cloned Kir2 subunits were linked in tandem, in order to study the effects of Kir2.1 and Kir2.2 heteromerization on properties of the resulting channels. Kir2.2 subunits contributed stronger to single-channel conductance than Kir2.1 subunits, and channels containing two or more Kir2.2 subunits displayed conductances indistinguishable from that of a Kir2.2 homomeric channel. In contrast, single-channel kinetics was a more discriminating property. The open times were significantly shorter in Kir2.2 channels compared with Kir2.1 channels and decreased nearly proportionally to the number of Kir2.2 subunits in the heteromeric channel. Similarly, the sensitivity to block by barium also depended on the proportions of Kir2.1 to Kir2.2 subunits. Overall, the results showed that Kir2.1 and Kir2.2 subunits exert neither a dominant nor an anomalous effect on any of the properties of heteromeric channels. The data highlight opportunities and challenges of using differential properties of Kir2 channels in deciphering the subunit composition of native inwardly rectifying potassium currents. PMID:20676672

  6. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  7. Heteromeric assembly of P2X subunits

    PubMed Central

    Saul, Anika; Hausmann, Ralf; Kless, Achim; Nicke, Annette

    2013-01-01

    Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs. PMID:24391538

  8. The role of sodium channels in cell adhesion.

    PubMed

    Isom, Lori L

    2002-01-01

    Voltage-gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming alpha subunit and two auxiliary beta subunits. The alpha subunits are members of a large gene family containing the voltage-gated sodium, potassium, and calcium channels. Sodium channel alpha subunits form a gene subfamily with at least eleven members. Mutations in sodium channel alpha subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel beta subunits with at least one alternative splice product. Unlike the pore-forming alpha subunits, the sodium channel beta subunits are not structurally related to beta subunits of calcium and potassium channels. Sodium channel beta subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that beta subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS+1 epilepsy in human families. We propose that the sodium channel signaling complex at nodes of Ranvier involves beta subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPbeta, and extracellular matrix molecules such as tenascin. Finally, we explore other subunits of voltage-gated ion channels as potential CAM candidates. PMID:11779698

  9. Modulation of Kv4.3 current by accessory subunits.

    PubMed

    Deschênes, Isabelle; Tomaselli, Gordon F

    2002-09-25

    Kv4.3 encodes the pore-forming subunit of the cardiac transient outward potassium current (I(to)). hKv4.3-encoded current does not fully replicate cardiac I(to), suggesting a functionally significant role for accessory subunits. KChIP2 associates with Kv4.3 and modifies hKv4.3-encoded currents but does not replicate native I(to). We examined the effect of several ancillary subunits expressed in the heart on hKv4.3-encoded currents. Remarkably, the ancillary subunits Kvbeta(3), minK, MiRP-1, the Na channel beta(1) and KChIP2 increased the density and modified the gating of hKv4.3 current. hKv4.3 promiscuously assembles with ancillary subunits in vitro, functionally modifying the encoded currents; however, the physiological significance is uncertain. PMID:12297301

  10. Subunit Arrangement and Function in NMDA Receptors

    SciTech Connect

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  11. [Superfamily of voltage dependent K+ channels: structure, functions and pathology].

    PubMed

    Kodirov, S A; Zhuravlev, V L; Safonova, T A; Kurilova, L S; Krutetskaia, Z I

    2010-01-01

    In this review the recent studies related to the voltage dependent K+ channels are discussed. During the last 15 years the molecular cloning revealed a large number of alpha-subunits of voltage dependent K+ channels. This approach enabled to elucidate the properties of different types of channels and, in particular, characteristics of such structural elements as auxiliary subunits. These subunits are mainly responsible for the ionic permeability features of alpha-subunits. There are several cytoplasmic and membrane-associated auxiliary subunits such as beta-subunits, minK (minimal K+ channel peptide), MiRP (minK-related peptide), KChAP (K+ channel-associated protein), KChIP (K+ channel-interacting protein) and NCS (neuronal calcium sensor). PMID:21105359

  12. Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

    PubMed Central

    Chai, Yongping; Zhang, Dai-Min; Lin, Yu-Fung

    2011-01-01

    Background Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. Methods and Findings Single-channel recordings of cardiac KATP channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. Conclusion The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in

  13. MspA Nanopores from Subunit Dimers

    PubMed Central

    Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  14. MspA nanopores from subunit dimers.

    PubMed

    Pavlenok, Mikhail; Derrington, Ian M; Gundlach, Jens H; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  15. Refined localization of the [alpha][sub 1]-subunit of the skeletal muscle L-type voltage-dependent calcium channel (CACNL1A3) to human chromosome 1q32 by in situ hybridization

    SciTech Connect

    Iles, D.E.; Segers, B.; Wieringa, B.; Weghuis, D.O.; Suijerbuijk, R. ); Mikala, G.; Schwartz, A. )

    1994-02-01

    The authors isolated and partially sequenced a cosmid clone containing the human skeletal muscle L-type voltage-dependent calcium channel gene (CACNL1A3). The cosmid clone, which was also found to contain a novel dinucleotide repeat marker for the CACNL1A3 gene, was used for the chromosomal localization of CACNL1A3 by in situ hybridization. The results refine the localization of CACNL1A3 on the long arm of human chromosome 1 to band q32. 15 refs., 2 figs., 1 tab.

  16. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway*

    PubMed Central

    Yao, Jin-jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-01-01

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca2+/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca2+ and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4−/− mice but not in Nfatc2−/− mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4−/− mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  17. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway.

    PubMed

    Yao, Jin-Jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-08-12

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  18. Homodimeric Intrinsic Membrane Proteins. Identification and Modulation of Interactions between Mitochondrial Transporter (Carrier) Subunits

    PubMed Central

    Wohlrab, Hartmut

    2010-01-01

    Transporter (carrier) proteins of the inner mitochondrial membrane link metabolic pathways within the matrix and the cytosol with transport/exchange of metabolites and inorganic ions. Their strict control of these fluxes is required for oxidative phosphorylation. Understanding the ternary complex transport mechanism with which most of these transporters function requires an accounting of the number and interactions of their subunits. The phosphate transporter (PTP, Mir1p) subunit readily forms homodimers with intersubunit affinities changeable by mutations. Cys28, likely at the subunit interface, is a site for mutations yielding transport inhibition or a channel-like transport mode. Such mutations yield a small increase or decrease in affinity between the subunits. The PTP inhibitor N-ethylmaleimide decreases subunit affinity by a small amount. PTP mutations that yield the highest (40%) and the lowest (2%) liposome incorporation efficiencies (LIE) are clustered near Cys28. Such mutant subunits show the lowest and highest subunit affinities respectively. The oxaloacetate transporter (Oac1p) subunit has an almost 2-fold lower affinity than the PTP subunit. The Oac1p, dicarboxylate (Dic1p) and PTP transporter subunits form heterodimers with even lower affinities. These results form a firm basis for detailed studies to establish the effect of subunit affinities on transport mode and activity and for the identification of the mechanism that prevents formation of heterodimers that surely will negatively impact oxidative phosphorylation and ATP levels with serious consequences for the cell. PMID:20171189

  19. Urotensin-II Receptor Stimulation of Cardiac L-type Ca2+ Channels Requires the βγ Subunits of Gi/o-protein and Phosphatidylinositol 3-Kinase-dependent Protein Kinase C β1 Isoform*

    PubMed Central

    Zhang, Yuan; Ying, Jiaoqian; Jiang, Dongsheng; Chang, Zhigang; Li, Hua; Zhang, Guoqiang; Gong, Shan; Jiang, Xinghong; Tao, Jin

    2015-01-01

    Recent studies have demonstrated that urotensin-II (U-II) plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output. However, the mechanisms underlying these effects of U-II in cardiomyocytes still remain unknown. We show by electrophysiological studies that U-II dose-dependently potentiates L-type Ca2+ currents (ICa,L) in adult rat ventricular myocytes. This effect was U-II receptor (U-IIR)-dependent and was associated with a depolarizing shift in the voltage dependence of inactivation. Intracellular application of guanosine-5′-O-(2-thiodiphosphate) and pertussis toxin pretreatment both abolished the stimulatory effects of U-II. Dialysis of cells with the QEHA peptide, but not scrambled peptide SKEE, blocked the U-II-induced response. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin as well as the class I PI3K antagonist CH132799 blocked the U-II-induced ICa,L response. Protein kinase C antagonists calphostin C and chelerythrine chloride as well as dialysis of cells with 1,2bis(2aminophenoxy)ethaneN,N,N′,N′-tetraacetic acid abolished the U-II-induced responses, whereas PKCα inhibition or PKA blockade had no effect. Exposure of ventricular myocytes to U-II markedly increased membrane PKCβ1 expression, whereas inhibition of PKCβ1 pharmacologically or by shRNA targeting abolished the U-II-induced ICa,L response. Functionally, we observed a significant increase in the amplitude of sarcomere shortening induced by U-II; blockade of U-IIR as well as PKCβ inhibition abolished this effect, whereas Bay K8644 mimicked the U-II response. Taken together, our results indicate that U-II potentiates ICa,L through the βγ subunits of Gi/o-protein and downstream activation of the class I PI3K-dependent PKCβ1 isoform. This occurred via the activation of U-IIR and contributes to the positive inotropic effect on cardiomyocytes. PMID:25678708

  20. Evidence for a KATP Channel in Rough Endoplasmic Reticulum (rerKATP Channel) of Rat Hepatocytes

    PubMed Central

    Fahanik-Babaei, Javad; Saghiri, Reza; Sauve, Remy; Eliassi, Afsaneh

    2015-01-01

    We report in a previous study the presence of a large conductance K+ channel in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity in this case was found to decrease in presence of ATP 100 µM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25 mM. Although such features would be compatible with the presence of a KATP channel in the RER, recent data obtained from a brain mitochondrial inner membrane preparation have provided evidence for a Maxi-K channel which could also be blocked by ATP within the mM concentration range. A series of channel incorporation experiments was thus undertaken to determine if the ATP-sensitive channel originally observed in the RER corresponds to KATP channel. Our results indicate that the gating and permeation properties of this channel are unaffected by the addition of 800 nM charybdotoxin and 1 µM iberiotoxin, but appeared sensitive to 10 mM TEA and 2.5 mM ATP. Furthermore, adding 100 µM glibenclamide at positive potentials and 400 µM tolbutamide at negative or positive voltages caused a strong inhibition of channel activity. Finally Western blot analyses provided evidence for Kir6.2, SUR1 and/or SUR2B, and SUR2A expression in our RER fractions. It was concluded on the basis of these observations that the channel previously characterized in RER membranes corresponds to KATP, suggesting that opening of this channel may enhance Ca2+ releases, alter the dynamics of the Ca2+ transient and prevent accumulation of Ca2+ in the ER during Ca2+ overload. PMID:25950903

  1. Interaction of factor XIII subunits.

    PubMed

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  2. Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders

    PubMed Central

    2016-01-01

    Members of the electrically silent voltage-gated K+ (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K+ channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS subunits and Kv2/KvS heterotetramers in the development of novel treatments. PMID:26755771

  3. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes

    PubMed Central

    Burzomato, Valeria; Frugier, Guillaume; Pérez-Otaño, Isabel; Kittler, Josef T; Attwell, David

