Science.gov

Sample records for channels ion receptors

  1. Acid-sensitive ion channels and receptors.

    PubMed

    Holzer, Peter

    2009-01-01

    Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH, whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore-domain K(+) (K(2P)) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels include TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K(+) channels, voltage-activated K(+) channels, L-type Ca(2+) channels, hyperpolarization-activated cyclic nucleotide gated channels, gap junction channels, and Cl(-) channels. In addition, acid-sensitive G protein coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated

  2. Acid-sensitive ion channels and receptors

    PubMed Central

    Holzer, Peter

    2015-01-01

    Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore domain K+ (K2P) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels comprise TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K+ channels, voltage-activated K+ channels, L-type Ca2+ channels, hyperpolarization-activated cyclic nucleotide-gated channels, gap junction channels, and Cl− channels. In addition, acid-sensitive G protein-coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated

  3. Functional Insights from Glutamate Receptor Ion Channel Structures

    PubMed Central

    Kumar, Janesh; Mayer, Mark L.

    2014-01-01

    X-ray crystal structures for the soluble amino terminal and ligand binding domains of glutamate receptor ion channels, combined with a 3.6 Å resolution structure of the full length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of iGluR assembly and function. Increasingly sophisticated biochemical, computational and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists, and yield new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for development of subtype selective modulators. Many issues remain unsolved, including the role of the ATD in AMPA receptor signaling, and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how binding of glutamate opens the ion channel pore. PMID:22974439

  4. Crystal structure of a heterotetrameric NMDA receptor ion channel

    PubMed Central

    Karakas, Erkan; Furukawa, Hiro

    2014-01-01

    N -methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here we show the crystal structure of the intact heterotetrameric GluN1/GluN2B NMDA receptor ion channel at 4 Å. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the two-fold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors. PMID:24876489

  5. Interaction of ion channels and receptors with PDZ domain proteins.

    PubMed

    Kornau, H C; Seeburg, P H; Kennedy, M B

    1997-06-01

    The complex anatomy of neurons demands a high degree of functional organization. Therefore, membrane receptors and ion channels are often localized to selected subcellular sites and coupled to specific signal transduction machineries. PDZ domains have come into focus as protein interaction modules that mediate the binding of a class of submembraneous proteins to membrane receptors and ion channels and thus subserve these organizational aspects. The structures of two PDZ domains have been resolved, which has led to a structural understanding of the specificity of interactions of various PDZ domains with their respective partners. The functional implications of PDZ domain interactions are now being addressed in vitro and in vivo. PMID:9232802

  6. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. PMID:27513962

  7. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  8. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  9. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  10. The transient receptor potential family of ion channels.

    PubMed

    Nilius, Bernd; Owsianik, Grzegorz

    2011-01-01

    The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases. PMID:21401968

  11. The transient receptor potential family of ion channels

    PubMed Central

    2011-01-01

    Summary The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases. PMID:21401968

  12. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. PMID:25582296

  13. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  14. [Ion channels and action potentials in olfactory receptor cells].

    PubMed

    Kawai, Fusao; Miyachi, Ei-ichi

    2007-11-01

    The first step in olfactory sensation involves the binding of odorant molecules to specific receptor proteins on the ciliary surface of olfactory receptor cells (ORCs). Odorant receptors coupled to G-proteins activate adenylyl cyclase leading to the generation of cAMP, which directly gates a cyclic nucleotide-gated cationic channel in the ciliary membrane. This initial excitation causes a slow and graded depolarizing voltage change, which is encoded into a train of action potentials. Action potentials of ORCs are generated by voltage-gated Na- currents and T-type Ca2- currents in the somatic membrane. Isolated ORCs that have lost their cilia during the dissociation procedure are known to exhibit spike frequency accommodation by injecting the steady current. This raises the possibility that somatic ionic channels in ORCs may serve for odor adaptation at the level of spike encoding, although odor adaptation is mainly accomplished by the ciliary transduction machinery. This review discusses current knowledge concerning the mechanisms of spike generation in ORCs. It also reviews how neurotransmitters and hormones modulate ionic currents and action potentials in ORCs. PMID:18154041

  15. The N-terminal domain of GluR6-subtype glutamate receptor ion channels

    SciTech Connect

    Kumar, Janesh; Schuck, Peter; Jin, Rongsheng; Mayer, Mark L.

    2009-09-25

    The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs. This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.

  16. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction

    PubMed Central

    Weilinger, Nicholas L; Maslieieva, Valentyna; Bialecki, Jennifer; Sridharan, Sarup S; Tang, Peter L; Thompson, Roger J

    2013-01-01

    Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke. PMID:22864302

  17. Ion channels and receptor as targets for the control of parasitic nematodes

    PubMed Central

    Wolstenholme, Adrian J.

    2011-01-01

    Many of the anthelmintic drugs in use today act on the nematode nervous system. Ion channel targets have some obvious advantages. They tend to act quickly, which means that they will clear many infections rapidly. They produce very obvious effects on the worms, typically paralyzing them, and these effects are suitable for use in rapid and high-throughput assays. Many of the ion channels and enzymes targeted can also be incorporated into such assays. The macrocyclic lactones bind to an allosteric site on glutamate-gated chloride channels, either directly activating the channel or enhancing the effect of the normal agonist, glutamate. Many old and new anthelmintics, including tribendimidine and the amino-acetonitrile derivatives, act as agonists at nicotinic acetylcholine receptors; derquantel is an antagonist at these receptors. Nematodes express many different types of nicotinic receptor and this diversity means that they are likely to remain important targets for the foreseeable future. Emodepside may have multiple effects, affecting both a potassium channel and a pre-synaptic G protein-coupled receptor; although few other current drugs act at such targets, this example indicates that they may be more important in the future. The nematode nervous system contains many other ion channels and receptors that have not so far been exploited in worm control but which should be explored in the development of effective new compounds. PMID:24533259

  18. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain.

    PubMed

    White, John P M; Cibelli, Mario; Rei Fidalgo, Antonio; Paule, Cleoper C; Noormohamed, Faruq; Urban, Laszlo; Maze, Mervyn; Nagy, Istvan

    2010-03-01

    Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation. PMID:20179512

  19. [Molecular dynamics simulations of migration of ions and molecules through the acetylcholine receptor channel].

    PubMed

    Shaĭtan, K V; Li, A; Tershkina, K B; Kirpichnikov, M P

    2007-01-01

    A dynamic model of the channel of an acetylcholine receptor in a closed state has been proposed. The channel is formed by five a-helices of subunit M2 and stabilized by the cyclic hydrocarbon (CH2)105. The migration of charged and unchanged van der Waals particles with a diameter of 7.72 A equivalent to the diameter of a hydrated sodium ion has been studied. The migration occurred by the action of external force applied to the complex along the channel axis. In the closed state, the inhibition of ions is due to two components: electrostatic interaction and steric constraints. The van der Waals channel gate is formed by residues 13'-A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264, and the negatively changed residues occurring in the upper part of the channel have a great effect on ion selectivity. PMID:17633536

  20. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel

    PubMed Central

    Badheka, Doreen; Borbiro, Istvan

    2015-01-01

    Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily. PMID:26123195

  1. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel.

    PubMed

    Nagy, Istvan; Friston, Dominic; Valente, Jojo Sousa; Torres Perez, Jose Vicente; Andreou, Anna P

    2014-01-01

    The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1. PMID:24941664

  2. Main ion channels and receptors associated with visceral hypersensitivity in irritable bowel syndrome

    PubMed Central

    de Carvalho Rocha, Heraldo Arcela; Dantas, Bruna Priscilla Vasconcelos; Rolim, Thaísa Leite; Costa, Bagnólia Araújo; de Medeiros, Arnaldo Correia

    2014-01-01

    Irritable bowel syndrome (IBS) is a very frequent functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort and alteration of bowel habits. The IBS physiopathology is extremely complex. Visceral hypersensitivity plays an important role in the pathogenesis of abdominal pain in both in vitro and in vivo models of this functional disorder. In order to obtain a general view of the participation of the main ion channels and receptors regarding the visceral hypersensitivity in the IBS and to describe their chemical structure, a literature review was carried out. A bibliographical research in the following electronic databases: Pubmed and Virtual Library in Health (BVS) was fulfilled by using the search terms “ion channels” “or” “receptors” “and” “visceral hypersensitivity” “or” “visceral nociception” “and” “irritable bowel syndrome”. Original and review articles were considered for data acquisition. The activation of the ATP ion-gated channels, voltage-gated sodium (Nav) and calcium (Cav) channels, as well as the activation of protease-activated receptors (PAR2), transient receptor potential vanilloide-1, serotonin, cannabinoids and cholecystokinin are involved in the genesis of visceral hypersensitivity in IBS. The involvement of ion channels and receptors concerning visceral hypersensitivity is noteworthy in IBS models. PMID:24976114

  3. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  4. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel.

    PubMed

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  5. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes.

    PubMed

    Toyoshima, C; Unwin, N

    1988-11-17

    The nicotinic acetylcholine receptor belongs to a class of molecules that respond transiently to chemical stimuli by opening a water-filled channel through the cell membrane for cations to diffuse. This channel lies along the central axis delineated by a ring of five homologous, membrane-spanning subunits and thus has properties, such as conductance and ion selectivity, which depend on the profile created by the encircling subunits. Insight has been gained recently about the amino-acid residues implicated directly in the ion transport, and some information about the subunit configuration around the channel has come from electron microscopy studies of postsynaptic membranes crystallized in the form of flattened tubular vesicles. The resolution along the axis of the channel has, however, been limited by the restricted range of views obtainable. Here we report the structure of the channel at 17 A resolution, determined by three-dimensional image reconstruction from tubular vesicles having receptors organized in helical arrays across their surfaces. The helical symmetry is preserved by suspending the tubes in thin films of ice, and the receptors in such tubes can be seen from all angles, allowing the channel to be revealed clearly in relation to the lipid bilayer and the peripheral protein for the first time. PMID:2461515

  6. Selecting Ions by Size in a Calcium Channel: The Ryanodine Receptor Case Study

    PubMed Central

    Gillespie, Dirk; Xu, Le; Meissner, Gerhard

    2014-01-01

    Many calcium channels can distinguish between ions of the same charge but different size. For example, when cations are in direct competition with each other, the ryanodine receptor (RyR) calcium channel preferentially conducts smaller cations such as Li+ and Na+ over larger ones such as K+ and Cs+. Here, we analyze the physical basis for this preference using a previously established model of RyR permeation and selectivity. Like other calcium channels, RyR has four aspartate residues in its GGGIGDE selectivity filter. These aspartates have their terminal carboxyl group in the pore lumen, which take up much of the available space for permeating ions. We find that small ions are preferred by RyR because they can fit into this crowded environment more easily. PMID:25418295

  7. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation.

    PubMed

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L; Bayliss, Douglas A; Viana, Félix

    2014-09-11

    Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold-sensitive neurons, combining bacterial artificial chromosome (BAC) transgenesis with a molecular-profiling approach in fluorescence-activated cell sorting (FACS)-purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3, and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  8. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex.

    PubMed

    Yu, Yong; Ulbrich, Maximilian H; Li, Ming-Hui; Dobbins, Scott; Zhang, Wei K; Tong, Liang; Isacoff, Ehud Y; Yang, Jian

    2012-01-01

    Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes. PMID:23212381

  9. Ion permeation properties of the glutamate receptor channel in cultured embryonic Drosophila myotubes.

    PubMed Central

    Chang, H; Ciani, S; Kidokoro, Y

    1994-01-01

    Ion permeation properties of the glutamate receptor channel in cultured myotubes of Drosophila embryos were studied using the inside-out configuration of the patch-clamp technique. Lowering the NaCl concentration in the bath (intracellular solution), while maintaining that of the external solution constant, caused a shift of the reversal potential in the positive direction, thus indicating a higher permeability of the channel to Na+ than to Cl- (PCl/PNa < 0.04), and suggesting that the channel is cation selective. With 145 mM Na+ on both sides of the membrane, the single-channel current-voltage relation was almost linear in the voltage range between -80 and +80 mV, the conductance showing some variability in the range between 140 and 170 pS. All monovalent alkali cations tested, as well as NH4+, permeated the channel effectively. Using the Goldman-Hodgkin-Katz equation for the reversal potential, the permeability ratios with respect to Na+ were estimated to be: 1.32 for K+, 1.18 for NH4+, 1.15 for Rb+, 1.09 for Cs+, and 0.57 for Li+. Divalent cations, i.e. Mg2+ and Ca2+, in the external solution depressed not only the inward but also the outward Na+ currents, although reversal potential measurements indicated that both ions have considerably higher permeabilities than Na+ (PMg/PNa = 2.31; PCa/PNa = 9.55). The conductance-activity relation for Na+ was described by a hyperbolic curve. The maximal conductance was about 195 pS and the half-saturating activity 45 mM. This result suggests that Na+ ions bind to sites in the channel. All data were fitted by a model based on the Eyring's reaction rate theory, in which the receptor channel is a one-ion pore with three energy barriers and two internal sites. PMID:7519261

  10. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  11. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics

    PubMed Central

    Sousa-Valente, J; Andreou, A P; Urban, L; Nagy, I

    2014-01-01

    The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24283624

  12. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  13. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP.

    PubMed

    Valera, S; Hussy, N; Evans, R J; Adami, N; North, R A; Surprenant, A; Buell, G

    1994-10-01

    Extracellular ATP exerts its effects through P2 purinoceptors: these are ligand-gated ion channels (P2x) or G-protein-coupled receptors (P2Y, P2U). ATP at P2x receptors mediates synaptic transmission between neurons and from neurons to smooth muscle, being responsible, for example, for sympathetic vasoconstriction in small arteries and arterioles. We have now cloned a complementary DNA encoding the P2x receptor from rat vas deferens and expressed it in Xenopus oocytes and mammalian cells. ATP activates a cation-selective ion channel with relatively high calcium permeability. Structural predictions suggest that the protein (399 amino acids long) is mostly extracellular and contains only two transmembrane domains plus a pore-forming motif which resembles that of potassium channels. The P2x receptor thus defines a new family of ligand-gated ion channels. PMID:7523951

  14. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.

    PubMed

    Harmar, Anthony J; Hills, Rebecca A; Rosser, Edward M; Jones, Martin; Buneman, O Peter; Dunbar, Donald R; Greenhill, Stuart D; Hale, Valerie A; Sharman, Joanna L; Bonner, Tom I; Catterall, William A; Davenport, Anthony P; Delagrange, Philippe; Dollery, Colin T; Foord, Steven M; Gutman, George A; Laudet, Vincent; Neubig, Richard R; Ohlstein, Eliot H; Olsen, Richard W; Peters, John; Pin, Jean-Philippe; Ruffolo, Robert R; Searls, David B; Wright, Mathew W; Spedding, Michael

    2009-01-01

    The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. PMID:18948278

  15. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin

    PubMed Central

    Lynagh, Timothy; Lynch, Joseph W.

    2012-01-01

    Ivermectin is an anthelmintic drug that works by inhibiting neuronal activity and muscular contractility in arthropods and nematodes. It works by activating glutamate-gated chloride channels (GluClRs) at nanomolar concentrations. These receptors, found exclusively in invertebrates, belong to the pentameric Cys-loop receptor family of ligand-gated ion channels (LGICs). Higher (micromolar) concentrations of ivermectin also activate or modulate vertebrate Cys-loop receptors, including the excitatory nicotinic and the inhibitory GABA type-A and glycine receptors (GlyRs). An X-ray crystal structure of ivermectin complexed with the C. elegans α GluClR demonstrated that ivermectin binds to the transmembrane domain in a cleft at the interface of adjacent subunits. It also identified three hydrogen bonds thought to attach ivermectin to its site. Site-directed mutagenesis and voltage-clamp electrophysiology have also been employed to probe the binding site for ivermectin in α1 GlyRs. These have raised doubts as to whether the hydrogen bonds are essential for high ivermectin potency. Due to its lipophilic nature, it is likely that ivermectin accumulates in the membrane and binds reversibly (i.e., weakly) to its site. Several lines of evidence suggest that ivermectin opens the channel pore via a structural change distinct from that induced by the neurotransmitter agonist. Conformational changes occurring at locations distant from the pore can be probed using voltage-clamp fluorometry (VCF), a technique which involves quantitating agonist-induced fluorescence changes from environmentally sensitive fluorophores covalently attached to receptor domains of interest. This technique has demonstrated that ivermectin induces a global conformational change that propagates from the transmembrane domain to the neurotransmitter binding site, thus suggesting a mechanism by which ivermectin potentiates neurotransmitter-gated currents. Together, this information provides new insights into

  16. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic.

    PubMed

    Galzi, J L; Devillers-Thiéry, A; Hussy, N; Bertrand, S; Changeux, J P; Bertrand, D

    1992-10-01

    Introduction by site-directed mutagenesis of three amino acids from the MII segment of glycine or gamma-aminobutyric acid (GABAA) receptors into the MII segment of alpha 7 nicotinic receptor was sufficient to convert a cation-selective channel into an anion-selective channel gated by acetylcholine. A critical mutation was the insertion of an uncharged residue at the amino-terminal end of MII, stressing the importance of protein geometrical constraints on ion selectivity. PMID:1383829

  17. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins.

    PubMed

    Solé-Magdalena, Antonio; Revuelta, Enrique G; Menénez-Díaz, Ivan; Calavia, Marta G; Cobo, Teresa; García-Suárez, Olivia; Pérez-Piñera, Pablo; De Carlos, Felix; Cobo, Juan; Vega, Jose A

    2011-05-01

    Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa(+) C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa(+) C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa(+) C. The intensity of immunostaining was high for β-ENa(+) C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa(+) C, and TRPV4, being absent for α-ENa(+) C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission. PMID:20836083

  18. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    PubMed

    Forostyak, Oksana; Butenko, Olena; Anderova, Miroslava; Forostyak, Serhiy; Sykova, Eva; Verkhratsky, Alexei; Dayanithi, Govindan

    2016-05-01

    Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca(2+) signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca(2+) channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca(2+) stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca(2+)]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca(2+)]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca(2+)]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from -40 to -50mV in cells in basal to -80mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K(+)-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium

  19. Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors

    PubMed Central

    Jaiteh, Mariama; Taly, Antoine; Hénin, Jérôme

    2016-01-01

    Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes. PMID:26986966

  20. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  1. Changes in Membrane Receptors and Ion Channels as Potential Biomarkers for Osteoarthritis

    PubMed Central

    Lewis, Rebecca; Barrett-Jolley, Richard

    2015-01-01

    Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early enough for any of the current treatment options to be completely successful. Early diagnosis of this disease could increase the numbers of patients who are able to slow its progression. There are now several diseases where membrane protein biomarkers are used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a rich source of potential biomarkers for OA but we need more knowledge of these before they can be considered practical biomarkers. How are they best measured and are they selective to OA or even certain types of OA? The first step in this process is to identify membrane proteins that change in OA. Here, we summarize several ion channels and receptors that change in OA models and/or OA patients, and may thus be considered candidates as novel membrane biomarkers of OA. PMID:26648874

  2. Megacystis, mydriasis, and ion channel defect in mice lacking the α3 neuronal nicotinic acetylcholine receptor

    PubMed Central

    Xu, Wei; Gelber, Shari; Orr-Urtreger, Avi; Armstrong, Dawna; Lewis, Richard A.; Ou, Ching-Nan; Patrick, James; Role, Lorna; De Biasi, Mariella; Beaudet, Arthur L.

    1999-01-01

    The α3 subunit of the neuronal nicotinic acetylcholine receptor is widely expressed in autonomic ganglia and in some parts of the brain. The α3 subunit can form heteromultimeric ion channels with other α subunits and with β2 and β4 subunits, but its function in vivo is poorly understood. We prepared a null mutation for the α3 gene by deletion of exon 5 and found that homozygous (−/−) mice lacked detectable mRNA on Northern blotting. The −/− mice survive to birth but have impaired growth and increased mortality before and after weaning. The −/− mice have extreme bladder enlargement, dribbling urination, bladder infection, urinary stones, and widely dilated ocular pupils that do not contract in response to light. Detailed histological studies of −/− mice revealed no significant abnormalities in brain or peripheral tissues except urinary bladder, where inflammation was prominent. Ganglion cells and axons were present in bladder and bowel. Bladder strips from −/− mice failed to contract in response to 0.1 mM nicotine, but did contract in response to electrical field stimulation or carbamoylcholine. The number of acetylcholine-activated single-channel currents was severely reduced in the neurons of superior cervical ganglia in −/− mice with five physiologically distinguishable nicotinic acetylcholine receptor subtypes with different conductance and kinetic properties in wild-type mice, all of which were reduced in −/− mice. The findings in the α3-null mice suggest that this subunit is an essential component of the nicotinic receptors mediating normal function of the autonomic nervous system. The phenotype in −/− mice may be similar to the rare human genetic disorder of megacystis–microcolon–intestinal hypoperistalsis syndrome. PMID:10318955

  3. Disease-associated changes in the expression of ion channels, ion receptors, ion exchangers and Ca{sup 2+}-handling proteins in heart hypertrophy

    SciTech Connect

    Zwadlo, Carolin; Borlak, Juergen . E-mail: borlak@item.fraunhofer.de

    2005-09-15

    The molecular pathology of cardiac hypertrophy is multifactorial with transcript regulation of ion channels, ion exchangers and Ca{sup 2+}-handling proteins being speculative. We therefore investigated disease-associated changes in gene expression of various ion channels and their receptors as well as ion exchangers, cytoskeletal proteins and Ca{sup 2+}-handling proteins in normotensive and spontaneously hypertensive (SHR) rats. We also compared experimental findings with results from hypertrophic human hearts, previously published (Borlak, J., and Thum, T., 2003. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J. 17, 1592-1608). We observed significant (P < 0.05) induction in transcript level of ATP-driven ion exchangers (Atp1A1, NCX-1, SERCA2a), ion channels (L-type Ca{sup 2+}-channel, K{sub ir}3.4, Na{sub v}1.5) and RyR-2 in hypertrophic hearts, while gene expression was repressed in diseased human hearts. Further, the genes coding for calreticulin and calmodulin, PMCA 1 and 4 as well as {alpha}-skeletal actin were significantly (P < 0.05) changed in hypertrophic human heart, but were unchanged in hypertrophic left ventricles of the rat heart. Notably, transcript level of {alpha}- and {beta}-MHC, calsequestrin, K{sub ir}6.1 (in the right ventricle only), phospholamban as well as troponin T were repressed in both diseased human and rat hearts. Our study enabled an identification of disease-associated candidate genes. Their regulation is likely to be the result of an imbalance between pressure load/stretch force and vascular tonus and the observed changes may provide a rational for the rhythm disturbances observed in patients with cardiac hypertrophy.

  4. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.

    PubMed Central

    Burnashev, N; Villarroel, A; Sakmann, B

    1996-01-01

    1. Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) subunits (GluR-A or GluR-B) and kainate receptor (KAR) subunit (GluR-6) in their unedited (Q)- and edited (R)-forms were expressed in HEK 293 cells. To estimate the dimensions of the narrow portion of these channels, biionic reversal potentials for organic cations of different mean diameters were determined with Cs+ as the internal reference ion. 2. Homomeric channels assembled from Q-form subunits were cation selective. The relation between the relative permeability and the mean size of different organic cations suggests that the diameter of the narrow portion of Q-form channels is approximately 0.78 nm for AMPAR and 0.75 nm for KAR channels. 3. Homomeric channels assembled from R-form subunits were permeant for anions and cations. When probed with CsC1 gradients the relative chloride permeability (PC1/PCs) was estimated as 0.14 for GluR-B(R) and 0.74 for GluR-6(R)-subunit channels. The permeability versus mean size relation for large cations measured with the weakly permeant F- as anion, indicates that for the R-form KAR channels the apparent pore diameter is close to 0.76 nm. 4. Heteromeric AMPAR and KAR channels co-assembled from Q- and R-form subunits were cation selective. The diameter of the narrow portion of these channels is estimated to be in the range between 0.70 and 0.74 nm. 5. The results indicated that the diameters of the narrow portion of AMPAR and KAR channels of different subunit composition and of widely different ion selectivity are comparable. Therefore, the differences in the anion versus cation selectivity, in Ca2+ permeability and in channel conductance are likely to be determined by the difference in charge density of the channel. PMID:8910205

  5. A Transient Receptor Potential Ion Channel in Chlamydomonas Shares Key Features with Sensory Transduction-Associated TRP Channels in Mammals

    PubMed Central

    Arias-Darraz, Luis; Cabezas, Deny; Colenso, Charlotte K.; Alegría-Arcos, Melissa; Bravo-Moraga, Felipe; Varas-Concha, Ignacio; Almonacid, Daniel E.; Madrid, Rodolfo; Brauchi, Sebastian

    2015-01-01

    Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes. PMID:25595824

  6. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia. PMID:26946972

  7. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense

    PubMed Central

    Zimmermann, Sabine; Nürnberger, Thorsten; Frachisse, Jean-Marie; Wirtz, Wolfgang; Guern, Jean; Hedrich, Rainer; Scheel, Dierk

    1997-01-01

    Pathogen recognition at the plant cell surface typically results in the initiation of a multicomponent defense response. Transient influx of Ca2+ across the plasma membrane is postulated to be part of the signaling chain leading to pathogen resistance. Patch-clamp analysis of parsley protoplasts revealed a novel Ca2+-permeable, La3+-sensitive plasma membrane ion channel of large conductance (309 pS in 240 mM CaCl2). At an extracellular Ca2+ concentration of 1 mM, which is representative of the plant cell apoplast, unitary channel conductance was determined to be 80 pS. This ion channel (LEAC, for large conductance elicitor-activated ion channel) is reversibly activated upon treatment of parsley protoplasts with an oligopeptide elicitor derived from a cell wall protein of Phytophthora sojae. Structural features of the elicitor found previously to be essential for receptor binding, induction of defense-related gene expression, and phytoalexin formation are identical to those required for activation of LEAC. Thus, receptor-mediated stimulation of this channel appears to be causally involved in the signaling cascade triggering pathogen defense in parsley. PMID:11038609

  8. IUPHAR-DB: An Open-Access, Expert-Curated Resource for Receptor and Ion Channel Research

    PubMed Central

    2011-01-01

    This contribution highlights efforts by the International Union of Basic and Clinical Pharmacology (IUPHAR) Nomenclature Committee (NC-IUPHAR) to classify human receptors and ion channels, to document their properties, and to recommend ligands that are useful for characterization. This effort has inspired the creation of an online database (IUPHAR-DB), which is intended to provide free information to all scientists, summarized from primary literature by experts. PMID:22778867

  9. The Earliest Ion Channels

    NASA Astrophysics Data System (ADS)

    Pohorille, A.; Wilson, M. A.; Wei, C.

    2009-12-01

    Supplying protocells with ions required assistance from channels spanning their membrane walls. The earliest channels were most likely short proteins that formed transmembrane helical bundles surrounding a water-filled pore. These simple aggregates were capable of transporting ions with efficiencies comparable to those of complex, contemporary ion channels. Channels with wide pores exhibited little ion selectivity but also imposed only modest constraints on amino acid sequences of channel-forming proteins. Channels with small pores could have been selective but also might have required a more precisely defined sequence of amino acids. In contrast to modern channels, their protocellular ancestors had only limited capabilities to regulate ion flux. It is postulated that subsequent evolution of ion channels progressed primarily to acquire precise regulation, and not high efficiency or selectivity. It is further proposed that channels and the surrounding membranes co-evolved.

  10. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily.

    PubMed

    Gunthorpe, M J; Lummis, S C

    2001-06-15

    The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily. PMID:11439930

  11. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily.

    PubMed

    Gunthorpe, M J; Lummis, S C

    2001-04-01

    The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily. PMID:11139582

  12. Polymodal Transient Receptor Potential Vanilloid (TRPV) Ion Channels in Chondrogenic Cells

    PubMed Central

    Szűcs Somogyi, Csilla; Matta, Csaba; Foldvari, Zsofia; Juhász, Tamás; Katona, Éva; Takács, Ádám Roland; Hajdú, Tibor; Dobrosi, Nóra; Gergely, Pál; Zákány, Róza

    2015-01-01

    Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV) receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells. PMID:26262612

  13. Coxsackievirus and Adenovirus Receptor (CAR) Mediates Trafficking of Acid-Sensing Ion Channel 3 (ASIC3) via PSD-95

    PubMed Central

    Excoffon, Katherine J.D.A.; Kolawole, Abimbola O.; Kusama, Nobuyoshi; Gansemer, Nicholas D.; Sharma, Priyanka; Hruska-Hageman, Alesia M.; Petroff, Elena; Benson, Christopher J.

    2012-01-01

    We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid-sensing ion channel (ASIC3), a H+-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex. PMID:22809504

  14. Tethering naturally occurring peptide toxins for cell-autonomous modulation of ion channels and receptors in vivo.

    PubMed

    Ibañez-Tallon, Inés; Wen, Hua; Miwa, Julie M; Xing, Jie; Tekinay, Ayse B; Ono, Fumihito; Brehm, Paul; Heintz, Nathaniel

    2004-08-01

    The physiologies of cells depend on electrochemical signals carried by ion channels and receptors. Venomous animals produce an enormous variety of peptide toxins with high affinity for specific ion channels and receptors. The mammalian prototoxin lynx1 shares with alpha-bungarotoxin the ability to bind and modulate nicotinic receptors (nAChRs); however, lynx1 is tethered to the membrane via a GPI anchor. We show here that several classes of neurotoxins, including bungarotoxins and cobratoxins, retain their selective antagonistic properties when tethered to the membrane. Targeted elimination of nAChR function in zebrafish can be achieved with tethered alpha-bungarotoxin, silencing synaptic transmission without perturbing synapse formation. These studies harness the pharmacological properties of peptide toxins for use in genetic experiments. When combined with specific methods of cell and temporal expression, the extension of this approach to hundreds of naturally occurring peptide toxins opens a new landscape for cell-autonomous regulation of cellular physiology in vivo. PMID:15294139

  15. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  16. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells.

