Sample records for channel sulfonylurea sensitivity

  1. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations*

    PubMed Central

    Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling

    2016-01-01

    ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238

  2. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.

    PubMed

    Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling

    2016-10-14

    ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  4. Optical control of insulin release using a photoswitchable sulfonylurea.

    PubMed

    Broichhagen, Johannes; Schönberger, Matthias; Cork, Simon C; Frank, James A; Marchetti, Piero; Bugliani, Marco; Shapiro, A M James; Trapp, Stefan; Rutter, Guy A; Hodson, David J; Trauner, Dirk

    2014-10-14

    Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM). Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A limitation of these compounds is the elevated risk of developing hypoglycemia and cardiovascular disease, both potentially fatal complications. Here, we describe the design and development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and hormone assays, we further show that JB253 bestows light sensitivity upon rodent and human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release and may offer a valuable research tool for the interrogation of KATP channel function in health and T2DM.

  5. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study.

    PubMed

    Proks, Peter; de Wet, Heidi; Ashcroft, Frances M

    2014-11-01

    Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K(+) (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas. © 2014 Proks et al.

  6. ATP-sensitive K/sup +/ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Weille, J.; Schmid-Antomarchi, H.; Fosset, M.

    1988-02-01

    The action of the hyperglycemia-inducing hormone galanin, a 29-amino acid peptide names from its N-terminal glycine and C-terminal amidated alanine, was studied in rat insulinoma (RINm5F) cells using electrophysiological and /sup 86/Rb/sup +/ flux techniques. Galanin hyperpolarizes and reduces spontaneous electrical activity by activating a population of APT-sensitive K/sup +/ channels with a single-channel conductance of 30 pS (at -60 mV). Galanin-induced hyperpolarization and reduction of spike activity are reversed by the hypoglycemia-inducing sulfonylurea glibenclamine. Glibenclamide blocks the galanin-activated ATP-sensitive K/sup +/ channel. /sup 86/Rb/sup +/ efflux from insulinoma cells is stimulated by galanin in a dose-dependent manner. The half-maximummore » value of activation is found at 1.6 nM. Galanin-induced /sup 86/Rb/sup +/ efflux is abolished by glibenclamide. The half-maximum value of inhibition is found at 0.3 nM, which is close to the half-maximum value of inhibition of the ATP-dependent K/sup +/ channel reported earlier. /sup 86/Rb/sup +/ efflux studies confirm the electrophysiological demonstration that galanin activates and ATP-dependent K/sup +/ channel.« less

  7. Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats

    PubMed Central

    Park, Jeong-Kwon; Kim, Sang-Pyo

    2008-01-01

    OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium (KATP) channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of KATP channels, insulin receptor β-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that KATP-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on KATP channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects. PMID:20157388

  8. Ameliorating effects of sulfonylurea drugs on insulin resistance in Otsuka long-evans Tokushima Fatty rats.

    PubMed

    Park, Jeong-Kwon; Kim, Sang-Pyo; Song, Dae-Kyu

    2008-02-01

    OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium (K(ATP)) channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of K(ATP) channels, insulin receptor beta-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that K(ATP)-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on K(ATP) channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.

  9. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels.

    PubMed

    Chachin, Motohiko; Yamada, Mitsuhiko; Fujita, Akikazu; Matsuoka, Tetsuro; Matsushita, Kenji; Kurachi, Yoshihisa

    2003-03-01

    A novel antidiabetic agent, nateglinide, is a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety. We examined with the patch-clamp method the effect of nateglinide on recombinant ATP-sensitive K(+) (K(ATP)) channels expressed in human embryonic kidney 293T cells transfected with a Kir6.2 subunit and either of a sulfonylurea receptor (SUR) 1, SUR2A, and SUR2B. In inside-out patches, nateglinide reversibly inhibited the spontaneous openings of all three types of SUR/Kir6.2 channels. Nateglinide inhibited SUR1/Kir6.2 channels with high and low affinities (K(i) = 75 nM and 114 microM) but SUR2A/Kir6.2 and SUR2B/Kir6.2 channels only with low affinity (K(i) = 105 and 111 microM, respectively). Nateglinide inhibited the K(ATP) current mediated by Kir6.2 lacking C-terminal 26 amino acids only with low affinity (K(i) = 290 microM) in the absence of SUR. Replacement of serine at position 1237 of SUR1 to tyrosine [SUR1(S1237Y)] specifically abolished the high-affinity inhibition of SUR1/Kir6.2 channels by nateglinide. MgADP or MgUDP (100 microM) augmented the inhibitory effect of nateglinide on SUR1/Kir6.2 but not SUR1(S1237Y)/Kir6.2 or SUR2A/Kir6.2 channels. This augmenting effect of MgADP was also observed with the SUR1/Kir6.2(K185Q) channel, which was not inhibited by MgADP, but not with the SUR1(K1384A)/Kir6.2 channel, which was not activated by MgADP. These results indicate that therapeutic concentrations of nateglinide (approximately 10 microM) may selectively inhibit pancreatic type SUR1/Kir6.2 channels through SUR1, especially when the channel is activated by intracellular MgADP, even though the agent does not contain either a sulfonylurea or benzamido moiety.

  10. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

    PubMed Central

    Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling

    2013-01-01

    ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968

  11. Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel.

    PubMed

    Szamosfalvi, Balázs; Cortes, Pedro; Alviani, Rebecca; Asano, Kenichiro; Riser, Bruce L; Zasuwa, Gary; Yee, Jerry

    2002-05-01

    Sulfonylurea agents exert their physiological effects in many cell types via binding to specific sulfonylurea receptors (SUR). SUR couple to inwardly-rectifying K+ channel (Kir6.x) to form tetradimeric ATP-sensitive K+ channels (KATP). The SUR subunits confer ATP-sensitivity on KATP and also provide the binding sites for sulfonylureas and other pharmacological agents. Our previous work demonstrated that the exposure of mesangial cells (MC) to sulfonylureas generated profound effects on MC glucose uptake and matrix metabolism and induced heightened cell contractility in association with Ca2+ transients. Because these responses likely resulted from the binding of sulfonylurea to a mesangial SUR2, we subsequently documented [3H]-glibenclamide binding to MC and the gene expression of several mesangial SUR2 transcripts. From these data, we inferred that MC expressed the components of a mesangial KATP and sought to establish their presence in primary MC. To obtain mesangial SUR2 cDNA sequences, rapid amplification of cDNA ends (RACE) was utilized. DNA sequences were established by the fluorescent dye termination method. Gene expression of mesangial SUR2 and Kir6.1/2 was examined by reverse transcription polymerase chain reaction (RT-PCR) and Northern analysis. SUR2 proteins were identified by immunoblotting of mesangial proteins from membrane-enriched fractions with polyclonal antiserum directed against SUR2. RACE cloning yielded two mesangial SUR2 cDNAs of 4.8 and 6.7 kbp whose open reading frames translated proteins of 964 and 1535 aa, respectively. Using probes specific to each cDNA, the presence of a unique, 5.5 kbp serum-regulated mesangial SUR2 splice variant was established. The sequence of this mesangial SUR2 (mcSUR2B) shares identity with the recently cloned rat SUR2B (rSUR2B), but, in comparison to rSUR2B, is truncated by 12 exons at the N-terminus where it contains a unique insert of 16 aa. Immunoblotting studies with anti-SUR2 antiserum demonstrated SUR2

  12. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  13. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  14. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase

    PubMed Central

    Shyng, S.-L.; Barbieri, A.; Gumusboga, A.; Cukras, C.; Pike, L.; Davis, J. N.; Stahl, P. D.; Nichols, C. G.

    2000-01-01

    ATP-sensitive potassium channels (KATP channels) regulate cell excitability in response to metabolic changes. KATP channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K+ channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), activate KATP channels and antagonize ATP inhibition of KATP channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP2 levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed KATP channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K1/2, the half maximal inhibitory concentration, ≈ 60 μM) than the sensitivities from control cells (K1/2 ≈ 10 μM). An inactive form of the PIP5K had little effect on the K1/2 of wild-type channels but increased the ATP-sensitivity of a mutant KATP channel that has an intrinsically lower ATP sensitivity (from K1/2 ≈ 450 μM to K1/2 ≈ 100 μM), suggesting a decrease in membrane PIP2 levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP2 and PI-3,4,5-P3 levels, is a significant determinant of the physiological nucleotide sensitivity of KATP channels. PMID:10639183

  15. Mechanism of Sulfonylurea Herbicide Resistance in the Broadleaf Weed, Kochia scoparia

    PubMed Central

    Saari, Leonard L.; Cotterman, Josephine C.; Primiani, Michael M.

    1990-01-01

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme. PMID:16667465

  16. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, L.L.; Cotterman, J.C.; Primiani, M.M.

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistance kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measuredmore » by the ratio of resistant I{sub 50} to susceptible I{sub 50}) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of ({sup 14}C)chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The K{sub m} values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mM, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.« less

  17. Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of beta-cell K(ATP) channels.

    PubMed

    Mikhailov, M V; Ashcroft, S J

    2000-02-04

    We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.

  18. Glucose-dependent and Glucose-sensitizing Insulinotropic Effect of Nateglinide: Comparison to Sulfonylureas and Repaglinide

    PubMed Central

    Wang, Shuya; Dunning, Beth E.

    2001-01-01

    Nateglinide, a novel D-phenylalanine derivative, stimulates insulin release via closure of KATP channels in pancreatic β-cell, a primary mechanism of action it shares with sulfonylureas (SUs) and repaglinide. This study investigated (1) the influence of ambient glucose levels on the insulinotropic effects of nateglinide, glyburide and repaglinide, and (2) the influence of the antidiabetic agents on glucose-stimulated insulin secretion (GSIS) in vitro from isolated rat islets. The EC50 of nateglinide to stimulate insulin secretion was 14 μM in the presence of 3mM glucose and was reduced by 6-fold in 8mM glucose and by 16-fold in 16mM glucose, indicating a glucose-dependent insulinotropic effect. The actions of glyburide and repaglinide failed to demonstrate such a glucose concentration-dependent sensitization. When tested at fixed and equipotent concentrations (~2x EC50 in the presence of 8mM glucose) nateglinide and repaglinide shifted the EC50s for GSIS to the left by 1.7mM suggesting an enhancement of islet glucose sensitivity, while glimepiride and glyburide caused, respectively, no change and a right shift of the EC50. These data demonstrate that despite a common basic mechanism of action, the insulinotropic effects of different agents can be influenced differentially by ambient glucose and can differentially influence the islet responsiveness to glucose. Further, the present findings suggest that nateglinide may exert a more physiologic effect on insulin secretion than comparator agents and thereby have less propensity to elicit hypoglycemia in vivo. PMID:12369728

  19. The role of KATP channels in cerebral ischemic stroke and diabetes

    PubMed Central

    Szeto, Vivian; Chen, Nai-hong; Sun, Hong-shuo; Feng, Zhong-ping

    2018-01-01

    ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke. PMID:29671418

  20. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    PubMed

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  1. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle

    PubMed Central

    Mele, Antonietta; Calzolaro, Sara; Cannone, Gianluigi; Cetrone, Michela; Conte, Diana; Tricarico, Domenico

    2014-01-01

    The ATP-sensitive K+ (KATP) channel is an emerging pathway in the skeletal muscle atrophy which is a comorbidity condition in diabetes. The “in vitro” effects of the sulfonylureas and glinides were evaluated on the protein content/muscle weight, fibers viability, mitochondrial succinic dehydrogenases (SDH) activity, and channel currents in oxidative soleus (SOL), glycolitic/oxidative flexor digitorum brevis (FDB), and glycolitic extensor digitorum longus (EDL) muscle fibers of mice using biochemical and cell-counting Kit-8 assay, image analysis, and patch-clamp techniques. The sulfonylureas were: tolbutamide, glibenclamide, and glimepiride; the glinides were: repaglinide and nateglinide. Food and Drug Administration-Adverse Effects Reporting System (FDA-AERS) database searching of atrophy-related signals associated with the use of these drugs in humans has been performed. The drugs after 24 h of incubation time reduced the protein content/muscle weight and fibers viability more effectively in FDB and SOL than in the EDL. The order of efficacy of the drugs in reducing the protein content in FDB was: repaglinide (EC50 = 5.21 × 10−6) ≥ glibenclamide(EC50 = 8.84 × 10−6) > glimepiride(EC50 = 2.93 × 10−5) > tolbutamide(EC50 = 1.07 × 10−4) > nateglinide(EC50 = 1.61 × 10−4) and it was: repaglinide(7.15 × 10−5) ≥ glibenclamide(EC50 = 9.10 × 10−5) > nateglinide(EC50 = 1.80 × 10−4) ≥ tolbutamide(EC50 = 2.19 × 10−4) > glimepiride(EC50=–) in SOL. The drug-induced atrophy can be explained by the KATP channel block and by the enhancement of the mitochondrial SDH activity. In an 8-month period, muscle atrophy was found in 0.27% of the glibenclamide reports in humans and in 0.022% of the other not sulfonylureas and glinides drugs. No reports of atrophy were found for the other sulfonylureas and glinides in the FDA-AERS. Glibenclamide induces atrophy in animal experiments and in human patients. Glimepiride shows less potential for inducing

  2. SulE, a Sulfonylurea Herbicide De-Esterification Esterase from Hansschlegelia zhihuaiae S113

    PubMed Central

    Hang, Bao-Jian; Hong, Qing; Xie, Xiang-Ting; Huang, Xing; Wang, Cheng-Hong; Li, Shun-Peng

    2012-01-01

    De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag+, Cd2+, Zn2+, methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments. PMID:22247165

  3. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil.

    PubMed

    Shorter, Katie; Farjo, Nilofer P; Picksley, Steven M; Randall, Valerie A

    2008-06-01

    Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.

  4. Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.M.; Wohllk, N.; Huang, E.

    1996-09-01

    Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet {beta}-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted tomore » disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfortylurea receptor are required for normal regulation of {beta}-cell ATP-dependent potassium channel activity and insulin secretion. 32 refs., 4 figs., 1 tab.« less

  5. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts.

    PubMed

    Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi

    2003-09-25

    Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.

  6. Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas.

    PubMed

    Englert, H C; Gerlach, U; Goegelein, H; Hartung, J; Heitsch, H; Mania, D; Scheidler, S

    2001-03-29

    Sulfonylthioureas exhibiting cardioselective blockade of ATP-sensitive potassium channels (K(ATP) channels) were discovered by stepwise structural variations of the antidiabetic sulfonylurea glibenclamide. As screening assays, reversal of rilmakalim-induced shortening of the cardiac action potential in guinea pig papillary muscles was used to probe for activity on cardiac K(ATP) channels as the target, and membrane depolarization in CHO cells stably transfected with hSUR1/hKir6.2 was used to probe for unwanted side effects on pancreatic K(ATP) channels. Changing glibenclamide's para-arrangement of substituents in the central aromatic ring to a meta-pattern associated with size reduction of the substituent at the terminal nitrogen atom of the sulfonylurea moiety was found to achieve cardioselectivity. An additional change from a sulfonylurea moiety to a sulfonylthiourea moiety along with an appropriate substituent in the ortho-position of the central aromatic system was a successful strategy to further improve potency on the cardiac K(ATP) channel. Among this series of sulfonylthioureas HMR1883, 1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea, and its sodium salt HMR1098 were selected for development and represent a completely new therapeutic approach toward the prevention of life-threatening arrhythmias and sudden cardiac death in patients with coronary heart disease.

  7. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806.

    PubMed

    Witzel, Katrin; Fischer, Paul; Bähring, Robert

    2012-12-01

    We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in

  9. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.

    PubMed

    Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling

    2013-07-19

    ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.

  10. Reduction of Sulfonylurea with the Initiation of Basal Insulin in Patients with Inadequately Controlled Type 2 Diabetes Mellitus Undergoing Long-Term Sulfonylurea-Based Treatment.

    PubMed

    Yang, Yeoree; Shin, Jeong Ah; Yang, Hae Kyung; Lee, Seung Hwan; Ko, Seung Hyun; Ahn, Yu Bae; Yoon, Kun Ho; Cho, Jae Hyoung

    2016-12-01

    There were a limited number of studies about β-cell function after insulin initiation in patients exposed to long durations of sulfonylurea treatment. In this study, we aimed to evaluate the recovery of β-cell function and the efficacy of concurrent sulfonylurea use after the start of long-acting insulin. In this randomized controlled study, patients with type 2 diabetes mellitus (T2DM), receiving sulfonylurea for at least 2 years with glycosylated hemoglobin (HbA1c) >7%, were randomly assigned to two groups: sulfonylurea maintenance (SM) and sulfonylurea reduction (SR). Following a 75-g oral glucose tolerance test (OGTT), we administered long-acting basal insulin to the two groups. After a 6-month follow-up, we repeated the OGTT. Among 69 enrolled patients, 57 completed the study and were analyzed: 31 in the SM and 26 in the SR group. At baseline, there was no significant difference except for the longer duration of diabetes and lower triglycerides in the SR group. After 6 months, the HbA1c was similarly reduced in both groups, but there was little difference in the insulin dose. In addition, insulin secretion during OGTT was significantly increased by 20% to 30% in both groups. A significant weight gain was observed in the SM group only. The insulinogenic index was more significantly improved in the SR group. Long-acting basal insulin replacement could improve the glycemic status and restore β-cell function in the T2DM patients undergoing sulfonylurea-based treatment, irrespective of the sulfonylurea dose reduction. The dose reduction of the concurrent sulfonylurea might be beneficial with regard to weight grain.

  11. Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties.

    PubMed

    Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana

    2006-01-24

    ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.

  12. Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk.

    PubMed

    Vedovato, Natascia; Cliff, Edward; Proks, Peter; Poovazhagi, Varadarajan; Flanagan, Sarah E; Ellard, Sian; Hattersley, Andrew T; Ashcroft, Frances M

    2016-07-01

    The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.

  13. Sulfonylureas and risk of falls and fractures: a systematic review.

    PubMed

    Lapane, Kate L; Yang, Shibing; Brown, Monique J; Jawahar, Rachel; Pagliasotti, Caleb; Rajpathak, Swapnil

    2013-07-01

    Sulfonylureas have been linked to increased risk of hypoglycemia. Hypoglycemia may lead to falls, and falls may lead to fracture. However, studies quantifying the association between sulfonylureas and fractures are sparse and yield inconsistent results. The purpose of this article was to review the literature regarding sulfonylurea use and falls or fall-related fractures among older adults with type 2 diabetes mellitus and to delineate areas for future research. We searched MEDLINE (1966-March 2012) and CINAHL (1937-March 2012) for studies of patients with type 2 diabetes mellitus living in the community or nursing homes. The search algorithms combined three domains: (1) diabetic patients, (2) sulfonylurea medications, and (3) fractures or falls. We included only publications in English that pertained to human subjects. We found 9 randomized trials and 12 non-experimental studies that met the inclusion criteria. The guidelines provided by the Cochrane handbook or Agency for Healthcare Research and Quality (AHRQ) Methods Guide are too general to distinguish the quality of included non-experimental studies, so we developed several specific domains based on those general guidelines. These domains included study design, study population, follow-up time, comparison group, exposure definition, outcome definition, induction period, confounding adjustment, and attrition or missing data. The data were not amenable to a meta-analysis. No clinical trials included fracture as a primary endpoint. Most clinical trials excluded older adults. Most studies were not designed to evaluate the risk of sulfonylureas on fractures or falls. Studies did not show an increased risk of falls/fractures with sulfonylurea. The data available from existing studies suffer from methodological limitations including insufficient events, lack of primary endpoints, exclusion of older adults, and lack of clarity or inappropriate comparison groups. Future studies are needed to appropriately estimate the

  14. Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons.

    PubMed

    Carmody, David; Bell, Charles D; Hwang, Jessica L; Dickens, Jazzmyne T; Sima, Daniela I; Felipe, Dania L; Zimmer, Carrie A; Davis, Ajuah O; Kotlyarevska, Kateryna; Naylor, Rochelle N; Philipson, Louis H; Greeley, Siri Atma W

    2014-12-01

    Diabetes in neonates nearly always has a monogenic etiology. Earlier sulfonylurea therapy can improve glycemic control and potential neurodevelopmental outcomes in children with KCNJ11 or ABCC8 mutations, the most common gene causes. Assess the risks and benefits of initiating sulfonylurea therapy before genetic testing results become available. Observational retrospective study of subjects with neonatal diabetes within the University of Chicago Monogenic Diabetes Registry. Response to sulfonylurea (determined by whether insulin could be discontinued) and treatment side effects in those treated empirically. A total of 154 subjects were diagnosed with diabetes before 6 months of age. A genetic diagnosis had been determined in 118 (77%), with 73 (47%) having a mutation in KCNJ11 or ABCC8. The median time from clinical diagnosis to genetic diagnosis was 10.4 weeks (range, 1.6 to 58.2 wk). In nine probands, an empiric sulfonylurea trial was initiated within 28 days of diabetes diagnosis. A genetic cause was subsequently found in eight cases, and insulin was discontinued within 14 days of sulfonylurea initiation in all of these cases. Sulfonylurea therapy appears to be safe and often successful in neonatal diabetes patients before genetic testing results are available; however, larger numbers of cases must be studied. Given the potential beneficial effect on neurodevelopmental outcome, glycemic control, and the current barriers to expeditious acquisition of genetic testing, an empiric inpatient trial of sulfonylurea can be considered. However, obtaining a genetic diagnosis remains imperative to inform long-term management and prognosis.

  15. Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors.

    PubMed

    Hill, James R; Coll, Rebecca C; Sue, Nancy; Reid, Janet C; Dou, Jennifer; Holley, Caroline L; Pelingon, Ruby; Dickinson, Joshua B; Biden, Trevor J; Schroder, Kate; Cooper, Matthew A; Robertson, Avril A B

    2017-09-07

    Insulin-secretory sulfonylureas are widely used, cost-effective treatments for type 2 diabetes (T2D). However, pancreatic β-cells are continually depleted as T2D progresses, thereby rendering the sulfonylurea drug class ineffective in controlling glycaemia. Dysregulation of the innate immune system via activation of the NLRP3 inflammasome, and the consequent production of interleukin-1β, has been linked to pancreatic β-cell death and multiple inflammatory complications of T2D disease. One proposed strategy for treating T2D is the use of sulfonylurea insulin secretagogues that are also NLRP3 inhibitors. We report the synthesis and biological evaluation of nine sulfonylureas that inhibit NLRP3 activation in murine bone-marrow- derived macrophages in a potent, dose-dependent manner. Six of these compounds inhibited NLRP3 at nanomolar concentrations and can also stimulate insulin secretion from a murine pancreatic cell line (MIN6). These novel compounds possess unprecedented dual modes of action, paving the way for a new generation of sulfonylureas that may be useful as therapeutic candidates and/or tool compounds in T2D and its associated inflammatory complications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sulfonylurea Treatment Before Genetic Testing in Neonatal Diabetes: Pros and Cons

    PubMed Central

    Carmody, David; Bell, Charles D.; Hwang, Jessica L.; Dickens, Jazzmyne T.; Sima, Daniela I.; Felipe, Dania L.; Zimmer, Carrie A.; Davis, Ajuah O.; Kotlyarevska, Kateryna; Naylor, Rochelle N.; Philipson, Louis H.

    2014-01-01

    Context: Diabetes in neonates nearly always has a monogenic etiology. Earlier sulfonylurea therapy can improve glycemic control and potential neurodevelopmental outcomes in children with KCNJ11 or ABCC8 mutations, the most common gene causes. Objective: Assess the risks and benefits of initiating sulfonylurea therapy before genetic testing results become available. Design, Setting, and Patients: Observational retrospective study of subjects with neonatal diabetes within the University of Chicago Monogenic Diabetes Registry. Main Outcome Measures: Response to sulfonylurea (determined by whether insulin could be discontinued) and treatment side effects in those treated empirically. Results: A total of 154 subjects were diagnosed with diabetes before 6 months of age. A genetic diagnosis had been determined in 118 (77%), with 73 (47%) having a mutation in KCNJ11 or ABCC8. The median time from clinical diagnosis to genetic diagnosis was 10.4 weeks (range, 1.6 to 58.2 wk). In nine probands, an empiric sulfonylurea trial was initiated within 28 days of diabetes diagnosis. A genetic cause was subsequently found in eight cases, and insulin was discontinued within 14 days of sulfonylurea initiation in all of these cases. Conclusions: Sulfonylurea therapy appears to be safe and often successful in neonatal diabetes patients before genetic testing results are available; however, larger numbers of cases must be studied. Given the potential beneficial effect on neurodevelopmental outcome, glycemic control, and the current barriers to expeditious acquisition of genetic testing, an empiric inpatient trial of sulfonylurea can be considered. However, obtaining a genetic diagnosis remains imperative to inform long-term management and prognosis. PMID:25238204

  17. Effectiveness of Nateglinide on In Vitro Insulin Secretion from Rat Pancreatic Islets Desensitized to Sulfonylureas

    PubMed Central

    Wang, Shuya; Dunning, Beth E.

    2001-01-01

    Chronic exposure of pancreatic islets to sulfonylureas (SUs) is known to impair the ability of islets to respond to subsequent acute stimulation by SUs or glucose. Nateglinide (NAT) is a novel insulinotropic agent with a primarily site of action at β-cell KATP channels, which is common to the structurally diverse drugs like repaglinide (REP) and the SUs. Earlier studies on the kinetics, glucosedependence and sensitivity to metabolic inhibitors of the interaction between NAT and KATP channels suggested a distinct signaling pathways with NAT compared to REP, glyburide (GLY) or glimepiride (GLI). To obtain further evidence for this concept, the present study compared the insulin secretion in vitro from rat islets stimulated acutely by NAT, GLY, GLI or REP at equipotent concentrations during 1-hr static incubation following overnight treatment with GLY or tolbutamide (TOL). The islets fully retained the responsiveness to NAT stimulation after prolonged pretreatment with both SUs, while their acute response to REP, GLY, and GLI was markedly attenuated, confirming the desensitization of islets. The insulinotropic efficacy of NAT in islets desensitized to SUs may result from a distinct receptor/effector mechanism, which contributes to the unique pharmacological profile of NAT. PMID:12369729

  18. Sulfonylureas and Glinides as New PPARγ Agonists:. Virtual Screening and Biological Assays

    NASA Astrophysics Data System (ADS)

    Scarsi, Marco; Podvinec, Michael; Roth, Adrian; Hug, Hubert; Kersten, Sander; Albrecht, Hugo; Schwede, Torsten; Meyer, Urs A.; Rücker, Christoph

    2007-12-01

    This work combines the predictive power of computational drug discovery with experimental validation by means of biological assays. In this way, a new mode of action for type 2 diabetes drugs has been unvealed. Most drugs currently employed in the treatment of type 2 diabetes either target the sulfonylurea receptor stimulating insulin release (sulfonylureas, glinides), or target PPARγ improving insulin resistance (thiazolidinediones). Our work shows that sulfonylureas and glinides bind to PPARγ and exhibit PPARγ agonistic activity. This result was predicted in silico by virtual screening and confirmed in vitro by three biological assays. This dual mode of action of sulfonylureas and glinides may open new perspectives for the molecular pharmacology of antidiabetic drugs, since it provides evidence that drugs can be designed which target both the sulfonylurea receptor and PPARγ. Targeting both receptors could in principle allow to increase pancreatic insulin secretion, as well as to improve insulin resistance.

  19. Comparison of vildagliptin as an add-on therapy and sulfonylurea dose-increasing therapy in patients with inadequately controlled type 2 diabetes using metformin and sulfonylurea (VISUAL study): A randomized trial.

    PubMed

    Hong, A Ram; Lee, Jeun; Ku, Eu Jeong; Hwangbo, Yul; Kim, Kyoung Min; Moon, Jae Hoon; Choi, Sung Hee; Jang, Hak Chul; Lim, Soo

    2015-07-01

    The aim of present study is to compare the efficacy and safety of adding vildagliptin with sulfonylurea dose-increasing as an active comparator in patients who had inadequately controlled type 2 diabetes mellitus (T2DM) using metformin plus sulfonylurea in real clinical practice. Patients using metformin plus sulfonylurea were assigned to either vildagliptin add-on (50 mg twice a day, n=172) or sulfonylurea dose-increasing by 50% (n=172) treatment groups. The primary endpoint was a change in HbA(1c) after 24 weeks. The secondary endpoints were patients achieving HbA(1c)≤7.0% (53 mmol/mol) and changes in the fasting plasma glucose (FPG), 2-h postprandial glucose (2pp), lipid profiles, and urine albumin-to-creatinine ratio. Body weight and hypoglycemia were also investigated. The mean HbA(1c) at baseline was 8.6% (70 mmol/mol) in both groups. At week 24, the adjusted mean HbA(1c) levels decreased by -1.19% (-13.09 mmol/mol) with vildagliptin add-on and -0.46% (-5.06 mmol/mol) with sulfonylurea (P<0.001). Significantly more vildagliptin add-on patients achieved HbA(1c)≤7.0% (53 mmol/mol) than did sulfonylurea patients (40.1% vs. 7.9%; P<0.001). Greater reductions in FPG and 2pp were observed with vildagliptin add-on than with sulfonylurea (P<0.001). The vildagliptin add-on group exhibited no clinically relevant weight gain and had a lower incidence of hypoglycemia compared with the sulfonylurea group. Vildagliptin add-on therapy might be a suitable option for patients with T2DM that is controlled inadequately by metformin and sulfonylurea, based on its greater glucose control and better safety profile (ClinicalTrial.gov: NCT01099137). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Remodeling of atrial ATP-sensitive K+ channels in a model of salt-induced elevated blood pressure

    PubMed Central

    Lader, Joshua M.; Vasquez, Carolina; Bao, Li; Maass, Karen; Qu, Jiaxiang; Kefalogianni, Eirini; Fishman, Glenn I.; Coetzee, William A.

    2011-01-01

    Hypertension is associated with the development of atrial fibrillation; however, the electrophysiological consequences of this condition remain poorly understood. ATP-sensitive K+ (KATP) channels, which contribute to ventricular arrhythmias, are also expressed in the atria. We hypothesized that salt-induced elevated blood pressure (BP) leads to atrial KATP channel activation and increased arrhythmia inducibility. Elevated BP was induced in mice with a high-salt diet (HS) for 4 wk. High-resolution optical mapping was used to measure atrial arrhythmia inducibility, effective refractory period (ERP), and action potential duration at 90% repolarization (APD90). Excised patch clamping was performed to quantify KATP channel properties and density. KATP channel protein expression was also evaluated. Atrial arrhythmia inducibility was 22% higher in HS hearts compared with control hearts. ERP and APD90 were significantly shorter in the right atrial appendage and left atrial appendage of HS hearts compared with control hearts. Perfusion with 1 μM glibenclamide or 300 μM tolbutamide significantly decreased arrhythmia inducibility and prolonged APD90 in HS hearts compared with untreated HS hearts. KATP channel density was 156% higher in myocytes isolated from HS animals compared with control animals. Sulfonylurea receptor 1 protein expression was increased in the left atrial appendage and right atrial appendage of HS animals (415% and 372% of NS animals, respectively). In conclusion, KATP channel activation provides a mechanistic link between salt-induced elevated BP and increased atrial arrhythmia inducibility. The findings of this study have important implications for the treatment and prevention of atrial arrhythmias in the setting of hypertensive heart disease and may lead to new therapeutic approaches. PMID:21724863

  1. CARDIAC SULFONYLUREA RECEPTOR SHORT FORM-BASED CHANNELS CONFER A GLIBENCLAMIDE-INSENSITIVE KATP ACTIVITY

    PubMed Central

    Pu, Jie-Lin,; Ye, Bin; Kroboth, Stacie L.; McNally, Elizabeth M.; Makielski, Jonathan C.; Shi, Nian-Qing

    2008-01-01

    The cardiac sarcolemmal ATP-sensitive potassium channel (KATP) consists of a Kir6.2 pore and a SUR2 regulatory subunit, which is an ATP-binding cassette (ABC) transporter. KATP channels have been proposed to play protective roles during ischemic preconditioning. A SUR2 mutant mouse was previously generated by disrupting the first nucleotide-binding domain (NBD1), where a glibenclamide action site was located. In the mutant ventricular myocytes, a non-conventional glibenclamide-insensitive (10 μM), ATP-sensitive current (IKATPn) was detected in 33% of single-channel recordings with an average amplitude of 12.3±5.4 pA per patch, an IC50 to ATP inhibition at 10 μM, and a mean burst duration at 20.6±1.8 ms. Newly designed SUR2-isoform or variant-specific antibodies identified novel SUR2 short forms in the sizes of 28 and 68 kDa in addition to a 150-kDa long form in the sarcolemmal membrane of wild-type (WT) heart. We hypothesized that channels constituted by these short forms that lack NBD1, confer IKATPn. The absence of the long form in the mutant corresponded to loss of the conventional glibenclamide-sensitive KATP currents (IKATP) in isolated cardiomyocytes and vascular smooth muscle cells but the SUR2 short forms remained intact. Nested exonic RT-PCR in the mutant indicated that the short forms lacked NBD1 but contained NBD2. The SUR2 short forms co-immunoprecipitated with Kir6.1 or Kir6.2 suggesting that the short forms may function as hemi-transporters reported in other eukaryotic ABC transporter subgroups. Our results indicate that different KATP compositions may co-exist in cardiac sarcolemmal membrane. PMID:18001767

  2. Toxicovigilance: new biochemical tool used in sulfonylurea herbicides toxicology studies.

    PubMed

    Belhadj-Tahar, Hafid; Adamczewski, Nicolas; Nassar, Bertrand; Coulais, Yvon

    2003-06-01

    In vitro toxic effects of sulfonylurea herbicides (thifensulfuron-methyl and metsulfuron-methyl) were evaluated according to a new protocol. Physiological conditions were reproduced in order to boost toxicovigilance. Sulfonylureas and their hydrolysis products were added to biological substrates such as urea, alanine, aspartic acid, alpha-ketoglutarate, oxaloacetate, pyruvate and then incubated with some specific enzymes. Addition of these sulfonylureas and their degradation products did not significantly change the enzymatic activity of the urease, aspartate-aminotransferase, glutamate dehydrogenase, malate dehydrogenase and lactate dehydrogenase. However, the acid hydrolysis products inhibited up to 95% of the activity of the alanine-aminotransferase at low concentrations (0.27 micromol L(-1)). Inhibition did not affect the mitochondrial aspartate-aminotransferase.

  3. Effect of sulfonylureas administered centrally on the blood glucose level in immobilization stress model.

    PubMed

    Sharma, Naveen; Sim, Yun-Beom; Park, Soo-Hyun; Lim, Su-Min; Kim, Sung-Su; Jung, Jun-Sub; Hong, Jae-Seung; Suh, Hong-Won

    2015-05-01

    Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 µg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.

  4. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].

    PubMed

    Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto

    2003-09-01

    ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout

  5. The TRPA1 channel and oral hypoglycemic agents: is there complicity in β-cell exhaustion?

    PubMed

    Diaz-Garcia, Carlos Manlio

    2013-01-01

    Diabetes mellitus type 2 (DM2) results from the combination of insulin unresponsiveness in target tissues and the failure of pancreatic β cells to secrete enough insulin. (1) It is a highly prevalent chronic disease that is aggravated with time, leading to major complications, such as cardiovascular disease and peripheral and ocular neuropathies. (2) Interestingly, therapies to improve glucose homeostasis in diabetic patients usually involve the use of glibenclamide, an oral hypoglycemic drug that blocks ATP-sensitive K(+) channels (KATP), (3)(,) (4) forcing β cells to release more insulin to overcome peripheral insulin resistance. However, sulfonylureas are ineffective for long-term treatments and ultimately result in the administration of insulin to control glucose levels. (5) The mechanisms underlying β-cell failure to respond effectively with glibenclamide after long-term treatments still needs clarification. A recent study demonstrating that this drug activates TRPA1, (6) a member of the Transient Receptor Potential (TRP) family of ion channels and a functional protein in insulin secreting cells, (7)(,) (8) has highlighted a possible role for TRPA1 as a potential mediator of sulfonylurea-induced toxicity.

  6. Vildagliptin vs sulfonylurea in Indian Muslim diabetes patients fasting during Ramadan.

    PubMed

    Shete, Abhijit; Shaikh, Aheson; Nayeem, K Javeed; Rodrigues, Lily; Ali, Mohamed Sheikamunadeen Sadiq; Shah, Parag; Khanna, Rajiv; Majid, Sarfaraj; Rasheed, Sabeer A; Shaikh, Shehla; Rahman, Tawfiqur

    2013-12-15

    To compare the use of vildagliptin and sulfonylurea with or without metformin in Indian Muslim patients with type 2 diabetes mellitus, fasting during Ramadan. This was a 4-wk, multicenter, non-interventional, open-label, observational study. Incidence of hypoglycemic events (HEs), adverse events, and changes in glycosylated hemoglobin A1c (HbA1c), fasting plasma glucose, postprandial plasma glucose and body weight were measured pre- and post-Ramadan. Totally, 97 patients were recruited and all completed the study (vildagliptin group, n = 55; sulfonylurea group, n = 42). HEs were reported in low frequencies in both the vildagliptin and the sulfonylurea groups [0 vs 2 (4.8%) patients, respectively]. Interestingly, HbA1c reduced by -0.43% (-4.71 mmol/mol) in the vildagliptin group [8.75% (72.10 mmol/mol) to 8.32% (67.38 mmol/mol), P = 0.009] while in the sulfonylurea group there was a small increase by 0.01% [0.08 mmol/mol; 8.64% (70.92 mmol/mol) to 8.65% (71.00 mmol/mol), P = 0.958]. Higher percentage of vildagliptin-treated patients achieved HbA1c < 7.0% (< 53 mmol/mol) compared with sulfonylurea (16.4% vs 4.8%). Mean decrease in the body weight was 1.2 kg and 0.03 kg, respectively (P < 0.001). Both treatment groups were well tolerated during Ramadan. Vildagliptin is an attractive treatment option for Indian patients with type 2 diabetes mellitus who are fasting during Ramadan.

  7. Vildagliptin vs sulfonylurea in Indian Muslim diabetes patients fasting during Ramadan

    PubMed Central

    Shete, Abhijit; Shaikh, Aheson; Nayeem, K Javeed; Rodrigues, Lily; Ali, Mohamed Sheikamunadeen Sadiq; Shah, Parag; Khanna, Rajiv; Majid, Sarfaraj; Rasheed, Sabeer A; Shaikh, Shehla; Rahman, Tawfiqur

    2013-01-01

    AIM: To compare the use of vildagliptin and sulfonylurea with or without metformin in Indian Muslim patients with type 2 diabetes mellitus, fasting during Ramadan. METHODS: This was a 4-wk, multicenter, non-interventional, open-label, observational study. Incidence of hypoglycemic events (HEs), adverse events, and changes in glycosylated hemoglobin A1c (HbA1c), fasting plasma glucose, postprandial plasma glucose and body weight were measured pre- and post-Ramadan. RESULTS: Totally, 97 patients were recruited and all completed the study (vildagliptin group, n = 55; sulfonylurea group, n = 42). HEs were reported in low frequencies in both the vildagliptin and the sulfonylurea groups [0 vs 2 (4.8%) patients, respectively]. Interestingly, HbA1c reduced by -0.43% (-4.71 mmol/mol) in the vildagliptin group [8.75% (72.10 mmol/mol) to 8.32% (67.38 mmol/mol), P = 0.009] while in the sulfonylurea group there was a small increase by 0.01% [0.08 mmol/mol; 8.64% (70.92 mmol/mol) to 8.65% (71.00 mmol/mol), P = 0.958]. Higher percentage of vildagliptin-treated patients achieved HbA1c < 7.0% (< 53 mmol/mol) compared with sulfonylurea (16.4% vs 4.8%). Mean decrease in the body weight was 1.2 kg and 0.03 kg, respectively (P < 0.001). Both treatment groups were well tolerated during Ramadan. CONCLUSION: Vildagliptin is an attractive treatment option for Indian patients with type 2 diabetes mellitus who are fasting during Ramadan. PMID:24379927

  8. Expression of sulfonylurea receptors in rat taste buds.

    PubMed

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Models for H₃ receptor antagonist activity of sulfonylurea derivatives.

    PubMed

    Khatri, Naveen; Madan, A K

    2014-03-01

    The histamine H₃ receptor has been perceived as an auspicious target for the treatment of various central and peripheral nervous system diseases. In present study, a wide variety of 60 2D and 3D molecular descriptors (MDs) were successfully utilized for the development of models for the prediction of antagonist activity of sulfonylurea derivatives for histamine H₃ receptors. Models were developed through decision tree (DT), random forest (RF) and moving average analysis (MAA). Dragon software version 6.0.28 was employed for calculation of values of diverse MDs of each analogue involved in the data set. The DT classified and correctly predicted the input data with an impressive non-error rate of 94% in the training set and 82.5% during cross validation. RF correctly classified the analogues into active and inactive with a non-error rate of 79.3%. The MAA based models predicted the antagonist histamine H₃ receptor activity with non-error rate up to 90%. Active ranges of the proposed MAA based models not only exhibited high potency but also showed improved safety as indicated by relatively high values of selectivity index. The statistical significance of the models was assessed through sensitivity, specificity, non-error rate, Matthew's correlation coefficient and intercorrelation analysis. Proposed models offer vast potential for providing lead structures for development of potent but safe H₃ receptor antagonist sulfonylurea derivatives. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. ATP-sensitive potassium currents from channels formed by Kir6 and a modified cardiac mitochondrial SUR2 variant

    PubMed Central

    Aggarwal, Nitin T; Shi, Nian-Qing; Makielski, Jonathan C

    2013-01-01

    Cardiac ATP-sensitive potassium channels (KATP) are found in both the sarcoplasmic reticulum (sarcKATP) and the inner membrane of mitochondria (mitoKATP). SarcKATP are composed of a pore containing subunit Kir6.2 and a regulatory sulfonylurea receptor subunit (SUR2), but the composition of mitoKATP remains unclear. An unusual intra-exonic splice variant of SUR2 (SUR2A-55) was previously identified in mitochondria of mammalian heart and brain, and by analogy with sarcKATP we proposed SUR2A-55 as a candidate regulatory subunit of mitoKATP. Although SUR2A-55 lacks the first nucleotide binding domain (NBD) and 2 transmembrane domains (TMD), it has a hybrid TMD and retains the second NBD. It resembles a hemi-ABC transporter suggesting it could multimerize to function as a regulatory subunit. A putative mitochondrial targeting signal in the N-terminal domain of SUR2A-55 was removed by truncation and when co-expressed with Kir6.1 and Kir6.2 it targeted to the plasma membrane and yielded KATP currents. Single channel conductance, mean open time, and burst open time of SUR2A-55 based KATP was similar to the full-length SUR2A based KATP. However, the SUR2A-55 KATP were 70-fold less sensitive to block by ATP, and twice as resistant to intracellular Ca2+ inhibition compared with the SUR2A KATP, and were markedly insensitive to KATP drugs, pinacidil, diazoxide, and glybenclamide. These results suggest that the SUR2A-55 based channels would tend to be open under physiological conditions and in ischemia, and could account for cardiac and mitochondrial phenotypes protective for ischemia. PMID:24037327

  11. Inhibitors of ATP-sensitive potassium channels in guinea pig isolated ischemic hearts.

    PubMed

    Weyermann, A; Vollert, H; Busch, A E; Bleich, M; Gögelein, H

    2004-04-01

    During heart ischemia, ATP-sensitive potassium channels in the sarcolemmal membrane (sarcK(ATP)) open and cause shortening of the action potential duration. This creates heterogeneity of repolarization, being responsible for the development of re-entry arrhythmias and sudden cardiac death. Therefore, the aim is to develop selective blockers of the cardiac sarcK(ATP) channel. In the present study we established an in vitro model and classified 5 K(ATP) channel inhibitors with respect to their potency and selectivity between cardiomyocytes and the coronary vasculature and compared the results with inhibition of Kir6.2/SUR2A channels expressed in HEK293 cells, recorded with the Rb(+)-efflux methods. We used Langendorff-perfused guinea pig hearts, where low-flow ischemia plus hypoxia was performed by reducing the coronary flow (CF) to 1.2 ml/min and by gassing the perfusion solution with N(2) instead of O(2). Throughout the experiment, the monophasic action potential duration at 90% repolarization (MAPD(90)) was recorded. In separate experiments, high-flow hypoxia was produced by oxygen reduction in the perfusate from 95% to 20%, which caused an increase in the coronary flow. Under normoxic conditions, the substances glibenclamide, repaglinide, meglitinide, HMR 1402 and HMR 1098 (1 microM each) reduced the CF by 34%, 38%, 19%, 12% and 5%, respectively. The hypoxia-induced increase in CF was inhibited by the compounds half-maximally at 25 nM, approximately 200 nM, 600 nM, approximately 9 microM and >100 microM, respectively. In control experiments after 5 min low-flow ischemia plus hypoxia, the MAPD(90) shortened from 121+/-2 to 99+/-2 ms ( n=29). This shortening was half-maximally inhibited by the substances at concentrations of 95 nM, 74 nM, 400 nM, 110 nM and 550 nM, respectively. In HEK293 cells the Rb(+)-efflux through KIR6.2/SUR2A channels was inhibited by the compounds with IC(50) values of 21 nM, 67 nM, 205 nM, 60 nM and 181 nM, respectively. In summary, the

  12. Sulfonylureas and risk of falls and fractures among nursing home residents with type 2 diabetes mellitus.

    PubMed

    Lapane, Kate L; Jesdale, Bill M; Dubé, Catherine E; Pimentel, Camilla B; Rajpathak, Swapnil N

    2015-08-01

    Although sulfonylureas increase the risk of hypoglycemia which may lead to fall-associated fractures, studies quantifying the association between sulfonylureas and falls and/or fractures are sparse and existing studies have yielded inconsistent results. Our objective is to evaluate the extent to which sulfonylurea use was associated with fractures and falls among nursing home residents with type 2 diabetes mellitus. We performed a propensity-matched retrospective new user cohort study of 12,327 Medicare Parts A/B/D eligible long-stay NH residents. Medicare Part D data provided information on sulfonylurea and biguanide use initiated as monotherapy (nsulfonylurea=5807 and nbiguanide=6151) after NH entry. Medicare hospitalizations were used to identify hypoglycemic events (ICD-9-CM codes 250.8, 251.1, 251.2) and fall-associated fractures (ICD-9-CM codes 800, 804, 812-817, 820, 823, 824). Minimum Data Set 2.0 (2008-2010) provided information on falls and potential confounders. Cox models conducted on propensity-matched samples provided adjusted hazard ratio (aHR) estimates and 95% confidence intervals (CI). Falls were common (37.4 per 100 person-years). Fractures were not associated with initiation of sulfonylureas. Sulfonylurea initiation was associated with an excess risk of falls among residents with moderate activities of daily living limitations (aHR: 1.13; 95% CI: 1.00-1.26), but not among those with minimal limitations or dependence in activities of daily living. Nursing home residents with moderate limitations in activities of daily living are at increased risk of falls upon initiation of sulfonylureas. Initiating sulfonylurea use in NH residents must be done with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Mass spectrometry of the photolysis of sulfonylurea herbicides in Prairie waters.

    PubMed

    Headley, John V; Du, Jing-Long; Peru, Kerry M; McMartin, Dena W

    2010-01-01

    This review of mass spectrometry of sulfonylurea herbicides includes a focus on studies relevant to Canadian Prairie waters. Emphasis is given to data gaps in the literature for the rates of photolysis of selected sulfonylurea herbicides in different water matrices. Specifically, results are evaluated for positive ion electrospray tandem mass spectrometry with liquid chromatography separation for the study of the photolysis of chlorsulfuron, tribenuron-methyl, thifensulfuron-methyl, metsulfuron-methyl, and ethametsulfuron-methyl. LC-MS/MS is shown to be the method of choice for the quantification of sulfonylurea herbicides with instrumental detection limits ranging from 1.3 to 7.2 pg (on-column). Tandem mass spectrometry coupled with the use of authentic standards likewise has proven to be well suited for the identification of transformation products. To date, however, the power of time-of-flight MS and ultrahigh resolution MS has not been exploited fully for the identification of unknown photolysis products. Dissipation of the herbicides under natural sunlight fit pseudo-first-order kinetics with half-life values ranging from 4.4 to 99 days. For simulated sunlight, radiation wavelengths shorter than 400 nm are required to induce significant photolytic reactions. The correlation between field dissipation studies and laboratory photolysis experiments suggests that photolysis is a major pathway for the dissipation of some sulfonylurea herbicides in natural Prairie waters. 2009 Wiley Periodicals, Inc.