    2010-01-01

    NMDA receptors have been shown to contribute to glutamate-evoked currents in oligodendrocytes. Activation of these receptors damages myelin in ischaemia, in part because they are more weakly blocked by Mg2+ than are most neuronal NMDA receptors. This weak Mg2+ block was suggested to reflect an unusual subunit composition including the NR2C and NR3A subunits. Here we expressed NR1/NR2C and triplet NR1/NR2C/NR3A recombinant receptors in HEK cells and compared their currents with those of NMDA-evoked currents in rat cerebellar oligodendrocytes. NR1/NR2C/3A receptors were less blocked by 2 mm Mg2+ than were NR1/NR2C receptors (the remaining current was 30% and 18%, respectively, of that seen without added Mg2+) and showed less channel noise, suggesting a smaller single channel conductance. NMDA-evoked currents in oligodendrocytes showed a Mg2+ block (to 32%) similar to that observed for NR1/NR2C/NR3A and significantly different from that for NR1/NR2C receptors. Co-immunoprecipitation revealed interactions between NR1, NR2C and NR3A subunits in a purified myelin preparation from rat brain. These data are consistent with NMDA-evoked currents in oligodendrocytes reflecting the activation of receptors containing NR1, NR2C and NR3A subunits. PMID:20660562

  4. 5-HT3 Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems

    PubMed Central

    2015-01-01

    Genes for five different 5-HT3 receptor subunits have been identified. Most of the subunits have multiple isoforms, but two isoforms of the B subunits, brain-type 1 (Br1) and brain-type 2 (Br2) are of particular interest as they appear to be abundantly expressed in human brain, where 5-HT3B subunit RNA consists of approximately 75% 5-HT3Br2, 24% 5-HT3Br1, and <1% 5-HT3B. Here we use two-electrode voltage-clamp, radioligand binding, fluorescence, whole cell, and single channel patch-clamp studies to characterize the roles of 5-HT3Br1 and 5-HT3Br2 subunits on function and pharmacology in heterologously expressed 5-HT3 receptors. The data show that the 5-HT3Br1 transcriptional variant, when coexpressed with 5-HT3A subunits, alters the EC50, nH, and single channel conductance of the 5-HT3 receptor, but has no effect on the potency of competitive antagonists; thus, 5-HT3ABr1 receptors have the same characteristics as 5-HT3AB receptors. There were some differences in the shapes of 5-HT3AB and 5-HT3ABr1 receptor responses, which were likely due to a greater proportion of homomeric 5-HT3A versus heteromeric 5-HT3ABr1 receptors in the latter, as expression of the 5-HT3Br1 compared to the 5-HT3B subunit is less efficient. Conversely, the 5-HT3Br2 subunit does not appear to form functional channels with the 5-HT3A subunit in either oocytes or HEK293 cells, and the role of this subunit is yet to be determined. PMID:25951416

  5. Tandem Subunits Effectively Constrain GABAA Receptor Stoichiometry and Recapitulate Receptor Kinetics But Are Insensitive to GABAA Receptor-Associated Protein

    PubMed Central

    Boileau, Andrew J.; Pearce, Robert A.; Czajkowski, Cynthia

    2008-01-01

    GABAergic synapses likely contain multiple GABAA receptor subtypes, making postsynaptic currents difficult to dissect. However, even in heterologous expression systems, analysis of receptors composed of α, β, and γ subunits can be confounded by receptors expressed from α and β subunits alone. To produce recombinant GABAA receptors containing fixed subunit stoichiometry, we coexpressed individual subunits with a “tandem” α1 subunit linked to a β2 subunit. Cotransfection of the γ2 subunit with αβ-tandem subunits in human embryonic kidney 293 cells produced currents that were similar in their macroscopic kinetics, single-channel amplitudes, and pharmacology to overexpression of the γ subunit with nonlinked α1 and β2 subunits. Similarly, expression of α subunits together with αβ-tandem subunits produced receptors having physiological and pharmacological characteristics that closely matched cotransfection of α with β subunits. In this first description of tandem GABAA subunits measured with patch-clamp and rapid agonist application techniques, we conclude that incorporation of αβ-tandem subunits can be used to fix stoichiometry and to establish the intrinsic kinetic properties of α1β2 and α1β2γ2 receptors. We used this method to test whether the accessory protein GABAA receptor-associated protein (GABARAP) alters GABAA receptor properties directly or influences subunit composition. In recombinant receptors with fixed stoichiometry, coexpression of GABARAP-enhanced green fluorescent protein (EGFP) fusion protein had no effect on desensitization, deactivation, or diazepam potentiation of GABA-mediated currents. However, in α1β2γ2S transfections in which stoichiometry was not fixed, GABARAP-EGFP altered desensitization, deactivation, and diazepam potentiation of GABA-mediated currents. The data suggest that GABARAP does not alter receptor kinetics directly but by facilitating surface expression of αβγ receptors. PMID:16339017

  6. Cytosolic tail sequences and subunit interactions are critical for synaptic localization of glutamate receptors.

    PubMed

    Chang, Howard Chia-Hao; Rongo, Christopher

    2005-05-01

    AMPA-type glutamate receptors mediate excitatory synaptic transmission in the nervous system. The receptor subunit composition and subcellular localization play an important role in regulating synaptic strength. GLR-1 and GLR-2 are the Caenorhabditis elegans subunits most closely related to the mammalian AMPA-type receptors. These subunits are expressed in overlapping sets of interneurons, and contain type-I PDZ binding motifs in their carboxy-terminal cytosolic tail sequences. We report that GLR-1 and GLR-2 may form a heteromeric complex, the localization of which depends on either GLR-1 or GLR-2 tail sequences. Subunit interactions alone can mediate synaptic localization as endogenous GLR-1, or GLR-2 subunits can rescue the localization defects of subunits lacking tail sequences. Moreover, GLR-2 cytosolic tail sequences are sufficient to confer synaptic localization on a heterologous reporter containing a single-transmembrane domain. The localization of this GLR-2 reporter requires both a PDZ-binding motif in the GLR-2 tail sequence, and sequences outside of this motif. The PDZ protein LIN-10 regulates the localization of the reporter through the sequences outside of the PDZ-binding motif. Our results suggest that multiple synaptic localization signals reside in the cytosolic tail sequence of the receptor subunits, and that channel assembly can rescue the synaptic localization defects of individual mutant subunits as long as there are also wild-type subunits in the receptor complex. PMID:15840655

  7. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  8. Different KChIPs Compete for Heteromultimeric Assembly with Pore-Forming Kv4 Subunits

    PubMed Central

    Zhou, Jingheng; Tang, Yiquan; Zheng, Qin; Li, Meng; Yuan, Tianyi; Chen, Liangyi; Huang, Zhuo; Wang, KeWei

    2015-01-01

    Auxiliary Kv channel-interacting proteins 1–4 (KChIPs1–4) coassemble with pore-forming Kv4 α-subunits to form channel complexes underlying somatodendritic subthreshold A-type current that regulates neuronal excitability. It has been hypothesized that different KChIPs can competitively bind to Kv4 α-subunit to form variable channel complexes that can exhibit distinct biophysical properties for modulation of neural function. In this study, we use single-molecule subunit counting by total internal reflection fluorescence microscopy in combinations with electrophysiology and biochemistry to investigate whether different isoforms of auxiliary KChIPs, KChIP4a, and KChIP4bl, can compete for binding of Kv4.3 to coassemble heteromultimeric channel complexes for modulation of channel function. To count the number of photobleaching steps solely from cell membrane, we take advantage of a membrane tethered k-ras-CAAX peptide that anchors cytosolic KChIP4 proteins to the surface for reduction of background noise. Single-molecule subunit counting reveals that the number of KChIP4 isoforms in Kv4.3-KChIP4 complexes can vary depending on the KChIP4 expression level. Increasing the amount of KChIP4bl gradually reduces bleaching steps of KChIP4a isoform proteins, and vice versa. Further analysis of channel gating kinetics from different Kv4-KChIP4 subunit compositions confirms that both KChIP4a and KChIP4bl can modulate the channel complex function upon coassembly. Taken together, our findings show that auxiliary KChIPs can heteroassemble with Kv4 in a competitive manner to form heteromultimeric Kv4-KChIP4 channel complexes that are biophysically distinct and regulated under physiological or pathological conditions. PMID:26039167

  9. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes

    PubMed Central

    Dawe, G. Brent; Musgaard, Maria; Aurousseau, Mark R.P.; Nayeem, Naushaba; Green, Tim; Biggin, Philip C.; Bowie, Derek

    2016-01-01

    Summary Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits. PMID:26924438

  10. Modulation of sodium current in mammalian cells by an epilepsy-correlated beta 1-subunit mutation.

    PubMed

    Tammaro, Paolo; Conti, Franco; Moran, Oscar

    2002-03-01

    The syndrome of generalized epilepsy with febrile seizure plus (GEFS+) is associated with a single point mutation on the gene SCN1B that results in a substitution of the cysteine 121 with a tryptophane in the sodium channel beta 1-subunit protein. We have studied, in the HEK cells permanently transfected with the skeletal muscle sodium channel alpha-subunit (SkM1), the effects of a transient transfection of the wild type (WT) or C121W mutant beta 1-subunit. Coexpression of the WT beta 1 produces two effects on the sodium currents expressed in mammalian cells: the increase in the density of sodium channels, and the modulation of the inactivation of the sodium currents, inducing a hastening of the recovery from the inactivation. This modulation is less severe as observed when sodium channels are expressed in frog oocytes. We have observed that mutant C121W lacks this modulatory property, but maintains its property to increase the current density. Our observation suggests a possible involvement of this lack of modulation in the development of the GEFS+, providing the first hypothesis based on the observation of the functional properties of the beta 1-subunit C121W mutant in mammalian cells, which certainly represents a more physiological preparation, instead of in Xenopus oocytes, where the modulatory properties of the beta 1-subunit are artificially amplified. PMID:11866477

  11. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes.

    PubMed

    Dawe, G Brent; Musgaard, Maria; Aurousseau, Mark R P; Nayeem, Naushaba; Green, Tim; Biggin, Philip C; Bowie, Derek

    2016-03-16

    Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits. PMID:26924438

  12. RNA degradation paths in a 12-subunit nuclear exosome complex.

    PubMed

    Makino, Debora Lika; Schuch, Benjamin; Stegmann, Elisabeth; Baumgärtner, Marc; Basquin, Claire; Conti, Elena

    2015-08-01

    The eukaryotic exosome is a conserved RNA-degrading complex that functions in RNA surveillance, turnover and processing. How the same machinery can either completely degrade or precisely trim RNA substrates has long remained unexplained. Here we report the crystal structures of a yeast nuclear exosome containing the 9-subunit core, the 3'-5' RNases Rrp44 and Rrp6, and the obligate Rrp6-binding partner Rrp47 in complex with different RNAs. The combined structural and biochemical data of this 12-subunit complex reveal how a single-stranded RNA can reach the Rrp44 or Rrp6 active sites directly or can bind Rrp6 and be threaded via the central channel towards the distal RNase Rrp44. When a bulky RNA is stalled at the entrance of the channel, Rrp6-Rrp47 swings open. The results suggest how the same molecular machine can coordinate processive degradation and partial trimming in an RNA-dependent manner by a concerted swinging mechanism of the two RNase subunits. PMID:26222026

  13. Biophysics of CNG Ion Channels

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.; Qu, Wei; Moorhouse, Andrew J.

    Cyclic nucleotide-gated (CNG) ion channels are cation-selective, opened by intracellular cyclic nucleotides like cAMP and cGMP, and present in many different neurons and non-neuronal cells. This chapter will concentrate primarily on the biophysical aspects of retinal and olfactory CNG channels, with special reference to ion permeation and selectivity and their underlying molecular basis, and will include a brief overview of the physiological function of CNG channels in both olfaction and phototransduction. We will review the subunit composition and molecular structure of the CNG channel and its similarity to the closely related potassium channels, and will also briefly outline the currently accepted molecular basis underlying activation of the channel and the location of the channel `gate'. We will then outline some general methodologies for investigating ion permeation and selectivity, before reviewing the ion permeation and selectivity properties of native and recombinant CNG channels. We will discuss divalent ion permeation through the channel and the mechanism of channel block by divalent ions. The chapter will conclude by discussing the results of recent experiments to investigate the molecular determinants of cation-anion selectivity in the channel.