    PubMed

    Rajasekhar, Pradeep; Poole, Daniel P; Liedtke, Wolfgang; Bunnett, Nigel W; Veldhuis, Nicholas A

    2015-11-27

    Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca(2+) ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4(-/-) mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca(2+)]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia. PMID:26475857

  17. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  18. Identification of domains influencing assembly and ion channel properties in α7 nicotinic receptor and 5-HT3 receptor subunit chimaeras

    PubMed Central

    Gee, V J; Kracun, S; Cooper, S T; Gibb, A J; Millar, N S

    2007-01-01

    Background and purpose: Nicotinic acetylcholine receptors (nAChRs) and 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are members of the superfamily of neurotransmitter-gated ion channels. Both contain five subunits which assemble to form either homomeric or heteromeric subunit complexes. With the aim of identifying the influence of subunit domains upon receptor assembly and function, a series of chimaeras have been constructed containing regions of the neuronal nAChR α7 subunit and the 5-HT3 receptor 3A subunit. Experimental approach: A series of subunit chimaeras containing α7 and 5-HT3A subunit domains have been constructed and expressed in cultured mammalian cells. Properties of the expressed receptors have been examined by means of radioligand binding, agonist-induced changes in intracellular calcium and patch-clamp electrophysiology. Key results: Subunit domains which influence properties such as rectification, desensitization and conductance have been identified. In addition, the influence of subunit domains upon subunit folding, receptor assembly and cell-surface expression has been identified. Co-expression studies with the nAChR-associated protein RIC-3 revealed that, in contrast to the potentiating effect of RIC-3 on α7 nAChRs, RIC-3 caused reduced levels of cell-surface expression of some α7/5-HT3A chimaeras. Conclusions and implications: Evidence has been obtained which demonstrates that subunit transmembrane domains are critical for efficient subunit folding and assembly. In addition, functional characterization of subunit chimaeras revealed that both extracellular and cytoplasmic domains exert a dramatic and significant influence upon single-channel conductance. These data support a role for regions other than hydrophobic transmembrane domains in determining ion channel properties. PMID:17721553

  19. Intracellular ion channels and cancer.

    PubMed

    Leanza, Luigi; Biasutto, Lucia; Managò, Antonella; Gulbins, Erich; Zoratti, Mario; Szabò, Ildikò

    2013-01-01

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment. PMID:24027528

  20. Crystal structures of the glutamate receptor ion channel GluK3 and GluK5 amino terminal domains

    PubMed Central

    Kumar, Janesh; Mayer, Mark L.

    2010-01-01

    Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into the AMPA, kainate and NMDA receptor subtypes is regulated by their extracellular amino terminal domains (ATD). Kainate receptors are further classified into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptor families based on their affinity for the neurotoxin kainic acid. These two families share 42% sequence identity for the intact receptor but only 28% sequence identity at the level of ATD. We have determined for the first time high-resolution crystal structures for the GluK3 and GluK5 ATDs, both of which crystallize as dimers, but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5 the R2 domain dimer assembly is similar to that reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result from both extensive intramolecular contacts between domains R1 and R2, and from their assembly as dimers which interact at both the R1 and R2 domains. Our results provide the first insights into the structure and function for GluK4-5, the least understood family of iGluRs. PMID:20951142

  1. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  2. Ion Channels in Brain Metastasis.

    PubMed

    Klumpp, Lukas; Sezgin, Efe C; Eckert, Franziska; Huber, Stephan M

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  3. Bacterial Ion Channels.

    PubMed

    Compton, Emma L R; Mindell, Joseph A

    2010-09-01

    Bacterial ion channels were known, but only in special cases, such as outer membrane porins in Escherichia coli and bacterial toxins that form pores in their target (bacterial or mammalian) membranes. The exhaustive coverage provided by a decade of bacterial genome sequencing has revealed that ion channels are actually widespread in bacteria, with homologs of a broad range of mammalian channel proteins coded throughout the bacterial and archaeal kingdoms. This review discusses four groups of bacterial channels: porins, mechano-sensitive (MS) channels, channel-forming toxins, and bacterial homologs of mammalian channels. The outer membrane (OM) of gram-negative bacteria blocks access of essential nutrients; to survive, the cell needs to provide a mechanism for nutrients to penetrate the OM. Porin channels provide this access by forming large, nonspecific aqueous pores in the OM that allow ions and vital nutrients to cross it and enter the periplasm. MS channels act as emergency release valves, allowing solutes to rapidly exit the cytoplasm and to dissipate the large osmotic disparity between the internal and external environments. MS channels are remarkable in that they do this by responding to forces exerted by the membrane itself. Some bacteria produce toxic proteins that form pores in trans, attacking and killing other organisms by virtue of their pore formation. The review focuses on those bacterial toxins that kill other bacteria, specifically the class of proteins called colicins. Colicins reveal the dangers of channel formation in the plasma membrane, since they kill their targets with exactly that approach. PMID:26443789

  4. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines

    PubMed Central

    Zha, Xiang-ming; Wemmie, John A.; Green, Steven H.; Welsh, Michael J.

    2006-01-01

    Extracellular proton concentrations in the brain may be an important signal for neuron function. Proton concentrations change both acutely when synaptic vesicles release their acidic contents into the synaptic cleft and chronically during ischemia and seizures. However, the brain receptors that detect protons and their physiologic importance remain uncertain. Using organotypic hippocampal slices and biolistic transfection, we found the acid-sensing ion channel 1a (ASIC1a), localized in dendritic spines where it functioned as a proton receptor. ASIC1a also affected the density of spines, the postsynaptic site of most excitatory synapses. Decreasing ASIC1a reduced the number of spines, whereas overexpressing ASIC1a had the opposite effect. Ca2+-mediated Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling was probably responsible, because acid evoked an ASIC1a-dependent elevation of spine intracellular Ca2+ concentration, and reducing or increasing ASIC1a levels caused parallel changes in CaMKII phosphorylation in vivo. Moreover, inhibiting CaMKII prevented ASIC1a from increasing spine density. These data indicate that ASIC1a functions as a postsynaptic proton receptor that influences intracellular Ca2+ concentration and CaMKII phosphorylation and thereby the density of dendritic spines. The results provide insight into how protons influence brain function and how they may contribute to pathophysiology. PMID:17060608

  5. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons.

    PubMed

    Ren, Cuixia; Gan, Xiong; Wu, Jing; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-03-01

    Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons. PMID:26538146

  6. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels.

    PubMed

    Maejima, Takashi; Masseck, Olivia A; Mark, Melanie D; Herlitze, Stefan

    2013-01-01

    Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo. PMID:23734105

  7. Ectodomain movements of an ATP-gated ion channel (P2X2 receptor) probed by disulfide locking.

    PubMed

    Stelmashenko, Olga; Compan, Vincent; Browne, Liam E; North, R Alan

    2014-04-01

    The ectodomain of the P2X receptor is formed mainly from two- or three-stranded β-sheets provided symmetrically by each of the three subunits. These enclose a central cavity that is closed off furthest from the plasma membrane (the turret) and that joins with the transmembrane helices to form the ion permeation pathway. Comparison of closed and open crystal structures indicates that ATP binds in a pocket positioned between strands provided by different subunits and that this flexes the β-sheets of the lower body and enlarges the central cavity: this pulls apart the outer ends of the transmembrane helices and thereby opens an aperture, or gate, where they intersect within the membrane bilayer. In the present work, we examined this opening model by introducing pairs of cysteines into the rat P2X2 receptor that might form disulfide bonds within or between subunits. Receptors were expressed in human embryonic kidney cells, and disulfide formation was assessed by observing the effect of dithiothreitol on currents evoked by ATP. Substitutions in the turret (P90C, P89C/S97C), body wall (S65C/S190C, S65C/D315C) and the transmembrane domains (V48C/I328C, V51C/I328C, S54C/I328C) strongly inhibited ATP-evoked currents prior to reduction with dithiothreitol. Western blotting showed that these channels also formed predominately as dimers and/or trimers rather than monomers. The results strongly support the channel opening mechanism proposed on the basis of available crystal structures. PMID:24515105

  8. Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development

    PubMed Central

    2011-01-01

    Background Calcium signals ([Ca2+]i) direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs) are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. Findings The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a), fast (ryr3) and both types (ryr1b) of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b) which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. Conclusions Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types. PMID:22168922

  9. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  10. Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system

    SciTech Connect

    Houtani, Takeshi; Munemoto, Yumi; Kase, Masahiko; Sakuma, Satoru; Tsutsumi, Toshiyuki; Sugimoto, Tetsuo . E-mail: sugimoto@takii.kmu.ac.jp

    2005-09-23

    An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the

  11. Measuring Ion Channels on Solid Supported Membranes

    PubMed Central

    Schulz, Patrick; Dueck, Benjamin; Mourot, Alexandre; Hatahet, Lina; Fendler, Klaus

    2009-01-01

    Abstract Application of solid supported membranes (SSMs) for the functional investigation of ion channels is presented. SSM-based electrophysiology, which has been introduced previously for the investigation of active transport systems, is expanded for the analysis of ion channels. Membranes or liposomes containing ion channels are adsorbed to an SSM and a concentration gradient of a permeant ion is applied. Transient currents representing ion channel transport activity are recorded via capacitive coupling. We demonstrate the application of the technique to liposomes reconstituted with the peptide cation channel gramicidin, vesicles from native tissue containing the nicotinic acetylcholine receptor, and membranes from a recombinant cell line expressing the ionotropic P2X2 receptor. It is shown that stable ion gradients, both inside as well as outside directed, can be applied and currents are recorded with an excellent signal/noise ratio. For the nicotinic acetylcholine receptor and the P2X2 receptor excellent assay quality factors of Z′ = 0.55 and Z′ = 0.67, respectively, are obtained. This technique opens up new possibilities in cases where conventional electrophysiology fails like the functional characterization of ion channels from intracellular compartments. It also allows for robust fully automatic assays for drug screening. PMID:19580777

  12. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  13. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  14. Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury

    PubMed Central

    Li, Ming-hua; Inoue, Koichi; Si, Hong-fang; Xiong, Zhi-gang

    2011-01-01

    Brain ischemia is a leading cause of death and long-term disabilities worldwide. Unfortunately, current treatment is limited to thrombolysis, which has limited success and a potential side effect of intracerebral hemorrhage. Searching for new cell injury mechanisms and therapeutic interventions has become a major challenge in the field. It has been recognized for many years that intracellular Ca2+ overload in neurons is essential for neuronal injury associated with brain ischemia. However, the exact pathway(s) underlying the toxic Ca2+ loading remained elusive. This review discusses the role of two Ca2+-permeable cation channels, TRPM7 and acid-sensing channels, in glutamate-independent Ca2+ toxicity associated with brain ischemia. PMID:21552295

  15. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. PMID:24518820

  16. Phosphorylation of the Drosophila Transient Receptor Potential Ion Channel Is Regulated by the Phototransduction Cascade and Involves Several Protein Kinases and Phosphatases

    PubMed Central

    Voolstra, Olaf; Bartels, Jonas-Peter; Oberegelsbacher, Claudia; Pfannstiel, Jens; Huber, Armin

    2013-01-01

    Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation. PMID:24040070

  17. Ion channeling revisited.

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  18. Neurotoxic phospholipase A2 from rattlesnake as a new ligand and new regulator of prokaryotic receptor GLIC (proton-gated ion channel from G. violaceus).

    PubMed

    Ostrowski, Maciej; Porowinska, Dorota; Prochnicki, Tomasz; Prevost, Marie; Raynal, Bertrand; Baron, Bruno; Sauguet, Ludovic; Corringer, Pierre-Jean; Faure, Grazyna

    2016-06-15

    Neurotoxic phospholipases A2 (sPLA2) from snake venoms interact with various protein targets with high specificity and potency. They regulate function of multiple receptors or channels essential to life processes including neuronal or neuromuscular chemoelectric signal transduction. These toxic sPLA2 exhibit high pharmacological potential and determination of PLA2-receptor binding sites represents challenging part in the receptor-channel biochemistry and pharmacology. To investigate the mechanism of interaction of neurotoxic PLA2 with its neuronal receptor at the molecular level, we used as a model crotoxin, a heterodimeric sPLA2 from rattlesnake venom and proton-gated ion channel GLIC, a bacterial homolog of pentameric ligand-gated ion channels. The three-dimensional structures of both partners, crotoxin and GLIC have been solved by X-ray crystallography and production of full-length pentameric GLIC (with ECD and TM domains) is well established. In the present study, for the first time, we demonstrated physical and functional interaction of full-length purified and solubilized GLIC with CB, (PLA2 subunit of crotoxin). We identified GLIC as a new protein target of CB and CB as a new ligand of GLIC, and showed that this non covalent interaction (PLA2-GLIC) involves the extracellular domain of GLIC. We also determined a novel function of CB as an inhibitor of proton-gated ion channel activity. In agreement with conformational changes observed upon formation of the complex, CB appears to be negative allosteric modulator (NAM) of GLIC. Finally, we proposed a possible stoichiometric model for CB - GLIC interaction based on analytical ultracentrifugation. PMID:26854368

  19. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  20. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  1. Ion channels and migraine

    PubMed Central

    Yan, Jin; Dussor, Gregory

    2014-01-01

    Migraine is one of the most common neurological disorders. Despite its prevalence, the basic physiology of the molecules and mechanisms that contribute to migraine headache is still poorly understood, making the discovery of more effective treatments extremely difficult. The consistent presence of head-specific pain during migraine suggests an important role for activation of the peripheral nociceptors localized to the head. Accordingly, this review will cover the current understanding of the biological mechanisms leading to episodic activation and sensitization of the trigeminovascular pain pathway, focusing on recent advances regarding activation and modulation of ion channels. PMID:24697223

  2. Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-d-aspartate receptor.

    PubMed

    Klein, Pieter J; Chomet, Marion; Metaxas, Athanasios; Christiaans, Johannes A M; Kooijman, Esther; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2016-08-01

    The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism. PMID:27128179

  3. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  4. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome

    PubMed Central

    Marshall-Gradisnik, Sonya; Huth, Teilah; Chacko, Anu; Johnston, Samantha; Smith, Pete; Staines, Donald

    2016-01-01

    Aim The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients. Subjects and methods A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software. Results ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05). Conclusion We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology

  5. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  6. Biophysics of CNG Ion Channels

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.; Qu, Wei; Moorhouse, Andrew J.

    Cyclic nucleotide-gated (CNG) ion channels are cation-selective, opened by intracellular cyclic nucleotides like cAMP and cGMP, and present in many different neurons and non-neuronal cells. This chapter will concentrate primarily on the biophysical aspects of retinal and olfactory CNG channels, with special reference to ion permeation and selectivity and their underlying molecular basis, and will include a brief overview of the physiological function of CNG channels in both olfaction and phototransduction. We will review the subunit composition and molecular structure of the CNG channel and its similarity to the closely related potassium channels, and will also briefly outline the currently accepted molecular basis underlying activation of the channel and the location of the channel `gate'. We will then outline some general methodologies for investigating ion permeation and selectivity, before reviewing the ion permeation and selectivity properties of native and recombinant CNG channels. We will discuss divalent ion permeation through the channel and the mechanism of channel block by divalent ions. The chapter will conclude by discussing the results of recent experiments to investigate the molecular determinants of cation-anion selectivity in the channel.

  7. Single-Channel Recording of Ligand-Gated Ion Channels.

    PubMed

    Plested, Andrew J R

    2016-01-01

    Single-channel recordings reveal the microscopic properties of individual ligand-gated ion channels. Such recordings contain much more information than measurements of ensemble behavior and can yield structural and functional information about the receptors that participate in fast synaptic transmission in the brain. With a little care, a standard patch-clamp electrophysiology setup can be adapted for single-channel recording in a matter of hours. Thenceforth, it is a realistic aim to record single-molecule activity with microsecond resolution from arbitrary cell types, including cell lines and neurons. PMID:27480725

  8. Characterization of a Multiple Ligand-Gated Ion Channel Cellular Membrane Affinity Chromatography Column and Identification of Endogenously Expressed Receptors in Astrocytoma Cell Lines

    PubMed Central

    Kitabatake, T.; Moaddel, R.; Cole, R.; Gandhari, M.; Frazier, C.; Hartenstein, J.; Rosenberg, A.; Bernier, M.; Wainer, I. W.

    2008-01-01

    Cellular membranes obtained from the 1321N1 and A172 astrocytoma cell lines were immobilized on a chromatographic phase to create cellular membrane affinity chromatography (CMAC) columns, CMAC(1321N1) and CMAC(A172). The columns were characterized using frontal affinity chromatography with [3H]-epibatidine as the marker ligand and epibatidine, nicotine, and methyllycaconitine as the displacers. The results indicated that the columns contained homomeric α7 nicotinic acetylcholine receptors (α7 nAChR) and heteromeric nicotinic acetylcholine receptors (αxβy nAChRs), which was confirmed by the addition of subtype-specific inhibitors, κ-bungarotoxin (α7 nAChR) and K-bungarotoxin (αxβy nAChR) to the mobile phase. The presence of two additional ligand-gated ion channels (LGICs), γ-aminobutyric acid (GABAA) and N-methyl-d-aspartic acid (NMDA), was established using frontal affinity chromatography with flunitrazepam and diazepam (GABAA receptor) and MK-801 and NMDA (NMDA receptor). The presence of the four LGICs was confirmed using confocal microscopy and flow cytometry. The results indicate that the CMAC(1321N1) and CMAC(A172) columns contain four independently functioning LGICs, that the columns can be used to characterize binding affinities of small molecules to each of the receptors, and that the CMAC approach can be used to probe the expression of endogenous membrane receptors. PMID:18847217

  9. Characterization of a multiple ligand-gated ion channel cellular membrane affinity chromatography column and identification of endogenously expressed receptors in astrocytoma cell lines.

    PubMed

    Kitabatake, T; Moaddel, R; Cole, R; Gandhari, M; Frazier, C; Hartenstein, J; Rosenberg, A; Bernier, M; Wainer, I W

    2008-11-15

    Cellular membranes obtained from the 1321N1 and A172 astrocytoma cell lines were immobilized on a chromatographic phase to create cellular membrane affinity chromatography (CMAC) columns, CMAC(1321N1) and CMAC(A172). The columns were characterized using frontal affinity chromatography with [(3)H]-epibatidine as the marker ligand and epibatidine, nicotine, and methyllycaconitine as the displacers. The results indicated that the columns contained homomeric alpha7 nicotinic acetylcholine receptors (alpha7 nAChR) and heteromeric nicotinic acetylcholine receptors (alpha(x)beta(y) nAChRs), which was confirmed by the addition of subtype-specific inhibitors, alpha-bungarotoxin (alpha7 nAChR) and kappa-bungarotoxin (alpha(x)beta(y) nAChR) to the mobile phase. The presence of two additional ligand-gated ion channels (LGICs), gamma-aminobutyric acid (GABA(A)) and N-methyl-D-aspartic acid (NMDA), was established using frontal affinity chromatography with flunitrazepam and diazepam (GABA(A) receptor) and MK-801 and NMDA (NMDA receptor). The presence of the four LGICs was confirmed using confocal microscopy and flow cytometry. The results indicate that the CMAC(1321N1) and CMAC(A172) columns contain four independently functioning LGICs, that the columns can be used to characterize binding affinities of small molecules to each of the receptors, and that the CMAC approach can be used to probe the expression of endogenous membrane receptors. PMID:18847217

  10. Perturbation of Critical Prolines in Gloeobacter violaceus Ligand-gated Ion Channel (GLIC) Supports Conserved Gating Motions among Cys-loop Receptors*

    PubMed Central

    Rienzo, Matthew; Rocchi, Angela R.; Threatt, Stephanie D.; Dougherty, Dennis A.; Lummis, Sarah C. R.

    2016-01-01

    Gloeobacter violaceus ligand-gated ion channel (GLIC) has served as a valuable structural and functional model for the eukaryotic Cys-loop receptor superfamily. In Cys-loop and other receptors, we have previously demonstrated the crucial roles played by several conserved prolines. Here we explore the role of prolines in the gating transitions of GLIC. As conventional substitutions at some positions resulted in nonfunctional proteins, we used in vivo non-canonical amino acid mutagenesis to determine the specific structural requirements at these sites. Receptors were expressed heterologously in Xenopus laevis oocytes, and whole-cell electrophysiology was used to monitor channel activity. Pro-119 in the Cys-loop, Pro-198 and Pro-203 in the M1 helix, and Pro-299 in the M4 helix were sensitive to substitution, and distinct roles in receptor activity were revealed for each. In the context of the available structural data for GLIC, the behaviors of Pro-119, Pro-203, and Pro-299 mutants are consistent with earlier proline mutagenesis work. However, the Pro-198 site displays a unique phenotype that gives evidence of the importance of the region surrounding this residue for the correct functioning of GLIC. PMID:26668320

  11. Ion channels and transporters in lymphocyte function and immunity

    PubMed Central

    Feske, Stefan; Skolnik, Edward Y.; Prakriya, Murali

    2013-01-01

    Preface Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of T and B cells. They modulate the cytoplasmic concentrations of diverse cations such as calcium, magnesium and zinc, which function as second messengers to regulate critical lymphocyte effector functions including cytokine production, differentiation and cytotoxicity. The repertoire of ion conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels as well as magnesium and zinc transporters. This review discusses the roles of several ions channels and transporters in lymphocyte function and immunity. PMID:22699833

  12. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  13. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    PubMed Central

    Kaske, Silke; Krasteva, Gabriele; König, Peter; Kummer, Wolfgang; Hofmann, Thomas; Gudermann, Thomas; Chubanov, Vladimir

    2007-01-01

    Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells). In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery. PMID:17610722

  14. Ultrasound modulates ion channel currents.

    PubMed

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3-4.9 W/cm(2)) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  15. Ultrasound modulates ion channel currents

    PubMed Central

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  16. Glutamate and glycine modulation of 3H-MK801 binding to the NMDA receptor-ion channel complex in the vitamin B-6 deficient neonatal rat brain

    SciTech Connect

    Guilarte, T.R. )

    1990-02-26

    The authors have previously shown that the concentrations of the neuroactive amino acids glutamate (GLU) and glycine (GLY) are significantly altered in the seizure-prone vitamin B-6 deficient neonatal rat brain. Recently, it has been shown that GLU and GLY modulate the binding of {sup 3}H-MK801 to the ion channel associated with the N-methyl-D-aspartate (NMDA)-glutamate receptor subtype. The present investigation was undertaken to determine if GLU or GLY modulation of {sup 3}H-MK801 binding was altered in B-6 deficient neonatal rat brain. Preparation of cortical membranes from control and deficient 14 day old rats and {sup 3}H-MK801 binding assay were done as described by Ransom and Stec. The results show a significant reduction in the potency and efficacy of GLU modulation of {sup 3}H-MK801 binding, as well as a reduction in the efficacy of GLY, in membrane preparations from deficient rats compared to controls. These results indicate a reduced ability of GLU and GLY to potentiate the binding of {sup 3}H-MK801 to the NMDA receptor-ion channel in the B-6 deficient neonatal rat brain.

  17. Simulating complex ion channel kinetics with IonChannelLab

    PubMed Central

    Covarrubias, Manuel; Sánchez-Rodríguez, Jorge E; Perez-Cornejo, Patricia; Arreola, Jorge

    2010-01-01

    In-silico simulation based on Markov chains is a powerful way to describe and predict the activity of many transport proteins including ion channels. However, modeling and simulation using realistic models of voltage- or ligand-gated ion channels exposed to a wide range of experimental conditions require building complex kinetic schemes and solving complicated differential equations. To circumvent these problems, we developed IonChannelLab a software tool that includes a user-friendly Graphical User Interface and a simulation library. This program supports channels with Ohmic or Goldman-Hodgkin-Katz behavior and can simulate the time-course of ionic and gating currents, single channel behavior and steady-state conditions. The program allows the simulation of experiments where voltage, ligand and ionic concentration are varied independently or simultaneously. PMID:20935453

  18. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  19. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability.

    PubMed

    Cerny, Alexander C; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-05-31

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  20. Mutation of Light-dependent Phosphorylation Sites of the Drosophila Transient Receptor Potential-like (TRPL) Ion Channel Affects Its Subcellular Localization and Stability*

    PubMed Central

    Cerny, Alexander C.; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-01-01

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation. PMID:23592784

  1. Single channel kinetics of a glutamate receptor.

    PubMed Central

    Kerry, C J; Kits, K S; Ramsey, R L; Sansom, M S; Usherwood, P N

    1987-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:2436676

  2. Single Channel Kinetics of a Glutamate Receptor

    PubMed Central

    Kerry, Cathryn J.; Kits, Karel S.; Ramsey, Robert L.; Sansom, Mark S. P.; Usherwood, Peter N. R.

    1986-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:19431683

  3. The ion-channel laser

    SciTech Connect

    Whittum, D.H.; Sessler, A.M. ); Dawson, J.M. . Dept. of Physics)

    1990-01-01

    A relativistic electron beam propagating through a plasma in the ion-focused regime exhibits an electromagnetic instability at a resonant frequency {omega} {approximately} 2{gamma}{sup 2} {omega}{sub {beta}}. Growth is enhanced by optical guiding in the ion channel, which acts as dielectric waveguide, with fiber parameter V {approximately} 2 (I/I{sub A}){sup 1/2}. A 1-D theory for such an ion-channel laser'' is formulated, scaling laws are derived and numerical examples are given. Possible experimental evidence is noted. 23 refs., 1 fig., 1 tab.

  4. Transient Receptor Potential Vanilloid 4 Ion Channel Functions as a Pruriceptor in Epidermal Keratinocytes to Evoke Histaminergic Itch.

    PubMed

    Chen, Yong; Fang, Quan; Wang, Zilong; Zhang, Jennifer Y; MacLeod, Amanda S; Hall, Russell P; Liedtke, Wolfgang B

    2016-05-01

    TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance. PMID:26961876

  5. Transient Receptor Potential Vanilloid 4 Ion Channel Functions as a Pruriceptor in Epidermal Keratinocytes to Evoke Histaminergic Itch*

    PubMed Central

    Chen, Yong; Fang, Quan; Wang, Zilong; Zhang, Jennifer Y.; MacLeod, Amanda S.; Hall, Russell P.; Liedtke, Wolfgang B.

    2016-01-01

    TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of “forefront” signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance. PMID:26961876

  6. Crystal Structures of the Glutamate Receptor Ion Channel GluK3 and GluK5 Amino-Terminal Domains

    SciTech Connect

    Kumar, Janesh; Mayer, Mark L.

    2010-11-30

    Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10{sup o}, in contrast to the 50{sup o} difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.

  7. Demystifying Mechanosensitive Piezo Ion Channels.

    PubMed

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel. PMID:27164907

  8. Bright ion channels and lipid bilayers.

    PubMed

    Szymański, Wiktor; Yilmaz, Duygu; Koçer, Armağan; Feringa, Ben L

    2013-12-17

    If we look at a simple organism such as a zebrafish under a microscope, we would see many cells working in harmony. If we zoomed in, we would observe each unit performing its own tasks in a special aqueous environment isolated from the other units by a lipid bilayer approximately 5 nm thick. These confined units are social: they communicate with one another by sensing and responding to the chemical changes in their environment through receptors and ion channels. These channels control the highly specific and selective passage of ions from one side of the cell to the other and are embedded in lipid bilayers. The movement of ions through ion channels supports excitation and electrical signaling in the nervous system. Ion channels have fascinated scientists not only because of their specificity and selectivity, but also for their functions, the serious consequences when they malfunction, and the other potential applications of these molecules. Light is a useful trigger to control and manipulate ion channels externally. With the many state-of-the-art optical technologies available, light offers a high degree of spatial and temporal control, millisecond precision, and noninvasive intervention and does not change the chemical environment of the system of interest. In this Account, we discuss research toward the dynamic control of lipid bilayer assembly and channel function, particularly the transport across the lipid bilayer-ion channel barrier of cells using light. We first summarize the manipulation of ion channel activity with light to modulate the channel's natural activity. Based on the type of photoswitch employed, we can achieve novel functionalities with these channels, and control neural activity. Then we discuss the recent developments in light-induced transport through lipid bilayers. We focus on three different approaches: the incorporation of photoswitchable copolymers into the lipids, the doping of the lipid bilayer with photosensitive amphiphiles and the

  9. Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons

    PubMed Central

    Qiu, Fang; Qiu, Chun-Yu; Cai, Huilan; Liu, Ting-Ting; Qu, Zu-Wei; Yang, Zhifan; Li, Jia-Da; Zhou, Qun-Yong; Hu, Wang-Ping

    2014-01-01

    BACKGROUND AND PURPOSE A growing number of studies have demonstrated that oxytocin (OT) plays an analgesic role in modulation of nociception and pain. Most work to date has focused on the central mechanisms of OT analgesia, but little is known about whether peripheral mechanisms are also involved. Acid-sensing ion channels (ASICs) are distributed in peripheral sensory neurons and participate in nociception. Here, we investigated the effects of OT on the activity of ASICs in dorsal root ganglion (DRG) neurons. EXPERIMENTAL APPROACH Electrophysiological experiments were performed on neurons from rat DRG. Nociceptive behaviour was induced by acetic acid in rats and mice lacking vasopressin, V1A receptors. KEY RESULTS OT inhibited the functional activity of native ASICs. Firstly, OT dose-dependently decreased the amplitude of ASIC currents in DRG neurons. Secondly, OT inhibition of ASIC currents was mimicked by arginine vasopressin (AVP) and completely blocked by the V1A receptor antagonist SR49059, but not by the OT receptor antagonist L-368899. Thirdly, OT altered acidosis-evoked membrane excitability of DRG neurons and significantly decreased the amplitude of the depolarization and number of action potentials induced by acid stimuli. Finally, peripherally administered OT or AVP inhibited nociceptive responses to intraplantar injection of acetic acid in rats. Both OT and AVP also induced an analgesic effect on acidosis-evoked pain in wild-type mice, but not in V1A receptor knockout mice. CONCLUSIONS AND IMPLICATIONS These results reveal a novel peripheral mechanism for the analgesic effect of OT involving the modulation of native ASICs in primary sensory neurons mediated by V1A receptors. PMID:24641084

  10. Ion channel-transporter interactions.

    PubMed

    Neverisky, Daniel L; Abbott, Geoffrey W

    2015-01-01

    All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H(+)/K(+)-ATPases and Na(+)/K(+)-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term "chansporters", explore their biological roles and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality. PMID:27098917

  11. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  12. ROS and intracellular ion channels.

    PubMed

    Kiselyov, Kirill; Muallem, Shmuel

    2016-08-01

    Oxidative stress is a well-known driver of numerous pathological processes involving protein and lipid peroxidation and DNA damage. The resulting increase of pro-apoptotic pressure drives tissue damage in a host of conditions, including ischemic stroke and reperfusion injury, diabetes, death in acute pancreatitis and neurodegenerative diseases. Somewhat less frequently discussed, but arguably as important, is the signaling function of oxidative stress stemming from the ability of oxidative stress to modulate ion channel activity. The evidence for the modulation of the intracellular ion channels and transporters by oxidative stress is constantly emerging and such evidence suggests new regulatory and pathological circuits that can be explored towards new treatments for diseases in which oxidative stress is an issue. In this review we summarize the current knowledge on the effects of oxidative stress on the intracellular ion channels and transporters and their role in cell function. PMID:26995054

  13. Microbial Senses and Ion Channels

    NASA Astrophysics Data System (ADS)

    Kung, Ching; Zhou, Xin-Liang; Su, Zhen-Wei; Haynes, W. John; Loukin, Sephan H.; Saimi, Yoshiro

    The complexity of animals and plants is due largely to cellular arrangement. The structures and activities of macromolecules had, however, evolved in early microbes long before the appearance of this complexity. Among such molecules are those that sense light, heat, force, water, and ligands. Though historically and didactically associated with the nervous system, ion channels also have deep evolutionary roots. For example, force sensing with channels, which likely began as water sensing through membrane stretch generated by osmotic pressure, must be ancient and is universal in extant species. Extant microbial species, such as the model bacterium Escherichia coli and yeast Saccharomyces cerevisiae, are equipped with stretch-activated channels. The ion channel proteins MscL and MscS show clearly that these bacterial channels receive stretch forces from the lipid bilayer. TRPY1, the mechanosensitive channel in yeast, is being developed towards a similar basic understanding of channels of the TRP (transientreceptor- potential) superfamily. TRPY1 resides in the vacuolar membrane and releases Ca2+ from the vacuole to the cytoplasm upon hyperosmotic shock. Unlike in most TRP preparations from animals, the mechanosensitivity of TRPY1 can be examined directly under patch clamp in either whole-vacuole mode or excised patch mode. The combination of direct biophysical examination in vitro with powerful microbial genetics in vivo should complement the study of mechanosensations of complex animals and plants.