  14. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  15. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  16. Predictors of insulin initiation in metformin and sulfonylurea users in primary care practices: the role of kidney function.

    PubMed

    Kostev, Karel; Dippel, Franz-Werner; Rathmann, Wolfgang

    2014-09-01

    The aims were to investigate predictors of insulin initiation in new users of metformin or sulfonylureas in primary care practices, in particular, its association with decreased renal function. Data from 9103 new metformin and 1120 sulfonylurea users with normal baseline glomerular filtration rate (eGFR) >90 ml/min/1.73 m(2) from 1072 practices were retrospectively analyzed (Disease Analyzer Germany: 01/2003-06/2012). Cox regression models and propensity score matching was used to adjust for confounders (age, sex, practice characteristics, comorbidity). Insulin treatment was started in 394 (4.3%) metformin and in 162 (14.5%) sulfonylurea users within 6 years (P < .001). Kaplan-Meier curves (propensity score matched patients) showed that the metformin group was at a lower risk of insulin initiation compared to sulfonylurea users throughout the study period. A substantial eGFR decline (category: 15-<30 ml/min/1.73 m(2)) was significantly associated with a higher likelihood to have insulin initiated (adjusted hazard ratio [HR]: 2.39; 95% CI: 1.09-5.23) in metformin but not in sulfonylurea (HR: 0.45; 95% CI: 0.16-1.30) users. New users of sulfonylurea monotherapy in primary care practices in Germany were about 3-fold more likely to start insulin therapy than those with metformin. Kidney function decline was associated with earlier insulin initiation in metformin but not in sulfonylurea users. © 2014 Diabetes Technology Society.

  17. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.

    PubMed

    Szewczyk, A; Wójcik, G; Lobanov, N A; Nalecz, M J

    1999-08-19

    The purpose of this study was to investigate the effects exerted by thiol-modifying reagents on themitochondrial sulfonylurea receptor. The thiol-oxidizing agents (timerosal and 5, 5'-dithio-bis(2-nitrobenzoic acid)) were found to produce a large inhibition (70% to 80%) of specific binding of [(3)H]glibenclamide to the beef heart mitochondrial membrane. Similar effects were observed with membrane permeable (N-ethylmaleimide) and non-permeable (mersalyl) thiol modifying agents. Glibenclamide binding was also decreased by oxidizing agents (hydrogen peroxide) but not by reducing agents (reduced gluthatione, dithiothreitol and the 2,3-dihydroxy-1,4-dithiolbutane). The results suggest that intact thiol groups, facing the mitochondrial matrix, are essential for glibenclamide binding to the mitochondrial sulfonylurea receptor. Copyright 1999 Academic Press.

  18. Impact of hypoglycemic events and HbA1c level on sulfonylurea discontinuation and down-titration.

    PubMed

    Laires, Pedro A; Tang, Jackson; Fan, Chun Po Steve; Li, Zhiyi; Qiu, Ying; Iglay, Kristy

    2017-04-01

    A retrospective cohort study using GE Centricity electronic medical records assessed the association between post-index hypoglycemia and HbA1c with discontinuation and down-titration of sulfonylureas among patients with Type 2 diabetes mellitus. Adult patients with an index prescription for a sulfonylurea and ≥12 months' continuous records pre- and post-index were eligible. Sulfonylurea discontinuation and down-titration was assessed 1-year post-index. Discontinuation occurred if the date of a prescription was >90 days from the preceding prescription plus days of supply. Down-titration occurred when a subsequent prescription was lower than the index dose. Cox regression assessed the association between post-index hypoglycemia and HbA1c with time to sulfonylurea discontinuation and down-titration, as well as other factors. 28,371 participants were included in the study; 13,459 (47.4%) were discontinuers, 717 (2.5%) were down-titraters, and 14,195 (50.0%) were continuers. 0.6% of continuers experienced hypoglycemia 1-year post-index, compared with 3.1% of down-titraters and 0.8% of discontinuers (p < 0.0001). Patients with post-index hypoglycemia had a significantly higher rate of discontinuation (hazard ratio [HR] = 1.82, 95% CI: 1.47-2.23) and down-titration (HR = 4.25, 95% CI: 1.92-8.03). Patients with higher post-index HbA1c and use of 2 nd generation sulfonylureas had an increased rate of discontinuation (HR = 1.05, 95% CI: 1.04-1.06; HR = 1.19, 95% CI: 1.14-1.24, respectively). Approximately half of participants who initiated sulfonylureas discontinued or down-titrated therapy within one year. Both post-index hypoglycemia and higher HbA1c were significant risk factors for sulfonylurea treatment change.

  19. Risk factors associated with treatment discontinuation and down-titration in type 2 diabetes patients treated with sulfonylureas.

    PubMed

    Iglay, Kristy; Qiu, Ying; Steve Fan, Chun-Po; Li, Zhiyi; Tang, Jackson; Laires, Pedro

    2016-09-01

    Sulfonylurea therapy among patients with type 2 diabetes mellitus (T2DM) can be disrupted due to adverse events, including hypoglycemia. A retrospective study using the MarketScan claims database quantified the frequency of sulfonylurea discontinuation or down-titration and identified associated risk factors. Adult patients with an index sulfonylurea prescription between 2008 and 2012 and 1 year continuous enrollment pre- and post-index were included. Therapy changes assessed over 1 year post-index included discontinuation and down-titration. Discontinuation occurred if the date of a fill was >90 days from the end date of the preceding fill. Down-titration occurred when a fill had a lower equivalent dose than the fill on the index date. Kaplan-Meier methods estimated the probability of either discontinuation or down-titration over 12 months, and Cox regression models identified associated risk factors. A total of 104,082 sulfonylurea users were included in the study and the probability of either discontinuation or down-titration at 3, 6 and 12 months was 23.2%, 38.9%, and 52.3%, respectively. Major risk factors associated with therapy changes included post-index hypoglycemia (discontinuation hazard ratio [HR] = 1.78 [1.68, 1.89]; down-titration HR =2.79 [2.40, 3.23]) and concomitant use of insulin (discontinuation HR =1.48 [1.40, 1.57]; down-titration HR =1.82 [1.56, 2.11]). Other risk factors included younger age, female gender, use of second generation sulfonylureas, prior cardiovascular comorbidity and liver disease. The study was not able to assess unreported, potentially mild cases of hypoglycemia, nor was it able to evaluate the association between changes in therapy and HbA1c levels or body weight. More than half of T2DM patients who initiated sulfonylurea therapy discontinued or down-titrated within 1 year. Insulin use and hypoglycemia were associated with sulfonylurea therapy change.

  20. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  1. A KINETIC STUDY OF THE METHANOLYSIS OF THE SULFONYLUREAS BENSULFURON METHYL AND SULFOMETURON METHYL USING CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    The instability of sulfonylureas in solution in methanol has led us to a kinetic study of methanolysis of two sulfonylureas using capillary electrophoresis. In a preliminary experiment solutions of the seven compounds, bensulfuron methyl, sulfometuron methyl, nicosulfuron, chlori...

  2. Direct Activation of Epac by Sulfonylurea is Isoform Selective

    PubMed Central

    Herbst, Katie J.; Coltharp, Carla; Amzel, L. Mario; Zhang, Jin

    2011-01-01

    Summary Commonly used as a treatment for Type II diabetes, sulfonylureas (SUs) stimulate insulin secretion from pancreatic β cells by binding to sulfonylurea receptors. Recently, SUs have been shown to also activate exchange protein directly activated by cAMP 2 (Epac2), however little is known about this molecular action. Using biosensor imaging and biochemical analysis, we show that SUs activate Epac2 and the downstream signaling via direct binding to Epac2. We further identify R447 of Epac2 to be critically involved in SU binding. This distinct binding site from cAMP points to a new mode of allosteric activation of Epac2. We also show that SUs selectively activate Epac2 isoform, but not the closely related Epac1, further establishing SUs as a new class of isoform-selective enzyme activators. PMID:21338921

  3. The molecular basis of the specificity of action of KATP channel openers

    PubMed Central

    Moreau, Christophe; Jacquet, Hélène; Prost, Anne-Lise; D’hahan, Nathalie; Vivaudou, Michel

    2000-01-01

    KATP channels incorporate a regulatory subunit of the ATP-binding cassette (ABC) transporter family, the sulfonylurea receptor (SUR), which defines their pharmacology. The therapeutically important K+ channel openers (e.g. pinacidil, cromakalim, nicorandil) act specifically on the SUR2 muscle isoforms but, except for diazoxide, remain ineffective on the SUR1 neuronal/pancreatic isoform. This SUR1/2 dichotomy underpinned a chimeric strategy designed to identify the structural determinants of opener action, which led to a minimal set of two residues within the last transmembrane helix of SUR. Transfer of either residue from SUR2A to SUR1 conferred opener sensitivity to SUR1, while the reverse operation abolished SUR2A sensitivity. It is therefore likely that these residues form part of the site of interaction of openers with the channel. Thus, openers would target a region that, in other ABC transporters, is known to be tightly involved with the binding of substrates and other ligands. This first glimpse of the site of action of pharmacological openers should permit rapid progress towards understanding the structural determinants of their affinity and specificity. PMID:11118199

  4. Comparing the risks of hospitalized heart failure associated with glinide, sulfonylurea, and acarbose use in type 2 diabetes: A nationwide study.

    PubMed

    Lee, Yen-Chieh; Chang, Chia-Hsuin; Dong, Yaa-Hui; Lin, Jou-Wei; Wu, Li-Chiu; Hwang, Jing-Shiang; Chuang, Lee-Ming

    2017-02-01

    Increasing evidence suggests that certain newer anti-diabetic drugs are associated with an increased risk of hospitalized heart failure (HHF). However, the potential risks associated with the use of sulfonylurea and glinide have not been carefully evaluated. A retrospective cohort study using the Taiwan National Health Insurance claims database was conducted to examine the risks of HHF among newly diagnosed type 2 diabetic patients who initiated glinide, sulfonylurea, or acarbose therapy during 2006-2012. The outcome of interest was hospitalization due to heart failure after treatment initiation, defined by ICD-9-CM code. A Cox proportional hazard regression model was used to calculate the hazard ratio (HR) and 95% confidence interval (CI) using acarbose as the reference group. A total of 25,638 glinide, 272,140 sulfonylurea, and 29,376 acarbose initiators were included in the analysis. Patients who initiated glinide had the highest crude HHF incidence. In the analysis adjusted for baseline differences, a significantly higher risk of HHF was found for glinide (adjusted HR, 1.53; 95% CI, 1.24-1.88), but not for sulfonylurea (adjusted HR, 0.94; 95% CI, 0.80-1.11), as compared with acarbose. The elevated risk remained consistent across different subgroups of patients as well as several sensitivity analyses including exploring the impact of potential unmeasured confounding. These findings indicated that, as compared with acarbose, glinide may be associated with a higher risk of HHF for type 2 diabetic patients. Further researchis needed to fully evaluate the risks and benefits of glinide therapy relative to other oral anti-diabetic agents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Mortality and Cardiovascular Risk of Sulfonylureas in South Asian, Chinese and Other Canadians with Diabetes.

    PubMed

    Ke, Calvin; Morgan, Steve; Smolina, Kate; Gasevic, Danijela; Qian, Hong; Khan, Nadia

    2017-04-01

    Sulfonylureas have been inconsistently associated with increased cardiovascular mortality in patients with type 2 diabetes mellitus. However, there are no existing studies of long-term risk in South Asian and Chinese populations. Our objective was to determine whether sulfonylureas are associated with increased mortality or cardiovascular disease in a population cohort of South Asian, Chinese and other Canadian patients with incident diabetes. We studied a population-based cohort of adults 35 years of age or older who had diabetes and had been diagnosed between April 2004 and March 2014 by using administrative databases from British Columbia. The primary outcome was time to death from any cause or from a major cardiovascular event (MACE) with sulfonylurea treatment within each ethnicity. Propensity score modelling was applied using inverse probability of treatment weights. Results were stratified by agent and adjusted for age, sex, comorbidities, income and other medications. We included 208 870 patients: 13 755 South Asians, 22 871 Chinese, 172 244 other Canadians. Mortality and MACEs were higher in other Canadian patients for whom sulfonylureas had been prescribed (adjusted HR = 2.0; 95% confidence interval 1.9 to 2.2; and HR = 1.9, 1.7 to 2.2). Among Chinese and South Asian patients who had been prescribed sulfonylureas, mortality (HR = 2.6, 2.0 to 3.5; and HR = 2.4, 1.7 to 3.4, respectively) and MACEs (HR = 2.3; 1.4 to 4.0; and HR = 2.0, 1.2 to 3.2, respectively) were elevated. Considering the widespread use of sulfonylureas, there is a significant signal for increased mortality in all patients. In particular, increased mortality and MACEs were observed in South Asian and Chinese patients. These results should be confirmed in other studies, and patients of Asian descent should be included in clinical trials concerning diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  6. The Risk of TB in Patients With Type 2 Diabetes Initiating Metformin vs Sulfonylurea Treatment.

    PubMed

    Pan, Sheng-Wei; Yen, Yung-Feng; Kou, Yu Ru; Chuang, Pei-Hung; Su, Vincent Yi-Fong; Feng, Jia-Yih; Chan, Yu-Jiun; Su, Wei-Juin

    2017-12-16

    Metformin and the sulfonylureas are common initial antidiabetic agents; the former has demonstrated anti-TB action in in vitro and animal studies. The comparative effect of metformin vs the sulfonylureas on TB risk in patients with type 2 diabetes mellitus (T2DM) remains unclear. In this retrospective cohort study, patients without chronic kidney disease who received a T2DM diagnosis during 2003 to 2013 were identified from the Taiwan National Health Insurance Research Database. Participants with ≥ 2 years of follow-up were reviewed and observed for TB until December 2013. Patients receiving metformin ≥ 60 cumulative defined daily dose (cDDD) and sulfonylureas < 15 cDDD in the initial 2 years were defined as metformin majors; it was the inverse for sulfonylurea majors. The two groups were matched 1:1 by propensity score and compared for TB risk by multivariate Cox regression analysis. Among 40,179 patients with T2DM, 263 acquired TB (0.65%) over a mean follow-up of 6.1 years. In multivariate analysis, the initial 2-year dosage of metformin, but not that of the sulfonylureas, was an independent predictor of TB (60-cDDD increase (adjusted hazard ratio [HR], 0.931; 95% CI, 0.877-0.990) after adjustment by cofactors, including adapted diabetes complication severity index. Metformin majors had a significantly lower TB risk than that of sulfonylurea majors before and after matching (HR, 0.477; 95% CI, 0.268-0.850 and HR, 0.337; 95% CI, 0.169-0.673; matched pairs, n = 3,161). Compared with the reference group (initial 2-year metformin < 60 cDDD), metformin treatment showed a dose-dependent association with TB risk (60-219 cDDD; HR, 0.860; 95% CI, 0.637-1.161; 220-479 cDDD, HR, 0.706; 95% CI, 0.485-1.028; ≥ 480 cDDD, HR, 0.319; 95% CI, 0.118-0.863). Metformin use in the initial 2 years was associated with a decreased risk of TB, and metformin users had a reduced risk compared with their sulfonylurea comparators. Copyright © 2017 American College of

  7. Coadministration of Co-trimoxazole With Sulfonylureas: Hypoglycemia Events and Pattern of Use

    PubMed Central

    Holmes, Holly M.; Kuo, Yong-Fang; Raji, Mukaila A.; Goodwin, James S.

    2015-01-01

    Background. Coadministration of co-trimoxazole with sulfonylureas is reported to increase the risk of hypoglycemia. Methods. We identified a cohort of Medicare beneficiaries aged 66 years or older who took glyburide or glipizide for diabetes from a 5% national sample of Medicare Part D claims data in 2008 (n = 34,239). We tracked each participant’s claims during 2008–2010 for a co-trimoxazole prescription and subsequent emergency room visits for hypoglycemia. Descriptive statistics and logistic regression modeling were used to evaluate hypoglycemia-related emergency room visits after coadministration of co-trimoxazole with sulfonylureas and its utilization patterns in older adults with diabetes. Results. Sulfonylureas users prescribed co-trimoxazole had a significant higher risk of emergency room visits for hypoglycemia, compared with those prescribed noninteracting antibiotics (odds ratio = 3.89, 95% confidence interval = 2.29–6.60 for glipizide and odds ratio = 3.78, 95% confidence interval = 1.81–7.90 for glyburide with co-trimoxazole, using amoxicillin as the reference). Co-trimoxazole was prescribed to 16.9% of those taking glyburide or glipizide during 2008–2010, varying from 4.0% to 35.9% across U.S. hospital referral regions. Patients with polypharmacy and with more prescribers were more likely to receive co-trimoxazole. Patients with an identifiable primary care physician had 20% lower odds of receiving a co-trimoxazole prescription. Hospital referral regions with more PCPs had lower rates of coadministration of the two drugs (r = −.26, p < 0.001). Conclusions. Coadministration of co-trimoxazole with sulfonylureas is associated with increased risk of hypoglycemia, compared with noninteracting antibiotics. Such coadministration is prevalent among older diabetic patients in the United States, especially in patients without an identifiable primary care physician. PMID:24858839

  8. Biophysical Properties of ATP-sensitive Potassium Channels in CA3 Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Obregón-Herrera, Armando; Márquez-Gamiño, Sergio; Onetti, Carlos G.

    2004-09-01

    Single-channel activity of glucose-sensitive channels from CA3 neurons of the rat hippocampus, was studied in cell-attached membrane patches. Single-channel activity was totally abolished at 20 mM external glucose. Glucose-sensitive channels were selective to K+ ions; the unitary conductance was 170 pS in 140 mM K+, and the K+ permeability was 3.86×10-13 cmṡs-1. The open-state probability (PO) increased with membrane depolarization as a result of mean open time enhancement and shortening of the closure periods. The activation midpoint was -79 mV. Glucose-sensitive K+ channel of CA3 neurons could be considered as an ATP-sensitive potassium channel.

  9. Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes.

    PubMed

    Thurber, Brian W; Carmody, David; Tadie, Elizabeth C; Pastore, Ashley N; Dickens, Jazzmyne T; Wroblewski, Kristen E; Naylor, Rochelle N; Philipson, Louis H; Greeley, Siri Atma W

    2015-07-01

    Individuals with heterozygous activating mutations of the KCNJ11 gene encoding a subunit of the ATP-sensitive potassium channel (KATP) can usually be treated with oral sulfonylurea (SU) pills in lieu of insulin injections. The aim of this study was to test our hypothesis that younger age at the time of initiation of SU therapy is correlated with lower required doses of SU therapy, shorter transition time and decreased likelihood of requiring additional diabetes medications. We performed a retrospective cohort study using data on 58 individuals with neonatal diabetes due to KCNJ11 mutations identified through the University of Chicago Monogenic Diabetes Registry ( http://monogenicdiabetes.uchicago.edu/registry ). We assessed the influence of age at initiation of SU therapy on treatment outcomes. HbA1c fell from an average of 8.5% (69 mmol/mol) before transition to 6.2% (44 mmol/mol) after SU therapy (p < 0.001). Age of initiation of SU correlated with the dose (mg kg(-1) day(-1)) of SU required at follow-up (r = 0.80, p < 0.001). Similar associations were observed across mutation subtypes. Ten participants required additional glucose-lowering medications and all had initiated SU at age 13 years or older. No serious adverse events were reported. Earlier age at initiation of SU treatment is associated with improved response to SU therapy. Declining sensitivity to SU may be due to loss of beta cell mass over time in those treated with insulin. Our data support the need for early genetic diagnosis and appropriate personalised treatment in all cases of neonatal diabetes.

  10. Efficacy of vildagliptin versus sulfonylureas as add-on therapy to metformin: comparison of results from randomised controlled and observational studies.

    PubMed

    Ahrén, Bo; Mathieu, Chantal; Bader, Giovanni; Schweizer, Anja; Foley, James E

    2014-07-01

    Randomised control trials (RCTs) do not always reflect real-life outcomes for glucose-lowering drugs. In this work we compared RCT and real-life data on the efficacy of the dipeptidyl peptidase-IV (DPP-4) inhibitor vildagliptin or sulfonylureas when added to metformin. Data were pooled from five RCTs examining vildagliptin (n = 2,788) and sulfonylureas (glimepiride [n = 1,259] or gliclazide [n = 433]), added to metformin. For real-life conditions, data were extracted from an observational study examining vildagliptin (n = 7,002) or sulfonylureas (n = 3,702), added to metformin monotherapy. Linear regression analyses were performed between the baseline HbA1c and the change in HbA1c (Δ HbA1c) after 24 weeks. Baseline HbA1c correlated to Δ HbA1c (r (2) = 0.36, slope = -0.54 [95% CI -0.55, -0.53; p < 0.0001]) for both treatments. With sulfonylureas, the slope of the correlation was steeper in the observational study than in RCTs (interaction coefficient = -0.327, p < 0.001), whereas for vildagliptin, the slope was virtually identical in the observational study and the RCTs (interaction coefficient = 0.024, p = 0.175). For any given baseline HbA1c, Δ HbA1c with sulfonylureas was smaller in real life than in RCTs, whereas Δ HbA1c with vildagliptin was the same. When comparing RCT to real-life data, the decrease in HbA1c from baseline with sulfonylurea treatment is smaller in real life than in RCTs, whereas the reduction with vildagliptin is essentially the same, suggesting that the full power of treatment is retained in real life for vildagliptin but not for sulfonylureas, possibly due to fear of hypoglycaemia.

  11. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development.

    PubMed

    Xu, Siguang; Liu, Cui; Ma, Yana; Ji, Hong-Long; Li, Xiumin

    2016-01-01

    The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na(+)) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.

  12. Grafting voltage and pharmacological sensitivity in potassium channels.

    PubMed

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  13. Association of diet alone, insulin, sulfonylureas, metformin, and thiazolidinediones with the severity of coronary artery disease in patients with diabetes mellitus.

    PubMed

    Ravipati, Gautham; Aronow, Wilbert S; Ahn, Chul; Sujata, Kumbar; Saulle, Leonardo N; Channamsetty, Venu; Weiss, Melvin B

    2006-01-01

    Coronary angiography was performed in 152 men and 163 women with diabetes mellitus, mean age 55 +/- 8 years, because of chest pain. Of 67 patients with 3-vessel or 4-vessel coronary artery disease (CAD), 17 (25%) were treated with diet alone, 29 (43%) with insulin, 18 (27%) with sulfonylureas, 12 (18%) with metformin, and 6 (9%) with thiazolidinediones. Of 76 patients with 2-vessel CAD, 20 (26%) were treated with diet alone, 36 (47%) with insulin, 21 (28%) with sulfonylureas, 21 (28%) with metformin, and 11 (14%) with thiazolidinediones. Of 40 patients with 1-vessel CAD, 15 (38%) were treated with diet alone, 11 (28%) with insulin, 8 (20%) with sulfonylureas, 12 (30%) with metformin, and 4 (10%) with thiazolidinediones. Of 132 patients with 0-vessel CAD, 18 (14%) were treated with diet alone, 21 (16%) with insulin, 7 (5%) with sulfonylureas, 75 (56%) with metformin, and 35 (26%) with thiazolidinediones. Cochran-Armitage trend tests were used to examine whether the use of treatment significantly increases or decreases as the number of arteries with CAD increases (P = 0.036 for diet alone; P < 0.0001 for insulin, for sulfonylureas, and for metformin; P = 0.002 for thiazolidinediones).

  14. Long-term response to sulfonylurea in a patient with diabetes due to mutation in the KCNJ11 gene.

    PubMed

    Vendramini, Marcio F; Gurgel, Lucimary C; Moisés, Regina S

    2010-11-01

    To report the long-term (30-month) effect of the switch from insulin to sulfonylurea in a patient carrying the p.G53D (c.158G>A) mutation in KCNJ11 gene. A 29-year-old male patient was diagnosed with diabetes in the third month of life and after identification of a heterozygous p.G53D mutation in the KCNJ11 gene, the therapy was switched from insulin to sulfonylurea. Long-term follow-up (30 months) showed that good metabolic control was maintained (HbA1c: 6.6%) and the glibenclamide dose could be reduced. Long-term therapy with sulfonylureas in patients with neonatal diabetes due to mutation in the KCNJ11 gene is safe and promotes sustained improvement of glycemic control.

  15. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  16. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes.

    PubMed

    Tejada, Maria A; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells.

  17. Comparative Effectiveness of Insulin versus Combination Sulfonylurea and Insulin: a Cohort Study of Veterans with Type 2 Diabetes.

    PubMed

    Min, Jea Young; Griffin, Marie R; Hung, Adriana M; Grijalva, Carlos G; Greevy, Robert A; Liu, Xulei; Elasy, Tom; Roumie, Christianne L

    2016-06-01

    Type 2 diabetes patients often initiate treatment with a sulfonylurea and subsequently intensify their therapy with insulin. However, information on optimal treatment regimens for these patients is limited. To compare risk of cardiovascular disease (CVD) and hypoglycemia between sulfonylurea initiators who switch to or add insulin. This was a retrospective cohort assembled using national Veterans Health Administration (VHA), Medicare, and National Death Index databases. Veterans who initiated diabetes treatment with a sulfonylurea between 2001 and 2008 and intensified their regimen with insulin were followed through 2011. The association between insulin versus sulfonylurea + insulin and time to CVD or hypoglycemia were evaluated using Cox proportional hazard models in a 1:1 propensity score-matched cohort. CVD included hospitalization for acute myocardial infarction or stroke, or cardiovascular mortality. Hypoglycemia included hospitalizations or emergency visits for hypoglycemia, or outpatient blood glucose measurements <60 mg/dL. Subgroups included age < 65 and ≥ 65 years and estimated glomerular filtration rate ≥ 60 and < 60 ml/min. There were 1646 and 3728 sulfonylurea monotherapy initiators who switched to insulin monotherapy or added insulin, respectively. The 1596 propensity score-matched patients in each group had similar baseline characteristics at insulin initiation. The rate of CVD per 1000 person-years among insulin versus sulfonylurea + insulin users were 49.3 and 56.0, respectively [hazard ratio (HR) 0.85, 95 % confidence interval (CI) 0.64, 1.12]. Rates of first and recurrent hypoglycemia events per 1000 person-years were 74.0 and 100.0 among insulin users compared to 78.9 and 116.8 among sulfonylurea plus insulin users, yielding HR (95 % CI) of 0.94 (0.76, 1.16) and 0.87 (0.69, 1.10), respectively. Subgroup analysis results were consistent with the main findings. Compared to sulfonylurea users who added insulin, those who switched

  18. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes

    PubMed Central

    Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A.

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells. PMID:28222129

  19. Temporal patterns of hypoglycaemia and burden of sulfonylurea-related hypoglycaemia in UK hospitals: a retrospective multicentre audit of hospitalised patients with diabetes.

    PubMed

    Rajendran, Rajesh; Kerry, Christopher; Rayman, Gerry

    2014-07-09

    To determine whether temporal patterns of hypoglycaemia exist in inpatients with diabetes 'at risk' of hypoglycaemia (those on insulin and/or sulfonylureas), and if so whether patterns differ between hospitals and between these treatments. Retrospective multicentre audit of inpatients with diabetes involving 11 acute UK National Health Service (NHS) trusts. Capillary blood glucose readings of 3.9 mmol/L or less (hypoglycaemia) for all adult (≥18 years) inpatients with diabetes 'at risk' of hypoglycaemia were extracted from the Abbott PrecisionWeb Point-of-Care Data Management System over a 4-week period. Overall, 2521 readings of 3.9 mmol/L or less (hypoglycaemia) occurring in 866 participants between 1 June 2013 and 29 June 2013 were analysed. The majority (65%) occurred between 21:00 and 08:59, a pattern common to all Trusts. This was more frequent in sulfonylurea-treated than insulin-treated participants (75.3% vs 59.3%, p=0.0001). Furthermore, hypoglycaemic readings were more frequent between 5:00 and 7:59 in sulfonylurea-treated than insulin-treated participants (46.7% vs 22.7% of readings for respective treatments, p=0.0001). Sulfonylureas accounted for 31.8% of all hypoglycaemic readings. As a group, sulfonylurea-treated participants were older (median age 78 vs 73 years, p=0.0001) and had lower glycated haemoglobin (median 56 (7.3%) vs 69 mmol/mol (8.5%), p=0.0001). Hypoglycaemic readings per participant were as frequent for sulfonylurea-treated participants as for insulin-treated participants (median=2 for both) as were the proportions in each group with ≥5 hypoglycaemic readings (17.3% vs 17.7%). In all Trusts, hypoglycaemic readings were more frequent between 21:00 and 08:59 in 'at risk' inpatients with diabetes, with a greater frequency in the early morning period (5:00-7:59) in sulfonylurea-treated inpatients. This may have implications for the continuing use of sulfonylureas in the inpatient setting. Published by the BMJ Publishing Group

  20. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  1. Hypoglycemia in patients with type 2 diabetes from India and Malaysia treated with sitagliptin or a sulfonylurea during Ramadan: a randomized, pragmatic study.

    PubMed

    Aravind, S R; Ismail, Shaiful Bahari; Balamurugan, R; Gupta, Jugal Bihari; Wadhwa, Tarun; Loh, Sze Min; Suryawanshi, Shailaja; Davies, Michael J; Girman, Cynthia J; Katzeff, Harvey L; Radican, Larry; Engel, Samuel S; Wolthers, Troels

    2012-08-01

    To compare the incidence of symptomatic hypoglycemia between sitagliptin and sulfonylurea in Muslim patients with type 2 diabetes who fasted during Ramadan. In a multicenter, pragmatic, randomized study, patients with type 2 diabetes were recruited from clinical centers in India (n = 765) and Malaysia (n = 105). Eligible patients (age ≥ 18 yrs) expressed their intention to daytime fast during Ramadan, were treated with a stable dose of sulfonylurea with or without metformin for ≥3 months prior to screening visit, and had an HbA(1c) ≤ 10%. Patients were randomized in a 1:1 ratio to either switch to sitagliptin 100 mg q.d. or remain on their pre-study sulfonylurea. Daily diary cards were completed to document information on hypoglycemic symptoms and complications. The primary endpoint was the overall incidence of symptomatic hypoglycemia during Ramadan. Of the 870 patients randomized, 848 (n = 421 for sitagliptin and 427 for sulfonylurea) returned ≥1 completed diary card and were included in the analysis. The proportion of patients who recorded ≥1 symptomatic hypoglycemic event during Ramadan was lower with sitagliptin (3.8%) compared to sulfonylurea (7.3%). The risk of symptomatic hypoglycemia was significantly lower with sitagliptin (risk ratio [95% CI] = 0.52 [0.29, 0.94]; p = 0.028). By country, the proportions of patients who recorded ≥1 symptomatic hypoglycemic event during Ramadan were 4.1% vs. 7.7% in India and 1.9% vs. 3.8% in Malaysia for sitagliptin and sulfonylurea, respectively. No patient discontinued treatment due to a hypoglycemic event. One patient on sitagliptin and seven on sulfonylurea had an event that required non-medical assistance. No events required medical assistance. Both treatments were generally well tolerated. Symptomatic hypoglycemic events did not require a confirmatory blood glucose measurement, which may have overestimated hypoglycemic events. Measures of glycemic control and body weight were

  2. Temperature sensitivity of ligand-gated ion channels: ryanodine receptor case

    NASA Astrophysics Data System (ADS)

    Iaparov, B. I.; Moskvin, A. S.; Solovyova, O. E.

    2017-11-01

    Temperature influences all biochemical processes, in particular, excitation-contraction coupling(ECC) in cardiac cells. In this work we propose a theoretical explanation of temperature effects on an isolated ryanodine receptor calcium release channel (RyR channel) within the electron-conformational (EC) model. We show that the EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open ↔ closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyR channels. Interestingly that a small change of the activation energy for the “internal” friction can make an ion channel either heat-inhibited or heat-activated while the “external” friction doesn’t play a key role in temperature sensitivity: neglect of “external” friction doesn’t change the channel’s temperature sensitivity qualitatively.

  3. Cost-effectiveness analysis of thiazolidinediones in uncontrolled type 2 diabetic patients receiving sulfonylureas and metformin in Thailand.

    PubMed

    Chirakup, Suphachai; Chaiyakunapruk, Nathorn; Chaikledkeaw, Usa; Pongcharoensuk, Petcharat; Ongphiphadhanakul, Boonsong; Roze, Stephane; Valentine, William J; Palmer, Andrew J

    2008-03-01

    The national essential drug committee in Thailand suggested that only one of thiazolidinediones be included in hospital formulary but little was know about their cost-effectiveness values. This study aims to determine an incremental cost-effectiveness ratio of pioglitazone 45 mg compared with rosiglitazone 8 mg in uncontrolled type 2 diabetic patients receiving sulfonylureas and metformin in Thailand. A Markov diabetes model (Center for Outcome Research model) was used in this study. Baseline characteristics of patients were based on Thai diabetes registry project. Costs of diabetes were calculated mainly from Buddhachinaraj hospital. Nonspecific mortality rate and transition probabilities of death from renal replacement therapy were obtained from Thai sources. Clinical effectiveness of thiazolidinediones was retrieved from a meta-analysis. All analyses were based on the government hospital policymaker perspective. Both cost and outcomes were discounted with the rate of 3%. Base-case analyses were analyzed as incremental cost per quality-adjusted life year (QALY) gained. A series of sensitive analyses were performed. In base-case analysis, the pioglitazone group had a better clinical outcomes and higher lifetime costs. The incremental cost per QALY gained was 186,246 baht (US$ 5389). The acceptability curves showed that the probability of pioglitazone being cost-effective was 29% at the willingness to pay of one time of Thai gross domestic product per capita (GDP per capita). The effect of pioglitazone on %HbA1c decrease was the most sensitive to the final outcomes. Our findings showed that in type 2 diabetic patients who cannot control their blood glucose under the combination of sulfonylurea and metformin, the use of pioglitazone 45 mg fell in the cost-effective range recommended by World Health Organization (one to three times of GDP per capita) on average, compared to rosiglitazone 8 mg. Nevertheless, based on sensitivity analysis, its probability of being cost

  4. KATP Channel Mutations and Neonatal Diabetes.

    PubMed

    Shimomura, Kenju; Maejima, Yuko

    2017-09-15

    Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

  5. Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels.

    PubMed

    Jovanovic, S; Jovanovic, A

    2001-02-01

    Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic beta cells where targets ATP-sensitive K(+) (K(ATP)) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic K(ATP) channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic K(ATP) channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of K(ATP) channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes K(ATP) channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.

  6. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas

    PubMed Central

    Kunte, Hagen; Busch, Markus A.; Trostdorf, Katrin; Vollnberg, Bernd; Harms, Lutz; Mehta, Rupal; Castellani, Rudolf J.; Mandava, Pitchaiah; Kent, Thomas A.; Simard, J. Marc

    2012-01-01

    Objective Disability or death occurs more frequently in patients with hemorrhagic transformation (HT) after ischemic stroke. In rat models of stroke, sulfonylurea (SU) drugs such as glibenclamide (adopted US name, glyburide) confer protection against swelling and HT through actions on the novel SUR1-regulated NCCa-ATP channel. Here, we sought to determine whether the use of SU drugs in patients with diabetes mellitus (DM) presenting with acute ischemic stroke might influence the incidence of HT. Methods We retrospectively analyzed data on 220 patients with DM who presented with acute ischemic stroke, 43 of whom were managed with and continued to receive SU drugs, and 177 of whom were managed without (controls). Results During a median length of stay in hospital of 11 days, 20 control patients (11%) experienced symptomatic HT (sHT), while no patient in the SU group experienced sHT (P=0.016). No patient in the SU group died, compared to 18 (10%) in the control group (P=0.027). Similarly favorable outcomes were observed after matching for baseline imbalances and excluding outliers. In support of the proposed mechanism, we present a case of sHT in which an analysis of brain tissues obtained intraoperatively showed prominent upregulation of SUR1, the target of SU drugs, in microvessels and neurons. Interpretation We conclude that, in diabetic patients with acute ischemic stroke, prior and continued use of SU drugs is associated with reduced sHT compared to those whose treatment regimen does not include SU drugs. PMID:23280795

  7. The phosphoinositide sensitivity of the KV channel family

    PubMed Central

    Kruse, Martin; Hille, Bertil

    2013-01-01

    Recently, we screened several KV channels for possible dependence on plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The channels were expressed in tsA-201 cells and the PI(4,5)P2 was depleted by several manipulations in whole-cell experiments with parallel measurements of channel activity. In contrast to reports on excised-patches using Xenopus laevis oocytes, we found only KV7, but none of the other tested KV channels, to be strongly dependent on PI(4,5)P2. We now have extended our study to KV1.2 channels, a KV channel we had not previously tested, because a new published study on excised patches showed regulation of the voltage-dependence of activation by PI(4,5)P2. In full agreement with those published results, we found a reduction of current amplitude by ~20% after depletion of PI(4,5)P2 and a small left shift in the activation curve of KV1.2 channels. We also found a small reduction of KV11.1 (hERG) currents that was not accompanied by a gating shift. In conclusion, our whole-cell methods yield a PI(4,5)P2-dependence of KV1.2 currents in tsA-201 cells that is comparable to findings from excised patches of Xenopus laevis oocytes. We discuss possible physiological rationales for PI(4,5)P2 sensitivity of some ion channels and insensitivity of others. PMID:23907203

  8. Synergistic interaction between metformin and sulfonylureas on diclofenac-induced antinociception measured using the formalin test in rats

    PubMed Central

    Ortiz, Mario I

    2013-01-01

    BACKGROUND There is evidence that biguanides and sulfonylureas block diclofenac-induced antinociception (DIA) in rat models. However, little is known about the interaction between these hypoglycemics with respect to DIA. OBJECTIVE: To determine whether metformin-sulfonylurea combinations affect DIA during the formalin test. METHODS: Rats received the appropriate vehicle or diclofenac before 1% formaldehyde was injected into the paw. Rats were also pretreated with vehicle, glibenclamide, glipizide, metformin or glibenclamide/metformin and glipizide/metformin combinations before the diclofenac and formaldehyde injections, and the effect on antinociception was assessed. Isobolograms of the combinations were constructed to test for a synergistic interaction. RESULTS: Systemic injection of diclofenac resulted in antinociception during the second phase of the test. Systemic pretreatment with the combinations of glibenclamide (0.56 mg/kg to 10 mg/kg)/metformin (10 mg/kg to 180 mg/kg) and glipizide (0.56 mg/kg to10 mg/kg)/metformin (10 mg/kg to 180 mg/kg) blocked DIA. The derived theoretical effective doses for 50% of subjects (ED50) for the glibenclamide/metformin and glipizide/metformin combinations were 32.52 mg/kg and 32.42 mg/kg, respectively, and were significantly higher than the actual observed experimental ED50 values (7.57 mg/kg and 8.43 mg/kg, respectively). CONCLUSION: Pretreatment with glibenclamide, glipizide or metformin blocked DIA in a dose-dependent manner, and combining either sulfonylurea with metformin produced even greater effects. The observed ED50s for the combinations were approximately fourfold lower than the calculated additive effects. These data indicate that sulfonylureas interact to produce antagonism of DIA. Combination therapy is a common second-line treatment for patients with diabetes and metabolic syndrome, a group that experiences pain from multiple sources. The results suggest that at least some anti-inflammatory agents may not be

  9. [Combination therapy of metformin vs dipeptidulpeptidase inhibitors and sulfonylureas in type 2 diabetes: clinical and economic impact].

    PubMed

    Sicras-Mainar, Antoni; Navarro-Artieda, Ruth

    2014-01-01

    Determine the clinical repurcussions of adherence, metabolic control, hypoglycemia and cardiovascular events (CVE) and economics (resources and costs) in the combination therapy of metformin vs DPP-4 (dipeptidyl peptidase-4) inhibitors and sulfonylureas in patients with type 2 diabetes. Materials and methods. Observational-multicenter and retrospective design. We evaluated patients ≥ 30 years of age in treatment with metformin and who started a second oral antidiabetic treatment during 2008-2009. 2 study groups were established: a) metformin + DPP-4 inhibitors, and b) metformin + sulfonylurea. comorbidity, metabolic control (HbA1c <7%), compliance and complications (hypoglycemia, CVE). Follow up was conducted over two years. The cost model differentiated between direct healthcare costs (primary/ specialty care), and indirect costs (labor productivity). logistic regression and ANCOVA models. Results. 1,405 patients were recruited (average age 67.1 years old; 56.2% male). 37.0% started a second treatment with DPP-4 inhibitors, and 63.0% with sulfonylureas. After two years of follow up, patients treated with DPP-4 inhibitors showed greater treatment adherence (70.3% vs. 60.6%; p <0.001); better metabolic control (64.3% vs. 60.6%; p<0.001), and a lower proportion of hypoglycemia (13.9% vs. 40.4%; p <0.001, respectively). The average/unit of adjusted total costs was € 2,341 vs. € 2,512; p = 0.038. CVE and renal failure rates were 3.7% vs. 6.4%; p = 0.027. Vildagliptin was the most used drug among DPP-4 inhibitors. Conclusions. Sulfonylureas were the most used drug for diabetes treatment. Patients treated with DPP-4 inhibitors had higher adherence and control of diabetes, with lower rates of hypoglycemia and CVE, resulting in lower healthcare costs.

  10. Cross-Resistance to Short Residual Sulfonylurea Herbicides in Transgenic Tobacco Plants 1

    PubMed Central

    Gabard, Jerome M.; Charest, Pierre J.; Iyer, V. N.; Miki, Brian L.

    1989-01-01

    Transgenic Nicotiana tabacum plants, produced by Agrobacterium tumefaciens-mediated transformation with a mutant gene (csr1-1) coding for acetohydroxyacid synthase (AHAS) from a chlorsulfuron resistant Arabidopsis thaliana line GH50 (GW Haughn et al. [1988] Mol Gen Genet 211: 266-271; GW Haughn, C Somerville [1986] Mol Gen Genet 204: 430-434), were selected directly on 80 micrograms per liter (225 nanomolar) chlorsulfuron. The expression of csr-1 in two separate transgenic lines CHL-1 and CHL-2 was confirmed by biochemical and genetic analyses. The AHAS activity of GH50 and the equivalent component of AHAS activity in CHL-2 was resistant to three short residual sulfonylurea herbicides, DPX-M6316, DPX-A7881, and DPX-L5300, in addition to chlorsulfuron but not to the sulfonylurea CGA 131′036. Cross-resistance to the imidazolinones AC 263, 499, AC 252, 214, and AC 243,997 was not observed. Parallel observations were made on the inhibition of seedling growth in soil or on culture medium. The relevance of these findings for the application of transgenic plants in agriculture is discussed. Images Figure 1 PMID:16667071

  11. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    PubMed Central

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  12. Chiral recognition of pinacidil and its 3-pyridyl isomer by canine cardiac and smooth muscle: Antagonism by sulfonylureas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, M.I.; Wiest, S.A.; Zimmerman, K.M.

    1991-01-01

    Pinacidil, a potassium channel opener (PCO), relaxes vascular smooth muscle by increasing potassium ion membrane conductance, thereby causing membrane hyperpolarization. PCOs also act on cardiac muscle to decrease action potential duration (APD) selectively. To examine the enantiomeric selectivity of pinacidil, the stereoisomers of pinacidil (a 4-pyridylcyanoguanidine) and its 3-pyridyl isomer (LY222675) were synthesized and studied in canine Purkinje fibers and cephalic veins. The (-)-enantiomers of both pinacidil and LY222675 were more potent in relaxing phenylephrine-contracted cephalic veins and decreasing APD than were their corresponding (+)-enantiomers. The EC50 values for (-)-pinacidil and (-)-LY222675 in relaxing cephalic veins were 0.44 and 0.09more » microM, respectively. In decreasing APD, the EC50 values were 3.2 microM for (-)-pinacidil and 0.43 microM for (-)-LY222675. The eudismic ratio was greater for the 3-pyridyl isomer than for pinacidil in both cardiac (71 vs. 22) and vascular (53 vs. 17) tissues. (-)-LY222675 and (-)-pinacidil (0.1-30 microM) also increased 86Rb efflux from cephalic veins to a greater extent than did their respective optical antipodes. The antidiabetic sulfonylurea, glyburide (1-30 microM), shifted the vascular concentration-response curve of (-)-pinacidil to the right by a similar extent at each inhibitor concentration. Glipizide also antagonized the response to (-)-pinacidil, but was about 1/10 as potent with a maximal shift occurring at 10 and 30 microM. Glyburide antagonized the vascular relaxant effects of 0.3 microM (-)-LY222675 (EC50, 2.3 microM) and reversed the decrease in APD caused by 3 microM (-)-LY222675 (EC50, 1.9 microM). Nitroprusside did not alter 86Rb efflux, and vascular relaxation induced by sodium nitroprusside was unaffected by sulfonylureas.« less

  13. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia

    PubMed Central

    Sun, Hong-shuo; Feng, Zhong-ping

    2013-01-01

    ATP-sensitive potassium (KATP) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens KATP channels, leading to membrane hyperpolarization. KATP channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke. KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future. PMID:23123646

  14. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Relationship of oral antihyperglycemic (sulfonylurea or metformin) medication adherence and hemoglobin A1c goal attainment for HMO patients enrolled in a diabetes disease management program.

    PubMed

    Lawrence, David B; Ragucci, Kelly R; Long, Laura B; Parris, Beth S; Helfer, Lisa A

    2006-01-01

    There is limited information in the primary literature regarding the relationship of medication adherence to attainment of glycosylated hemoglobin A1c (A1c) goals. The 2 oral antihyperglycemic medications, sulfonylurea and/or metformin, were chosen for retrospective analysis because they are the 2 most common oral medications used by patients with diabetes. To describe the relationship between adherence with 1 or both of 2 oral antihyperglycemic medications (sulfonylurea and metformin) and A1c goal attainment for health maintenance organization (HMO) patients enrolled in a diabetes disease management program. This was a retrospective, descriptive evaluation of patients enrolled in a managed care diabetes disease management program in a 188,000-member independent practice association model HMO located in the Southeast. The dataset in this analysis contained demographic, enrollment, pharmacy claims, and clinical laboratory data. Continuously enrolled patients were included if there was a documented A1c value obtained at least 90 days after the initial oral antihyperglycemic medication (sulfonylurea or metformin) prescription index date. The medication possession ratio (MPR) was calculated from the pharmacy claim records and correlated with the A1c value. A total of 42% of patients on sulfonylurea therapy and 46% of those on metformin reached an A1c goal of < or = 7.0%. For patients taking a sulfonylurea, the mean MPR for those who reached the predetermined A1c goal (< or = 7.0) was 0.82 (0.29) compared with 0.72 (0.31) for those patients who did not reach the A1c target goal (P < 0.001). For patients taking metformin, the mean MPR for those who reached the predetermined A1c goal was 0.77 (0.3) versus 0.62 (0.3) for those patients who did not reach the A1c target goal (P < 0.001). A Pearson correlation analysis revealed a positive relationship between the MPR and A1c for sulfonylurea (r = -0.295, P < 0.001) and for metformin (r = -0.285, P < 0.001). For those patients

  16. Developmentally-regulated sodium channel subunits are differentially sensitive to {alpha}-cyano containing pyrethroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.