  14. Positioning of the α-subunit isoforms confers a functional signature to γ-aminobutyric acid type A receptors

    PubMed Central

    Minier, Frédéric; Sigel, Erwin

    2004-01-01

    Fast synaptic inhibitory transmission in the CNS is mediated by γ-aminobutyric acid type A (GABAA) receptors. They belong to the ligand-gated ion channel receptor superfamily, and are constituted of five subunits surrounding a chloride channel. Their clinical interest is highlighted by the number of therapeutic drugs that act on them. It is well established that the subunit composition of a receptor subtype determines its pharmacological properties. We have investigated positional effects of two different α-subunit isoforms, α1 and α6, in a single pentamer. For this purpose, we used concatenated subunit receptors in which subunit arrangement is predefined. The resulting receptors were expressed in Xenopus oocytes and analyzed by using the two-electrode voltage-clamp technique. Thus, we have characterized γ2β2α1β2α1, γ2β2α6β2α6, γ2β2α1β2α6, and γ2β2α6β2α1 GABAA receptors. We investigated their response to the agonist GABA, to the partial agonist piperidine-4-sulfonic acid, to the noncompetitive inhibitor furosemide and to the positive allosteric modulator diazepam. Each receptor isoform is characterized by a specific set of properties. In this case, subunit positioning provides a functional signature to the receptor. We furthermore show that a single α6-subunit is sufficient to confer high furosemide sensitivity, and that the diazepam efficacy is determined exclusively by the α-subunit neighboring the γ2-subunit. By using this diagnostic tool, it should become possible to determine the subunit arrangement of receptors expressed in vivo that contain α1- and α6-subunits. This method may also be applied to the study of other ion channels. PMID:15136735

  15. Functional Expression of Drosophila para Sodium Channels

    PubMed Central

    Warmke, Jeffrey W.; Reenan, Robert A.G.; Wang, Peiyi; Qian, Su; Arena, Joseph P.; Wang, Jixin; Wunderler, Denise; Liu, Ken; Kaczorowski, Gregory J.; Ploeg, Lex H.T. Van der; Ganetzky, Barry; Cohen, Charles J.

    1997-01-01

    The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels. PMID:9236205

  16. hERG subunit composition determines differential drug sensitivity

    PubMed Central

    Abi-Gerges, N; Holkham, H; Jones, EMC; Pollard, CE; Valentin, J-P; Robertson, GA

    2011-01-01

    BACKGROUND AND PURPOSE The majority of human ether-a-go-go-related gene (hERG) screens aiming to minimize the risk of drug-induced long QT syndrome have been conducted using heterologous systems expressing the hERG 1a subunit, although both hERG 1a and 1b subunits contribute to the K+ channels producing the repolarizing current IKr. We tested a range of compounds selected for their diversity to determine whether hERG 1a and 1a/1b channels exhibit different sensitivities that may influence safety margins or contribute to a stratified risk analysis. EXPERIMENTAL APPROACH We used the IonWorks™ plate-based electrophysiology device to compare sensitivity of hERG 1a and 1a/1b channels stably expressed in HEK293 cells to 50 compounds previously shown to target hERG channels. Potency was determined as IC50 values (µM) obtained from non-cumulative, eight-point concentration–effect curves of normalized data, fitted to the Hill equation. To minimize possible sources of variability, compound potency was assessed using test plates arranged in alternating columns of cells expressing hERG 1a and 1a/1b. KEY RESULTS Although the potency of most compounds was similar for the two targets, some surprising differences were observed. Fluoxetine (Prozac) was more potent at blocking hERG 1a/1b than 1a channels, yielding a corresponding reduction in the safety margin. In contrast, E-4031 was a more potent blocker of hERG 1a compared with 1a/1b channels, as previously reported, as was dofetilide, another high-affinity blocker. CONCLUSIONS AND IMPLICATIONS The current assays may underestimate the risk of some drugs to cause torsades de pointes arrhythmia, and overestimate the risk of others. PMID:21449979

  17. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors.

    PubMed

    Riou, Morgane; Stroebel, David; Edwardson, J Michael; Paoletti, Pierre

    2012-01-01

    NMDA receptors (NMDARs) form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a "proximal" position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular) and functional (plasma-membrane inserted) pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors. PMID:22493736

  18. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging

    SciTech Connect

    Carnally, Stewart M.; Dev, Harveer S.; Stewart, Andrew P.; Barrera, Nelson P.; Van Bemmelen, Miguel X.; Schild, Laurent; Henderson, Robert M.; Edwardson, J.Michael

    2008-08-08

    There has been confusion about the subunit stoichiometry of the degenerin family of ion channels. Recently, a crystal structure of acid-sensing ion channel (ASIC) 1a revealed that it assembles as a trimer. Here, we used atomic force microscopy (AFM) to image unprocessed ASIC1a bound to mica. We detected a mixture of subunit monomers, dimers and trimers. In some cases, triple-subunit clusters were clearly visible, confirming the trimeric structure of the channel, and indicating that the trimer sometimes disaggregated after adhesion to the mica surface. This AFM-based technique will now enable us to determine the subunit arrangement within heteromeric ASICs.

  19. Ripped Pocket and Pickpocket, Novel Drosophila DEG/ENaC Subunits Expressed in Early Development and in Mechanosensory Neurons

    PubMed Central

    Adams, Christopher M.; Anderson, Michael G.; Motto, David G.; Price, Margaret P.; Johnson, Wayne A.; Welsh, Michael J.

    1998-01-01

    Drosophila melanogaster has proven to be a good model for understanding the physiology of ion channels. We identified two novel Drosophila DEG/ ENaC proteins, Pickpocket (PPK) and Ripped Pocket (RPK). Both appear to be ion channel subunits. Expression of RPK generated multimeric Na+ channels that were dominantly activated by a mutation associated with neurodegeneration. Amiloride and gadolinium, which block mechanosensation in vivo, inhibited RPK channels. Although PPK did not form channels on its own, it associated with and reduced the current generated by a related human brain Na+ channel. RPK transcripts were abundant in early stage embryos, suggesting a role in development. In contrast, PPK was found in sensory dendrites of a subset of peripheral neurons in late stage embryos and early larvae. In insects, such multiple dendritic neurons play key roles in touch sensation and proprioception and their morphology resembles human mechanosensory free nerve endings. These results suggest that PPK may be a channel subunit involved in mechanosensation. PMID:9425162

  20. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  1. Optogenetic photochemical control of designer K+ channels in mammalian neurons.

    PubMed

    Fortin, Doris L; Dunn, Timothy W; Fedorchak, Alexis; Allen, Duane; Montpetit, Rachel; Banghart, Matthew R; Trauner, Dirk; Adelman, John P; Kramer, Richard H

    2011-07-01

    Currently available optogenetic tools, including microbial light-activated ion channels and transporters, are transforming systems neuroscience by enabling precise remote control of neuronal firing, but they tell us little about the role of indigenous ion channels in controlling neuronal function. Here, we employ a chemical-genetic strategy to engineer light sensitivity into several mammalian K(+) channels that have different gating and modulation properties. These channels provide the means for photoregulating diverse electrophysiological functions. Photosensitivity is conferred on a channel by a tethered ligand photoswitch that contains a cysteine-reactive maleimide (M), a photoisomerizable azobenzene (A), and a quaternary ammonium (Q), a K(+) channel pore blocker. Using mutagenesis, we identify the optimal extracellular cysteine attachment site where MAQ conjugation results in pore blockade when the azobenzene moiety is in the trans but not cis configuration. With this strategy, we have conferred photosensitivity on channels containing Kv1.3 subunits (which control axonal action potential repolarization), Kv3.1 subunits (which contribute to rapid-firing properties of brain neurons), Kv7.2 subunits (which underlie "M-current"), and SK2 subunits (which are Ca(2+)-activated K(+) channels that contribute to synaptic responses). These light-regulated channels may be overexpressed in genetically targeted neurons or substituted for native channels with gene knockin technology to enable precise optopharmacological manipulation of channel function. PMID:21525363

  2. Mitochondrial large-conductance potassium channel from Dictyostelium discoideum.

    PubMed

    Laskowski, Michal; Kicinska, Anna; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2015-03-01

    In the present study, we describe the existence of a large-conductance calcium-activated potassium (BKCa) channel in the mitochondria of Dictyostelium discoideum. A single-channel current was recorded in a reconstituted system, using planar lipid bilayers. The large-conductance potassium channel activity of 258±12 pS was recorded in a 50/150 mM KCl gradient solution. The probability of channel opening (the channel activity) was increased by calcium ions and NS1619 (potassium channel opener) and reduced by iberiotoxin (BKCa channel inhibitor). The substances known to modulate BKCa channel activity influenced the bioenergetics of D. discoideum mitochondria. In isolated mitochondria, NS1619 and NS11021 stimulated non-phosphorylating respiration and depolarized membrane potential, indicating the channel activation. These effects were blocked by iberiotoxin and paxilline. Moreover, the activation of the channel resulted in attenuation of superoxide formation, but its inhibition had the opposite effect. Immunological analysis with antibodies raised against mammalian BKCa channel subunits detected a pore-forming α subunit and auxiliary β subunits of the channel in D. discoideum mitochondria. In conclusion, we show for the first time that mitochondria of D. discoideum, a unicellular ameboid protozoon that facultatively forms multicellular structures, contain a large-conductance calcium-activated potassium channel with electrophysiological, biochemical and molecular properties similar to those of the channels previously described in mammalian and plant mitochondria. PMID:25596489

  3. Sodium channels, inherited epilepsy, and antiepileptic drugs.

    PubMed

    Catterall, William A

    2014-01-01

    Voltage-gated sodium channels initiate action potentials in brain neurons, mutations in sodium channels cause inherited forms of epilepsy, and sodium channel blockers-along with other classes of drugs-are used in therapy of epilepsy. A mammalian voltage-gated sodium channel is a complex containing a large, pore-forming α subunit and one or two smaller β subunits. Extensive structure-function studies have revealed many aspects of the molecular basis for sodium channel structure, and X-ray crystallography of ancestral bacterial sodium channels has given insight into their three-dimensional structure. Mutations in sodium channel α and β subunits are responsible for genetic epilepsy syndromes with a wide range of severity, including generalized epilepsy with febrile seizures plus (GEFS+), Dravet syndrome, and benign familial neonatal-infantile seizures. These seizure syndromes are treated with antiepileptic drugs that offer differing degrees of success. The recent advances in understanding of disease mechanisms and sodium channel structure promise to yield improved therapeutic approaches. PMID:24392695

  4. Transient Hippocampal Down-Regulation of Kv1.1 Subunit mRNA during Associative Learning in Rats

    ERIC Educational Resources Information Center

    Kourrich, Said; Manrique, Christine; Salin, Pascal; Mourre, Christiane

    2005-01-01

    Voltage-gated potassium channels (Kv) are critically involved in learning and memory processes. It is not known, however, whether the expression of the Kv1.1 subunit, constituting Kv1 channels, can be specifically regulated in brain areas important for learning and memory processing. Radioactive in situ hybridization was used to evaluate the…