  14. Ion channels in development and cancer.

    PubMed

    Bates, Emily

    2015-01-01

    Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease. PMID:26566112

  15. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  16. Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  17. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  18. Role of the transient receptor potential vanilloid type 1 receptor and stretch-activated ion channels in nitric oxide release from endothelial cells of the aorta and heart in rats.

    PubMed

    Torres-Narváez, Juan Carlos; Mondragón, Leonardo Del Valle; Varela López, Elvira; Pérez-Torres, Israel; Díaz Juárez, Julieta Anabell; Suárez, Jorge; Hernández, Gustavo Pastelín

    2012-09-01

    Shear stress stimulates nitric oxide (NO) release in endothelial cells. Stretch-activated ion channels (SACs) and the transient receptor potential vanilloid type 1 (TRPV1) receptor respond to mechanical stimulus and are permeable to Na(+), Ca(2+) and K(+). The influence of SACs and the TRPV1 receptor on NO release on the heart and on the vascular reactivity of the thoracic aorta (TA) was studied. Experiments were performed in isolated perfused heart, cultured endothelial cells and TA rings from Wistar rats. Capsaicin (10 μM, 30 μM) was used as a NO release stimulator, capsazepine (6 μM, 10 μM) was used as a capsaicin antagonist and gadolinium (3 μM, 5 μM) was used as an inhibitor of SACs. NO was measured by the Kelm and Tenorio methods. Left ventricular pressure was recorded and coronary vascular resistance was calculated. Capsaicin increased NO release in the heart by 58% (395±8 pmol/mL to 627±23 pmol/mL). Capsazepine and gadolinium inhibited NO release by 74% and 82%, respectively. This tendency was similar in all experimental models. Capsaicin attenuated the effects of norepinephrine (10 M to 7 M) on TA and had no effect in the presence of N (ω)-nitro-L-arginine methyl ester. Therefore, the authors conclude that SACs and the TRPV1 receptor are both present in the coronary endothelium and that both participate in Ca(2+)-dependent NO release. PMID:23620694

  19. Role of the transient receptor potential vanilloid type 1 receptor and stretch-activated ion channels in nitric oxide release from endothelial cells of the aorta and heart in rats

    PubMed Central

    Torres-Narváez, Juan Carlos; Mondragón, Leonardo del Valle; Varela López, Elvira; Pérez-Torres, Israel; Díaz Juárez, Julieta Anabell; Suárez, Jorge; Hernández, Gustavo Pastelín

    2012-01-01

    Shear stress stimulates nitric oxide (NO) release in endothelial cells. Stretch-activated ion channels (SACs) and the transient receptor potential vanilloid type 1 (TRPV1) receptor respond to mechanical stimulus and are permeable to Na+, Ca2+ and K+. The influence of SACs and the TRPV1 receptor on NO release on the heart and on the vascular reactivity of the thoracic aorta (TA) was studied. Experiments were performed in isolated perfused heart, cultured endothelial cells and TA rings from Wistar rats. Capsaicin (10 μM, 30 μM) was used as a NO release stimulator, capsazepine (6 μM, 10 μM) was used as a capsaicin antagonist and gadolinium (3 μM, 5 μM) was used as an inhibitor of SACs. NO was measured by the Kelm and Tenorio methods. Left ventricular pressure was recorded and coronary vascular resistance was calculated. Capsaicin increased NO release in the heart by 58% (395±8 pmol/mL to 627±23 pmol/mL). Capsazepine and gadolinium inhibited NO release by 74% and 82%, respectively. This tendency was similar in all experimental models. Capsaicin attenuated the effects of norepinephrine (10 M to 7 M) on TA and had no effect in the presence of Nω-nitro-L-arginine methyl ester. Therefore, the authors conclude that SACs and the TRPV1 receptor are both present in the coronary endothelium and that both participate in Ca2+-dependent NO release. PMID:23620694

  20. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    PubMed

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  1. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  2. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets. PMID:27535998

  3. Electrophysiological Signature of Homomeric and Heteromeric Glycine Receptor Channels.

    PubMed

    Raltschev, Constanze; Hetsch, Florian; Winkelmann, Aline; Meier, Jochen C; Semtner, Marcus

    2016-08-19

    Glycine receptors are chloride-permeable, ligand-gated ion channels and contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies have provided detailed insights into the mechanisms of channel gating, desensitization, and ion permeation. However, most of the work has focused only on comparing a few isoforms, and among studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels, including their splice variants, in the same cellular expression system to investigate and compare their electrophysiological properties. Our data show that the current-voltage relationships of homomeric channels formed by the α2 or α3 subunits change upon receptor desensitization from a linear to an inwardly rectifying shape, in contrast to their heteromeric counterparts. The results demonstrate that inward rectification depends on a single amino acid (Ala(254)) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly rectifying upon desensitization. Thus, the alanine residue Ala(254) determines voltage-dependent rectification upon receptor desensitization and reveals a physio-molecular signature of homomeric glycine receptor channels, which provides unprecedented opportunities for the identification of these channels at the single cell level. PMID:27382060

  4. Optical control of an ion channel gate.

    PubMed

    Lemoine, Damien; Habermacher, Chloé; Martz, Adeline; Méry, Pierre-François; Bouquier, Nathalie; Diverchy, Fanny; Taly, Antoine; Rassendren, François; Specht, Alexandre; Grutter, Thomas

    2013-12-17

    The powerful optogenetic pharmacology method allows the optical control of neuronal activity by photoswitchable ligands tethered to channels and receptors. However, this approach is technically demanding, as it requires the design of pharmacologically active ligands. The development of versatile technologies therefore represents a challenging issue. Here, we present optogating, a method in which the gating machinery of an ATP-activated P2X channel was reprogrammed to respond to light. We found that channels covalently modified by azobenzene-containing reagents at the transmembrane segments could be reversibly turned on and off by light, without the need of ATP, thus revealing an agonist-independent, light-induced gating mechanism. We demonstrate photocontrol of neuronal activity by a light-gated, ATP-insensitive P2X receptor, providing an original tool devoid of endogenous sensitivity to delineate P2X signaling in normal and pathological states. These findings open new avenues to specifically activate other ion channels independently of their natural stimulus. PMID:24297890

  5. THEMATICS analysis for functional ion channels

    NASA Astrophysics Data System (ADS)

    Shehadi, Ihsan A.

    Ion channels, as a group of integral membrane proteins, span the cell membrane forming ion-conducting pores that allow ions to traverse the hydrophobic lipid environment rapidly and selectively. The structure of the Streptomyces lividians (KcsA) and Mycobacterium tuberculosis ion channel (Mscl) potassium ion channel have provided the impetus and has helped further the understanding of the structural and functional studies of these channels. The KcsA adapts the voltage-gated mechanism for opening and closing of the channel. While Mcsl represents the mechanosensitive model of the channels. However, the mechanism of the opening and closing of these channels are not fully understood. Electrostatic methods (THEMATICS) are used to locate the site where closing and opening of the channels are controlled. Two clusters of amino acid residues are identified in each of the previously mentioned active models where net charges play an important role in controlling the mechanism of the opening and closure of the ion channels.0

  6. Antibody therapeutics targeting ion channels: are we there yet?

    PubMed Central

    Sun, Han; Li, Min

    2013-01-01

    The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases. PMID:23381110

  7. Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain?

    PubMed

    Brierley, Stuart

    2016-01-01

    The gastrointestinal tract is unique in that it is innervated by several distinct populations of neurons, whose cell bodies are either intrinsic (enteric, viscerofugal) or extrinsic (sympathetic, sensory afferents) to the wall of the gut. We are usually completely unaware of the continuous, complicated orchestra of functions that these neurons conduct. However, for patients with Inflammatory Bowel Disease (IBD) or functional gastrointestinal disorders, such as Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Whilst bouts of inflammation underlie the symptoms associated with IBD, over the past few years there is increased pre-clinical and clinical evidence that infection and inflammation are key risk factors for the development of several functional gastrointestinal disorders, in particular IBS. There is a strong correlation between prior exposure to gut infection and symptom occurrence; with the duration and severity of the initial illness the strongest associated risk factors. This review discusses the current body of evidence for neuroplasticity during inflammation and how in many cases fails to reset back to normal, long after healing of the damaged tissues. Recent evidence suggests that the altered expression and function of key ion channels and receptors within extrinsic sensory neurons play fundamental roles in the aberrant pain sensation associated with these gastrointestinal diseases and disorders. PMID:27379637

  8. CRACking ion channel targets: 2nd annual Ion Channel Targets Conference. 12-13 September 2006, Boston, MA, USA.

    PubMed

    Mathes, Chris

    2007-01-01

    The 2nd Annual Ion Channel Targets (ICT) Conference (by Select Bioscience LLC) was held in Boston on 12-13 September 2006. A healthy mixture of scientists from pharma, biotech and academic sectors attended the meeting. The speaker list reflected this mixture. In general, the conference focused on new ion channel targets and the methods for studying them in detail. Keynote lectures from Professors David Clapham (Harvard Medical School, USA) and Reinhold Penner (University of Hawaii, USA) set the tone by highlighting recent findings with a voltage-gated proton channel (Clapham), cation channel in sperm (Clapham) and the calcium-release-activated calcium channel (Penner). Also described at ICT were voltage-gated sodium, potassium, transmembrane-receptor-potential channels, as well as ligand-gated nicotinic acetylcholine (nAChR) and GABA type A receptors. PMID:17150038

  9. Ligand-gated ion channel interacting proteins and their role in neuroprotection

    PubMed Central

    Li, Shupeng; Wong, Albert H. C.; Liu, Fang

    2014-01-01

    Ion channel receptors are a vital component of nervous system signaling, allowing rapid and direct conversion of a chemical neurotransmitter message to an electrical current. In recent decades, it has become apparent that ionotropic receptors are regulated by protein-protein interactions with other ion channels, G-protein coupled receptors and intracellular proteins. These other proteins can also be modulated by these interactions with ion channel receptors. This bidirectional functional cross-talk is important for critical cellular functions such as excitotoxicity in pathological and disease states like stroke, and for the basic dynamics of activity-dependent synaptic plasticity. Protein interactions with ion channel receptors can therefore increase the computational capacity of neuronal signaling cascades and also represent a novel target for therapeutic intervention in neuropsychiatric disease. This review will highlight some examples of ion channel receptor interactions and their potential clinical utility for neuroprotection. PMID:24847210

  10. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria

    PubMed Central

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A.; Faria, Miguel; Fontes-Sousa, Ana P.; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type) channels. PMID:27014060

  11. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria.

    PubMed

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A; Faria, Miguel; Fontes-Sousa, Ana P; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca(2+)-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca(2+) influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca(2+) influx through Cav1 (L-type) channels. PMID:27014060

  12. Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site.

    PubMed Central

    Gready, J. E.; Ranganathan, S.; Schofield, P. R.; Matsuo, Y.; Nishikawa, K.

    1997-01-01

    Fast synaptic neurotransmission is mediated by ligand-gated ion-channel (LGIC) receptors, which include receptors for acetylcholine, serotonin, GABA, glycine, and glutamate. LGICs are pentamers with extracellular ligand-binding domains and form integral membrane ion channels that are selective for cations (acetylcholine and serotonin 5HT3 receptors) or anions (GABAA and glycine receptors and the invertebrate glutamate-binding chloride channel). They form a protein superfamily with no sequence similarity to any protein of known structure. Using a 1D-3D structure mapping approach, we have modeled the extracellular ligand-binding domain based on a significant match with the SH2 and SH3 domains of the biotin repressor structure. Refinement of the model based on knowledge of the large family of SH2 and SH3 structures, sequence alignments, and use of structure templates for loop building, allows the prediction of both monomer and pentamer models. These are consistent with medium-resolution electron microscopy structures and with experimental structure/function data from ligand-binding, antibody-binding, mutagenesis, protein-labeling and subunit-linking studies, and glycosylation sites. Also, the predicted polarity of the channel pore calculated from electrostatic potential maps of pentamer models of superfamily members is consistent with known ion selectivities. Using the glycine receptor alpha 1 subunit, which forms homopentamers, the monomeric and pentameric models define the agonist and antagonist (strychnine) binding sites to a deep crevice formed by an extended loop, which includes the invariant disulfide bridge, between the SH2 and SH3 domains. A detailed binding site for strychnine is reported that is in strong agreement with known structure/function data. A site for interaction of the extracellular ligand-binding domain with the activation of the M2 transmembrane helix is also suggested. PMID:9144769

  13. Blockade of glutamatergic and GABAergic receptor channels by trimethyltin chloride

    PubMed Central

    Krüger, Katharina; Diepgrond, Victoria; Ahnefeld, Maria; Wackerbeck, Christina; Madeja, Michael; Binding, Norbert; Musshoff, Ulrich

    2005-01-01

    Organotin compounds such as trimethyltin chloride (TMT) are among the most toxic of the organometallics. As their main target for toxicity is the central nervous system, the aim of the present study was to investigate the effects of TMT on receptor channels involved in various processes of synaptic transmission. The Xenopus oocyte expression system was chosen for direct assessment of TMT effects on voltage-operated potassium channels and glutamatergic and GABAergic receptors, and hippocampal slices from rat brain for analyzing TMT effects on identified synaptic sites. TMT was found to be ineffective, at 100 μmol l−1, against several potassium- and sodium-operated ion channel functions as well as the metabotropic glutamate receptor. The functions of the ionotropic glutamate and the GABAA receptor channels were inhibited by TMT in micromolar concentrations. Thus, at a maximum concentration of 100 μmol l−1, around 20–30% of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and GABAA receptor-mediated ion currents and 35% of the N-methyl-D-aspartate receptor-mediated ion currents were blocked. In the hippocampal slice model, the inhibitory effects of TMT were much stronger than expected from the results on the ion channels. Bath application of TMT significantly reduced the amplitudes of evoked excitatory postsynaptic field potentials in a concentration-dependent and nonreversible manner.  Induction of long-term potentiation, recorded from the CA1 dendritic region, was inhibited by TMT and failed completely at a concentration of 10 μmol l−1. In general, TMT affects the excitatory and inhibitory synaptic processes in a receptor specific manner and is able to disturb the activity within a neuronal network. PMID:15655511

  14. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  15. Ion Channel Engineering: Perspectives and Strategies

    PubMed Central

    Subramanyam, Prakash; Colecraft, Henry M.

    2014-01-01

    Ion channels facilitate the passive movement of ions down an electrochemical gradient and across lipid bilayers in cells. This phenomenon is essential for life, and underlies many critical homeostatic processes in cells. Ion channels are diverse and differ with respect to how they open and close (gating), and their ionic conductance/selectivity (permeation). Fundamental understanding of ion channel structure-function mechanisms, their physiological roles, how their dysfunction leads to disease, their utility as biosensors, and development of novel molecules to modulate their activity are important and active research frontiers. In this review, we focus on ion-channel engineering approaches that have been applied to investigate these aspects of ion channel function, with a major emphasis on voltage-gated ion channels. PMID:25205552

  16. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels

    PubMed Central

    2012-01-01

    Background Nicotinic acetylcholine receptors (nAChRs) play an important role as excitatory neurotransmitters in vertebrate and invertebrate species. In insects, nAChRs are the site of action of commercially important insecticides and, as a consequence, there is considerable interest in examining their functional properties. However, problems have been encountered in the successful functional expression of insect nAChRs, although a number of strategies have been developed in an attempt to overcome such difficulties. Ten nAChR subunits have been identified in the model insect Drosophila melanogaster (Dα1-Dα7 and Dβ1-Dβ3) and a similar number have been identified in other insect species. The focus of the present study is the Dα5, Dα6 and Dα7 subunits, which are distinguished by their sequence similarity to one another and also by their close similarity to the vertebrate α7 nAChR subunit. Results A full-length cDNA clone encoding the Drosophila nAChR Dα5 subunit has been isolated and the properties of Dα5-, Dα6- and Dα7-containing nAChRs examined in a variety of cell expression systems. We have demonstrated the functional expression, as homomeric nAChRs, of the Dα5 and Dα7 subunits in Xenopus oocytes by their co-expression with the molecular chaperone RIC-3. Also, using a similar approach, we have demonstrated the functional expression of a heteromeric ‘triplet’ nAChR (Dα5 + Dα6 + Dα7) with substantially higher apparent affinity for acetylcholine than is seen with other subunit combinations. In addition, specific cell-surface binding of [125I]-α-bungarotoxin was detected in both Drosophila and mammalian cell lines when Dα5 was co-expressed with Dα6 and RIC-3. In contrast, co-expression of additional subunits (including Dα7) with Dα5 and Dα6 prevented specific binding of [125I]-α-bungarotoxin in cell lines, suggesting that co-assembly with other nAChR subunits can block maturation of correctly folded nAChRs in some cellular

  17. The Tenth Annual Ion Channel Retreat, Vancouver, Canada, June 25–27, 2012

    PubMed Central

    Kimlicka, Lynn; Liang, Sophia; Brugger, Saranna; Liang, Dong

    2013-01-01

    Abstract Ten years after Aurora Biomed (Vancouver, British Columbia, Canada) hosted the inaugural Ion Channel Retreat, this event is recognized as a leading conference for ion channel researchers. Held annually in Vancouver, this meeting consistently provides an outlet for researchers to share their findings while learning about new concepts, methods, and technologies. Researchers use this forum to discuss and debate a spectrum of topics from ion channel research and technology to drug discovery and safety. The Retreat covered key subjects in the ion channel industry, including ion channels as disease targets, transient receptor protein channels as pain and disease targets, ion channels as pain targets, ion channel structure and function, ion channel screening technologies, cardiac safety and toxicology, and cardiac function and pharmacology. PMID:23679851

  18. Quantitative determination of capsaicin, a transient receptor potential channel vanilloid 1 agonist, by liquid chromatography quadrupole ion trap mass spectrometry: evaluation of in vitro metabolic stability.

    PubMed

    Beaudry, Francis; Vachon, Pascal

    2009-02-01

    Capsaicin is the most abundant pungent molecule present in red peppers and it is widely used for food flavoring, in pepper spray in self-defense devices and more recently in ointments for the relief of neuropathic pain. Capsaicin is a selective agonist of transient receptor potential channel, vanilloid subfamily member 1. A selective and sensitive quantitative method for the determination of capsaicin by LC-ESI/MS/MS was developed. The method consisted of a protein precipitation extraction followed by analysis using liquid chromatography electrospray quadrupole ion trap mass spectrometry. The chromatographic separation was achieved using a 100 x 2 mm C(18) Waters Symmetry column combined with a gradient mobile phase composed of acetonitrile and 0.1% formic acid aqueous solution at a flow rate of 220 microL/min. The mass spectrometer was operating in full-scan MS/MS mode using two-segment analysis. An analytical range of 10-5000 ng/mL was used in the calibration curve constructed in rat plasma. The interbatch precision and accuracy observed were 6.5, 6.7, 5.3 and 101.2, 102.7, 103.5% at 50, 500 and 5000 ng/mL, respectively. An in vitro metabolic stability study was performed in rat, dog and mouse liver microsomes and the novel analytical method was adapted and used to determine intrinsic clearance of capsaicin. Results suggest very rapid degradation with T(1/2) ranging from 2.3 to 4.1 min and high clearance values suggesting that drug bioavailability will be considerably reduced, consequently affecting drug response and efficacy. PMID:18816461

  19. ICEPO: the ion channel electrophysiology ontology

    PubMed Central

    Hinard, V.; Britan, A.; Rougier, J.S.; Bairoch, A.; Abriel, H.; Gaudet, P.

    2016-01-01

    Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site: ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use. PMID:27055825

  20. ICEPO: the ion channel electrophysiology ontology.

    PubMed

    Hinard, V; Britan, A; Rougier, J S; Bairoch, A; Abriel, H; Gaudet, P

    2016-01-01

    Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site:ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use. PMID:27055825

  1. Calcium Channels and Associated Receptors in Malignant Brain Tumor Therapy.

    PubMed

    Morrone, Fernanda B; Gehring, Marina P; Nicoletti, Natália F

    2016-09-01

    Malignant brain tumors are highly lethal and aggressive. Despite recent advances in the current therapies, which include the combination of surgery and radio/chemotherapy, the average survival rate remains poor. Altered regulation of ion channels is part of the neoplastic transformation, which suggests that ion channels are involved in cancer. Distinct classes of calcium-permeable channels are abnormally expressed in cancer and are likely involved in the alterations underlying malignant growth. Specifically, cytosolic Ca(2+) activity plays an important role in the regulation of cell proliferation, and Ca(2+) signaling is altered in proliferating tumor cells. A series of previous studies emphasized the importance of the T-type low-voltage-gated calcium channels (VGCC) in different cancer types, including gliomas, and remarkably, pharmacologic inhibition of T-type VGCC caused antiproliferative effects and triggered apoptosis of human glioma cells. Other calcium permeable channels, such as transient receptor potential (TRP) channels, contribute to changes in Ca(2+) by modulating the driving force for Ca(2+) entry, and some TRP channels are required for proliferation and migration in gliomas. Furthermore, recent evidence shows that TRP channels contribute to the progression and survival of the glioblastoma patients. Likewise, the purinergic P2X7 receptor acts as a direct conduit for Ca(2+)-influx and an indirect activator of voltage-gated Ca(2+)-channel. Evidence also shows that P2X7 receptor activation is linked to elevated expression of inflammation promoting factors, tumor cell migration, an increase in intracellular mobilization of Ca(2+), and membrane depolarization in gliomas. Therefore, this review summarizes the recent findings on calcium channels and associated receptors as potential targets to treat malignant gliomas. PMID:27418672

  2. Cellular Functions of Transient Receptor Potential channels

    PubMed Central

    Dadon, Daniela; Minke, Baruch

    2010-01-01

    Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca2+. In this review we focus on the roles of these channels in: i) cell death ii) proliferation and differentiation and iii) synaptic vesicle release. Cell death Ca2+ influx participates in apoptotic and necrotic cell death. The Ca2+ permeability and high sensitivity of part of these channels to oxidative/metabolic stress make them important participants in cell death. Several examples are given. Transient Receptor Potential Melastatin 2 is activated by H2O2, inducing cell death through an increase in cellular Ca2+ and activation of Poly ADP-Ribose Polymerase. Exposure of cultured cortical neurons to oxygen-glucose deprivation, in vitro, causes cell death via cation influx, mediated by Transient Receptor Potential Melastatin 7. Metabolic stress constitutively activates the Ca2+ permeable Transient Receptor Potential channels of Drosophila photoreceptor in the dark, potentially leading to retinal degeneration. Similar sensitivity to metabolic stress characterizes several mammalian Transient Receptor Potential Canonical channels. Proliferation and differentiation The rise in cytosolic Ca2+ induces cell growth, differentiation and proliferation via activation of several transcription factors. Activation a variety of store operated and Transient Receptor Potential channels cause a rise in cytosolic Ca2+, making these channels components involved in proliferation and differentiation. Synaptic vesicle release Transient Receptor Potential Melastatin 7 channels reside in synaptic vesicles and regulate neurotransmitter release by a mechanism that is not entirely clear. All the above features of Transient Receptor Potential channels make them crucial components in important, sometimes conflicting, cellular processes that still need to be explored. PMID:20399884

  3. Ion Channels and Signaling in the Pituitary Gland

    PubMed Central

    Stojilkovic, Stanko S.; Tabak, Joël; Bertram, Richard

    2010-01-01

    Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca2+ signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells. PMID:20650859

  4. Ion channels versus ion pumps: the principal difference, in principle

    PubMed Central

    Gadsby, David C.

    2009-01-01

    Two kinds of border guards control the incessant traffic of ions across cell membranes: ion channels and ion pumps. When open, channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients, by consuming energy to slowly move ions against them. Because of their diametrically opposed tasks and their divergent speeds, channels and pumps have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both classes of these molecular machines challenges this comfortable separation, forcing its reevaluation. PMID:19339978

  5. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  6. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel – an overview of the current mutational data

    PubMed Central

    2013-01-01

    This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232

  7. Kinetics of unliganded acetylcholine receptor channel gating.

    PubMed Central

    Jackson, M B

    1986-01-01

    Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant. PMID:2421793

  8. Regulation of heartbeat by G protein-coupled ion channels.

    PubMed

    Brown, A M

    1990-12-01

    The coupling of ion channels to receptors by G proteins is the subject of this American Physiological Society Walter B. Cannon Memorial "Physiology in Perspective" Lecture. This subject is particularly appropriate because it includes a molecular explanation of a homeostatic mechanism involving the autonomic nervous system and the latter subject preoccupied Dr. Cannon during most of his career. With the use of reconstitution methods, we and others have shown that heterotrimeric guanine nucleotide-binding (G) proteins couple receptors to ion channels by both membrane-delimited, direct pathways and cytoplasmic second messenger pathways. Furthermore, one set of receptors may be coupled to as many as three different sets of ion channels to form networks. Dual G protein pathways lead to the prediction of biphasic ion current responses in cell signaling, and this prediction was confirmed. In sinoatrial pacemaker cells, the pacemaking hyperpolarization-activated inward current (If) is directly regulated by the G proteins Gs and Go, and the two can act simultaneously. This could explain the classical observation that vagal inhibition of heart rate is greater during sympathetic stimulation. Because deactivation of the muscarinic response occurs much faster than the G protein alpha-subunit hydrolyzes guanosine 5'-triphosphate, we looked for accessory cellular factors. A surprising result was that the small monomeric ras G protein blocked the muscarinic pathway. The significance of this observation is unknown, but it appears that small and large G proteins may interact in ion channel signaling pathways. PMID:1701981

  9. Ion channels, channelopathies, and tooth formation.

    PubMed

    Duan, X

    2014-02-01

    The biological functions of ion channels in tooth development vary according to the nature of their gating, the species of ions passing through those gates, the number of gates, localization of channels, tissue expressing the channel, and interactions between cells and microenvironment. Ion channels feature unique and specific ion flux in ameloblasts, odontoblasts, and other tooth-specific cell lineages. Both enamel and dentin have active chemical systems orchestrating a variety of ion exchanges and demineralization and remineralization processes in a stage-dependent manner. An important role for ion channels is to regulate and maintain the calcium and pH homeostasis that are critical for proper enamel and dentin biomineralization. Specific functions of chloride channels, TRPVs, calcium channels, potassium channels, and solute carrier superfamily members in tooth formation have been gradually clarified in recent years. Mutations in these ion channels or transporters often result in disastrous changes in tooth development. The channelopathies of tooth include altered eruption (CLCN7, KCNJ2, TRPV3), root dysplasia (CLCN7, KCNJ2), amelogenesis imperfecta (KCNJ1, CFTR, AE2, CACNA1C, GJA1), dentin dysplasia (CLCN5), small teeth (CACNA1C, GJA1), tooth agenesis (CLCN7), and other impairments. The mechanisms leading to tooth channelopathies are primarily related to pH regulation, calcium homeostasis, or other alterations of the niche for tooth eruption and development. PMID:24076519

  10. Mitochondrial ion channels as oncological targets.

    PubMed

    Leanza, L; Zoratti, M; Gulbins, E; Szabo, I

    2014-12-01

    Mitochondria, the key bioenergetic intracellular organelles, harbor a number of proteins with proven or hypothetical ion channel functions. Growing evidence points to the important contribution of these channels to the regulation of mitochondrial function, such as ion homeostasis imbalances profoundly affecting energy transducing processes, reactive oxygen species production and mitochondrial integrity. Given the central role of mitochondria in apoptosis, their ion channels with the potential to compromise mitochondrial function have become promising targets for the treatment of malignancies. Importantly, in vivo evidence demonstrates the involvement of the proton-transporting uncoupling protein, a mitochondrial potassium channel, the outer membrane located porin and the permeability transition pore in tumor progression/control. In this review, we focus on mitochondrial channels that have been assigned a definite role in cell death regulation and possess clear oncological relevance. Overall, based on in vivo and in vitro genetic and pharmacological evidence, mitochondrial ion channels are emerging as promising targets for cancer treatment. PMID:24469031

  11. Modeling ion channels: Past, present, and future

    PubMed Central

    2014-01-01

    Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule. PMID:24935742

  12. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  13. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  14. A Pentasymmetric Open Channel Blocker for Cys-Loop Receptor Channels

    PubMed Central

    Baur, Roland; Puthenkalam, Roshan; Ernst, Margot; Trauner, Dirk; Sigel, Erwin

    2014-01-01

    γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl− ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP−) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP− action. Introduction of positive charges into M2 increased the affinity for PCCP− while PCCP− prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP−, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP− could serve as an insecticide. PMID:25184303

  15. A pentasymmetric open channel blocker for Cys-loop receptor channels.

    PubMed

    Carta, Valentina; Pangerl, Michael; Baur, Roland; Puthenkalam, Roshan; Ernst, Margot; Trauner, Dirk; Sigel, Erwin

    2014-01-01

    γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide. PMID:25184303

  16. Cardiac ion channels in health and disease.

    PubMed

    Amin, Ahmad S; Tan, Hanno L; Wilde, Arthur A M

    2010-01-01

    Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli through the heart and, as a consequence, the generation of action potentials in individual cardiomyocytes. Action potential formation results from the opening and closing (gating) of ion channels that are expressed within the sarcolemma of cardiomyocytes. Ion channels possess distinct genetic, molecular, pharmacologic, and gating properties and exhibit dissimilar expression levels within different cardiac regions. By gating, ion channels permit ion currents across the sarcolemma, thereby creating the different phases of the action potential (e.g., resting phase, depolarization, repolarization). The importance of ion channels in maintaining normal heart rhythm is reflected by the increased incidence of arrhythmias in inherited diseases that are linked to mutations in genes encoding ion channels or their accessory proteins and in acquired diseases that are associated with changes in ion channel expression levels or gating properties. This review discusses ion channels that contribute to action potential formation in healthy hearts and their role in inherited and acquired diseases. PMID:19875343

  17. Dynamic ion-ion and water-ion interactions in ion channels.

    PubMed Central

    Wu, J V

    1992-01-01

    The dynamic interactions among ions and water molecules in ion channels are treated based on an assumption that ions at binding sites can be knocked off by both transient entering ions and local water molecules. The theory, when applied to a single-site model K+ channel, provides solutions for super- and subsaturations, flux-ratio exponent (n') greater than 1, osmotic streaming current, activity-dependent reversal potentials, and anomalous mole-fraction behavior. The analysis predicts that: (a) the saturation may but, in general, does not follow the Michaelis-Menten relation; (b) streaming current results from imbalanced water-ion knock-off interactions; (c) n' greater than 1 even for single-site channels, but it is unlikely to exceed 1.4 unless the pore is occupied by one or more ion(s); (d) in the calculation involving two permeant ion species with similar radii, the heavier ions show higher affinity; the ion-ion knock-off dissociation from the site is more effective when two interacting ions are identical. Therefore, the "multi-ion behaviors" found in most ion channels are the consequences of dynamic ion-ion and water-ion interactions. The presence of these interactions does not require two or more binding sites in channels. PMID:1376158

  18. Spontaneous openings of the acetylcholine receptor channel.

    PubMed Central

    Jackson, M B

    1984-01-01

    Patch clamp recordings from embryonic mouse muscle cells in culture revealed spontaneous openings of the acetylcholine receptor channel in the absence of exogenously applied cholinergic agent. The conductance of the spontaneous channel currents was, within experimental error, identical with the conductance of suberyldicholine-activated channel currents. The comparison of channel conductance was made with sodium and with cesium, each at two concentrations, with the same result. Treatment of the cells with alpha-bungarotoxin blocked the spontaneous channel currents. To determine whether the spontaneous openings were caused by an endogenous agent with cholinergic activity a reactive disulfide bond near the receptor binding site was reduced with dithiothreitol and alkylated with N-ethylmaleimide. This chemical modification reduced the effectiveness with which suberyldicholine and curare activated channel currents but did not reduce the frequency of spontaneous openings. These experiments indicate that the acetylcholine receptor briefly and infrequently fluctuates into an active state in the absence of agonist. Agonist activation of the receptor presumably accelerates this spontaneously occurring process. PMID:6328531

  19. Transient Receptor Potential (TRP) channels in T cells.

    PubMed

    Bertin, Samuel; Raz, Eyal

    2016-05-01

    The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases. PMID:26468011

  20. Equivalence of trans paths in ion channels

    NASA Astrophysics Data System (ADS)

    Alvarez, Juan; Hajek, Bruce

    2006-04-01

    We explore stochastic models for the study of ion transport in biological cells. Analysis of these models explains and explores an interesting feature of ion transport observed by biophysicists. Namely, the average time it takes ions to cross certain ion channels is the same in either direction, even if there is an electric potential difference across the channels. It is shown for simple single ion models that the distribution of a path (i.e., the history of location versus time) of an ion crossing the channel in one direction has the same distribution as the time-reversed path of an ion crossing the channel in the reverse direction. Therefore, not only is the mean duration of these paths equal, but other measures, such as the variance of passage time or the mean time a path spends within a specified section of the channel, are also the same for both directions of traversal. The feature is also explored for channels with interacting ions. If a system of interacting ions is in reversible equilibrium (net flux is zero), then the equivalence of the left-to-right trans paths with the time-reversed right-to-left trans paths still holds. However, if the system is in equilibrium, but not reversible equilibrium, then such equivalence need not hold.