    2008-09-15

    Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) andmore » {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1

  17. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  18. Key Role of Sulfonylurea Receptor 1 in Progressive Secondary Hemorrhage after Brain Contusion

    PubMed Central

    Kilbourne, Michael; Tsymbalyuk, Orest; Tosun, Cigdem; Caridi, John; Ivanova, Svetlana; Keledjian, Kaspar; Bochicchio, Grant; Gerzanich, Volodymyr

    2009-01-01

    Abstract An important but poorly understood feature of traumatic brain injury (TBI) is the clinically serious problem of spatiotemporal progression (“blossoming”) of a hemorrhagic contusion, a phenomenon we term progressive secondary hemorrhage (PSH). Molecular mechanisms of PSH are unknown and efforts to reduce it by promoting coagulation have met with equivocal results. We hypothesized that PSH might be due to upregulation and activation of sulfonylurea receptor 1 (SUR1)-regulated NCCa-ATP channels in capillary endothelial cells, predisposing to oncotic death of endothelial cells and catastrophic failure of capillary integrity. Anesthetized adult male rats underwent left parietal craniectomy for induction of a focal cortical contusion. The regulatory subunit of the channel, SUR1, was prominently upregulated in capillaries of penumbral tissues surrounding the contusion. In untreated rats, PSH was characterized by progressive enlargement of the contusion deep into the site of cortical impact, including corpus callosum, hippocampus, and thalamus, by progressive accumulation of extravasated blood, with a doubling of the volume during the first 12 h after injury, and by capillary fragmentation in penumbral tissues. Block of SUR1 using low-dose (non-hypoglycemogenic) glibenclamide largely eliminated PSH and capillary fragmentation, and was associated with a significant reduction in the size of the necrotic lesion and in preservation of neurobehavioral function. Antisense oligodeoxynucleotide against SUR1, administered after injury, reduced both SUR1 expression and PSH, consistent with a requirement for transcriptional upregulation of SUR1. Our findings provide novel insights into molecular mechanisms responsible for PSH associated with hemorrhagic contusions, and point to SUR1 as a potential therapeutic target in TBI. PMID:19604096

  19. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    PubMed

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    PubMed

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  1. SODIUM CHANNELS (NAV1.2/B1) EXPRESSED IN XENOPUS OOCYTES DEMONSTRATE SENSITIVITY TO PYRETHROIDS.

    EPA Science Inventory

    Voltage-sensitive sodium channels (VSSCs) are hypothesized to be a primary target of pyrethroid insecticides. However, multiple isoforms of VSSCs exist and the sensitivity of different isoforms to pyrethroids has not been well characterized. The Nav1.2/1 channel predominates in a...

  2. The cost-effectiveness of dapagliflozin versus sulfonylurea as an add-on to metformin in the treatment of Type 2 diabetes mellitus.

    PubMed

    Charokopou, M; McEwan, P; Lister, S; Callan, L; Bergenheim, K; Tolley, K; Postema, R; Townsend, R; Roudaut, M

    2015-07-01

    To assess the cost-effectiveness of dapagliflozin, a sodium-glucose co-transporter-2 (SGLT-2) inhibitor, compared with a sulfonylurea, when added to metformin for treatment of UK people with Type 2 diabetes mellitus inadequately controlled on metformin alone. Clinical inputs sourced from a head-to-head randomized controlled trial (RCT) informed the Cardiff diabetes decision model. Risk equations developed from the United Kingdom Prospective Diabetes Study (UKPDS) were used in conjunction with the clinical inputs to predict disease progression and the incidence of micro- and macrovascular complications over a lifetime horizon. Cost and utility data were generated to present the incremental cost-effectiveness ratio (ICER) for both treatment arms, and sensitivity and scenario analyses were conducted to assess the impact of uncertainty on the final model results. The dapagliflozin treatment arm was associated with a mean incremental benefit of 0.467 quality-adjusted life years (QALYs) [95% confidence interval (CI): 0.420; 0.665], with an incremental cost of £1246 (95% CI: £613; £1637). This resulted in an ICER point estimate of £2671 per QALY gained. Incremental costs were shown to be insensitive to parameter variation, with only treatment-related weight change having a significant impact on the incremental QALYs. Probabilistic sensitivity analysis determined that dapagliflozin had a 100% probability of being cost-effective at a willingness-to-pay threshold of £20,000 per QALY. Dapagliflozin in combination with metformin was shown to be a cost-effective treatment option compared with sulfonylurea from a UK healthcare perspective for people with Type 2 diabetes mellitus who are inadequately controlled on metformin monotherapy. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  3. Simultaneous Loss of NCKX4 and CNG Channel Desensitization Impairs Olfactory Sensitivity.

    PubMed

    Ferguson, Christopher H; Zhao, Haiqing

    2017-01-04

    In vertebrate olfactory sensory neurons (OSNs), Ca 2+ plays key roles in both mediating and regulating the olfactory response. Ca 2+ enters OSN cilia during the response through the olfactory cyclic nucleotide-gated (CNG) channel and stimulates a depolarizing chloride current by opening the olfactory Ca 2+ -activated chloride channel to amplify the response. Ca 2+ also exerts negative regulation on the olfactory transduction cascade, through mechanisms that include reducing the CNG current by desensitizing the CNG channel via Ca 2+ /calmodulin (CaM), to reduce the response. Ca 2+ is removed from the cilia primarily by the K + -dependent Na + /Ca 2+ exchanger 4 (NCKX4), and the removal of Ca 2+ leads to closure of the chloride channel and response termination. In this study, we investigate how two mechanisms conventionally considered negative regulatory mechanisms of olfactory transduction, Ca 2+ removal by NCKX4, and desensitization of the CNG channel by Ca 2+ /CaM, interact to regulate the olfactory response. We performed electro-olfactogram (EOG) recordings on the double-mutant mice, NCKX4 -/- ;CNGB1 ΔCaM , which are simultaneously lacking NCKX4 (NCKX4 -/- ) and Ca 2+ /CaM-mediated CNG channel desensitization (CNGB1 ΔCaM ). Despite exhibiting alterations in various response attributes, including termination kinetics and adaption properties, OSNs in either NCKX4 -/- mice or CNGB1 ΔCaM mice show normal resting sensitivity, as determined by their unchanged EOG response amplitude. We found that OSNs in NCKX4 -/- ;CNGB1 ΔCaM mice displayed markedly reduced EOG amplitude accompanied by alterations in other response attributes. This study suggests that what are conventionally considered negative regulatory mechanisms of olfactory transduction also play a role in setting the resting sensitivity in OSNs. Sensory receptor cells maintain high sensitivity at rest. Although the mechanisms responsible for setting the resting sensitivity of sensory receptor cells are not

  4. The Use of Glyburide Compared With Other Sulfonylureas and the Risk of Cancer in Patients With Type 2 Diabetes.

    PubMed

    Tuccori, Marco; Wu, Jennifer W; Yin, Hui; Majdan, Agnieszka; Azoulay, Laurent

    2015-11-01

    To determine whether the use of glyburide is associated with an increased risk of cancer compared with the use of other second-generation sulfonylureas among patients with type 2 diabetes. The U.K. Clinical Practice Research Datalink was used to conduct a cohort study among 52,600 patients newly prescribed glyburide or other second-generation sulfonylureas between 1 January 1988 and 31 July 2013. A time-dependent Cox proportional hazards model was used to estimate adjusted hazard ratios (HRs) and 95% CIs of any cancer associated with the use of glyburide compared with the use of second-generation sulfonylureas. Secondary analyses were conducted to determine whether the association varied with cumulative duration of use and cumulative dose (expressed as defined daily dose [DDD]). During 280,288 person-years of follow-up, 4,105 patients were given a new diagnosis of cancer (incidence rate 14.6 per 1,000 person-years). Overall, when compared with the use of other second-generation sulfonylureas, the use of glyburide was associated with a nonsignificant increased risk of any cancer (HR 1.09 [95% CI 0.98-1.22]). In secondary analyses, duration- and dose-response relationships were observed, with longer cumulative durations and cumulative doses associated with an increased risk of any cancer (>36 months: HR 1.21 [95% CI: 1.03-1.42]; >1,096 DDDs: HR 1.27 [95% CI 1.06-1.51]). In this population-based cohort study, longer cumulative durations and higher cumulative doses of glyburide were associated with an increased risk of cancer. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Influence of long-term used herbicides on resistance development in Apera spica-venti L. to sulfonylureas.

    PubMed

    Adamczewski, K; Kierzek, R; Matysiak, K

    2009-01-01

    Sulfonylurea herbicides are widely used for grass and broadleaf weed control in winter cereals in Poland developed resistance, especially in Silky bent grass (Apera spica-venti). The aim of the study was to evaluate the possibility of resistance increase after six years used of some herbicide for control of A. spica-venti in winter cereals monoculture. The field experiments were conducted in Agricultural Experimental Station at Winna Gora. During six years the herbicides: chlorsulfuron, sulfosulfuron, iodosulfuron and isoproturon were applied. In fourth, fifth and sixth years A. spica-venti seed from the experiment was collected and used in greenhouse experiment. The obtained results indicated that after six years usage of the herbicides resistance of A. spica-venti to sulfonylurea herbicides were found. Results obtained in field condition were confirmed in greenhouse experiment. Resistance process was found also on untreated plots. It was indicated that resistance is transferred also by pollen.

  6. Heterozygous ABCC8 mutations are a cause of MODY.

    PubMed

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  7. Consensus Recommendations on Sulfonylurea and Sulfonylurea Combinations in the Management of Type 2 Diabetes Mellitus – International Task Force

    PubMed Central

    Kalra, Sanjay; Bahendeka, Silver; Sahay, Rakesh; Ghosh, Sujoy; Md, Fariduddin; Orabi, Abbas; Ramaiya, Kaushik; Al Shammari, Sameer; Shrestha, Dina; Shaikh, Khalid; Abhayaratna, Sachitha; Shrestha, Pradeep K.; Mahalingam, Aravinthan; Askheta, Mazen; A. Rahim, Aly Ahmed; Eliana, Fatimah; Shrestha, Hari K.; Chaudhary, Sandeep; Ngugi, Nancy; Mbanya, Jean Claude; Aye, Than Than; Latt, Tint Swe; Akanov, Zhanay A.; Syed, Abbas Raza; Tandon, Nikhil; Unnikrishnan, A. G.; Madhu, S. V.; Jawa, Ali; Chowdhury, Subhankar; Bajaj, Sarita; Das, Ashok Kumar

    2018-01-01

    For decades, sulfonylureas (SUs) have been important drugs in the antidiabetic therapeutic armamentarium. They have been used as monotherapy as well as combination therapy. Focus on newer drugs and concerns about the risk of severe hypoglycemia and weight gain with some SUs have led to discussion on their safety and utility. It has to be borne in mind that the adverse events associated with SUs should not be ascribed to the whole class, as many modern SUs, such as glimepiride and gliclazide modified release, are associated with better safety profiles. Furthermore, individualization of treatment, using SUs in combination with other drugs, backed with careful monitoring and patient education, ensures maximum benefits with minimal side effects. The current guidelines, developed by experts from Africa, Asia, and the Middle East, promote the safe and smart use of SUs in combination with other glucose-lowering drugs. PMID:29535952

  8. Sulfonylureas and the Risks of Cardiovascular Events and Death: A Methodological Meta-Regression Analysis of the Observational Studies.

    PubMed

    Azoulay, Laurent; Suissa, Samy

    2017-05-01

    Recent randomized trials have compared the newer antidiabetic agents to treatments involving sulfonylureas, drugs associated with increased cardiovascular risks and mortality in some observational studies with conflicting results. We reviewed the methodology of these observational studies by searching MEDLINE from inception to December 2015 for all studies of the association between sulfonylureas and cardiovascular events or mortality. Each study was appraised with respect to the comparator, the outcome, and study design-related sources of bias. A meta-regression analysis was used to evaluate heterogeneity. A total of 19 studies were identified, of which six had no major design-related biases. Sulfonylureas were associated with an increased risk of cardiovascular events and mortality in five of these studies (relative risks 1.16-1.55). Overall, the 19 studies resulted in 36 relative risks as some studies assessed multiple outcomes or comparators. Of the 36 analyses, metformin was the comparator in 27 (75%) and death was the outcome in 24 (67%). The relative risk was higher by 13% when the comparator was metformin, by 20% when death was the outcome, and by 7% when the studies had design-related biases. The lowest predicted relative risk was for studies with no major bias, comparator other than metformin, and cardiovascular outcome (1.06 [95% CI 0.92-1.23]), whereas the highest was for studies with bias, metformin comparator, and mortality outcome (1.53 [95% CI 1.43-1.65]). In summary, sulfonylureas were associated with an increased risk of cardiovascular events and mortality in the majority of studies with no major design-related biases. Among studies with important biases, the association varied significantly with respect to the comparator, the outcome, and the type of bias. With the introduction of new antidiabetic drugs, the use of appropriate design and analytical tools will provide their more accurate cardiovascular safety assessment in the real-world setting

  9. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.

    PubMed

    Meighan, Peter C; Meighan, Starla E; Rich, Elizabeth D; Brown, R Lane; Varnum, Michael D

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.

  10. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels

    PubMed Central

    Meighan, Peter C.; Meighan, Starla E.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels. PMID:22699690

  11. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl− channels

    PubMed Central

    Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu

    2001-01-01

    Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521

  12. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  13. Random mutagenesis screening indicates the absence of a separate H(+)-sensor in the pH-sensitive Kir channels.

    PubMed

    Paynter, Jennifer J; Shang, Lijun; Bollepalli, Murali K; Baukrowitz, Thomas; Tucker, Stephen J

    2010-01-01

    Several inwardly-rectifying (Kir) potassium channels (Kir1.1, Kir4.1 and Kir4.2) are characterised by their sensitivity to inhibition by intracellular H(+) within the physiological range. The mechanism by which these channels are regulated by intracellular pH has been the subject of intense scrutiny for over a decade, yet the molecular identity of the titratable pH-sensor remains elusive. In this study we have taken advantage of the acidic intracellular environment of S. cerevisiae and used a K(+) -auxotrophic strain to screen for mutants of Kir1.1 with impaired pH-sensitivity. In addition to the previously identified K80M mutation, this unbiased screening approach identified a novel mutation (S172T) in the second transmembrane domain (TM2) that also produces a marked reduction in pH-sensitivity through destabilization of the closed-state. However, despite this extensive mutagenic approach, no mutations could be identified which removed channel pH-sensitivity or which were likely to act as a separate H(+) -sensor unique to the pH-sensitive Kir channels. In order to explain these results we propose a model in which the pH-sensing mechanism is part of an intrinsic gating mechanism common to all Kir channels, not just the pH-sensitive Kir channels. In this model, mutations which disrupt this pH-sensor would result in an increase, not reduction, in pH-sensitivity. This has major implications for any future studies of Kir channel pH-sensitivity and explains why formal identification of these pH-sensing residues still represents a major challenge.

  14. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Engineering vanilloid-sensitivity into the rat TRPV2 channel.

    PubMed

    Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres; Krepkiy, Dmitriy; Bae, Chanhyung; Pearce, Larry V; Blumberg, Peter M; Newstead, Simon; Swartz, Kenton J

    2016-05-13

    The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1.

  16. Regulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells.

    PubMed

    Leroy, Claudie; Privé, Anik; Bourret, Jean-Charles; Berthiaume, Yves; Ferraro, Pasquale; Brochiero, Emmanuelle

    2006-12-01

    In a recent study (Leroy C, Dagenais A, Berthiaume Y, and Brochiero E. Am J Physiol Lung Cell Mol Physiol 286: L1027-L1037, 2004), we identified an ATP-sensitive K(+) (K(ATP)) channel in alveolar epithelial cells, formed by inwardly rectifying K(+) channel Kir6.1/sulfonylurea receptor (SUR)2B subunits. We found that short applications of K(ATP), voltage-dependent K(+) channel KvLQT1, and calcium-activated K(+) (K(Ca)) channel modulators modified Na(+) and Cl(-) currents in alveolar monolayers. In addition, it was shown previously that a K(ATP) opener increased alveolar liquid clearance in human lungs by a mechanism possibly related to epithelial sodium channels (ENaC). We therefore hypothesized that prolonged treatment with K(+) channel modulators could induce a sustained regulation of ENaC activity and/or expression. Alveolar monolayers were treated for 24 h with inhibitors of K(ATP), KvLQT1, and K(Ca) channels identified by PCR. Glibenclamide and clofilium (K(ATP) and KvLQT1 inhibitors) strongly reduced basal transepithelial current, amiloride-sensitive Na(+) current, and forskolin-activated Cl(-) currents, whereas pinacidil, a K(ATP) activator, increased them. Interestingly, K(+) inhibitors or membrane depolarization (induced by valinomycin in high-K(+) medium) decreased alpha-, beta-, and gamma-ENaC and CFTR mRNA. alpha-ENaC and CFTR proteins also declined after glibenclamide or clofilium treatment. Conversely, pinacidil augmented ENaC and CFTR mRNAs and proteins. Since alveolar fluid transport was found to be driven, at least in part, by Na(+) transport through ENaC, we tested the impact of K(+) channel modulators on fluid absorption across alveolar monolayers. We found that glibenclamide and clofilium reduced fluid absorption to a level similar to that seen in the presence of amiloride, whereas pinacidil slightly enhanced it. Long-term regulation of ENaC and CFTR expression by K(+) channel activity could benefit patients with pulmonary diseases affecting ion

  17. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  18. Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations.

    PubMed Central

    Taft, W C; DeLorenzo, R J

    1984-01-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498

  19. [Analysis of the development of metformin and sulfonylurea prescriptions in the Czech Republic].

    PubMed

    Janíčková-Žďarská, Denisa; Honěk, Petr; Dušek, Ladislav; Pavlík, Tomáš; Kvapil, Milan

    2015-11-01

    In the Czech Republic, patients with diabetes mellitus (DM) are followed and treated predominantly by specialists (approx. 80% at a specialist diabetology clinic), a minor part by general practitioners (up to 20%). Long-term development of the changes in prescribing metformin and sulfonylurea in the Czech Republic and its concordance with recommended procedures has not been evaluated until now. Comparison of the development of metformin (MET) and sulfonylurea (SU) prescriptions in the period of 2002-2006 with that of 2010-2014 in a representative sample of the patient population with DM kept in the database of the General Health Insurance Company of the Czech Republic (VZP) which provided health care coverage for 63% of Czech Republic population in 2014. We identified all individuals in the VZP database who had a record of DM diagnosis (E10-E16 based on ICD 10) or who had any antidiabetic therapy prescribed (ATC group A10) in the periods of 2002-2006 and 2010-2014. A cohort of patients was extracted for analysis, who had an agent from A10 group prescribed at least once in a relevant year (n=308,962 in 2002; n=426,695 in 2014). A number of patients was evaluated for each year, who had at least once MET or SU prescribed. The number of patients treated with MET or SU was then expressed as a percentage of all who had any therapy from A10 group prescribed in the year in question. Metformin prescriptions have linearly risen from 43% to 77%, while sulfonylurea prescriptions have linearly decreased from 65% to 37%. The analysis presents the first evaluation of the development of metformin prescriptions conducted in the Czech Republic and evaluation of its concordance with the recommended procedures for the treatment of DM. The amount of metformin prescribed in the Czech Republic increased from 43% to 77% while the amount of SU prescribed decreased from 65% to 37% between 2002 and 2014. This development and the current ratio between the prescribed amounts of MET and SU

  20. Structural Sensitivity of a Prokaryotic Pentameric Ligand-gated Ion Channel to Its Membrane Environment*

    PubMed Central

    Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.

    2013-01-01

    Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505

  1. Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei-Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W; Kubista, Helmut; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won

    2017-02-01

    Phosphatidylinositol-4,5-bisphosphate (PIP 2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP 2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP 2 . Dephosphorylation of Kv7.2 affected channel inhibition via M 1 muscarinic receptors, but not via bradykinin receptors. Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP 2 , thereby ensuring the tight regulation of the channel via G protein-coupled receptors. The function of numerous ion channels is tightly controlled by G protein-coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP 2 and through phosphorylation. Using liquid chromatography-coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2-binding domains. To evaluate the effect of phosphorylation on PIP 2 -mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A 5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP 2 depletion via the voltage-sensitive phosphatase Dr-VSP than were wild-type channels. In vitro phosphorylation assays with the purified C-terminus of Kv7

  2. Photoaffinity labeling and partial purification of the beta cell sulfonylurea receptor using a novel, biologically active glyburide analog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Bryan, L.; Nelson, D.A.; Vu, Q.A.

    1990-05-15

    An iodinated analog of the sulfonylurea, glyburide, has been synthesized which can be labeled to high specific activity and used to photolabel the sulfonylurea receptor. 5-Iodo-2-hydroxy-glyburide, has an iodo group replacing the chlorine at position 5 and a methoxy residue replacing the hydroxy group at position 2 on the benzamido ring. This analog retains biologic activity stimulating insulin secretion from a hamster beta cell line (HIT cells) at the same ED50 (0.4 nM) as glyburide. Scatchard analysis demonstrated high and low affinity binding sites on HIT cell membranes (Kd values of 0.36 nM and 277 nM and Bmax values ofmore » 1.6 and 100 pmol/mg of membrane protein, respectively). Competitive binding assays with unlabeled glyburide or 5-iodo-2-hydroxyglyburide yield Ki values of 0.5 and 1.0 nM, respectively. The analog can be covalently linked by ultraviolet irradiation to a membrane protein of Mr = 140,000. The photolabeling is completely blocked by unlabeled glyburide or the analog. Two other species of Mr = 65,000 and 43,000 are also photolabeled; these may be the low affinity sites. After photolabeling, the receptor has been purified partially by chromatographic procedures and is suitable for obtaining peptide sequence. The 140,000 molecular weight protein is identified as the sulfonylurea receptor since its binding constant, 0.36 nM, is closely correlated with its ability to stimulate insulin secretion (ED50 congruent to 0.4 nM).« less

  3. Alternative Splicing Governs Cone Cyclic Nucleotide-gated (CNG) Channel Sensitivity to Regulation by Phosphoinositides*

    PubMed Central

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.

    2014-01-01

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082

  4. Alternative splicing governs cone cyclic nucleotide-gated (CNG) channel sensitivity to regulation by phosphoinositides.

    PubMed

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D

    2014-05-09

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.

  5. Effects of tolbutamide and N-benzoyl-D-phenylalanine (NBDP) on the regulation of [Ca2+]i oscillations in mouse pancreatic islets.

    PubMed

    Lenzen, S; Peckmann, T

    2001-10-01

    The sulfonylurea derivative, tolbutamide, and the phenylalanine derivative, N-benzoyl-D-phenylalanine (NBDP), both of which stimulate insulin secretion through interaction with the sulfonylurea receptor (SUR1), were studied for their ability to increase the [Ca(2+)](i) and to interact with the glucose-induced slow large amplitude [Ca(2+)](i) oscillations in isolated mouse pancreatic islets. Tolbutamide as well as NBDP induced [Ca(2+)](i) oscillations of extremely slow frequency. Both compounds also lowered the threshold for the glucose-induced slow large amplitude [Ca(2+)](i) oscillations and significantly reduced their frequency in intact islets as well as in single pancreatic beta cells. These [Ca(2+)](i) oscillations apparently require a glucokinase-mediated glycolytic flux. This conclusion is supported by the observations that KIC, a mitochondrial fuel, cannot replace glucose in this synergism and that mannoheptulose, an inhibitor of glucokinase and glucose-induced insulin secretion, abolishes these slow [Ca(2+)](i) oscillations. In conclusion, these compounds potentiate the effect of glucose. This additive effect is the likely result of a synergistic closing action upon the ATP-sensitive K(+) (K(ATP)) channel, mediated in the case of glucose through an action upon the channel protein itself of ATP generated in glucose catabolism and in the case of tolbutamide and NBDP upon the sulfonylurea receptor (SUR1) associated with this channel.

  6. Vildagliptin added to sulfonylurea improves glycemic control without hypoglycemia and weight gain in Chinese patients with type 2 diabetes mellitus.

    PubMed

    Yang, Wenying; Xing, Xiaoping; Lv, Xiaofeng; Li, Yiming; Ma, Jianhua; Yuan, Guoyue; Sun, Feifei; Wang, Wei; Woloschak, Michael; Lukashevich, Valentina; Kozlovski, Plamen; Kothny, Wolfgang

    2015-03-01

    The aim of the present study was to assess the efficacy and safety of vildagliptin as add-on to sulfonylurea therapy in Chinese patients with type 2 diabetes mellitus (T2DM) inadequately controlled on sulfonylurea monotherapy. The 24-week randomized double-blind placebo-controlled study compared vildagliptin 50 mg, q.d., with placebo as add-on to glimepiride in T2DM patients who were inadequately controlled (HbA1c 7.5%-11.0% [58-97 mmol/mol]) on a stable dose of sulfonylurea for ≥12 weeks before study entry. In all, 279 patients were randomized to receive either vildagliptin (n = 143) or placebo (n = 136). At baseline, overall mean age was 58.5 years, body weight 68.1 kg, duration of diabetes 6.9 years and daily glimepiride dose 3.3 mg. After 24 weeks, the adjusted mean change (AMΔ) in HbA1c was -0.7% (-8 mmol/mol; baseline 8.6%, 70 mmol/mol) in the vildagliptin group and -0.2% (-2 mmol/mol; baseline 8.7%, 72 mmol/mol) in the placebo group, with a treatment difference of -0.5% (-5 mmol/mol; P < 0.001). The between-group difference in AMΔ in fasting plasma glucose was -0.4 mmol/L (P = 0.160). There was a slight, but not significant, decrease in body weight in both groups. No hypoglycemic events were reported in either group, including those patients reaching HbA1c <7.0%. Patients in the vildagliptin and placebo groups reported low and comparable incidences of adverse events (14.0% vs. 17.8%) and serious adverse events (0.7% in each group). Vildagliptin 50 mg, q.d., added to sulfonylurea monotherapy is effective in Chinese patients with T2DM, without increasing the risk of hypoglycemia and weight gain. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  7. Engineering vanilloid-sensitivity into the rat TRPV2 channel

    PubMed Central

    Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres; Krepkiy, Dmitriy; Bae, Chanhyung; Pearce, Larry V; Blumberg, Peter M; Newstead, Simon; Swartz, Kenton J

    2016-01-01

    The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1. DOI: http://dx.doi.org/10.7554/eLife.16409.001 PMID:27177419

  8. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  9. TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons

    PubMed Central

    Wang, Sheng; Benamer, Najate; Zanella, Sébastien; Kumar, Natasha N.; Shi, Yingtang; Bévengut, Michelle; Penton, David; Guyenet, Patrice G.; Lesage, Florian

    2013-01-01

    Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H+ via an unidentified pH-sensitive background K+ channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K+ channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2−/− mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2−/− mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K+ currents were reduced in amplitude in RTN neurons from TASK-2−/− mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart–brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2−/− mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold. PMID:24107938

  10. Phosphorylation regulates the sensitivity of voltage‐gated Kv7.2 channels towards phosphatidylinositol‐4,5‐bisphosphate

    PubMed Central

    Salzer, Isabella; Erdem, Fatma Asli; Chen, Wei‐Qiang; Heo, Seok; Koenig, Xaver; Schicker, Klaus W.; Kubista, Helmut; Lubec, Gert; Boehm, Stefan

    2016-01-01

    Key points Phosphatidylinositol‐4,5‐bisphosphate (PIP2) is a key regulator of many membrane proteins, including voltage‐gated Kv7.2 channels.In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2‐binding domains in Kv7.2.Dephosphorylation of these residues reduced the sensitivity of Kv7.2 channels towards PIP2.Dephosphorylation of Kv7.2 affected channel inhibition via M1 muscarinic receptors, but not via bradykinin receptors.Our data indicated that phosphorylation of the Kv7.2 channel was necessary to maintain its low affinity for PIP2, thereby ensuring the tight regulation of the channel via G protein‐coupled receptors. Abstract The function of numerous ion channels is tightly controlled by G protein‐coupled receptors (GPCRs). The underlying signalling mechanisms may involve phosphorylation of channel proteins and participation of phosphatidylinositol‐4,5‐bisphosphate (PIP2). Although the roles of both mechanisms have been investigated extensively, thus far only little has been reported on their interaction in channel modulation. GPCRs govern Kv7 channels, the latter playing a major role in the regulation of neuronal excitability by determining the levels of PIP2 and through phosphorylation. Using liquid chromatography‐coupled mass spectrometry for Kv7.2 immunoprecipitates of rat brain membranes and transfected cells, we mapped a cluster of five phosphorylation sites in one of the PIP2‐binding domains. To evaluate the effect of phosphorylation on PIP2‐mediated Kv7.2 channel regulation, a quintuple alanine mutant of these serines (S427/S436/S438/S446/S455; A5 mutant) was generated to mimic the dephosphorylated state. Currents passing through these mutated channels were less sensitive towards PIP2 depletion via the voltage‐sensitive phosphatase Dr‐VSP than were wild‐type channels. In vitro phosphorylation assays with the

  11. Half-Life of Sulfonylureas in HNF1A and HNF4A Human MODY Patients is not Prolonged as Suggested by the Mouse Hnf1a(-/-) Model.

    PubMed

    Urbanova, Jana; Andel, Michal; Potockova, Jana; Klima, Josef; Macek, Jan; Ptacek, Pavel; Mat'oska, Vaclav; Kumstyrova, Tereza; Heneberg, Petr

    2015-01-01

    Sulfonylurea derivatives are widely used for clinical treatment of human subjects with Maturity Onset Diabetes of the Young (MODY) caused by mutations in HNF-1α or HNF-4α despite the mechanism leading to their hypersensitivity is incompletely understood. In Hnf1a(-/-) mice, serum concentrations and half-life of sulfonylurea derivatives are strongly increased. We thus hypothesized that reduced sulfonylurea derivatives clearance stands behind their therapeutic potential in human HNF1A/HNF4A MODY subjects. Single doses of 3 mg glipizide and 5 mg glibenclamide/glyburide were administered sequentially to seven HNF1A/HNF4A MODY subjects and six control individuals matched for their age, BMI and CYP2C9 genotype. Pharmacokinetic (plasma concentration levels, Cmax, tmax, t1/2, AUC) and pharmacodynamic parameters (glycemia, C-peptide and insulin plasma levels) were followed for 24 hours after drug administration. We provide the first evidence on the pharmacokinetics and pharmacodynamics of sulfonylurea derivatives in human MODY subjects. The half-life of glipizide did not change, and reached 3.8±0.7 and 3.7±1.8 h in the MODY and control subjects, respectively. The half-life of glibenclamide was increased only in some MODY subjects (t1/2 9.5±6.7 and 5.0±1.4 h, respectively). Importantly, the intra- individual responses of MODY (but control) subjects to glipizide and glibenclamide treatment were highly correlated. With regards to pharmacodynamics, we observed a differential response of control but not MODY subjects to the doses of glipizide and glibenclamide applied. We rejected the hypothesis that all human MODY-associated mutations in HNF1A / HNF4A induce changes in the pharmacokinetics of sulfonylureas in humans analogically to the Hnf1a(-/-) mouse model.

  12. Effect of sulfonylureas on hepatic fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into liversmore » perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.« less

  13. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.

    PubMed

    Seino, Susumu

    2003-01-01

    K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.

  14. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  15. Radioimmunoassay for glyburide in human serum. [Sulfonylurea; /sup 14/C and /sup 125/I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, M.W.; Ko, H.; Evans, J.S.

    1976-01-01

    A radioimmunoassay (RIA) has been developed to measure nanogram amounts of drug-related materials in human serum, after oral administration of 1.25, 2.5, 3.75 or 5.0 mg glyburide, G, Micronase, a sulfonylurea. Of the compounds tested, only the known hydroxy metabolites of G cross-reacted significantly. Recoveries were quantitative (100.6 percent). In normal human volunteers, peak serum drug concentrations were observed at 4.3 +- 1.4 hrs (S.D., M = 32).

  16. Localization and function of ATP-sensitive potassium channels in human skeletal muscle.

    PubMed

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva; Bangsbo, Jens; Juel, Carsten

    2003-02-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel inhibitor glibenclamide reduced (P < 0.05) interstitial K+ at rest from approximately 4.5 to 4.0 mM, whereas the concentration in the control leg remained constant. Glibenclamide had no effect on the interstitial K+ accumulation during knee-extensor exercise at a power output of 60 W. In contrast to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+.

  17. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder.

    PubMed

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J; Zagorodnyuk, V P

    2017-01-01

    There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H 2 O 2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. H 2 O 2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H 2 O 2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H 2 O 2 on high threshold afferents. The findings show that H 2 O 2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress. © 2016 The British Pharmacological Society.

  18. Hydrogen peroxide preferentially activates capsaicin‐sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder

    PubMed Central

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J

    2016-01-01

    Background and Purpose There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H2O2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. Experimental Approach ‘Close‐to‐target’ single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. Key Results H2O2 (300–1000 μM) preferentially and potently activated capsaicin‐sensitive high threshold afferents but not low threshold stretch‐sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin‐sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC‐030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N‐(2‐aminoethyl)‐N‐[[3‐methoxy‐4‐(phenylmethoxy)phenyl]methyl]thiophene‐2‐carboxamide, significantly inhibited the H2O2‐induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H2O2 on high threshold afferents. Conclusions and Implications The findings show that H2O2, in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long‐lasting activation of the majority of capsaicin‐sensitive high threshold afferents, but not low threshold stretch‐sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin‐sensitive afferent fibres are probable targets of ROS released during oxidative stress. PMID:27792844

  19. The Basal Thermal Sensitivity of the TRPV1 Ion Channel Is Determined by PKCβII

    PubMed Central

    Li, Lin; Hasan, Raquibul

    2014-01-01

    Peripheral nociceptors are excited by the activation of membrane receptors and ion channels. The heat-sensitive TRPV1 ion channel responds to various noxious chemical and thermal stimuli, causing pain and itch. Here, we show that TRPV1 is coexpressed with PKCβII in a subset of mouse sensory neurons and that, in these neurons, TRPV1 binds directly to PKCβII, leading to the activation and translocation of PKCβII. Activated PKCβII, in turn, significantly increases the responsiveness of TRPV1 by phosphorylating Thr705. The heat sensitivity of TRPV1 is almost eliminated by either knocking down PKCβII or mutating Thr705; however, neither of these manipulations affects the potentiation of TRPV1 caused by the activation of PKCε. PKCβII thus acts as an auxiliary subunit of TRPV1 by forming a population-dependent TRPV1 ion channel complex controlling the sensitivity of TRPV1 and setting the threshold for pain and itch. PMID:24920628

  20. Reduced voltage sensitivity in a K+-channel voltage sensor by electric field remodeling

    PubMed Central

    González-Pérez, Vivian; Stack, Katherine; Boric, Katica; Naranjo, David

    2010-01-01

    Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na+ and K+ channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 eo across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K+-channel by up to ≈50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 Å, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels. PMID:20194763

  1. Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors

    NASA Astrophysics Data System (ADS)

    Gasparyan, Ferdinand; Zadorozhnyi, Ihor; Khondkaryan, Hrant; Arakelyan, Armen; Vitusevich, Svetlana

    2018-03-01

    Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.

  2. The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*

    PubMed Central

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-01-01

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424

  3. The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.

    PubMed

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-02-21

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.

  4. Exposure to trace amounts of sulfonylurea herbicide tribenuron-methyl causes male sterility in 17 species or subspecies of cruciferous plants.

    PubMed

    Yu, Cheng-Yu; Dong, Jun-Gang; Hu, Sheng-Wu; Xu, Ai-Xia

    2017-06-01

    For most cruciferous plants, which are known as important crops and a number of weeds, hybrid breeding is hampered by the unavailability of a pollination control system. Male sterility induced by a gametocide can be useful for the utilization of plant heterosis. The gametocidal effect of sulfonylurea herbicide tribenuron-methyl was tested across seventeen cruciferous species or subspecies including Brassica juncea, B. carinata, B. oleracea ssp. capitata, B. oleracea ssp. acephala, B. rapa ssp. pekinensis, B. rapa ssp. chinensis, B. rapa ssp. parachinensis, B. nigra, Orychophragmus violaceus, Matthiola incana, Raphanus sativa, Sisymbrium altissimum, Eruca sativa, Sinapis alba, Sinapis arvensis, Capsella bursa-pastoris and Camelina sativa. The plants of 23 cultivars in these species or subspecies were foliar sprayed with 10 ml of 0.2 or 0.4 mg/L of tribenuron-methyl before the vacuolated microspore formed in the largest flower buds; the application was repeated ten to twelve days afterwards. Tribenuron-methyl exposure significantly changed the flowering phenology and reproductive function. The treated plants demonstrated a one to four day delay in flowering time and a shortened duration of flowering, as well as other slight phytotoxic effects including a reduction in plant height and floral organ size. Approximately 80% to 100% male sterility, which was estimated by both pollen staining and selfing seed-set rate, was induced in the plants. As a result, plants were rendered functionally able to out-cross, with an average 87% and 54% manually pollinated seed-set rate compared to the corresponding controls at the 0.2 mg/L and 0.4 mg/L doses, respectively. The results suggested that male reproductive function was much more sensitive to tribenuron-methyl exposure than female function. This sulfonylurea herbicide has a promising use as the gametocide for hybrid production in cruciferous plants.

  5. Tactile Sensitivity of Children: Effects of Frequency, Masking, and the Non-Pacinian I Psychophysical Channel

    ERIC Educational Resources Information Center

    Guclu, Burak; Oztek, Cigdem

    2007-01-01

    Tactile perception depends on the contributions of four psychophysical tactile channels mediated by four corresponding receptor systems. The sensitivity of the tactile channels is determined by detection thresholds that vary as a function of the stimulus frequency. It has been widely reported that tactile thresholds increase (i.e., sensitivity…

  6. TRPA1 Channels in Drosophila and Honey Bee Ectoparasitic Mites Share Heat Sensitivity and Temperature-Related Physiological Functions

    PubMed Central

    Peng, Guangda; Kashio, Makiko; Li, Tianbang; Dong, Xiaofeng; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-01-01

    The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1) have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs) 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1. PMID:27761115

  7. Visuomotor Performance in KCNJ11-Related Neonatal Diabetes Is Impaired in Children With DEND-Associated Mutations and May Be Improved by Early Treatment With Sulfonylureas

    PubMed Central

    Shah, Reshma P.; Spruyt, Karen; Kragie, Brigette C.; Greeley, Siri Atma W.; Msall, Michael E.

    2012-01-01

    OBJECTIVE To assess performance on an age-standardized neuromotor coordination task among sulfonylurea-treated KCNJ11-related neonatal diabetic patients. RESEARCH DESIGN AND METHODS Nineteen children carrying KCNJ11 mutations associated with isolated diabetes (R201H; n = 8), diabetes with neurodevelopmental impairment (V59M or V59A [V59M/A]; n = 8), or diabetes not consistently associated with neurodevelopmental disability (Y330C, E322K, or R201C; n = 3) were studied using the age-standardized Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI). RESULTS Although R201H subjects tested in the normal range (median standard score = 107), children with V59M/A mutations had significantly lower than expected VMI standard scores (median = 49). The scores for all three groups were significantly different from each other (P = 0.0017). The age of sulfonylurea initiation was inversely correlated with VMI scores in the V59M/A group (P < 0.05). CONCLUSIONS Neurodevelopmental disability in KCNJ11-related diabetes includes visuomotor problems that may be ameliorated by early sulfonylurea treatment. Comprehensive longitudinal assessment on larger samples will be imperative. PMID:22855734

  8. Resveratrol-induced antinociception is involved in calcium channels and calcium/caffeine-sensitive pools.

    PubMed

    Pan, Xiaoyu; Chen, Jiechun; Wang, Weijie; Chen, Ling; Wang, Lin; Ma, Quan; Zhang, Jianbo; Chen, Lichao; Wang, Gang; Zhang, Meixi; Wu, Hao; Cheng, Ruochuan

    2017-02-07

    Resveratrol has been widely investigated for its potential health properties, although little is known about its mechanism in vivo. Previous studies have indicated that resveratrol produces antinociceptive effects in mice. Calcium channels and calcium/caffeine-sensitive pools are reported to be associated with analgesic effect. The present study was to explore the involvement of Ca2+ channel and calcium/caffeine-sensitive pools in the antinociceptive response of resveratrol. Tail-flick test was used to assess antinociception in mice treated with resveratrol or the combinations of resveratrol with MK 801, nimodipine, CaCl2, ryanodine and ethylene glycol tetraacetic acid (EGTA), respectively. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) levels in the spinal cord were also investigated when treated with the above drugs. The results showed that resveratrol increased the tail flick latency in the tail-flick test, in dose-dependent manner. N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK 801 potentiated the antinociceptive effects of sub-threshold dose of resveratrol at 10 mg/kg. Ca2+ channel blocker, however, abolished the antinociceptive effects of resveratrol. In contrast to these results, EGTA or ryanodine treatment (i.c.v.) potentiated resveratrol-induced antinociception. There was a significant decrease in p-CaMKII and an increase in BDNF expression in the spinal cord when combined with MK 801, nimodipine, ryanodine and EGTA. While an increase in p-CaMKII level and a decrease in BDNF expression were observed when high dose of resveratrol combined with CaCl2. These findings suggest that resveratrol exhibits the antinociceptive effects by inhibition of calcium channels and calcium/caffeine-sensitive pools.

  9. TASK channel deletion reduces sensitivity to local anesthetic-induced seizures

    PubMed Central

    Du, Guizhi; Chen, Xiangdong; Todorovic, Marko S.; Shu, Shaofang; Kapur, Jaideep; Bayliss, Douglas A.

    2011-01-01

    Background Local anesthetics (LAs) are typically used for regional anesthesia but can be given systemically to mitigate postoperative pain, supplement general anesthesia or prevent cardiac arrhythmias. However, systemic application or inadvertent intravenous injection can be associated with substantial toxicity, including seizure induction. The molecular basis for this toxic action remains unclear. Methods We characterized effects of different LAs on homomeric and heteromeric K+ channels containing TASK-1 (K2P3.1, KCNK3) and TASK-3 (K2P9.1, KCNK9) subunits in a mammalian expression system. In addition, we used TASK-1/TASK-3 knockout mice to test the possibility that TASK channels contribute to LA-evoked seizures. Results LAs inhibited homomeric and heteromeric TASK channels in a range relevant for seizure induction; channels containing TASK-1 subunits were most sensitive and IC50 values indicated a rank order potency of bupivacaine > ropivacaine ⟫ lidocaine. LAs induced tonic-clonic seizures in mice with the same rank order potency, but higher LA doses were required to evoke seizures in TASK knockout mice. For bupivacaine, which produced the longest seizure times, seizure duration was significantly shorter in TASK knockout mice; bupivacaine-induced seizures were associated with an increase in electroencephalogram power at frequencies <5 Hz in both wild type and TASK knockout mice. Conclusions These data suggest that increased neuronal excitability associated with TASK channel inhibition by LAs contributes to seizure induction. Since all LAs were capable of evoking seizures in TASK channel deleted mice, albeit at higher doses, the results imply that other molecular targets must also be involved in this toxic action. PMID:21946151

  10. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    PubMed

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  11. Eight-Channel AC Magnetosusceptometer of Magnetic Nanoparticles for High-Throughput and Ultra-High-Sensitivity Immunoassay

    PubMed Central

    Chieh, Jen-Jie; Wei, Wen-Chun; Chen, Hsin-Hsein; Lee, Yen-Fu; Lin, Feng-Chun; Chiang, Ming-Hsien; Chiu, Ming-Jang; Horng, Herng-Er; Yang, Shieh-Yueh

    2018-01-01

    An alternating-current magnetosusceptometer of antibody-functionalized magnetic nanoparticles (MNPs) was developed for immunomagnetic reduction (IMR). A high-sensitivity, high-critical-temperature superconducting quantum interference device was used in the magnetosusceptometer. Minute levels of biomarkers of early-stage neurodegeneration diseases were detectable in serum, but measuring each biomarker required approximately 4 h. Hence, an eight-channel platform was developed in this study to fit minimal screening requirements for Alzheimer’s disease. Two consistent results were measured for three biomarkers, namely Aβ40, Aβ42, and tau protein, per human specimen. This paper presents the instrument configuration as well as critical characteristics, such as the low noise level variations among channels, a high signal-to-noise ratio, and the coefficient of variation for the biomarkers’ IMR values. The instrument’s ultrahigh sensitivity levels for the three biomarkers and the substantially shorter total measurement time in comparison with the previous single- and four-channels platforms were also demonstrated in this study. Thus, the eight-channel instrument may serve as a powerful tool for clinical high-throughput screening of Alzheimer’s disease. PMID:29601532

  12. CNG-Modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels

    PubMed Central

    Rebrik, Tatiana I.; Botchkina, Inna; Arshavsky, Vadim Y.; Craft, Cheryl M.; Korenbrot, Juan I.

    2012-01-01

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide gated ion channels (CNG channels). The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 amino acid protein that interacts with the N-terminus of the β-subunit of the cGMP-gated channel, and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxitilis). Immunohistochemistry and single cell PCR demonstrate that CNG-modulin is expressed in cone, but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP-dependence from ~91 μM in the absence of Ca2+ to ~332 μM in the presence of 20 μM Ca2+. At a fixed cGMP concentration, the midpoint of the Ca2+ dependence is ~857 nM Ca2+. These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca2+ with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca2+-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium and the inner ear and may modulate the function of ion channels in those tissues as well. PMID:22378887

  13. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.

    PubMed Central

    Jovanovic, A.; Terzic, A.

    1996-01-01

    Diadenosine 5',5''-P1,P4-tetraphosphate (Ap4A) has been termed 'alarmone' due to its role in intracellular signaling during metabolic stress. It is not known whether Ap4A could modulate ATP-sensitive K+ (KATP) channels, a family of channels regulated by the metabolic status of a cell. We applied the single-channel patch-clamp technique to measure the effect of Ap4A on KATP channels. When applied to the intracellular side of patches, excised from guinea-pig ventricular myocytes, Ap4A inhibited KATP channel activity, in a reversible and concentration-dependent (half-maximal concentration approximately 17 microM) manner. We conclude that Ap4A, a naturally occurring diadenosine polyphosphate, is actually an inhibitor of the myocardial KATP channel. PMID:8789372

  14. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents

    PubMed Central

    2016-01-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  15. Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.

    PubMed

    Jiang, Bo; Cao, Kun; Wang, Rui

    2004-12-15

    Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.

  16. Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity.

    PubMed

    Gonzalez, Constancio; Vaquero, Luis M; López-López, José Ramón; Pérez-García, M Teresa

    2009-10-01

    The characterization of the molecular mechanisms involved in low-oxygen chemotransduction has been an active field of research since the first description of an oxygen-sensitive K(+) channel in rabbit carotid body (CB) chemoreceptor cells. As a result, a large number of components of the transduction cascade, from O(2) sensors to O(2)-sensitive ion channels, have been found. Although the endpoints of the process are analogous, the heterogeneity of the elements involved in the different chemoreceptor tissues precludes a unifying theory of hypoxic signaling, and it has been a source of controversy. However, when these molecular constituents of the hypoxic cascade are brought back to their physiological context, it becomes clear that the diversity of mechanisms is necessary to build up an integrated cellular response that demands the concerted action of several O(2) sensors and several effectors.

  17. A Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels

    PubMed Central

    Colinas, Olaia; Pérez-Carretero, Francisco D.; López-López, José R.; Pérez-García, M. Teresa

    2008-01-01

    Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (ISA), the fast component of ITO current in the heart, and also of the oxygen-sensitive K+ current (KO2) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability in the physiological properties of Kv4-mediated currents can be attributable to the complexity of their regulation together with the large number of ancillary subunits and scaffolding proteins that associate with Kv4 proteins to modify their trafficking and their kinetic properties. Among those, KChIPs and DPPX proteins have been demonstrated to be integral components of ISA and ITO currents, as their coexpression with Kv4 subunits recapitulates the kinetics of native currents. Here, we explore the presence and functional contribution of DPPX to KO2 currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Additionally, we investigate if the presence of DPPX endows Kv4 channels with new pharmacological properties, as we have observed anomalous tetraethylammonium (TEA) sensitivity in the native KO2 currents. DPPX association with Kv4 channels induced an increased TEA sensitivity both in heterologous expression systems and in CB chemoreceptor cells. Moreover, TEA application to Kv4-DPPX heteromultimers leads to marked kinetic effects that could be explained by an augmented closed-state inactivation. Our data suggest that DPPX proteins are integral components of KO2 currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers. PMID:18411327

  18. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms.

    PubMed

    McClenaghan, Conor; Hanson, Alex; Sala-Rabanal, Monica; Roessler, Helen I; Josifova, Dragana; Grange, Dorothy K; van Haaften, Gijs; Nichols, Colin G

    2018-02-09

    The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9 , the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which K ATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium ( 86 Rb + ) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases K ATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in K ATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The effects of diet, sulfonylurea, and Repaglinide therapy on clinical and metabolic parameters in type 2 diabetic patients during Ramadan.