  5. A neurosteroid potentiation site can be moved among GABAA receptor subunits.

    PubMed

    Bracamontes, John R; Li, Ping; Akk, Gustav; Steinbach, Joe Henry

    2012-11-15

    Endogenous neurosteroids are among the most potent and efficacious potentiators of activation of GABA(A) receptors. It has been proposed that a conserved glutamine residue in the first membrane-spanning region (TM1 region) of the α subunits is required for binding of potentiating neurosteroids. Mutations of this residue can reduce or remove the ability of steroids to potentiate function. However, it is not known whether potentiation requires that a steroid interact with the α subunit, or not. To examine this question we mutated the homologous residue in the β2 and γ2L subunits to glutamine, and found that these mutations could not confer potentiation by allopregnanolone (3α5αP) when expressed in receptors containing ineffective α1 subunits. However, potentiation is restored when the entire TM1 region from the α1 subunit is transferred to the β2 or γ2L subunit. Mutations in the TM1 region that affect potentiation when made in the α1 subunit have similar effects when made in transferred TM1 region. Further, the effects of 3α5αP on single-channel kinetics are similar for wild-type receptors and receptors with moved TM1 regions. These results support the idea that steroids bind in the transmembrane regions of the receptor. The observations are consistent with previous work indicating that neurosteroid potentiation is mediated by an action that affects the receptor as a whole, rather than an individual subunit or pair of subunits, and in addition demonstrate that the mechanism is independent of the nature of the subunit that interacts with steroid. PMID:22988137

  6. Stargazin is an AMPA receptor auxiliary subunit.

    PubMed

    Vandenberghe, Wim; Nicoll, Roger A; Bredt, David S

    2005-01-11

    AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors mediate fast excitatory synaptic transmission in brain and underlie aspects of synaptic plasticity. Numerous AMPA receptor-binding proteins have been implicated in AMPA receptor trafficking and anchoring. However, the relative contributions of these proteins to the composition of native AMPA receptor complexes in brain remain uncertain. Here, we use blue native gel electrophoresis to analyze the composition of native AMPA receptor complexes in cerebellar extracts. We identify two receptor populations: a functional form that contains the transmembrane AMPA receptor-regulatory protein stargazin and an apo-form that lacks stargazin. Limited proteolysis confirms assembly of stargazin with a large proportion of native AMPA receptors. In contrast, other AMPA receptor-interacting proteins, such as synapse-associated protein 97, glutamate receptor-interacting protein 1, protein kinase Calpha binding protein, N-ethylmaleimide-sensitive fusion protein, AP2, and protein 4.1N, do not show significant association with AMPA receptor complexes on native gels. These data identify stargazin as an auxiliary subunit for a neurotransmitter-gated ion channel. PMID:15630087

  7. Voltage-gated sodium channels in neurological disorders.

    PubMed

    Chahine, Mohamed; Chatelier, Aurélien; Babich, Olga; Krupp, Johannes J

    2008-04-01

    Voltage-gated sodium channels play an essential biophysical role in many excitable cells such as neurons. They transmit electrical signals through action potential (AP) generation and propagation in the peripheral (PNS) and central nervous systems (CNS). Each sodium channel is formed by one alpha-subunit and one or more beta-subunits. There is growing evidence indicating that mutations, changes in expression, or inappropriate modulation of these channels can lead to electrical instability of the cell membrane and inappropriate spontaneous activity observed during pathological states. This review describes the biochemical, biophysical and pharmacological properties of neuronal voltage-gated sodium channels (VGSC) and their implication in several neurological disorders. PMID:18537643

  8. Morphology and Small-Subunit Ribosomal DNA Sequence of Henneguya Adiposa (Myxosporea) From Ictalurus punctatus (Siluriformes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya adiposa, a myxozoan parasitizing channel catfish Ictalurus punctatus, is supplemented with new data on spore morphology, including photomicrographs and line drawings, as well as 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Elongate, translucent, linear...

  9. RFI channels

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  10. NMDA receptor structures reveal subunit arrangement and pore architecture

    PubMed Central

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  11. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy.

    PubMed

    Hirose, Shinichi

    2014-01-01

    The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox-Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies. PMID:25194483

  12. Single-Channel Characteristics of Wild-Type IKs Channels and Channels formed with Two MinK Mutants that Cause Long QT Syndrome

    PubMed Central

    Sesti, Federico; Goldstein, Steve A.N.

    1998-01-01

    IKs channels are voltage dependent and K+ selective. They influence cardiac action potential duration through their contribution to myocyte repolarization. Assembled from minK and KvLQT1 subunits, IKs channels are notable for a heteromeric ion conduction pathway in which both subunit types contribute to pore formation. This study was undertaken to assess the effects of minK on pore function. We first characterized the properties of wild-type human IKs channels and channels formed only of KvLQT1 subunits. Channels were expressed in Xenopus laevis oocytes or Chinese hamster ovary cells and currents recorded in excised membrane patches or whole-cell mode. Unitary conductance estimates were dependent on bandwidth due to rapid channel “flicker.” At 25 kHz in symmetrical 100-mM KCl, the single-channel conductance of IKs channels was ∼16 pS (corresponding to ∼0.8 pA at 50 mV) as judged by noise-variance analysis; this was fourfold greater than the estimated conductance of homomeric KvLQT1 channels. Mutant IKs channels formed with D76N and S74L minK subunits are associated with long QT syndrome. When compared with wild type, mutant channels showed lower unitary currents and diminished open probabilities with only minor changes in ion permeabilities. Apparently, the mutations altered single-channel currents at a site in the pore distinct from the ion selectivity apparatus. Patients carrying these mutant minK genes are expected to manifest decreased K+ flux through IKs channels due to lowered single-channel conductance and altered gating. PMID:9834138

  13. Neuronal Voltage-Gated K+ (Kv) Channels Function in Macromolecular Complexes

    PubMed Central

    Norris, Aaron J.; Foeger, Nicholas C.; Nerbonne, Jeanne M.

    2010-01-01

    Considerable evidence indicates that native neuronal voltage-gated K+ (Kv) currents reflect the functioning of macromolecular Kv channel complexes, composed of pore-forming (α) subunits, cytosolic and transmembrane accessory subunits, together with regulatory and scaffolding proteins. The individual components of these macromolecular complexes appear to influence the stability, the trafficking, the localization and/or the biophysical properties of the channels. Recent studies suggest that Kv channel accessory subunits subserve multiple roles in the generation of native neuronal Kv channels. Additional recent findings suggest that Kv channel accessory subunits can respond to changes in intracellular Ca2+ or metabolism and thereby integrate signaling pathways to regulate Kv channel expression and properties. Although studies in heterologous cells have provided important insights into the effects of accessory subunits on Kv channel expression/properties, it has become increasingly clear that experiments in neurons are required to define the physiological roles of Kv channel accessory and associated proteins. A number of technological and experimental hurdles remain that must be overcome in the design, execution and interpretation of experiments aimed at detailing the functional roles of accessory subunits and associated proteins in the generation of native neuronal Kv channels. With the increasing association of altered Kv channel functioning with neurological disorders, the potential impact of these efforts is clear. PMID:20813163

  14. Glutamate-gated Chloride Channels*

    PubMed Central

    Wolstenholme, Adrian J.

    2012-01-01

    Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily. PMID:23038250

  15. SK channels and calmodulin

    PubMed Central

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca2+ levels. Mirroring the importance and the breadth of Ca2+ signaling, free Ca2+ levels are tightly controlled, and a myriad of Ca2+ binding proteins transduce Ca2+ signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca2+ binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca2+ ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca2+-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  16. SK channels and calmodulin.

    PubMed

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca(2+) levels. Mirroring the importance and the breadth of Ca(2+) signaling, free Ca(2+) levels are tightly controlled, and a myriad of Ca(2+) binding proteins transduce Ca(2+) signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca(2+) binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca(2+) ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca(2+)-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  17. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function. PMID:18459164

  18. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability.

    PubMed

    Barela, Arthur J; Waddy, Salina P; Lickfett, Jay G; Hunter, Jessica; Anido, Aimee; Helmers, Sandra L; Goldin, Alan L; Escayg, Andrew

    2006-03-01

    Mutations in three voltage-gated sodium channel genes, SCN1A, SCN2A, and SCN1B, and two GABAA receptor subunit genes, GABRG2 and GABRD, have been identified in families with generalized epilepsy with febrile seizures plus (GEFS+). A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a four-generation, 33-member Caucasian family with a clinical presentation consistent with GEFS+. The mutation neutralizes a positively charged arginine in the domain 2 S4 voltage sensor of the Nav1.1 channel alpha subunit. This residue is conserved in mammalian sodium channels as well as in sodium channels from lower organisms. When the mutation was placed in the rat Nav1.1 channel and expressed in Xenopus oocytes, the mutant channel displayed a positive shift in the voltage dependence of sodium channel activation, slower recovery from slow inactivation, and lower levels of current compared with the wild-type channel. Computational analysis suggests that neurons expressing the mutant channel have higher thresholds for firing a single action potential and for firing multiple action potentials, along with decreased repetitive firing. Therefore, this mutation should lead to decreased neuronal excitability, in contrast to most previous GEFS+ sodium channel mutations, which have changes predicted to increase neuronal firing. PMID:16525050

  19. Histone deacetylase inhibitors modulate KATP subunit transcription in HL-1 cardiomyocytes through effects on cholesterol homeostasis

    PubMed Central

    Fatima, Naheed; Cohen, Devin C.; Sukumar, Gauthaman; Sissung, Tristan M.; Schooley, James F.; Haigney, Mark C.; Claycomb, William C.; Cox, Rachel T.; Dalgard, Clifton L.; Bates, Susan E.; Flagg, Thomas P.

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic β-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs. PMID:26321954

  20. ASIC2 Subunits Facilitate Expression at the Cell Surface and Confer Regulation by PSD-95

    PubMed Central

    Harding, Anne Marie S.; Kusama, Nobuyoshi; Hattori, Tomonori; Gautam, Mamta; Benson, Christopher J.

    2014-01-01

    Acid-sensing ion channels (ASICs) are Na+ channels activated by changes in pH within the peripheral and central nervous systems. Several different isoforms of ASICs combine to form trimeric channels, and their properties are determined by their subunit composition. ASIC2 subunits are widely expressed throughout the brain, where they heteromultimerize with their partnering subunit, ASIC1a. However, ASIC2 contributes little to the pH sensitivity of the channels, and so its function is not well understood. We found that ASIC2 increased cell surface levels of the channel when it is coexpressed with ASIC1a, and genetic deletion of ASIC2 reduced acid-evoked current amplitude in mouse hippocampal neurons. Additionally, ASIC2a interacted with the neuronal synaptic scaffolding protein PSD-95, and PSD-95 reduced cell surface expression and current amplitude in ASICs that contain ASIC2a. Overexpression of PSD-95 also reduced acid-evoked current amplitude in hippocampal neurons. This result was dependent upon ASIC2 since the effect of PSD-95 was abolished in ASIC2−/− neurons. These results lend support to an emerging role of ASIC2 in the targeting of ASICs to surface membranes, and allows for interaction with PSD-95 to regulate these processes. PMID:24699665

  1. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  2. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  3. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  4. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  5. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  6. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates. PMID:26577600

  7. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    SciTech Connect

    Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. |; Scott, D.L.; Otwinowski, Z.

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  8. Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function.