  1. The Concise Guide to Pharmacology 2013/14: Ion Channels

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Catterall, William A; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528239

  2. Extracellular zinc ion regulates transient receptor potential melastatin 5 (TRPM5) channel activation through its interaction with a pore loop domain.

    PubMed

    Uchida, Kunitoshi; Tominaga, Makoto

    2013-09-01

    The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent cation channel activated by intracellular Ca(2+). Expression of this channel is restricted to taste cells, the pancreas and brainstem, and is thought to be involved in controlling membrane potentials. Its endogenous ligands are not well characterized. Here, we show that extracellular application of Zn(2+) inhibits TRPM5 activity. In whole-cell patch-clamp recordings, extracellular application of ZnCl2 inhibited step-pulse-induced TRPM5 currents with 500 nM free intracellular Ca(2+) in a dose-dependent manner (IC50 = 4.3 μM at -80 mV). ZnSO4 also inhibited TRPM5 activity. Extracellular application of ZnCl2 inhibited TRPM5 activation at several temperatures. Furthermore, inhibition by 30 μM ZnCl2 was impaired in TRPM5 mutants in which His at 896, and Glu at 926 and/or Glu at 939 in the outer pore loop were replaced with Gln. From these results, we conclude that extracellular Zn(2+) inhibits TRPM5 channels, and the residues in the outer pore loop of TRPM5 are critically involved in the inhibition. PMID:23884414

  3. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels.

    PubMed

    Zhang, Yi; Ding, Yaqin; Zhong, Xiangqin; Guo, Qing; Wang, Hui; Gao, Jingying; Bai, Tao; Ren, Lele; Guo, Yangyan; Jiao, Xiangying; Liu, Yunfeng

    2016-07-15

    Geniposide, an iridoid glycoside, has antidiabetic effects. The present study aimed to evaluate whether geniposide has direct effects on insulin secretion from rat pancreatic islets. The results demonstrated that geniposide potentiated insulin secretion via activating the glucagon-like-1 receptor (GLP-1R) as well as the adenylyl cyclase (AC)/cAMP signaling pathway. Inhibition of protein kinase A (PKA) suppressed the insulinotropic effect of geniposide. Geniposide also inhibited voltage-dependent potassium (Kv) channels, and this effect could be attenuated by inhibition of GLP-1R or PKA. Current-clamp recording showed that geniposide prolonged action potential duration. These results collectively imply that inhibition of Kv channels is linked to geniposide-potentiated insulin secretion by acting downstream of the GLP-1R/cAMP/PKA signaling pathway. Moreover, activation of Ca(2+) channels by geniposide was observed, indicating that the Ca(2+) channel is also an important player in the geniposide effects. Together, these findings provide new insight into the mechanism underlying geniposide-regulated insulin secretion. PMID:27126219

  4. Extracellular Zinc Ion Regulates Transient Receptor Potential Melastatin 5 (TRPM5) Channel Activation through Its Interaction with a Pore Loop Domain

    PubMed Central

    Uchida, Kunitoshi; Tominaga, Makoto

    2013-01-01

    The transient receptor potential melastatin 5 (TRPM5) channel is a monovalent cation channel activated by intracellular Ca2+. Expression of this channel is restricted to taste cells, the pancreas and brainstem, and is thought to be involved in controlling membrane potentials. Its endogenous ligands are not well characterized. Here, we show that extracellular application of Zn2+ inhibits TRPM5 activity. In whole-cell patch-clamp recordings, extracellular application of ZnCl2 inhibited step-pulse-induced TRPM5 currents with 500 nm free intracellular Ca2+ in a dose-dependent manner (IC50 = 4.3 μm at −80 mV). ZnSO4 also inhibited TRPM5 activity. Extracellular application of ZnCl2 inhibited TRPM5 activation at several temperatures. Furthermore, inhibition by 30 μm ZnCl2 was impaired in TRPM5 mutants in which His at 896, and Glu at 926 and/or Glu at 939 in the outer pore loop were replaced with Gln. From these results, we conclude that extracellular Zn2+ inhibits TRPM5 channels, and the residues in the outer pore loop of TRPM5 are critically involved in the inhibition. PMID:23884414

  5. Understanding autoimmunity: The ion channel perspective.

    PubMed

    RamaKrishnan, Anantha Maharasi; Sankaranarayanan, Kavitha

    2016-07-01

    Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders. PMID:26854401

  6. Dendritic Ion Channel Trafficking and Plasticity

    PubMed Central

    Shah, Mala M.; Hammond, Rebecca S.; Hoffman, Dax

    2010-01-01

    Dendrites, the elaborate processes emerging from neuronal cell bodies, receive most excitatory synaptic inputs. Voltage- and calcium-gated ion channels are abundant in dendrites and modify the shape, propagation and integration of synaptic signals. These ion channels also determine intrinsic dendritic excitability and are therfore important for the induction and manifestation of Hebbian and non-Hebbian plasticity. Revealingly, dendritic channels have distinct expression patterns and biophysical properties from those present in other neuronal compartments. Recent evidence suggests that dendritic ion channels are locally regulated, perhaps contributing to different forms of plasticity. In this review, we will discuss the implications of regulating dendritic ion channel function and trafficking in the context of plasticity and information processing. PMID:20363038

  7. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction. PMID:25366236

  8. Carbon monoxide: an emerging regulator of ion channels

    PubMed Central

    Wilkinson, William J; Kemp, Paul J

    2011-01-01

    Abstract Carbon monoxide is rapidly emerging as an important cellular messenger, regulating a wide range of physiological processes. Crucial to its role in both physiology and disease is its ability differentially to regulate several classes of ion channels, including examples from calcium-activated K+ (BKCa), voltage-activated K+ (Kv) and Ca2+ channel (L-type) families, ligand-gated P2X receptors (P2X2 and P2X4), tandem P domain K+ channels (TREK1) and the epithelial Na+ channel (ENaC). The mechanisms by which CO regulates these ion channels are still unclear and remain somewhat controversial. However, available structure–function studies suggest that a limited range of amino acid residues confer CO sensitivity, either directly or indirectly, to particular ion channels and that cellular redox state appears to be important to the final integrated response. Whatever the molecular mechanism by which CO regulates ion channels, endogenous production of this gasotransmitter has physiologically important roles and is currently being explored as a potential therapeutic. PMID:21521759

  9. Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography.

    PubMed

    Klein, Pieter J; Christiaans, Johannes A M; Metaxas, Athanasios; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2015-03-01

    The N-methyl-d-aspartate receptor (NMDAr) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. Currently, it is not possible to assess NMDAr availability in vivo. The purpose of this study was to develop a positron emission tomography (PET) ligand for the NMDAr ion channel. A series of di- and tri-N-substituted diarylguanidines was synthesized. In addition, in vitro binding affinity for the NMDAr ion channel in rat forebrain membrane fractions was assessed. Compounds 10, 11 and 32 were radiolabeled with either carbon-11 or fluorine-18. Ligands [(11)C]10 and [(18)F]32 were evaluated ex vivo in B6C3 mice. Biodistribution studies showed higher uptake of [(11)C]10 and [(18)F]32 in forebrain regions compared with cerebellum. In addition, for [(11)C]10 54% and for [(18)F]32 70% of activity in the brain at 60min was due to intact tracer. Pre-treatment with MK-801 (0.6mg·kg(-1), ip) slightly decreased uptake in NMDAr-specific regions for [(18)F]32, but not for [(11)C]10. As such [(18)F]32 has the best characteristics as a PET tracer for the ion channel of the NMDAr. PMID:25648682

  10. Photolabeling reveals the proximity of the alpha-neurotoxin binding site to the M2 helix of the ion channel in the nicotinic acetylcholine receptor.

    PubMed Central

    Machold, J; Utkin, Y; Kirsch, D; Kaufmann, R; Tsetlin, V; Hucho, F

    1995-01-01

    A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis. Images Fig. 2 PMID:7543679

  11. Caveolae, Ion Channels and Cardiac Arrhythmias

    PubMed Central

    Balijepalli, Ravi C.; Kamp, Timothy J.

    2009-01-01

    Caveolae are specialized membrane microdomains enriched in cholesterol and sphingolipids which are present in multiple cell types including cardiomyocytes. Along with the essential scaffolding protein caveolin-3, a number of different ion channels and transporters have been localized to caveolae in the heart including L-type Ca2+ channels (Cav1.2), Na+ channels (Nav1.5), pacemaker channels (HCN4), Na+/Ca2+ exchnager (NCX1) and others. Closely associated with these channels are specific macromolecular signaling complexes that provide highly localized regulation of the channels. Mutations in the caveolin-3 gene (CAV3) have been linked with the congenital long QT syndrome (LQT9), and mutations in caveolar-localized ion channels may contribute to other inherited arrhythmias. Changes in the caveolar microdomain in acquired heart disease may also lead to dysregulation and dysfunction of ion channels, altering the risk of arrhythmias in conditions such as heart failure. This review highlights the existing evidence identifying and characterizing ion channels localized to caveolae in cardiomyocytes and their role in arrhythmogenesis. PMID:19351512

  12. Pair creation in heavy ion channeling

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Harman, Z.

    2016-04-01

    Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron-positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  13. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance.

    PubMed

    Nishizaki, Tomoyuki

    2003-06-10

    The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability. PMID:12829329

  14. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  15. Ion Channel Probes for Scanning Ion Conductance Microscopy

    PubMed Central

    2015-01-01

    The sensitivity and selectivity of ion channels provide an appealing opportunity for sensor development. Here, we describe ion channel probes (ICPs), which consist of multiple ion channels reconstituted into lipid bilayers suspended across the opening of perflourinated glass micropipets. When incorporated with a scanning ion conductance microscope (SICM), ICPs displayed a distance-dependent current response that depended on the number of ion channels in the membrane. With distance-dependent current as feedback, probes were translated laterally, to demonstrate the possibility of imaging with ICPs. The ICP platform yields several potential advantages for SICM that will enable exciting opportunities for incorporation of chemical information into imaging and for high-resolution imaging. PMID:25425190

  16. TRP Channels in Insect Stretch Receptors as Insecticide Targets.

    PubMed

    Nesterov, Alexandre; Spalthoff, Christian; Kandasamy, Ramani; Katana, Radoslav; Rankl, Nancy B; Andrés, Marta; Jähde, Philipp; Dorsch, John A; Stam, Lynn F; Braun, Franz-Josef; Warren, Ben; Salgado, Vincent L; Göpfert, Martin C

    2015-05-01

    Defining the molecular targets of insecticides is crucial for assessing their selectivity and potential impact on environment and health. Two commercial insecticides are now shown to target a transient receptor potential (TRP) ion channel complex that is unique to insect stretch receptor cells. Pymetrozine and pyrifluquinazon disturbed Drosophila coordination and hearing by acting on chordotonal stretch receptor neurons. This action required the two TRPs Nanchung (Nan) and Inactive (Iav), which co-occur exclusively within these cells. Nan and Iav together sufficed to confer cellular insecticide responses in vivo and in vitro, and the two insecticides were identified as specific agonists of Nan-Iav complexes that, by promoting cellular calcium influx, silence the stretch receptor cells. This establishes TRPs as insecticide targets and defines specific agonists of insect TRPs. It also shows that TRPs can render insecticides cell-type selective and puts forward TRP targets to reduce side effects on non-target species. PMID:25950634

  17. Role of TRP ion channels in cancer and tumorigenesis.

    PubMed

    Shapovalov, George; Ritaine, Abigael; Skryma, Roman; Prevarskaya, Natalia

    2016-05-01

    Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues. PMID:26842901

  18. Hypoxia. 4. Hypoxia and ion channel function

    PubMed Central

    Polak, Jan

    2011-01-01

    The ability to sense and respond to oxygen deprivation is required for survival; thus, understanding the mechanisms by which changes in oxygen are linked to cell viability and function is of great importance. Ion channels play a critical role in regulating cell function in a wide variety of biological processes, including neuronal transmission, control of ventilation, cardiac contractility, and control of vasomotor tone. Since the 1988 discovery of oxygen-sensitive potassium channels in chemoreceptors, the effect of hypoxia on an assortment of ion channels has been studied in an array of cell types. In this review, we describe the effects of both acute and sustained hypoxia (continuous and intermittent) on mammalian ion channels in several tissues, the mode of action, and their contribution to diverse cellular processes. PMID:21178108

  19. Single-channel properties of the recombinant skeletal muscle Ca2+ release channel (ryanodine receptor).

    PubMed Central

    Chen, S R; Leong, P; Imredy, J P; Bartlett, C; Zhang, L; MacLennan, D H

    1997-01-01

    We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel. Images FIGURE 1 PMID:9336186

  20. Amino acid-sensing ion channels in plants

    SciTech Connect

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  1. Calcium-permeable ion channels in the kidney.

    PubMed

    Zhou, Yiming; Greka, Anna

    2016-06-01

    Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets. PMID:27029425

  2. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    SciTech Connect

    Fritsch, Sebastian; Ivanov, Ivaylo; Wang, Hailong; Cheng, Xiaolin

    2010-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.

  3. The Origins of Transmembrane Ion Channels

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  4. Mechanisms of Barbiturate Inhibition of Acetylcholine Receptor Channels

    PubMed Central

    Dilger, James P.; Boguslavsky, Rebecca; Barann, Martin; Katz, Tamir; Vidal, Ana Maria

    1997-01-01

    We used patch clamp techniques to study the inhibitory effects of pentobarbital and barbital on nicotinic acetylcholine receptor channels from BC3H-1 cells. Single channel recording from outside-out patches reveals that both drugs cause acetylcholine-activated channel events to occur in bursts. The mean duration of gaps within bursts is 2 ms for 0.1 mM pentobarbital and 0.05 ms for 1 mM barbital. In addition, 1 mM barbital reduces the apparent single channel current by 15%. Both barbiturates decrease the duration of openings within a burst but have only a small effect on the burst duration. Macroscopic currents were activated by rapid perfusion of 300 μM acetylcholine to outside-out patches. The concentration dependence of peak current inhibition was fit with a Hill function; for pentobarbital, Ki = 32 μM, n = 1.09; for barbital, Ki = 1900 μM, n = 1.24. Inhibition is voltage independent. The kinetics of inhibition by pentobarbital are at least 30 times faster than inhibition by barbital (3 ms vs. <0.1 ms at the Ki). Pentobarbital binds ≥10-fold more tightly to open channels than to closed channels; we could not determine whether the binding of barbital is state dependent. Experiments performed with both barbiturates reveal that they do not compete for a single binding site on the acetylcholine receptor channel protein, but the binding of one barbiturate destabilizes the binding of the other. These results support a kinetic model in which barbiturates bind to both open and closed states of the AChR and block the flow of ions through the channel. An additional, lower-affinity binding site for pentobarbital may explain the effects seen at >100 μM pentobarbital. PMID:9089445

  5. Mechanisms of barbiturate inhibition of acetylcholine receptor channels.

    PubMed

    Dilger, J P; Boguslavsky, R; Barann, M; Katz, T; Vidal, A M

    1997-03-01

    We used patch clamp techniques to study the inhibitory effects of pentobarbital and barbital on nicotinic acetylcholine receptor channels from BC3H-1 cells. Single channel recording from outside-out patches reveals that both drugs cause acetylcholine-activated channel events to occur in bursts. The mean duration of gaps within bursts in 2 ms for 0.1 mM pentobarbital and 0.05 ms for 1 mM barbital. In addition, 1 mM barbital reduces the apparent single channel current by 15%. Both barbiturates decrease the duration of openings within a burst but have only a small effect on the burst duration. Macroscopic currents were activated by rapid perfusion of 300 microM acetylcholine to outside-out patches. The concentration dependence of peak current inhibition was fit with a Hill function; for pentobarbital, Ki = 32 microM, n = 1.09; for barbital, Ki = 1900 microM, n = 1.24. Inhibition is voltage independent. The kinetics of inhibition by pentobarbital are at least 30 times faster than inhibition by barbital (3 ms vs. < 0.1 ms at the Ki). Pentobarbital binds > or = 10-fold more tightly to open channels than to closed channels; we could not determine whether the binding of barbital is state dependent. Experiments performed with both barbiturates reveal that they do not compete for a single binding site on the acetylcholine receptor channel protein, but the binding of one barbiturate destabilizes the binding of the other. These results support a kinetic model in which barbiturates bind to both open and closed states of the AChR and block the flow of ions through the channel. An additional, lower-affinity binding site for pentobarbital may explain the effects seen at > 100 microM pentobarbital. PMID:9089445

  6. Successive openings of the same acetylcholine receptor channel are correlated in open time.

    PubMed Central

    Jackson, M B; Wong, B S; Morris, C E; Lecar, H; Christian, C N

    1983-01-01

    Previous analysis of single-channel current records has shown that both the opening and closing transitions of chemically activated ion channels are operated by fast and slow kinetic processes. The fast component in the kinetics of channel opening has been interpreted as the reopening of a channel that has just closed. The fast component in the kinetics of channel closure has many possible explanations and is therefore more difficult to interpret. We can gain insight into the closing process by asking whether the lifetimes of successive openings of an acetylcholine receptor channel are correlated in open-state lifetime. Five kinetic models of channel closure are considered. Two of these models predict uncorrelated open-state lifetimes, one predicts correlated open-state lifetimes, and for two others a range of behavior is possible. Acetylcholine receptor channel data from cultured rat muscle are analyzed to show that open-state lifetimes are correlated, eliminating two models of channel gating. PMID:6301575

  7. Mitochondrial Ion Channels in Cancer Transformation

    PubMed Central

    Madamba, Stephen M.; Damri, Kevin N.; Dejean, Laurent M.; Peixoto, Pablo M.

    2015-01-01

    Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process. PMID:26090338

  8. Binding of Capsaicin to the TRPV1 Ion Channel.

    PubMed

    Darré, Leonardo; Domene, Carmen

    2015-12-01

    Transient receptor potential (TRP) ion channels constitute a notable family of cation channels involved in the ability of an organisms to detect noxious mechanical, thermal, and chemical stimuli that give rise to the perception of pain, taste, and changes in temperature. One of the most experimentally studied agonist of TRP channels is capsaicin, which is responsible for the burning sensation produced when chili pepper is in contact with organic tissues. Thus, understanding how this molecule interacts and regulates TRP channels is essential to high impact pharmacological applications, particularly those related to pain treatment. The recent publication of a three-dimensional structure of the vanilloid receptor 1 (TRPV1) in the absence and presence of capsaicin from single particle electron cryomicroscopy experiments provides the opportunity to explore these questions at the atomic level. In the present work, molecular docking and unbiased and biased molecular dynamics simulations were employed to generate a structural model of the capsaicin-channel complex. In addition, the standard free energy of binding was estimated using alchemical transformations coupled with conformational, translational, and orientational restraints on the ligand. Key binding modes consistent with previous experimental data are identified, and subtle but essential dynamical features of the binding site are characterized. These observations shed some light into how TRPV1 interacts with capsaicin, and may help to refine design parameters for new TRPV1 antagonists, and potentially guide further developments of TRP channel modulators. PMID:26502196

  9. Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor.

    PubMed Central

    Tank, D W; Huganir, R L; Greengard, P; Webb, W W

    1983-01-01

    Small unilamellar vesicles containing purified and reconstituted nicotinic acetylcholine receptors from Torpedo electroplax have been fused by a simple freeze-thaw procedure to form large liposomes. Giga-seal patch-recording techniques were used to form isolated patches of liposome-membrane and to measure single-channel properties of the reconstituted receptor-ion channel complex. The observed properties are quantitatively similar to those reported for vertebrate muscle nicotinic acetylcholine receptor species recorded in situ. The results demonstrate that the pentameric complex consisting of the alpha 2 beta gamma delta subunits is fully functional. The methods used in these experiments should be useful in studying the effects of chemical alterations on the properties of acetylcholine receptor channels as well as other types of purified and reconstituted ion channels. PMID:6308673

  10. The Earliest Ion Channels in Protocellular Membranes

    NASA Technical Reports Server (NTRS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  11. The earliest ion channels in protocellular membranes

    NASA Astrophysics Data System (ADS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously self-assemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their struc-tures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological real-ity, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  12. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    SciTech Connect

    Fritsch, Sebastian M; Ivanov, Ivaylo N; Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  13. Inositol Trisphosphate Receptor Ca2+ Release Channels

    PubMed Central

    FOSKETT, J. KEVIN; WHITE, CARL; CHEUNG, KING-HO; MAK, DON-ON DANIEL

    2010-01-01

    The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R. PMID:17429043

  14. TRP Channel Cannabinoid Receptors in Skin Sensation, Homeostasis, and Inflammation

    PubMed Central

    2015-01-01

    In the skin, cannabinoid lipids, whether of endogenous or exogenous origin, are capable of regulating numerous sensory, homeostatic, and inflammatory events. Although many of these effects are mediated by metabotropic cannabinoid receptors, a growing body of evidence has revealed that multiple members of the transient receptor potential (TRP) ion channel family can act as “ionotropic cannabinoid receptors”. Furthermore, many of these same TRP channels are intimately involved in cutaneous processes that include the initiation of pain, temperature, and itch perception, the maintenance of epidermal homeostasis, the regulation of hair follicles and sebaceous glands, and the modulation of dermatitis. Ionotropic cannabinoid receptors therefore represent potentially attractive targets for the therapeutic use of cannabinoids to treat sensory and dermatological diseases. Furthermore, the interactions between neurons and other cell types that are mediated by cutaneous ionotropic cannabinoid receptors are likely to be recapitulated during physiological and pathophysiological processes in the central nervous system and elsewhere, making the skin an ideal setting in which to dissect general complexities of cannabinoid signaling. PMID:24915599

  15. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  16. Calcium homeostasis modulator (CALHM) ion channels.

    PubMed

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  17. Mitochondrial ion channels as therapeutic targets

    PubMed Central

    Peixoto, Pablo M.; Ryu, Shin-Young; Kinnally, Kathleen W.

    2010-01-01

    The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential. PMID:20178788

  18. Targeting ion channels in cystic fibrosis.

    PubMed

    Mall, Marcus A; Galietta, Luis J V

    2015-09-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype. PMID:26115565

  19. More Than a Pore: Ion Channel Signaling Complexes

    PubMed Central

    Fakler, Bernd; Kaczmarek, Leonard K.; Isom, Lori L.

    2014-01-01

    Voltage- and ligand-gated ion channels form the molecular basis of cellular excitability. With >400 members and accounting for ∼1.5% of the human genome, ion channels are some of the most well studied of all proteins in heterologous expression systems. Yet, ion channels often exhibit unexpected properties in vivo because of their interaction with a variety of signaling/scaffolding proteins. Such interactions can influence the function and localization of ion channels, as well as their coupling to intracellular second messengers and pathways, thus increasing the signaling potential of these ion channels in neurons. Moreover, functions have been ascribed to ion channels that are largely independent of their ion-conducting roles. Molecular and functional dissection of the ion channel proteome/interactome has yielded new insights into the composition of ion channel complexes and how their dysregulation leads to human disease. PMID:25392484

  20. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  1. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases

    PubMed Central

    2012-01-01

    Background There is strong evidence that oxidative stress is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD). The transient receptor potential melastatin-2 (TRPM2) is an oxidative stress sensing channel that is expressed in a number of inflammatory cells and therefore it has been suggested that inhibition of TRPM2 could lead to a beneficial effect in COPD patients. In this study, we have investigated the role of TRPM2 in a variety of mouse models of oxidative stress and COPD using TRPM2-deficent mice. Methods Mice were exposed to ozone (3 ppm for 4 h) or lipopolysaccharide (LPS, 0.3 mg/kg, intranasaly). In another model, mice were exposed to tobacco smoke (750 μg/l total wet particulate matter) for 30 min twice a day on three consecutive days. For the exacerbation model, the smoke exposure on the morning of day 3 animals was replaced with intranasal administration of LPS (0.3 mg/kg). Animals were killed 3 and 24 h after the challenge (ozone and LPS model) or 18 h after the last tobacco smoke exposure. In vitro neutrophil chemotaxis and monocyte activation were also studied using cells isolated from wild type and TRPM2-deficient animals. Statistical significance for the in vivo data (P < 0.05) was determined using analysis of variance with Kruskal-Wallis and Dunns multiple comparison test. Results In all models studied, no difference in the bronchoalveolar lavage inflammation could be evidenced when comparing wild type and TRPM2-deficient mice. In addition, no difference could be seen in the lung inflammation as assessed by the measurement of various cytokines/chemokines. Similarly in various in vitro cellular activation assays using isolated neutrophils and monocytes no significant differences could be observed when comparing wild type and TRPM2-deficient mice. Discussion We have shown, in all the models tested, no difference in the development of airway inflammation or cell activation between TRPM2-deficient mice and their wild

  2. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B.

    PubMed

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H; Prorok, Mary; Castellino, Francis J

    2009-08-01

    The conantokins are short, naturally occurring peptides that inhibit ion flow through N-methyl-d-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), shows high selectivity for antagonism of NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole-cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E(657)-I(814)) were replaced by the corresponding S2 region of NR2B (E(658)-I(815)), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M(739) of NR2B for the equivalent K(738) of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K(755) of NR2B for Y(754) of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes. PMID:19427876

  3. Mechanosensitive Ion Channels in Cardiovascular Physiology

    PubMed Central

    Teng, Jinfeng; Loukin, Steve; Kung, Ching

    2014-01-01

    EC coupling is subjected to a mechanical feedback, which originates from physical force-sensing ion channels in the pericardium and elsewhere. Reviewed here are the most recent developments that greatly advanced our understanding of these mechanosensitive (MS) channels, including TRPs and K2p’s. Patch clamp has continued to demonstrate the direct channel activation by membrane stretch. Crystallography and cryo-electron microscopy have revealed the structures of several MS channels at atomic resolution. Some have been purified to homogeneity, reconstituted into lipid bilayer, and still retain their ability to respond to stretch force. A force-from-lipid (FFL) theory has been advanced that emphasizes the strong binding between channel proteins and lipids. Through these bonds, the sharp lateral tension (akin to surface tension) of the bilayer can transmit added force to the channel protein. Like temperature sensitivity, sensitivity to mechanical force is far more pervasive than we previously realize, and is especially important to the beating heart. PMID:26778915

  4. TRPM2: a multifunctional ion channel for calcium signalling

    PubMed Central

    Sumoza-Toledo, Adriana; Penner, Reinhold

    2011-01-01

    The transient potential receptor melastatin-2 (TRPM2) channel has emerged as an important Ca2+ signalling mechanism in a variety of cells, contributing to cellular functions that include cytokine production, insulin release, cell motility and cell death. Its ability to respond to reactive oxygen species has made TRPM2 a potential therapeutic target for chronic inflammation, neurodegenerative diseases, and oxidative stress-related pathologies. TRPM2 is a non-selective, calcium (Ca2+)-permeable cation channel of the melastatin-related transient receptor potential (TRPM) ion channel subfamily. It is activated by intracellular adenosine diphosphate ribose (ADPR) through a diphosphoribose hydrolase domain in its C-terminus and regulated through a variety of factors, including synergistic facilitation by [Ca2+]i, cyclic ADPR, H2O2, NAADP, and negative feedback regulation by AMP and permeating protons (pH). In addition to its role mediating Ca2+ influx into the cells, TRPM2 can also function as a lysosomal Ca2+ release channel, contributing to cell death. The physiological and pathophysiological context of ROS-mediated events makes TRPM2 a promising target for the development of therapeutic tools of inflammatory and degenerative diseases. PMID:21135052

  5. Oxidation of ion channels in the aging nervous system.

    PubMed

    Patel, Rahul; Sesti, Federico

    2016-05-15

    Ion channels are integral membrane proteins that allow passive diffusion of ions across membranes. In neurons and in other excitable cells, the harmonious coordination between the numerous types of ion channels shape and propagate electrical signals. Increased accumulation of reactive oxidative species (ROS), and subsequent oxidation of proteins, including ion channels, is a hallmark feature of aging and may contribute to cell failure as a result. In this review we discuss the effects of ROS on three major types of ion channels of the central nervous system, namely the potassium (K(+)), calcium (Ca(2+)) and sodium (Na(+)) channels. We examine two general mechanisms through which ROS affect ion channels: via direct oxidation of specific residues and via indirect interference of pathways that regulate the channels. The overall status of the present studies indicates that the interaction of ion channels with ROS is multimodal and pervasive in the central nervous system and likely constitutes a general mechanism of aging susceptibility. PMID:26947620

  6. Erythrocyte ion channels in regulation of apoptosis.

    PubMed

    Lang, Florian; Birka, Christina; Myssina, Svetlana; Lang, Karl S; Lang, Philipp A; Tanneur, Valerie; Duranton, Christophe; Wieder, Thomas; Huber, Stephan M

    2004-01-01

    Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte "apoptosis." Osmotic shock, oxidative stress and energy depletion all activate a Ca2(+)-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2(+)-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus

  7. Ion channels and apoptosis in cancer

    PubMed Central

    Bortner, Carl D.; Cidlowski, John A.