    PubMed

    Sari, Ramazan; Balci, Mustafa Kemal; Akbas, Sadika Halide; Avci, Berkant

    2004-05-01

    Diabetes and its treatment can cause problems for the Muslim population. The aim of this study was to evaluate the effect of different therapy models on clinical and metabolic status in type 2 diabetic patients during Ramadan. Fifty-two type 2 diabetic patients were included to this study. Twelve of patients were on diabetic diet only before and during Ramadan (Group 1). Forty of patients had had sulfonylurea (Glimepiride 23 patients, gliclazide 17 patients) before Ramadan. Thirteen of these patients were on a single dose sulfonylurea (Glimepiride 8 patients, gliclazide 5 patients) (Group 2) and 27 were on Repaglinide 2 x 2 mg (Group 3) during Ramadan. Beta-hydroxybutyric acid, glucose, fructosamine, HbA1c, lipid levels and body weight were measured before and after Ramadan. Body weight, fasting plasma glucose, fructosamine, HbA1c, total cholesterol were not changed in groups during the study. Triglyceride level decreased after Ramadan in groups 2 (p = 0.002) and 3 (p = 0.024). HDL-cholesterol level increased in group 3 (p = 0.022). Fasting capillary beta-hydroxybutyric acid level increased in group 1 (p = 0.034) and didn't change in groups 2 and 3 during the Ramadan. Only one hypoglycemic event occurred at day 6 of Ramadan in patients in group 2 (the patient was on 3 mg glimepiride). Our results conclude that Ramadan fasting affects metabolic parameters in type 2 diabetes and hypoglycemia should be kept in mind especially in patients using sulfonylurea treatment. Ramadan fasting is not advised for type 2 diabetics while taking medical therapy. If the patient wants Ramadan fasting, these patients using Repaglinide can reduce the frequency of hypoglycemia.

  20. A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities.

    PubMed

    Geng, Yanyan; Ferreira, Juan J; Dzikunu, Victor; Butler, Alice; Lybaert, Pascale; Yuan, Peng; Magleby, Karl L; Salkoff, Lawrence; Santi, Celia M

    2017-05-26

    To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K + ) channels and resultant K + efflux. Sperm-specific SLO3 K + channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K + conductance is both Ca 2+ - and pH i -sensitive. It has been debated whether Ca 2+ -sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca 2+ sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca 2+ and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca 2+ , the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca 2+ sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels.

    PubMed

    Rebrik, Tatiana I; Botchkina, Inna; Arshavsky, Vadim Y; Craft, Cheryl M; Korenbrot, Juan I

    2012-02-29

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide-gated (CNG) ion channels. The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 aa protein that interacts with the N terminus of the β subunit of the cGMP-gated channel and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxatilis). Immunohistochemistry and single-cell PCR demonstrate that CNG-modulin is expressed in cone but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP dependence from ∼91 μM in the absence of Ca(2+) to ∼332 μM in the presence of 20 μM Ca(2+). At a fixed cGMP concentration, the midpoint of the Ca(2+) dependence is ∼857 nM Ca(2+). These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca(2+) with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca(2+)-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium, and the inner ear, and may modulate the function of ion channels in those tissues as well.

  2. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions

    PubMed Central

    Dai, Gucan

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  3. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.

    PubMed

    Dai, Gucan; Varnum, Michael D

    2013-07-15

    Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the

  4. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    PubMed Central

    Groth, Michael; Helbig, Tanja; Grau, Veronika; Kummer, Wolfgang; Haberberger, Rainer V

    2006-01-01

    Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli. PMID:16813657

  5. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain.

    PubMed

    Parcej, D N; Scott, V E; Dolly, J O

    1992-11-17

    Neuronal acceptors for alpha-dendrotoxin (alpha-DTX) have recently been purified from mammalian brain and shown to consist of two classes of subunit, a larger (approximately 78,000 M(r)) protein (alpha) whose N-terminal sequence is identical to that of a cloned, alpha-DTX-sensitive K+ channel, and a novel M(r) 39,000 (beta) polypeptide of unknown function. However, little information is available regarding the oligomeric composition of these native molecules. By sedimentation analysis of alpha-DTX acceptors isolated from bovine cortex, two species have been identified. A minority of these oligomers contain only the larger protein, while the vast majority possess both subunits. Based on accurate determination of the molecular weights of these two forms it is proposed that alpha-DTX-sensitive K+ channels exist as alpha 4 beta 4 complexes because this combination gives the best fit to the experimental data.

  6. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  7. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retainmore » excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.« less

  8. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.

    PubMed

    Dale, T J; Cryan, J E; Chen, M X; Trezise, D J

    2002-11-01

    The bee venom toxin apamin is an important drug tool for characterising small conductance Ca(2+)-activated K(+) channels (SK channels). In recombinant expression systems both rSK2 and rSK3 channels are potently blocked by apamin, whilst the sensitivity of SK1 channels is somewhat less clear. In the present study we have conducted a detailed analysis by patch clamp electrophysiology of the effects of apamin on human SK channels (SK1, SK2 and SK3) stably expressed in Chinese hamster ovary (CHO-K1) cells. CHO-K1 cell lines expressing either hSK1, 2 or 3 channels were first validated using specific antibodies and Western blotting. Specific protein bands of a size corresponding to the predicted channel tetramer (approximately 250-290 kDa) were detected. In each cell line, but not wild-type untransfected cells, large, time-independent inwardly rectifying Ca(2+)-dependent K(+) currents were observed under voltage-clamp. In CHO-hSK1, this current was markedly reduced by apamin (IC(50) value 8 nM), however, a significant fraction of the current remained unblocked (39+/-5%), even at saturating concentrations (1 microM apamin). The apamin-sensitive and -insensitive currents possess very similar biophysical and pharmacological properties. Each are Ca(2+)-dependent, inwardly rectify and have relative ionic permeabilities of K(+)>Cs(+)>Li(+)=Na(+). Both components were resistant to block by charybdotoxin and iberiotoxin, known IK and BK channel blockers, but were attenuated by the tricyclic antidepressant cyproheptadine (>95% block at 1 mM). The SK channel opener 1-EBIO could still produce channel activation in the presence of apamin. Importantly, hSK2 and hSK3 channels also exhibit partial apamin sensitivity in our experimental paradigm (IC(50) values of 0.14 nM and 1.1 nM, respectively, and maximal percentage inhibition values of 47+/-7% and 58+/-9%, respectively). Our data indicate that, at least in a recombinant expression system, all three SK channels can be partially

  9. Pore helix domain is critical to camphor sensitivity of transient receptor potential vanilloid 1 channel.

    PubMed

    Marsakova, Lenka; Touska, Filip; Krusek, Jan; Vlachova, Viktorie

    2012-04-01

    The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.

  10. A Single Crossing-Over Event in Voltage-Sensitive Na+ Channel Genes May Cause Critical Failure of Dengue Mosquito Control by Insecticides

    PubMed Central

    Hirata, Koichi; Komagata, Osamu; Itokawa, Kentaro; Yamamoto, Atsushi; Tomita, Takashi; Kasai, Shinji

    2014-01-01

    The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti. PMID:25166902

  11. mTor Regulates Lysosomal ATP-sensitive Two-Pore Na+ Channel to Adapt to Metabolic State

    PubMed Central

    Navarro, Betsy; Seo, Young-jun; Aranda, Kimberly; Shi, Lucy; Battaglia-Hsu, Shyuefang; Nissim, Itzhak; Clapham, David E.; Ren, Dejian

    2014-01-01

    SUMMARY Survival in the wild requires organismal adaptations to the availability of nutrients. Endosomes and lysosomes are key intracellular organelles that couple nutrition and metabolic status to cellular responses, but how they detect cytosolic ATP levels is not well understood. Here we identify an endolysosomal ATP-sensitive Na+ channel (lysoNaATP). The channel is a complex formed by Two-Pore Channels (TPC1 and TPC2), ion channels previously thought to be gated by nicotinic acid adenine dinucleotide phosphate (NAADP), and the mammalian target of rapamycin (mTOR). The channel complex detects nutrient status, becomes constitutively open upon nutrient removal and mTOR translocation off the lysosomal membrane, and controls the lysosome's membrane potential, pH stability, and the amino acid homeostasis. Mutant mice lacking lysoNaATP have much reduced exercise endurance after fasting. Thus, TPCs are a new ion channel family that couple the cell's metabolic state to endolysosomal function and are crucial for physical endurance during food restriction. PMID:23394946

  12. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

    PubMed Central

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir

    2012-01-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190

  13. Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA

    NASA Astrophysics Data System (ADS)

    Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.

    2013-05-01

    Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a

  14. Reconnaissance survey of sulfonamide, sulfonylurea, and imidazolinone herbicides in surface streams and groundwater of the Midwestern United States

    USGS Publications Warehouse

    Steinheimer, T.R.; Pfeiffer, R.L.; Scoggin, K.D.; Battaglin, W.A.

    2000-01-01

    The study objective was to conduct a small scale synoptic survey of representative water resources draining agricultural land for occurrence of several herbicide residues. These new classes of herbicides are commonly applied pre-emergence or post-emergence in conservation tillage systems to control grasses and broadleaf weeds in cropped and noncropped areas. Both surface water and groundwater samples were collected from 44 midwestern locations during the summer of 1997, and analyzed for herbicide residues of 15 sulfonylurea and imidazolinone chemicals, and one sulfonamide. Each site was sampled between mid-June and late-October with several stream sites sampled twice. The method, developed jointly by the chemical manufacturer's and the U.S. Environmental Protection Agency, provides a 100 ng/L limit of quantitation in surface water for all analytes. Analytes were detected and identity confirmed in surface water at six sites and in ground water at two sites. The most frequently detected herbicides were imazaquin, imazethapyr, and nicosulfuron. For field studies in which the source of surface and ground water associated with the farming system on the agricultural landscape is known, the sensitivity of the method can be improved with only minor modifications in detection criteria.

  15. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J

    2014-01-01

    Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed

  16. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  17. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC)*

    PubMed Central

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik

    2016-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529

  18. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC).

    PubMed

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik

    2016-11-18

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Combination Therapy With Exenatide Plus Pioglitazone Versus Basal/Bolus Insulin in Patients With Poorly Controlled Type 2 Diabetes on Sulfonylurea Plus Metformin: The Qatar Study

    PubMed Central

    Abdul-Ghani, Muhammad; Migahid, Osama; Megahed, Ayman; Adams, John; Triplitt, Curtis; DeFronzo, Ralph A.; Zirie, Mahmoud; Jayyousi, Amin

    2017-01-01

    OBJECTIVE The Qatar Study was designed to examine the efficacy of combination therapy with exenatide plus pioglitazone versus basal/bolus insulin in patients with long-standing poorly controlled type 2 diabetes mellitus (T2DM) on metformin plus a sulfonylurea. RESEARCH DESIGN AND METHODS The study randomized 231 patients with poorly controlled (HbA1c >7.5%, 58 mmol/mol) T2DM on a sulfonylurea plus metformin to receive 1) pioglitazone plus weekly exenatide (combination therapy) or 2) basal plus prandial insulin (insulin therapy) to maintain HbA1c <7.0% (53 mmol/mol). RESULTS After a mean follow-up of 12 months, combination therapy caused a robust decrease in HbA1c from 10.0 ± 0.6% (86 ± 5.2 mmol/mol) at baseline to 6.1 ± 0.1% (43 ± 0.7 mmol/mol) compared with 7.1 ± 0.1% (54 ± 0.8 mmol/mol) in subjects receiving insulin therapy. Combination therapy was effective in lowering the HbA1c independent of sex, ethnicity, BMI, or baseline HbA1c. Subjects in the insulin therapy group experienced significantly greater weight gain and a threefold higher rate of hypoglycemia than patients in the combination therapy group. CONCLUSIONS Combination exenatide/pioglitazone therapy is a very effective and safe therapeutic option in patients with long-standing poorly controlled T2DM on metformin plus a sulfonylurea. PMID:28096223

  20. Design, synthesis and biological evaluation of novel ring-opened cromakalim analogues with relaxant effects on vascular and respiratory smooth muscles and as stimulators of elastin synthesis.

    PubMed

    Bouhedja, Mourad; Peres, Basile; Fhayli, Wassim; Ghandour, Zeinab; Boumendjel, Ahcène; Faury, Gilles; Khelili, Smail

    2018-01-20

    Two new series of ring-opened analogues of cromakalim bearing sulfonylurea moieties (series A: with N-unmethylated sulfonylureas, series B: with N-methylated sulfonylureas) were synthesized and tested as relaxants of vascular and respiratory smooth muscles (rat aorta and trachea, respectively). Ex vivo biological evaluations indicated that the most active compounds, belonging to series B, displayed a marked vasorelaxant activity on endothelium-intact aortic rings and the trachea. A majority of series B compounds exhibited a higher vasorelaxant activity (EC 50  < 22 μM) than that of the reference compound diazoxide (EC 50  = 24 μM). Interestingly, several tested compounds of series B also presented stronger relaxant effects on the trachea than the reference compound cromakalim (EC 50  = 124 μM), in particular compounds B4, B7 and B16 (EC 50  < 10 μM). By contrast, series A derivatives were poorly active on aortic rings (EC 50  > 57 μM for all, and EC 50  > 200 μM for a majority of them), but some of them showed an interesting relaxing effect on trachea (i.e. A15 and A33, EC 50  = 30 μM). The most potent compounds of both series, i.e. A15, A33 and B16, tested on aortic rings in the presence of glibenclamide or 80 mM KCl, suggested that they acted as voltage-gated Ca 2+ channel blockers, like verapamil, instead of being ATP-potassium channel activators, as is cromakalim, the parent molecule. Further investigations on cultured vascular smooth muscle cells showed a strong stimulating effect on elastin synthesis, especially compound B16, which was more active at 20 μM than diazoxide, a reference ATP-sensitive potassium channel activator. Taken together, our results show that the N-methylation of the sulfonylurea moieties of ring-opened cromakalim analogues led to new compounds blocking calcium-gated channels, which had a major impact on the arterial and tracheal activities as well as selectivity. Copyright © 2017

  1. Differential sensitivity of TREK–1, TREK–2 and TRAAK background potassium channels to the polycationic dye ruthenium red

    PubMed Central

    Braun, G; Lengyel, M; Enyedi, P; Czirják, G

    2015-01-01

    Background and Purpose Pharmacological separation of the background potassium currents of closely related K2P channels is a challenging problem. We previously demonstrated that ruthenium red (RR) inhibits TASK-3 (K2P9.1), but not TASK-1 (K2P3.1) channels. RR has been extensively used to distinguish between TASK currents in native cells. In the present study, we systematically investigate the RR sensitivity of a more comprehensive set of K2P channels. Experimental Approach K+ currents were measured by two-electrode voltage clamp in Xenopus oocytes and by whole-cell patch clamp in mouse dorsal root ganglion (DRG) neurons. Key Results RR differentiates between two closely related members of the TREK subfamily. TREK-2 (K2P10.1) proved to be highly sensitive to RR (IC50 = 0.2 μM), whereas TREK-1 (K2P2.1) was not affected by the compound. We identified aspartate 135 (D135) as the target of the inhibitor in mouse TREK-2c. D135 lines the wall of the extracellular ion pathway (EIP), a tunnel structure through the extracellular cap characteristic for K2P channels. TREK-1 contains isoleucine in the corresponding position. The mutation of this isoleucine (I110D) rendered TREK-1 sensitive to RR. The third member of the TREK subfamily, TRAAK (K2P4.1) was more potently inhibited by ruthenium violet, a contaminant in some RR preparations, than by RR. DRG neurons predominantly express TREK-2 and RR-resistant TREK-1 and TRESK (K2P18.1) background K+ channels. We detected the RR-sensitive leak K+ current component in DRG neurons. Conclusions and Implications We propose that RR may be useful for distinguishing TREK-2 (K2P10.1) from TREK-1 (K2P2.1) and other RR-resistant K2P channels in native cells. PMID:25409575

  2. Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry.

    PubMed

    Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her

    2016-02-01

    This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15  s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4)  RIU can be achieved.

  3. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.

    PubMed

    Miki, Takashi; Minami, Kohtaro; Zhang, Li; Morita, Mizuo; Gonoi, Tohru; Shiuchi, Tetsuya; Minokoshi, Yasuhiko; Renaud, Jean-Marc; Seino, Susumu

    2002-12-01

    ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no K(ATP) channel activity in their skeletal muscles. A 2-deoxy-[(3)H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(-/-) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(-/-) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(-/-) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(-/-) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(-/-) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the K(ATP) channels.

  4. Pharmacokinetic and Pharmacodynamic Drug Interaction Study of Piragliatin, a Glucokinase Activator, and Glyburide, a Sulfonylurea, in Type 2 Diabetic Patients.

    PubMed

    Zhai, S; Georgy, A; Liang, Z; Zhi, J

    2016-11-01

    A glucokinase activator and a sulfonylurea might be coprescribed to synergize treatment success for type 2 diabetes (T2D). This clinical pharmacology study was designed to investigate the potential glucose-lowering effect or pharmacodynamic (PD), pharmacokinetic (PK), and safety/tolerability interactions between piragliatin and glyburide in T2D patients already taking glyburide but not adequately controlled. This was an open-label, multiple-dose, 3-period, single-sequence crossover design: on days -1, 6, and 12, PD and PK samples were drawn with glyburide alone (period 0), piragliatin + glyburide (period 1), and piragliatin alone (period 2) treatments. The glucose-lowering effect, including fasting plasma glucose (FPG), of piragliatin was more pronounced when it was administered concomitantly with glyburide as compared to piragliatin or glyburide administered alone. However, this enhancement cannot be explained by a potential PK interaction between piragliatin and glyburide. Other than hypoglycemia, there were no clinically relevant safety findings. Thus, the enhanced PD effect warrants further investigation to define the optimal dose combination between glucokinase activators and sulfonylureas with regard to efficacy, safety, and tolerability. © 2016, The American College of Clinical Pharmacology.

  5. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu; Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu; Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology tomore » atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal

  6. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.

    PubMed

    Lázaro-Ibáñez, G G; Torres-López, J E; Granados-Soto, V

    2001-08-24

    The involvement of nitric oxide (NO), cyclic GMP and ATP-sensitive K(+) channels in the antinociceptive effect of ketorolac was assessed using the formalin test in the rat. Local administration of ketorolac in a formalin-injured paw produced a dose-dependent antinociceptive effect due to a local action, as drug administration in the contralateral paw was ineffective. Pretreatment of the injured paw with N(G)-L-nitro-arginine methyl ester (L-NAME, an NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) or glibenclamide (an ATP-sensitive K(+) channel blocker) prevented ketorolac-induced antinociception. However, pretreatment with saline or N(G)-D-nitro-arginine methyl ester (D-NAME) did not block antinociception. Local administration of S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) was inactive by itself, but increased the effect of ketorolac. The present results suggest that the antinociceptive effect of ketorolac involves activation of the NO-cyclic GMP pathway, followed by an opening of ATP-sensitive K(+) channels at the peripheral level.

  7. The Correlation Between Urinary 8-Iso-Prostaglandin F2α and Hydrogen Peroxide Toward Renal Function in T2DM Patients Consuming Sulfonylurea and Combination of Metformin-Sulfonylurea.

    PubMed

    Sauriasari, Rani; Wulandari, Fitri; Nurifahmi, Rahmaningtyas; Sekar, Andisyah P; Susilo, Veronika Y

    2018-01-01

    Renal dysfunction is a common complication in type 2 diabetes mellitus patients associated with oxidative damage which could be characterized by 8-iso-prostaglandin F2α and hydrogen peroxide level as oxidative stress markers. The aim of our study is to determine if there is a difference in 8-iso-prostaglandin F2α and hydrogen peroxide levels between sulfonylurea and combination of metformin-sulfonylurea in diabetic patients. We also wanted to determine if these oxidative stress markers correlate with the estimated Glomerular Filtration Rate (eGFR). We conducted a cross-sectional study with inclusion of 55 patients with type 2 diabetes mellitus in Dr. Sitanala Tangerang Hospital, Indonesia with purposive sampling. The value of eGFR was obtained by serum creatinine levels, while the level of 8-iso-prostaglandin F2α was measured by ELISA and urinary hydrogen peroxide using FOX-1 (Ferrous Ion Oxidation Xylenol Orange 1). There was no difference in 8-iso-prostaglandin F2α and hydrogen peroxide level between the two groups (p=0.088 and p=0.848). Moreover, there was no difference in eGFR values between the two groups, measured by Cockroft-Gault, MDRD, and CKD-EPI. 8-iso-prostaglandin F2α (n=55) was positively correlated with eGFR based on Cockroft-Gault (r=0.382; p=0.009), whereas urinary hydrogen peroxide (n=47) also generate significant positive correlation with eGFR based on the MDRD equation (r=0.326; p=0.021). Linear regression analysis showed that 8-iso-prostaglandin F2α is the most predictive factor and the only significant factor for eGFR in Cockroft-Gault, MDRD and also CKDEPI, even after controlled by gender, age, BMI, HbA1c, systole, and H2O2. The two treatments did not have any significant differences in antioxidant activity. However, an increase of urinary 8-iso-prostaglandin F2. and hydrogen peroxide which correlates with eGFR in the total sample may play a significant role in the pathophysiology of diabetic nephropathy. Copyright© Bentham Science

  8. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.

    PubMed

    Brustovetsky, Tatiana; Shalbuyeva, Natalia; Brustovetsky, Nickolay

    2005-10-01

    Pharmacological modulation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) sensitive to diazoxide and 5-hydroxydecanoate (5-HD) represents an attractive strategy to protect cells against ischaemia/reperfusion- and stroke-related injury. To re-evaluate a functional role for the mitoKATP in brain, we used Percoll-gradient-purified brain nonsynaptosomal mitochondria in a light absorbance assay, in radioisotope measurements of matrix volume, and in measurements of respiration, membrane potential (DeltaPsi) and depolarization-induced K+ efflux. The changes in mitochondrial morphology were evaluated by transmission electron microscopy (TEM). Polyclonal antibodies raised against certain fragments of known sulphonylurea receptor subunits, SUR1 and SUR2, and against different epitopes of K+ inward rectifier subunits Kir 6.1 and Kir 6.2 of the ATP-sensitive K+ channel of the plasma membrane (cellKATP), were employed to detect similar subunits in brain mitochondria. A variety of plausible blockers (ATP, 5-hydroxydecanoate, glibenclamide, tetraphenylphosphonium cation) and openers (diazoxide, pinacidil, chromakalim, minoxidil, testosterone) of the putative mitoKATP were applied to show the role of the channel in regulating matrix volume, respiration, and DeltaPsi and K+ fluxes across the inner mitochondrial membrane. None of the pharmacological agents applied to brain mitochondria in the various assays pinpointed processes that could be unequivocally associated with mitoKATP activity. In addition, immunoblotting analysis did not provide explicit evidence for the presence of the mitoKATP, similar to the cellKATP, in brain mitochondria. On the other hand, the depolarization-evoked release of K+ suppressed by ATP could be re-activated by carboxyatractyloside, an inhibitor of the adenine nucleotide translocase (ANT). Moreover, bongkrekic acid, another inhibitor of the ANT, inhibited K+ efflux similarly to ATP. These observations implicate the ANT in ATP-sensitive K

  9. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    PubMed Central

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  10. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels.

    PubMed

    Zhang, Nan; Li, Kaiwei; Cui, Ying; Wu, Zhifang; Shum, Perry Ping; Auguste, Jean-Louis; Dinh, Xuan Quyen; Humbert, Georges; Wei, Lei

    2018-02-13

    All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.

  11. Hyperinsulinemia and sulfonylurea use are independently associated with left ventricular diastolic dysfunction in patients with type 2 diabetes mellitus with suboptimal blood glucose control

    PubMed Central

    Inoue, Tomoaki; Maeda, Yasutaka; Sonoda, Noriyuki; Sasaki, Shuji; Kabemura, Teppei; Kobayashi, Kunihisa; Inoguchi, Toyoshi

    2016-01-01

    Objective Although diabetes mellitus is associated with an increased risk of heart failure with preserved ejection fraction, the underlying mechanisms leading to left ventricular diastolic dysfunction (LVDD) remain poorly understood. The study was designed to assess the risk factors for LVDD in patients with type 2 diabetes mellitus. Research design and methods The study cohort included 101 asymptomatic patients with type 2 diabetes mellitus without overt heart disease. Left ventricular diastolic function was estimated as the ratio of early diastolic velocity (E) from transmitral inflow to early diastolic velocity (e’) of tissue Doppler at mitral annulus (E/e’). Parameters of glycemic control, plasma insulin concentration, treatment with antidiabetic drugs, lipid profile, and other clinical characteristics were evaluated, and their association with E/e’ determined. Patients with New York Heart Association class >1, ejection fraction <50%, history of coronary artery disease, severe valvulopathy, chronic atrial fibrillation, or creatinine clearance <30 mL/min, as well as those receiving insulin treatment, were excluded. Results Univariate analysis showed that E/e’ was significantly correlated with age (p<0.001), sex (p<0.001), duration of diabetes (p=0.002), systolic blood pressure (p=0.017), pulse pressure (p=0.010), fasting insulin concentration (p=0.025), and sulfonylurea use (p<0.001). Multivariate linear regression analysis showed that log E/e’ was significantly and positively correlated with log age (p=0.034), female sex (p=0.019), log fasting insulin concentration (p=0.010), and sulfonylurea use (p=0.027). Conclusions Hyperinsulinemia and sulfonylurea use may be important in the development of LVDD in patients with type 2 diabetes mellitus. PMID:27648285

  12. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-08-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealedmore » that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.« less

  13. Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter.

    PubMed

    Garza-López, Edgar; Chávez, Julio César; Santana-Calvo, Carmen; López-González, Ignacio; Nishigaki, Takuya

    2016-07-01

    CatSper is a sperm-specific Ca(2+) channel that plays an essential role in the male fertility. However, its biophysical properties have been poorly characterized mainly due to its deficient heterologous expression. As other voltage-gated Ca(2+) channels (CaVs), CatSper possesses a conserved Ca(2+)-selective filter motif ([T/S]x[D/E]xW) in the pore region. Interestingly, CatSper conserves four aspartic acids (DDDD) as the negatively charged residues in this motif while high voltage-activated CaVs have four glutamic acids (EEEE) and low voltage-activated CaVs possess two glutamic acids and two aspartic acids (EEDD). Previous studies based on site-directed mutagenesis of L- and T-type channels showed that the number of D seems to have a negative correlation with their cadmium (Cd(2+)) sensitivity. These results suggest that CatSper (DDDD) would have low sensitivity to Cd(2+). To explore Cd(2+)-sensitivity and -permeability of CatSper, we performed two types of experiments: 1) Electrophysiological analysis of heterologously expressed human CaV3.1 channel and three pore mutants (DEDD, EDDD and DDDD), 2) Cd(2+) imaging of human spermatozoa with FluoZin-1. Electrophysiological studies showed a significant increase in Cd(2+) and manganese (Mn(2+)) currents through the CaV3.1 mutants as well as a reduction in the inhibitory effect of Cd(2+) on the Ca(2+) current. In fluorescence imaging with human sperm, we observed an increase in Cd(2+) influx potentiated by progesterone, a potent activator of CatSper. These results support our hypothesis, namely that Cd(2+)-sensitivity and -permeability are related to the absolute number of D in the Ca(2+)-selective filter independently to the type of the Cav channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells.

    PubMed

    Schwab, Albrecht; Nechyporuk-Zloy, Volodymyr; Gassner, Birgit; Schulz, Christoph; Kessler, Wolfram; Mally, Sabine; Römer, Michael; Stock, Christian

    2012-02-01

    Calcium-sensitive potassium channels (K(Ca)3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. K(Ca)3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo- and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hK(Ca)3.1. A hK(Ca)3.1 channel construct with an HA-tag in the extracellularly located S3-S4 linker was transfected into migrating transformed renal epithelial MDCK-F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell-based ELISA. Movement of hK(Ca)3.1 channel containing vesicles as well as migration of MDCK-F cells were monitored by means of time lapse video microscopy. hK(Ca)3.1 channels are endocytosed during migration. Most of the hK(Ca)3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule-dependent manner towards the front of MDCK-F cells. Our experiments indicate that endocytosis of hK(Ca)3.1 channels is clathrin-dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C-terminal dileucine motif is mutated. The C-terminal dileucine motif is also important for the subcellular localization of hK(Ca)3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hK(Ca)3.1 channels contributes to their characteristic subcellular distribution in migrating cells. Copyright © 2011 Wiley Periodicals, Inc.

  15. ADULT AND JUVENILE RAT SODIUM CHANNEL (NAV1.2 AND NAV1.3) SENSITIVITY TO THE PYRETHROID INSECTICIDE DELTAMETHRIN.

    EPA Science Inventory

    Adult rats are less sensitive than juveniles to the acute neurotoxicity of the Type II pyrethroid insecticide deltamethrin (DLT). Voltage-sensitive sodium channels (VSSCs) are the primary target of DLT and are differentially expressed during development, with expression of Nav1.2...

  16. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    PubMed

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  17. Bovine chromaffin cells possess FTX-sensitive calcium channels.

    PubMed

    Gandía, L; Albillos, A; García, A G

    1993-07-30

    The effects of the synthetic analogue of the toxin from the venom of the funnel-web spider Agenelopsis aperta (sFTX) on whole-cell Ba2+ currents through Ca2+ channels were studied in cultured bovine chromaffin cells. sFTX selectively and reversibly blocked a significant component (55 +/- 3%) of the whole-cell IBa. Effects of sFTX were additive to those of omega-conotoxin GVIA, a selective blocker of N-type Ca2+ channels, and those of furnidipine, a novel dihydropyridine L-type Ca2+ channel blocker. We conclude that the cultured bovine chromaffin cells, in addition to N- and L-type Ca2+ channels, possess a P-type component in their whole-cell currents through their Ca2+ channels.

  18. Down-regulation of delayed rectifier K+ channels in the hippocampus of seizure sensitive gerbils.

    PubMed

    Lee, Sang-Moo; Kim, Ji-Eun; Sohn, Jong-Hee; Choi, Hui-Chul; Lee, Ju-Sang; Kim, Sung-Hun; Kim, Min-Ju; Choi, Ihn-Geun; Kang, Tae-Cheon

    2009-12-16

    In order to confirm the species-specific distribution of voltage-gated K(+) (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv2.x, Kv3.x and Kv4.x channel immunoreactivities in the hippocampi of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference in Kv2.1, Kv3.4, Kv4.2 and Kv4.3 immunoreactivity in the hippocampus between SR and SS gerbils. In comparison to SR gerbils, Kv3.1b immunoreactivity in neurons was significantly lower in SS gerbils instead Kv3.1b-immunoreactive astrocytes were clearly observed in SS gerbils (p<0.05). Kv3.2 immunoreactivity was also significantly lower in neurons of SS gerbils than in those of SR gerbils (p<0.05). Considering the findings of our previous study, these findings suggest that delayed rectifier K(+) channels (Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1 and Kv3.1-2), not A-type K(+) channels (Kv1.4, Kv3.4 and Kv4.x), may be down-regulated in the SS gerbil hippocampus, as compared to SR gerbils.

  19. Mutation of a single residue in the S2-S3 loop of CNG channels alters the gating properties and sensitivity to inhibitors.

    PubMed

    Crary, J I; Dean, D M; Maroof, F; Zimmerman, A L

    2000-12-01

    We previously found that native cyclic nucleotide-gated (CNG) cation channels from amphibian rod cells are directly and reversibly inhibited by analogues of diacylglycerol (DAG), but little is known about the mechanism of this inhibition. We recently determined that, at saturating cGMP concentrations, DAG completely inhibits cloned bovine rod (Brod) CNG channels while only partially inhibiting cloned rat olfactory (Rolf) channels (Crary, J.I., D.M. Dean, W. Nguitragool, P.T. Kurshan, and A.L. Zimmerman. 2000. J. Gen. Phys. 116:755-768; in this issue). Here, we report that a point mutation at position 204 in the S2-S3 loop of Rolf and a mouse CNG channel (Molf) found in olfactory epithelium and heart, increased DAG sensitivity to that of the Brod channel. Mutation of this residue from the wild-type glycine to a glutamate (Molf G204E) or aspartate (Molf G204D) gave dramatic increases in DAG sensitivity without changing the apparent cGMP or cAMP affinities or efficacies. However, unlike the wild-type olfactory channels, these mutants demonstrated voltage-dependent gating with obvious activation and deactivation kinetics. Interestingly, the mutants were also more sensitive to inhibition by the local anesthetic, tetracaine. Replacement of the position 204 glycine with a tryptophan residue (Rolf G204W) not only gave voltage-dependent gating and an increased sensitivity to DAG and tetracaine, but also showed reduced apparent agonist affinity and cAMP efficacy. Sequence comparisons show that the glycine at position 204 in the S2-S3 loop is highly conserved, and our findings indicate that its alteration can have critical consequences for channel gating and inhibition.

  20. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  1. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    PubMed

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  2. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels

    PubMed Central

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred

    2016-01-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular

  3. Inherited macular degeneration-associated mutations in CNGB3 increase the ligand sensitivity and spontaneous open probability of cone cyclic nucleotide-gated channels

    PubMed Central

    Meighan, Peter C.; Peng, Changhong; Varnum, Michael D.

    2015-01-01

    Cyclic nucleotide gated (CNG) channels are a critical component of the visual transduction cascade in the vertebrate retina. Mutations in the genes encoding these channels have been associated with a spectrum of inherited retinal disorders. To gain insight into their pathophysiological mechanisms, we have investigated the functional consequences of several CNGB3 mutations, previously associated with macular degeneration (Y469D and L595F) or complete achromatopsia (S156F, P309L, and G558C), by expressing these subunits in combination with wild-type CNGA3 in Xenopus oocytes and characterizing them using patch-clamp recordings in the inside-out configuration. These mutations did not prevent the formation of functional heteromeric channels, as indicated by sensitivity to block by L-cis-diltiazem. With the exception of S156F, each of the mutant channels displayed electrophysiological properties reflecting enhanced channel activity at physiological concentrations of cGMP (i.e., a gain-of-function phenotype). The increased channel activity produced by these mutations resulted from either increased functional expression levels, or increased sensitivity to cyclic nucleotides. Furthermore, L595F increased the spontaneous open probability in the absence of activating ligand, signifying a ligand independent gain-of-function change. In addition to the CNGB3 disease-associate mutations, we characterized the effects of several common CNGB3 and CNGA3 single-nucleotide polymorphisms (SNPs) on heteromeric CNGA3+CNGB3 channel function. Two of the SNPs examined (A3-T153M, and B3-W234C) produced decreased ligand sensitivity for heteromeric CNG channels. These changes may contribute to background disease susceptibility when combined with other genetic or non-genetic factors. Together, these studies help to define the underlying molecular phenotype for mutations relating to CNG channel disease pathogenesis. PMID:26106334

  4. Spontaneous release from mossy fiber terminals inhibits Ni2+-sensitive T-type Ca2+ channels of CA3 pyramidal neurons in the rat organotypic hippocampal slice.

    PubMed

    Reid, Christopher A; Xu, Shenghong; Williams, David A

    2008-01-01

    Mossy fibers (axons arising from dentate granule cells) form large synaptic contacts exclusively onto the proximal apical dendrites of CA3 pyramidal neurons. They can generate large synaptic currents that occur in close proximity to the soma. These properties mean that active conductance in the proximal apical dendrite could have a disproportionate influence on CA3 pyramidal neuron excitability. Ni(2+)-sensitive T-type Ca(2+) channels are important modulators of dendritic excitability. Here, we use an optical approach to determine the contribution of Ni(2+) (100 microM)-sensitive Ca(2+) channels to action potential (AP) elicited Ca(2+) flux in the soma, proximal apical and distal apical dendrites. At resting membrane potentials Ni(2+)-sensitive Ca(2+) channels do not contribute to the Ca(2+) signal in the proximal apical dendrite, but do contribute in the other cell regions. Spontaneous release from mossy fiber terminals acting on 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive postsynaptic channels underlies a tonic inhibition of Ni(2+)-sensitive channels. Chelating Zn(2+) with CaEDTA blocks CNQX-sensitive changes in Ca(2+) flux implicating a mechanistic role of this ion in T-type Ca(2+) channel block. To test if this inhibition influenced excitability, progressively larger depolarizing pulses were delivered to CA3 pyramidal neurons. CNQX significantly reduced the size of the depolarizing step required to generate APs and increased the absolute number of APs per depolarizing step. This change in AP firing was completely reversed by the addition of Ni(2+). This mechanism may reduce the impact of T-type Ca(2+) channels in a region where large synaptic events are common.

  5. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    PubMed

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  6. Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains

    NASA Astrophysics Data System (ADS)

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Nolde, Dmitry E.; Efremov, Roman G.

    2016-09-01

    Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed “iris-like” symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.

  7. Creatine kinase is physically associated with the cardiac ATP-sensitive k+ channel in vivo

    PubMed Central

    Crawford, Russell M.; Ranki, Harri J.; Botting, Catherine H.; Budas, Grant R.; Jovanovic, Aleksandar

    2007-01-01

    Cardiac sarcolemmal ATP-sensitive K+ (KATP) channels, composed of Kir6.2 and SUR2A subunits, couple the metabolic status of cells with the membrane excitability. Based on previous functional studies, we have hypothesized that creatine kinase (CK) may be a part of the sarcolemmal KATP channel protein complex. The inside-out and whole cell patch clamp electrophysiology applied on guinea pig cardiomyocytes showed that substrates of CK regulate KATP channels activity. Following immunoprecipitation of guinea-pig cardiac membrane fraction with the anti-SUR2 antibody, Coomassie blue staining revealed, besides Kir6.2 and SUR2A, a polypeptide at ∼48 kDa. Western blotting analysis confirmed the nature of putative Kir6.2 and SUR2A, whereas matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis identified p48 kDa as a muscle form of CK. In addition, the CK activity was found in the anti-SUR2A immunoprecipitate and the cross reactivity between an anti-CK antibody and the anti-SUR2A immunoprecipitate was observed as well as vice verse. Further results obtained at the level of recombinant channel subunits demonstrated that CK is directly physically associated with the SUR2A, but not the Kir6.2, subunit. All together, these results suggest that the CK is associated with SUR2A subunit in vivo, which is an integral part of the sarcolemmal KATP channel protein complex. PMID:11729098

  8. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    PubMed

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  9. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  10. The TRPM2 channel: A thermo-sensitive metabolic sensor.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2017-09-03

    Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.

  11. ATP-Sensitive K+ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility

    PubMed Central

    Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C.; Yamada, Satsuki; Terzic, Andre

    2010-01-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 KATP channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved > 800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. KATP channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the KATP channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a KATP channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the KATP channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by KATP channel deletion, establishing a systems

  12. Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK.

    PubMed

    Chae, Yun Jeong; Zhang, Jianan; Au, Paul; Sabbadini, Marta; Xie, Guo-Xi; Yost, C Spencer

    2010-12-01

    We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.

  13. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery.

    PubMed Central

    Zhang, H; Bolton, T B

    1995-01-01

    1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke

  14. Vildagliptin versus insulin in patients with type 2 diabetes mellitus inadequately controlled with sulfonylurea: results from a randomized, 24 week study.

    PubMed

    Forst, Thomas; Koch, Cornelia; Dworak, Markus

    2015-06-01

    There is limited evidence to guide the selection of second-line anti-hyperglycemic agents in patients with type 2 diabetes mellitus (T2DM) who are inadequately controlled with sulfonylurea monotherapy and are intolerant to metformin. We compared the efficacy and safety of vildagliptin 50 mg qd and Neutral Protamine Hagedorn (NPH) insulin qd in such patients. This was a 24 week, multicenter, randomized, open-label study. The co-primary endpoints were (i) proportion of patients achieving HbA1c <7.0% without any confirmed hypoglycemic events (HEs) or weight gain ≥3% (composite endpoint); (ii) rate of confirmed HEs. Treatment satisfaction was assessed using the TSQM-9 questionnaire at study end. A total of 162 patients were randomly assigned to vildagliptin (n = 83) and NPH insulin (n = 79). Similar proportion of patients achieved the composite endpoint in vildagliptin versus NPH insulin group (35.4% versus 34.2%; OR 0.985; 95% CI 0.507, 1.915; p = 0.96). After 24 weeks, 48.8% of patients in the vildagliptin group and 60.8% in the NPH insulin group achieved HbA1c <7.0%; 13.4% in the vildagliptin group and 29.1% in the insulin group had at least one confirmed HE; while 11.0% in the vildagliptin group and 22.8% in the insulin group experienced weight gain. The rate of confirmed HEs was significantly lower in patients receiving vildagliptin versus NPH insulin (1.3 versus 5.1 events per year). The TSQM-9 score for 'convenience' at week 24 increased significantly more with vildagliptin than with NPH insulin. Addition of vildagliptin and NPH insulin resulted in a similar number of patients reaching HbA1c target without HEs or weight gain in T2DM patients inadequately controlled with sulfonylurea. The addition of vildagliptin to sulfonylurea could be considered as a treatment option prior to intensification with insulin, with the advantages of a lower HE rate and greater patient convenience. Study results are limited by a higher drop-out rate in the

  15. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation

    PubMed Central

    Fan, Zheng; Neff, Robert A

    2000-01-01

    Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2ΔC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage. PMID:11118500

  16. Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.

    2013-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335

  17. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields.

  18. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics.

    PubMed

    Tang, Y; Stephenson, J L; Othmer, H G

    1996-01-01

    We study the models for calcium (Ca) dynamics developed in earlier studies, in each of which the key component is the kinetics of intracellular inositol-1,4,5-trisphosphate-sensitive Ca channels. After rapidly equilibrating steps are eliminated, the channel kinetics in these models are represented by a single differential equation that is linear in the state of the channel. In the reduced kinetic model, the graph of the steady-state fraction of conducting channels as a function of log10(Ca) is a bell-shaped curve. Dynamically, a step increase in inositol-1,4,5-trisphosphate induces an incremental increase in the fraction of conducting channels, whereas a step increase in Ca can either potentiate or inhibit channel activation, depending on the Ca level before and after the increase. The relationships among these models are discussed, and experimental tests to distinguish between them are given. Under certain conditions the models for intracellular calcium dynamics are reduced to the singular perturbed form epsilon dx/d tau = f(x, y, p), dy/d tau = g(x, y, p). Phase-plane analysis is applied to a generic form of these simplified models to show how different types of Ca response, such as excitability, oscillations, and a sustained elevation of Ca, can arise. The generic model can also be used to study frequency encoding of hormonal stimuli, to determine the conditions for stable traveling Ca waves, and to understand the effect of channel properties on the wave speed.

  19. Cantú Syndrome Resulting from Activating Mutation in the KCNJ8 Gene

    PubMed Central

    Cooper, Paige E.; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K.; van Haaften, Gijs; van Bon, Bregje W.; Hoischen, Alexander; Nichols, Colin G.

    2014-01-01

    ATP-sensitive potassium (KATP) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome, a distinct multi-organ disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of Cantú syndrome (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether co-expressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in Cantú syndrome, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from Kir6-independent SUR2 function. PMID:24700710

  20. Cantú syndrome resulting from activating mutation in the KCNJ8 gene.

    PubMed

    Cooper, Paige E; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K; van Haaften, Gijs; van Bon, Bregje W; Hoischen, Alexander; Nichols, Colin G

    2014-07-01

    ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function. © 2014 WILEY PERIODICALS, INC.

  1. Comparison of Antidiabetic Regimens in Patients with Type 2 Diabetes Uncontrolled by Combination Therapy of Sulfonylurea and Metformin: Results of the MOHAS Disease Registry in Korea

    PubMed Central

    Choi, Sung Hee; Oh, Tae Jung

    2017-01-01

    Background The aim of this study was to investigate the glucose-lowering efficacy of antidiabetic treatments in patients with type 2 diabetes mellitus (T2DM) uncontrolled by sulfonylurea plus metformin. Methods This open-label, multicenter, prospective, observational study was conducted in 144 centers in Korea, from June 2008 to July 2010, and included patients with T2DM who had received sulfonylurea and metformin for at least 3 months and had levels of glycosylated hemoglobin (HbA1c) >7.0% in the last month. Data of clinical and biochemical characteristics were collected at baseline and 6 months after treatment. The treatment option was decided at the physician's discretion. Subjects were classified into the following three groups: intensifying oral hypoglycemic agents (group A), adding basal insulin (group B), or starting intensified insulin therapy (group C). Results Of 2,995 patients enrolled, 2,901 patients were evaluated, and 504 (17.4%), 2,316 (79.8%), and 81 patients (2.8%) were classified into groups A, B, and C, respectively. Subjects in group C showed relatively higher baseline levels of HbA1c and longer duration of diabetes. The mean decrease in HbA1c level was higher in the insulin treated groups (−0.9%±1.3%, −1.6%±1.3%, and −2.4%±2.3% in groups A, B, and C, respectively, P=0.042). The proportion of patients who achieved target HbA1c <7.0% was comparable among the groups; however, intensified insulin therapy seemed to be the most effective in achieving the target HbA1c of 6.5%. Conclusion These findings suggest that insulin-based therapy will be an important option in the improved management of Korean patients with T2DM whose glycemic control is not sufficient with sulfonylurea and metformin. PMID:28537056

  2. Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel.

    PubMed

    Aziz, Qadeer; Thomas, Alison; Khambra, Tapsi; Tinker, Andrew

    2010-05-25

    The biguanides, phenformin and metformin, are used in the treatment of type II diabetes mellitus, as well as being routinely used in studies investigating AMPK activity. We used the patch-clamp technique and rubidium flux assays to determine the role of these drugs in ATP-sensitive K+ channel (K(ATP)) regulation in cell lines expressing the cloned components of K(ATP) and the current natively expressed in vascular smooth muscle cells (VSMCs). Phenformin but not metformin inhibits a number of variants of K(ATP) including the cloned equivalents of currents present in vascular and non-vascular smooth muscle (Kir6.1/SUR2B and Kir6.2/SUR2B) and pancreatic beta-cells (Kir6.2/SUR1). However it does not inhibit the current potentially present in cardiac myocytes (Kir6.2/SUR2A). The highest affinity interaction is seen with Kir6.1/SUR2B (IC50=0.55 mM) and it also inhibits the current in native vascular smooth muscle cells. The extent and rate of inhibition are similar to that seen with the known K(ATP) blocker PNU 37883A. Additionally, phenformin inhibited the current elicited through the Kir6.2DeltaC26 (functional without SUR) channel with an IC50 of 1.78 mM. Phenformin reduced the open probability of Kir6.1/SUR2B channels by approximately 90% in inside-out patches. These findings suggest that phenformin interacts directly with the pore-forming Kir6.0 subunit however the sulphonylurea receptor is able to significantly modulate the affinity. It is likely to block from the intracellular side of the channel in a manner analogous to that of PNU 37883A. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Age Decline in the Activity of the Ca2+-sensitive K+ Channel of Human Red Blood Cells

    PubMed Central

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M.; Lew, Virgilio L.

    2007-01-01

    The Ca2+-sensitive K+ channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca2+ loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age–activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K+ permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age–density distribution pattern during dehydration. However, when Ca2+ loads were used to induce maximal K+ fluxes via Gardos channels in all RBCs (F max), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F max was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age–activity relation revealed a monotonic decline in F max with cell age, with a broad quasi-Gaussian F max distribution among the RBCs. PMID:17470662

  4. Age decline in the activity of the Ca2+-sensitive K+ channel of human red blood cells.

    PubMed

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M; Lew, Virgilio L

    2007-05-01

    The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age-activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K(+) permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age-density distribution pattern during dehydration. However, when Ca(2+) loads were used to induce maximal K(+) fluxes via Gardos channels in all RBCs (F(max)), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F(max) was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age-activity relation revealed a monotonic decline in F(max) with cell age, with a broad quasi-Gaussian F(max) distribution among the RBCs.

  5. gamma-Aminobutyric acid-activated chloride channels: relationship to genetic differences in ethanol sensitivity.