    PubMed

    Madry, Christian; Mesic, Ivana; Bartholomäus, Ingo; Nicke, Annette; Betz, Heinrich; Laube, Bodo

    2007-03-01

    Calcium-permeable N-methyl-d-aspartate (NMDA) receptors are tetrameric cation channels composed of glycine-binding NR1 and glutamate-binding NR2 subunits, which require binding of both glutamate and glycine for efficient channel gating. In contrast, receptors assembled from NR1 and NR3 subunits function as calcium-impermeable excitatory glycine receptors that respond to agonist application only with low efficacy. Here, we show that antagonists of and substitutions within the glycine-binding site of NR1 potentiate NR1/NR3 receptor function up to 25-fold, but inhibition or mutation of the NR3 glycine binding site reduces or abolishes receptor activation. Thus, glycine bound to the NR1 subunit causes auto-inhibition of NR1/NR3 receptors whereas glycine binding to the NR3 subunits is required for opening of the ion channel. Our results establish differential roles of the high-affinity NR3 and low-affinity NR1 glycine-binding sites in excitatory glycine receptor function. PMID:17214961

  9. Single-channel properties of ionic channels gated by cyclic nucleotides.

    PubMed Central

    Bucossi, G; Nizzari, M; Torre, V

    1997-01-01

    This paper presents an extensive analysis of single-channel properties of cyclic nucleotide gated (CNG) channels, obtained by injecting into Xenopus laevis oocytes the mRNA encoding for the alpha and beta subunits from bovine rods. When the alpha and beta subunits of the CNG channel are coexpressed, at least three types of channels with different properties are observed. One type of channel has well-resolved, multiple conductive levels at negative voltages, but not at positive voltages. The other two types of channel are characterized by flickering openings, but are distinguished because they have a low and a high conductance. The alpha subunit of CNG channels has a well-defined conductance of about 28 pS, but multiple conductive levels are observed in mutant channels E363D and T364M. The conductance of these open states is modulated by protons and the membrane voltage, and has an activation energy around 44 kJ/mol. The relative probability of occupying any of these open states is independent of the cGMP concentration, but depends on extracellular protons. The open probability in the presence of saturating cGMP was 0.78, 0.47, 0.5, and 0.007 in the w.t. and mutants E363D, T364M, and E363G, and its dependence on temperature indicates that the thermodynamics of the transition between the closed and open state is also affected by mutations in the pore region. These results suggest that CNG channels have different conductive levels, leading to the existence of multiple open states in homomeric channels and to the flickering behavior in heteromeric channels, and that the pore is an essential part of the gating of CNG channels. PMID:9138564

  10. Cell surface expression and biosynthesis of epithelial Na+ channels.

    PubMed Central

    Prince, L S; Welsh, M J

    1998-01-01

    The epithelial Na+ channel (ENaC) complex is composed of three homologous subunits: alpha, beta and gamma. Mutations in ENaC subunits can increase the number of channels on the cell surface, causing a hereditary form of hypertension called Liddle's syndrome, or can decrease channel activity, causing pseudohypoaldosteronism type I, a salt-wasting disease of infancy. To investigate surface expression, we studied ENaC subunits expressed in COS-7 and HEK293 cells. Using surface biotinylation and protease sensitivity, we found that when individual ENaC subunits are expressed alone, they traffic to the cell surface. The subunits are glycosylated with high-mannose oligosaccharides, but seem to have the carbohydrate removed before they reach the cell surface. Moreover, subunits form a complex that cannot be disrupted by several non-ionic detergents. The pattern of glycosylation and detergent solubility/insolubility persists when the N-teminal and C-terminal cytoplasmic regions of ENaC are removed. With co-expression of all three ENaC subunits, the insoluble complex is the predominant species. These results show that ENaC and its family members are unique in their trafficking, biochemical characteristics and post-translational modifications. PMID:9841884

  11. ATP release through pannexon channels

    PubMed Central

    Dahl, Gerhard

    2015-01-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed ‘pannexon’. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  12. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  13. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach. PMID:27097136

  14. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    SciTech Connect

    Barrera, Nelson P.; Shaifta, Yasin; McFadzean, Ian; Ward, Jeremy P.T.; Henderson, Robert M.; Edwardson, J. Michael . E-mail: jme1000@cam.ac.uk

    2007-07-13

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm{sup 3}, corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88{sup o} and 178{sup o}. This result again indicates that the channel assembles as a tetramer.

  15. Structure–Function Relationships in Fungal Large-Subunit Catalases

    SciTech Connect

    Diaz, A.; Valdez, V; Rudino-Pinera, E; Horjales, E; Hansberg, W

    2009-01-01

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.

  16. Structure-function relationships in fungal large-subunit catalases.

    PubMed

    Díaz, Adelaida; Valdés, Víctor-Julián; Rudiño-Piñera, Enrique; Horjales, Eduardo; Hansberg, Wilhelm

    2009-02-13

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H(2)O(2)) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H(2)O(2) to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-gamma-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H(2)O(2) concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics. PMID:19109972

  17. Electrical Remodeling of Preoptic GABAergic Neurons Involves the Kv1.5 Subunit

    PubMed Central

    Tabarean, Iustin V.

    2014-01-01

    The electrogenic machinery of an excitable cell can adapt in response to changes in input, genetic deficit or in pathological conditions, however the underlying molecular mechanisms are not understood. In cases of genetic deletion it is commonly observed that a channel subunit from the same family replaces the missing one. We have previously reported that Kv4.2−/− preoptic GABAergic neurons display identical firing characteristics to those of wild-type neurons despite having reduced A-type currents, and that, surprisingly, they present a robust upregulation of a delayed rectifier current, the nature of which is unknown. Here, using pharmacology, qPCR and Western blots we report that, although the wild-type neurons express several Kv subunits, the upregulated current is conducted by the Kv1.5 subunit exclusively. Thus, this study reveals the molecular nature of a novel mechanism of electrical remodeling in central neurons. PMID:24797243

  18. Electrical remodeling of preoptic GABAergic neurons involves the Kv1.5 subunit.

    PubMed

    Tabarean, Iustin V

    2014-01-01

    The electrogenic machinery of an excitable cell can adapt in response to changes in input, genetic deficit or in pathological conditions, however the underlying molecular mechanisms are not understood. In cases of genetic deletion it is commonly observed that a channel subunit from the same family replaces the missing one. We have previously reported that Kv4.2-/- preoptic GABAergic neurons display identical firing characteristics to those of wild-type neurons despite having reduced A-type currents, and that, surprisingly, they present a robust upregulation of a delayed rectifier current, the nature of which is unknown. Here, using pharmacology, qPCR and Western blots we report that, although the wild-type neurons express several Kv subunits, the upregulated current is conducted by the Kv1.5 subunit exclusively. Thus, this study reveals the molecular nature of a novel mechanism of electrical remodeling in central neurons. PMID:24797243

  19. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task?

    PubMed

    Kanda, Vikram A; Abbott, Geoffrey W

    2012-01-01

    Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners. PMID:22754540

  20. KCNE Regulation of K+ Channel Trafficking – a Sisyphean Task?

    PubMed Central

    Kanda, Vikram A.; Abbott, Geoffrey W.

    2012-01-01

    Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners. PMID:22754540

  1. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes.

    PubMed

    Storch, Ursula; Forst, Anna-Lena; Philipp, Maximilian; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2012-01-27

    Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration. PMID:22157757

  2. Transient Receptor Potential Channel 1 (TRPC1) Reduces Calcium Permeability in Heteromeric Channel Complexes

    PubMed Central

    Storch, Ursula; Forst, Anna-Lena; Philipp, Maximilian; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2012-01-01

    Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration. PMID:22157757

  3. Accessibility of cysteines in the native bovine rod cGMP-gated channel.

    PubMed

    Bauer, Paul J; Krause, Eberhard

    2005-02-01

    Cyclic nucleotide-gated channels of photoreceptors and olfactory sensory neurons are tetramers consisting of A and B subunits. Here, the accessibility of the cysteines of the bovine rod cyclic nucleotide-gated channel is examined as a function of ligand binding. N-Ethylmaleimide-modified cysteines of both subunits were identified by mass spectrometry after trypsin digestion. In the absence of ligand, the intracellular carboxy-terminal cysteines of both subunits were accessible to N-ethylmaleimide. Activation of the channel abolished the accessibility of Cys505 of the A subunit and Cys1104 of the B subunit, with both being conserved cysteines of the cyclic nucleotide-binding sites. The cysteine of the pore loop of the B subunit was also found to be modified by this reagent in the absence of ligand. The total number of accessible cysteines of each subunit was determined by mass shifting upon modification with polyethylene glycol maleimide. In the absence of cyclic nucleotides, this hydrophilic reagent only weakly labeled cysteines of the A subunit but readily labeled at least three cysteines of the B subunit. Ligand binding exposed two cysteines of the A subunit and one cysteine of the B subunit to chemical modification. Double-modification experiments suggest that some of these cysteines are in or close to membrane-spanning domains. However, these cysteines could not yet be identified. Together, the cysteine accessibility of the native rod cyclic nucleotide-gated channel varies markedly upon ligand binding, thus indicating major structural rearrangements, which are of functional importance for channel activation. PMID:15683246

  4. Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    PubMed

    Mulligan, Megan K; Wang, Xusheng; Adler, Adrienne L; Mozhui, Khyobeni; Lu, Lu; Williams, Robert W

    2012-01-01

    GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal), even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer 4-100 fold

  5. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling.

    PubMed

    Yang, Kai-Chien; Nerbonne, Jeanne M

    2016-04-01

    In the mammalian heart, multiple types of K(+) channels contribute to the control of cardiac electrical and mechanical functioning through the regulation of resting membrane potentials, action potential waveforms and refractoriness. There are similarly vast arrays of K(+) channel pore-forming and accessory subunits that contribute to the generation of functional myocardial K(+) channel diversity. Maladaptive remodeling of K(+) channels associated with cardiac and systemic diseases results in impaired repolarization and increased propensity for arrhythmias. Here, we review the diverse transcriptional, post-transcriptional, post-translational, and epigenetic mechanisms contributing to regulating the expression, distribution, and remodeling of cardiac K(+) channels under physiological and pathological conditions. PMID:26391345

  6. The cellular expression of GABA(A) receptor alpha1 subunit during spermatogenesis in the mouse testis.

    PubMed

    Kanbara, Kiyoto; Okamoto, Keiko; Nomura, Sakashi; Kaneko, Takeshi; Watanabe, Masahito; Otsuki, Yoshinori

    2010-10-01

    GABA(A) receptors are pentamers in structure and are mainly composed of alpha, beta and gamma subunits. These receptors are known to function as chloride channels. We observed alpha5, beta1 and gamma3 subunit immunoreactivity in the mouse testes, specifically in the cytoplasm surrounding the nucleus in the spermatocytes and spermatids. In the current study, alpha1 subunit immunoreactivity was located in the nucleus of spermatogonia, spermatocytes and round spermatids. Immunoelectron microscopy revealed that the alpha1 subunit was localized within the nucleus of pachytene and diplotene spermatocytes in the area of condensed chromatin rather than extended chromatin. Protein sequence analysis revealed that the alpha1 subunit included DM DNA binding domains that were related to transcription factors involved in testicular differentiation in adult mice. These findings suggest that the alpha1 subunit may undertake a gene transcription function during the maturation of germ cells. a1 immunoreactivity was also detected within the mitochondria of spermatocytes and in the acrosome of round and elongated spermatids. Although the precise physiological role of the GABA(A) receptor alpha1 subunit in mitochondria remains unknown, we hypothesize that its function in the acrosome may be related to the acrosome reaction during fertilization or during spermatogenesis. PMID:20712007