    2014-01-01

    Humans maintain a constant cell number throughout their lifespan. This equilibrium of cell number is accomplished when cell proliferation and cell death are kept balanced, achieving a steady-state cell number. Abnormalities in cell growth or cell death can lead to an overabundance of cells known as neoplasm or tumours. While the perception of cancer is often that of an uncontrollable rate of cell growth or increased proliferation, a decrease in cell death can also lead to tumour formation. Most cells when detached from their normal tissue die. However, cancer cells evade cell death, tipping the balance to an overabundance of cell number. Therefore, overcoming this resistance to cell death is a decisive factor in the treatment of cancer. Ion channels play a critical role in cancer in regards to cell proliferation, malignant angiogenesis, migration and metastasis. Additionally, ion channels are also known to be critical components of apoptosis. In this review, we discuss the modes of cell death focusing on the ability of cancer cells to evade apoptosis. Specifically, we focus on the role ion channels play in controlling and regulating life/death decisions and how they can be used to overcome resistance to apoptosis in the treatment of cancer. PMID:24493752

  8. Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator?

    PubMed Central

    Dietrich, Alexander; Fahlbusch, Meike; Gudermann, Thomas

    2014-01-01

    In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model. PMID:25268281

  9. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    PubMed

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies. PMID:27335334

  10. Three Homologous Subunits Form a High Affinity Peptide-gated Ion Channel in Hydra*

    PubMed Central

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D.; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J. P.; Holstein, Thomas W.; Gründer, Stefan

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na+ channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na+ channels (HyNaCs) 2–4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na+ channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na+ selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission. PMID:20159980

  11. Beyond ion-conduction: Channel-dependent and -independent roles of TRP channels during development and tissue homeostasis.

    PubMed

    Vrenken, Kirsten S; Jalink, Kees; van Leeuwen, Frank N; Middelbeek, Jeroen

    2016-06-01

    Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes, including proliferation, cell migration and cell survival. As a consequence, members of this ion family play prominent roles during embryonic development, tissue maintenance and cancer progression. Although most TRP channels are non-selective, many cellular responses, mediated by TRP channels, appear to be calcium-dependent. In addition, there is mounting evidence for channel-independent roles for TRP channels. In this review, we will discuss how both these channel-dependent and -independent mechanisms affect cellular programs essential during embryonic development, and how perturbations in these pathways contribute to a variety of pathologies. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26585368

  12. Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content.

    PubMed

    Arias, Hugo R; Ravazzini, Federica; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Feuerbach, Dominik; Boffi, Juan C; Draczkowski, Piotr; Montag, Dirk; Brown, Brandon M; Elgoyhen, Ana Belén; Jozwiak, Krzysztof; Puia, Giulia

    2016-07-01

    The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets. PMID:27129924

  13. Neurosensory mechanotransduction through acid-sensing ion channels

    PubMed Central

    Chen, Chih-Cheng; Wong, Chia-Wen

    2013-01-01

    Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell–neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction. PMID:23490035

  14. Flipping the Photoswitch: Ion Channels Under Light Control.

    PubMed

    McKenzie, Catherine K; Sanchez-Romero, Inmaculada; Janovjak, Harald

    2015-01-01

    Nature has incorporated small photochromic molecules, colloquially termed 'photoswitches', in photoreceptor proteins to sense optical cues in phototaxis and vision. While Nature's ability to employ light-responsive functionalities has long been recognized, it was not until recently that scientists designed, synthesized and applied synthetic photochromes to manipulate many of which open rapidly and locally in their native cell types, biological processes with the temporal and spatial resolution of light. Ion channels in particular have come to the forefront of proteins that can be put under the designer control of synthetic photochromes. Photochromic ion channel controllers are comprised of three classes, photochromic soluble ligands (PCLs), photochromic tethered ligands (PTLs) and photochromic crosslinkers (PXs), and in each class ion channel functionality is controlled through reversible changes in photochrome structure. By acting as light-dependent ion channel agonists, antagonist or modulators, photochromic controllers effectively converted a wide range of ion channels, including voltage-gated ion channels, 'leak channels', tri-, tetra- and pentameric ligand-gated ion channels, and temperature-sensitive ion channels, into man-made photoreceptors. Control by photochromes can be reversible, unlike in the case of 'caged' compounds, and non-invasive with high spatial precision, unlike pharmacology and electrical manipulation. Here, we introduce design principles of emerging photochromic molecules that act on ion channels and discuss the impact that these molecules are beginning to have on ion channel biophysics and neuronal physiology. PMID:26381942

  15. Acid-sensing ion channels under hypoxia

    PubMed Central

    Yingjun, Guo; Xun, Qu

    2013-01-01

    Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on. PMID:23764948

  16. Gated Ion Channel-Based Biosensor Device

    NASA Astrophysics Data System (ADS)

    Separovic, Frances; Cornell, Bruce A.

    A biosensor device based on the ion channel gramicidin A (gA) incorporated into a bilayer membrane is described. This generic immunosensing device utilizes gA coupled to an antibody and assembled in a lipid membrane. The membrane is chemically tethered to a gold electrode, which reports on changes in the ionic conduction of the lipid bilayer. Binding of a target molecule in the bathing solution to the antibody causes the gramicidin channels to switch from predominantly conducting dimers to predominantly nonconducting monomers. Conventional a.c. impedance spectroscopy between the gold and a counter electrode in the bathing solution is used to measure changes in the ionic conductivity of the membrane. This approach permits the quantitative detection of a range of target species, including bacteria, proteins, toxins, DNA sequences, and drug molecules.

  17. Structure and selectivity in bestrophin ion channels

    DOE PAGESBeta

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  18. Structure and selectivity in bestrophin ion channels

    SciTech Connect

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.

  19. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  20. Na Channel β Subunits: Overachievers of the Ion Channel Family.

    PubMed

    Brackenbury, William J; Isom, Lori L

    2011-01-01

    Voltage-gated Na(+) channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na(+) current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington's disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy. PMID:22007171

  1. Theory of the ion-channel laser

    SciTech Connect

    Whittum, D.H.

    1990-09-01

    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency {omega}{approximately}2 {gamma}{sup 2} {omega}{beta}, where {gamma} is the Lorentz factor and {omega}{beta} is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed.

  2. Ion channel regulation by protein S-acylation

    PubMed Central

    2014-01-01

    Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease. PMID:24821965

  3. Supramolecular Assemblies and Localized Regulation of Voltage-Gated Ion Channels

    PubMed Central

    Dai, Shuiping; Hall, Duane D.; Hell, Johannes W.

    2009-01-01

    This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the β2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators. PMID:19342611

  4. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  5. Principles Governing Metal Ion Selectivity in Ion Channel Proteins

    NASA Astrophysics Data System (ADS)

    Lim, Carmay

    2014-03-01

    Our research interests are to (i) unravel the principles governing biological processes and use them to identify novel drug targets and guide drug design, and (ii) develop new methods for studying macromolecular interactions. This talk will provide an overview of our work in these two areas and an example of how our studies have helped to unravel the principles underlying the conversion of Ca2+-selective to Na+-selective channels. Ion selectivity of four-domain voltage-gated Ca2+(Cav) and sodium (Nav) channels, which is controlled by the selectivity filter (SF, the narrowest region of an open pore), is crucial for electrical signaling. Over billions of years of evolution, mutation of the Glu from domain II/III in the EEEE/DEEA SF of Ca2+-selective Cav channels to Lys made these channels Na+-selective. This talk will delineate the physical principles why Lys is sufficient for Na+/Ca2+selectivity and why the DEKA SF is more Na+-selective than the DKEA one.

  6. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  7. Ovarian cancer: Ion channel and aquaporin expression as novel targets of clinical potential.

    PubMed

    Frede, Julia; Fraser, Scott P; Oskay-Özcelik, Gülten; Hong, Yeosun; Ioana Braicu, E; Sehouli, Jalid; Gabra, Hani; Djamgoz, Mustafa B A

    2013-07-01

    Ovarian cancer is associated with limited overall survival, due to problems in early detection and therapy. Membrane ion channels have been proposed to play a significant, concerted role in the cancer process, from initial proliferation to metastasis, and promise to be early, functional biomarkers. We review the evidence for ion channel and aquaporin expression and functioning in human ovarian cancer cells and tissues. In vitro, K(+) channels, mainly voltage-gated, including Ca(2+)-activated channels, have been found to control the cell cycle, as in other cancers. Voltage-gated, volume-regulated and intracellular Cl(-) channels have been detected in vitro and in vivo and shown to be involved in proliferation, adhesion and invasion. Evidence for 'transient receptor potential', voltage-gated sodium and calcium channels, which have been shown to contribute to pathogenesis of other carcinomas, is also emerging in ovarian cancer. Aquaporins may be involved in cell growth, migration and formation of ascites via increased water permeability of micro-vessels. It is concluded that functional expression of ion channels and their regulation by steroid hormones and growth factors are an integral part of ovarian cancer development and progression. Furthermore, ion channels may be involved in multidrug resistance, commonly associated with treatment of ovarian cancer. We propose that ion channel studies can facilitate our understanding of the pathobiology of ovarian cancer and, ultimately, can serve as viable novel targets for its clinical management. PMID:23683551

  8. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  9. Coupling Mechanical Forces to Electrical Signaling: Molecular Motors and the Intracellular Transport of Ion Channels

    PubMed Central

    Barry, Joshua; Gu, Chen

    2013-01-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  10. Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus.

    PubMed

    Rodrigues, Ricardo J; Almeida, Teresa; Díaz-Hernández, Miguel; Marques, Joana M; Franco, Rafael; Solsona, Carles; Miras-Portugal, María Teresa; Ciruela, Francisco; Cunha, Rodrigo A

    2016-06-01

    Previous studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-β-hydroxylase-positive hippocampal terminals. Notably, P2XR ligands displaced nAChR binding and nAChR ligands displaced P2XR binding to hippocampal synaptosomes. In addition, a negative P2XR/nAChR cross-talk was observed in the control of the evoked release of noradrenaline from rat hippocampal synaptosomes, characterized by a less-than-additive facilitatory effect upon co-activation of both receptors. This activity-dependent cross-inhibition was confirmed in Xenopus oocytes transfected with P2X1-3Rs and α3β2 (but not α4β2) nAChR. Besides, P2X2 co-immunoprecipitated α3β2 (but not α4β2) nAChR, both in HEK cells and rat hippocampal membranes indicating that this functional interaction is supported by a physical association between P2XR and nAChR. Moreover, eliminating extracellular ATP with apyrase in hippocampal slices promoted the inhibitory effect of the nAChR antagonist tubocurarine on noradrenaline release induced by high- but not low-frequency stimulation. Overall, these results provide integrated biochemical, pharmacological and functional evidence showing that P2X1-3R and α3β2 nAChR are physically and functionally interconnected at the presynaptic level to control excessive noradrenergic terminal activation upon intense synaptic firing in the hippocampus. PMID:26801076

  11. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule.

    PubMed

    Vyklicky, Vojtech; Krausova, Barbora; Cerny, Jiri; Balik, Ales; Zapotocky, Martin; Novotny, Marian; Lichnerova, Katarina; Smejkalova, Tereza; Kaniakova, Martina; Korinek, Miloslav; Petrovic, Milos; Kacer, Petr; Horak, Martin; Chodounska, Hana; Vyklicky, Ladislav

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system. PMID:26086919

  12. Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop

    SciTech Connect

    Wang, Hailong; Cheng, Xiaolin; McCammon, Jonathan

    2009-01-01

    We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed resting state, whereas the model after TMD simulation represents the channel in the proposed active state. Under external voltage biases, the channel in the active state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.

  13. Chapter Five - Ubiquitination of Ion Channels and Transporters.

    PubMed

    Lamothe, S M; Zhang, S

    2016-01-01

    Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal, and smooth muscle cells, neurons, and endocrine cells. Their dysfunction underlies the pathology of various diseases. Thus, the tight regulation of these transmembrane proteins is essential for cell physiology. While the ubiquitin system is involved in many aspects of cellular processes, this chapter focuses on the ubiquitin-mediated degradation of ion channels and transporters. Ubiquitination of ion channels and transporters is multifaceted and occurs at various cellular compartments such as the plasma membrane and the endoplasmic reticulum. While various molecules are involved in the ubiquitination of ion channels and transporters, E3 ubiquitin ligases play a central role in selectively targeting substrates for ubiquitination and will be a major focus in this chapter. To date, the Nedd4 family of E3 ubiquitin ligases and their regulations of ion channels and transporters have been extensively studied. In this chapter, we will first review Nedd4/Nedd4-2 and their regulations. We will then discuss how E3 ubiquitin ligases, especially Nedd4-2, regulate various ion channels and transporters including epithelial Na(+) channels, voltage-gated Na(+) channels, KCNQ and hERG K(+) channels, Cl(-) channels such as CFTR, transporters such as Na(+)/K(+) ATPase, and gap junctions. Furthermore, diseases caused by improper ubiquitination of ion channels and transporters will be discussed to highlight the process of ubiquitination and its biological as well as clinical significance. PMID:27378758

  14. Ion channels and the control of blood pressure

    PubMed Central

    Baker, Emma H

    2000-01-01

    Ion channels exist in all cells and are enormously varied in structure, function and regulation. Some progress has been made in understanding the role that ion channels play in the control of blood pressure, but the discipline is still in its infancy. Ion channels provide many different targets for intervention in disorders of blood pressure and exciting advances have been made in this field. It is possible that new drugs, as well as antisense nucleotide technology or gene therapy directed towards ion channels, may form a new class of treatments for high and low blood pressure in the future. PMID:10718773

  15. Computer-Aided Drug Discovery and Design Targeting Ion Channels.

    PubMed

    Zhang, Qiansen; Gao, Zhaobing; Yang, Huaiyu

    2016-01-01

    Ion channels are widely expressed in living cells and play critical roles in various cellular biological functions. Dysfunctional ion channels can cause a variety of diseases, making ion channels attractive targets for drug discovery. Computational approaches, such as molecular docking and molecular dynamic simulations, provide economic and efficient tools for finding modulators of ion channels and for elucidating the action mechanisms of small molecules. In this review, we focus primarily on four types of ion channels (voltage-gated, ligand-gated, acid-sensing, and virus matrix 2 ion channels). The current advancements in computer-aided drug discovery and design targeting ion channels are summarized. First, ligand-based studies for drug design are briefly outlined. Then, we focus on the structurebased studies targeting pore domains, endogenous binding sites and allosteric sites of ion channels. Moreover, we also review the contribution of computational methods to the field of ligand binding and unbinding pathways of ion channels. Finally, we propose future developments for the field. PMID:26975507

  16. All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers.

    PubMed

    Capone, Ricardo; Jang, Hyunbum; Kotler, Samuel A; Connelly, Laura; Teran Arce, Fernando; Ramachandran, Srinivasan; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh

    2012-03-13

    Alzheimer's disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor-peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn(2+), a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca(2+) leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism. PMID:22423218

  17. Single-Channel Kinetic Analysis for Activation and Desensitization of Homomeric 5-HT3A Receptors

    PubMed Central

    Corradi, Jeremías; Gumilar, Fernanda; Bouzat, Cecilia

    2009-01-01

    Abstract The 5-HT3A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (>0.1 μM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10′ contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action. PMID:19720021

  18. Channelpedia: An Integrative and Interactive Database for Ion Channels

    PubMed Central

    Ranjan, Rajnish; Khazen, Georges; Gambazzi, Luca; Ramaswamy, Srikanth; Hill, Sean L.; Schürmann, Felix; Markram, Henry

    2011-01-01

    Ion channels are membrane proteins that selectively conduct ions across the cell membrane. The flux of ions through ion channels drives electrical and biochemical processes in cells and plays a critical role in shaping the electrical properties of neurons. During the past three decades, extensive research has been carried out to characterize the molecular, structural, and biophysical properties of ion channels. This research has begun to elucidate the role of ion channels in neuronal function and has subsequently led to the development of computational models of ion channel function. Although there have been substantial efforts to consolidate these findings into easily accessible and coherent online resources, a single comprehensive resource is still lacking. The success of these initiatives has been hindered by the sheer diversity of approaches and the variety in data formats. Here, we present “Channelpedia” (http://channelpedia.net), which is designed to store information related to ion channels and models and is characterized by an efficient information management framework. Composed of a combination of a database and a wiki-like discussion platform Channelpedia allows researchers to collaborate and synthesize ion channel information from literature. Equipped to automatically update references, Channelpedia integrates and highlights recent publications with relevant information in the database. It is web based, freely accessible and currently contains 187 annotated ion channels with 45 Hodgkin–Huxley models. PMID:22232598

  19. Bioinspired Artificial Sodium and Potassium Ion Channels.

    PubMed

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge

  20. Acid-Sensing Ion Channels in Gastrointestinal Function

    PubMed Central

    Holzer, Peter

    2015-01-01

    Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. PMID:25582294

  1. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  2. Axial channeling of boron ions into silicon

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carbera, A.; Gasparotto, A.

    1992-04-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5 × 10 11 and 1 × 10 15 atoms/cm 2. The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, Sc, was extracted from the experimental maximum ranges for the [100] and [110] axis. The energ dependence of the electronic stopping power is given by Sc = KEp with p[100] = 0.469±0.010 and p[110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles.

  3. Genetic Reconstitution of Functional Acetylcholine Receptor Channels in Mouse Fibroblasts

    NASA Astrophysics Data System (ADS)

    Claudio, Toni; Green, W. N.; Hartman, Deborah S.; Hayden, Deborah; Paulson, Henry L.; Sigworth, F. J.; Sine, Steven M.; Swedlund, Anne

    1987-12-01

    Foreign genes can be stably integrated into the genome of a cell by means of DNA-mediated gene transfer techniques, and large quantities of homogenous cells that continuously express these gene products can then be isolated. Such an expression system can be used to study the functional consequences of introducing specific mutations into genes and to study the expressed protein in the absence of cellular components with which it is normally in contact. All four Torpedo acetylcholine receptor (AChR) subunit complementary DNA's were introduced into the genome of a mouse fibroblast cell by DNA-mediated gene transfer. A clonal cell line that stably produced high concentrations of correctly assembled cell surface AChR's and formed proper ligand-gated ion channels was isolated. With this new expression system, recombinant DNA, biochemical, pharmacological, and electrophysiological techniques were combined to study Torpedo AChR's in a single intact system. The physiological and pharmacological profiles of Torpedo AChR's expressed in mouse fibroblast cells differ in some details from those described earlier, and may provide a more accurate reflection of the properties of this receptor in its natural environment.

  4. Exact continuum solution for a channel that can be occupied by two ions.

    PubMed Central

    Levitt, D G

    1987-01-01

    The classical Nernst-Planck continuum equation is extended to the case where the channel can be occupied simultaneously by two ions. A two-dimensional partial differential equation is derived to describe the steady-state channel. This differential equation is of the form of the generalized Laplace equation, but it has the novel feature that the boundary conditions are periodic. The finite difference solution takes approximately 8 s on a large computer. The equations are solved for the special case of a cylindrical channel with a fixed charge in the center. It is assumed that the forces on the ions result entirely from the sum of the Born image potential, the fixed charge potential, the interaction potential between the two ions, and the applied voltage. Approximate simple analytical expressions are derived for these potential terms, based on the assumption that the electric field perpendicular to the channel wall is zero. The potentials include the contribution from a diffuse charge (Debye-Huckel) reaction field in the bulk solution for the monovalent cation flux was obtained for channels with a radius of 4 A and lengths of 16 and 32 A and a fixed charge valence of -1 and -1.5. For these channels, a significant fraction (up to 90%) of the total resistance is contributed by the bulk solution and results were obtained for the case where the "channel" included 8 A of bulk solution at each channel end. These results for the two-ion channel were compared with the analytical solution for a one-ion channel. The one-ion channel is a fair approximation to the two-ion channel for a fixed charge of -1, underestimating the flux at high concentrations by approximately 30%. However, for a fixed charge of -1.5, the one-ion model is a poor approximation, with the two-ion flux about seven times that of the one-ion model at high concentrations. The absolute conductance and concentration dependence of these channels (with a fixed charge of -1) mimic the behavior of the large

  5. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels.

    PubMed

    Alexander, Stephen Ph; Peters, John A; Kelly, Eamonn; Marrion, Neil; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650440

  6. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor.

    PubMed

    Revah, F; Bertrand, D; Galzi, J L; Devillers-Thiéry, A; Mulle, C; Hussy, N; Bertrand, S; Ballivet, M; Changeux, J P

    1991-10-31

    A variety of ligand-gated ion channels undergo a fast activation process after the rapid application of agonist and also a slower transition towards desensitized or inactivated closed channel states when exposure to agonist is prolonged. Desensitization involves at least two distinct closed states in the acetylcholine receptor, each with an affinity for agonists higher than those of the resting or active conformations. Here we investigate how structural elements could be involved in the desensitization of the acetylcholine-gated ion channel from the chick brain alpha-bungarotoxin sensitive homo-oligomeric alpha 7 receptor, using site-directed mutagenesis and expression in Xenopus oocytes. Mutations of the highly conserved leucine 247 residue from the uncharged MII segment of alpha 7 suppress inhibition by the open-channel blocker QX-222, indicating that this residue, like others from MII, faces the lumen of the channel. But, unexpectedly, the same mutations decrease the rate of desensitization of the response, increase the apparent affinity for acetylcholine and abolish current rectification. Moreover, unlike wild-type alpha 7, which has channels with a single conductance level, the leucine-to-threonine mutant has an additional conducting state active at low acetylcholine concentrations. It is possible that mutation of Leu 247 renders conductive one of the high-affinity desensitized states of the receptor. PMID:1719423

  7. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  8. Natural-Product-Derived Transient Receptor Potential Melastatin 8 (TRPM8) Channel Modulators.

    PubMed

    LeGay, Christina M; Gorobets, Evgueni; Iftinca, Mircea; Ramachandran, Rithwik; Altier, Christophe; Derksen, Darren J

    2016-06-01

    A library of novel structural hybrids of menthol and cubebol was tested for each derivative's ability to interact with the transient receptor potential subfamily melastatin member 8 (TRPM8) channel. This structure-activity relationship study revealed three potent modulators of the TRPM8 ion channel: a novel agonist (4) with an EC50 value of 11 ± 1 μM, an antagonist (15) with an IC50 value of 2 ± 1 μM, and an allosteric modulator (21) that minimized channel desensitization toward menthol. Each of these novel exocyclic olefin analogues of menthol is readily accessible by synthesis and was tested using Ca(2+) assays and electrophysiology. PMID:27171974

  9. Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8

    PubMed Central

    Carrasquel-Ursulaez, Willy; Moldenhauer, Hans; Castillo, Juan Pablo; Latorre, Ramón; Alvarez, Osvaldo

    2015-01-01

    Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of the transient receptor potential superfamily, TRP, which are activated by either low or high temperatures covering the whole range of physiologically relevant temperatures. This review makes a critical assessment of existing analytical methods of temperature-activated TRP channel mechanisms using the cold-activated TRPM8 channel as a paradigm. PMID:27227023

  10. Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes.

    PubMed Central

    Schindler, H; Spillecke, F; Neumann, E

    1984-01-01

    It is demonstrated that the monomeric and dimeric structures of the nicotinic acetylcholine receptor of Torpedo californica electric tissue, reconstituted in planar lipid bilayers, are functionally different. The native dimer D of Mr 500,000 (heavy-form) exhibits a "single" channel conductance about twice as large as that of the monomer M of Mr 250,000 (light form). Under conditions where monomers aggregate, the conductance changes from the level of the monomer M to that of dimers M2. The dimer conductances (D and M2) seem to result from synchronous opening and closing of the two channels in the dimer, giving the impression of "single channel" activity. This channel cooperativity is apparently mediated by noncovalent interactions between the two monomers, since it requires no disulfide linkage between monomers. Both the monomers M and the dimers D and M2 show at least one substate of lower conductivity. The relative population of the two conductance levels depends on the ion type (Na+ and K+), indicating ion-specific channel states. Since the channel conductance of isolated dimers resembles those obtained from unextracted microsacs, the dimer with two synchronized channels appears to be the in vivo predominant gating unit. In the linear association of dimers, observed in the native membrane, channel synchronization may extend to more than two channels as suggested by oligomeric channel cooperativity in associations of monomers and dimers. PMID:6091143

  11. Trails of Kilovolt Ions Created by Subsurface Channeling

    SciTech Connect

    Redinger, Alex; Standop, Sebastian; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M.

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of the ion's subsurface channel.

  12. The Control of Male Fertility by Spermatozoan Ion Channels

    PubMed Central

    Lishko, Polina V.; Kirichok, Yuriy; Ren, Dejian; Navarro, Betsy; Chung, Jean-Ju

    2014-01-01

    Ion channels control the sperm ability to fertilize the egg by regulating sperm maturation in the female reproductive tract and by triggering key sperm physiological responses required for successful fertilization such as hyperactivated motility, chemotaxis, and the acrosome reaction. CatSper, a pH-regulated, calcium-selective ion channel, and KSper (Slo3) are core regulators of sperm tail calcium entry and sperm hyperactivated motility. Many other channels had been proposed as regulating sperm activity without direct measurements. With the development of the sperm patch-clamp technique, CatSper and KSper have been confirmed as the primary spermatozoan ion channels. In addition, the voltage-gated proton channel Hv1 has been identified in human sperm tail, and the P2X2 ion channel has been identified in the midpiece of mouse sperm. Mutations and deletions in sperm-specific ion channels affect male fertility in both mice and humans without affecting other physiological functions. The uniqueness of sperm ion channels makes them ideal pharmaceutical targets for contraception. In this review we discuss how ion channels regulate sperm physiology. PMID:22017176

  13. Ion Channel Expression in the Developing Enteric Nervous System

    PubMed Central

    Stamp, Lincon A.; Fegan, Emily; Dent, Stephan; Cooper, Edward C.; Lomax, Alan E.; Anderson, Colin R.; Bornstein, Joel C.; Young, Heather M.; McKeown, Sonja J.

    2015-01-01

    The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons. PMID:25798587

  14. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective.

    PubMed Central

    Keramidas, A; Moorhouse, A J; French, C R; Schofield, P R; Barry, P H

    2000-01-01

    Three mutations in the M2 transmembrane domains of the chloride-conducting alpha1 homomeric glycine receptor (P250Delta, A251E, and T265V), which normally mediate fast inhibitory neurotransmission, produced a cation-selective channel with P(Cl)/P(Na), = 0.27 (wild-type P(Cl)/P(Na) = 25), a permeability sequence P(Cs) > P(K) > P(Na) > P(Li), an impermeability to Ca(2+), and a reduced glycine sensitivity. Outside-out patch measurements indicated reversed and accentuated rectification with extremely low mean single channel conductances of 3 pS (inward current) and 11 pS (outward current). The three inverse mutations, to those analyzed in this study, have previously been shown to make the alpha7 acetylcholine receptor channel anion-selective, indicating a common location for determinants of charge selectivity of inhibitory and excitatory ligand-gated ion channels. PMID:10866951

  15. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    PubMed

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  16. The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling

    PubMed Central

    Gees, Maarten; Colsoul, Barbara; Nilius, Bernd

    2010-01-01

    The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as polymodal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2+ permeable TRP channels generate changes in the intracellular Ca2+ concentration, [Ca2+]i, by Ca2+ entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2+ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2+ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2+ release channels in intracellular organelles. PMID:20861159

  17. Energetics of ion conduction through the K+ channel

    NASA Astrophysics Data System (ADS)

    Bernèche, Simon; Roux, Benoît

    2001-11-01

    K+ channels are transmembrane proteins that are essential for the transmission of nerve impulses. The ability of these proteins to conduct K+ ions at levels near the limit of diffusion is traditionally described in terms of concerted mechanisms in which ion-channel attraction and ion-ion repulsion have compensating effects, as several ions are moving simultaneously in single file through the narrow pore. The efficiency of such a mechanism, however, relies on a delicate energy balance-the strong ion-channel attraction must be perfectly counterbalanced by the electrostatic ion-ion repulsion. To elucidate the mechanism of ion conduction at the atomic level, we performed molecular dynamics free energy simulations on the basis of the X-ray structure of the KcsA K+ channel. Here we find that ion conduction involves transitions between two main states, with two and three K+ ions occupying the selectivity filter, respectively; this process is reminiscent of the `knock-on' mechanism proposed by Hodgkin and Keynes in 1955. The largest free energy barrier is on the order of 2-3kcalmol-1, implying that the process of ion conduction is limited by diffusion. Ion-ion repulsion, although essential for rapid conduction, is shown to act only at very short distances. The calculations show also that the rapidly conducting pore is selective.

  18. Ion channels enable electrical communication within bacterial communities

    PubMed Central

    Prindle, Arthur; Liu, Jintao; Asally, Munehiro; Ly, San; Garcia-Ojalvo, Jordi; Süel, Gürol M.

    2016-01-01

    The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signaling. However, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighboring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signaling in cellular communities. PMID:26503040

  19. Improvement in fusion reactor performance due to ion channeling

    SciTech Connect

    Emmert, G.A.; El-Guebaly, L.A.; Kulcinski, G.L.; Santarius, J.F.; Sviatoslavsky, I.N.; Meade, D.M.

    1994-11-01

    Ion channeling is a recent idea for improving the performance of fusion reactors by increasing the fraction of the fusion power deposited in the ions. In this paper the authors assess the effect of ion channeling on D-T and D-{sup 3}He reactors. The figures of merit used are the fusion power density and the cost of electricity. It is seen that significant ion channeling can lead to about a 50-65% increase in the fusion power density. For the Apollo D-{sup 3}He reactor concept the reduction in the cost of electricity can be as large as 30%.