    PubMed

    Allan, A M; Spuhler, K P; Harris, R A

    1988-03-01

    We demonstrated recently that low concentrations of ethanol enhanced the muscimol-stimulated chloride influx in cerebellar membranes from long sleep (LS-ethanol sensitive) mice, but had no effect on membranes from short sleep (SS-ethanol resistant) mice. The LS and SS were selected from a heterogeneous stock (HS) of mice for differential sensitivity to the hypnotic effects of ethanol as measured by the duration of the loss of the righting reflex (sleep time). In the present study, we tested 100 HS for ethanol sleep time. The mice with the shortest sleep time (HS-SS) and the mice with the longest sleep time (HS-LS) were selected and tested for the effect of ethanol and muscimol on chloride flux in cerebellum. The effects of ethanol and muscimol on both cerebellar and cortical chloride flux were also examined in rats from the 7th generation selected for differential sensitivity to the hypnotic effects of ethanol (high acute ethanol sensitive rats-HAS and low acute ethanol sensitive rats-LAS). Low concentrations of ethanol (10-30 mM) potentiated muscimol stimulation of 36Cl- uptake in both cortical and cerebellar membranes prepared from ethanol-sensitive animals (HS-LS and HAS). None of the ethanol concentrations tested altered stimulated chloride uptake in ethanol-resistant animals (HS-SS and LAS). No differences in muscimol stimulation of chloride uptake were observed between the pairs of selected lines. These findings strongly suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of gamma-aminobutyric acid-operated chloride channels to ethanol.

  6. A contrast-sensitive channelized-Hotelling observer to predict human performance in a detection task using lumpy backgrounds and Gaussian signals

    NASA Astrophysics Data System (ADS)

    Park, Subok; Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.

    2007-03-01

    Previously, a non-prewhitening matched filter (NPWMF) incorporating a model for the contrast sensitivity of the human visual system was introduced for modeling human performance in detection tasks with different viewing angles and white-noise backgrounds by Badano et al. But NPWMF observers do not perform well detection tasks involving complex backgrounds since they do not account for random backgrounds. A channelized-Hotelling observer (CHO) using difference-of-Gaussians (DOG) channels has been shown to track human performance well in detection tasks using lumpy backgrounds. In this work, a CHO with DOG channels, incorporating the model of the human contrast sensitivity, was developed similarly. We call this new observer a contrast-sensitive CHO (CS-CHO). The Barten model was the basis of our human contrast sensitivity model. A scalar was multiplied to the Barten model and varied to control the thresholding effect of the contrast sensitivity on luminance-valued images and hence the performance-prediction ability of the CS-CHO. The performance of the CS-CHO was compared to the average human performance from the psychophysical study by Park et al., where the task was to detect a known Gaussian signal in non-Gaussian distributed lumpy backgrounds. Six different signal-intensity values were used in this study. We chose the free parameter of our model to match the mean human performance in the detection experiment at the strongest signal intensity. Then we compared the model to the human at five different signal-intensity values in order to see if the performance of the CS-CHO matched human performance. Our results indicate that the CS-CHO with the chosen scalar for the contrast sensitivity predicts human performance closely as a function of signal intensity.

  7. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.

    PubMed

    Archer, Stephen L; Michelakis, Evangelos D; Thébaud, Bernard; Bonnet, Sebastien; Moudgil, Rohit; Wu, Xi-Chen; Weir, E Kenneth

    2006-01-01

    Mammals possess a specialized O2-sensing system (SOS), which compensates for encounters with hypoxia that occur during development, disease, and at altitude. Consisting of the resistance pulmonary arteries (PA), ductus arteriosus, carotid body, neuroepithelial body, systemic arteries, fetal adrenomedullary cell and fetoplacental arteries, the SOS optimizes O2-uptake and delivery. Hypoxic pulmonary vasoconstriction (HPV), a vasomotor response of resistance PAs to alveolar hypoxia, optimizes ventilation/perfusion matching and systemic pO2. Though modulated by the endothelium, HPV's core mechanism resides in the smooth muscle cell (SMC). The Redox Theory proposes that HPV results from the coordinated action of a redox sensor (proximal mitochondrial electron transport chain) which generates a diffusible mediator (a reactive O2 species, ROS) that regulates effector proteins (voltage-gated K(v) channels). Hypoxic withdrawal of ROS inhibits K(v)1.5 and K(v)2.1, depolarizes PASMCs, activates voltage-gated Ca2+ channels, increasing Ca2+ influx and causing vasoconstriction. Hypoxia's effect on ROS (decrease vs. increase) and the molecular origins of ROS (mitochondria vs. NADPH oxidase) remains controversial. Distal to this pathway, Rho kinase regulates the contractile apparatus' sensitivity to Ca2+. Also, a role for cADP ribose as a redox-regulated mediator of intracellular Ca2+ release has been proposed. Despite tissue heterogeneity in the SOS's output (vasomotion versus neurosecretion), O2-sensitive K+ channels constitute a conserved effector mechanism. Disorders of the O2-sensing may contribute to diseases, such as pulmonary hypertension.

  8. K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands.

    PubMed

    Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2008-10-01

    TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.

  9. Comparative risk for cardiovascular diseases of dipeptidyl peptidase-4 inhibitors vs. sulfonylureas in combination with metformin: Results of a two-phase study.

    PubMed

    Enders, Dirk; Kollhorst, Bianca; Engel, Susanne; Linder, Roland; Verheyen, Frank; Pigeot, Iris

    2016-01-01

    The aim was to assess whether the use of additional data from the Disease Management Program (DMP) diabetes mellitus type 2 to minimize the potential for residual confounding will alter the estimated risk of either myocardial infarction, ischemic stroke or heart failure in patients with type 2 diabetes using sulfonylureas compared to dipeptidyl peptidase-4 (DPP-4) inhibitors in addition to metformin based on routine health care data. We conducted a nested two-phase case-control study using claims data of one German health insurance from 2004 to 2013 (phase 1) and data of the DMP from 2010 to 2013 (phase 2). Adjusted odds ratios (ORs) for the combined cardiovascular event myocardial infarction, ischemic stroke or heart failure were calculated using a two-phase logistic regression. Phase 1 comprised 3179 patients (289 cases; 2890 controls) and phase 2 comprised 1968 patients (168 cases; 1800 controls). We observed an adjusted OR of 0.83 for the combined cardiovascular event (95% CI: 0.61-1.13). We observed a non-significantly reduced risk for cardiovascular diseases in patients using DPP-4 inhibitors compared to sulfonylureas in addition to metformin. This finding was not altered by the inclusion of additional information of the DMP in the analysis. However, due to the low power of this study, further studies are needed to reproduce our findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27

    PubMed Central

    Balana, Bartosz; Maslennikov, Innokentiy; Kwiatkowski, Witek; Stern, Kalyn M.; Bahima, Laia; Choe, Senyon; Slesinger, Paul A.

    2011-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels are important gatekeepers of neuronal excitability. The surface expression of neuronal GIRK channels is regulated by the psychostimulant-sensitive sorting nexin 27 (SNX27) protein through a class I (-X-Ser/Thr-X-Φ, where X is any residue and Φ is a hydrophobic amino acid) PDZ-binding interaction. The G protein-insensitive inward rectifier channel (IRK1) contains the same class I PDZ-binding motif but associates with a different synaptic PDZ protein, postsynaptic density protein 95 (PSD95). The mechanism by which SNX27 and PSD95 discriminate these channels was previously unclear. Using high-resolution structures coupled with biochemical and functional analyses, we identified key amino acids upstream of the channel's canonical PDZ-binding motif that associate electrostatically with a unique structural pocket in the SNX27-PDZ domain. Changing specific charged residues in the channel's carboxyl terminus or in the PDZ domain converts the selective association and functional regulation by SNX27. Elucidation of this unique interaction site between ion channels and PDZ-containing proteins could provide a therapeutic target for treating brain diseases. PMID:21422294

  11. G-Channel Restoration for RWB CFA with Double-Exposed W Channel

    PubMed Central

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-01-01

    In this paper, we propose a green (G)-channel restoration for a red–white–blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red–blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels. PMID:28165425

  12. G-Channel Restoration for RWB CFA with Double-Exposed W Channel.

    PubMed

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-02-05

    In this paper, we propose a green (G)-channel restoration for a red-white-blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red-blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels.

  13. Mixed functional monomers-based monolithic adsorbent for the effective extraction of sulfonylurea herbicides in water and soil samples.

    PubMed

    Pei, Miao; Zhu, Xiangyu; Huang, Xiaojia

    2018-01-05

    Effective extraction is a key step in the determination of sulfonylurea herbicides (SUHs) in complicated samples. According to the chemical properties of SUHs, a new monolithic adsorbent utilizing acrylamidophenylboronic acid and vinylimidazole as mixed functional monomers was synthesized. The new adsorbent was employed as the extraction phase of multiple monolithic fiber solid-phase microextraction (MMF-SPME) of SUHs, and the extracted SUHs were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD). Results well evidence that the prepared adsorbent could extract SUHs in environmental waters and soil effectively through multiply interactions such as boronate affinity, dipole-dipole and π-π interactions. Under the optimized extraction conditions, the limits of detection for target SUHs in environmental water and soil samples were 0.018-0.17μg/L and 0.14-1.23μg/kg, respectively. At the same time, the developed method also displayed some analytical merits including wide linear dynamic ranges, good method reproducibility, satisfactory sensitivity and low consume of organic solvent. Finally, the developed were successfully applied to monitor trace SUHs in environmental water and soil samples. The recoveries at three fortified concentrations were in the range of 70.6-119% with RSD below 11% in all cases. The obtained results well demonstrate the excellent practical applicability of the developed MMF-SPME-HPLC-DAD method for the monitoring of SUHs in water and soil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  15. Comparison of insulin sensitivity, glucose sensitivity, and first phase insulin secretion in patients treated with repaglinide or gliclazide.

    PubMed

    Wu, Chung-Ze; Pei, Dee; Hsieh, An-Tsz; Wang, Kun; Lin, Jiunn-Diann; Lee, Li-Hsiu; Chu, Yi-Min; Hsiao, Fone-Ching; Pei, Chun; Hsia, Te-Lin

    2010-03-01

    The traditional sulfonylureas with long half-lives have sustained stimulatory effects on insulin secretion compared to the short-acting insulin secretagogue. In this study, we used the frequently sampled intravenous glucose tolerance test (FSIGT) to evaluate the insulin sensitivity (IS), glucose sensitivity (SG), and acute insulin response after glucose load (AIRg) after 4 months treatment with either gliclazide or repaglinide. The design of study was randomizedcrossover. We enrolled 20 patients with new-onset type 2 diabetes (mean age, 49.3 years). Totally three FSIGTs were performed, one before and one after each of the two treatment periods as aforementioned. No significant differences in fasting plasma glucose, insulin, body mass index, blood pressure, glycated hemoglobin, or lipids were noted between the two treatments. After the repaglinide treatment, higher AIRg, lower IS, and lower SG were noted, but they did not reach statistical significance. The disposal index (DI) was also not significantly different between the two treatments. In conclusion, since non-significantly higher DI, AIRg, lower IS and SG were noted after repaglinide treatment, it might be a better treatment for diabetes, relative to gliclazide.

  16. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels

    PubMed Central

    Firth, Amy L.; Remillard, Carmelle V.; Platoshyn, Oleksandr; Fantozzi, Ivana; Ko, Eun A.; Yuan, Jason X.-J.

    2011-01-01

    The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly

  17. Modulation of Excitability of Stellate Neurons in the Ventral Cochlear Nucleus of Mice by ATP-Sensitive Potassium Channels.

    PubMed

    Bal, Ramazan; Ozturk, Gurkan; Etem, Ebru Onalan; Him, Aydin; Cengiz, Nurattin; Kuloglu, Tuncay; Tuzcu, Mehmet; Yildirim, Caner; Tektemur, Ahmet

    2018-02-01

    Major voltage-activated ionic channels of stellate cells in the ventral part of cochlear nucleus (CN) were largely characterized previously. However, it is not known if these cells are equipped with other ion channels apart from the voltage-sensitive ones. In the current study, it was aimed to study subunit composition and function of ATP-sensitive potassium channels (K ATP ) in stellate cells of the ventral cochlear nucleus. Subunits of K ATP channels, Kir6.1, Kir6.2, SUR1, and SUR2, were expressed at the mRNA level and at the protein level in the mouse VCN tissue. The specific and clearly visible bands for all subunits but that for Kir6.1 were seen in Western blot. Using immunohistochemical staining technique, stellate cells were strongly labeled with SUR1 and Kir6.2 antibodies and moderately labeled with SUR2 antibody, whereas the labeling signals for Kir6.1 were too weak. In patch clamp recordings, K ATP agonists including cromakalim (50 µM), diazoxide (0.2 mM), 3-Amino-1,2,4-triazole (ATZ) (1 mM), 2,2-Dithiobis (5-nitro pyridine) (DTNP) (330 µM), 6-Chloro-3-isopropylamino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC 55-0118) (1 µM), 6-chloro-3-(methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NN414) (1 µM), and H 2 O 2 (0.88 mM) induced marked responses in stellate cells, characterized by membrane hyperpolarization which were blocked by K ATP antagonists. Blockers of K ATP channels, glibenclamide (0.2 mM), tolbutamide (0.1 mM) as well as 5-hydroxydecanoic acid (1 mM), and catalase (500 IU/ml) caused depolarization of stellate cells, increasing spontaneous action potential firing. In conclusion, K ATP channels seemed to be composed dominantly of Kir 6.2 subunit and SUR1 and SUR2 and activation or inhibition of K ATP channels regulates firing properties of stellate cells by means of influencing resting membrane potential and input resistance.

  18. Sensitivity analysis of a new SWIR-channel measuring tropospheric CH 4 and CO from space

    NASA Astrophysics Data System (ADS)

    Jongma, Rienk T.; Gloudemans, Annemieke M. S.; Hoogeveen, Ruud W. M.; Aben, Ilse; de Vries, Johan; Escudero-Sanz, Isabel; van den Oord, Gijsbertus; Levelt, Pieternel F.

    2006-08-01

    In preparation for future atmospheric space missions a consortium of Dutch organizations is performing design studies on a nadir viewing grating-based imaging spectrometer using OMI and SCIAMACHY heritage. The spectrometer measures selected species (O 3, NO II, HCHO, H IIO, SO II, aerosols (optical depth, type and absorption index), CO and CH4) with sensitivity down to the Earth's surface, thus addressing science issues on air quality and climate. It includes 3 UV-VIS channels continuously covering the 270-490 nm range, a NIR-channel covering the 710-775 nm range, and a SWIR-channel covering the 2305-2385 nm range. This instrument concept is, named TROPOMI, part of the TRAQ-mission proposal to ESA in response to the Call for Earth Explorer Ideas 2005, and, named TROPI, part of the CAMEO-proposal prepared for the US NRC decadal study-call on Earth science and applications from space. The SWIR-channel is optional in the TROPOMI/TRAQ instrument and included as baseline in the TROPI/CAMEO instrument. This paper focuses on derivation of the instrument requirements of the SWIR-channel by presenting the results of retrieval studies. Synthetic detector spectra are generated by the combination of a forward model and an instrument simulator that includes the properties of state-of-the-art detector technology. The synthetic spectra are input to the CO and CH 4 IMLM retrieval algorithm originally developed for SCIAMACHY. The required accuracy of the Level-2 SWIR data products defines the main instrument parameters like spectral resolution and sampling, telescope aperture, detector temperature, and optical bench temperature. The impact of selected calibration and retrieval errors on the Level-2 products has been characterized. The current status of the SWIR-channel optical design with its demanding requirements on ground-pixel size, spectral resolution, and signal-to-noise ratio will be presented.

  19. Figure of merit for direct-detection optical channels

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1992-01-01

    The capacity and sensitivity of a direct-detection optical channel are calculated and compared to those of a white Gaussian noise channel. Unlike Gaussian channels in which the receiver performance can be characterized using the noise temperature, the performance of the direct-detection channel depends on both signal and background noise, as well as the ratio of peak to average signal power. Because of the signal-power dependence of the optical channel, actual performance of the channel can be evaluated only by considering both transmit and receive ends of the systems. Given the background noise power and the modulation bandwidth, however, the theoretically optimum receiver sensitivity can be calculated. This optimum receiver sensitivity can be used to define the equivalent receiver noise temperature and calculate the corresponding G/T product. It should be pointed out, however, that the receiver sensitivity is a function of signal power, and care must be taken to avoid deriving erroneous projections of the direct-detection channel performance.

  20. Identifying Candidate Genes that Underlie Cellular pH Sensitivity in Serotonin Neurons Using Transcriptomics: A Potential Role for Kir5.1 Channels

    PubMed Central

    Puissant, Madeleine M.; Mouradian, Gary C.; Liu, Pengyuan; Hodges, Matthew R.

    2017-01-01

    Ventilation is continuously adjusted by a neural network to maintain blood gases and pH. Acute CO2 and/or pH regulation requires neural feedback from brainstem cells that encode CO2/pH to modulate ventilation, including but not limited to brainstem serotonin (5-HT) neurons. Brainstem 5-HT neurons modulate ventilation and are stimulated by hypercapnic acidosis, the sensitivity of which increases with increasing postnatal age. The proper function of brainstem 5-HT neurons, particularly during post-natal development is critical given that multiple abnormalities in the 5-HT system have been identified in victims of Sudden Infant Death Syndrome. Here, we tested the hypothesis that there are age-dependent increases in expression of pH-sensitive ion channels in brainstem 5-HT neurons, which may underlie their cellular CO2/pH sensitivity. Midline raphe neurons were acutely dissociated from neonatal and mature transgenic SSePet-eGFP rats [which have enhanced green fluorescent protein (eGFP) expression in all 5-HT neurons] and sorted with fluorescence-activated cell sorting (FACS) into 5-HT-enriched and non-5-HT cell pools for subsequent RNA extraction, cDNA library preparation and RNA sequencing. Overlapping differential expression analyses pointed to age-dependent shifts in multiple ion channels, including but not limited to the pH-sensitive potassium ion (K+) channel genes kcnj10 (Kir4.1), kcnj16 (Kir5.1), kcnk1 (TWIK-1), kcnk3 (TASK-1) and kcnk9 (TASK-3). Intracellular contents isolated from single adult eGFP+ 5-HT neurons confirmed gene expression of Kir4.1, Kir5.1 and other K+ channels, but also showed heterogeneity in the expression of multiple genes. 5-HT neuron-enriched cell pools from selected post-natal ages showed increases in Kir4.1, Kir5.1, and TWIK-1, fitting with age-dependent increases in Kir4.1 and Kir5.1 protein expression in raphe tissue samples. Immunofluorescence imaging confirmed Kir5.1 protein was co-localized to brainstem neurons and glia including 5

  1. Efficient syntheses of polyamine and polyamine amide voltage-sensitive calcium channel blockers: FTX-3.3 and sFTX-3.3.

    PubMed

    Moya, E; Blagbrough, I S

    1996-02-01

    Efficient syntheses of FTX-3.3 and sFTX-3.3, voltage-sensitive calcium channel blockers are described. These modified polyamines were prepared from selectively protected polyamines and purified on a practical scale.

  2. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    PubMed Central

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  3. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    EPA Science Inventory

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  4. Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio

    2016-01-01

    Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K+ current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies. PMID:27905566

  5. Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio

    2016-12-01

    Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K + current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP 2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP 2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.

  6. A simple and highly sensitive spectroscopic fluorescence-detection system for multi-channel plastic-microchip electrophoresis based on side-entry laser-beam zigzag irradiation.

    PubMed

    Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro

    2017-06-27

    A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.

  7. LPS from Escherichia coli protects against indomethacin-induced gastropathy in rats--role of ATP-sensitive potassium channels.

    PubMed

    Gomes, Antoniella S; Lima, Lívia M F; Santos, Camila L; Cunha, Fernando Q; Ribeiro, Ronaldo A; Souza, Marcellus H L P

    2006-10-10

    The effect of lipopolysaccharide (LPS) in gastric protection has not been elucidated, but ATP-sensitive potassium (K(ATP)) channels are known to be involved in gastric defense. We evaluated the effect of LPS administration on indomethacin-induced gastropathy, and the role of K(ATP) channels in this event. Rats received intravenous (i.v.) LPS administration. After 1/2, 6, 24 or 48 h, indomethacin was injected. 3H later, gastric damage and myeloperoxidase activity were determined. Another group received LPS and 5 h later, glibenclamide, diazoxide or glibenclamide plus diazoxide. After 1 h, the rats received indomethacin and 3 h later, gastric damage and myeloperoxidase activity were evaluated. LPS reduced dose dependently gastric damage and myeloperoxidase activity induced by indomethacin. Glibenclamide reversed this LPS effect on indomethacin-induced gastropathy. Glibenclamide plus diazoxide administration did not change this LPS effect. Thus LPS has a protective effect against indomethacin-induced gastropathy, probably through activation of K(ATP) channels.

  8. Nitroxyl inhibits overt pain-like behavior in mice: role of cGMP/PKG/ATP-sensitive potassium channel signaling pathway

    PubMed Central

    Staurengo-Ferrari, Larissa; Zarpelon, Ana C.; Longhi-Balbinot, Daniela T.; Marchesi, Mario; Cunha, Thiago M.; Alves-Filho, José C.; Cunha, Fernando Q.; Ferreira, Sergio H.; Casagrande, Rubia; Miranda, Katrina M.; Verri, Waldiceu A.

    2014-01-01

    Background Several lines of evidence have indicated that nitric oxide (NO) plays complex and diverse roles in modulation of pain/analgesia. However, the roles of charged and uncharged congeners of NO are less well understood. In the present study, the antinociceptive effect of the nitroxyl (HNO) donor, Angeli’s salt (Na2N2O3; AS) was investigated in models of overt pain-like behavior. Moreover, whether the antinociceptive effect of nitroxyl was dependent on the activation of cGMP (cyclic guanosine monophosphate)/PKG (protein kinase G)/ATP-sensitive potassium channels was addressed. Methods The antinociceptive effect of AS was evaluated on phenyl-p-benzoquinone (PBQ)- and acetic acid-induced writhings and via the formalin test. In addition, pharmacological treatments targeting guanylate cyclase (ODQ), PKG (KT5923) and ATP-sensitive potassium channel (glybenclamide) were used. Results PBQ and acetic acid induced significant writhing responses over 20 min. The nociceptive response in these models were significantly reduced in a dose-dependent manner by subcutaneous pre-treatment with AS. Furthermore, AS also inhibited both phases of the formalin test. Subsequently, the inhibitory effect of AS in writhing and flinching responses were prevented by ODQ, KT5823 and glybenclamide, although these inhibitors alone did not alter the writhing score. Furthermore, pretreatment with L-cysteine, an HNO scavenger, confirmed that the antinociceptive effect of AS depends on HNO. Conclusion The present study demonstrates the efficacy of a nitroxyl donor and its analgesic mechanisms in overt pain-like behavior by activating the cGMP/PKG/ATP-sensitive potassium channel (K+) signaling pathway. PMID:24948073

  9. Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels.

    PubMed

    Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia; Yue, Zhichao; Yang, Wenzhong; He, Yanlin; Yue, Lixia

    2015-11-18

    Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.

  10. Chick cerebellar Purkinje cells express omega-conotoxin GVIA-sensitive rather than funnel-web spider toxin-sensitive calcium channels.

    PubMed

    Angulo, M C; Parra, P; Dieudonné, S

    1998-03-01

    Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.

  11. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    PubMed

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  12. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae

    PubMed Central

    Dong, Xiaofeng; Kashio, Makiko; Peng, Guangda; Wang, Xinyue; Tominaga, Makoto

    2016-01-01

    We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry. PMID:27307515

  13. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of K ATP channels, mice were pretreated with K ATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of K ATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of K ATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the K ATP channels.

  14. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  15. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid

    PubMed Central

    Xu, Rong; Hou, Shangwei; Heinemann, Stefan H.; Tian, Yutao

    2013-01-01

    Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA) at nanomolar concentrations reversibly activate human large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels containing auxiliary β1 or β4 subunits in cell-free patches. Here we examined the action of DHA on the Slo1 channel without any auxiliary subunit and sought to elucidate the biophysical mechanism and the molecular determinants of the DHA sensitivity. Measurements of ionic currents through human Slo1 (hSlo1) channels reveal that the stimulatory effect of DHA does not require activation of the voltage or Ca2+ sensors. Unlike gating of the hSlo1 channel, that of the Drosophila melanogaster Slo1 (dSlo1) channel is unaltered by DHA. Our mutagenesis study based on the differential responses of human and dSlo1 channels to DHA pinpoints that Y318 near the cytoplasmic end of S6 in the hSlo1 channel is a critical determinant of the stimulatory action of DHA. The mutation Y318S in hSlo1, which replaces Y with S as found in dSlo1, greatly diminishes the channel’s response to DHA with a 22-carbon chain whether β1 or β4 is absent or present. However, the responses to α-linolenic acid, an omegea-3 fatty acid with an 18-carbon chain, and to arachidonic acid, an omega-6 fatty acid with a 20-carbon chain, remain unaffected by the mutation. Y318 in the S6 segment of hSlo1 is thus an important determinant of the electrophysiological response of the channel to DHA. Furthermore, the mutation Y318S may prove to be useful in dissecting out the complex lipid-mediated modulation of Slo1 BK channels. PMID:24127525

  16. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    PubMed Central

    Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei

    2018-01-01

    As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  17. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broadmore » distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.« less

  18. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  19. Three types of neuronal calcium channel with different calcium agonist sensitivity.

    PubMed

    Nowycky, M C; Fox, A P; Tsien, R W

    How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.

  20. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.

    PubMed

    Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D

    2004-08-06

    Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.

  1. Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels

    PubMed Central

    Harteneck, Christian; Gollasch, Maik

    2011-01-01

    Members of the classic type of transient receptor potential channels (TRPC) represent important molecules involved in hormonal signal transduction. TRPC3/6/7 channels are of particular interest as they are components of phospholipase C driven signalling pathways. Upon receptor-activation, G-protein-mediated stimulation of phospholipase C results in breakdown of phosphatidylinositides leading to increased intracellular diacylglycerol and inositol-trisphosphate levels. Diacylglycerol activates protein kinase C, but more interestingly diacylglycerol directly activates TRPC2/3/6/7 channels. Molecular cloning, expression and characterization of TRP channels enabled reassignment of traditional inhibitors of receptor-dependent calcium entry such as SKF-96365 and 2-APB as blockers of TRPC3/6/7 and several members of non-classic TRP channels. Furthermore, several enzyme inhibitors have also been identified as TRP channel blockers, such as ACA, a phospholipase A2 inhibitor, and W-7, a calmodulin antagonist. Finally, the naturally occurring secondary plant compound hyperforin has been identified as TRPC6-selective drug, providing an exciting proof of concept that it is possible to generate TRPC-selective channel modulators. The description of Pyr3 as the first TRPC3-selective inhibitor shows that not only nature but also man is able to generate TRP-selective modulators. The review sheds lights on the current knowledge and historical development of pharmacological modulators of TRPC3/6/7. Our analysis indicates that Pyr3 and hyperforin provide promising core structures for the development of new, selective and more potent modulators of TRPC3/6/7 activity. PMID:20932261

  2. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    PubMed

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  3. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system.

    PubMed

    Coomans, C P; Geerling, J J; van den Berg, S A A; van Diepen, H C; Garcia-Tardón, N; Thomas, A; Schröder-van der Elst, J P; Ouwens, D M; Pijl, H; Rensen, P C N; Havekes, L M; Guigas, B; Romijn, J A

    2013-10-01

    Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL(-1) ) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[(3) H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS. © 2013 The British Pharmacological Society.

  4. A Heat-Sensitive TRP Channel Expressed in Keratinocytes

    NASA Astrophysics Data System (ADS)

    Peier, Andrea M.; Reeve, Alison J.; Andersson, David A.; Moqrich, Aziz; Earley, Taryn J.; Hergarden, Anne C.; Story, Gina M.; Colley, Sian; Hogenesch, John B.; McIntyre, Peter; Bevan, Stuart; Patapoutian, Ardem

    2002-06-01

    Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.

  5. Voltage gating of mechanosensitive PIEZO channels.

    PubMed

    Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R

    2018-03-15

    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.

  6. Glibenclamide for the treatment of ischemic and hemorrhagic stroke.

    PubMed

    Caffes, Nicholas; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2015-03-04

    Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channels and, in some cases, microglial KATP (Sur1-Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.

  7. Role of TRP ion channels in cancer and tumorigenesis.

    PubMed

    Shapovalov, George; Ritaine, Abigael; Skryma, Roman; Prevarskaya, Natalia

    2016-05-01

    Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.

  8. Glinide, but Not Sulfonylurea, Can Evoke Insulin Exocytosis by Repetitive Stimulation: Imaging Analysis of Insulin Exocytosis by Secretagogue-Induced Repetitive Stimulations

    PubMed Central

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2009-01-01

    To investigate the different effects between sulfonylurea (SU) and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride) or glinide (mitiglinide). Total internal reflection fluorescent (TIRF) microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose. PMID:20069052

  9. High-sensitivity two-terminal magnetoresistance devices using InGaAs/AlGaAs two-dimensional channel on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di-Cheng; Pan, You-Wei; Lin, Shih-Wei

    2016-04-25

    We demonstrate experimentally the two-terminal magnetic sensors exhibiting an extraordinary magneto-resistance effect by using an InGaAs quantum well channel with a metal-shunting structure. A high magneto-resistance of 17.3% and a sensitivity of 488.1 Ω/T have been obtained at 1 T and room temperature with our geometrical design. The two-contact configuration and the high-mobility electron transistor-compatible epitaxy structure make the devices promising for high-sensitivity magnetic sensing integration and applications.

  10. Coexpression of alpha and beta subunits of the rod cyclic GMP-gated channel restores native sensitivity to cyclic AMP: role of D604/N1201.

    PubMed Central

    Pagès, F; Ildefonse, M; Ragno, M; Crouzy, S; Bennett, N

    2000-01-01

    Coexpression of the betawt and alphawt subunits of the bovine rod channel restores two characteristics of the native channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place of aspartate D604 in the beta subunit as previously suggested (, Neuron. 15:619-625), we compared currents from wild-type (alphawt and alphawt/betawt) and from mutated channels (alphaD604N, alphaD604N/betawt, and alphawt/betaN1201D). The results show that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the beta subunit. The D604N mutation in the alpha subunit and, to a lesser extent, coexpression of the betawt subunit with the alphawt subunit reduce the open probability for cGMP compared to that of the alphawt channel. Interpretation of the data with the MWC allosteric model (model of Monod, Wyman, Changeux;, J. Mol. Biol. 12:88-118) suggests that the D604N mutation in the alpha subunits and coassembly of alpha and beta subunits alter the free energy of gating by cAMP more than that of cAMP binding. PMID:10692312

  11. Correction of thin cirrus effects in AVIRIS images using the sensitive 1.375-micron cirrus detecting channel

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.

    1995-01-01

    Using spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during various field programs, it was found that narrow channels near the center of the strong 1.38-micrometer water vapor band are very effective in detecting think cirrus clouds. Based on this observation from AVIRIS data, Gao and Kaufman proposed to put a channel centered at 1.375 micrometers with a width of 30 nm on the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micrometer MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, much larger fraction of the satellite data is expected to be identified as being covered by cirrus clouds, some of them so thin that their obscuration of the surface is very small. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. Therefore, there is a need to study radiative properties of thin cirrus clouds, so that a strategy for correction or removal of the thin cirrus effects, similar to the correction of atmospheric aerosol effect, can be formed. In this extended abstract, we describe an empirical approach for removing/correcting thin cirrus effects in AVIRIS images using channels near 1.375 microns - one step beyond the detection of cirrus clouds using these channels.

  12. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    PubMed

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  13. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels.

    PubMed

    Santarelli, Lindsey Ciali; Wassef, Ramez; Heinemann, Stefan H; Hoshi, Toshinori

    2006-03-01

    Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by -30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary beta1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues.

  14. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels

    PubMed Central

    Santarelli, Lindsey Ciali; Wassef, Ramez; Heinemann, Stefan H; Hoshi, Toshinori

    2006-01-01

    Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by −30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary β1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues. PMID:16396928

  15. Bench-to-bedside review: Antidotal treatment of sulfonylurea-induced hypoglycaemia with octreotide

    PubMed Central

    Lheureux, Philippe ER; Zahir, Soheil; Penaloza, Andrea; Gris, Mireille

    2005-01-01

    The major potential adverse effect of use of sulfonylurea agents (SUAs) is a hyperinsulinaemic state that causes hypoglycaemia. It may be observed during chronic therapeutic dosing, even with very low doses of a SUA, and especially in older patients. It may also result from accidental or intentional poisoning in both diabetic and nondiabetic patients. The traditional approach to SUA-induced hypoglycaemia includes administration of glucose, and glucagon or diazoxide in those who remain hypoglycaemic despite repeated or continuous glucose supplementation. However, these antidotal approaches are associated with several shortcomings, including further exacerbation of insulin release by glucose and glucagon, leading only to a temporary beneficial effect and later relapse into hypoglycaemia, as well as the adverse effects of both glucagon and diazoxide. Octreotide inhibits the secretion of several neuropeptides, including insulin, and has successfully been used to control life-threatening hypoglycaemia caused by insulinoma or persistent hyperinsulinaemic hypoglycaemia of infancy. Therefore, this agent should in theory also be useful to decrease glucose requirements and the number of hypoglycaemic episodes in patients with SUA-induced hypoglycaemia. This has apparently been confirmed by experimental data, one retrospective study based on chart review, and several anecdotal case reports. There is thus a need for further prospective studies, which should be adequately powered, randomized and controlled, to confirm the probable beneficial effect of octreotide in this setting. PMID:16356235

  16. Aerosol Retrievals over the Ocean using Channel 1 and 2 AVHRR Data: A Sensitivity Analysis and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.

    1999-01-01

    This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  17. Mitochondrial ryanodine-sensitive Ca2+ channels of rat liver.

    PubMed

    Kupynyak, N I; Ikkert, O V; Shlykov, S G; Babich, L G; Manko, V V

    2017-01-01

    To examine ryanodine-sensitive Ca 2+ channels in mitochondria of rat hepatocytes and their role in energy state of the cells via investigation of the ryanodine effect on mitochondrial membrane potential. Oxygen consumption was measured by polarography using the Clark electrode. The substrates of oxidation such as pyruvate (5mM), α-ketoglutarate (5mM), or succinate (5mM) were used. Oxidative phosphorylation was stimulated by the addition of adenosine diphosphate (200nM). Mitochondrial membrane potential was measured using a voltage-sensitive fluorescent probe tetramethylrhodamine-methyl-ester (0.1μM) and was analyzed by a flow cytometer. To evaluate the intact mitochondria, we used carbonil cyanide m-chlorophenyl hydrazone (CCCP, 10μM). Changes in the ionized calcium concentration in rat liver mitochondria were measured using a fluorescent probe Fluo-4 AM. Effect of ryanodine on oxygen consumption of rat liver mitochondria depends on the oxidation substrate and the incubation time. Oxidation of pyruvate in the presence of ryanodine (0.05μM) decreased the membrane potential of rat liver mitochondria by 38.4%. At higher concentrations, ryanodine (0.1μM or 1μM) led to decrease of membrane potential by 51.7% and 42.8%, respectively. In contrast, oxidation of α-ketoglutarate in the presence of ryanodine (0.05μM) increased mitochondrial membrane potential by 16.8%. However, at higher concentrations, ryanodine (0.1μM or 1μM) triggered a decreasing of membrane potential by 42.5% and 31.0%, respectively. Therefore, ryanodine at various concentrations (0.05μM, 0.1μM, or 1μM) causes differential effects on Ca 2+ concentration in the mitochondria matrix under oxidation of pyruvate or α-ketoglutarate. The data suggest the presence of ryanodine receptors in mitochondrial membrane of rat hepatocytes. Their inhibition with higher concentrations of ryanodine leads to decreasing of intra-mitochondrial Ca 2+ concentration and affecting the energy state of mictochondria

  18. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels.

    PubMed

    Murenzi, Edwin; Toltin, Abigail C; Symington, Steven B; Morgan, Molly M; Clark, John M

    2017-05-01

    Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Na v 1.1-Na v 1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Na v 1.2 and Na v 1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in

  19. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation.

    PubMed

    Song, Yijun; Cygnar, Katherine D; Sagdullaev, Botir; Valley, Matthew; Hirsh, Sarah; Stephan, Aaron; Reisert, Johannes; Zhao, Haiqing

    2008-05-08

    Ca2+/calmodulin-mediated negative feedback is a prototypical regulatory mechanism for Ca2+-permeable ion channels. In olfactory sensory neurons (OSNs), such regulation on the cyclic nucleotide-gated (CNG) channel is considered a major mechanism of OSN adaptation. To determine the role of Ca2+/calmodulin desensitization of the olfactory CNG channel, we introduced a mutation in the channel subunit CNGB1b in mice that rendered the channel resistant to fast desensitization by Ca2+/calmodulin. Contrary to expectations, mutant OSNs showed normal receptor current adaptation to repeated stimulation. Rather, they displayed slower response termination and, consequently, reduced ability to transmit olfactory information to the olfactory bulb. They also displayed reduced response decline during sustained odorant exposure. These results suggest that Ca2+/calmodulin-mediated CNG channel fast desensitization is less important in regulating the sensitivity to recurring stimulation than previously thought and instead functions primarily to terminate OSN responses.

  20. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery

    PubMed Central

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-01-01

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (5 μm, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n= 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K+ over the same time period (n= 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca2+-sensitive, large-conductance K+ (BKCa) channel opening as iberiotoxin (100 nm) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n= 5; P < 0.05). 8-pCPT-AM increased Ca2+ spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s-1μm-1 (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s−1) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n= 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nm) and to ryanodine (30 μm). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n= 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n= 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n= 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca2+-sensitive, small- and intermediate

  1. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus

    PubMed Central

    Mohamed, Zahurin; Abdullah, Nor Azizan; Haghvirdizadeh, Pantea; Haerian, Monir Sadat

    2015-01-01

    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM. PMID:26448950

  2. Retrospective comparison of voglibose or acarbose as an add-on therapy to sulfonylureas in Western Indian patients with uncontrolled overweight/obese type 2 diabetes.

    PubMed

    Talaviya, Praful A; Saboo, Banshi D; Dodiya, Hardik G; Rao, Shaival K; Joshi, Shashank R; Modh, Vipul B; Ghadiya, Sneha V

    2016-01-01

    The study was aimed to investigate the effect of voglibose or acarbose as an add-on treatment in overweight/obese type 2 diabetes (T2DM) patients who are uncontrolled with metformin and sulfonylureas (SUs) in Western part of India. A retrospective study included 77 participants (BMI≥25kg/m(2); HbA1c level>8% and<9.5%) with overweight/obese T2DM. These participants were treated with either voglibose or acarbose. Glycemic parameters (fasting blood glucose and glycated hemoglobin [HbA1c]), bodyweight, BMI and lipid parameters were evaluated at baseline, 3-month, 6-month and 9-month of treatment. Adverse events were also captured at respective time points. Voglibose showed significant reduction in HbA1c and bodyweight with short duration of treatment (6 months; P<0.05 and 9 months; P<0.01) whereas acarbose showed significant reduction with longer duration of treatment (9 months; P<0.05) when compared with baseline. Moreover, both treatment groups were reported with reduction in BMI. Further, significant improvement in lipid parameters except LDL and HDL were observed in both treatment groups when compared with baseline. None of participant was discontinued due to side effects of the treatment. In addition, the frequency of hypoglycemia was decreased in both treatment groups. Voglibose or acarbose as an add-on treatment with metformin and sulfonylureas in uncontrolled obese/overweight T2DM provides desired glycemic control, reduces bodyweight and improves lipid parameters with good tolerability profile. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  3. Amiloride-sensitive cation channel 2 genotype affects the response to a carbon dioxide panic challenge.

    PubMed

    Leibold, Nicole K; van den Hove, Daniel LA; Viechtbauer, Wolfgang; Kenis, Gunter; Goossens, Liesbet; Lange, Iris; Knuts, Inge; Smeets, Hubert J; Myin-Germeys, Inez; Steinbusch, Harry Wm; Schruers, Koen Rj

    2017-10-01

    Until recently, genetic research into panic disorder (PD) has had only limited success. Inspired by rodent research, demonstrating that the acid-sensing ion channel 1a (ASIC1a) is critically involved in the behavioral fear response to carbon dioxide (CO 2 ) exposure, variants in the human homologue gene amiloride-sensitive cation channel 2 (ACCN2) were shown to be associated with PD. However, the relationship between changes in brain pH and ACCN2, as done in rodents by CO 2 exposure, has not been investigated yet in humans. Here, we examined this link between the ACCN2 gene and the response to CO 2 exposure in two studies: in healthy volunteers as well as PD patients and using both behavioral and physiological outcome measures. More specifically, 107 healthy volunteers and 183 PD patients underwent a 35% CO 2 inhalation. Negative affect was assessed using visual analogue scales and the panic symptom list (PSL), and, in healthy volunteers, cardiovascular measurements. The single nucleotide polymorphism rs10875995 was significantly associated with a higher emotional response in PD patients and with an increase in systolic as well as diastolic blood pressure in healthy subjects. In all measurements, subjects homozygous for the T-allele showed a heightened reactivity to CO 2 . Furthermore, a trend towards an rs685012 genotype effect on the emotional response was found in PD patients. We provide the first evidence that genetic variants in the ACCN2 are associated with differential sensitivity to CO 2 in PD patients as well as healthy volunteers, further supporting ACCN2 as a promising candidate for future research to improve current treatment options.

  4. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    PubMed

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  6. Dual channel sensitive detection of hsa-miR-21 based on rolling circle amplification and quantum dots tagging.

    PubMed

    Wangt, Dan-Chen; Hu, Li-Hui; Zhou, Yu-Hui; Huang, Yu-Ting; Li, Xinhua; Zhu, Jun-Jie

    2014-04-01

    An isothermal, highly sensitive and specific assay for the detection of hsa-miR-21 with the integration of QDs tagging and rolling circle amplification was offered. In addition, a dual channel strategy for miRNA detection was proposed: anodic stripping voltammetry (ASV) and fluorescent method were both performed for the final Cd2+ signal readout. The designed strategy exhibited good specificity to hsa-miR-21 and presented comparable detection results by detection methods.

  7. Global versus local mechanisms of temperature sensing in ion channels.

    PubMed

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  8. Cav1.2 and Cav1.3 L‐type calcium channels independently control short‐ and long‐term sensitization to pain

    PubMed Central

    Radwani, Houda; Lopez‐Gonzalez, Maria José; Cattaert, Daniel; Roca‐Lapirot, Olivier; Dobremez, Eric; Bouali‐Benazzouz, Rabia; Eiríksdóttir, Emelía; Langel, Ülo; Favereaux, Alexandre; Errami, Mohammed; Landry, Marc

    2016-01-01

    Key points L‐type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short‐ and long‐term plasticity.We demonstrate that Cav1.3 but not Cav1.2 is essential for wind‐up.These results identify Cav1.3 as a key conductance responsible for short‐term sensitization in physiological pain transmission.We confirm the role of Cav1.2 in a model of long‐term plasticity associated with neuropathic pain.Up‐regulation of Cav1.2 and down‐regultation of Cav1.3 in neuropathic pain underlies the switch from physiology to pathology.Finally, the results of the present study reveal that therapeutic targeting molecular pathways involved in wind‐up may be not relevant in the treatment of neuropathy. Abstract Short‐term central sensitization to pain temporarily increases the responsiveness of nociceptive pathways after peripheral injury. In dorsal horn neurons (DHNs), short‐term sensitization can be monitored through the study of wind‐up. Wind‐up, a progressive increase in DHNs response following repetitive peripheral stimulations, depends on the post‐synaptic L‐type calcium channels. In the dorsal horn of the spinal cord, two L‐type calcium channels are present, Cav1.2 and Cav1.3, each displaying specific kinetics and spatial distribution. In the present study, we used a mathematical model of DHNs in which we integrated the specific patterns of expression of each Cav subunits. This mathematical approach reveals that Cav1.3 is necessary for the onset of wind‐up, whereas Cav1.2 is not and that synaptically triggered wind‐up requires NMDA receptor activation. We then switched to a biological preparation in which we knocked down Cav subunits and confirmed the prominent role of Cav1.3 in both naive and spinal nerve ligation model of neuropathy (SNL). Interestingly, although a clear mechanical allodynia dependent on Cav1.2 expression was observed after SNL, the amplitude of wind‐up was decreased

  9. Octanol reduces end-plate channel lifetime

    PubMed Central

    Gage, Peter W.; McBurney, Robert N.; Van Helden, Dirk

    1978-01-01

    1. Post-synaptic effects of n-octanol at concentrations of 0·1-1 mM were examined in toad sartorius muscles by use of extracellular and voltage-clamp techniques. 2. Octanol depressed the amplitude and duration of miniature end-plate currents and hence depressed neuromuscular transmission. 3. The decay of miniature end-plate currents remained exponential in octanol solutions even when the time constant of decay (τD) was decreased by 80-90%. 4. The lifetime of end-plate channels, obtained by analysis of acetylcholine noise, was also decreased by octanol. The average lifetime measured from noise spectra agreed reasonably well with the time constant of decay of miniature end-plate currents, both in control solution and in octanol solutions. 5. Octanol caused a reduction in the conductance of end-plate channels. Single channel conductance was on average about 25 pS in control solution and 20 pS in octanol. 6. In most cells the normal voltage sensitivity of the decay of miniature end-plate currents was retained in octanol solutions. The lifetime of end-plate channels measured from acetylcholine noise also remained voltage-sensitive in octanol solutions. In some experiments in which channel lifetime was exceptionally reduced the voltage sensitivity was less than normal. 7. In octanol solutions, τD was still very sensitive to temperature changes in most cells although in some the temperature sensitivity of τD was clearly reduced. Changes in τD with temperature could generally be fitted by the Arrhenius equation suggesting that a single step reaction controlled the decay of currents both in control and in octanol solutions. In some cells in which τD became less than 0·3 ms, the relationship between τD and temperature became inconsistent with the Arrhenius equation. 8. As the decay of end-plate currents in octanol solutions remains exponential, and the voltage and temperature sensitivity can be unchanged even when τD is significantly reduced, it seems likely that

  10. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts.

    PubMed

    Tosaki, A; Hellegouarch, A

    1994-02-01

    This study was conducted to elucidate the role of the adenosine triphosphate (ATP)-sensitive potassium channel blocking agent glibenclamide and the opener cromakalim in the mechanism of reperfusion-induced injury. Recently, ATP-sensitive potassium channel openers have been proposed to reduce ischemia/reperfusion-induced injury, including arrhythmias and heart function. Thus, one might hypothesize that pharmacologic agents that enhance the loss of potassium ions in the myocardium through ATP-sensitive potassium channels would be arrhythmogenic, and agents that interfere with tissue potassium ion loss would be antiarrhythmic. Isolated "working" guinea pig hearts and phosphorus-31 nuclear magnetic resonance spectroscopy were used to study the recovery of myocardial function and phosphorus compounds after 30, 40 and 50 min of normothermic global ischemia followed by reperfusion in untreated control and glibenclamide- and cromakalim-treated groups. After 30 min of ischemia, 1, 3, 10 and 30 mumol/liter of glibenclamide dose-dependently reduced the incidence of reperfusion-induced ventricular fibrillation (total) from its control value of 92% to 75%, 33% (p < 0.05), 33% (p < 0.05) and 42% (p < 0.05), respectively. The incidence of ventricular tachycardia followed the same pattern. A reduction of arrhythmias was also observed after 40 and 50 min of ischemia followed by reperfusion in the glibenclamide-treated hearts. Cromakalim, at the same concentrations, did not reduce the incidence of reperfusion-induced arrhythmias. During reperfusion, glibenclamide (3 and 10 mumol/liter) improved the recovery of coronary blood flow, aortic flow, myocardial contractility and tissue ATP and creatine phosphate content, but cromakalim failed to ameliorate the recovery of postischemic myocardium compared with that in the drug-free control hearts. The preservation of myocardial potassium ions and phosphorus compounds by glibenclamide can improve the recovery of postischemic function, but

  11. Glyburide, a K(+)(ATP)channel blocker, improves hypotension and survival in anaphylactic shock induced in Wistar rats sensitized to ovalbumin.