  7. Membrane stretch affects gating modes of a skeletal muscle sodium channel.

    PubMed

    Tabarean, I V; Juranka, P; Morris, C E

    1999-08-01

    The alpha subunit of the human skeletal muscle Na(+) channel recorded from cell-attached patches yielded, as expected for Xenopus oocytes, two current components that were stable for tens of minutes during 0.2 Hz stimulation. Within seconds of applying sustained stretch, however, the slower component began decreasing and, depending on stretch intensity, disappeared in 1-3 min. Simultaneously, the faster current increased. The resulting fast current kinetics and voltage sensitivity were indistinguishable from the fast components 1) left after 10 Hz depolarizations, and 2) that dominated when alpha subunit was co-expressed with human beta1 subunit. Although high frequency depolarization-induced loss of slow current was reversible, the stretch-induced slow-to-fast conversion was irreversible. The conclusion that stretch converted a single population of alpha subunits from an abnormal slow to a bona fide fast gating mode was confirmed by using gigaohm seals formed without suction, in which fast gating was originally absent. For brain Na(+) channels, co-expressing G proteins with the channel alpha subunit yields slow gating. Because both stretch and beta1 subunits induced the fast gating mode, perhaps they do so by minimizing alpha subunit interactions with G proteins or with other regulatory molecules available in oocyte membrane. Because of the possible involvement of oocyte molecules, it remains to be determined whether the Na(+) channel alpha subunit was directly or secondarily susceptible to bilayer tension. PMID:10423424

  8. Membrane stretch affects gating modes of a skeletal muscle sodium channel.

    PubMed Central

    Tabarean, I V; Juranka, P; Morris, C E

    1999-01-01

    The alpha subunit of the human skeletal muscle Na(+) channel recorded from cell-attached patches yielded, as expected for Xenopus oocytes, two current components that were stable for tens of minutes during 0.2 Hz stimulation. Within seconds of applying sustained stretch, however, the slower component began decreasing and, depending on stretch intensity, disappeared in 1-3 min. Simultaneously, the faster current increased. The resulting fast current kinetics and voltage sensitivity were indistinguishable from the fast components 1) left after 10 Hz depolarizations, and 2) that dominated when alpha subunit was co-expressed with human beta1 subunit. Although high frequency depolarization-induced loss of slow current was reversible, the stretch-induced slow-to-fast conversion was irreversible. The conclusion that stretch converted a single population of alpha subunits from an abnormal slow to a bona fide fast gating mode was confirmed by using gigaohm seals formed without suction, in which fast gating was originally absent. For brain Na(+) channels, co-expressing G proteins with the channel alpha subunit yields slow gating. Because both stretch and beta1 subunits induced the fast gating mode, perhaps they do so by minimizing alpha subunit interactions with G proteins or with other regulatory molecules available in oocyte membrane. Because of the possible involvement of oocyte molecules, it remains to be determined whether the Na(+) channel alpha subunit was directly or secondarily susceptible to bilayer tension. PMID:10423424

  9. Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

    PubMed Central

    Raphemot, Rene; Swale, Daniel R.; Dadi, Prasanna K.; Jacobson, David A.; Cooper, Paige; Wojtovich, Andrew P.; Banerjee, Sreedatta; Nichols, Colin G.

    2014-01-01

    ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry. PMID:24646456

  10. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel

    NASA Astrophysics Data System (ADS)

    Long, Stephen B.; Campbell, Ernest B.; MacKinnon, Roderick

    2005-08-01

    Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase β subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and β subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the β subunit.

  11. Pharmacogenetics of Potassium Channel Blockers.

    PubMed

    Roden, Dan M

    2016-06-01

    The QT interval on surface electrocardiograms provides a model of a multicomponent integrated readout of many biological systems, including ion channels, modulatory subunits, signaling systems that modulate their activity, and mechanisms that regulate the expression of their responsible genes. The problem of drug exposure causing exaggerated QT interval prolongation and torsades de pointes highlights the multicomponent nature of cardiac repolarization and the way in which simple perturbations can yield exaggerated responses. Future directions will involve cellular approaches coupled to evolving technologies that can interrogate multicellular systems and provide a sophisticated view of mechanisms in this previously idiosyncratic drug reaction. PMID:27261829

  12. Amaranth (Amaranthus hypochondriacus) vicilin subunit structure.

    PubMed

    Quiroga, Alejandra; Martínez, E Nora; Rogniaux, Hélène; Geairon, Audrey; Añón, M Cristina

    2010-12-22

    The 7S-globulin fraction is a minor component of the amaranth storage proteins. The present work provides new information about this protein. The amaranth 7S-globulin or vicilin presented a sedimentation coefficient of 8.6 ± 0.6 S and was composed of main subunits of 66, 52, 38, and 16 kDa. On the basis of mass spectrometry (MS) analysis of tryptic fragments, the 52, 38, and 16 kDa subunits presented sequence homology with sesame vicilin, whereas the 66 kDa subunit showed sequence similarity with a putative vicilin. Several characteristics of the 66 kDa subunit were similar to members of the convicilin family. Results support the hypothesis that the 7S-globulin molecules are composed of subunits coming from at least two gene families with primary products of 66 and 52 kDa, respectively. According to the present information, amaranth vicilin may be classified into the vicilin group that includes pea, broad bean, and sesame vicilins, among others. PMID:21117690

  13. Hco-LGC-38 is novel nematode cys-loop GABA receptor subunit.

    PubMed

    Siddiqui, Salma Z; Brown, David D R; Accardi, Michael V; Forrester, Sean G

    2012-10-01

    We have identified and characterized a novel cys-loop GABA receptor subunit (Hco-LGC-38) from the parasitic nematode Haemonchus contortus. This subunit is present in parasitic and free-living nematodes and shares similarity to both the UNC-49 group of GABA receptor subunits from nematodes and the resistant to dieldrin (RDL) receptors of insects. Expression of the Hco-lgc-38 gene in Xenopus oocytes and subsequent electrophysiological analysis has revealed that the gene encodes a homomeric channel sensitive to GABA (EC(50) 19 μM) and the GABA analogue muscimol. The sensitivity of the Hco-LGC-38 channel to GABA is similar to reported values for the Drosophila RDL receptor whereas its lower sensitivity to muscimol is similar to nematode GABA receptors. Hco-LGC-38 is also highly sensitive to the channel blocker picrotoxin and moderately sensitive to fipronil and dieldrin. Homology modeling of Hco-LGC-38 and subsequent docking of GABA and muscimol into the binding site has uncovered several types of potential interactions with binding-site residues and overall appears to share similarity with models of other invertebrate GABA receptors. PMID:22940478

  14. The molecular physiology of CRAC channels

    PubMed Central

    Prakriya, Murali

    2011-01-01

    Summary The Ca2+release-activated Ca2+ (CRAC) channel is a highly Ca2+-selective store-operated channel expressed in T cells, mast cells, and various other tissues. CRAC channels regulate critical cellular processes such as gene expression, motility, and the secretion of inflammatory mediators. The identification of Orai1, a key subunit of the CRAC channel pore, and STIM1, the endoplasmic reticulum (ER) Ca2+ sensor, have provided the tools to illuminate the mechanisms of regulation and the pore properties of CRAC channels. Recent evidence indicates that the activation of CRAC channels by store depletion involves a coordinated series of steps, which include the redistributions of STIM1 and Orai1, direct physical interactions between these proteins, and conformational changes in Orai1, culminating in channel activation. Additional studies have revealed that the high Ca2+ selectivity of CRAC channels arises from the presence of an intrapore Ca2+ binding site, the properties of which are finely honed to occlude the permeation of the much more prevalent Na+. Structure-function studies have led to the identification of the potential pore-binding sites for Ca2+, providing a firm framework for understanding the mechanisms of selectivity and gating of the CRAC channel. This review summarizes recent progress in understanding the mechanisms of CRAC channel activation, pore properties, and modulation. PMID:19754891

  15. Isolation of a Single Carboxyl-Carboxylate Proton Binding Site in the Pore of a Cyclic Nucleotide–Gated Channel

    PubMed Central

    Morrill, James A.; MacKinnon, Roderick

    1999-01-01

    The pore of the catfish olfactory cyclic nucleotide–gated (CNG) channel contains four conserved glutamate residues, one from each subunit, that form a high-affinity binding site for extracellular divalent cations. Previous work showed that these residues form two independent and equivalent high-pKa (∼7.6) proton binding sites, giving rise to three pH-dependent conductance states, and it was suggested that the sites were formed by pairing of the glutamates into two independent carboxyl-carboxylates. To test further this physical picture, wild-type CNG subunits were coexpressed in Xenopus oocytes with subunits lacking the critical glutamate residue, and single channel currents through hybrid CNG channels containing one to three wild-type (WT) subunits were recorded. One of these hybrid channels had two pH-dependent conductance states whose occupancy was controlled by a single high-pKa protonation site. Expression of dimers of concatenated CNG channel subunits confirmed that this hybrid contained two WT and two mutant subunits, supporting the idea that a single protonation site is made from two glutamates (dimer expression also implied the subunit makeup of the other hybrid channels). Thus, the proton binding sites in the WT channel occur as a result of the pairing of two glutamate residues. This conclusion places these residues in close proximity to one another in the pore and implies that at any instant in time detailed fourfold symmetry is disrupted. PMID:10398693

  16. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  17. A slow-speed multiple-channel analog-to-digital data logging system

    NASA Technical Reports Server (NTRS)

    Lloyd, T. C.; Flaherty, B. J.

    1973-01-01

    The system was developed to record from one up to a maximum of sixteen channels of analog data onto magnetic tape. Each analog channel of data can be sampled at rates of 1, 2, 6, 12, or 60 times per minute. The system is divided into three subunits: a digital clock, an incremental magnetic tape recorder, and a sequential converter. The interfacing requirements of these subunits are presented.

  18. Maxi-K(Ca), a Unique Member of the Voltage-Gated K Channel Superfamily.

    PubMed

    Toro, L.; Wallner, M.; Meera, P.; Tanaka, Y.

    1998-06-01

    Large-conductance, voltage-, and Ca(2+)-sensitive K(+) (maxi-K(Ca)) channels regulate neuronal and smooth muscle excitability. Their pore-forming alpha-subunit shows similarities with voltage-gated channels and indeed can open in the practical absence of Ca(2+). The NH(2) terminus is unique, with a seventh transmembrane segment involved in beta-subunit modulation. The long COOH terminus is implied in Ca(2+) modulation. PMID:11390773

  19. Subunit architecture of general transcription factor TFIIH.

    PubMed

    Gibbons, Brian J; Brignole, Edward J; Azubel, Maia; Murakami, Kenji; Voss, Neil R; Bushnell, David A; Asturias, Francisco J; Kornberg, Roger D

    2012-02-01

    Structures of complete 10-subunit yeast TFIIH and of a nested set of subcomplexes, containing 5, 6, and 7 subunits, have been determined by electron microscopy (EM) and 3D reconstruction. Consistency among all the structures establishes the location of the "minimal core" subunits (Ssl1, Tfb1, Tfb2, Tfb4, and Tfb5), and additional densities can be specifically attributed to Rad3, Ssl2, and the TFIIK trimer. These results can be further interpreted by placement of previous X-ray structures into the additional densities to give a preliminary picture of the RNA polymerase II preinitiation complex. In this picture, the key catalytic components of TFIIH, the Ssl2 ATPase/helicase and the Kin28 protein kinase are in proximity to their targets, downstream promoter DNA and the RNA polymerase C-terminal domain. PMID:22308316

  20. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  1. Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide

    PubMed Central

    Wu, Lingyun; Cao, Kun; Lu, Yanjie; Wang, Rui

    2002-01-01

    The molecular mechanisms underlying the effects of nitric oxide (NO) and carbon monoxide (CO), individually and collectively, on large-conductance calcium-activated K+ (KCa) channels were investigated in rat vascular smooth muscle cells (SMCs). Both NO and CO increased the activity of native KCa channels. Dehydrosoyasaponin-I, a specific agonist for β subunit of KCa channels, increased the open probability of native KCa channels only when it was delivered to the cytoplasmic surface of membrane. CO, but not NO, further increased the activity of native KCa channels that had been maximally stimulated by dehydrosoyasaponin-I. After treatment of SMCs with anti–KCa,β subunit antisense oligodeoxynucleotides, the stimulatory effect of NO, but not of CO, on KCa channels was nullified. CO, but not NO, enhanced the KCa current densities of heterologously expressed cloned KCa,α subunit, showing that the presence of KCa,β subunit is not a necessity for the effect of CO but essential for that of NO. Finally, pretreatment of SMCs with NO abolished the effects of subsequently applied CO or diethyl pyrocarbonate on KCa channels. In summary, the stimulatory effects of CO and NO on KCa channels rely on the specific interactions of these gases with KCa,α and KCa,β subunits. PMID:12208870

  2. Sequence stratigraphic model and Evolution of the Channelized depositional systems during Miocene in Ulleung Basin southeastern margin, East Sea

    NASA Astrophysics Data System (ADS)

    Baek, Y.; Lee, S. H.; Kim, H. J.; Jou, H. T.