  20. Photochemical control of endogenous ion channels and cellular excitability.

    PubMed

    Fortin, Doris L; Banghart, Matthew R; Dunn, Timothy W; Borges, Katharine; Wagenaar, Daniel A; Gaudry, Quentin; Karakossian, Movses H; Otis, Thomas S; Kristan, William B; Trauner, Dirk; Kramer, Richard H

    2008-04-01

    Light-activated ion channels provide a precise and noninvasive optical means for controlling action potential firing, but the genes encoding these channels must first be delivered and expressed in target cells. Here we describe a method for bestowing light sensitivity onto endogenous ion channels that does not rely on exogenous gene expression. The method uses a synthetic photoisomerizable small molecule, or photoswitchable affinity label (PAL), that specifically targets K+ channels. PALs contain a reactive electrophile, enabling covalent attachment of the photoswitch to naturally occurring nucleophiles in K+ channels. Ion flow through PAL-modified channels is turned on or off by photoisomerizing PAL with different wavelengths of light. We showed that PAL treatment confers light sensitivity onto endogenous K+ channels in isolated rat neurons and in intact neural structures from rat and leech, allowing rapid optical regulation of excitability without genetic modification. PMID:18311146

  1. Novel perspectives in cancer therapy: Targeting ion channels.

    PubMed

    Arcangeli, Annarosa; Becchetti, Andrea

    2015-01-01

    By controlling ion fluxes at multiple time scales, ion channels shape rapid cell signals, such as action potential and synaptic transmission, as well as much slower processes, such as mitosis and cell migration. As is currently increasingly recognized, a variety of channel types are involved in cancer hallmarks, and regulate specific stages of neoplastic progression. Long-term in vitro work has established that inhibition of these ion channels impairs the growth of cancer cells. Recently, these studies have been followed up in vivo, hence revealing that ion channels constitute promising pharmacological targets in oncology. The channel proteins can be often accessed from the extracellular milieu, which allows use of lower drug doses and decrease untoward toxicity. However, because of the central physiological roles exerted by ion channels in excitable cells, other types of side effects may arise, the gravest of which is cardiac arrhythmia. A paradigmatic case is offered by Kv11.1 (hERG1) channels. HERG1 blockers attenuate the progression of both hematologic malignancies and solid tumors, but may also lead to the lengthening of the electrocardiographic QT interval, thus predisposing the patient to ventricular arrhythmias. These side effects can be avoided by specifically inhibiting the channel isoforms which are highly expressed in certain tumors, such as Kv11.1B and the neonatal forms of voltage-gated Na(+) channels. Preclinical studies are also being explored in breast and prostate cancer (targeting voltage-gated Na(+) channels), and gliomas (targeting CLC-3). Overall, the possible approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) the development of specific inhibitors for the channel subtypes expressed in specific tumors; (2) drug delivery into the tumor by using antibodies or nanotechnology-based approaches; (3) combination regimen therapy and (4) blocking specific conformational states of the ion channel. We believe

  2. Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state

    SciTech Connect

    Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.; Gouaux, Eric

    2009-08-13

    P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.

  3. The Concise Guide to PHARMACOLOGY 2015/16: Voltage-gated ion channels.

    PubMed

    Alexander, Stephen Ph; Catterall, William A; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13350/full. Voltage-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650441

  4. The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels.

    PubMed

    Alexander, Stephen Ph; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13351/full. Other ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650442

  5. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.

    PubMed Central

    Dulhunty, Angela F; Curtis, Suzanne M; Cengia, Louise; Sakowska, Magdalena; Casarotto, Marco G

    2004-01-01

    We show that peptide fragments of the dihydropyridine receptor II-III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793-Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671-Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The peptides added to the cytoplasmic side of channels in lipid bilayers at > or = 10 nM activated channels when the cytoplasmic [Ca2+] was 100 nM, but either inhibited or did not affect channel activity when the cytoplasmic [Ca2+] was 10 or 100 microM. Both activation and inhibition were independent of bilayer potential. Activation by AS, but not by AC or AS(D-R18), was reduced at peptide concentrations >1 mM in a voltage-dependent manner (at +40 mV). In control experiments, channels were not activated by the scrambled AS sequence (ASS) or skeletal II-III loop peptide (NB). Resting Ca2+ release from cardiac sarcoplasmic reticulum was not altered by peptide AC, but Ca2+-induced Ca2+ release was depressed. Resting and Ca2+-induced Ca2+ release were enhanced by both the native and modified AS peptides. NMR revealed (i) that the structure of peptide AS(D-R18) is not influenced by [Ca2+] and (ii) that peptide AC adopts a helical structure, particularly in the region containing positively charged residues. This is the first report of specific functional interactions between dihydropyridine receptor A region peptides and cardiac RyR ion channels in lipid bilayers. PMID:14678014

  6. Acid-sensing ion channel-2 is not necessary for sour taste in mice.

    PubMed

    Richter, Trevor A; Dvoryanchikov, Gennady A; Roper, Stephen D; Chaudhari, Nirupa

    2004-04-21

    The acid-sensitive cation channel acid-sensing ion channel-2 (ASIC2) is widely believed to be a receptor for acid (sour) taste in mammals on the basis of its physiological properties and expression in rat taste bud cells. Using reverse transcriptase-PCR, we detected expression of ASIC1 and ASIC3, but not ASIC4, in mouse and rat taste buds and nonsensory lingual epithelium. Surprisingly, we did not detect mRNA for ASIC2 in mouse taste buds, although we readily observed its expression in rat taste buds. Furthermore, in Ca2+ imaging experiments, ASIC2 knock-out mice exhibited normal physiological responses (increases in intracellular Ca2+ concentrations) to acid taste stimuli. Our results indicate that ASIC2 is not required for acid taste in mice, and that if a universal mammalian acid taste transduction mechanism exists, it likely uses other acid-sensitive receptors or ion channels. PMID:15102924

  7. Use of Venom Peptides to Probe Ion Channel Structure and Function*

    PubMed Central

    Dutertre, Sébastien; Lewis, Richard J.

    2010-01-01

    Venoms of snakes, scorpions, spiders, insects, sea anemones, and cone snails are complex mixtures of mostly peptides and small proteins that have evolved for prey capture and/or defense. These deadly animals have long fascinated scientists and the public. Early studies isolated lethal components in the search for cures and understanding of their mechanisms of action. Ion channels have emerged as targets for many venom peptides, providing researchers highly selective and potent molecular probes that have proved invaluable in unraveling ion channel structure and function. This minireview highlights molecular details of their toxin-receptor interactions and opportunities for development of peptide therapeutics. PMID:20189991

  8. Electrical Heart Defibrillation with Ion Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feeney, Erin; Clark, Courtney; Puwal, Steffan

    Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.

  9. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    PubMed

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. PMID:26924440

  10. Surface dynamics of voltage-gated ion channels.

    PubMed

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-07-01

    Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  11. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor

    PubMed Central

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan

    2008-01-01

    SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638

  12. Pathophysiological and protective roles of mitochondrial ion channels

    PubMed Central

    O’Rourke, Brian

    2000-01-01

    Mitochondria possess a highly permeable outer membrane and an inner membrane that was originally thought to be relatively impermeable to ions to prevent dissipation of the electrochemical gradient for protons. Although recent evidence has revealed a rich diversity of ion channels in both membranes, the purpose of these channels remains incompletely determined. Pores in the outer membrane are fundamental participants in apoptotic cell death, and this process may also involve permeability transition pores on the inner membrane. Novel functions are now being assigned to other ion channels of the inner membrane. Examples include protection against ischaemic injury by mitochondrial KATP channels and the contribution of inner membrane anion channels to spontaneous mitochondrial oscillations in cardiac myocytes. The central role of mitochondria in both the normal function of the cell and in its demise makes these channels prime targets for future research and drug development. PMID:11080248

  13. Phylogenomics of Ligand-Gated Ion Channels Predicts Monepantel Effect

    PubMed Central

    Rufener, Lucien; Keiser, Jennifer; Kaminsky, Ronald; Mäser, Pascal; Nilsson, Daniel

    2010-01-01

    The recently launched veterinary anthelmintic drench for sheep (Novartis Animal Health Inc., Switzerland) containing the nematocide monepantel represents a new class of anthelmintics: the amino-acetonitrile derivatives (AADs), much needed in view of widespread resistance to the classical drugs. Recently, it was shown that the ACR-23 protein in Caenorhabditis elegans and a homologous protein, MPTL-1 in Haemonchus contortus, are potential targets for AAD action. Both proteins belong to the DEG-3 subfamily of acetylcholine receptors, which are thought to be nematode-specific, and different from those targeted by the imidazothiazoles (e.g. levamisole). Here we provide further evidence that Cel-ACR-23 and Hco-MPTL-1-like subunits are involved in the monepantel-sensitive phenotype. We performed comparative genomics of ligand-gated ion channel genes from several nematodes and subsequently assessed their sensitivity to anthelmintics. The nematode species in the Caenorhabditis genus, equipped with ACR-23/MPTL-1-like receptor subunits, are sensitive to monepantel (EC50<1.25 µM), whereas the related nematodes Pristionchus pacificus and Strongyloides ratti, which lack an ACR-23/MPTL-1 homolog, are insensitive (EC50>43 µM). Genome sequence information has long been used to identify putative targets for therapeutic intervention. We show how comparative genomics can be applied to predict drug sensitivity when molecular targets of a compound are known or suspected. PMID:20838602

  14. The Effect of Hydrophobic Monoamines on Acid-Sensing Ion Channels ASIC1B

    PubMed Central

    Nagaeva, E. I.; Potapieva, N. N.; Tikhonov, D. B.

    2015-01-01

    Acid-sensing ion channels (ASICs) are widely distributed in both the central and peripheral nervous systems of vertebrates. The pharmacology of these receptors remains poorly investigated, while the search for new ASIC modulators is very important. Recently, we found that some monoamines, which are blockers of NMDA receptors, inhibit and/or potentiate acid-sensing ion channels, depending on the subunit composition of the channels. The effect of 9-aminoacridine, IEM-1921, IEM-2117, and memantine both on native receptors and on recombinant ASIC1a, ASIC2a, and ASIC3 homomers was studied. In the present study, we have investigated the effect of these four compounds on homomeric ASIC1b channels. Experiments were performed on recombinant receptors expressed in CHO cells using the whole-cell patch clamp technique. Only two compounds, 9-aminoacridine and memantine, inhibited ASIC1b channels. IEM-1921 and IEM-2117 were inactive even at a 1000 μM concentration. In most aspects, the effect of the compounds on ASIC1b was similar to their effect on ASIC1a. The distinguishing feature of homomeric ASIC1b channels is a steep activation-dependence, indicating cooperative activation by protons. In our experiments, the curve of the concentration dependence of ASIC1b inhibition by 9-aminoacridine also had a slope (Hill coefficient) of 3.8, unlike ASIC1a homomers, for which the Hill coefficient was close to 1. This finding indicates that the inhibitory effect of 9-aminoacridine is associated with changes in the activation properties of acid-sensing ion channels. PMID:26085950

  15. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  16. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  17. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) channels.

    PubMed

    Aguiar, D C; Moreira, F A; Terzian, A L; Fogaça, M V; Lisboa, S F; Wotjak, C T; Guimaraes, F S

    2014-10-01

    The Transient Receptor Potential Vanilloid Type-1 (TRPV1) was first characterized in primary afferent fibers as a receptor for capsaicin (the pungent ingredient of chili peppers). Later on, this cation-permeable ion channel was also described in the central nervous system, where its main putative endogenous ligand is N-arachidonoyl ethanolamide (an endocannabinoid, also known as anandamide). Recent results employing genetic, pharmacological and histochemical techniques indicate that TRPV1 tonically modulate anxiety, fear and panic responses in brain regions related to defensive responses, such as the dorsal periaqueductal gray, the hippocampus and the medial prefrontal cortex. Genetic deletion or antagonism of this ion channel induces anxiolytic-like effects in several animal models. The main mechanism responsible for TRPV1-mediated effects on anxiety seems to involve facilitation of glutamatergic neurotransmission. In addition, there is evidence for interactions with other neurotransmitter systems, such as nitric oxide and endocannabinoids. PMID:24726577

  18. Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels.

    PubMed Central

    Levitt, D G

    1985-01-01

    The solution for the ion flux through a membrane channel that incorporates the electrolyte nature of the aqueous solution is a difficult theoretical problem that, until now, has not been properly formulated. The difficulty arises from the complicated electrostatic problem presented by a high dielectric aqueous channel piercing a low dielectric lipid membrane. The problem is greatly simplified by assuming that the ratio of the dielectric constant of the water to that of the lipid is infinite. It is shown that this is a good approximation for most channels of biological interest. This assumption allows one to derive simple analytical expressions for the Born image potential and the potential from a fixed charge in the channel, and it leads to a differential equation for the potential from the background electrolyte. This leads to a rigorous solution for the ion flux or the equilibrium potential based on a combination of the Nernst-Planck equation and strong electrolyte theory (i.e., Gouy-Chapman or Debye-Huckel). This approach is illustrated by solving the system of equations for the specific case of a large channel containing fixed negative charges. The following characteristics of this channels are discussed: anion and mono- and divalent cation conductance, saturation of current with increasing concentration, current-voltage relationship, influence of location and valence of fixed charge, and interaction between ions. The qualitative behavior of this channel is similar to that of the acetylcholine receptor channel. PMID:2410048

  19. Ion channels in cancer: future perspectives and clinical potential.

    PubMed

    Lang, Florian; Stournaras, Christos

    2014-03-19

    Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors. PMID:24493756

  20. Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels.

    PubMed

    Kumar, Y Pavan; Das, Rabindra Nath; Schütte, Ole Mathis; Steinem, Claudia; Dash, Jyotirmayee

    2016-06-01

    In nature, ion channels facilitate the transport of ions across biological membranes. The development of artificial ion channels that can mimic the fundamental functions of the natural ones would be of great importance to biological research. Artificial ion channels based on nucleoside derivatives are expected to be biocompatible with functions that can be controlled by the presence or absence of biologically relevant molecules. This protocol describes the detailed procedures for the synthesis and ion-channel activity of four diguanosine derivatives, each made up of two guanosine moieties separated by a covalent linker (e.g., PEG). The procedure describes the preparation of guanosine azide and guanosine alkine building blocks, as well as the preparation of four distinct synthetic linkers each containing either two alkynes or two azides. The diguanosine derivatives are synthesized using a 'one-pot' modular synthetic approach based on Cu(I)-catalyzed azide and alkyne cycloaddition. The ion-channel activity of these diguanosine derivatives for the transportation of ions across a phospholipid bilayer is investigated using voltage-clamp experiment. By using the PEG-containing diguanosine as an example, we describe how to determine the ion-channel activity in the presence of different metal ions (e.g., Na(+), K(+) and Cs(+)) and the inhibition of the ion-channel activity using the nucleobase cytosine. The approximate time frame for the synthesis of the PEG dinucleoside is 3 d, and that for the experiments to evaluate its ability to transport K(+) ion across a phospholipid bilayer is ∼8-10 h. PMID:27149327

  1. Subunit composition of mammalian transient receptor potential channels in living cells.

    PubMed

    Hofmann, Thomas; Schaefer, Michael; Schultz, Günter; Gudermann, Thomas

    2002-05-28

    Hormones, neurotransmitters, and growth factors give rise to calcium entry via receptor-activated cation channels that are activated downstream of phospholipase C activity. Members of the transient receptor potential channel (TRPC) family have been characterized as molecular substrates mediating receptor-activated cation influx. TRPC channels are assumed to be composed of multiple TRPC proteins. However, the cellular principles governing the assembly of TRPC proteins into homo- or heteromeric ion channels still remain elusive. By pursuing four independent experimental approaches--i.e., subcellular cotrafficking of TRPC subunits, differential functional suppression by dominant-negative subunits, fluorescence resonance energy transfer between labeled TRPC subunits, and coimmunoprecipitation--we investigate the combinatorial rules of TRPC assembly. Our data show that (i) TRPC2 does not interact with any known TRPC protein and (ii) TRPC1 has the ability to form channel complexes together with TRPC4 and TRPC5. (iii) All other TRPCs exclusively assemble into homo- or heterotetramers within the confines of TRPC subfamilies--e.g., TRPC4/5 or TRPC3/6/7. The principles of TRPC channel formation offer the conceptual framework to assess the physiological role of distinct TRPC proteins in living cells. PMID:12032305

  2. Calix[4]pyrrole-based ion pair receptors.

    PubMed

    Kim, Sung Kuk; Sessler, Jonathan L

    2014-08-19

    Ion pair receptors, which are able to bind concurrently both a cation and an anion, often display higher selectivity and affinity for specific ion pairs than simple ion receptors capable of recognizing primarily either a cation or an anion. This enhancement in recognition function is attributable to direct or indirect cooperative interactions between cobound ions via electrostatic attractions between oppositely charged ions, as well as to positive allosteric effects. In addition, by virtue of binding the counterions of the targeted ion, ion pair receptors can minimize the solvation of the counterions, which can otherwise have a negative effect on the interactions between the receptors and the targeted ions. As a result of their more favorable interactions, ion pair receptors are attractive for use in applications, such as extraction and sensing, where control of the binding interactions is advantageous. In this Account, we illustrate this potential in the context of ion pair receptors based on the calix[4]pyrrole scaffold. Both simple ditopic ion pair receptors, containing sites for the recognition of a single anion and single cation, and so-called multitopic ion pair receptors will be discussed. The latter systems differ from conventional, so-called ditopic ion pair receptors in that they contain more than one binding site for a given targeted ion (e.g., a cation). This permits a level of selectivity and control over binding function not normally seen for simple ion or ion pair receptors containing one or two binding sites, respectively. Calix[4]pyrroles are macrocyclic compounds consisting of four pyrrole units linked via fully substituted sp(3) hybridized meso carbon atoms. They are effective receptors for Lewis basic anions (e.g., halides) in typical organic media and under certain conditions will recognize ion pairs containing charge diffuse cations, such as a small alkylammonium, imidazolium, or cesium cations. The calix[4]pyrrole framework is further

  3. A microbial TRP-like polycystic-kidney-disease-related ion channel gene

    PubMed Central

    Palmer, Christopher P.; Aydar, Ebru; Djamgoz, Mustafa B. A.

    2004-01-01

    Ion channel genes have been discovered in many microbial organisms. We have investigated a microbial TRP (transient receptor potential) ion channel gene which has most similarity to polycystic-kidney-disease-related ion channel genes. We have shown that this gene (pkd2) is essential for cellular viability, and is involved in cell growth and cell wall synthesis. Expression of this gene increases following damage to the cell wall. This fission yeast pkd2 gene, orthologues of which are found in all eukaryotic cells, appears to be a key signalling component in the regulation of cell shape and cell wall synthesis in yeast through an interaction with a Rho1-GTPase. A model for the mode of action of this Schizosaccharomyces pombe protein in a Ca2+ signalling pathway is hypothesized. PMID:15537393

  4. Targeting ion channels for the treatment of gastrointestinal motility disorders

    PubMed Central

    Beyder, Arthur

    2012-01-01

    Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (NaV), calcium (CaV), potassium (KV, KCa), chloride (Cl–) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress. PMID:22282704

  5. Elucidating ligand binding and channel gating mechanisms in pentameric ligand-gated ion channels by atomistic simulations.

    PubMed

    Comitani, Federico; Melis, Claudio; Molteni, Carla

    2015-04-01

    Pentameric ligand-gated ion channels (pLGICs) are important biomolecules that mediate fast synaptic transmission. Their malfunctions are linked to serious neuronal disorders and they are major pharmaceutical targets; in invertebrates, they are involved in insecticide resistance. The complexity of pLGICs and the limited crystallographic information available prevent a detailed understanding of how they function. State-of-the-art computational techniques are therefore crucial to build an accurate picture at the atomic level of the mechanisms which drive the activation of pLGICs, complementing the available experimental data. We have used a series of simulation methods, including homology modelling, ligand-protein docking, density functional theory, molecular dynamics and metadynamics, a powerful scheme for accelerating rare events, with the guidance of mutagenesis electrophysiology experiments, to explore ligand-binding mechanisms, the effects of mutations and the potential role of a proline molecular switch for the gating of the ion channels. Results for the insect RDL receptor, the GABAC receptor, the 5-HT3 receptor and the nicotinic acetylcholine receptor will be reviewed. PMID:25849909

  6. Thermal Unfolding of a Mammalian Pentameric Ligand-gated Ion Channel Proceeds at Consecutive, Distinct Steps*

    PubMed Central

    Tol, Menno B.; Deluz, Cédric; Hassaine, Gherici; Graff, Alexandra; Stahlberg, Henning; Vogel, Horst

    2013-01-01

    Pentameric ligand-gated ion channels (LGICs) play an important role in fast synaptic signal transduction. Binding of agonists to the β-sheet-structured extracellular domain opens an ion channel in the transmembrane α-helical region of the LGIC. How the structurally distinct and distant domains are functionally coupled for such central transmembrane signaling processes remains an open question. To obtain detailed information about the stability of and the coupling between these different functional domains, we analyzed the thermal unfolding of a homopentameric LGIC, the 5-hydroxytryptamine receptor (ligand binding, secondary structure, accessibility of Trp and Cys residues, and aggregation), in plasma membranes as well as during detergent extraction, purification, and reconstitution into artificial lipid bilayers. We found a large loss in thermostability correlating with the loss of the lipid bilayer during membrane solubilization and purification. Thermal unfolding of the 5-hydroxytryptamine receptor occurred in consecutive steps at distinct protein locations. A loss of ligand binding was detected first, followed by formation of different transient low oligomeric states of receptor pentamers, followed by partial unfolding of helical parts of the protein, which finally lead to the formation receptor aggregates. Structural destabilization of the receptor in detergents could be partially reversed by reconstituting the receptor into lipid bilayers. Our results are important because they quantify the stability of LGICs during detergent extraction and purification and can be used to create stabilized receptor proteins for structural and functional studies. PMID:23275379

  7. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  8. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  9. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  10. Diversity of folds in animal toxins acting on ion channels.

    PubMed Central

    Mouhat, Stéphanie; Jouirou, Besma; Mosbah, Amor; De Waard, Michel; Sabatier, Jean-Marc

    2004-01-01

    Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds. PMID:14674883

  11. Surface potentials and the calculated selectivity of ion channels.

    PubMed Central

    Miedema, Henk

    2002-01-01

    Ion channels catalyze the transport of ions across biological membranes. A proper understanding of ion-channel functioning is essential to our knowledge of cell physiology, and, in this context, ion-channel selectivity is a key concept. The extent to which a channel permeates two ion species, a and b, is expressed by the permeability ratio, P(a)/P(b). This paper addresses a complication in the calculation of P(a)/P(b) that is related to the existence of surface potentials (psi) and that so far has not been fully appreciated. This paper shows the rather surprising effect of psi on the calculated P(a)/P(b) of a channel that is permeable to two ion species of different valence. If we ignore psi, we conclude, for instance, P(a) > P(b). If we implement psi in the calculation of P(a)/P(b), we may, however, conclude exactly the reverse, i.e., P(a) < P(b). Because electrostatic potentials arise at the surface of essentially all biological membranes, this paper argues for a more critical evaluation of ion channel selectivity measurements. PMID:11751304

  12. Reconstitution of synaptic Ion channels from rodent and human brain in Xenopus oocytes: a biochemical and electrophysiological characterization.

    PubMed

    Mazzo, Francesca; Zwart, Ruud; Serratto, Giulia Maia; Gardinier, Kevin M; Porter, Warren; Reel, Jon; Maraula, Giovanna; Sher, Emanuele

    2016-08-01

    Disruption in the expression and function of synaptic proteins, and ion channels in particular, is critical in the pathophysiology of human neuropsychiatric and neurodegenerative diseases. However, very little is known regarding the functional and pharmacological properties of native synaptic human ion channels, and their potential changes in pathological conditions. Recently, an electrophysiological technique has been enabled for studying the functional and pharmacological properties of ion channels present in crude membrane preparation obtained from post-mortem frozen brains. We here extend these studies by showing that human synaptic ion channels also can be studied in this way. Synaptosomes purified from different regions of rodent and human brain (control and Alzheimer's) were characterized biochemically for enrichment of synaptic proteins, and expression of ion channel subunits. The same synaptosomes were also reconstituted in Xenopus oocytes, in which the functional and pharmacological properties of the native synaptic ion channels were characterized using the voltage clamp technique. We show that we can detect GABA, (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and NMDA receptors, and modulate them pharmacologically with selective agonists, antagonists, and allosteric modulators. Furthermore, changes in ion channel expression and function were detected in synaptic membranes from Alzheimer's brains. Our present results demonstrate the possibility to investigate synaptic ion channels from healthy and pathological brains. This method of synaptosomes preparation and injection into oocytes is a significant improvement over the earlier method. It opens the way to directly testing, on native ion channels, the effects of novel drugs aimed at modulating important classes of synaptic targets. Disruption in the expression and function of synaptic ion channels is critical in the pathophysiology of human neurodegenerative diseases. We here show that

  13. Multitude of ion channels in the regulation of transmitter release.

    PubMed Central

    Rahamimoff, R; Butkevich, A; Duridanova, D; Ahdut, R; Harari, E; Kachalsky, S G

    1999-01-01

    The presynaptic nerve terminal is of key importance in communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre-fusion control) and the processes that occur after the fusion of the vesicle (the post-fusion control). The pre-fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage-dependent calcium channels, the potassium channels, the calcium-gated potassium channels, the sodium channels, the chloride channels, the non-selective channels, the ligand gated channels and the stretch-activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post-fusion control of transmitter release. PMID:10212476

  14. Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel

    PubMed Central

    Carattino, Marcelo D.

    2013-01-01

    Purpose of review The epithelial sodium channel/degenerin family encompasses a group of cation-selective ion channels that are activated or modulated by a variety of extracellular stimuli. This review describes findings that provide new insights into the molecular mechanisms that control the function of these channels. Recent findings Epithelial sodium channels facilitate Na+ reabsorption in the distal nephron and hence have a role in fluid volume homeostasis and arterial blood pressure regulation. Acid-sensing ion channels are broadly distributed in the nervous system where they contribute to the sensory processes. The atomic structure of acid-sensing ion channel 1 illustrates the complex trimeric architecture of these proteins. Each subunit has two transmembrane spanning helices, a highly organized ectodomain and intracellular N-terminus and C-terminus. Recent findings have begun to elucidate the structural elements that allow these channels to sense and respond to extracellular factors. This review emphasizes the roles of the extracellular domain in sensing changes in the extracellular milieu and of the residues in the extracellular–transmembrane domains interface in coupling extracellular changes to the pore of the channel. Summary Epithelial sodium channels and acid-sensing ion channels have evolved to sense extracellular cues. Future research should be directed toward elucidating how changes triggered by extracellular factors translate into pore opening and closing events. PMID:21709553

  15. Redox and trace metal regulation of ion channels in the pain pathway

    PubMed Central

    Evans, J. Grayson; Todorovic, Slobodan M.

    2015-01-01

    Given the clinical significance of pain disorders and the relative ineffectiveness of current therapeutics, it is important to identify alternative means of modulating nociception. The most obvious pharmacological targets are the ion channels that facilitate nervous transmission from pain sensors in the periphery to the processing regions within the brain and spinal cord. In order to design effective pharmacological tools for this purpose, however, it is first necessary to understand how these channels are regulated. A growing area of research involves the investigation of the role that trace metals and endogenous redox agents play in modulating the activity of a diverse group of ion channels within the pain pathway. In the present review, the most recent literature concerning trace metal and redox regulation of T-type calcium channels, NMDA (N-methyl-D-aspartate) receptors, GABAA (γ-aminobutyric acid A) receptors and TRP (transient receptor potential) channels are described to gain a comprehensive understanding of the current state of the field as well as to provide a basis for future thought and experimentation. PMID:26341484

  16. Peptide-gated ion channels and the simple nervous system of Hydra.

    PubMed

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. PMID:25696818

  17. Identification of Specific Sensory Neuron Populations for Study of Expressed Ion Channels

    PubMed Central

    Ramachandra, Renuka; McGrew, Stephanie; Elmslie, Keith

    2013-01-01

    Sensory neurons transmit signals from various parts of the body to the central nervous system. The soma for these neurons are located in the dorsal root ganglia that line the spinal column. Understanding the receptors and channels expressed by these sensory afferent neurons could lead to novel therapies for disease. The initial step is to identify the specific subset of sensory neurons of interest. Here we describe a method to identify afferent neurons innervating the muscles by retrograde labeling using a fluorescent dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). Understanding the contribution of ion channels to excitation of muscle afferents could help to better control excessive excitability induced by certain disease states such as peripheral vascular disease or heart failure. We used two approaches to identify the voltage dependent ion channels expressed by these neurons, patch clamp electrophysiology and immunocytochemistry. While electrophysiology plus pharmacological blockers can identify functional ion channel types, we used immunocytochemistry to identify channels for which specific blockers were unavailable and to better understand the ion channel distribution pattern in the cell population. These techniques can be applied to other areas of the nervous system to study specific neuronal groups. PMID:24430510

  18. T-cell receptor accessory and co-receptor molecules in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell receptor (TCR) associated invariant chains CD3gamma/delta,epsilon, and zeta as well as TCR co-receptors CD8alpha and CD8beta were isolated from the channel catfish, Ictalurus punctatus, at both the gene and cDNA levels. All of catfish CD3 sequences encode for proteins that resemble their resp...

  19. The dynamics of small excitable ion channel clusters

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2006-06-01

    Through computational modeling we predict that small sodium ion channel clusters on small patches of membrane can encode electric signals most efficiently at certain magic cluster sizes. We show that this effect can be traced back to algebraic features of small integers and are universal for channels with a simple gating dynamics. We further explore physiologic conditions under which such effects can occur.

  20. Coupled gating between cardiac calcium release channels (ryanodine receptors).

    PubMed

    Marx, S O; Gaburjakova, J; Gaburjakova, M; Henrikson, C; Ondrias, K; Marks, A R

    2001-06-01

    Excitation-contraction coupling in heart muscle requires the activation of Ca(2+)-release channels/type 2 ryanodine receptors (RyR2s) by Ca(2+) influx. RyR2s are arranged on the sarcoplasmic reticular membrane in closely packed arrays such that their large cytoplasmic domains contact one another. We now show that multiple RyR2s can be isolated under conditions such that they remain physically coupled to one another. When these coupled channels are examined in planar lipid bilayers, multiple channels exhibit simultaneous gating, termed "coupled gating." Removal of the regulatory subunit, the FK506 binding protein (FKBP12.6), functionally but not physically uncouples multiple RyR2 channels. Coupled gating between RyR2 channels may be an important regulatory mechanism in excitation-contraction coupling as well as in other signaling pathways involving intracellular Ca(2+) release. PMID:11397781

  1. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells.