    PubMed

    Dhanasekaran, Subramanian; Nemmar, Abderrahim; Aburawi, Elhadi H; Kazzam, Elsadig E; Abdulle, Abdishakur; Bellou, Moufida; Bellou, Abdelouahab

    2013-11-15

    Allergens can induce anaphylactic shock and death due to serve hypotension. Potassium channel blockers (K(+)(ATP)) such as glyburide (GLY) induce vasoconstriction. The effect of (K(+)(ATP)) channel blockers on anaphylactic shock is poorly understood. Objective of the study was to test the hypothesis that GLY reduces hypotension induced in anaphylactic shock and increases survival. Rats were grouped into: G1-N=Naïve; G2-SC=Sensitized-Control; G3-SG=Sensitized-GLY (glyburide 40 mg/kg); G4-SE=Sensitized-EPI (epinephrine 10 mg/kg). G2 to G4 groups were sensitized with ovalbumin (OVA) and shock was induced by i.v. injection of OVA. Treatments were administered intravenously 5 min later. Mean arterial pressure (MAP), heart rate (HR), and mean survival time (MST) were measured for 60 min following OVA injection and treatments administration. At the end of the experiment, blood withdrawal was performed to measure plasma levels of histamine, leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)) and prostaglandin F(2) (PGF(2)). Additionally blood gas (paO2, paCO2, SaO2) and electrolytes (Na(+), K(+) and Ca (++)) were measured. MAP was normal in G1-N; severe hypotension, negative inotropic and short MST were observed in G2-SC; normalization of MAP, with lesser negative inotropism and increased MST were observed in G3-SG; full recovery was observed in G4-SE. Histamine level was significantly higher in G2-SC; reduced in G3-SG and G4-SE. PGE(2) increased in G3-SG; PGF(2) increased in G2-SC and G3-SG. Na(+) and Ca (++) concentration decreased in sensitized rats but reversed in treated groups, without change in K(+) concentration. In conclusion, our data suggest that administration of GLY reduced hypotension and increases survival time in rat anaphylactic shock.

  12. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.

    PubMed Central

    Islam, M S; Larsson, O; Nilsson, T; Berggren, P O

    1995-01-01

    In the pancreatic beta-cell, an increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) by caffeine is believed to indicate mobilization of Ca2+ from intracellular stores, through activation of a ryanodine receptor-like channel. It is not known whether other mechanisms, as well, underlie caffeine-induced changes in [Ca2+]i. We studied the effects of caffeine on [Ca2+]i by using dual-wavelength excitation microfluorimetry in fura-2-loaded beta-cells. In the presence of a non-stimulatory concentration of glucose, caffeine (10-50 mM) consistently increased [Ca2+]i. The effect was completely blocked by omission of extracellular Ca2+ and by blockers of the L-type voltage-gated Ca2+ channel, such as D-600 or nifedipine. Depletion of agonist-sensitive intracellular Ca2+ pools by thapsigargin did not inhibit the stimulatory effect of caffeine on [Ca2+]i. Moreover, this effect of caffeine was not due to an increase in cyclic AMP, since forskolin and 3-isobutyl-1-methylxanthine (IBMX) failed to raise [Ca2+]i in unstimulated beta-cells. In beta-cells, glucose and sulphonylureas increase [Ca2+]i by causing closure of ATP-sensitive K+ channels (KATP channels). Caffeine also caused inhibition of KATP channel activity, as measured in excised inside-out patches. Accordingly, caffeine (> 10 mM) induced insulin release from beta-cells in the presence of a non-stimulatory concentration of glucose (3 mM). Hence, membrane depolarization and opening of voltage-gated L-type Ca2+ channels were the underlying mechanisms whereby the xanthine drug increased [Ca2+]i and induced insulin release. Paradoxically, in glucose-stimulated beta-cells, caffeine (> 10 mM) lowered [Ca2+]i. This effect was due to the fact that caffeine reduced depolarization-induced whole-cell Ca2+ current through the L-type voltage-gated Ca2+ channel in a dose-dependent manner. Lower concentrations of caffeine (2.5-5.0 mM), when added after glucose-stimulated increase in [Ca2+]i, induced fast oscillations in [Ca2

  13. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  14. Mercury-sensitive water channels as possible sensors of water potentials in pollen

    PubMed Central

    Hill, Adrian E.

    2013-01-01

    The growing pollen tube is central to plant reproduction and is a long-standing model for cellular tip growth in biology. Rapid osmotically driven growth is maintained under variable conditions, which requires osmosensing and regulation. This study explores the mechanism of water entry and the potential role of osmosensory regulation in maintaining pollen growth. The osmotic permeability of the plasmalemma of Lilium pollen tubes was measured from plasmolysis rates to be 1.32±0.31×10–3 cm s–1. Mercuric ions reduce this permeability by 65%. Simulations using an osmotic model of pollen tube growth predict that an osmosensor at the cell membrane controls pectin deposition at the cell tip; inhibiting the sensor is predicted to cause tip bursting due to cell wall thinning. It was found that adding mercury to growing pollen tubes caused such a bursting of the tips. The model indicates that lowering the osmotic permeability per se does not lead to bursting but rather to thickening of the tip. The time course of induced bursting showed no time lag and was independent of mercury concentration, compatible with a surface site of action. The submaximal bursting response to intermediate mercuric ion concentration was independent of the concentration of calcium ions, showing that bursting is not due to a competitive inhibition of calcium binding or entry. Bursting with the same time course was also shown by cells growing on potassium-free media, indicating that potassium channels (implicated in mechanosensing) are not involved in the bursting response. The possible involvement of mercury-sensitive water channels as osmosensors and current knowledge of these in pollen cells are discussed. PMID:24098048

  15. Impact of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels in Sildenafil-Induced Cardioprotection in Rats

    PubMed Central

    Behmenburg, Friederike; Dorsch, Marianne; Huhn, Ragnar; Mally, David; Heinen, André; Hollmann, Markus W.; Berger, Marc M.

    2015-01-01

    Background Mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels are involved in myocardial ischemic preconditioning. Their role in sildenafil-induced cardioprotection is unknown. We investigated whether sildenafil-induced acute cardioprotection is mediated by activation of mBKCa channels in the rat heart in vitro. Methods Male Wistar rats (n = 8 per group) were randomized and anesthetized with pentobarbital (90 mg/kg). Hearts were isolated, mounted on a Langendorff system and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. Hearts underwent 30 min of global ischemia followed by 60 min of reperfusion. At the end of the experiments infarct size was determined by TTC staining. In the control group rats were not further treated. Sildenafil (3 μM) was administered over 10 min before the beginning of ischemia. The mBKCa channel inhibitor paxilline (1 μM) was administered with and without sildenafil before the onset of ischemia. The pathway underlying sildenafil-induced cardioprotection was further investigated with the protein kinase G blocker KT5823 (1 μM). Myocardial cGMP concentration was measured by ELISA. Data (mean±SD) were analysed with a one and two-way analysis of variance as appropriate. Results In control animals infarct size was 52±8%. Sildenafil increased cGMP concentration and reduced infarct size to 35±6% (P<0.05 vs. control). Paxilline and KT5823 completely blocked sildenafil-induced cardioprotection (paxilline+sildenafil: 50±8%, KT5823+sildenafil: 45±8%; both P<0.05 vs. sildenafil). Functional heart parameters and coronary flow were not different between the study groups. Conclusion This study shows that in male rats protein kinase G-dependent opening of mBKCa channels plays a pivotal role in sildenafil-induced cardioprotection. PMID:26671662

  16. Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    DTIC Science & Technology

    1988-10-20

    channels bind a scorpion toxins and sea anemone toxins, which act at an extracellular site and spccifically slow Na+ channel inactivation (Catterall, 1980...the molecule by antibodies as well as by polypeptide neurotoxins from scorpions, sea anemones , coral and snail (Catterall, 1980; Strichartz et al

  17. Cost-effectiveness of dapagliflozin (Forxiga®) added to metformin compared with sulfonylurea added to metformin in type 2 diabetes in the Nordic countries.

    PubMed

    Sabale, Ugne; Ekman, Mattias; Granström, Ola; Bergenheim, Klas; McEwan, Phil

    2015-02-01

    The aim of this study was to assess the long-term cost-effectiveness of dapagliflozin (Forxiga(®)) added to metformin, compared with sulfonylurea (SU) added to metformin, in Nordic Type 2 diabetes mellitus (T2DM) patients inadequately controlled on metformin. Data from a 52-week clinical trial comparing dapagliflozin and SU in combination with metformin was used in a Cardiff simulation model to estimate long term diabetes-related complications in a cohort of T2DM patients. Costs and QALYs were calculated from a healthcare provider perspective and estimated over a patient's lifetime. Compared with metformin+SU, the cost per QALY gained with dapagliflozin+metformin was €7944 in Denmark, €5424 in Finland, €4769 in Norway, and €6093 in Sweden. Metformin+dapagliflozin was associated with QALY gains ranging from 0.236 in Norway to 0.278 in Sweden and incremental cost ranging from €1125 in Norway to €1962 in Denmark. Results were robust across both one-way and probabilistic sensitivity analyses. Results were driven by weight changes associated with each treatment. Results indicate that metformin+dapagliflozin is associated with gains in QALY compared with metformin+SU in Nordic T2DM patients inadequately controlled on metformin. Dapagliflozin treatment is a cost-effective treatment alternative for Type 2 diabetes in all four Nordic countries. Copyright © 2014 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  18. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  19. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, W.M.; Emerick, M.C.; Agnew, W.S.

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated bindingmore » and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.« less

  20. Extracellular Spermine Exacerbates Ischemic Neuronal Injury through Sensitization of ASIC1a Channels to Extracellular Acidosis

    PubMed Central

    Duan, Bo; Wang, Yi-Zhi; Yang, Tao; Chu, Xiang-Ping; Yu, Ye; Huang, Yu; Cao, Hui; Hansen, Jillian; Simon, Roger P.; Zhu, Michael X.; Xiong, Zhi-Gang; Xu, Tian-Le

    2011-01-01

    Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca2+ overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine–ASIC interaction. PMID:21307247

  1. EFFECTS OF PYRETHROIDS ON VOLTAGE-SENSITIVE CALCIUM CHANNELS: A CRITICAL EVALUATION OF STRENGTHS, WEAKNESSES, DATA NEEDS, AND RELATIONSHIP TO ASSESSMENT OF CUMULATIVE NEUROTOXICITY.

    EPA Science Inventory

    A recently published review (Soderlund et al., 2002, Toxicology 171, 3-59.) of the mechanisms of acute neurotoxicity of pyrethroid compounds postulated that voltage-sensitive calcium channels (VSCC) may be a target of some pyrethroid compounds and that effects on VSCC may contrib...

  2. River channel sensitivity to change in the context of human activities and natural factors: an 80-year record of channel morphodynamics on the lower Santa Clara River, Ventura County, California

    NASA Astrophysics Data System (ADS)

    Downs, P. W.; Dusterhoff, S. R.; Sears, W. A.

    2010-12-01

    River channel adjustments arise from the application of numerous catchment-based stressors operating at different space and time scales. Natural stressors include the impact of climatic phenomena and their inheritance; human stressors include both direct and indirect factors whose impacts have grown in magnitude and intensity during the Anthropocene, especially since about 1945. Consequently, the sensitivity of river channel morphodynamics is likely to have changed also, with implications for landform understanding and river management. Reconstructing channel morphodynamics during the Anthropocene requires interpreting multiple historical and secondary data sources to document changes at sufficient (i.e., reach-scale) resolution: for the 60-km lower Santa Clara River (LSCR), Ventura County, California, we used flow, sediment and precipitation records, repeat aerial photographs, LiDAR data, repeat topographic surveys, in-channel vegetation data, field observations, numerical modeling of high flow events, and narrative accounts. The catchment historical context since European-American settlement includes periods dominated by ranching and colonization (ca.1820-1890), irrigations and diversions (ca.1890-1955), dams and river modifications (1955-1990), and urban population growth (1990-present). Natural stressors were investigated based on the correlation of instantaneous flood peaks with annual rainfall records in this semi-arid setting. Successful prediction of the majority of gauged floods since about 1950 allows a flood sequence to be reconstructed back to 1873. Floods are clustered and of considerably greater magnitude in El Nino years of the El Nino-Southern Oscillation. The great majority of sediment transport thus occurs in El Nino years so that the dominant discharge is the largest discharge on record, in contrast to humid-region alluvial rivers. Responding to these stressors, the average width of the active channel bed has become narrower by almost 50% (1938

  3. Unfolding of a temperature-sensitive domain controls voltage-gated channel activation

    PubMed Central

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.

    2016-01-01

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429

  4. Drosophila KCNQ Channel Displays Evolutionarily Conserved Electrophysiology and Pharmacology with Mammalian KCNQ Channels

    PubMed Central

    Cavaliere, Sonia; Hodge, James J. L.

    2011-01-01

    Of the five human KCNQ (Kv7) channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac IKs current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ) that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50–60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ) is a slowly activating and slowly-deactivating K+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine) and opener (zinc pyrithione). We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W) can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies. PMID:21915266

  5. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test.

    PubMed

    Nazari, Seyedeh Khadijeh; Nikoui, Vahid; Ostadhadi, Sattar; Chegini, Zahra Hadi; Oryan, Shahrbanoo; Bakhtiarian, Azam

    2016-12-01

    Previous study confirmed that the acute treatment with baclofen by inhibition of the l-arginine-nitric oxide (NO) pathway diminished the immobility behavior in the forced swimming test (FST) of mice. Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of baclofen in the forced swimming test (FST). After assessment of locomotor behavior in the open-field test (OFT), FST was applied for evaluation of the antidepressant-like activity of baclofen in mice. Baclofen at different doses (0.1, 0.3, and 1mg/kg) and fluoxetine (20mg/kg) were administrated by intraperitoneal (ip) route, 30min before the FST or OFT. To clarify the probable involvement of K ATP channels, after determination of sub-effective doses of glibenclamide as a K ATP channel blocker and cromakalim, as an opener of these channels, they were co-administrated with the sub-effective and effective doses of baclofen, respectively. Baclofen at dose 1mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20mg/kg). Co-administration of gelibenclamide sub-effective dose (1mg/kg) with baclofen (0.1mg/kg) showed a synergistic antidepressant-like effect in the FST. Also, sub-effective dose of cromakalim (0.1mg/kg) inhibited the antidepressant-like effect of baclofen (1mg/kg) in the FST. All aforementioned treatments had not any impact on the locomotor movement of mice in OFT. Our study for the first time revealed that antidepressant-like effect of baclofen on mice is K ATP -dependent, and baclofen seems that exert this effect by blocking the K ATP channels. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide.

    PubMed

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-10-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma.

  7. Bubbles, Gating, and Anesthetics in Ion Channels

    PubMed Central

    Roth, Roland; Gillespie, Dirk; Nonner, Wolfgang; Eisenberg, Robert E.

    2008-01-01

    We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water. PMID:18234836

  8. Assessment of swelling-activated Cl- channels using the halide-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium.

    PubMed Central

    Srinivas, S P; Bonanno, J A; Hughes, B A

    1998-01-01

    This study describes a quantitative analysis of the enhancement in anion permeability through swelling-activated Cl- channels, using the halide-sensitive fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Cultured bovine corneal endothelial monolayers perfused with NO3- Ringer's were exposed to I- pulses under isosmotic and, subsequently, hyposmotic conditions. Changes in SPQ fluorescence due to I- influx were significantly faster under hyposmotic than under isosmotic conditions. Plasma membrane potential (Em) was -58 and -32 mV under isosmotic and hyposmotic conditions, respectively. An expression for the ratio of I- permeability under hyposmotic condition to that under isosmotic condition (termed enhancement ratio or ER) was derived by combining the Stern-Volmer equation (for modeling SPQ fluorescence quenching by I-) and the Goldman flux equation (for modeling the electrodiffusive unidirectional I- influx). The fluorescence values and slopes at the inflection points of the SPQ fluorescence profile during I- influx, together with Em under isosmotic and hyposmotic conditions, were used to calculate ER. Based on this approach, endothelial cells were shown to express swelling-activated Cl- channels with ER = 4.9 when the hyposmotic shock was 110 +/- 10 mosM. These results illustrate the application of the SPQ-based method for quantitative characterization of swelling-activated Cl- channels in monolayers. PMID:9649372

  9. Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena.

    PubMed

    Peng, Kuan; Shu, Qin; Liu, Zhonghua; Liang, Songping

    2002-12-06

    We have isolated a highly potent neurotoxin from the venom of the Chinese bird spider, Selenocosmia huwena. This 4.1-kDa toxin, which has been named huwentoxin-IV, contains 35 residues with three disulfide bridges: Cys-2-Cys-17, Cys-9-Cys-24, and Cys-16-Cys-31, assigned by a chemical strategy including partial reduction of the toxin and sequence analysis of the modified intermediates. It specifically inhibits the neuronal tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel with the IC(50) value of 30 nm in adult rat dorsal root ganglion neurons, while having no significant effect on the tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel. This toxin seems to be a site I toxin affecting the sodium channel through a mechanism quite similar to that of TTX: it suppresses the peak sodium current without altering the activation or inactivation kinetics. The three-dimensional structure of huwentoxin-IV has been determined by two-dimensional (1)H NMR combined with distant geometry and simulated annealing calculation by using 527 nuclear Overhauser effect constraints and 14 dihedral constraints. The resulting structure is composed of a double-stranded antiparallel beta-sheet (Leu-22-Ser-25 and Trp-30-Tyr-33) and four turns (Glu-4-Lys-7, Pro-11-Asp-14, Lys-18-Lys-21 and Arg-26-Arg-29) and belongs to the inhibitor cystine knot structural family. After comparison with other toxins purified from the same species, we are convinced that the positively charged residues of loop IV (residues 25-29), especially residue Arg-26, must be crucial to its binding to the neuronal tetrodotoxin-sensitive voltage-gated sodium channel.

  10. Assessing geomorphic sensitivity in relation to river capacity for adjustment

    NASA Astrophysics Data System (ADS)

    Reid, H. E.; Brierley, G. J.

    2015-12-01

    River sensitivity describes the nature and rate of channel adjustments. An approach to analysis of geomorphic river sensitivity outlined in this paper relates potential sensitivity based on the expected capacity of adjustment for a river type to the recent history of channel adjustment. This approach was trialled to assess low, moderate and high geomorphic sensitivity for four different types of river (10 reaches in total) along the Lower Tongariro River, North Island, New Zealand. Building upon the River Styles framework, river types were differentiated based upon valley setting (width and confinement), channel planform, geomorphic unit assemblages and bed material size. From this, the behavioural regime and potential for adjustment (type and extent) were determined. Historical maps and aerial photographs were geo-rectified and the channel planform digitised to assess channel adjustments for each reach from 1928 to 2007. Floodplain width controlled by terraces, exerted a strong influence upon reach scale sensitivity for the partly-confined, wandering, cobble-bed river. Although forced boundaries occur infrequently, the width of the active channel zone is constrained. An unconfined braided river reach directly downstream of the terrace-confined section was the most geomorphically sensitive reach. The channel in this reach adjusted recurrently to sediment inputs that were flushed through more confined, better connected upstream reaches. A meandering, sand-bed river in downstream reaches has exhibited negligible rates of channel migration. However, channel narrowing in this reach and the associated delta indicate that the system is approaching a threshold condition, beyond which channel avulsion is likely to occur. As this would trigger more rapid migration, this reach is considered to be more geomorphically sensitive than analysis of its low migration rate alone would indicate. This demonstrates how sensitivity is fashioned both by the behavioural regime of a reach

  11. [Six-month effectiveness and tolerability of pioglitazone in combination with sulfonylureas or metformin for the treatment of type 2 diabetes mellitus].

    PubMed

    Rodríguez, Angel; Reviriego, Jesús; Polavieja, Pepa; Mesa, Jordi

    2008-11-29

    Pioglitazone has been reported to improve common cardiovascular risk factors in addition to glycemic control in patients with type 2 diabetes mellitus (T2DM). The changes in cardiovascular risk profile were evaluated comparatively in large cohorts either treated or not with pioglitazone-containing combinations in the current clinical setting within Spain. A nationwide prospective, controlled, observational cohort clinical study was performed in 2294 patients with T2DM who started, at the criterion of the treating physician, oral antihyperglycemic treatment with either pioglitazone plus a sulfonylurea (Pio+SU; n=851), pioglitazone plus metformin (Pio+Met; n=723) or a sulfonylurea plus metformin (SU+Met; n=720) due to inadequate control with previous therapy. Serum cholesterol, blood glucose, hemoglobin A1C, blood pressure and certain anthropometric parameters were measured at baseline and after 6 months of treatment. Serum high density lipoprotein-cholesterol increased in average (mg/dl) 2.08 with Pio+SU, 2.06 with Pio+Met and 0.67 with SU+Met; while triglycerides decreased (mg/dl) 26.6, 30.6 and 17.6 in the same cohorts. Inter-group differences were significant (p<0.001 in both parameters). Total cholesterol decreased significantly more with SU+Met than in the pioglitazone cohorts. Mean fasting plasma glucose and hemoglobin A1C reductions were significantly greater in the pioglitazone cohorts than in the SU+Met cohort: 27.74, 28.94 and 23.46 mg/dl (p=0.012); and 0.80, 0.87 and 0.71% (p=0.016) with Pio+SU, Pio+Met and SU+Met, respectively. Slight, but significant variations of body weight were also registered in the Pio+SU (+1.4 kg) and SU+Met (-0.7 kg) groups. Treatment with pioglitazone was associated with significant improvements of lipid and glycemic parameters that are linked to insulin resistance and cardiovascular risk in patients with T2DM in their routine clinical care. The non-randomised allocation of patients to treatments, inherent to its observational

  12. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    PubMed Central

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  13. PIP₂ modulation of Slick and Slack K⁺ channels.

    PubMed

    de los Angeles Tejada, Maria; Jensen, Lars Jørn; Klaerke, Dan A

    2012-07-27

    Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently described cell volume sensitivity of Slick channels, since mutated PIP(2)-insensitive Slick channels retained their sensitivity to cell volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Molecular Basis of Paraltyic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    DTIC Science & Technology

    1985-10-14

    of 9,700 daltons isolated from the coral Goni2oora gy. (1). The toxin enhances neurally mediated contraction of blood vessels and taenia coli of the...sites on the solium channel and to identify the site of GPT action within the structure of the sodium channel protein. 2. Site of Action of Brvyetoxin

  15. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    PubMed

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    PubMed

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  17. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement

    PubMed Central

    Kalra, Sanjay; Aamir, A. H.; Raza, Abbas; Das, A. K.; Azad Khan, A. K.; Shrestha, Dina; Qureshi, Md Faisal; Md Fariduddin; Pathan, Md Faruque; Jawad, Fatema; Bhattarai, Jyoti; Tandon, Nikhil; Somasundaram, Noel; Katulanda, Prasad; Sahay, Rakesh; Dhungel, Sanjib; Bajaj, Sarita; Chowdhury, Subhankar; Ghosh, Sujoy; Madhu, S. V.; Ahmed, Tofail; Bulughapitiya, Uditha

    2015-01-01

    Since their introduction in clinical practice in the 1950's, Sulfonylureas (SUs) have remained the main-stay of pharmacotherapy in the management of type 2 diabetes. Despite their well-established benefits, their place in therapy is inappropriately being overshadowed by newer therapies. Many of the clinical issues associated with the use of SUs are agent-specific, and do not pertain to the class as such. Modern SUs (glimepiride, gliclazide MR) are backed by a large body of evidence, experience, and most importantly, outcome data, which supports their role in managing patients with diabetes. Person-centred care, i.e., careful choice of SU, appropriate dosage, timing of administration, and adequate patient counseling, will ensure that deserving patients are not deprived of the advantages of this well-established class of anti-diabetic agents. Considering their efficacy, safety, pleiotropic benefits, and low cost of therapy, SUs should be considered as recommended therapy for the treatment of diabetes in South Asia. This initiative by SAFES aims to encourage rational, safe and smart prescription of SUs, and includes appropriate medication counseling. PMID:26425465

  18. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  19. Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions.

    PubMed

    Musa, Hassan; Fenn, Edward; Crye, Mark; Gemel, Joanna; Beyer, Eric C; Veenstra, Richard D

    2004-06-15

    Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.

  20. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain.

    PubMed

    Thomzig, Achim; Laube, Gregor; Prüss, Harald; Veh, Rüdiger W

    2005-04-11

    K-ATP channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2, SUR2A, SUR2B) with regulatory activity. The functional diversity of K-ATP channels in brain is broad and of fundamental importance for neuronal activity. Here, using immunocytochemistry with monospecific antibodies against the Kir6.1 and Kir6.2 subunits, we analyze the regional and cellular distribution of both proteins in the adult rat brain. We find Kir6.2 to be widely expressed in all brain regions, suggesting that the Kir6.2 subunit forms the pore of the K-ATP channels in most neurons, presumably protecting the cells during cellular stress conditions such as hypoglycemia or ischemia. Especially in hypothalamic nuclei, in particular the ventromedial and arcuate nucleus, neurons display Kir6.2 immunoreactivity only, suggesting that Kir6.2 is the pore-forming subunit of the K-ATP channels in the glucose-responsive neurons of the hypothalamus. In contrast, Kir6.1-like immunolabeling is restricted to astrocytes (Thomzig et al. [2001] Mol Cell Neurosci 18:671-690) in most areas of the rat brain and very weak or absent in neurons. Only in distinct nuclei or neuronal subpopulations is a moderate or even strong Kir6.1 staining detected. The biological functions of these K-ATP channels still need to be elucidated. Copyright 2005 Wiley-Liss, Inc.

  1. Mechano-sensitization of mammalian neuronal networks through expression of the bacterial large-conductance mechanosensitive ion channel

    PubMed Central

    Contestabile, Andrea; Moroni, Monica; Hallinan, Grace I.; Palazzolo, Gemma; Chad, John; Deinhardt, Katrin; Carugo, Dario

    2018-01-01

    ABSTRACT Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach. This article has an associated First Person interview with the first author of the paper. PMID:29361543

  2. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    PubMed Central

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  3. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  4. Minoxidil opens mitochondrial KATP channels and confers cardioprotection

    PubMed Central

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2003-01-01

    ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoKATP channel) rather than in the sarcolemma (sarcKATP channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcKATP and mitoKATP channels in guinea-pig ventricular myocytes. Minoxidil activated a glybenclamide-sensitive sarcKATP channel current in the whole-cell recording mode with an EC50 of 182.6 μM. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoKATP channel activity, in a concentration-dependent manner. The EC50 for mitoKATP channel activation was estimated to be 7.3 μM; this value was notably ≈25-fold lower than that for sarcKATP channel activation. Minoxidil (10 μM) significantly attenuated the ouabain-induced increase of mitochondrial Ca2+ concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 μM) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM). Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoKATP channels. PMID:14691056

  5. An L319F mutation in transmembrane region 3 (TM3) selectively reduces sensitivity to okaramine B of the Bombyx mori l-glutamate-gated chloride channel.

    PubMed

    Furutani, Shogo; Okuhara, Daiki; Hashimoto, Anju; Ihara, Makoto; Kai, Kenji; Hayashi, Hideo; Sattelle, David B; Matsuda, Kazuhiko

    2017-10-01

    Okaramines produced by Penicillium simplicissimum AK-40 activate l-glutamate-gated chloride channels (GluCls) and thus paralyze insects. However, the okaramine binding site on insect GluCls is poorly understood. Sequence alignment shows that the equivalent of residue Leucine319 of the okaramine B sensitive Bombyx mori (B. mori) GluCl is a phenylalanine in the okaramine B insensitive B. mori γ-aminobutyric acid-gated chloride channel of the same species. This residue is located in the third transmembrane (TM3) region, a location which in a nematode GluCl is close to the ivermectin binding site. The B. mori GluCl containing the L319F mutation retained its sensitivity to l-glutamate, but responses to ivermectin were reduced and those to okaramine B were completely blocked.

  6. Whole-cell patch clamp recording of voltage-sensitive Ca²+ channel currents: heterologous expression systems and dissociated brain neurons.

    PubMed

    Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro

    2005-01-01

    Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.

  7. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubinskiy-Nadezhdin, Vladislav I., E-mail: vchubinskiy@gmail.com; Vasileva, Valeria Y.; Pugovkina, Natalia A.

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances inmore » hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca{sup 2+} entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca{sup 2+}-sensitive BK and SK channels was shown. • Local Ca{sup 2+} influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca{sup 2+}]{sub i}. • Functional clustering of SACs and BK channels in stem cell membrane is proposed.« less

  8. Physical and functional interactions between a glioma cation channel and integrin-β1 require α-actinin

    PubMed Central

    Rooj, Arun K.; Liu, Zhiyong; McNicholas, Carmel M.

    2015-01-01

    Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na+ channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration. PMID:26108662

  9. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus.

    PubMed

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A

    2017-05-31

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus . Two primordial germ cell (PGC) marker genes, nanos and dead end , were targeted for knockdown, and an off-target gene, vasa , was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos , full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P₁ fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P₁ fish, most F₁ individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F₂ or F₃ are needed for evaluation.

  10. Cardioprotective effect of diadenosine tetraphosphate (AP4A) preservation in hypothermic storage and its relation with mitochondrial ATP-sensitive potassium channels.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Kitakaze, M; Matsuda, H

    2000-01-15

    The preconditioning effect of diadenosine tetraphosphate (AP4A) was reported in ischemia/reperfused hearts, but its effect in heart preservation was unknown. According to the possible role of mitochondrial ATP-sensitive potassium channel (mK(ATP) channel) in the effect of ischemic preconditioning, the contribution of mK(ATP) channel to the effect of AP4A was tested. Isolated rat hearts were arrested and preserved by Eurocollin's (EC) solution at 4 degrees C for 8 hr. AP4A (80 microM) or AP4A with the 5-hydroxydecanoic acid (100 microM), a selective inhibitor of the mK(ATP) channel, was added into the EC solution. The preischemic and postischemic cardiac functions were evaluated on a buffer-perfused Langendorff apparatus before storage and after 20 min of reperfusion. AP4A administration improved the recovery of poststorage cardiac functions (the rate-pressure production, left ventricular systolic pressure, heart rate, coronary flow rate, and derivative of left ventricular systolic pressure; P<0.05) and reduced the leakage of lactate dehydrate and creatine kinase during reperfusion, compared with EC alone. Those effects of AP4A were completely reversed by 5-hydroxydecanoic acid administration in combination subjects. AP4A administration protects the heart through opening of the mK(ATP) channel during hypothermic preservation. Thus, addition of AP4A into cardioplegia may be a novel method of ischemic preconditioning in the transplantation context.

  11. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2

    PubMed Central

    Liu, Beiying; Qin, Feng

    2016-01-01

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. PMID:27074678

  12. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy versus sulfonylurea monotherapy for people with type 2 diabetes and chronic kidney disease in Thailand.

    PubMed

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Thavorn, Kednapa; Saokaew, Surasak; Chaiyakunapruk, Nathorn

    2017-02-01

    With a high prevalence of chronic kidney disease (CKD) in type 2 diabetes (T2DM) in Thailand, the appropriate treatment for the patients has become a major concern. This study aimed to evaluate long-term cost-effective of dipeptidyl peptidase-4 (DPP-4) inhibitor monothearpy vs sulfonylurea (SFU) monotherapy in people with T2DM and CKD. A validated IMS CORE Diabetes Model was used to estimate the long-term costs and outcomes. The efficacy parameters were identified and synthesized using a systematic review and meta-analysis. Baseline characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. Costs were expressed in 2014 US Dollars. Outcomes were presented as an incremental cost-effectiveness ratio (ICER). One-way and probabilistic sensitivity analyses were performed to estimate parameter uncertainty. From a societal perspective, treatment with DPP-4 inhibitors yielded more quality-adjusted life years (QALYs) (0.024) at a higher cost (>66,000 Thai baht (THB) or >1,829.27 USD) per person than SFU, resulting in the ICER of >2.7 million THB/QALY (>74,833.70 USD/QALY). The cost-effectiveness results were mainly driven by differences in HbA1c reduction, hypoglycemic events, and drug acquisition cost of DPP-4 inhibitors. At the ceiling ratio of 160,000 THB/QALY (4,434.59 USD/QALY), the probability that DPP-4 inhibitors are cost-effective compared to SFU was less than 10%. Compared to SFU, DPP-4 inhibitor monotherapy is not a cost-effective treatment for people with T2DM and CKD in Thailand.

  13. Determination of six sulfonylurea herbicides in environmental water samples by magnetic solid-phase extraction using multi-walled carbon nanotubes as adsorbents coupled with high-performance liquid chromatography.

    PubMed

    Ma, Jiping; Jiang, Lianhua; Wu, Gege; Xia, Yan; Lu, Wenhui; Li, Jinhua; Chen, Lingxin

    2016-09-30

    Magnetic solid-phase extraction (MSPE) using magnetic multi-walled carbon nanotubes (mag-MWCNTs) as adsorbents, coupled with high-performance liquid chromatography-diode-array detector (HPLC-DAD), was developed for the simultaneous separation and determination of six types of sulfonylurea herbicides (SUs) in environmental water samples. Several variables affecting MSPE efficiency were systematically investigated, including the type and volume of desorption solvent, sample solution pH, salt concentration, amount of mag-MWCNTs, and extraction and desorption time. Response surface was employed to assist in the MSPE optimization. Under optimized conditions, excellent linearity was achieved in the range of 0.05-5.0μg/L for all six SUs, with coefficients of correlation r>0.9994, and preconcentration factors ranging from 178 to 210. Limits of detection and quantification were 0.01-0.04μg/L and 0.03-0.13μg/L, respectively. The intra-day and inter-day precision (relative standard deviations, n=6, %) at three spiked levels were 2.0-11.0% and 2.1-12.9% in terms of peak area, respectively. The method recoveries at three fortified concentrations were obtained within 76.7-106.9% for reservoir water samples and 78.2-105.4% for tap water samples. The developed MSPE-HPLC method demonstrated high sensitivity, repeatability, simplicity, rapidity, and excellent practical applicability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. CNG channel subunit glycosylation regulates MMP-dependent changes in channel gating

    PubMed Central

    Meighan, Starla E.; Meighan, Peter C.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2013-01-01

    Cyclic-nucleotide gated (CNG) channels are essential for phototransduction within retinal photoreceptors. We have demonstrated previously that enzymatic activity of matrix metalloproteinase-2 and -9, members of the MMP family of extracellular, Ca+2- and Zn+2-dependent proteases, enhances the ligand sensitivity of both rod (CNGA1 + CNGB1) and cone CNGA3 + CNGB3) CNG channels. Additionally, we have observed a decrease in maximal CNG channel current (IMAX) that begins late during MMP-directed gating changes. Here we demonstrate that CNG channels become non-conductive after prolonged MMP exposure. Concurrent with the loss of conductive channels is the increased relative contribution of channels exhibiting non-modified gating properties, suggesting the presence of a subpopulation of channels that are protected from MMP-induced gating effects. CNGA subunits are known to possess one extracellular core glycosylation site, located at one of two possible positions within the turret loop near the pore-forming region. Our results indicate that CNGA glycosylation can impede MMP-dependent modification of CNG channels. Furthermore, the relative position of the glycosylation site within the pore turret influences the extent of MMP-dependent proteolysis. Glycosylation at the site found in CNGA3 subunits was found to be protective, while glycosylation at the bovine CNGA1 site was not. Relocating the glycosylation site in CNGA1 to the position found in CNGA3 recapitulated CNGA3-like protection from MMP-dependent processing. Taken together, these data indicate that CNGA glycosylation may protect CNG channels from MMP-dependent proteolysis, consistent with MMP modification of channel function having a requirement for physical access to the extracellular face of the channel. PMID:24164424

  15. Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release.

    PubMed

    Choi, Tae-Yong; Kwon, Ji Eun; Durrance, Eunice Sung; Jo, Su-Hyun; Choi, Se-Young; Kim, Kyong-Tai

    2014-04-04

    Melatonin is involved in various neuronal functions such as circadian rhythmicity and thermoregulation. Melatonin has a wide range of pharmacologically effective concentration levels from the nanomolar to millimolar levels. Recently, the antiepileptic effect of high dose melatonin has been the focus of clinical studies; however, its detailed mechanism especially in relation to neurotransmitter release and synaptic transmission remains unclear. We studied the effect of melatonin at high concentrations on the neurotransmitter release by monitoring norepinephrine release in PC12 cells, and excitatory postsynaptic potential in rat hippocampal slices. Melatonin inhibits the 70mM K(+)-induced Ca(2+) increase at millimolar levels without effect on bradykinin-triggered Ca(2+) increase in PC12 cells. Melatonin (1mM) did not affect A2A adenosine receptor-evoked cAMP production, and classical melatonin receptor antagonists did not reverse the melatonin-induced inhibitory effect, suggesting G-protein coupled receptor independency. Melatonin inhibits the 70mM K(+)-induced norepinephrine release at a similar effective concentration range in PC12 cells. We confirmed that melatonin (100µM) inhibits excitatory synaptic transmission of the hippocampal Schaffer collateral pathway with the decrease in basal synaptic transmission and the increase in paired pulse ratio. These results show that melatonin inhibits neurotransmitter release through the blocking of voltage-sensitive Ca(2+) channels and suggest a possible mechanism for the antiepileptic effect of melatonin. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Short duration of diabetes and disuse of sulfonylurea have any association with insulin cessation of the patients with type 2 diabetes in a clinical setting in Japan (JDDM 30).

    PubMed

    Arai, Keiko; Hirao, Koichi; Yamauchi, Mikio; Kobayashi, Masashi; Kashiwagi, Atsunori

    2013-01-01

    Insulin therapy is often required to achieve good glycemic control for the patients with type 2 diabetes mellitus (T2DM), while protraction of glycemic control without insulin therapy may be preferable for patients. To determine the characteristics of and therapeutic regimen in outpatients with T2DM who were able to stop insulin therapy with satisfactory glycemic control in a real clinical practice setting in Japan by a case-control study. The present study was performed on 928 patients with T2DM who started insulin therapy in 2007. Data regarding age, sex, body mass index, duration of diabetes, HbA1c, postprandial plasma glucose, plasma fasting C-peptide immunoreactivity and treatment modality were compared between patients who were able to stop insulin therapy and those who continued with insulin. Of the 928 patients, 37 had stopped insulin therapy within 1 year. In the patients who stopped insulin therapy, the duration of diabetes was significantly shorter and the daily insulin dosage at initiation and the prevalence of sulfonylurea pretreatment significantly lower compared with patients who continued on insulin. In conclusion, almost 4% of T2DM patients were able to stop insulin therapy with satisfactory glycemic control in a real clinical practice setting in Japan. Shorter duration of diabetes and disuse of sulfonylureas prior to insulin may associate with stopping insulin therapy as a near-normoglycemic remission in outpatients with T2DM in Japan.

  17. Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus, by Knockdown of Primordial Germ Cell Genes with Copper-Sensitive Constructs.

    PubMed

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Elaswad, Ahmed; Alsaqufi, Ahmed; Perera, Dayan A; Qin, Zhenkui; Odin, Ramji; Vo, Khoi; Drescher, David; Robinson, Dalton; Dong, Sheng; Zhang, Dan; Shang, Mei; Abass, Nermeen; Das, Sanjay K; Bangs, Max; Dunham, Rex A

    2018-06-01

    Repressible knockdown approaches were investigated to manipulate for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown and an off-target gene, vasa, was monitored. Two potentially copper-sensitive repressible promoters, yeast ctr3 (M) and ctr3-reduced (Mctr), were coupled with four knockdown strategies separately including: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA), and ds-sh RNA-targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with copper sulfate as the repressor compound. Spawning rates of full-sibling P 1 fish exposed or not exposed to the constructs as treated and untreated embryos were 85 and 54%, respectively, indicating potential sterilization of fish and repression of the constructs. In F 1 fish, mRNA expressions of PGC marker genes for most constructs were downregulated in the untreated group and the knockdown was repressed in the treated group. Gonad development in transgenic, untreated F 1 channel catfish was reduced compared to non-transgenic fish for MctrN2, MN1, MN2, and MDND. For 3-year-old adults, gonad size in the transgenic untreated group was 93.4% smaller than the non-transgenic group for females and 92.3% for males. However, mean body weight of transgenic females (781.8 g) and males (883.8 g) was smaller than of non-transgenic counterparts (984.2 and 1254.3 g) at 3 years of age, a 25.8 and 41.9% difference for females and males, respectively. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but negative pleiotropic effects can result.

  18. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    NASA Astrophysics Data System (ADS)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  19. Piezo proteins are pore-forming subunits of mechanically activated channels.

    PubMed

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  20. Total Charge Movement per Channel

    PubMed Central

    Sigg, Daniel; Bezanilla, Francisco

    1997-01-01

    One measure of the voltage dependence of ion channel conductance is the amount of gating charge that moves during activation and vice versa. The limiting slope method, introduced by Almers (Almers, W. 1978. Rev. Physiol. Biochem. Pharmacol. 82:96–190), exploits the relationship of charge movement and voltage sensitivity, yielding a lower limit to the range of single channel gating charge displacement. In practice, the technique is plagued by low experimental resolution due to the requirement that the logarithmic voltage sensitivity of activation be measured at very low probabilities of opening. In addition, the linear sequential models to which the original theory was restricted needed to be expanded to accommodate the complexity of mechanisms available for the activation of channels. In this communication, we refine the theory by developing a relationship between the mean activation charge displacement (a measure of the voltage sensitivity of activation) and the gating charge displacement (the integral of gating current). We demonstrate that recording the equilibrium gating charge displacement as an adjunct to the limiting slope technique greatly improves accuracy under conditions where the plots of mean activation charge displacement and gross gating charge displacement versus voltage can be superimposed. We explore this relationship for a wide variety of channel models, which include those having a continuous density of states, nonsequential activation pathways, and subconductance states. We introduce new criteria for the appropriate use of the limiting slope procedure and provide a practical example of the theory applied to low resolution simulation data. PMID:8997663

  1. A mutation in the Gardos channel is associated with hereditary xerocytosis.

    PubMed

    Rapetti-Mauss, Raphael; Lacoste, Caroline; Picard, Véronique; Guitton, Corinne; Lombard, Elise; Loosveld, Marie; Nivaggioni, Vanessa; Dasilva, Nathalie; Salgado, David; Desvignes, Jean-Pierre; Béroud, Christophe; Viout, Patrick; Bernard, Monique; Soriani, Olivier; Vinti, Henri; Lacroze, Valérie; Feneant-Thibault, Madeleine; Thuret, Isabelle; Guizouarn, Hélène; Badens, Catherine

    2015-09-10

    The Gardos channel is a Ca(2+)-sensitive, intermediate conductance, potassium selective channel expressed in several tissues including erythrocytes and pancreas. In normal erythrocytes, it is involved in cell volume modification. Here, we report the identification of a dominantly inherited mutation in the Gardos channel in 2 unrelated families and its association with chronic hemolysis and dehydrated cells, also referred to as hereditary xerocytosis (HX). The affected individuals present chronic anemia that varies in severity. Their red cells exhibit a panel of various shape abnormalities such as elliptocytes, hemighosts, schizocytes, and very rare stomatocytic cells. The missense mutation concerns a highly conserved residue among species, located in the region interacting with Calmodulin and responsible for the channel opening and the K(+) efflux. Using 2-microelectrode experiments on Xenopus oocytes and patch-clamp electrophysiology on HEK293 cells, we demonstrated that the mutated channel exhibits a higher activity and a higher Ca(2+) sensitivity compared with the wild-type (WT) channel. The mutated channel remains sensitive to inhibition suggesting that treatment of this type of HX by a specific inhibitor of the Gardos channel could be considered. The identification of a KCNN4 mutation associated with chronic hemolysis constitutes the first report of a human disease caused by a defect of the Gardos channel. © 2015 by The American Society of Hematology.

  2. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.

    PubMed Central

    Sugita, M; Yue, Y; Foskett, J K

    1998-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR. PMID:9463368

  3. Amazon floodplain channels regulate channel-floodplain water exchange

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Baugh, C.; Trigg, M.

    2017-12-01

    geometry. Inundation extent in the model did not increase at high water, but low water flood extents declined by 8.8% - 29.7% due to increased connectivity between the floodplain and the mainstem. The wide range of flow decrease estimates demonstrates that the results are sensitive to errors in the estimation of floodplain channel geometries, particularly bed elevations.

  4. Image guided drug release from pH-sensitive Ion channel-functionalized stealth liposomes into an in vivo glioblastoma model.

    PubMed

    Pacheco-Torres, Jesus; Mukherjee, Nobina; Walko, Martin; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdan, Sebastian; Kocer, Armagan

    2015-08-01

    Liposomal drug delivery vehicles are promising nanomedicine tools for bringing cytotoxic drugs to cancerous tissues selectively. However, the triggered cargo release from liposomes in response to a target-specific stimulus has remained elusive. We report on functionalizing stealth-liposomes with an engineered ion channel and using these liposomes in vivo for releasing an imaging agent into a cerebral glioma rodent model. If the ambient pH drops below a threshold value, the channel generates temporary pores on the liposomes, thus allowing leakage of the intraluminal medicines. By using magnetic resonance spectroscopy and imaging, we show that engineered liposomes can detect the mildly acidic pH of the tumor microenvironment with 0.2 pH unit precision and they release their content into C6 glioma tumors selectively, in vivo. A drug delivery system with this level of sensitivity and selectivity to environmental stimuli may well serve as an optimal tool for environmentally-triggered and image-guided drug release. Cancer remains a leading cause of mortality worldwide. With advances in science, delivery systems of anti-cancer drugs have also become sophisticated. In this article, the authors designed and characterized functionalized liposomal vehicles, which would release the drug payload in a highly sensitive manner in response to a change in pH environment in an animal glioma model. The novel data would enable better future designs of drug delivery systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neonatal Diabetes Mellitus: A Model for Personalized Medicine

    PubMed Central

    Greeley, Siri Atma W.; Tucker, Susan E.; Naylor, Rochelle N.; Bell, Graeme I.; Philipson, Louis H.

    2010-01-01

    Neonatal diabetes mellitus occurs in approximately 1 out of every 100,000 live births. It can be either permanent or transient, and recent studies indicate that is likely to have an underlying genetic cause, particularly when diagnosed before 6 months of age. Permanent neonatal diabetes is most commonly due to activating mutations in either of the genes encoding the two subunits of the ATP-sensitive potassium channel. In most of these patients, switching from insulin to oral sulfonylurea therapy leads to improved metabolic control, as well as possible amelioration of occasional associated neurodevelopmental disabilities. It remains to be determined what is the most appropriate treatment of other causes. The diagnosis and treatment of neonatal diabetes, therefore, represents a model for personalized medicine. PMID:20434356

  6. Neonatal Diabetes: An Expanding List of Genes Allows for Improved Diagnosis and Treatment

    PubMed Central

    Naylor, Rochelle N.; Philipson, Louis H.; Bell, Graeme I.

    2011-01-01

    There has been major progress in recent years uncovering the genetic causes of diabetes presenting in the first year of life. Twenty genes have been identified to date. The most common causes accounting for the majority of cases are mutations in the genes encoding the two subunits of the ATP-sensitive potassium channel (KATP), KCNJ11 and ABCC8, and the insulin gene (INS), as well as abnormalities in chromosome 6q24. Patients with activating mutations in KCNJ11 and ABCC8 can be treated with oral sulfonylureas in lieu of insulin injections. This compelling example of personalized genetic medicine leading to improved glucose regulation and quality of life may—with continued research—be repeated for other forms of neonatal diabetes in the future. PMID:21993633

  7. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2.

    PubMed

    Liu, Beiying; Qin, Feng

    2016-04-12

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity

    PubMed Central

    Ader, Christian; Schneider, Robert; Hornig, Sönke; Velisetty, Phanindra; Vardanyan, Vitya; Giller, Karin; Ohmert, Iris; Becker, Stefan; Pongs, Olaf; Baldus, Marc

    2009-01-01

    Potassium (K+)-channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+-channel pore. PMID:19661921

  9. A 31-Channel MR Brain Array Coil Compatible with Positron Emission Tomography

    PubMed Central

    Sander, Christin Y.; Keil, Boris; Chonde, Daniel B.; Rosen, Bruce R.; Catana, Ciprian; Wald, Lawrence L.

    2014-01-01

    Purpose Simultaneous acquisition of MR and PET images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. Methods A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (SNR, g-factor) and PET attenuation. Results The coil design showed an improvement in attenuation by 190% (average) compared to conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical ROI) compared to a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. Conclusion The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. PMID:25046699

  10. A 31-channel MR brain array coil compatible with positron emission tomography.

    PubMed

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  11. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus

    PubMed Central

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A.; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A.