    2015-12-01

    The southwestern margin of Ulleung Basin consists of broad and gentle slope continental shelf and shelf break. The sedimentary succession of the continental shelf is divided into nine sequences (S1-S9). The sedimentary succession is consists of the lower pro-graded sequences (from S2 to S6; 16.5-8.2 Ma) and upper channelized depositional sequences (S7 and S8; 8.2-5.5 Ma) in the Miocene. It progressively thickens northeast ward, suggesting a significant contribution of sediments into the basin margin. The channelized depositional system of S7 is divided into two subunits in which lower boundaries of each subunit are indicated by erosional truncation and channel incision. The underlying subunit 1 has two main streams; the progressive directions are to the NNE (a) and ENE (b). The main stream of subunit 2, developed after giving rise to the low-relief topography of the subunit 1, is only overlapping main stream (a) of subunit 1. The gentle sloped proximal-middle zone has different internal reflector, subunit 1 is characterized by parallel to chaotic reflections, whereas the subunit 2 is dominated by continuous and inclined reflectors, which can be interpreted that sediments supply is increase in subunit 2 than subunit 1. The steep sloped distal zone of channelized depositional systems connected the shelf break. The slope gradient is more slanted subunit 2 than 1. The internal structures are dis-continuous and inclined chaotic internal reflectors, which is interpreted mass transport deposits (MTDs). The slope failures commonly start near the shelf break, but some others are connected perpendicular to the main stream. The upper boundary of subunit 2 is truncated by transgressive surface. The stacking pattern of sequence 7 suggests the type-1 sequence controlled by sea level change, and the internal erosional surface in the channelized depositional systems can be interpreted that formed by tectonic or relative sea level flocculation during late Miocene in East Sea.

  3. The roles of the alpha and gamma subunits in proton conduction through the Fo sector of the proton-translocating ATPase of Escherichia coli.

    PubMed

    Pati, S; Brusilow, W S

    1989-02-15

    Previous genetic and biochemical studies have shown that the Fo sector of the Escherichia coli H+-ATPase is synthesized and assembled in a nonleaky form from plasmid-borne genes. The proton channel then appears to be opened by an interaction of F1 subunits, especially the alpha subunit, with the nonleaky Fo (Brusilow, W. S. A. (1987) J. Bacteriol. 169, 4984-4990; Solomon, K. A., and Brusilow, W. S. A. (1988) J. Biol. Chem. 263, 5402-5407). To study the role of the alpha and gamma subunits in proton conduction, we constructed an inducible alpha plasmid. In an alpha-gamma- background, the induction of alpha synthesis caused lethal proton leakiness, as assayed by the loss of respiration-dependent acridine orange fluorescence quenching of E. coli membranes. The presence of a gamma subunit counteracted the lethal effects as if gamma were blocking the opened channel. PMID:2536718

  4. Dimeric structure of single chloride channels from Torpedo electroplax.

    PubMed Central

    Miller, C; White, M M

    1984-01-01

    The inhibition by 4,4'-diisothiocyano-2,2'-stilbenedisulfonate (DIDS) of Cl- channels from Torpedo electroplax incorporated in planar phospholipid bilayer membranes is studied. DIDS irreversibly and rapidly inhibits the macroscopic conductance of membranes containing many channels. At the single-channel level, the effect of DIDS is more complicated. The uninhibited single channel displays three "substates" of conductances 20, 10, and 0 pS. Short exposure (5-30 s) to 10 microM DIDS converts this three-level active channel into a "conventional" channel of 10-pS conductance. Longer exposure eliminates all channel fluctuations. The results are taken as strong evidence that the Cl- channel is constructed as a functional dimer of identical protein subunits. PMID:6326143

  5. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.

    PubMed

    Haldar, Suranjana; Bevers, Loes E; Tosha, Takehiko; Theil, Elizabeth C

    2011-07-22

    Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of [Fe³⁺O](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) [Fe³⁺O](n) transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits. PMID:21592958

  6. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.

    PubMed Central

    Burnashev, N; Villarroel, A; Sakmann, B

    1996-01-01

    1. Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) subunits (GluR-A or GluR-B) and kainate receptor (KAR) subunit (GluR-6) in their unedited (Q)- and edited (R)-forms were expressed in HEK 293 cells. To estimate the dimensions of the narrow portion of these channels, biionic reversal potentials for organic cations of different mean diameters were determined with Cs+ as the internal reference ion. 2. Homomeric channels assembled from Q-form subunits were cation selective. The relation between the relative permeability and the mean size of different organic cations suggests that the diameter of the narrow portion of Q-form channels is approximately 0.78 nm for AMPAR and 0.75 nm for KAR channels. 3. Homomeric channels assembled from R-form subunits were permeant for anions and cations. When probed with CsC1 gradients the relative chloride permeability (PC1/PCs) was estimated as 0.14 for GluR-B(R) and 0.74 for GluR-6(R)-subunit channels. The permeability versus mean size relation for large cations measured with the weakly permeant F- as anion, indicates that for the R-form KAR channels the apparent pore diameter is close to 0.76 nm. 4. Heteromeric AMPAR and KAR channels co-assembled from Q- and R-form subunits were cation selective. The diameter of the narrow portion of these channels is estimated to be in the range between 0.70 and 0.74 nm. 5. The results indicated that the diameters of the narrow portion of AMPAR and KAR channels of different subunit composition and of widely different ion selectivity are comparable. Therefore, the differences in the anion versus cation selectivity, in Ca2+ permeability and in channel conductance are likely to be determined by the difference in charge density of the channel. PMID:8910205

  7. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  8. The Upregulation of α2δ-1 Subunit Modulates Activity-Dependent Ca2+ Signals in Sensory Neurons

    PubMed Central

    Margas, Wojciech; Cassidy, John S.

    2015-01-01

    As auxiliary subunits of voltage-gated Ca2+ channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca2+ responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca2+ transients are not dependent on extracellular Ca2+ and do not require Ca2+ release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca2+ uptake demonstrates that α2δ-1-mediated prolonged Ca2+ signals are buffered by mitochondria, preferentially activated by Ca2+ influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca2+ signaling in dorsal root ganglion neurons. PMID:25878262

  9. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Boehlein, Susan K; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2005-02-01

    The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions. PMID:15686515

  10. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.

    PubMed

    Conforti, L; Millhorn, D E

    2000-01-01

    Little is known about the molecular composition of the O2-sensitive K+ (Ko2) channels. The possibility that these channels belong to the Shaker subfamily (Kv1) of voltage-dependent K+ (Kv) channels has been raised in pulmonary artery (PA) smooth muscle cells. Numerous findings suggest that the Ko2 channel in PC12 cells is a Kv1 channel, formed by the Kv1.2 alpha subunit. The Ko2 channel in PC12 cells is a slow-inactivating voltage-dependent K+ channel of 20 pS conductance. Other Kv channels, also expressed in PC12 cells, are not inhibited by hypoxia. Selective up-regulation by chronic hypoxia of the Kv1.2 alpha subunit expression correlates with an increase O2-sensitivity of the K+ current. Other Kv1 alpha subunit genes encoding slow-inactivating Kv channels, such as Kv1.3, Kv2.1, Kv3.1 and Kv3.2 are not modulated by chronic hypoxia. The Ko2 current in PC12 cells is blocked by 5 mM externally applied tetraethylammonium chloride (TEA) and by charydbotoxin (CTX). The responses of the Kv1.2 K+ channel to hypoxia have been studied in the Xenopus oocytes and compared to those of Kv2.1, also proposed as Ko2 channel in PA smooth muscle cells. Two-electrode voltage clamp experiments show that hypoxia induces inhibition of K+ current amplitude only in oocytes injected with Kv1.2 cRNA. These data indicate that Kv1.2 K+ channels are inhibited by hypoxia. PMID:10849667

  11. Chemical Derivatization and Purification of Peptide-Toxins for Probing Ion Channel Complexes

    PubMed Central

    Hua, Zhengmao; Kobertz, William R.

    2013-01-01

    Ion channels function as multi-protein complexes made up of ion-conducting α-subunits and regulatory β-subunits. To detect, identify, and quantitate the regulatory β-subunits in functioning K+ channel complexes, we have chemically-derivatized peptide-toxins that specifically react with strategically-placed cysteine residues in the channel complex. Two protein labeling approaches have been developed to derivatize the peptide-toxin, charybdotoxin, with hydrophilic and hydrophobic bismaleimides, and other molecular probes. Using these cysteine-reactive peptide-toxins, we have specifically targeted KCNQ1-KCNE1 K+ channel complexes expressed in both Xenopus oocytes and mammalian cells. The modular design of the reagents should permit this approach to be applied to the many ion channel complexes involved in electrical excitability as well as salt and water homoeostasis. PMID:23494369

  12. TRP channels.

    PubMed

    Benemei, Silvia; Patacchini, Riccardo; Trevisani, Marcello; Geppetti, Pierangelo

    2015-06-01

    Evidence is accumulating on the role of transient receptor potential (TRP) channels, namely TRPV1, TRPA1, TRPV4 and TRPM8, expressed by C- and Aδ-fibres primary sensory neurons, in cough mechanism. Selective stimuli for these channels have been proven to provoke and, more rarely, to inhibit cough. More importantly, cough threshold to TRP agonists is increased by proinflammatory conditions, known to favour cough. Off-target effects of various drugs, such as tiotropium or desflurane, seem to produce their protective or detrimental actions on airway irritation and cough via TRPV1 and TRPA1, respectively. Thus, TRPs appear to encode the process that initiates or potentiates cough, activated by exogenous irritants and endogenous proinflammatory mediators. More research on TRP channels may result in innovative cough medicines. PMID:25725213

  13. The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers

    PubMed Central

    Touhara, Kouki K; Wang, Weiwei; MacKinnon, Roderick

    2016-01-01

    G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound. DOI: http://dx.doi.org/10.7554/eLife.15750.001 PMID:27074664

  14. Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits.

    PubMed

    Brockway, L M; Zhou, Z-H; Bubien, J K; Jovov, B; Benos, D J; Keyser, K T

    2002-07-01

    Some members of the epithelial Na+ channel/degenerin (ENaC/DEG) family of ion channels have been detected in mammalian brain. Therefore, we examined the RNA and protein expression of these channels in another part of the central nervous system, the rabbit retina. We next sought to demonstrate physiological evidence for an amiloride-sensitive current in Müller glia, which, on the basis of a previous study, are thought to express alpha-ENaC (Golestaneh N, de Kozak Y, Klein C, and Mirshahi M. Glia 33: 160-168, 2001). RT-PCR of retinal RNA revealed the presence of alpha-, beta-, gamma-, and delta-ENaC as well as acid-sensing ion channel (ASIC)1, ASIC2, ASIC3, and ASIC4. Immunohistochemical localization with antibodies against alpha-ENaC and beta-ENaC showed labeling in Müller cells and neurons, respectively. The presence of alpha-ENaC, beta-ENaC, and ASIC1 was detected by Western blotting. Cultured Müller cells were whole cell patch clamped. These cells exhibited an inward Na+ current that was blocked by amiloride. These data demonstrate for the first time both the expression of a variety of ENaC and ASIC subunits in the rabbit retina as well as distinct cellular expression patterns of specific subunits in neurons and glia. PMID:12055080

  15. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications.