    PubMed

    Dietrich, Alexander; Chubanov, Vladimir; Kalwa, Hermann; Rost, Benjamin R; Gudermann, Thomas

    2006-12-01

    Smooth muscle cells (SMC) are essential components of many tissues of the body. Ion channels regulate their membrane potential, the intracellular Ca(2+) concentration ([Ca(2+)](i)) and their contractility. Among the ion channels expressed in SMC cation channels of the transient receptor potential (TRP) superfamily allow the entry of Na(+), Ca(2+) and Mg(2+). Members of the TRP superfamily are essential constituents of tonically active channels (TAC), receptor-operated channels (ROC), store-operated channels (SOC) and stretch-activated channels (SAC). This review focusses on TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV2, TRPV4, TRPM4, TRPM7, TRPP2) whose physiological functions in SMC were dissected by downregulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models. Their possible functional role and physiological regulation as homomeric or heteromeric channels in SMC are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes involving SMC-like airway hyperresponsiveness and pulmonary hypertension. Therefore, they present important drug targets for future pharmacological interventions. PMID:16842858

  2. Dynamic aspects of functional regulation of the ATP receptor channel P2X2.

    PubMed

    Kubo, Yoshihiro; Fujiwara, Yuichiro; Keceli, Batu; Nakajo, Koichi

    2009-11-15

    The P2X(2) channel is a ligand-gated channel activated by ATP. Functional features that reflect the dynamic flexibility of the channel include time-dependent pore dilatation following ATP application and direct inhibitory interaction with activated nicotinic acetylcholine receptors on the membrane. We have been studying the mechanisms by which P2X(2) channel functionality is dynamically regulated. Using a Xenopus oocyte expression system, we observed that the pore properties, including ion selectivity and rectification, depend on the open channel density on the membrane. Pore dilatation was apparent when the open channel density was high and inward rectification was modest. We also observed that P2X(2) channels show voltage dependence, despite the absence of a canonical voltage sensor. At a semi-steady state after ATP application, P2X(2) channels were activated upon membrane hyperpolarization. This voltage-dependent activation was also [ATP] dependent. With increases in [ATP], the speed of hyperpolarization-induced activation was increased and the conductance-voltage relationship was shifted towards depolarized potentials. Based on analyses of experimental data and various simulations, we propose that these phenomena can be explained by assuming a fast ATP binding step and a rate-limiting voltage-dependent gating step. Complete elucidation of these regulatory mechanisms awaits dynamic imaging of functioning P2X(2) channels. PMID:19752115

  3. Dysfunctional HCN ion channels in neurological diseases

    PubMed Central

    DiFrancesco, Jacopo C.; DiFrancesco, Dario

    2015-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological

  4. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain.

    PubMed

    Bertrand, D; Devillers-Thiéry, A; Revah, F; Galzi, J L; Hussy, N; Mulle, C; Bertrand, S; Ballivet, M; Changeux, J P

    1992-02-15

    The putative channel-forming MII domains of the nicotinic, gamma-aminobutyric acid type A, and glycine receptors contain a highly conserved leucine residue. Mutation of this hydrophobic amino acid in the neuronal nicotinic receptor alpha 7 (Leu-247), reconstituted in Xenopus oocytes, modifies the ionic response to acetylcholine and alters desensitization. Furthermore, the Leu----Thr (L247T) mutant has two conducting states (46 pS and 80 pS), in contrast with the wild-type (WT) receptor, which has only one (45 pS). We now show that this mutant possesses a rather paradoxical pharmacology: antagonists of the WT receptor such as dihydro-beta-erythroidin, hexamethonium, or (+)-tubocurarine elicit ionic currents when applied to the L247T alpha 7 mutant and these responses are blocked by alpha-bungarotoxin. Furthermore, prolonged application of acetylcholine causes desensitization in the WT but leads to a potentiation of the responses to acetylcholine or dihydro-beta-erythroidin in the mutant. These data are consistent with a scheme in which mutation of Leu-247 renders a desensitized state in the WT channel a conducting state. They also strengthen the proposal that, in the WT, some competitive antagonists may stabilize desensitized states. Finally, these observations may shed light on properties of other ion channels, in particular the glutamate receptors, which display multiple conductance levels associated with various pharmacological agents. PMID:1741378

  5. Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes.

    PubMed

    Okamura, Yasushi; Nishino, Atsuo; Murata, Yoshimichi; Nakajo, Koichi; Iwasaki, Hirohide; Ohtsuka, Yukio; Tanaka-Kunishima, Motoko; Takahashi, Nobuyuki; Hara, Yuji; Yoshida, Takashi; Nishida, Motohiro; Okado, Haruo; Watari, Hirofumi; Meinertzhagen, Ian A; Satoh, Nori; Takahashi, Kunitaro; Satou, Yutaka; Okada, Yasunobu; Mori, Yasuo

    2005-08-11

    Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans, the fruit fly Drosophila melanogaster, and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment. PMID:15914577

  6. Halothane shortens acetylcholine receptor channel kinetics without affecting conductance.

    PubMed Central

    Lechleiter, J; Gruener, R

    1984-01-01

    The extracellular patch-clamp technique was used to examine how halothane, a general anesthetic, affects the properties of single nicotinic acetylcholine receptor channels of embryonic Xenopus skeletal muscle cells grown in culture. Under control conditions, single-channel events showed a bimodal distribution on the basis of current amplitudes. This distribution was maintained during exposure to halothane and its washout. In addition, the mean current value of the low-and high-amplitude channels was unaffected by the presence of the anesthetic at clinically relevant concentrations. In contrast, halothane shortened the burst durations of both channel types in a concentration-dependent manner. This shortening of burst durations may be an expression of the more rapid relaxation of the channel protein to the nonconducting state, possibly due to the disordering effect of the anesthetic on membrane lipids in which the receptor protein is embedded. This functional change, in the behavior of the synaptic receptor, provides further direct information on the mode of action of general anesthetics. Images PMID:6326154

  7. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    SciTech Connect

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong; Alam, Amer; Shi, Ning; Jiang, Youxing

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only the channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.

  8. Ion channel pharmacology under flow: automation via well-plate microfluidics.

    PubMed

    Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian

    2012-08-01

    Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format. PMID:22574656

  9. Principles and properties of ion flow in P2X receptors

    PubMed Central

    Samways, Damien S. K.; Li, Zhiyuan; Egan, Terrance M.

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  10. Principles and properties of ion flow in P2X receptors.

    PubMed

    Samways, Damien S K; Li, Zhiyuan; Egan, Terrance M

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5'-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca(2+) concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na(+) and Ca(2+) in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  11. Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes.

    PubMed Central

    Montal, M; Labarca, P; Fredkin, D R; Suarez-Isla, B A

    1984-01-01

    The electrophysiological properties of the cation channel of the purified nicotinic acetylcholine receptor (AChR) reconstituted in planar lipid bilayers were characterized. Single-channel currents were activated by acetylcholine, carbamylcholine and suberyldicholine. The single channel conductance (28 pS in 0.3 M NaCl) was ohmic and independent of the agonist. Single channel currents increased with Na+ concentration to a maximum conductance of 95 pS and showed a half-saturation point of 395 mM. The apparent ion selectivity sequence, derived from single-channel current recordings, is: NH+4 greater than Cs+ greater than Rb+ greater than or equal to Na+ Cl-, F-, SO2-(4). The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of at least two distinct open states. The time constants depend on the choice of agonist, being consistently longer for suberyldicholine than for carbamylcholine. Similar channel properties were recorded in bilayers formed from monolayers at the tip of patch pipets . Single-channel currents occur in paroxysms of channel activity followed by quiescent periods. This pattern is more pronounced as the agonist concentration increases, and is reflected in histograms of channel-opening frequencies. Computer simulations with a three-state model, consisting of two closed (unliganded and liganded) and one open state, do not resemble the recorded pattern of channel activity, especially at high agonist concentration. Inclusion of a desensitized liganded state reproduces the qualitative features of channel recordings. The occurrence of paroxysms of channel activity thus seems to result from the transit of AChR through its active conformation, from which it can open several times before desensitizing. PMID:6324900

  12. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    PubMed

    Marks, A R

    2001-04-01

    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation. PMID:11273716

  13. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  14. Small iminium ions block gramicidin channels in lipid bilayers.

    PubMed Central

    Hemsley, G; Busath, D

    1991-01-01

    Guanidinium and acetamidinium, when added to the bathing solution in concentrations of approximately 0.1M, cause brief blocks in the single channel potassium currents from channels formed in planar lipid bilayers by gramicidin A. Single channel lifetimes are not affected indicating that the channel structure is not modified by the blockers. Guanidinium block durations and interblock times are approximately exponential in distribution. Block frequencies increase with guanidinium concentration whereas block durations are unaffected. Increases in membrane potential cause an increase in block frequency as expected for a positively charged blocker but a decrease in block duration suggesting that the block is relieved when the blocker passes through the channel. At low pH, urea, formamide, and acetamide cause similar blocks suggesting that the protonated species of these molecules also block. Arginine and several amines do not block. This indicates that only iminium ions which are small enough to enter the channel can cause blocks in gramicidin channels. PMID:1712240

  15. Principles of selective ion transport in channels and pumps.

    PubMed

    Gouaux, Eric; Mackinnon, Roderick

    2005-12-01

    The transport of ions across the membranes of cells and organelles is a prerequisite for many of life's processes. Transport often involves very precise selectivity for specific ions. Recently, atomic-resolution structures have been determined for channels or pumps that are selective for sodium, potassium, calcium, and chloride: four of the most abundant ions in biology. From these structures we can begin to understand the principles of selective ion transport in terms of the architecture and detailed chemistry of the ion conduction pathways. PMID:16322449

  16. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones.

    PubMed

    Bengtson, C Peter; Tozzi, Alessandro; Bernardi, Giorgio; Mercuri, Nicola B

    2004-03-01

    Transient receptor potential (TRP) channels form cationic channels activated by diverse factors including mechanical stimuli, changes in osmolarity, pH and temperature, as well as the exogenous irritant, capsaicin. Metabotropic glutamate receptors have also recently been linked to TRP channel activation in neurones of the substantia nigra, hippocampus and cerebellum, suggesting a novel role for such channels in synaptic communication via endogenous neurotransmitters. We tested this for dopamine neurones in rat brain slices by characterizing the current-voltage relationship and pharmacology of EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1). Slow inward currents (273 +/- 35 pA peak amplitude, 381 +/- 25 ms latency, holding potential (V(h)) =-73 mV) representing evoked mGluR1 EPSCs were isolated in the presence of antagonists of AMPA, NMDA, GABA(A), GABA(B), muscarinic and glycine receptors. CPCCOEt (100 microM), an mGluR1 antagonist, blocked the residual EPSC in all recordings. mGluR1-activated EPSCs reversed polarity near -10 mV, consistent with the involvement of a cationic channel. Extracellular application of the non-selective TRP channel blockers SKF 96365, flufenamic acid and ruthenium red caused reversible inhibition of mGluR1-activated EPSCs. These characteristics parallel those of mGluR1 activation with an agonist and indicate the involvement of a TRP-like channel in mGluR1-mediated EPSCs. PMID:14724196

  17. Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant.

    PubMed

    Arif Pavel, Mahmud; Lv, Caixia; Ng, Courtney; Yang, Lei; Kashyap, Parul; Lam, Clarissa; Valentino, Victoria; Fung, Helen Y; Campbell, Thomas; Møller, Simon Geir; Zenisek, David; Holtzman, Nathalia G; Yu, Yong

    2016-04-26

    Mutations in polycystin-1 and transient receptor potential polycystin 2 (TRPP2) account for almost all clinically identified cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. TRPP2 functions as a cation channel in its homomeric complex and in the TRPP2/polycystin-1 receptor/ion channel complex. The activation mechanism of TRPP2 is unknown, which significantly limits the study of its function and regulation. Here, we generated a constitutively active gain-of-function (GOF) mutant of TRPP2 by applying a mutagenesis scan on the S4-S5 linker and the S5 transmembrane domain, and studied functional properties of the GOF TRPP2 channel. We found that extracellular divalent ions, including Ca(2+), inhibit the permeation of monovalent ions by directly blocking the TRPP2 channel pore. We also found that D643, a negatively charged amino acid in the pore, is crucial for channel permeability. By introducing single-point ADPKD pathogenic mutations into the GOF TRPP2, we showed that different mutations could have completely different effects on channel activity. The in vivo function of the GOF TRPP2 was investigated in zebrafish embryos. The results indicate that, compared with wild type (WT), GOF TRPP2 more efficiently rescued morphological abnormalities, including curly tail and cyst formation in the pronephric kidney, caused by down-regulation of endogenous TRPP2 expression. Thus, we established a GOF TRPP2 channel that can serve as a powerful tool for studying the function and regulation of TRPP2. The GOF channel may also have potential application for developing new therapeutic strategies for ADPKD. PMID:27071085

  18. Patch Clamp Recording of Ion Channels Expressed in Xenopus Oocytes

    PubMed Central

    L Brown, Austin; E. Johnson, Brandon; B. Goodman, Miriam

    2008-01-01

    Since its development by Sakmann and Neher 1, 2, the patch clamp has become established as an extremely useful technique for electrophysiological measurement of single or multiple ion channels in cells. This technique can be applied to ion channels in both their native environment and expressed in heterologous cells, such as oocytes harvested from the African clawed frog, Xenopus laevis. Here, we describe the well-established technique of patch clamp recording from Xenopus oocytes. This technique is used to measure the properties of expressed ion channels either in populations (macropatch) or individually (single-channel recording). We focus on techniques to maximize the quality of oocyte preparation and seal generation. With all factors optimized, this technique gives a probability of successful seal generation over 90 percent. The process may be optimized differently by every researcher based on the factors he or she finds most important, and we present the approach that have lead to the greatest success in our hands. PMID:19078941

  19. Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification.

    PubMed

    Curran, Jerry; Mohler, Peter J

    2015-01-01

    Channelopathies are a diverse set of disorders associated with defects in ion channel (and transporter) function. Although the vast majority of channelopathies are linked with inherited mutations that alter ion channel biophysical properties, another group of similar disorders has emerged that alter ion channel synthesis, membrane trafficking, and/or posttranslational modifications. In fact, some electrical and episodic disorders have now been identified that are not defects in the ion channel but instead reflect dysfunction in an ion channel (or transporter) regulatory protein. This review focuses on alternative paradigms for physiological disorders associated with protein biosynthesis, folding, trafficking, and membrane retention. Furthermore, the review highlights the role of aberrant posttranslational modifications in acquired channelopathies. PMID:25293528

  20. Single particle electron cryo-microscopy of a mammalian ion channel

    PubMed Central

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2014-01-01

    The transient receptor potential (TRP) ion channel family is large and functionally diverse, second only to potassium channels. Despite their prominence within the animal kingdom, TRP channels have resisted crystallization and structural determination for many years. This barrier was recently broken when the three-dimensional structure of the vanilloid receptor 1 (TRPV1) was determined by single particle electron cryo-microscopy (cryo-EM). Moreover, this is the first example in which the near atomic resolution structure of an integral membrane protein was elucidated by this technique and in a manner not requiring crystals, demonstrating the transformative power of single particle cryo-EM for revealing high-resolution structures of integral membrane proteins, particularly those of mammalian origin. Here we summarize technical advances, in both biochemistry and cryo-EM, that led to this major breakthrough. PMID:24681231

  1. Turning a Poor Ion Channel into a Good Pump

    NASA Astrophysics Data System (ADS)

    Astumian, Dean

    2003-05-01

    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  2. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  3. Super-Resolution Scanning Patch-Clamp Reveals Clustering of Functional Ion Channels in the Adult Ventricular Myocyte

    PubMed Central

    Bhargava, Anamika; Lin, Xianming; Novak, Pavel; Mehta, Kinneri; Korchev, Yuri

    2013-01-01

    Rationale Compartmentation of ion channels on the cardiomyocyte surface is important for electrical propagation and electromechanical coupling. The specialized T-tubule and costameric structures facilitate spatial coupling of various ion channels and receptors. Existing methods like immunofluorescence and patch-clamp techniques are limited in their ability to localize functional ion channels. As such, a correlation between channel protein location and channel function remains incomplete. Objective To validate a method that permits to routinely image the topography of a live cardiomyocyte, and then study clustering of functional ion channels from a specific microdomain. Methods and Results We used scanning ion conductance microscopy and conventional cell-attached patch-clamp with a software modification that allows controlled increase of pipette tip diameter. The sharp nanopipette used for topography scan was modified into a larger patch pipette which can be positioned with nanoscale precision to a specific site of interest (crest, groove or T-tubules of cardiomyocytes), and sealed to the membrane for cell-attached recording of ion channels. Using this method, we significantly increased the probability of detecting activity of L-type calcium channels in the T-tubules of ventricular cardiomyocytes. We also demonstrated that active sodium channels do not distribute homogenously on the sarcolemma but rather, they segregate into clusters of various densities -most crowded in the crest region- that are surrounded by areas virtually free of functional sodium channels. Conclusions Our new method substantially increases the throughput of recording location-specific functional ion channels on the cardiomyocyte sarcolemma, thus allowing characterization of ion channels in relation to the microdomain in which they reside. PMID:23438901

  4. The ion channel inverse problem: neuroinformatics meets biophysics.

    PubMed

    Cannon, Robert C; D'Alessandro, Giampaolo

    2006-08-25

    Ion channels are the building blocks of the information processing capability of neurons: any realistic computational model of a neuron must include reliable and effective ion channel components. Sophisticated statistical and computational tools have been developed to study the ion channel structure-function relationship, but this work is rarely incorporated into the models used for single neurons or small networks. The disjunction is partly a matter of convention. Structure-function studies typically use a single Markov model for the whole channel whereas until recently whole-cell modeling software has focused on serial, independent, two-state subunits that can be represented by the Hodgkin-Huxley equations. More fundamentally, there is a difference in purpose that prevents models being easily reused. Biophysical models are typically developed to study one particular aspect of channel gating in detail, whereas neural modelers require broad coverage of the entire range of channel behavior that is often best achieved with approximate representations that omit structural features that cannot be adequately constrained. To bridge the gap so that more recent channel data can be used in neural models requires new computational infrastructure for bringing together diverse sources of data to arrive at best-fit models for whole-cell modeling. We review the current state of channel modeling and explore the developments needed for its conclusions to be integrated into whole-cell modeling. PMID:16933979

  5. [Interaction of melittin with ion channels of excitable membranes].

    PubMed

    Zherelova, O M; Kabanova, N V; Kazachenko, V N; Chaĭlakhian, L M

    2007-01-01

    The effect of the neurotoxin melittin on the activation of ion channels of excitable membrane, the plasmalemma of Characeae algae cells, isolated membrane patches of neurons of mollusc L. stagnalis and Vero cells was studied by the method of intracellular perfusion and the patch-clamp technique in inside-out configuration. It was shown that melittin disturbs the conductivity of plasmalemma and modifieds Ca(2+)-channels of plant membrane. The leakage current that appears by the action of melittin can be restored by substituting calmodulin for melittin. Melittin modifies K(+)-channels of animal cell membrane by disrupting the phospholipid matrix and forms conductive structures in the membrane by interacting with channel proteins, which is evidenced by the appearance of additional ion channels. PMID:17477057

  6. Postranslational Modification of Ion Channels in Colonic Inflammation.

    PubMed

    Akbarali, Hamid I; Kang, Minho

    2015-01-01

    Voltage-gated ion channels are key regulators of cell excitability. There is significant evidence that these channels are subject to modulation by redox status of the cells. Here we review the post-translational modifications of ion channels that occur in colonic inflammation. The redox mechanisms involve tyrosine nitration, covalent modification of cysteine residues and sulfhydration by hydrogen sulfide in experimental colitis. In the setting of colonic inflammation, modifications of cysteine and tyrosine are likely to occur at several sites within the same channel complex. In this review we describe alterations in channel function due to specific modifications of tyrosine and cysteine residues by reactive nitrogen, oxygen and hydrogen-sulfide resulting in altered motility. PMID:26411766

  7. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    PubMed

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-01-01

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels. PMID:26501253

  8. Nicotine effect on cardiovascular system and ion channels.

    PubMed

    Hanna, Salma Toma

    2006-03-01

    Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma. PMID:16633075

  9. Ion fluxes through nanopores and transmembrane channels

    NASA Astrophysics Data System (ADS)

    Bordin, J. R.; Diehl, A.; Barbosa, M. C.; Levin, Y.

    2012-03-01

    We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2006-10240-4 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.

  10. The influence of lipids on voltage-gated ion channels

    PubMed Central

    Jiang, Qiu-Xing; Gonen, Tamir

    2012-01-01

    Voltage-gated ion channels are responsible for transmitting electrochemical signals in both excitable and non-excitable cells. Structural studies of voltage-gated potassium and sodium channels by X-ray crystallography have revealed atomic details on their voltage-sensor domains and pore domains, and were put in context of disparate mechanistic views on the voltage-driven conformational changes in these proteins. Functional investigation of voltage-gated channels in membranes, however, showcased a mechanism of lipid-dependent gating for voltage-gated channels, suggesting that the lipids play an indispensible and critical role in the proper gating of many of these channels. Structure determination of membrane-embedded voltage-gated ion channels appears to be the next frontier in fully addressing the mechanism by which the voltage sensor domains control channel opening. Currently electron crystallography is the only structural biology method in which a membrane protein of interest is crystallized within a complete lipid-bilayer mimicking the native environment of a biological membrane. At a sufficiently high resolution, an electron crystallographic structure could reveal lipids, the channel and their mutual interactions at the atomic level. Electron crystallography is therefore a promising avenue toward understanding how lipids modulate channel activation through close association with the voltage sensor domains. PMID:22483432

  11. Acid-sensing ion channels interact with and inhibit BK K+ channels

    PubMed Central

    Petroff, Elena Yermolaieva; Price, Margaret P.; Snitsarev, Vladislav; Gong, Huiyu; Korovkina, Victoria; Abboud, Francois M.; Welsh, Michael J.

    2008-01-01

    Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might modulate neuronal function by mechanisms in addition to their H+-evoked opening. Within ASIC channel's large extracellular domain, we identified sequence resembling that in scorpion toxins that inhibit K+ channels. Therefore, we tested the hypothesis that ASIC channels might inhibit K+ channel function by coexpressing ASIC1a and the high-conductance Ca2+- and voltage-activated K+ (BK) channel. We found that ASIC1a associated with BK channels and inhibited their current. Reducing extracellular pH disrupted the association and relieved the inhibition. BK channels, in turn, altered the kinetics of ASIC1a current. In addition to BK, ASIC1a inhibited voltage-gated Kv1.3 channels. Other ASIC channels also inhibited BK, although acidosis-dependent relief of inhibition varied. These results reveal a mechanism of ion channel interaction and reciprocal regulation. Finding that a reduced pH activated ASIC1a and relieved BK inhibition suggests that extracellular protons may enhance the activity of channels with opposing effects on membrane voltage. The wide and varied expression patterns of ASICs, BK, and related K+ channels suggest broad opportunities for this signaling system to alter neuronal function. PMID:18287010

  12. EPR Studies of Gating Mechanisms in Ion Channels

    PubMed Central

    Chakrapani, Sudha

    2015-01-01

    Ion channels open and close in response to diverse stimuli, and the molecular events underlying these processes are extensively modulated by ligands of both endogenous and exogenous origin. In the past decade, high-resolution structures of several channel types have been solved, providing unprecedented details of the molecular architecture of these membrane proteins. Intrinsic conformational flexibility of ion channels critically governs their functions. However, the dynamics underlying gating mechanisms and modulations are obscured in the information from crystal structures. While nuclear magnetic resonance spectroscopic methods allow direct measurements of protein dynamics, they are limited by the large size of these membrane protein assemblies in detergent micelles or lipid membranes. Electron paramagnetic resonance (EPR) spectroscopy has emerged as a key biophysical tool to characterize structural dynamics of ion channels and to determine stimulus-driven conformational transition between functional states in a physiological environment. This review will provide an overview of the recent advances in the field of voltage- and ligand-gated channels and highlight some of the challenges and controversies surrounding the structural information available. It will discuss general methods used in site-directed spin labeling and EPR spectroscopy and illustrate how findings from these studies have narrowed the gap between high-resolution structures and gating mechanisms in membranes, and have thereby helped reconcile seemingly disparate models of ion channel function. PMID:25950970

  13. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy. PMID:24789983

  14. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  15. Potassium ion channels and allergic asthma.

    PubMed

    Kocmalova, M; Oravec, M; Adamkov, M; Sadlonova, V; Kazimierova, I; Medvedova, I; Joskova, M; Franova, S; Sutovska, M

    2015-01-01

    High-conductive calcium-sensitive potassium channels (BK+Ca) and ATP-sensitive potassium (K+ATP) channels play a significant role in the airway smooth muscle cell and goblet cell function, and cytokine production. The present study evaluated the therapeutic potential of BK+Ca and K+ATP openers, NS 1619 and pinacidil, respectively, in an experimental model of allergic inflammation. Airway allergic inflammation was induced with ovalbumine in guinea pigs during 21 days, which was followed by a 14-day treatment with BK+Ca and K+ATP openers. The outcome measures were airway smooth muscle cells reactivity in vivo and in vitro, cilia beating frequency and the level of exhaled NO (ENO), and the level of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid. The openers of both channels decreased airway smooth muscle cells reactivity, cilia beating frequency, and cytokine levels in the serum. Furthermore, NS1619 reduced ENO and inflammatory cells infiltration. The findings confirmed the presence of beneficial effects of BK+Ca and K+ATP openers on airway defence mechanisms. Although both openers dampened pro-inflammatory cytokines and mast cells infiltration, an evident anti-inflammatory effect was provided only by NS1619. Therefore, we conclude that particularly BK+Ca channels represent a promising new drug target in treatment of airway's allergic inflammation. PMID:25315623

  16. Transient receptor potential (TRP) channels: a clinical perspective

    PubMed Central

    Kaneko, Yosuke; Szallasi, Arpad

    2014-01-01

    Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called ‘TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24102319

  17. Molecular Dynamical Study on Ion Channeling through Peptide Nanotube

    NASA Astrophysics Data System (ADS)

    Sumiya, Norihito; Igami, Daiki; Takeda, Kyozaburo

    2011-12-01

    We theoretically study the possibility of ion channeling through peptide nanotubes (PNTs). After designing the minimal peptide nanorings (PNRs) and their aggregated form (peptide nanotubes, PNT) computationally, we carry out molecular dynamics (MD) calculations for cation channeling. The present MD calculations show that cation channeling through PNTs occurs. Furthermore, inter-ring hydrogen bonds (HBs) survive and maintain the tubular form of PNTs during cation channeling. We introduce mobility such that cation channeling can be evaluated quantitatively. As the ionic radius of the cation becomes smaller, the effective relaxation time τ becomes larger. Accordingly, mobilities of 10-2˜10-3[cm2/volt/sec] are calculated. In contrast, when an anion (F-) passes through the PNT, the inter-ring HBs are broken, thus inducing breakdown of the peptide backbone. Consequently, H atoms from the broken HBs surround the channeling anion (F-) and halt its motion.

  18. Receptors, channels, and signalling in the urothelial sensory system in the bladder.

    PubMed

    Merrill, Liana; Gonzalez, Eric J; Girard, Beatrice M; Vizzard, Margaret A

    2016-04-01

    The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246

  19. Ion channels modulating mouse dendritic cell functions.

    PubMed

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  20. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe

    2013-01-01

    P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400

  1. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction

    PubMed Central

    Kasahara, Kota; Shirota, Matsuyuki; Kinoshita, Kengo

    2016-01-01

    The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD) simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF) and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage. PMID:26950215

  2. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    PubMed

    Kasahara, Kota; Shirota, Matsuyuki; Kinoshita, Kengo

    2016-01-01

    The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD) simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF) and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage. PMID:26950215

  3. G-protein–gated TRP-like Cationic Channel Activated by Muscarinic Receptors

    PubMed Central

    Zholos, Alexander V.; Zholos, Andrey A.; Bolton, Thomas B.

    2004-01-01

    There is little information about the mechanisms by which G-protein–coupled receptors gate ion channels although many ionotropic receptors are well studied. We have investigated gating of the muscarinic cationic channel, which mediates the excitatory effect of acetylcholine in smooth muscles, and proposed a scheme consisting of four pairs of closed and open states. Channel kinetics appeared to be the same in cell-attached or outside-out patches whether the channel was activated by carbachol application or by intracellular dialysis with GTPγS. Since in the latter case G-proteins are permanently active, it is concluded that the cationic channel is the major determinant of its own gating, similarly to the KACh channel (Ivanova-Nikolova, T.T., and G.E. Breitwieser. 1997. J. Gen. Physiol. 109:245–253). Analysis of adjacent-state dwell times revealed connections between the states that showed features conserved among many other ligand-gated ion channels (e.g., nAChR, BKCa channel). Open probability (PO) of the cationic channel was increased by membrane depolarization consistent with the prominent U-shaped I-V relationship of the muscarinic whole-cell current at negative potentials. Membrane potential affected transitions within each closed-open state pair but had little effect on transitions between pairs; thus, the latter are likely to be caused by interactions of the channel with its ligands, e.g., Ca2+ and Gαo-GTP. Channel activity was highly heterogeneous, as was evident from the prominent cycling behavior when PO was measured over 5-s intervals. This was related to the variable frequency of openings (as in the KACh channel) and, especially, to the number of long openings between consecutive long shuttings. Analysis of the underlying Markov chain in terms of probabilities allowed us to evaluate the contribution of each open state to the integral current (from shortest to longest open state: 0.1, 3, 24, and 73%) as PO increased 525-fold in three stages. PMID

  4. International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family

    PubMed Central

    Wu, Long-Jun; Sweet, Tara-Beth

    2010-01-01

    Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca2+ and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels. PMID:20716668

  5. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Loch, Sabine; Lambert, Sachar; Straub, Isabelle; Mannebach, Stefanie; Mathar, Ilka; Düfer, Martina; Lis, Annette; Flockerzi, Veit; Philipp, Stephan E; Oberwinkler, Johannes

    2008-12-01

    Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems. PMID:18978782

  6. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.