    2017-01-01

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown, and an off-target gene, vasa, was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5′ end (N1) or 3′ end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P1 fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P1 fish, most F1 individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F2 or F3 are needed for evaluation. PMID:28561774

  12. Diabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel.

    PubMed

    Remedi, Maria S; Friedman, Jonathan B; Nichols, Colin G

    2017-01-01

    Gain-of-function (GOF) mutations in the pore-forming (Kir6.2) and regulatory (SUR1) subunits of K ATP channels have been identified as the most common cause of human neonatal diabetes mellitus. The critical effect of these mutations is confirmed in mice expressing Kir6.2-GOF mutations in pancreatic β cells. A second K ATP channel pore-forming subunit, Kir6.1, was originally cloned from the pancreas. Although the prominence of this subunit in the vascular system is well documented, a potential role in pancreatic β cells has not been considered. Here, we show that mice expressing Kir6.1-GOF mutations (Kir6.1[G343D] or Kir6.1[G343D,Q53R]) in pancreatic β cells (under rat-insulin-promoter [Rip] control) develop glucose intolerance and diabetes caused by reduced insulin secretion. We also generated transgenic mice in which a bacterial artificial chromosome (BAC) containing Kir6.1[G343D] is incorporated such that the transgene is only expressed in tissues where Kir6.1 is normally present. Strikingly, BAC-Kir6.1[G343D] mice also show impaired glucose tolerance, as well as reduced glucose- and sulfonylurea-dependent insulin secretion. However, the response to K + depolarization is intact in Kir6.1-GOF mice compared with control islets. The presence of native Kir6.1 transcripts was demonstrated in both human and wild-type mouse islets using quantitative real-time PCR. Together, these results implicate the incorporation of native Kir6.1 subunits into pancreatic K ATP channels and a contributory role for these subunits in the control of insulin secretion. © 2017 Remedi et al.

  13. A Dihydropyridine-sensitive Voltage-dependent Calcium Channel in the Sarcolemmal Membrane of Crustacean Muscle

    PubMed Central

    Erxleben, Christian; Rathmayer, Werner

    1997-01-01

    Single-channel currents through calcium channels in muscle of a marine crustacean, the isopod Idotea baltica, were investigated in cell-attached patches. Inward barium currents were strongly voltage-dependent, and the channels were closed at the cell's resting membrane potential. The open probability (Po) increased e-fold for an 8.2 mV (±2.4, n = 13) depolarization. Channel openings were mainly brief (<0.3 ms) and evenly distributed throughout 100-ms pulses. Averaged, quasimacroscopic currents showed fast activation and deactivation and did not inactivate during 100-ms test pulses. Similarly, channel activity persisted at steadily depolarized holding potentials. With 200 mM Ba2+ as charge carrier, the average slope conductance from the unitary currents between +30 and +80 mV, was 20 pS (±2.6, n = 12). The proportion of long openings, which were very infrequent under control conditions, was greatly increased by preincubation of the muscle fibers with the calcium channel agonist, the dihydropyridine Bay K8644 (10–100 μM). Properties of these currents resemble those through the L-type calcium channels of mammalian nerve, smooth muscle, and cardiac muscle cells. PMID:9089439

  14. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel.

    PubMed

    Trezza, Alfonso; Cicaloni, Vittoria; Porciatti, Piera; Langella, Andrea; Fusi, Fabio; Saponara, Simona; Spiga, Ottavia

    2018-01-01

    ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. K ATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina-like symptoms, cardiovascular diseases. A broader view of the K ATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit K ATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.

  15. [Voltage-gated potassium channels and human neurological diseases].

    PubMed

    Jin, Hong-Wei; Wang, Xiao-Liang

    2002-01-01

    Voltage-gated potassium channels (Kv) is the largest, most complex in potassium channel superfamily. It can be divided into Kv alpha subunit and auxiliary two groups. The roles of some Kv channels types, e.g. rapidly inactivating (A-Type channel) and muscarine sensitive channels (M-type channel) are beginning to be understood. They are prominent in nervous system, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, neurotransmitter release, cell proliferation or degeneration, signal transduction in neuronal network. Many human neurological disease pathogenesis are found to be related to mutant of Kv-channels subunit or subtype, such as, learning and memory impairing, ataxia, epilepsy, deafness, etc.

  16. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels

    PubMed Central

    Palovcak, Eugene; Delemotte, Lucie; Klein, Michael L.

    2015-01-01

    The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate. PMID:26078053

  17. Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia

    PubMed Central

    Glynn, Eric; Thompson, Benjamin; Vadrevu, Suryakiran; Lu, Shusheng; Kennedy, Robert T.; Ha, Joon; Sherman, Arthur

    2016-01-01

    Mouse islets exhibit glucose-dependent oscillations in electrical activity, intracellular Ca2+ and insulin secretion. We developed a mathematical model in which a left shift in glucose threshold helps compensate for insulin resistance. To test this experimentally, we exposed isolated mouse islets to varying glucose concentrations overnight and monitored their glucose sensitivity the next day by measuring intracellular Ca2+, electrical activity, and insulin secretion. Glucose sensitivity of all oscillation modes was increased when overnight glucose was greater than 2.8mM. To determine whether threshold shifts were a direct effect of glucose or involved secreted insulin, the KATP opener diazoxide (Dz) was coapplied with glucose to inhibit insulin secretion. The addition of Dz or the insulin receptor antagonist s961 increased islet glucose sensitivity, whereas the KATP blocker tolbutamide tended to reduce it. This suggests insulin and glucose have opposing actions on the islet glucose threshold. To test the hypothesis that the threshold shifts were due to changes in plasma membrane KATP channels, we measured cell KATP conductance, which was confirmed to be reduced by high glucose pretreatment and further reduced by Dz. Finally, treatment of INS-1 cells with glucose and Dz overnight reduced high affinity sulfonylurea receptor (SUR1) trafficking to the plasma membrane vs glucose alone, consistent with insulin increasing KATP conductance by altering channel number. The results support a role for metabolically regulated KATP channels in the maintenance of glucose homeostasis. PMID:26697721

  18. Down regulated expression of the beta1 subunit of the big-conductance Ca2+ sensitive K+ channel in sphincter of Oddi cells from rabbits fed with a high cholesterol diet.

    PubMed

    Du, Pang; Cui, Guang-Bin; Wang, Ya-Rong; Zhang, Xiao-Yong; Ma, Ke-Jun; Wei, Jing-Guo

    2006-12-01

    Hypercholesterolemia, which is closely related to gallbladder bile stasis, can cause sphincter of Oddi dysfunction (SOD) by increasing the tension of sphincter of Oddi (SO). Intracellular calcium ion concentration ([Ca(2+)](i)) could influence the tension of SO. The beta1 subunit of the big-conductance Ca(2+) sensitive K(+) channel (BK(Ca)) can enhance the sensitivity of the BK(Ca) channel to [Ca(2+)](i). Absence and decline of the BKCa channel subunit beta1 could lead to many diseases. However, the relationship between hypercholesterolemia and the expression of beta1 subunit is not well understood. In this study, we successfully expressed and purified the rabbit BK(Ca) beta1 subunit protein and prepared its polyclonal antibody. The specificity of the prepared antibody was determined by Western blotting. A SOD rabbit model induced by a high cholesterol diet was established and the expression of the beta1 subunit of SO was determined by immunohistochemical staining and western blotting. Compared with the controls, our results demonstrated that hypercholesterolemia could decrease the expression of the beta1 subunit in the SO cells from rabbits. This indicates that lower expression of BKCa channel beta1 subunit might induce SOD.

  19. Nerve Growth Factor Sensitizes Adult Sympathetic Neurons to the Proinflammatory Peptide Bradykinin

    PubMed Central

    Vivas, Oscar; Kruse, Martin

    2014-01-01

    Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca2+ elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca2+ levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin. PMID:25186743

  20. Store-depletion and hyperforin activate distinct types of Ca(2+)-conducting channels in cortical neurons.

    PubMed

    Gibon, Julien; Tu, Peng; Bouron, Alexandre

    2010-06-01

    Cortical neurons embryos (E13) from murine brain have a wide diversity of plasma membrane Ca(2+)-conducting channels. For instance, they express several types of transient receptor potential channels of C-type (TRPC) and hyperforin, a potent TRPC6-channel activator, controls the activity of TRPC6-like channels. In addition, E13 cortical neurons possess plasma membrane channels activated in response to the depletion of internal Ca(2+) pools. Since some TRPC channels seem to be involved in the activity of store-depletion-activated channels, we investigated whether hyperforin and the depletion of the Ca(2+) stores control similar or distinct Ca(2+) routes. Calcium imaging experiments performed with the fluorescent Ca(2+) indicator Fluo-4 showed that the TRPC3 channel blocker Pyr3 potently inhibits with an IC(50) of 0.5microM the entry of Ca(2+) triggered in response to the thapsigargin-dependent depletion of the Ca(2+) stores. On the other hand, Pyr3 does not block the hyperforin-sensitive Ca(2+) entry. In contrast to the hyperforin responses, the Ca(2+) entry through the store-depletion-activated channels is down-regulated by the competitive tyrosine kinase inhibitors genistein and PP2. In addition, the immunosuppressant FK506, known to modulate several classes of Ca(2+)-conducting channels, strongly attenuates the entry of Ca(2+) through the store-depletion-activated channels, leaving the hyperforin-sensitive responses unaffected. Hence, the Zn(2+) chelator TPEN markedly attenuated the hyperforin-sensitive responses without modifying the thapsigargin-dependent Ca(2+) signals. Pyr3-insensitive channels are key components of the hyperforin-sensitive channels, whereas the thapsigargin-dependent depletion of the Ca(2+) stores of the endoplasmic reticulum activates Pyr3-sensitive channels. Altogether, these data support the notion that hyperforin and the depletion of the Ca(2+) pools control distinct plasma membrane Ca(2+)-conducting channels. This report further

  1. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  2. Courtship and other behaviors affected by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila.

    PubMed Central

    Chan, Betty; Villella, Adriana; Funes, Pablo; Hall, Jeffrey C

    2002-01-01

    The cacophony (cac) locus of Drosophila melanogaster, which encodes a calcium-channel subunit, has been mutated to cause courtship-song defects or abnormal responses to visual stimuli. However, the most recently isolated cac mutant was identified as an enhancer of a comatose mutation's effects on general locomotion. We analyzed the cac(TS2) mutation in terms of its intragenic molecular change and its effects on behaviors more complex than the fly's elementary ability to move. The molecular etiology of this mutation is a nucleotide substitution that causes a proline-to-serine change in a region of the polypeptide near its EF hand. Given that this motif is involved in channel inactivation, it was intriguing that cac(TS2) males generate song pulses containing larger-than-normal numbers of cycles--provided that such males are exposed to an elevated temperature. Similar treatments caused only mild visual-response abnormalities and generic locomotor sluggishness. These results are discussed in the context of calcium-channel functions that subserve certain behaviors and of defects exhibited by the original cacophony mutant. Despite its different kind of amino-acid substitution, compared with that of cac(TS2), cac(S) males sing abnormally in a manner that mimics the new mutant's heat-sensitive song anomaly. PMID:12242229

  3. Insulin receptor regulates photoreceptor CNG channel activity.

    PubMed

    Gupta, Vivek K; Rajala, Ammaji; Rajala, Raju V S

    2012-12-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR(-/-) mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.

  4. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo.

    PubMed

    Terao, Yoshio; Ayaori, Makoto; Ogura, Masatsune; Yakushiji, Emi; Uto-Kondo, Harumi; Hisada, Tetsuya; Ozasa, Hideki; Takiguchi, Shunichi; Nakaya, Kazuhiro; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Horii, Shunpei; Mochizuki, Seibu; Yoshimura, Michihiro; Ikewaki, Katsunori

    2011-01-01

    Reverse cholesterol transport (RCT) is a critical mechanism for the anti-atherogenic property of HDL. The inhibitory effect of the sulfonylurea agent (SUA) glibenclamide on ATP binding-cassette transporter (ABC) A1 may decrease HDL function but it remains unclear whether it attenuates RCT in vivo. We therefore investigated how the SUAs glibenclamide and glimepiride affected the functionality of ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI) expression in macrophages in vitro and overall RCT in vivo. RAW264.7, HEK293 and BHK-21 cells were used for in vitro studies. To investigate RCT in vivo, 3H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were injected into mice. High dose (500µM) of glibenclamide inhibited ABCA1 function and apolipoprotein A-I (apoA-I)-mediated cholesterol efflux, and attenuated ABCA1 expression. Although glimepiride maintained apoA-I-mediated cholesterol efflux from RAW264.7 cells, like glibenclamide, it inhibited ABCA1-mediated cholesterol efflux from transfected HEK293 cells. Similarly, the SUAs inhibited SR-BI-mediated cholesterol efflux from transfected BHK-21 cells. High doses of SUAs increased ABCG1 expression in RAW264.7 cells, promoting HDL-mediated cholesterol efflux in an ABCG1-independent manner. Low doses (0.1-100 µM) of SUAs did not affect cholesterol efflux from macrophages despite dose-dependent increases in ABCA1/G1 expression. Furthermore, they did not change RCT or plasma lipid levels in mice. High doses of SUAs inhibited the functionality of ABCA1/SR-BI, but not ABCG1. At lower doses, they had no unfavorable effects on cholesterol efflux or overall RCT in vivo. These results indicate that SUAs do not have adverse effects on atherosclerosis contrary to previous findings for glibenclamide.

  5. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    PubMed Central

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  6. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  7. Thermodynamic limitations on the temperature sensitivity of cell-membrane ion channels: Trouble with enthalpy uncertainty

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2018-06-01

    Energy exchange between a thermodynamic ensemble of heat- and cold-activated cell-membrane ion channels and the surrounding heat reservoir is shown to impose fundamental limitations on the performance of such channels as temperature-controlled gates for thermal cell activation. Analysis of unavoidable thermodynamic internal-energy fluctuations caused by energy exchange between the ion channels and the heat bath suggests that the resulting enthalpy uncertainty is too high for a robust ion-current gating by a single ion channel, implying that large ensembles of ion channels are needed for thermal cell activation. We argue, based on this thermodynamic analysis, that, had thermosensitive cell-membrane ion channels operated individually, rather than as large ensembles, robust thermal cell activation would have been impossible because of thermodynamic fluctuations.

  8. Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection.

    PubMed

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2004-01-01

    1. ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoK(ATP) channel) rather than in the sarcolemma (sarcK(ATP) channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcK(ATP) and mitoK(ATP) channels in guinea-pig ventricular myocytes. 2. Minoxidil activated a glybenclamide-sensitive sarcK(ATP) channel current in the whole-cell recording mode with an EC(50) of 182.6 microm. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoK(ATP) channel activity, in a concentration-dependent manner. The EC(50) for mitoK(ATP) channel activation was estimated to be 7.3 microm; this value was notably approximately 25-fold lower than that for sarcK(ATP) channel activation. 3. Minoxidil (10 microm) significantly attenuated the ouabain-induced increase of mitochondrial Ca(2+) concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 microm) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microm). 4. Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoK(ATP) channels.

  9. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    NASA Astrophysics Data System (ADS)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  10. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    Simard1,2,3, PG Popovich4, O Tsymbalyuk1, J Caridi1, RP Gullapalli5, MJ Kilbourne6 and V Gerzanich1 Study design: Experimental, controlled, animal...Endothelial sulfonylurea receptor 1-regulated NC(Ca-ATP) channels mediate progressive hemor- rhagic necrosis following spinal cord injury. J Clin Invest 2007...receptor potential melastatin 4 (Trpm4) channel. J Biol Chem 2013; 288: 3655–3667. 7 Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A

  11. A novel D-phenylalanine-derivative hypoglycemic agent A-4166 increases cytosolic free Ca2+ in rat pancreatic beta-cells by stimulating Ca2+ influx.

    PubMed

    Fujitani, S; Yada, T

    1994-03-01

    It has recently been shown that N-[(trans-4-isopropylcyclohexyl)-carbonyl]D-phenylalanine (A-4166), a new nonsulfonylurea oral hypoglycemic agent, reduces blood glucose levels in nondiabetic and diabetic animals in a quicker and shorter lasting manner than sulfonylureas, and that the hypoglycemic effect of A-4166 is due to the stimulation of insulin release. However, the mechanism by which A-4166 stimulates insulin release is still unknown. In the present study, we investigated the effect of A-4166 on the cytosolic free Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells from normal rats by dual wavelength fura-2 microfluorometry. In the presence of 2.8 mM glucose, A-4166 produced a rapid increase in [Ca2+]i in a concentration-dependent manner over the range of 3-30 microM. The increase in [Ca2+]i was transient, oscillatory, or sustained. A-4166 did not evoke any decrease in [Ca2+]i, whereas a high concentration of glucose (16.7 mM), a metabolized secretagogue, produced an initial decrease and a subsequent increase in [Ca2+]i. In the presence of 16.7 mM glucose, low concentrations (0.03-1 microM) of A-4166 produced an increase in [Ca2+]i in some of the beta-cells tested. The [Ca2+]i response to A-4166 was completely and reversibly inhibited under Ca(2+)-free conditions as well as by nitrendipine, a blocker of the L-type Ca2+ channel. Nitrendipine also inhibited insulin release from perfused rat pancreases stimulated by A-4166. Diazoxide, an opener of the ATP-sensitive K+ channel, blocked the [Ca2+]i response to A-4166. Sulfonylureas such as tolbutamide and glibenclamide increased [Ca2+]i in a manner similar to A-4166. These results indicate that at basal glucose concentrations, A-4166 increases [Ca2+]i in rat pancreatic beta-cells by stimulating Ca2+ influx through L-type Ca2+ channels, and that this effect is markedly augmented at elevated glucose concentrations. It appears that the increase in [Ca2+]i is related to the stimulation of insulin release by A-4166

  12. Pathophysiology and Treatment of Resistant Hypertension: The Role of Aldosterone and Amiloride-Sensitive Sodium Channels

    PubMed Central

    Judd, Eric K.; Calhoun, David A.; Warnock, David G.

    2015-01-01

    Summary Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented. PMID:25416662

  13. Pathophysiology and treatment of resistant hypertension: the role of aldosterone and amiloride-sensitive sodium channels.

    PubMed

    Judd, Eric K; Calhoun, David A; Warnock, David G

    2014-01-01

    Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented.

  14. Insulin receptor regulates photoreceptor CNG channel activity

    PubMed Central

    Gupta, Vivek K.; Rajala, Ammaji

    2012-01-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr498 and Tyr503 residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR−/− mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo. PMID:23032687

  15. KATP Channels in the Cardiovascular System.

    PubMed

    Foster, Monique N; Coetzee, William A

    2016-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. Copyright © 2016 the American Physiological Society.

  16. KATP Channels in the Cardiovascular System

    PubMed Central

    Foster, Monique N.; Coetzee, William A.

    2015-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. PMID:26660852

  17. A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.

    PubMed

    Spauschus, A; Lentes, K U; Wischmeyer, E; Dissmann, E; Karschin, C; Karschin, A

    1996-02-01

    Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.

  18. Overexpressed TRPV3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2

    PubMed Central

    Huang, Susan M.; Lee, Hyosang; Chung, Man-Kyo; Park, Una; Yu, Yin Yin; Bradshaw, Heather B.; Coulombe, Pierre A.; Walker, J. Michael; Caterina, Michael J.

    2009-01-01

    The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive TRPV ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared to wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E2 (PGE2) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naïve mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-7203212, however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Co-administration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE2. PMID:19091963

  19. Model microswimmers in channels with varying cross section

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Stark, Holger

    2017-05-01

    We study different types of microswimmers moving in channels with varying cross section and thereby interacting hydrodynamically with the channel walls. Starting from the Smoluchowski equation for a dilute suspension, for which interactions among swimmers can be neglected, we derive analytic expressions for the lateral probability distribution between plane channel walls. For weakly corrugated channels, we extend the Fick-Jacobs approach to microswimmers and thereby derive an effective equation for the probability distribution along the channel axis. Two regimes arise dominated either by entropic forces due to the geometrical confinement or by the active motion. In particular, our results show that the accumulation of microswimmers at channel walls is sensitive to both the underlying swimming mechanism and the geometry of the channels. Finally, for asymmetric channel corrugation, our model predicts a rectification of microswimmers along the channel, the strength and direction of which strongly depends on the swimmer type.

  20. Ion channels in artificial bolaamphiphile membranes deposited on sensor chips: optical detection in an ion-channel-based biosensor

    NASA Astrophysics Data System (ADS)

    Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam

    1997-06-01

    Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.

  1. The role of maxiK channels in carotid body chemotransduction.

    PubMed

    Peers, Chris; Wyatt, Christopher N

    2007-07-01

    MaxiK channels are a unique class of K(+) channels activated by both voltage and intracellular Ca(2+). Derived from a single gene, their diversity arises from extensive splicing, and their wide distribution has led to their implication in a large variety of cellular functions. In the carotid body, they have been proposed to contribute to the resting membrane potential of type I cells, and also to be O(2) sensitive. Thus, they have been suggested to have an important role in hypoxic chemotransduction. Their O(2) sensitivity is preserved when the channels are expressed in HEK 293 cells, permitting detailed studies of candidate mechanisms underlying hypoxic inhibition of maxiK channels. In this article, we review evidence for and against an important role for maxiK channels in chemotransduction. We also consider different mechanisms proposed to account for hypoxic channel inhibition and suggest that, although our understanding of this important physiological process has advanced significantly in recent years, there remain important, unanswered questions as to the importance of maxiK in carotid body chemoreception.

  2. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel.

    PubMed

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-06-28

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S-S498F-L505T-Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular "glue" that bridges the S4-S5 linker to the S1-S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor.

  3. Noradrenaline activates the NO/cGMP/ATP-sensitive K(+) channels pathway to induce peripheral antinociception in rats.

    PubMed

    Romero, Thiago R L; Guzzo, Luciana S; Perez, Andrea C; Klein, André; Duarte, Igor D G

    2012-03-31

    Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Hysteresis in voltage-gated channels.

    PubMed

    Villalba-Galea, Carlos A

    2017-03-04

    Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.

  5. Hysteresis in voltage-gated channels

    PubMed Central

    2017-01-01

    ABSTRACT Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels. PMID:27689426

  6. Quantitative Evaluation of Compliance with Recommendation for Sulfonylurea Dose Co-Administered with DPP-4 Inhibitors in Japan

    PubMed Central

    Kimura, Tomomi; Shiosakai, Kazuhito; Takeda, Yasuaki; Takahashi, Shinji; Kobayashi, Masahiko; Sakaguchi, Motonobu

    2012-01-01

    After the launch of dipeptidyl peptidase-4 (DPP-4), a new oral hypoglycemic drug (OHD), in December 2009, severe hypoglycemia cases were reported in Japan. Although the definite cause was unknown, co-administration with sulfonylureas (SU) was suspected as one of the potential risk factors. The Japan Association for Diabetes Education and Care (JADEC) released a recommendation in April 2010 to lower the dose of three major SUs (glimepiride, glibenclamide, and gliclazide) when adding a DPP-4 inhibitor. To evaluate the effectiveness of this risk minimization action along with labeling changes, dispensing records for 114,263 patients prescribed OHDs between December 2008 and December 2010 were identified in the Nihon-Chouzai pharmacy claims database. The adherence to the recommended dosing of SU co-prescribed with DPP-4 inhibitors increased from 46.3% before to 63.8% after the JADEC recommendation (p < 0.01 by time-series analysis), while no change was found in those for SU monotherapy and SU with other OHD co-prescriptions. The adherence was significantly worse for those receiving a glibenclamide prescription. The JADEC recommendation, along with labeling changes, appeared to have a favorable effect on the risk minimization action in Japan. In these instances, a pharmacy claims database can be a useful tool to evaluate risk minimization actions. PMID:24300302

  7. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity.

    PubMed

    Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger

    2015-03-01

    Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.

  8. Prevention of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels.

    DTIC Science & Technology

    1992-02-10

    sodium channel from mammalian brain. Neurotoxin receptor site 3, which binds scorpion and sea anemone toxins, has been located to an extracellular...against them, and use these reagents to develop an effective treatment to prevent neurotoxicity of a-o toxins and sea anemone toxins; 2. Covalently

  9. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds

    PubMed Central

    Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.

    2015-01-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698

  10. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998

    USGS Publications Warehouse

    Battaglin, W.A.; Furlong, E.T.; Burkhardt, M.R.; Peter, C.J.

    2000-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are relatively new classes of chemical compounds that function by inhibiting the action of a plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs with over a 10000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the USA. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 212 water samples were collected from 75 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA and IMI herbicides by USGS Methods Research and Development Program staff using high-performance liquid chromatography/mass spectrometry. Samples were also analyzed for 47 pesticides or pesticide degradation products. At least one of the 16 SUs, SAs or IMIs was detected above the method reporting limit (MRL) of 0.01 ??g/l in 83% of 130 stream samples. Imazethapyr was detected most frequently (71% of samples) followed by flumetsulam (63% of samples) and nicosulfuron (52% of samples). The sum of SU, SA and IMI concentrations exceeded 0.5 ??g/l in less than 10% of stream samples. Acetochlor, alachlor, atrazine, cyanazine and metolachlor were all detected in 90% or more of 129 stream samples. The sum of the concentration of these five herbicides exceeded 50 ??g/l in approximately 10% of stream samples. At least one SU, SA, or IMI herbicide was detected above the MRL in 24% of 25 ground-water samples and 86% of seven reservoir samples. Copyright (C) 2000 Elsevier Science B.V.

  11. GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans

    PubMed Central

    Horoszok, Lucy; Raymond, Valérie; Sattelle, David B; Wolstenholme, Adrian J

    2001-01-01

    We report the cloning and expression of a novel Caenorhabditis elegans polypeptide, GLC-3, with high sequence identity to previously cloned L-glutamate-gated chloride channel subunits from nematodes and insects. Expression of glc-3 cRNA in Xenopus oocytes resulted in the formation of homo-oligomeric L-glutamate-gated chloride channels with robust and rapidly desensitizing currents, an EC50 of 1.9±0.03 mM and a Hill coefficient of 1.5±0.1. GABA, glycine, histamine and NMDA all failed to activate the GLC-3 homo-oligomer at concentrations of 1 mM. The anthelminthic, ivermectin, directly and irreversibly activated the L-glutamate-gated channel with an EC50 of 0.4±0.02 μM. The GLC-3 channels were selective for chloride ions, as shown by the shift in the reversal potential for L-glutamate-gated currents after the reduction of external Cl− from 107.6 to 62.5 mM. Picrotoxinin failed to inhibit L-glutamate agonist responses at concentrations up to 1 mM. The polycyclic dinitrile, 3,3-bis-trifluoromethyl-bicyclo[2,2,1]heptane-2,2-dicarbonitrile (BIDN), completely blocked L-glutamate-induced chloride currents recorded from oocytes expressing GLC-3 with an IC50 of 0.2±0.07 μM. The phenylpyrazole insecticide, fipronil, reversibly inhibited L-glutamate-gated currents recorded from the GLC-3 receptor with an IC50 of 11.5±0.11 μM. In this study, we detail the unusual antagonist pharmacology of a new GluCl subunit from C. elegans. Unlike all other native and recombinant nematode GluCl reported to date, the GLC-3 receptor is insensitive to picrotoxinin, but is sensitive to two other channel blockers, BIDN and fipronil. Further study of this receptor may provide insights into the molecular basis of non-competitive antagonism by these compounds. PMID:11250875

  12. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel

    PubMed Central

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-01-01

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S–S498F–L505T–Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular “glue” that bridges the S4–S5 linker to the S1–S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor. PMID:27298359

  13. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    PubMed

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  14. Characterization of a novel 132-bp exon of the human maxi-K channel.

    PubMed

    Korovkina, V P; Fergus, D J; Holdiman, A J; England, S K

    2001-07-01

    The large-conductance Ca2+-activated voltage-dependent K+ channel (maxi-K channel) induces a significant repolarizing current that buffers cell excitability. This channel can derive its diversity by alternative splicing of its transcript-producing isoforms that differ in their sensitivity to voltage and intracellular Ca2+. We have identified a novel 132-bp exon of the maxi-K channel from human myometrial cells that encodes 44 amino acids within the first intracellular loop of the channel protein. Distribution analysis reveals that this exon is expressed predominantly in human smooth muscle tissues with the highest abundance in the uterus and aorta and resembles the previously reported distribution of the total maxi-K channel transcript. Single-channel K+ current measurements in fibroblasts transfected with the maxi-K channel containing this novel 132-bp exon demonstrate that the presence of this insert attenuates the sensitivity to voltage and intracellular Ca2+. Alternative splicing to introduce this 132-bp exon into the maxi-K channel may elicit another mode to modulate cell excitability.

  15. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.

    2014-02-03

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic gridmore » or a special interconnections.« less

  16. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome.

    PubMed

    Chowdhry, Vivek; Mohanty, B B

    2015-01-01

    Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (K ATP ) channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of K ATP channel, it can expel K + ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy.

  17. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    PubMed Central

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  18. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    PubMed

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  19. Ca2+ current vs. Ca2+ channel cooperativity of exocytosis

    PubMed Central

    Matveev, Victor; Bertram, Richard; Sherman, Arthur

    2009-01-01

    Recently there has been significant interest and progress in the study of spatio-temporal dynamics of Ca2+ that triggers exocytosis at a fast chemical synapse, which requires understanding the contribution of individual calcium channels to the release of a single vesicle. Experimental protocols provide insight into this question by probing the sensitivity of exocytosis to Ca2+ influx. While varying extracellular or intracellular Ca2+ concentration assesses the intrinsic biochemical Ca2+ cooperativity of neurotransmitter release, varying the number of open Ca2+ channels using pharmacological channel block or the tail current titration probes the cooperativity between individual Ca2+ channels in triggering exocytosis. Despite the wide use of these Ca2+ sensitivity measurements, their interpretation often relies on heuristic arguments. Here we provide a detailed analysis of the Ca2+ sensitivity measures probed by these experimental protocols, present simple expressions for special cases, and demonstrate the distinction between the Ca2+ current cooperativity, defined by the relationship between exocytosis rate and the whole-terminal Ca2+ current magnitude, and the underlying Ca2+ channel cooperativity, defined as the average number of channels involved in the release of a single vesicle. We find simple algebraic expressions that show that the two are different but linearly related. Further, we use 3D computational modeling of buffered Ca2+ diffusion to analyze these distinct Ca2+ cooperativity measures, and demonstrate the role of endogenous Ca2+ buffers on such measures. We show that buffers can either increase or decrease the Ca2+ current cooperativity of exocytosis, depending on their concentration and the single-channel Ca2+ current. PMID:19793978

  20. NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS

    PubMed Central

    Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A

    2012-01-01

    Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC50 of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel CaV3.2 isoform is responsible for them. PMID:21898399

  1. SLO-1-Channels of Parasitic Nematodes Reconstitute Locomotor Behaviour and Emodepside Sensitivity in Caenorhabditis elegans slo-1 Loss of Function Mutants

    PubMed Central

    Schniederjans, Monika; Miltsch, Sandra M.; Krücken, Jürgen; Guest, Marcus; Holden-Dye, Lindy; Harder, Achim; von Samson-Himmelstjerna, Georg

    2011-01-01

    The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still

  2. Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes.

    PubMed

    Bekar, Lane K; Loewen, Matthew E; Cao, Kun; Sun, Xianfeng; Leis, Jerome; Wang, Rui; Forsyth, George W; Walz, Wolfgang

    2005-03-01

    Voltage-gated potassium channels are well established as critical for setting action potential frequency, membrane potential, and neurotransmitter release in neurons. However, their role in the "nonexcitable" glial cell type is yet to be fully understood. We used whole cell current kinetics, pharmacology, immunocytochemistry, and RT-PCR to characterize A-type current in hippocampal astrocyte cultures to better understand its function. Pharmacological analysis suggests that approximately 70, 10, and <5% of total A current is associated with Kv4, Kv3, and Kv1 channels, respectively. In addition, pharmacology and kinetics provide evidence for a significant contribution of KChIP accessory proteins to astrocytic A-channel composition. Localization of the Shaw Kv3.4 channel to astrocytic processes and the Shal Kv4.3 channel to soma suggest that these channels serve a specific function. Given this complex A-type channel expression pattern, we assessed the role of A currents in membrane voltage oscillations in response to current injections. Although TEA-sensitive delayed-rectifying currents are involved in the extent of repolarization, 4-AP-sensitive A currents serve to increase the rate. As in neurons, this effect may enable astrocytes to respond rapidly to high-frequency synaptic events. Our results indicate that hippocampal astrocytes in vitro express multiple A-type Kv channel alpha-subunits with accessory, possibly Ca(2+)-sensitive, cytoplasmic subunits that appear to be specifically localized to subcellular membrane compartments. Function of these channels remains to be determined in a physiological setting. However, this study suggests that they enable astrocytes to respond rapidly with membrane voltage oscillations to high-frequency incoming signals, possibly synchronizing astrocyte function to neuronal activity.

  3. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Jian; Huang Yixiao; Wang Xiaoguang

    2011-08-15

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  4. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease.

    PubMed

    Esmaeili, Mohammad Hossein; Bahari, Behnam; Salari, Ali-Akbar

    2018-03-01

    Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(K ATP ) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of K ATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, K ATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of K ATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that K ATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  6. One-channel Cell-attached Patch-clamp Recording

    PubMed Central

    Maki, Bruce A.; Cummings, Kirstie A.; Paganelli, Meaghan A.; Murthy, Swetha E.; Popescu, Gabriela K.

    2014-01-01

    Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease. PMID:24961614

  7. Modulation of neuronal sodium channels by the sea anemone peptide BDS-I

    PubMed Central

    Liu, Pin; Jo, Sooyeon

    2012-01-01

    Blood-depressing substance I (BDS-I), a 43 amino-acid peptide from sea anemone venom, is used as a specific inhibitor of Kv3-family potassium channels. We found that BDS-I acts with even higher potency to modulate specific types of voltage-dependent sodium channels. In rat dorsal root ganglion (DRG) neurons, 3 μM BDS-I strongly enhanced tetrodotoxin (TTX)-sensitive sodium current but weakly inhibited TTX-resistant sodium current. In rat superior cervical ganglion (SCG) neurons, which express only TTX-sensitive sodium current, BDS-I enhanced current elicited by small depolarizations and slowed decay of currents at all voltages (EC50 ∼ 300 nM). BDS-I acted with exceptionally high potency and efficacy on cloned human Nav1.7 channels, slowing inactivation by 6-fold, with an EC50 of approximately 3 nM. BDS-I also slowed inactivation of sodium currents in N1E-115 neuroblastoma cells (mainly from Nav1.3 channels), with an EC50 ∼ 600 nM. In hippocampal CA3 pyramidal neurons (mouse) and cerebellar Purkinje neurons (mouse and rat), BDS-I had only small effects on current decay (slowing inactivation by 20–50%), suggesting relatively weak sensitivity of Nav1.1 and Nav1.6 channels. The biggest effect of BDS-I in central neurons was to enhance resurgent current in Purkinje neurons, an effect reflected in enhancement of sodium current during the repolarization phase of Purkinje neuron action potentials. Overall, these results show that BDS-I acts to modulate sodium channel gating in a manner similar to previously known neurotoxin receptor site 3 anemone toxins but with different isoform sensitivity. Most notably, BDS-I acts with very high potency on human Nav1.7 channels. PMID:22442564

  8. The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dual-channel surface plasmon resonance.

    PubMed

    Jiang, Zhongxiu; Qin, Yun; Peng, Zhen; Chen, Shenghua; Chen, Shu; Deng, Chunyan; Xiang, Juan

    2014-12-15

    Free/total prostate antigen (f/t-PSA) ratio in serum as a promising parameter has been used to improve the differentiation of benign and malignant prostate disease. In order to obtain the accurate and reliable f/t-PSA ratio, the simultaneous detection of f-PSA and t-PSA with high sensitivity and specificity is required. In this work, the dual-channel surface plasmon resonance (SPR) has been employed to meet the requirement. In one channel, t-PSA was directly measured with a linear range from 1.0 to 20.0 ng/mL. In another channel, due to the low concentration of f-PSA in serum, the asynchronous competitive inhibition immunoassay with f-PSA@Au nanoparticles (AuNPs) was developed. As expected, the detection sensitivity of f-PSA was greatly enhanced, and a linear correlation with wider linear range from 0.010 to 0.40 ng/mL was also achieved. On the other hand, a simple method was explored for significantly reducing the non-specific adsorption of co-existing proteins. On basis of this, the f/t-PSA ratios in serum samples from prostate cancer (PCa) or benign prostatic hyperplasia (BPH) patients were measured. And it was found that there was significant difference between the distributions of f/t-PSA ratio in BPH patients (16.44±1.77%) and those in PCa patients (24.53±4.97%). This present work provides an effective method for distinguishing PCa from BPH, which lays a potential foundation for the early diagnosis of PCa. Copyright © 2014. Published by Elsevier B.V.

  9. Potential of glyburide to reduce intracerebral edema in brain metastases.

    PubMed

    Boggs, Drexell Hunter; Simard, J Marc; Steven, Andrew; Mehta, Minesh P

    2014-04-01

    Metastatic disease to the brain results in significant morbidity because of edema in the central nervous system. Current anti-edema therapies are either expensive or result in unwanted long-term side effects. Sulfonylurea receptor 1 (Sur1) is a transmembrane protein that, when activated in the central nervous system, allows for unregulated sodium influx into cells, a process that has been linked to cytotoxic edema formation in ischemic stroke, subarachnoid hemorrhage, spinal cord injury, traumatic brain injury, and, most recently, brain metastases. In this focused review, we explore preclinical data linking Sur1 channel formation to development of edema and reference evidence suggesting that the antidiabetic sulfonylurea drug glyburide (a Sur1 inhibitor) is an inexpensive and well-tolerated agent that can be clinically tested to reduce or prevent malignancy and/or treatment-associated edema.

  10. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    PubMed

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  11. Man-induced channel adjustment in Tennessee streams

    USGS Publications Warehouse

    Robbins, C.H.; Simon, Andrew

    1983-01-01

    Channel modifications in Tennessee, particularly in the western part, have led to large-scale instabilities in the channelized rivers and may have contributed to several bridge failures. These modifications, together with land-use practices, led to downcutting, headward erosion, downstream aggradation, accelerated scour, and bank instabilities. Changes in gradient by channel straightening caused more severe channel response than did dredging or clearing. Large-scale changes continue to occur in all the channelized rivers: the Obion River, its forks, and the South Fork Forked Deer River. However, the non-channelized Hatchie River in west Tennessee not only withstood the natural stresses imposed by the wet years of 1973 to 1975 but continues to exhibit characteristics of stability. Water-surface slope, the primary dependent variable, proved to be a sensitive and descriptive parameter useful in determining channel adjustment. Adjustments to man-induced increases in channel-slope are described by inverse exponential functions of the basic form S=ae(-b(t)); where ' S ' is some function describing channel-slope, ' t ' is the number of years since completion of channel work, and ' a ' and ' b ' are coefficients. Response times for the attainment of ' equilibrium ' channel slopes are a function of the magnitude and extent of the imposed modifications. The adjusted profile gradients attained by the streams following channelization are similar to the predisturbed profile gradients, where no alteration to channel length was made. Where the channels were straightened by constructing cut-offs, thus shortening channel length, then slope adjustments (reduction) proceed past the predisturbed profile gradients, to new profiles with lower gradients. (USGS)

  12. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    PubMed Central

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  13. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis.

    PubMed

    Ondrusova, Katarina; Fatehi, Mohammad; Barr, Amy; Czarnecka, Zofia; Long, Wentong; Suzuki, Kunimasa; Campbell, Scott; Philippaert, Koenraad; Hubert, Matthew; Tredget, Edward; Kwan, Peter; Touret, Nicolas; Wabitsch, Martin; Lee, Kevin Y; Light, Peter E

    2017-11-27

    Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words).

  14. Inhibitory effects of the ATP-sensitive potassium channel openers cromakalim, pinacidil and minoxidil on the carbachol-response curve in porcine detrusor muscle.

    PubMed

    Badawi, Jasmin Katrin; Kirschner-Hermanns, Ruth; Ding, Andrea

    2012-06-01

    ATP-sensitive potassium channels represent promising drug targets for treating specific bladder diseases. The inhibitory effects of ATP-selective potassium channel openers (PCOs) on the carbachol-response curve in porcine detrusor muscle were examined. Each of the three substances used in the study represent one prototype of a different class of PCO: cromakalim belongs to the benzopyran series, pinacidil is a cyanoguanidine derivative, and minoxidil represents a pyrimidine derivative. The porcine detrusor muscle represents one of the best models for human detrusor. Experiments were conducted on muscle strips of porcine detrusor muscle suspended in a tissue bath. Concentration-response curves of carbachol were constructed after pretreatment with cromakalim at 10(-7), 10(-6) and 10(-5) M, and with pinacidil and minoxidil at 10(-6), 10(-5.5) and 10(-5) M, respectively. Each muscle strip was only used to examine one concentration of one substance. Cromakalim had the greatest inhibitory effect, significantly suppressing the carbachol-response curve at 10(-6) and 10(-5) M. Pinacidil showed a significant inhibitory effect at 10(-5.5) and 10(-5) M, which was smaller than that of cromakalim. Minoxidil did not significantly inhibit the contractions at all examined concentrations. The examined ATP-sensitive PCOs belonging to the benzopyrans and cyanoguanidines significantly suppressed detrusor contractions. The development of derivatives of these prototypes could open new possibilities for the pharmacological treatment of selected bladder diseases.

  15. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    PubMed Central

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  16. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    PubMed

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  17. Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium

    PubMed Central

    González-Pérez, Vivian; Neely, Alan; Tapia, Christian; González-Gutiérrez, Giovanni; Contreras, Gustavo; Orio, Patricio; Lagos, Verónica; Rojas, Guillermo; Estévez, Tania; Stack, Katherine; Naranjo, David

    2008-01-01

    After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches—the so called C inactivation—is a constriction of the external mouth of the channel pore that prevents K+ ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was −90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814–826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a “foot in the door” mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results

  18. Insight into the Meligethes aeneus voltage-sensitive sodium channel structure and an attempt to select the best pyrethroid ligands.

    PubMed

    Obrępalska-Stęplowska, Aleksandra; Czerwoniec, Anna; Wieczorek, Przemysław; Wrzesińska, Barbara

    2016-01-01

    The voltage-sensitive sodium channel (VSSC) is a target for the pharmacological action of pyrethroids which are used in controlling pests, including those of agricultural importance. Among these is the pollen beetle (Meligethes aeneus F.) - the most serious pest of Brassica napus. Owing to the heavy use of pyrethroids, a widespread build-up of resistance has occurred. The main cause of pyrethroid insensitivity in M. aeneus is considered to be an increased oxidative metabolism; however, the additional mechanism of resistance associated with mutations in the VSSC might contribute to this phenomenon. We generated a VSSC 3D model to study the docking affinities of pyrethroids to their target site within the channel. Our goal was to identify the pyrethroids for which docking affinity scores were high and not affected by potential mutations in the VSSC. We found that the docking scores of cypermethrin are hardly influenced by the appearance of point mutations. Additionally, tau-fluvalinate, deltamethrin and bifenthrin are VSSC ligands with high affinity scores. Our docking models suggest that point mutations in the VSSC binding pocket might affect the stability of ligand interactions and change the pattern of ligand docking locations, which might have a potential effect on VSSC gating properties. © 2015 Society of Chemical Industry.

  19. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K+ channels pathway and serotoninergic system.

    PubMed

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K + channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT 1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT 1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT 1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT 5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT 1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K + channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  20. Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells

    PubMed Central

    Shen, Wen; Slaughter, Malcolm M

    1998-01-01

    Glutamate suppressed high-voltage-activated barium currents (IBa,HVA) in tiger salamander retinal ganglion cells. Both ionotropic (iGluR) and metabotropic (mGluR) receptors contributed to this calcium channel inhibition. Trans-ACPD (1-aminocyclopentane-trans-1S,3R-dicarboxylic acid), a broad-spectrum metabotropic glutamate receptor agonist, suppressed a dihydropyridine-sensitive barium current. Kainate, an ionotropic glutamate receptor agonist, reduced an ω-conotoxin GVIA-sensitive current. The relative effectiveness of selective agonists indicated that the predominant metabotropic receptor was the L-2-amino-4-phosphonobutyrate (l-AP4)-sensitive, group III receptor. This receptor reversed the action of forskolin, but this was not responsible for calcium channel suppression. l-AP4 raised internal calcium concentration. Antagonists of phospholipase C, inositol trisphosphate (IP3) receptors and ryanodine receptors inhibited the action of metabotropic agonists, indicating that group III receptor transduction was linked to this pathway. The action of kainate was partially suppressed by BAPTA, by calmodulin antagonists and by blockers of calmodulin-dependent phosphatase. Suppression by kainate of the calcium channel current was more rapid when calcium was the charge carrier, instead of barium. The results indicate that calcium influx through kainate-sensitive glutamate receptors can activate calmodulin, which stimulates phosphatases that may directly suppress voltage-sensitive calcium channels. Thus, ionotropic and metabotropic glutamate receptors inhibit distinct calcium channels. They could act synergistically, since both increase internal calcium. These pathways provide negative feedback that can reduce calcium influx when ganglion cells are depolarized. PMID:9660896

  1. Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    DTIC Science & Technology

    1989-10-20

    acting at neurotoxin receptor site 2, and markedly potentiated and prolonged by polypeptide a-scorpion toxins and sea anemone toxins acting at neurotoxin...to block the actions of scorpion toxins and sea anemone toxins on the sodium channel. Transmembrane organization of amino acid sequences between

  2. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals

    PubMed Central

    Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen

    2010-01-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  3. Ultrasteep Voltage Dependence in a Membrane Channel

    NASA Astrophysics Data System (ADS)

    Mangan, Patrick S.; Colombini, Marco

    1987-07-01

    A mechanism for regulating voltage-gated channels is presented. The treatment amplifies the effect of the applied membrane potential resulting in a dramatic increase in the channel's voltage dependence. Addition of a large polyvalent anion to the medium bathing a phospholipid bilayer containing the voltage-dependent channel from the mitochondrial outer membrane, VDAC, induced up to a 12-fold increase in the channel's voltage sensitivity. The highest polyvalent anion concentration tested resulted in an e-fold conductance change for a 0.36-mV change in membrane potential. On the low end, a concentration of 2 μ M resulted in a 50% increase in VDAC voltage dependence. A mechanism based on polyvalent anion accumulation in the access resistance region at the mouth of the pore is consistent with all findings. Perhaps the voltage dependence of voltage-gated channels is amplified in vivo by polyvalent ions. If so, the control of excitable phenomena may be under much finer regulation than that provided by membrane potential alone.

  4. Different role of TTX-sensitive voltage-gated sodium channel (NaV 1) subtypes in action potential initiation and conduction in vagal airway nociceptors.

    PubMed

    Kollarik, M; Sun, H; Herbstsomer, R A; Ru, F; Kocmalova, M; Meeker, S N; Undem, B J

    2018-04-15

    The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (Na V 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective Na V 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing Na V 1 blocking drugs for topical application to the respiratory tract. The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (Na V 1s). We evaluated the role of TTX-sensitive and TTX-resistant Na V 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel Na V 1.7 along with TTX-resistant Na V 1.8 and Na V 1.9. Tracheal nodose neurons also expressed Na V 1.7 but, less frequently, Na V 1.8 and Na V 1.9. Na V 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other Na V 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in

  5. Single channel recording of a mitochondrial calcium uniporter.

    PubMed

    Wu, Guangyan; Li, Shunjin; Zong, Guangning; Liu, Xiaofen; Fei, Shuang; Shen, Linda; Guan, Xiangchen; Yang, Xue; Shen, Yuequan

    2018-01-29

    Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca 2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca 2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    PubMed

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  7. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli

    PubMed Central

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics. PMID:25996836

  8. Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review.