    PubMed

    Griguoli, Marilena; Sgritta, Martina; Cherubini, Enrico

    2016-07-01

    BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca(2+) sensitivity, voltage dependence and gating properties. Abundantly expressed in the CNS, they have the peculiar characteristic of being activated by both voltage and intracellular calcium rise. The increase in intracellular calcium via voltage-dependent calcium channels (Cav ) during spiking triggers conformational changes and BK channel opening. This narrows the action potential and induces a fast after-hyperpolarization that shuts calcium channels. The tight coupling between BK and Cav channels at presynaptic active zones makes them particularly suitable for regulating calcium entry and neurotransmitter release. While in most synapses, BK channels exert a negative control on transmitter release under basal conditions, in others they do so only under pathological conditions, serving as an emergency brake to protect against hyperactivity. In particular cases, by interacting with other channels (i.e. limiting the activation of the delayed rectifier and the inactivation of Na(+) channels), BK channels induce spike shortening, increase in firing rate and transmitter release. Changes in transmitter release following BK channel dysfunction have been implicated in several neurological disorders including epilepsy, schizophrenia, fragile X syndrome, mental retardation and autism. In particular, two mutations, one in the α and one in the β3 subunit, resulting in a gain of function have been associated with epilepsy. Hence, these discoveries have allowed identification of BK channels as new drug targets for therapeutic intervention. PMID:26969302

  16. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    PubMed Central

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  17. Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies

    PubMed Central

    Savio-Galimberti, Eleonora; Gollob, Michael H.; Darbar, Dawood

    2012-01-01

    Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”.  This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field. PMID:22798951

  18. Concatenated hERG1 Tetramers Reveal Stoichiometry of Altered Channel Gating by RPR-260243

    PubMed Central

    Wu, Wei; Gardner, Alison

    2015-01-01

    Activation of human ether-a-go-go–related gene 1 (hERG1) K+ channels mediates repolarization of action potentials in cardiomyocytes. RPR-260243 [(3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid] (RPR) slows deactivation and attenuates inactivation of hERG1 channels. A detailed understanding of the molecular mechanism of hERG1 agonists such as RPR may facilitate the design of more selective and potent compounds for prevention of arrhythmia associated with abnormally prolonged ventricular repolarization. RPR binds to a hydrophobic pocket located between two adjacent hERG1 subunits, and, hence, a homotetrameric channel has four identical RPR binding sites. To investigate the stoichiometry of altered channel gating induced by RPR, we constructed and characterized tetrameric hERG1 concatemers containing a variable number of wild-type subunits and subunits containing a point mutation (L553A) that rendered the channel insensitive to RPR, ostensibly by preventing ligand binding. The slowing of deactivation by RPR was proportional to the number of wild-type subunits incorporated into a concatenated tetrameric channel, and four wild-type subunits were required to achieve maximal slowing of deactivation. In contrast, a single wild-type subunit within a concatenated tetramer was sufficient to achieve half of the maximal RPR-induced shift in the voltage dependence of hERG1 inactivation, and maximal effect was achieved in channels containing three or four wild-type subunits. Together our findings suggest that the allosteric modulation of channel gating involves distinct mechanisms of coupling between drug binding and altered deactivation and inactivation. PMID:25519838

  19. Concatenated hERG1 tetramers reveal stoichiometry of altered channel gating by RPR-260243.

    PubMed

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2015-01-01

    Activation of human ether-a-go-go-related gene 1 (hERG1) K(+) channels mediates repolarization of action potentials in cardiomyocytes. RPR-260243 [(3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid] (RPR) slows deactivation and attenuates inactivation of hERG1 channels. A detailed understanding of the molecular mechanism of hERG1 agonists such as RPR may facilitate the design of more selective and potent compounds for prevention of arrhythmia associated with abnormally prolonged ventricular repolarization. RPR binds to a hydrophobic pocket located between two adjacent hERG1 subunits, and, hence, a homotetrameric channel has four identical RPR binding sites. To investigate the stoichiometry of altered channel gating induced by RPR, we constructed and characterized tetrameric hERG1 concatemers containing a variable number of wild-type subunits and subunits containing a point mutation (L553A) that rendered the channel insensitive to RPR, ostensibly by preventing ligand binding. The slowing of deactivation by RPR was proportional to the number of wild-type subunits incorporated into a concatenated tetrameric channel, and four wild-type subunits were required to achieve maximal slowing of deactivation. In contrast, a single wild-type subunit within a concatenated tetramer was sufficient to achieve half of the maximal RPR-induced shift in the voltage dependence of hERG1 inactivation, and maximal effect was achieved in channels containing three or four wild-type subunits. Together our findings suggest that the allosteric modulation of channel gating involves distinct mechanisms of coupling between drug binding and altered deactivation and inactivation. PMID:25519838

  20. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  1. Multifunctional basic motif in the glycine receptor intracellular domain induces subunit-specific sorting.

    PubMed

    Melzer, Nima; Villmann, Carmen; Becker, Kristina; Harvey, Kirsten; Harvey, Robert J; Vogel, Nico; Kluck, Christoph J; Kneussel, Matthias; Becker, Cord-Michael

    2010-02-01

    The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated ion channel that mediates fast synaptic inhibition in the vertebrate central nervous system. As a member of the family of Cys-loop receptors, it assembles from five homologous subunits (GlyRalpha1-4 and -beta). Each subunit contains an extracellular ligand binding domain, four transmembrane domains (TM), and an intracellular domain, formed by the loop connecting TM3 and TM4 (TM3-4 loop). The TM3-4 loops of the subunits GlyRalpha1 and -alpha3 harbor a conserved basic motif, which is part of a potential nuclear localization signal. When tested for functionality by live cell imaging of green fluorescent protein and beta-galactosidase-tagged domain constructs, the TM3-4 loops of GlyRalpha1 and -alpha3, but not of GlyRalpha2 and -beta, exhibited nuclear sorting activity. Subunit specificity may be attributed to slight amino acid alterations in the basic motif. In yeast two-hybrid screening and GST pulldown assays, karyopherin alpha3 and alpha4 were found to interact with the TM3-4 loop, providing a molecular mechanism for the observed intracellular trafficking. These results indicate that the multifunctional basic motif of the TM3-4 loop is capable of mediating a karyopherin-dependent intracellular sorting of full-length GlyRs. PMID:19959465

  2. Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    PubMed Central

    Leroux, Alexandre; Rokeach, Luis A.

    2008-01-01

    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species. PMID:19057642

  3. Subunit–subunit interactions are critical for proton sensitivity of ROMK: Evidence in support of an intermolecular gating mechanism

    PubMed Central

    Leng, Qiang; MacGregor, Gordon G.; Dong, Ke; Giebisch, Gerhard; Hebert, Steven C.

    2006-01-01

    The tetrameric K channel ROMK provides an important pathway for K secretion by the mammalian kidney, and the gating of this channel is highly sensitive to changes in cytosolic pH. Although charge–charge interactions have been implicated in pH sensing by this K channel tetramer, the molecular mechanism linking pH sensing and the gating of ion channels is poorly understood. The x-ray crystal structure KirBac1.1, a prokaryotic ortholog of ROMK, has suggested that channel gating involves intermolecular interactions of the N- and C-terminal domains of adjacent subunits. Here we studied channel gating behavior to changes in pH using giant patch clamping of Xenopus laevis oocytes expressing WT or mutant ROMK, and we present evidence that no single charged residue provides the pH sensor. Instead, we show that N–C- and C–C-terminal subunit–subunit interactions form salt bridges, which function to stabilize ROMK in the open state and which are modified by protons. We identify a highly conserved C–C-terminal arginine–glutamate (R-E) ion pair that forms an intermolecular salt bridge and responds to changes in proton concentration. Our results support the intermolecular model for pH gating of inward rectifier K channels. PMID:16446432

  4. Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    PubMed Central

    Sánchez-Ponce, Diana; DeFelipe, Javier; Garrido, Juan José; Muñoz, Alberto

    2012-01-01

    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation. PMID:23119056

  5. Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel

    PubMed Central

    Carattino, Marcelo D.

    2013-01-01

    Purpose of review The epithelial sodium channel/degenerin family encompasses a group of cation-selective ion channels that are activated or modulated by a variety of extracellular stimuli. This review describes findings that provide new insights into the molecular mechanisms that control the function of these channels. Recent findings Epithelial sodium channels facilitate Na+ reabsorption in the distal nephron and hence have a role in fluid volume homeostasis and arterial blood pressure regulation. Acid-sensing ion channels are broadly distributed in the nervous system where they contribute to the sensory processes. The atomic structure of acid-sensing ion channel 1 illustrates the complex trimeric architecture of these proteins. Each subunit has two transmembrane spanning helices, a highly organized ectodomain and intracellular N-terminus and C-terminus. Recent findings have begun to elucidate the structural elements that allow these channels to sense and respond to extracellular factors. This review emphasizes the roles of the extracellular domain in sensing changes in the extracellular milieu and of the residues in the extracellular–transmembrane domains interface in coupling extracellular changes to the pore of the channel. Summary Epithelial sodium channels and acid-sensing ion channels have evolved to sense extracellular cues. Future research should be directed toward elucidating how changes triggered by extracellular factors translate into pore opening and closing events. PMID:21709553

  6. DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke

    PubMed Central

    Tu, Weihong; Xu, Xin; Peng, Lisheng; Zhong, Xiaofen; Zhang, Wenfeng; Soundarapandian, Mangala M.; Balel, Cherine; Wang, Manqi; Jia, Nali; Zhang, Wen; Lew, Frank; Chan, Sic Lung; Chen, Yanfang; Lu, Youming

    2010-01-01

    SUMMARY N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extra-synaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292–1304 (NR2BCT). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2BCT that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca2+ influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extra-synaptic sites and this interaction acts as a central mediator for stroke damage. PMID:20141836

  7. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview

    PubMed Central

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms. PMID:27064559

  8. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview.

    PubMed

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K(+)) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K(+) channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K(+) channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K(+) channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K(+) channels in monogenic forms. PMID:27064559

  9. AFM imaging reveals the tetrameric structure of the TRPM8 channel

    SciTech Connect

    Stewart, Andrew P.; Egressy, Kinga; Lim, Annabel; Edwardson, J. Michael

    2010-04-02

    Several members of the transient receptor potential (TRP) channel superfamily have been shown to assemble as tetramers. Here we have determined the subunit stoichiometry of the transient receptor potential M8 (TRPM8) channel using atomic force microscopy (AFM). TRPM8 channels were isolated from transfected cells, and complexes were formed between the channels and antibodies against a V5 epitope tag present on each subunit. The complexes were then subjected to AFM imaging. A frequency distribution of the molecular volumes of antibody decorated channels had a peak at 1305 nm{sup 3}, close to the expected size of a TRPM8 tetramer. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 93{sup o} and 172{sup o}, confirming that the channel assembles as a tetramer. We suggest that this assembly pattern is common to all members of the TRP channel superfamily.

  10. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs. PMID:24755349

  11. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  12. Recent Advances in Subunit Vaccine Carriers.

    PubMed

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, the