    PubMed

    Chen, Yuehong; Du, Liang; Li, Ling; Ma, Jun; Geng, Xingyuan; Yao, Xun; Liu, Guanjian; Sun, Xin

    2017-05-01

    Increasing evidence suggests that oral hypoglycemic agents used in type 2 diabetes mellitus (T2DM) may affect cancer risk. Sulfonylureas (SUs) are the most frequently used antidiabetic medications for T2DM. Whether using SUs has any effect on cancer has received considerable attention. The aim of this study was to assess the effects of SUs on cancer risk in T2DM patients. Published studies were identified in PubMed, EMBASE, and the Cochrane Register of Clinical Studies, and ClinicalTrials.gov was searched for additional information to identify randomized controlled trials (RCTs), cohort studies, and case-control studies. The abstracts and full text were screened, data collected, and the risk of bias assessed for each individual study. Seventy-seven studies (33 RCTs, 27 cohort studies, and 17 case-control studies) were analyzed. The RCTs did not report a difference in the risk of malignant tumor between SU-treated T2DM patients and controls (odds ratio [OR] 0.96; 95% confidence interval [CI] 0.78-1.18); cohort studies showed that cancer risk was higher in patients using SUs than metformin (relative risk 1.60 [95%CI 1.37-1.87]; adjusted hazard ratio 1.13 [95%CI 1.06-1.19]), and case-control studies suggested a trend for increased cancer risk in those using SUs compared with non-SU users (adjusted OR 1.13; 95%CI 0.93-1.37). The available evidence clearly shows that SUs can significantly increase the risk of cancer compared with metformin. Although the evidence suggests the possibility that SU users may have a higher risk of cancer than those using alternative medications in addition to metformin, it remains inadequate to enable definitive conclusions to be drawn. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  9. Band-broadening suppressed effect in long turned geometry channel and high-sensitive analysis of DNA sample by using floating electrokinetic supercharging on a microchip.

    PubMed

    Xu, Zhongqi; Murata, Kenji; Arai, Akihiro; Hirokawa, Takeshi

    2010-03-12

    A featured microchip owning three big reservoirs and long turned geometry channel was designed to improve the detection limit of DNA fragments by using floating electrokinetic supercharging (FEKS) method. The novel design matches the FEKS preconcentration needs of a large sample volume introduction with electrokinetic injection (EKI), as well as long duration of isotachophoresis (ITP) process to enrich low concentration sample. In the curved channel [ approximately 45.6 mm long between port 1 (P1) and the intersection point of two channels], EKI and ITP were performed while the side port 3 (P3) was electrically floated. The turn-induced band broadening with or without ITP process was investigated by a computer simulation (using CFD-ACE+ software) when the analytes traveling through the U-shaped geometry. It was found that the channel curvature determined the extent of band broadening, however, which could be effectively eliminated by the way of ITP. After the ITP-stacked zones passed the intersection point from P1, they were rapidly destacked for separation and detection from ITP to zone electrophoresis by using leading ions from P3. The FEKS carried on the novel chip successfully contributed to higher sensitivities of DNA fragments in comparison with our previous results realized on either a single channel or a cross microchip. The analysis of low concentration 50 bp DNA step ladders (0.23 mugml after 1500-fold diluted) was achieved with normal UV detection at 260 nm. The obtained limit of detections (LODs) were on average 100 times better than using conventional pinched injection, down to several ngml for individual DNA fragment.

  10. Functional diversity of potassium channel voltage-sensing domains.

    PubMed

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  11. Functional diversity of potassium channel voltage-sensing domains

    PubMed Central

    Islas, León D.

    2016-01-01

    Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852

  12. Sensitivity of low-energy incomplete fusion to various entrance-channel parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.; Singh, D.; Ali, Rahbar; Kumar, Kamal; Sathik, N. P. M.; Ali, Asif; Parashari, Siddharth; Dubey, R.; Bala, Indu; Kumar, R.; Singh, R. P.; Muralithar, S.

    2018-03-01

    The disentangling of incomplete fusion dependence on various entrance channel parameters has been made from the forward recoil range distribution measurement for the 12C+175Lu system at ≈ 88 MeV energy. It gives the direct measure of full and/or partial linear momentum transfer from the projectile to the target nucleus. The comparison of observed recoil ranges with theoretical ranges calculated using the code SRIM infers the production of evaporation residues via complete and/or incomplete fusion process. Present results show that incomplete fusion process contributes significantly in the production of α xn and 2α xn emission channels. The deduced incomplete fusion probability (F_{ICF}) is compared with that obtained for systems available in the literature. An interesting behavior of F_{ICF} with ZP ZT is observed in the reinvestigation of incomplete fusion dependency with the Coulomb factor (ZPZT), contrary to the recent observations. The present results based on (ZPZT) are found in good agreement with recent observations of our group. A larger F_{ICF} value for 12C induced reactions is found than that for 13C, although both have the same ZPZT. A nonsystematic behavior of the incomplete fusion process with the target deformation parameter (β2) is observed, which is further correlated with a new parameter (ZP ZT . β2). The projectile α -Q-value is found to explain more clearly the discrepancy observed in incomplete fusion dependency with parameters ( ZPZT) and (ZP ZT . β2). It may be pointed out that any single entrance channel parameter (mass-asymmetry or (ZPZT) or β2 or projectile α-Q-value) may not be able to explain completely the incomplete fusion process.

  13. Subdiaphragmatic vagotomy increases the sensitivity of lumbar Aδ primary afferent neurons along with voltage-dependent potassium channels in rats.

    PubMed

    Furuta, Sadayoshi; Watanabe, Lisa; Doi, Seira; Horiuchi, Hiroshi; Matsumoto, Kenjiro; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2012-02-01

    Subdiaphragmatic vagal dysfunction causes chronic pain. To verify whether this chronic pain is accompanied by enhanced peripheral nociceptive sensitivity, we evaluated primary afferent neuronal excitability in subdiaphragmatic vagotomized (SDV) rats. SDV rats showed a decrease in the electrical stimuli-induced hind limb-flexion threshold at 250 Hz, but showed no similar effect at 5 or 2000 Hz, which indicated that lumbar primary afferent Aδ sensitivity was enhanced in SDV rats. The whole-cell patch-clamp technique also revealed the hyper-excitability of acutely dissociated medium-sized lumbar dorsal root ganglion (DRG) neurons isolated from SDV rats. The contribution of changes in voltage-dependent potassium (Kv) channels was assessed, and transient A-type K(+) (I(A) ) current density was apparently decreased. Moreover, Kv4.3 immunoreactivity in medium-sized DRG neurons was significantly reduced in SDV rats compared to sham. These results indicate that SDV causes hyper-excitability of lumbar primary Aδ afferent neurons, which may be induced along with suppressing I(A) currents via the decreased expression of Kv4.3. Thus, peripheral Aδ neuroplasticity may contribute to the chronic lower limb pain caused by SDV. Copyright © 2011 Wiley Periodicals, Inc.

  14. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    PubMed

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. KCNQ channels determine serotonergic modulation of ventral surface chemoreceptors and respiratory drive

    PubMed Central

    Hawryluk, Joanna M.; Moreira, Thiago S.; Takakura, Ana C.; Wenker, Ian C.; Tzingounis, Anastasios V.; Mulkey, Daniel K.

    2012-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H+ changes. Their activity is also sensitive to neuromodulatory inputs from multiple respiratory centers, and thus they serve as a key nexus of respiratory control. However, molecular mechanisms that control their activity and susceptibility to neuromodulation are unknown. Here, we show in vitro and in vivo that KCNQ channels are critical determinants of RTN neural activity. In particular, we find that pharmacological block of KCNQ channels (XE991, 10 μM) increased basal activity and CO2-responsivness of RTN neurons in rat brain slices; whereas KCNQ channel activation (retigabine 2–40 μM) silenced these neurons. Interestingly, we also find that KCNQ and apamin sensitive SK channels act synergistically to regulate firing rate of RTN chemoreceptors; simultaneous blockade of both channels led to a increase in CO2-responsivness. Furthermore, we also show that KCNQ channels but not SK channels are downstream effectors of serotonin modulation of RTN activity in vitro. In contrast, inhibition of KCNQ channel did not prevent modulation of RTN activity by Substance P or TRH; previously identified neuromodulators of RTN chemoreception. Importantly, we also show that KCNQ channels are critical for RTN activity in vivo. Inhibition of KCNQ channels lowered the CO2 threshold for phrenic nerve discharge in anesthetized rats and decreased the ventilatory response to serotonin in awake and anesthetized animals. Given that serotonergic dysfunction may contribute to respiratory failure, our findings suggest KCNQ channels as a new therapeutic avenue for respiratory complications associated with multiple neurological disorders. PMID:23175845

  16. ASIC3 channels in multimodal sensory perception.

    PubMed

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  17. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  18. Mechanisms involved in cardiac sensitization by volatile anesthetics: general applicability to halogenated hydrocarbons?

    PubMed

    Himmel, Herbert M

    2008-01-01

    An increased sensitivity of the heart to catecholamines or cardiac sensitization is a recognized risk during acute human exposure to halogenated hydrocarbons used as solvents, foam-blowing or fire-extinguishing agents, refrigerants, and aerosol propellants. Although cardiac sensitization to such "industrial" halocarbons can result in serious arrhythmia and death, research into its mechanistic basis has been limited, whereas the literature on volatile anesthetics (e.g., halothane, chloroform) is comparably extensive. A review of the literature on halocarbons and related volatile anesthetics was conducted. The available experimental evidence suggests that volatile anesthetics at physiologically relevant concentrations interact predominantly with the main repolarizing cardiac potassium channels hERG and I(Ks), as well as with calcium and sodium channels at slightly higher concentrations. On the level of the heart, inhibition of these ion channels is prone to alter both action potential shape (triangulation) and electrical impulse conduction, which may facilitate arrhythmogenesis by volatile anesthetics per se and is potentiated by catecholamines. Action potential triangulation by regionally heterogeneous inhibition of calcium and potassium channels will facilitate catecholamine-induced afterdepolarizations, triggered activity, and enhanced automaticity. Inhibition of cardiac sodium channels will reduce conduction velocity and alter refractory period; this is potentiated by catecholamines and promotes reentry arrhythmias. Other cardiac and/or neuronal mechanisms might also contribute to arrhythmogenesis. The few scattered in vitro data available for halocarbons (e.g., FC-12, halon 1301, trichloroethylene) suggest inhibition of cardiac sodium (conduction), calcium and potassium channels (triangulation), extraneuronal catecholamine reuptake, and various neuronal ion channels. Therefore, it is hypothesized that halocarbons promote cardiac sensitization by similar

  19. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    PubMed

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  20. Tetrachromacy of human vision: spectral channels and primary colors

    NASA Astrophysics Data System (ADS)

    Gavrik, Vitali V.

    2002-06-01

    Full-color imaging requires four channels as, in contrast to a colorimeter, can add no primary to matched scene colors themselves. An ideal imaging channel should have the same spectral sensitivity of scene recording as a retinal receptor and evoke the same primary color sensation. The alternating matching functions of a triad of real primaries are inconsistent with the three cones but explicable of two pairs of independent opponent receptors with their alternating blue-yellow and green-red chromatic axes in the color space. Much other controversy of trichromatic approach can also be explained with the recently proposed intra- receptor processes in the photopic rod and cone, respectively. Each of their four primary sensations, unmixed around 465, 495, 575, and 650 nm, is evoked within a different spectral region. The current trichromatic photographic systems have been found separately to approximate the blue and red receptors, as well as their spectral opponency against the respective yellow and blue- green receptors simulated with a single middle-wave imaging channel. The channel sensitivities are delimited by the neutral points of rod and cone and cannot simulate the necessary overlap of non-opponent channels for properly to render some mixed colors. The yellow and cyan positive dyes closely control the brightness of blue and red sensations, respectively. Those red and blue respectively to control the yellow and blue-green sensations on brightness scales are replaced by magenta dye, controlling them together. Accurate rendering of natural saturation metameric colors, problematic blue-green, purple-red, and low-illumination colors requires to replace the hybrid 'green' channel with the blue-green and yellow channels.

  1. Functional role of hCngb3 in regulation of human cone cng channel: effect of rod monochromacy-associated mutations in hCNGB3 on channel function.

    PubMed

    Okada, Akira; Ueyama, Hisao; Toyoda, Futoshi; Oda, Sanae; Ding, Wei-Guang; Tanabe, Shoko; Yamade, Shinichi; Matsuura, Hiroshi; Ohkubo, Iwao; Kani, Kazutaka

    2004-07-01

    The human cone photoreceptor cyclic nucleotide-gated (CNG) channel comprises alpha- and beta-subunits, which are respectively encoded by hCNGA3 and hCNGB3. The purpose was to examine the functional role of hCNGB3 in modulation of human cone CNG channels and to characterize functional consequences of rod monochromacy-associated mutations in hCNGB3 (S435F and D633G). Macroscopic patch currents were recorded from human embryonic kidney (HEK) 293 cells expressing homomeric (hCNGA3 and hCNGB3) and heteromeric (hCNGA3/hCNGB3, hCNGA3/hCNGB3-S435F, and hCNGA3/hCNGB3-D633G) channels using inside-out patch-clamp technique. Both hCNGA3 homomeric and hCNGA3/hCNGB3 heteromeric channels were activated by cGMP, with half-maximally activating concentration (K(1/2)) of 11.1 +/- 1.0 and 26.2 +/- 1.9 micro M, respectively. The hCNGA3 channels appeared to be more sensitive to inhibition by extracellular Ca(2+) compared with hCNGA3/hCNGB3 channels, when assessed by the degree of outward rectification. Coexpression of either of rod monochromacy-associated mutants of hCNGB3 with hCNGA3 significantly reduced K(1/2) value for cGMP but little affected the sensitivity to extracellular Ca(2+), compared with wild-type heteromeric channels. The selectivity of hCNGA3, hCNGA3/hCNGB3, hCNGA3/hCNGB3-S435F, and hCNGA3/hCNGB3-D633G channels for monovalent cations were largely similar. Immunoprecipitation experiments showed association of hCNGA3 subunit with both of wild-type and mutant hCNGB3 subunits. The hCNGB3 plays an important modulatory role in the function of human cone CNG channels with respect to cGMP and extracellular Ca(2+) sensitivities. The rod monochromacy-associated S435F and D633G mutations in hCNGB3 evokes a significant increase in the apparent affinity for cGMP, which should alter cone function and thereby contribute at least partly to pathogenesis of the disease.

  2. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  3. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    PubMed Central

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N.; Dagel, Amber L.; Schwindt, Peter D. D.

    2016-01-01

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816

  4. Four-channel optically pumped atomic magnetometer for magnetoencephalography

    DOE PAGES

    Colombo, Anthony P.; Carter, Tony R.; Borna, Amir; ...

    2016-06-29

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz 1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.

  5. Separate channels for the analysis of the shape and the movement of moving visual stimulus.

    PubMed

    Tolhurst, D J

    1973-06-01

    1. The effects of temporal modulation on the properties of spatial frequency channels have been investigated using adaptation.2. Adapting to drifting sinusoidal gratings caused threshold elevation that was both spatial frequency and direction specific. Little systematic difference was found between the band widths of the elevation curves for drifting and stationary gratings.3. It was confirmed that adaptation fails to reveal channels at low spatial frequencies when stationary gratings are used. However, channels were revealed at frequencies at least as low as 0.66 c/deg when the test gratings were made to move. These channels are adapted only a little by stationary gratings, confirming their dependence on movement.4. The existence of movement-sensitive channels at low spatial frequencies explains the well known observation that temporal modulation greatly increases the sensitivity of the visual system to low spatial frequencies.5. Temporal modulation was effective at revealing these channels only when the flicker or movement of the test patterns was apparent to the observer; only at low spatial frequencies did patterns, modulated at low rates, actually appear to be temporarily modulated at threshold. At higher spatial frequencies, they were indistinguishable from stationary patterns until the contrast was some way above the detection threshold.6. It is suggested, therefore, that the movement-sensitive channels are responsible for signalling the occurrence of movement; the channels at higher spatial frequencies give no information about temporal changes. These two systems of channels are compared to the Y- and X-cells respectively of the cat.

  6. Association between Genetic Polymorphisms in Cav2.3 (R-type) Ca2+ Channels and Fentanyl Sensitivity in Patients Undergoing Painful Cosmetic Surgery

    PubMed Central

    Fukuda, Ken-ichi; Kasai, Shinya; Hasegawa, Junko; Hayashida, Masakazu; Minami, Masabumi; Ikeda, Kazutaka

    2013-01-01

    Individual differences in the sensitivity to fentanyl, a widely used opioid analgesic, lead to different proper doses of fentanyl, which can hamper effective pain treatment. Voltage-activated Ca2+ channels (VACCs) play a crucial role in the nervous system by controlling membrane excitability and calcium signaling. Cav2.3 (R-type) VACCs have been especially thought to play critical roles in pain pathways and the analgesic effects of opioids. However, unknown is whether single-nucleotide polymorphisms (SNPs) of the human CACNA1E (calcium channel, voltage-dependent, R type, alpha 1E subunit) gene that encodes Cav2.3 VACCs influence the analgesic effects of opioids. Thus, the present study examined associations between fentanyl sensitivity and SNPs in the human CACNA1E gene in 355 Japanese patients who underwent painful orofacial cosmetic surgery, including bone dissection. We first conducted linkage disequilibrium (LD) analyses of 223 SNPs in a region that contains the CACNA1E gene using genomic samples from 100 patients, and a total of 13 LD blocks with 42 Tag SNPs were observed within and around the CACNA1E gene region. In the preliminary study using the same 100 genomic samples, only the rs3845446 A/G SNP was significantly associated with perioperative fentanyl use among these 42 Tag SNPs. In a confirmatory study using the other 255 genomic samples, this SNP was also significantly associated with perioperative fentanyl use. Thus, we further analyzed associations between genotypes of this SNP and all of the clinical data using a total of 355 samples. The rs3845446 A/G SNP was associated with intraoperative fentanyl use, 24 h postoperative fentanyl requirements, and perioperative fentanyl use. Subjects who carried the minor G allele required significantly less fentanyl for pain control compared with subjects who did not carry this allele. Although further validation is needed, the present findings show the possibility of the involvement of CACNA1E gene polymorphisms

  7. Deletion of Tsc2 in Nociceptors Reduces Target Innervation, Ion Channel Expression, and Sensitivity to Heat

    PubMed Central

    Carlin, Dan; Golden, Judith P.; Monk, Kelly R.

    2018-01-01

    Abstract The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior. PMID:29766046

  8. River Sensitivity and Catchment Connectivity: Key Controls on Geomorphic Response and Effectiveness

    NASA Astrophysics Data System (ADS)

    Lisenby, P.; Fryirs, K.; Croke, J.

    2016-12-01

    The sensitivity of river channels to adjustment and the dynamics of sediment connectivity along a channel network are key controls on the capacity (ability) for a river system to adjust, i.e. the severity, distribution, and type of geomorphic response to disturbance events. In turn, the cumulative impact of geomorphic responses compared with event magnitude will determine the geomorphic effectiveness of a single disturbance event. River sensitivity and sediment connectivity can change significantly over space and time, and vary with changes in internal factors such as channel type and geomorphic landform and external factors such as event sequencing and lithological controls. Correspondingly, the capacity for a geomorphic system to respond to disturbance events will also vary, so that geomorphic effectiveness is not definitively characterized by a static relationship between event magnitude and geomorphic response, but rather is a dynamic comparison between geomorphic response and an actively changing capacity for geomorphic adjustment. Herein, we use the Lockyer Valley, Queensland as a case study to illustrate the variability of river sensitivity and sediment connectivity. We relate this variability to the potential and capacity for geomorphic channel response. We find that the sensitivity to and capacity for geomorphic adjustment varies significantly with channel morphometry and valley position. Additionally, the nature of bedload sediment connectivity changes with the distribution of geomorphic landforms and channel weirs that can impede sediment transference through the system. This variability of river sensitivity and sediment connectivity will control the nature of geomorphic response to disturbance events within the Lockyer Valley. Ultimately, determinations of geomorphic effectiveness for disturbance events will depend on comparisons of their geomorphic impacts with the capacity of the Lockyer geomorphic system to respond.

  9. Distinct Roles of the DmNav and DSC1 Channels in the Action of DDT and Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S.; Dong, Ke

    2015-01-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (parats) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a parats1 allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in parats1 mutant flies was almost completely abolished in parats1;DSC1−/− double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w1118A), and the parats1;DSC1−/− double mutant flies were even more resistant to DDT compared to the DSC1 knockout or parats1 mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544

  10. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    PubMed

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.

    PubMed

    Dai, Gucan; Peng, Changhong; Liu, Chunming; Varnum, Michael D

    2013-04-01

    Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.

  12. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides

    PubMed Central

    Dai, Gucan; Peng, Changhong; Liu, Chunming

    2013-01-01

    Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIPn), including phosphatidylinositol 3,4,5-triphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIPn application. However, PIPn induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIPn-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIPn application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIPn regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIPn sensitivity to heteromeric channels formed with PIPn-insensitive A subunits. Finally, channels formed by mixtures of PIPn-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIPn regulation, implying that intersubunit N–C interactions help control the phosphoinositide sensitivity of cone CNG channels. PMID:23530136

  13. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers.

    PubMed

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-12-09

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  14. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers

    PubMed Central

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-01-01

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU. PMID:29232841

  15. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  16. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

    PubMed

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf

    2006-03-01

    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  17. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  18. BK Channels in the Vascular System.

    PubMed

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. © 2016 Elsevier Inc. All rights reserved.

  19. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-06-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.

  20. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production

    PubMed Central

    Sensi, Stefano L.; Yin, Hong Z.; Carriedo, Sean G.; Rao, Shyam S.; Weiss, John H.

    1999-01-01

    Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-d-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 μM Zn2+. Indicating particularly high permeability through Ca2+-permeable α-amino3-hydroxy-5-methyl-4-isoxazolepropionic-acid/kainate (Ca-A/K) channels, micromolar [Zn2+]i rises were observed only after kainate exposures and only in neurons expressing these channels [Ca-A/K(+) neurons]. Further studies using the oxidation-sensitive dye, hydroethidine, revealed Zn2+-dependent reactive oxygen species (ROS) generation that paralleled the [Zn2+]i rises, with rapid oxidation observed only in the case of Zn2+ entry through Ca-A/K channels. Indicating a mitochondrial source of this ROS generation, hydroethidine oxidation was inhibited by the mitochondrial electron transport blocker, rotenone. Additional evidence for a direct interaction between Zn2+ and mitochondria was provided by the observation that the Zn2+ entry through Ca-A/K channels triggered rapid mitochondrial depolarization, as assessed by using the potential-sensitive dye tetramethylrhodamine ethylester. Whereas Ca2+ influx through Ca-A/K channels also triggers ROS production, the [Zn2+]i rises and subsequent ROS production are of more prolonged duration. PMID:10051656

  1. Dissection of the components for PIP2 activation and thermosensation in TRP channels

    PubMed Central

    Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815

  2. A MHD channel study for the ETF conceptual design

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  3. A MHD channel study for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  4. Currents through Hv1 channels deplete protons in their vicinity.

    PubMed

    De-la-Rosa, Víctor; Suárez-Delgado, Esteban; Rangel-Yescas, Gisela E; Islas, León D

    2016-02-01

    Proton channels have evolved to provide a pH regulatory mechanism, affording the extrusion of protons from the cytoplasm at all membrane potentials. Previous evidence has suggested that channel-mediated acid extrusion could significantly change the local concentration of protons in the vicinity of the channel. In this work, we directly measure the proton depletion caused by activation of Hv1 proton channels using patch-clamp fluorometry recordings from channels labeled with the Venus fluorescent protein at intracellular domains. The fluorescence of the Venus protein is very sensitive to pH, thus behaving as a genetically encoded sensor of local pH. Eliciting outward proton currents increases the fluorescence intensity of Venus. This dequenching is related to the magnitude of the current and not to channel gating and is dependent on the pH gradient. Our results provide direct evidence of local proton depletion caused by flux through the proton-selective channel. © 2016 De-la-Rosa et al.

  5. Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium

    PubMed Central

    Hanrahan, JW; Wills, NK; Phillips, JE; Lewis, SA

    1986-01-01

    K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. PMID:2420918

  6. Shaker-related voltage-gated K+ channel expression and vasomotor function in human coronary resistance arteries.

    PubMed

    Nishijima, Yoshinori; Korishettar, Ankush; Chabowski, Dawid S; Cao, Sheng; Zheng, Xiaodong; Gutterman, David D; Zhang, David X

    2018-01-01

    K V channels are important regulators of vascular tone, but the identity of specific K V channels involved and their regulation in disease remain less well understood. We determined the expression of K V 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. HCAs from patients with and without CAD were assessed for mRNA and protein expression of K V 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of K V 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general K V blocker 4-AP and the selective K V 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive K V channels. K V 1.5, as a major 4-AP-sensitive K V 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive K V channel function. © 2017 John Wiley & Sons Ltd.

  7. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  8. A BK (Slo1) channel journey from molecule to physiology

    PubMed Central

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517

  9. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  10. Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans.

    PubMed

    Liu, Shu; Schulze, Ekkehard; Baumeister, Ralf

    2012-01-01

    Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli.

  11. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    PubMed

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  12. Four-channel temperature and humidity microwave scanning radiometer

    NASA Astrophysics Data System (ADS)

    Xu, Pei-Yuan

    1994-06-01

    A compact four-channel microwave scanning radiometer for tropospheric remote sensing is being developed. A pair of 53.85 and 56.02 GHz and a pair of 23.87 and 31.65 GHz are adopted as temperature and humidity channels' frequencies respectively. For each pair of frequencies it has an offset reflector antenna and a Dicke-switching receiver. The pair of receivers is assembled in an enclosure, which is mounted on the rotating table of an azimuth mounting and the pair of antennas is connected with the rotating table of an azimuth mounting in the opposite side by a pair of elevation arms. Each antenna is composed of a 90 degree off-set paraboloid and a conical corrugated horn. Each antenna patterrn of four channels has nearly same HPBW, low side lobes, and low VSWR. The dual band humidity receiver is a time sharing type with 0.2K sensitivity at 1-sec integration time. The dual band temperature receiver is a band sharing type with 0.2K sensitivity at 10-sec integration time. The radiometer and observation are controlled by a single chip microcomputer to realize the unattended operation.

  13. Resurgent current of voltage-gated Na+ channels

    PubMed Central

    Lewis, Amanda H; Raman, Indira M

    2014-01-01

    Resurgent Na+ current results from a distinctive form of Na+ channel gating, originally identified in cerebellar Purkinje neurons. In these neurons, the tetrodotoxin-sensitive voltage-gated Na+ channels responsible for action potential firing have specialized mechanisms that reduce the likelihood that they accumulate in fast inactivated states, thereby shortening refractory periods and permitting rapid, repetitive, and/or burst firing. Under voltage clamp, step depolarizations evoke transient Na+ currents that rapidly activate and quickly decay, and step repolarizations elicit slower channel reopening, or a ‘resurgent’ current. The generation of resurgent current depends on a factor in the Na+ channel complex, probably a subunit such as NaVβ4 (Scn4b), which blocks open Na+ channels at positive voltages, competing with the fast inactivation gate, and unblocks at negative voltages, permitting recovery from an open channel block along with a flow of current. Following its initial discovery, resurgent Na+ current has been found in nearly 20 types of neurons. Emerging research suggests that resurgent current is preferentially increased in a variety of clinical conditions associated with altered cellular excitability. Here we review the biophysical, molecular and structural mechanisms of resurgent current and their relation to the normal functions of excitable cells as well as pathophysiology. PMID:25172941

  14. Comparison of gating dynamics of different IP3R channels with immune algorithm searching for channel parameter distributions

    NASA Astrophysics Data System (ADS)

    Cai, Xiuhong; Li, Xiang; Qi, Hong; Wei, Fang; Chen, Jianyong; Shuai, Jianwei

    2016-10-01

    The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determined by the binding and unbinding capability of Ca2+ ions and IP3 messengers. With the patch clamp experiments, the stationary properties have been discussed for Xenopus oocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R (Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order to provide insights about the relation between the observed gating characteristics and the gating parameters in different IP3Rs, we apply the immune algorithm to fit the parameters of a modified DeYoung-Keizer model. By comparing the fitting parameter distributions of three IP3Rs, we suggest that the three types of IP3Rs have the similar open sensitivity in responding to IP3. The Oo-IP3R3 channel is easy to open in responding to low Ca2+ concentration, while Sf-IP3R channel is easily inhibited in responding to high Ca2+ concentration. We also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three IP3Rs, but the inhibitory Ca2+ binding/unbinding rates are sensitive parameters for gating dynamics for both Oo-IP3R1 and Oo-IP3R3 channels. Such differences may be important in generating the spatially and temporally complex Ca2+ oscillations in cells. Our study also demonstrates that the immune algorithm can be applied for model parameter searching in biological systems.

  15. Pyrethroid receptor in the insect Na sup + channel: Alteration of its properties in pyrethroid-resistant flies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauron, D.; Barhanin, J.; Amichot, M.

    1989-02-21

    Resistance to insecticides is a major problem in agriculture. ({sup 3}H)Saxitoxin binding experiments have shown that pyrethroid-sensitive and pyrethroid-resistant flies have the same amount of Na{sup +} channel protein in their brain membranes. Also, although flies are resistant to pyrethroids, they remain as sensitive to batrachotoxin, which is another type of Na{sup +} channel activators, as pyrethroid-sensitive flies. Pyrethroid binding sites have been characterized by use of the properties of pyrethroids to increase the specific ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding component. K{sub 0.5} values for association of pyrethroids at the Na{sup +} channel of pyrethroid-sensitive flies are in the rangemore » of 0.15-0.25 {mu}M. Conversely, pyrethroids do not produce a significant increase of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding in pyrethroid-resistant flies even at high concentrations of the insecticide. It is concluded that linkage between pyrethroid and batrachotoxin binding sites is altered in the pyrethroid-resistant fly strains. This alteration is probably due to a drastically decreased affinity of the Na{sup +} channel for pyrethroids.« less

  16. Regulation of Spinal Substance P Release by Intrathecal Calcium Channel Blockade

    PubMed Central

    Takasusuki, Toshifumi; Yaksh, Tony L.

    2012-01-01

    Background We investigated the role of different voltage sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil) and L-type voltage sensitive calcium channels blockers (diltiazem and verapamil). Methods Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50μl) was quantified. To assess substance P release, the incidence of neurokinin 1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent stained tissues. Results Intrathecal morphine (20μg), ziconotide (0.3, 0.6 and 1μg), mibefradil (100μg, but not 50μg), diltiazem (500μg, but not 300μg) and verapamil (200μg, but not 50 and 100μg) reduced paw flinching in phase 2 as compared to vehicle control (P < 0.05), with no effect upon phase 1. Ziconotide (0.3, 0.6 and 1μg) and morphine (20μg) significantly inhibited neurokinin 1 receptor internalization (P < 0.05), but mibefradil, diltiazem and verapamil at the highest doses had no effect. Conclusion These results emphasize the role in vivo of N-, but not T- and L-type voltage sensitive calcium channels in mediating the stimulus evoked substance P release from small primary afferents and suggest that T- and L-type voltage sensitive calcium channels blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving post synaptic excitability. PMID:21577088

  17. Validation of a sensitive LC-MS assay for quantification of glyburide and its metabolite 4-transhydroxy glyburide in plasma and urine: an OPRU Network study

    PubMed Central

    Naraharisetti, Suresh Babu; Kirby, Brian J.; Hebert, Mary F.; Easterling, Thomas R.; Unadkat, Jashvant D.

    2009-01-01

    Glyburide (glibenclamide, INN), a second generation sulfonylurea is widely used in the treatment of gestational diabetes mellitus (GDM). None of the previously reported analytical methods provide adequate sensitivity for the expected sub-nanogram/mL maternal and umbilical cord plasma concentrations of glyburide during pregnancy. We developed and validated a sensitive and low sample volume liquid chromatographic-mass spectrometric (LC-MS) method for simultaneous determination of glyburide (GLY) and its metabolite, 4-transhydroxy glyburide (M1) in human plasma (0.5 ml) or urine (0.1 ml). The limits of quantitation (LOQ) for GLY and M1 in plasma were 0.25 and 0.40 ng/mL, respectively whereas it was 1.06 ng/mL for M1 in urine. As measured by quality control samples, precision (% coefficient of variation) of the assay was < 15% whereas the accuracy (% deviation from expected) ranged from −10.1–14.3%. We found that the GLY metabolite, M1 is excreted in the urine as the glucuronide-conjugate. PMID:17980680

  18. The probability of quantal secretion near a single calcium channel of an active zone.

    PubMed Central

    Bennett, M R; Farnell, L; Gibson, W G

    2000-01-01

    A Monte Carlo analysis has been made of calcium dynamics and quantal secretion at microdomains in which the calcium reaches very high concentrations over distances of <50 nm from a channel and for which calcium dynamics are dominated by diffusion. The kinetics of calcium ions in microdomains due to either the spontaneous or evoked opening of a calcium channel, both of which are stochastic events, are described in the presence of endogenous fixed and mobile buffers. Fluctuations in the number of calcium ions within 50 nm of a channel are considerable, with the standard deviation about half the mean. Within 10 nm of a channel these numbers of ions can give rise to calcium concentrations of the order of 100 microM. The temporal changes in free calcium and calcium bound to different affinity indicators in the volume of an entire varicosity or bouton following the opening of a single channel are also determined. A Monte Carlo analysis is also presented of how the dynamics of calcium ions at active zones, after the arrival of an action potential and the stochastic opening of a calcium channel, determine the probability of exocytosis from docked vesicles near the channel. The synaptic vesicles in active zones are found docked in a complex with their calcium-sensor associated proteins and a voltage-sensitive calcium channel, forming a secretory unit. The probability of quantal secretion from an isolated secretory unit has been determined for different distances of an open calcium channel from the calcium sensor within an individual unit: a threefold decrease in the probability of secretion of a quantum occurs with a doubling of the distance from 25 to 50 nm. The Monte Carlo analysis also shows that the probability of secretion of a quantum is most sensitive to the size of the single-channel current compared with its sensitivity to either the binding rates of the sites on the calcium-sensor protein or to the number of these sites that must bind a calcium ion to trigger

  19. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets

    PubMed Central

    Moreno, Cristina; de la Cruz, Alicia; Valenzuela, Carmen

    2016-01-01

    Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation. PMID:27933000

  20. Alpha-latrotoxin induces exocytosis by inhibition of voltage-dependent K+ channels and by stimulation of L-type Ca2+ channels via latrophilin in beta-cells.

    PubMed

    Lajus, Sophie; Vacher, Pierre; Huber, Denise; Dubois, Mathilde; Benassy, Marie-Noëlle; Ushkaryov, Yuri; Lang, Jochen

    2006-03-03

    The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.

  1. Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus

    PubMed Central

    Han, Jaehee; Gnatenco, Carmen; Sladek, Celia D; Kim, Donghee

    2003-01-01

    Magnocellular neurosecretory cells (MNCs) were isolated from the supraoptic nucleus of rat hypothalamus, and properties of K+ channels that may regulate the resting membrane potential and the excitability of MNCs were studied. MNCs showed large transient outward currents, typical of vasopressin- and oxytocin-releasing neurons. K+ channels in MNCs were identified by recording K+ channels that were open at rest in cell-attached and inside-out patches in symmetrical 150 mm KCl. Eight different K+ channels were identified and could be distinguished unambiguously by their single-channel kinetics and voltage-dependent rectification. Two K+ channels could be considered functional correlates of TASK-1 and TASK-3, as judged by their single-channel kinetics and high sensitivity to pHo. Three K+ channels showed properties similar to TREK-type tandem-pore K+ channels (TREK-1, TREK-2 and a novel TREK), as judged by their activation by membrane stretch, intracellular acidosis and arachidonic acid. One K+ channel was activated by application of pressure, arachidonic acid and alkaline pHi, and showed single-channel kinetics indistinguishable from those of TRAAK. One K+ channel showed strong inward rectification and single-channel conductance similar to those of a classical inward rectifier, IRK3. Finally, a K+ channel whose cloned counterpart has not yet been identified was highly sensitive to extracellular pH near the physiological range similar to those of TASK channels, and was the most active among all K+ channels. Our results show that in MNCs at rest, eight different types of K+ channels can be found and six of them belong to the tandem-pore K+ channel family. Various physiological and pathophysiological conditions may modulate these K+ channels and regulate the excitability of MNCs. PMID:12562991

  2. Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons

    PubMed Central

    Lin, Hua V.; Plum, Leona; Ono, Hiraku; Gutiérrez-Juárez, Roger; Shanabrough, Marya; Borok, Erzsebet; Horvath, Tamas L.; Rossetti, Luciano; Accili, Domenico

    2010-01-01

    OBJECTIVE The sites of insulin action in the central nervous system that regulate glucose metabolism and energy expenditure are incompletely characterized. We have shown that mice with hypothalamic deficiency (L1) of insulin receptors (InsRs) fail to regulate hepatic glucose production (HGP) in response to insulin. RESEARCH DESIGN AND METHODS To distinguish neurons that mediate insulin's effects on HGP from those that regulate energy homeostasis, we used targeted knock-ins to express InsRs in agouti-related protein (AgRP) or proopiomelanocortin (POMC) neurons of L1 mice. RESULTS Restoration of insulin action in AgRP neurons normalized insulin suppression of HGP. Surprisingly, POMC-specific InsR knock-in increased energy expenditure and locomotor activity, exacerbated insulin resistance and increased HGP, associated with decreased expression of the ATP-sensitive K+ channel (KATP channel) sulfonylurea receptor 1 subunit, and decreased inhibitory synaptic contacts on POMC neurons. CONCLUSIONS The contrasting phenotypes of InsR knock-ins in POMC and AgRP neurons suggest a branched-pathway model of hypothalamic insulin signaling in which InsR signaling in AgRP neurons decreases HGP, whereas InsR activation in POMC neurons promotes HGP and activates the melanocortinergic energy expenditure program. PMID:19933998

  3. CFDP Performance over Weather-dependent Ka-band Channel

    NASA Technical Reports Server (NTRS)

    Sung, I. U.; Gao, Jay L.

    2006-01-01

    This study presents an analysis of the delay performance of the CCSDS File Delivery Protocol (CFDP) over weather-dependent Ka-band channel. The Ka-band channel condition is determined by the strength of the atmospheric noise temperature, which is weather dependent. Noise temperature data collected from the Deep Space Network (DSN) Madrid site is used to characterize the correlations between good and bad channel states in a two-state Markov model. Specifically, the probability distribution of file delivery latency using the CFDP deferred Negative Acknowledgement (NAK) mode is derived and quantified. Deep space communication scenarios with different file sizes and bit error rates (BERs) are studied and compared. Furthermore, we also examine the sensitivity of our analysis with respect to different data sampling methods. Our analysis shows that while the weather-dependent channel only results in fairly small increases in the average number of CFDP retransmissions required, the maximum number of transmissions required to complete 99 percentile, on the other hand, is significantly larger for the weather-dependent channel due to the significant correlation of poor weather states.

  4. CFDP Performance over Weather-Dependent Ka-Band Channel

    NASA Technical Reports Server (NTRS)

    U, Sung I.; Gao, Jay L.

    2006-01-01

    This study presents an analysis of the delay performance of the CCSDS File Delivery Protocol (CFDP) over weather-dependent Ka-band channel. The Ka-band channel condition is determined by the strength of the atmospheric noise temperature, which is weather dependent. Noise temperature data collected from the Deep Space Network (DSN) Madrid site is used to characterize the correlations between good and bad channel states in a two-state Markov model. Specifically, the probability distribution of file delivery latency using the CFDP deferred Negative Acknowledgement (NAK) mode is derived and quantified. Deep space communication scenarios with different file sizes and bit error rates (BERs) are studied and compared. Furthermore, we also examine the sensitivity of our analysis with respect to different data sampling methods. Our analysis shows that while the weather-dependent channel only results in fairly small increases in the average number of CFDP retransmissions required, the maximum number of transmissions required to complete 99 percentile, on the other hand, is significantly larger for the weather-dependent channel due to the significant correlation of poor weather states.

  5. Molecular mechanism of a COOH-terminal gating determinant in the ROMK channel revealed by a Bartter's disease mutation

    PubMed Central

    Flagg, Thomas P; Yoo, Dana; Sciortino, Christopher M; Tate, Margaret; Romero, Michael F; Welling, Paul A

    2002-01-01

    The ROMK subtypes of inward-rectifier K+ channels mediate potassium secretion and regulate NaCl reabsorption in the kidney. Loss-of-function mutations in this pH-sensitive K+ channel cause Bartter's disease, a familial salt wasting nephropathy. One disease-causing mutation truncates the extreme COOH-terminus and induces a closed gating conformation. Here we identify a region within the deleted domain that plays an important role in pH-dependent gating. The domain contains a structural element that functionally interacts with the pH sensor in the cytoplasmic NH2-terminus to set a physiological range of pH sensitivity. Removal of the domain shifts the pKa towards alkaline pH values, causing channel inactivation under physiological conditions. Suppressor mutations within the pH sensor rescued channel gating and trans addition of the cognate peptide restored pH sensitivity. A specific interdomain interaction was revealed in an in vitro protein-protein binding assay between the NH2- and COOH-terminal cytoplasmic domains expressed as bacterial fusion proteins. These results provide new insights into the molecular mechanisms underlying Kir channel regulation and channel gating defects that are associated with Bartter's disease. PMID:12381810

  6. Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia.

    PubMed

    Morales-Cano, Daniel; Moreno, Laura; Barreira, Bianca; Pandolfi, Rachele; Chamorro, Virginia; Jimenez, Rosario; Villamor, Eduardo; Duarte, Juan; Perez-Vizcaino, Francisco; Cogolludo, Angel

    2015-04-01

    Voltage-gated potassium channels encoded by KCNQ genes (Kv7 channels) are emerging as important regulators of vascular tone. In this study, we analysed the contribution of Kv7 channels to the vasodilation induced by hypoxia and the cyclic AMP pathway in the coronary circulation. We also assessed their regional distribution and possible impairment by diabetes. We examined the effects of Kv7 channel modulators on K+ currents and vascular reactivity in rat left and right coronary arteries (LCAs and RCAs, respectively). Currents from LCA were more sensitive to Kv7 channel inhibitors (XE991, linopirdine) and activators (flupirtine, retigabine) than those from RCA. Accordingly, LCAs were more sensitive than RCAs to the relaxation induced by Kv7 channel enhancers. Likewise, relaxation induced by the adenylyl cyclase activator forskolin and hypoxia, which were mediated through Kv7 channel activation, were greater in LCA than in RCA. KCNQ1 and KCNQ5 expression was markedly higher in LCA than in RCA. After incubation with high glucose (HG, 30 mmol/L), myocytes from LCA, but not from RCA, were more depolarized and showed reduced Kv7 currents. In HG-incubated LCA, the effects of Kv7 channel modulators and forskolin were diminished, and the expression of KCNQ1 and KCNQ5 was reduced. Finally, vascular responses induced by Kv7 channel modulators were impaired in LCA, but not in RCA, from type 1 diabetic rats. Our results reveal that the high expression and function of Kv7 channels in the LCA and their down-regulation by diabetes critically determine the sensitivity to key regulators of coronary tone. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin.

    PubMed

    Chaudhury, Sraboni; Bal, Manjot; Belugin, Sergei; Shapiro, Mark S; Jeske, Nathaniel A

    2011-05-14

    The transient receptor potential vanilloid type1 (TRPV1) is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150) mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 association with, and sensitization of, TRPV1. In trigeminal neurons, intracellular accumulation of calcium reduced AKAP150 association with TRPV1 in a manner sensitive to calmodulin antagonism. This was also observed in transfected Chinese hamster ovary (CHO) cells, providing a model for conducting molecular analysis of the association. In CHO cells, the deletion of the C-terminal calmodulin-binding site of TRPV1 resulted in greater association with AKAP150, and increased channel activity. Furthermore, the co-expression of wild-type calmodulin in CHOs significantly reduced TRPV1 association with AKAP150, as evidenced by total internal reflective fluorescence-fluorescence resonance energy transfer (TIRF-FRET) analysis and electrophysiology. Finally, dominant-negative calmodulin co-expression increased TRPV1 association with AKAP150 and increased basal and PKA-sensitized channel activity. the results from these studies indicate that calcium/calmodulin interferes with the association of AKAP150 with TRPV1, potentially extending resensitization of the channel.

  8. An evolutionarily conserved gene family encodes proton-selective ion channels.

    PubMed

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. BAD and KATP channels regulate neuron excitability and epileptiform activity

    PubMed Central

    Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L

    2018-01-01

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity. PMID:29368690

  10. Species-specific temperature sensitivity of TRPA1

    PubMed Central

    Laursen, Willem J; Anderson, Evan O; Hoffstaetter, Lydia J; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation. PMID:27227025

  11. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Ryder, K. D.; Duncan, R. L.

    2001-01-01

    Osteoblasts respond to both fluid shear and parathyroid hormone (PTH) with a rapid increase in intracellular calcium concentration ([Ca2+]i). Because both stimuli modulate the kinetics of the mechanosensitive cation channel (MSCC), we postulated PTH would enhance the [Ca2+]i response to fluid shear by increasing the sensitivity of MSCCs. After a 3-minute preflow at 1 dyne/cm2, MC3T3-E1 cells were subjected to various levels of shear and changes in [Ca2+]i were assessed using Fura-2. Pretreatment with 50 nM bovine PTH(1-34) [bPTH(1-34)] significantly enhanced the shear magnitude-dependent increase in [Ca2+]i. Gadolinium (Gd3+), an MSCC blocker, significantly inhibited the mean peak [Ca2+]i response to shear and shear + bPTH(1-34). Nifedipine (Nif), an L-type voltage-sensitive Ca2+ channel (VSCC) blocker, also significantly reduced the [Ca2+]i response to shear + bPTH(1-34), but not to shear alone, suggesting VSCC activation plays an interactive role in the action of these stimuli together. Activation of either the protein kinase C (PKC) or protein kinase A (PKA) pathways with specific agonists indicated that PKC activation did not alter the Ca2+ response to shear, whereas PKA activation significantly increased the [Ca2+]i response to lower magnitudes of shear. bPTH(1-34), which activates both pathways, induced the greatest [Ca2+]i response at each level of shear, suggesting an interaction of these pathways in this response. These data indicate that PTH significantly enhances the [Ca2+]i response to shear primarily via PKA modulation of the MSCC and VSCC.

  12. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane.

    PubMed

    Schmidt, Daniel; MacKinnon, Roderick

    2008-12-09

    Voltage-dependent K(+) (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K(+) channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane.

  13. Computational, Experimental and Engineering Foundations of Ionic Channels as Miniaturized Sensors, Devices and Systems

    DTIC Science & Technology

    2003-10-01

    made in an ensemble of channels of unknown orientation and number, preventing quantitative analysis . • Currents have been compared among continuum PNP...microfluidic) analysis of ion channels to obtain fundamental insights into the selectivity, conductivity, and sensitivity of ion channels [19], [6...1.1 Develop fast and efficient simulators for steady-state analysis of continuum model for extraction of I-V curves. 1.2 Create

  14. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  15. Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans

    PubMed Central

    Liu, Shu; Schulze, Ekkehard; Baumeister, Ralf

    2012-01-01

    Background Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli. PMID:22448218

  16. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users.

    PubMed

    Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie

    2015-01-01

    Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope

  17. Calcium channel blockers and transmitter release at the normal human neuromuscular junction.

    PubMed

    Protti, D A; Reisin, R; Mackinley, T A; Uchitel, O D

    1996-05-01

    Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and omega-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or omega-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.

  18. Renal sodium transport in renin-deficient Dahl salt-sensitive rats

    PubMed Central

    Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V; Moreno, Carol; Staruschenko, Alexander

    2016-01-01

    Objective: The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Methods: Renin knockout (Ren−/−) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na+ transporters. Results: It has been described previously that Ren−/− rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na+/H+ exchanger involved in Na+ absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren−/− rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren−/− rats which was mediated via changes in the channel open probability. Conclusion: These data illustrate that renin deficiency leads to significant dysregulation of ion transporters. PMID:27443990

  19. The Calmodulin-Binding, Short Linear Motif, NSCaTE Is Conserved in L-Type Channel Ancestors of Vertebrate Cav1.2 and Cav1.3 Channels

    PubMed Central

    Taiakina, Valentina; Boone, Adrienne N.; Fux, Julia; Senatore, Adriano; Weber-Adrian, Danielle

    2013-01-01

    NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels. PMID:23626724

  20. The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1.

    PubMed

    Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B

    1992-12-01

    Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.