    PubMed

    Hirano-Iwata, Ayumi; Ishinari, Yutaka; Yoshida, Miyu; Araki, Shun; Tadaki, Daisuke; Miyata, Ryusuke; Ishibashi, Kenichi; Yamamoto, Hideaki; Kimura, Yasuo; Niwano, Michio

    2016-05-24

    Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins. PMID:27224486

  7. Effects of monoterpenes on ion channels of excitable cells.

    PubMed

    Oz, Murat; Lozon, Yosra; Sultan, Ahmed; Yang, Keun-Hang Susan; Galadari, Sehamuddin

    2015-08-01

    Monoterpenes are a structurally diverse group of phytochemicals and a major constituent of plant-derived 'essential oils'. Monoterpenes such as menthol, carvacrol, and eugenol have been utilized for therapeutical purposes and food additives for centuries and have been reported to have anti-inflammatory, antioxidant and analgesic actions. In recent years there has been increasing interest in understanding the pharmacological actions of these molecules. There is evidence indicating that monoterpenes can modulate the functional properties of several types of voltage and ligand-gated ion channels, suggesting that some of their pharmacological actions may be mediated by modulations of ion channel function. In this report, we review the literature concerning the interaction of monoterpenes with various ion channels. PMID:25956464

  8. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  9. Ion selectivity and gating mechanisms of FNT channels

    PubMed Central

    Waight, Andrew B.; Czyzewski, Bryan K.; Wang, Da-Neng

    2013-01-01

    The phospholipid bilayer has evolved to be a protective and selective barrier by which the cell maintains high concentrations of life sustaining organic and inorganic material. As gatekeepers responsible for an immense amount of bidirectional chemical traffic between the cytoplasm and extracellular milieu, ion channels have been studied in detail since their postulated existence nearly three-quarters of a century ago. Over the past fifteen years, we have begun to understand how selective permeability can be achieved for both cationic and anionic ions. Our mechanistic knowledge has expanded recently with studies of a large family of anion channels, the Formate Nitrite Transport (FNT) family. This family has proven amenable to structural studies at a resolution high enough to reveal intimate details of ion selectivity and gating. With five representative members having yielded a total of 15 crystal structures, this family represents one of the richest sources of structural information for anion channels. PMID:23773802

  10. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes.

    PubMed

    Storch, Ursula; Forst, Anna-Lena; Philipp, Maximilian; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2012-01-27

    Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration. PMID:22157757

  11. Transient Receptor Potential Channel 1 (TRPC1) Reduces Calcium Permeability in Heteromeric Channel Complexes

    PubMed Central

    Storch, Ursula; Forst, Anna-Lena; Philipp, Maximilian; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2012-01-01

    Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration. PMID:22157757

  12. Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yang, Xiao-Ru; Lin, Mo-Jun; Sham, James S K

    2010-01-01

    The transient receptor potential (TRP) gene superfamily, which consists of 7 subfamilies with at least 28 mammalian homologues, is known to encode a wide variety of cation channels with diverse biophysical properties, activation mechanisms, and physiological functions. Recent studies have identified multiple TRP channel subtypes, belonging to the canonical (TRPC), melastatin-related (TRPM), and vanilloid-related (TRPV) subfamilies, in pulmonary arterial smooth muscle cells (PASMCs). They operate as specific Ca(2+) pathways responsive to stimuli, including Ca(2+) store depletion, receptor activation, reactive oxygen species, growth factors, and mechanical stress. Increasing evidence suggests that these channels play crucial roles in agonist-induced pulmonary vasoconstriction, hypoxic pulmonary vasoconstriction, smooth muscle cell proliferation, vascular remodeling, and pulmonary arterial hypertension. This chapter highlighted and discussed these putative physiological functions of TRP channels in pulmonary vasculatures. Since Ca(2+) ions regulate many cellular processes via specific Ca(2+) signals, future investigations of these novel channels will likely uncover more important regulatory mechanisms of pulmonary vascular functions in health and in disease states. PMID:20204726

  13. Identification and characterization of a bacterial hydrosulphide ion channel

    SciTech Connect

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  14. Transient receptor potential (TRP) channels in the airway: role in airway disease

    PubMed Central

    Grace, M S; Baxter, M; Dubuis, E; Birrell, M A; Belvisi, M G

    2014-01-01

    Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease. PMID:24286227

  15. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  16. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel.

    PubMed

    Heusser, Stephanie A; Yoluk, Özge; Klement, Göran; Riederer, Erika A; Lindahl, Erik; Howard, Rebecca J

    2016-07-01

    The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate

  17. Collective Diffusion Model for Ion Conduction through Microscopic Channels

    PubMed Central

    Liu, Yingting; Zhu, Fangqiang

    2013-01-01

    Ion conduction through microscopic channels is of central importance in both biology and nanotechnology. To better understand the current-voltage (I-V) dependence of ion channels, here we describe and prove a collective diffusion model that quantitatively relates the spontaneous ion permeation at equilibrium to the stationary ionic fluxes driven by small voltages. The model makes it possible to determine the channel conductance in the linear I-V range from equilibrium simulations without the application of a voltage. To validate the theory, we perform molecular-dynamics simulations on two channels—a conical-shaped nanopore and the transmembrane pore of an α-hemolysin—under both equilibrium and nonequilibrium conditions. The simulations reveal substantial couplings between the motions of cations and anions, which are effectively captured by the collective coordinate in the model. Although the two channels exhibit very different linear ranges in the I-V curves, in both cases the channel conductance at small voltages is in reasonable agreement with the prediction from the equilibrium simulation. The simulations also suggest that channel charges, rather than geometric asymmetry, play a more prominent role in current rectification. PMID:23442858

  18. Briefing in application of machine learning methods in ion channel prediction.

    PubMed

    Lin, Hao; Chen, Wei

    2015-01-01

    In cells, ion channels are one of the most important classes of membrane proteins which allow inorganic ions to move across the membrane. A wide range of biological processes are involved and regulated by the opening and closing of ion channels. Ion channels can be classified into numerous classes and different types of ion channels exhibit different functions. Thus, the correct identification of ion channels and their types using computational methods will provide in-depth insights into their function in various biological processes. In this review, we will briefly introduce and discuss the recent progress in ion channel prediction using machine learning methods. PMID:25961077

  19. Briefing in Application of Machine Learning Methods in Ion Channel Prediction

    PubMed Central

    2015-01-01

    In cells, ion channels are one of the most important classes of membrane proteins which allow inorganic ions to move across the membrane. A wide range of biological processes are involved and regulated by the opening and closing of ion channels. Ion channels can be classified into numerous classes and different types of ion channels exhibit different functions. Thus, the correct identification of ion channels and their types using computational methods will provide in-depth insights into their function in various biological processes. In this review, we will briefly introduce and discuss the recent progress in ion channel prediction using machine learning methods. PMID:25961077

  20. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    PubMed

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Agnes; Antoni, Ferenc A; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+) and organic cations through gramicidin channels and detecting the Cl(-)-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  1. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  2. Voltage Sensor in Voltage-gated ion channels

    NASA Astrophysics Data System (ADS)

    Bezanilla, Francisco

    2006-03-01

    Voltage-gated ion channels are intrinsic membrane proteins that play a fundamental role in the generation and propagation of the nerve impulse. Their salient characteristic is that the probability of the ion channel of being open depends steeply on the voltage across the membrane where those channels are inserted. Thus, in a membrane containing many channels, the ionic conductance is controlled by the membrane potential. The voltage exerts its control on the channel by reorienting intrinsic charges in the protein, generally arginine or lysine residues located in the 4th transmembrane segment of the channel protein, a region that has been called the voltage sensor. Upon changing the membrane potential, the charged groups reorient in the field generating a transient current (gating current). The properties of the gating current may be studied with a small number of channels to infer the operation of the sensor at the single molecule level by noise analysis or with a large number of channels to infer the details of the energy landscape the sensor traverses in opening the pore. This information is global in nature and cannot pinpoint the exact origin of the charge movement that generates the gating current. The movement of physical charges in the protein has been inferred with site-directed mutagenesis of the charged residues to histidine that allows the study of proton accessibility. The actual movement has been studied with fluorescence spectroscopy, fluorescence resonance energy transfer. The combined information of site-directed mutagenesis, gating currents, fluorescence studies and emerging crystal structures have started to delineate a physical representation of the conformational changes responsible for voltage sensing that lead to the opening of the conduction pore in voltage-gated ion channels.

  3. Contribution of Automated Technologies to Ion Channel Drug Discovery.

    PubMed

    Picones, Arturo; Loza-Huerta, Arlet; Segura-Chama, Pedro; Lara-Figueroa, Cesar O

    2016-01-01

    Automated technologies are now resolving the historical relegation that ion channels have endured as targets for the new drug discovery and development global efforts. The richness and adequacy of functional assay methodologies, remarkably fluorescence-based detection of ions fluxes and patch-clamp electrophysiology recording of ionic currents, are now automated and increasingly employed for the analysis of ion channel activity. While the former is currently the most commonly applied, the latter is finally reaching the throughput capacity to be engaged in the primary screening of chemical libraries conformed by hundreds of thousands of compounds. The use of automated instrumentation for the study of ion channel functionality (and dysfunctionality), particularly in the search for novel pharmacological agents with therapeutic purposes, has now reached out beyond the industrial setting, its original natural enclave, and is making its way into a growing number of academic labs and core facilities. The present chapter reviews the increasing contributions accomplished by a variety of different key automated technologies which have revolutionized the strategies to approach the discovery and development of new drugs targeting ion channels. PMID:27038379

  4. Crystal orientation mapping via ion channeling: An alternative to EBSD.

    PubMed

    Langlois, C; Douillard, T; Yuan, H; Blanchard, N P; Descamps-Mandine, A; Van de Moortèle, B; Rigotti, C; Epicier, T

    2015-10-01

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. PMID:26094201

  5. Transient receptor potential channel C5 in cancer chemoresistance

    PubMed Central

    He, Dong-xu; Ma, Xin

    2016-01-01

    The transient receptor potential (TRP) superfamily contains at least 28 homologs in mammalian. These proteins form TRP channels are permeable to monovalent and divalent cations and participate in a variety of physiological functions. Dysregulation of TRP channels is responsible for numerous diseases. This review provides a brief short overview of mammalian TRP channels with a focus on TRPC5 and its role in cancers. Dysregulation of TRPC5 interrupts Ca2+ homeostasis in cancer cells, which activates signaling pathways that are highly associated with cancer progression, especially cancer chemoresistance. Based on the important role of TRPC5, we also discuss the potential of TRPC5 as a target for therapeutic intervention. Either direct targeting of TRPC5 or indirect interruption of TRPC5-related signaling pathways may effectively overcome cancer chemoresistance. PMID:26657058

  6. Pharmacology of transient receptor potential melastatin channels in the vasculature

    PubMed Central

    Zholos, Alexander

    2010-01-01

    Mammalian transient receptor potential melastatin (TRPM) non-selective cation channels, the largest TRP subfamily, are widely expressed in excitable and non-excitable cells where they perform diverse functions ranging from detection of cold, taste, osmolarity, redox state and pH to control of Mg2+ homeostasis and cell proliferation or death. Recently, TRPM gene expression has been identified in vascular smooth muscles with dominance of the TRPM8 channel. There has been in parallel considerable progress in decoding the functional roles of several TRPMs in the vasculature. This research on native cells is aided by the knowledge of the activation mechanisms and pharmacological properties of heterologously expressed TRPM subtypes. This paper summarizes the present state of knowledge of vascular TRPM channels and outlines several anticipated directions of future research in this area. PMID:20233227

  7. Protein-protein interactions among ion channels regulate ion transport in the kidney.

    PubMed

    Boulpaep, E

    2009-01-01

    Epithelial ion transport in various organs has long been known to be controlled by extracellular agonists acting via membrane receptors or by intracellular messengers. Evidence is mounting for regulation of transport by direct interaction among membrane proteins or between a membrane transport protein and membrane-attached proteins. The membrane protein CFTR (Cystic Fibrosis Transmembrane Regulator) is widely expressed along the length of the nephron, but its role as a chloride channel does not appear to be critical for renal handling of salt and water. It is well established that the inward rectifying K channels (ROMK = Kir 1.1) in the thick ascending limb of Henle and in principal cells of the collecting duct are inhibited by millimolar concentrations of cytosolic Mg-ATP. However, the mechanism of this inhibition has been an enigma. We propose that the ATP-Binding Cassette (ABC) protein CFTR is a cofactor for Kir 1.1 regulation. Indeed, Mg-ATP sensitivity of Kir 1.1 is completely absent in two different mouse models of cystic fibrosis. In addition, the open-closed state of CFTR appears to provide a molecular gating switch that prevents or facilitates the ATP sensing of Kir 1.1. Does Mg-ATP sensing by the CFTR- Kir 1.1 complex play a role in coupling metabolism to ion transport? Physiological intracellular ATP concentrations in tubule cells are in the millimolar range, a saturating concentration for the gating of Kir 1.1 by Mg-ATP. Therefore, Kir 1.1 channels would be closed and unable to contribute to regulation of potassium secretion unless some other process modulated the CFTR-dependent ATP-sensitivity of Kir 1.1. The third component of the metabolic sensor-effector complex for Kir 1.1 regulation is most likely the AMP-regulated serine-threonine kinase, AMP kinase (AMPK). Changing levels in AMP rather than in ATP constitute the metabolic signal "sensed" by tubule cells. Because AMPK inhibits CFTR by modulating CFTR channel gating, we propose that renal K

  8. Ion channels and transporters in the electroreceptive ampullary epithelium from skates.

    PubMed Central

    Lu, J; Fishman, H M

    1995-01-01

    Two ampullary epithelial properties necessary for electroreception were used to identify the types of ion channels and transporters found in apical and basal membranes of ampullary receptor cells of skates and to assess their individual role under voltage-clamp conditions. The two essential properties are (1) a steady-state negative conductance generated in apical membranes and (2) a small, spontaneous current oscillation originating in basal membranes (Lu and Fishman, 1995). The effects of pharmacological agents and ion substitutions on these properties were evaluated from transorgan or transepithelial complex admittance determinations in the frequency range 0.125 to 50 Hz measured in individual, isolated ampullary organs. In apical membranes, L-type Ca channels were found to be responsible for generation of the steady-state negative conductance. In basal membranes, K and Ca-dependent Cl (Cl(Ca)) channels were demonstrated to contribute to a net positive membrane conductance. L-type Ca channels were also evident in basal membranes and are thought to function in synaptic transmission from the electroreceptive epithelium to the primary afferent nerve. In addition to ion channels in basal membranes, two transporters (Na+/K+ pump and Na(+)-Ca+ exchanger) were apparent. Rapid (minutes) cessation of the current oscillation after blockage of any of the basal ion channels (Ca, Cl(Ca), K) suggests critical involvement of each of these channel types in the generation of the oscillation. Suppression of either Na+/K+ transport or Na(+)-Ca2+ exchange also eliminated the oscillation but at a slower rate, indicating an indirect effect. PMID:8599653

  9. Cyclic nucleotide-activated channels in carp olfactory receptor cells.

    PubMed

    Kolesnikov, S S; Kosolapov, A V

    1993-07-25

    When applied from the cytoplasmic side, cyclic 3',5'-adenosine and guanosine monophosphates reversibly increased the ion permeability of inside-out patches of carp olfactory neuron plasma membrane. The cAMP (cGMP)-induced permeability via cAMP (cGMP) concentration was fitted by Hill's equation with the exponents of 1.07 +/- 0.15 (1.12 +/- 0.05) and EC50 = 1.3 +/- 0.6 microM (0.9 +/- 0.3 microM). Substitution of NaCl in the bathing solution by chlorides of other alkali metals resulted in a slight shift of reversal potential of the cyclic nucleotide-dependent (CN) current, which indicates a weak selectivity of the channels. Permeability coefficients calculated by Goldman-Hodgkin-Katz's equation corresponded to the following relation: PNa/PK/PLi/PRb/PCs = 1:0.98:0.94:0.70:0.61. Ca2+ and Mg2+ in physiological concentrations blocked the channels activated by cyclic nucleotides (CN-channels). In the absence of divalent cations the conductance of single CN-channels was equal to 51 +/- 9 pS in 100 mM NaCl solution. Channel density did not exceed 1 micron-2. The maximal open state probability of the channel (Po) tended towards 1.0 at a high concentration of cAMP or cGMP. Dichlorobenzamil decreased Po without changing the single CN-channel' conductance. CN-channels exhibited burst activity. Mean open and closed times as well as the burst duration depended on agonist concentration. A kinetic model with four states (an inactivated, a closed and two open ones) is suggested to explain the regularities of CN-channel gating and dose-response relations. PMID:8334139

  10. Theoretical and computational models of biological ion channels

    NASA Astrophysics Data System (ADS)

    Roux, Benoit

    2004-03-01

    A theoretical framework for describing ion conduction through biological molecular pores is established and explored. The framework is based on a statistical mechanical formulation of the transmembrane potential (1) and of the equilibrium multi-ion potential of mean forces through selective ion channels (2). On the basis of these developments, it is possible to define computational schemes to address questions about the non-equilibrium flow of ions through ion channels. In the case of narrow channels (gramicidin or KcsA), it is possible to characterize the ion conduction in terms of the potential of mean force of the ions along the channel axis (i.e., integrating out the off-axis motions). This has been used for gramicidin (3) and for KcsA (4,5). In the case of wide pores (i.e., OmpF porin), this is no longer a good idea, but it is possible to use a continuum solvent approximations. In this case, a grand canonical monte carlo brownian dynamics algorithm was constructed for simulating the non-equilibrium flow of ions through wide pores. The results were compared with those from the Poisson-Nernst-Planck mean-field electrodiffusion theory (6-8). References; 1. B. Roux, Biophys. J. 73:2980-2989 (1997); 2. B. Roux, Biophys. J. 77, 139-153 (1999); 3. Allen, Andersen and Roux, PNAS (2004, in press); 4. Berneche and Roux. Nature, 414:73-77 (2001); 5. Berneche and Roux. PNAS, 100:8644-8648 (2003); 6. W. Im and S. Seefeld and B. Roux, Biophys. J. 79:788-801 (2000); 7. W. Im and B. Roux, J. Chem. Phys. 115:4850-4861 (2001); 8. W. Im and B. Roux, J. Mol. Biol. 322:851-869 (2002).

  11. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.

    PubMed

    Mei, Yingwu; Xu, Le; Mowrey, David D; Mendez Giraldez, Raul; Wang, Ying; Pasek, Daniel A; Dokholyan, Nikolay V; Meissner, Gerhard

    2015-07-10

    Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes. PMID:25998124

  12. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes

    PubMed Central

    Cash, Derek J.; Hess, George P.

    1980-01-01

    Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine

  13. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  14. Apocalmodulin Itself Promotes Ion Channel Opening and Ca2+ Regulation

    PubMed Central

    Adams, Paul J.; Ben-Johny, Manu; Dick, Ivy E.; Inoue, Takanari; Yue, David T.

    2014-01-01

    SUMMARY The Ca2+-free form of calmodulin (apoCaM) often appears inert, modulating target molecules only upon conversion to its Ca2+-bound form. This schema has appeared to govern voltage-gated Ca2+ channels, where apoCaM has been considered a dormant Ca2+ sensor, associated with channels, but awaiting the binding of Ca2+ ions before inhibiting channel opening to provide vital feedback inhibition. Using single-molecule measurements of channels and chemical dimerization to elevate apoCaM, we find that apoCaM binding on its own markedly upregulates opening, rivaling the strongest forms of modulation. Upon Ca2+ binding to this CaM, inhibition may simply reverse the initial upregulation. As RNA edited and spliced channel variants show different affinities for apoCaM, the apoCaM-dependent control mechanisms may underlie the functional diversity of these variants and explain an elongation of neuronal action potentials by apoCaM. More broadly, voltage-gated Na channels adopt this same modulatory principle. ApoCaM thus imparts potent and pervasive ion-channel regulation. PMID:25417111

  15. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni

    PubMed Central

    Bais, Swarna; Churgin, Matthew A.; Fang-Yen, Christopher; Greenberg, Robert M.

    2015-01-01

    Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7–8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics. PMID:26655809

  16. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function. PMID:18459164

  17. Protein 4.1 and the control of ion channels.

    PubMed

    Baines, Anthony J; Bennett, Pauline M; Carter, Edward W; Terracciano, Cesare

    2009-01-01

    The classical function of 4.1R in red blood cells is to contribute to the mechanochemical properties of the membrane by promoting the interaction between spectrin and actin. More recently, it has been recognized that 4.1R is required for the stable cell surface accumulation of a number of erythrocyte membrane proteins. 4.1R is one member of the mammalian 4.1 family - the others being 4.1N, 4.1G and 4.1B - and is expressed in many cell types other than erythrocytes. Recently we have examined the phenotype of hearts from 4.1R knockout mice. Although they had a generally normal morphology, these hearts exhibited bradycardia, and prolongation of both action potentials and QT intervals. Electrophysiological analysis revealed anomalies in a range of ion channel activities. In addition, the immunoreactivity of voltage-gated Na(+) channel NaV1.5 was reduced, indicating a role for 4.1R in the cellular accumulation of this ion channel. 4.1 proteins also have roles in the accumulation of at least two other classes of ion channel. In epithelia, 4.1 interacts with the store-operated channel TRPC4. In neurons, the ligand-gated channels GluR1 and GluR4 require 4.1 proteins for cell surface accumulation. The spectrum of transmembrane proteins that bind to 4.1 proteins overlaps with that of ankyrin. A hypothesis to investigate in the future is that differential regulation of 4.1 and ankyrins (e.g. by PIP(2)) allows highly selective control of cell surface accumulation and transport activity of a specific range of ion channels. PMID:19272819

  18. Rapid estrogen actions on ion channels: A survey in search for mechanisms.

    PubMed

    Kow, Lee-Ming; Pfaff, Donald W

    2016-07-01

    A survey of nearly two hundred reports shows that rapid estrogenic actions can be detected across a range of kinds of estrogens, a range of doses, on a wide range of tissue, cell and ion channel types. Striking is the fact that preparations of estrogenic agents that do not permeate the cell membrane almost always mimic the actions of the estrogenic agents that do permeate the membrane. All kinds of estrogens, ranging from natural ones, through receptor modulators, endocrine disruptors, phytoestrogens, agonists, and antagonists to novel G-1 and STX, have been reported to be effective. For actions on specific types of ion channels, the possibility of opposing actions, in different cases, is the rule, not the exception. With this variety there is no single, specific action mechanism for estrogens per se, although in some cases estrogens can act directly or via some signaling pathways to affect ion channels. We infer that estrogens can bind a large number of substrates/receptors at the membrane surface. As against the variety of subsequent routes of action, this initial step of the estrogen's binding action is the key. PMID:26939826

  19. Ion homeostasis, channels, and transporters: an update on cellular mechanisms.

    PubMed

    Dubyak, George R

    2004-12-01

    The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction

  20. Translational strategies for neuroprotection in ischemic stroke - focusing on Acid Sensing Ion Channel 1a

    PubMed Central

    O'Bryant, Zaven; Vann, Kiara T.; Xiong, Zhi-Gang

    2014-01-01

    Ischemic stroke contributes to the majority of brain injuries and remains to be a leading cause of death and long-term disability. Despite the devastating pathology and high incidence of disease, there remain only few treatment options (tPA and endovascular procedures), which may be hampered by time dependent administration among a variety of other factors. Promising research of glutamate receptor antagonists has been unsuccessful in clinical trial. But, the mechanism by which glutamate receptors initiate injury by excessive calcium overload has spurred investigation of new and potentially successful candidates for stroke therapy. Acid sensing ion channels (ASICs) may contribute to poor stroke prognosis due to localized drop in brain pH, resulting in excessive calcium overload, independent of glutamate activation. Accumulating studies targeting ASICs have underscored the importance of understanding inhibition, regulation, desensitization and trafficking of this channel and its role in disease. This review will discuss potential directions in translational ASIC research for future stroke therapies. PMID:24390970

  1. Ion channel voltage sensors: structure, function, and pathophysiology.

    PubMed

    Catterall, William A

    2010-09-23

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in Na(V)1.4 channels is the primary pathophysiological mechanism in hypokalemic periodic paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ion-channel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  2. Ion channel networks in the control of cerebral blood flow.

    PubMed

    Longden, Thomas A; Hill-Eubanks, David C; Nelson, Mark T

    2016-03-01

    One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.(1) Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit-neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes-coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics.In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood-brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field. PMID:26661232

  3. Targeting ion channels for the treatment of autoimmune neuroinflammation

    PubMed Central

    Bittner, Stefan

    2013-01-01

    Pharmacological targeting of ion channels has long been recognized as an attractive strategy for the treatment of various diseases. Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system with a prominent neurodegenerative component. A multitude of different cell types are involved in the complex pathophysiology of this disorder, including cells of the immune system (e.g. T and B lymphocytes and microglia), the neurovascular unit (e.g. endothelial cells and astrocytes) and the central nervous system (e.g. astrocytes and neurons). The pleiotropic expression and function of ion channels gives rise to the attractive opportunity of targeting different players and pathophysiological aspects of MS by the modulation of ion channel function in a cell-type and context-specific manner. We discuss the emerging knowledge about ion channels in the context of autoimmune neuroinflammation. While some pharmacological targets are at the edge of clinical translation, others have only recently been discovered and are still under investigation. Special focus is given to those candidates that could be attractive novel targets for future therapeutic approaches in neuroimmune autoinflammation. PMID:23997817

  4. The 4′lysine in the putative channel lining domain affects desensitization but not the single-channel conductance of recombinant homomeric 5-HT3A receptors

    PubMed Central

    Gunthorpe, Martin J; Peters, John A; Gill, Catherine H; Lambert, Jeremy J; Lummis, Sarah C R

    2000-01-01

    The 5-HT3 receptor is a transmitter-gated ion channel of the Cys-loop superfamily. Uniquely, 5-HT3 receptor subunits (5-HT3A and 5-HT3B) possess a positively charged lysine residue within the putative channel lining M2 domain (4′ position). Using whole cell recording techniques, we examined the role of this residue in receptor function using wild-type (WT) and mutant 5-HT3A receptor subunits of murine origin transiently expressed in human embryonic kidney (HEK 293) cells. WT 5-HT3A receptors mediated rapidly activating currents in response to 5-HT (10–90 % rise time, 103 ms; EC50, 2.34 μm; Hill coefficient, nH, 2.87). The currents rectified inwardly, reversed in sign at a potential of −9 mV and desensitized in the continuous presence of agonist (half-time of desensitization, t1/2, 2.13 s). 5-HT3A receptor subunits in which the 4′lysine was mutated to arginine, glutamine, serine or glycine formed functional receptors. 5-HT EC50 values were approximately 2-fold lower than for WT 5-HT3A receptors, but Hill coefficients, kinetics of current activation, rectification, and reversal potentials were unaltered. Each of the mutants desensitized more slowly than the WT 5-HT3A receptor, with the arginine and glycine mutations exhibiting the greatest effect (5-fold reduction). The rank order of effect was arginine > glycine > serine > glutamine. The single-channel conductance of the WT 5-HT3A receptor, as assessed by fluctuation analysis of macroscopic currents, was 390 fS. A similar value was obtained for the 4′lysine mutant receptors. Thus it appears unlikely that 4′lysine is exposed to the channel lumen. Mutation of residues immediately adjacent to 4′lysine to glutamate or lysine resulted in lack of receptor expression or function. We conclude that 4′lysine does not form part of the channel lining, but may play an important role in 5-HT3 receptor desensitization. PMID:10639097

  5. [Computational analysis of a cys-loop ligand gated ion channel from the green alga Chlamydomonas reinhardtii].

    PubMed

    Mukherjee, Ashutosh

    2015-01-01

    Plants possess several neurotransmitters with well-known physiological roles. Currently only receptors for glutamate were reported to be found in plants, while receptors for acetylcholine, serotonin and GABA have not yet been reported. In animals, these neurotransmitters act via one class of ligand binding ion channels called Cys-loop receptors which play a major role in fast synaptic transmission. They show the presence of two domains namely Neurotransmitter-gated ion-channel ligand-binding domain (Pfam: PF02931) and Neurotransmitter-gated transmembrane domain (Pfam: PF02932). Cys-loop receptors are also known in prokaryotes. No cys-loop receptor has been characterized from plants yet. In this study, the Ensembl plants database was searched for proteins with these two domains in the sequenced plant genomes, what resulted in only one protein (LIC1) from the alga Chlamydomonas reinhardtii. BLAST and profile HMM searches against the pdb structure database showed that this protein is related to animal and prokaryotic cys-loop receptors, although the cysteine residues characteristic of the cys-loop are absent. Physico-chemical and sequence analysis indicate that LIC1 is an anionic receptor. A model of this protein was generated using homology modeling based on a nicotinic acetylcholine receptor of Torpedo marmorata. The characteristic extracellular domain (ECD) and transmembrane domain (TMD) are well structured but the intercellular region is poorly formed. This is the first report on a detailed characterization of a cys-loop receptor from the plant kingdom. PMID:26510602

  6. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials.

    PubMed Central

    Andersen, O S

    1983-01-01

    The patch-clamp technique of Mueller (1975, Ann. N.Y. Acad. Sci., 274:247-264) and Neher and Sakmann (1976, Nature (Lond.), 260:799-802) was modified to be suitable for single-channel measurements in lipid bilayers at potentials up to 500 mV. This method was used to study gramicidin A single-channel current-voltage characteristics. It was found that the sublinear current-voltage behavior normally observed at low permeant ion concentrations and rather low potentials (V less than or equal to 200 mV) continues to be seen all the way up to 500 mV. This phenomenon is characteristic of the low permeant ion situation in which the channel is far from saturation, and implies that the overall rate constant for association between ion and channel is very weakly, if at all, voltage dependent. The magnitude of the single channel currents at 500 mV is consistent with the notion that the aqueous convergence conductance is a significant factor in determining the permeability characteristics of the gramicidin A channel. PMID:6188500

  7. Role of Ion Channels in the Sperm Acrosome Reaction.

    PubMed

    Beltrán, Carmen; Treviño, Claudia L; Mata-Martínez, Esperanza; Chávez, Julio C; Sánchez-Cárdenas, Claudia; Baker, Mark; Darszon, Alberto

    2016-01-01

    The acrosome reaction (AR) is a unique exocytotic process where the acrosome, a single membrane-delimited specialized organelle, overlying the nucleus in the sperm head of many species, fuses with the overlying plasma membrane. This reaction, triggered by physiological inducers from the female gamete, its vicinity, or other stimuli, discharges the acrosomal content modifying the plasma membrane, incorporating the inner acrosomal membrane, and exposing it to the extracellular medium. The AR is essential for sperm-egg coat penetration, fusion with the eggs' plasma membrane, and fertilization. As in most exocytotic processes Ca(2+) is crucial for the AR, as well as intracellular pH and membrane potential changes. Thus, among the required processes needed for this reaction, ion permeability changes involving channels are pivotal. In spite of the key role ion channels play in the AR, their identity and regulation is not fully understood. Though molecular and pharmacological evidence indicates that various ionic channels participate during the AR, such as store-operated Ca(2+) channels and voltage-dependent Ca(2+) channels, whole cell patch clamp recordings have failed to detect some of them until now. Since sperm display a very high resistance and a minute cytoplasmic volume, very few channels are needed to achieve large membrane potential and concentration changes. Functional detection of few channels in the morphologically complex and tiny sperm poses technical problems, especially when their conductance is very small, as in the case of SOCs. Single channel recordings and novel fluorescence microscopy strategies will help to define the participation of ionic channels in the intertwined signaling network that orchestrates the AR. PMID:27194349

  8. Regulation of CFTR ion channel gating by MgATP.

    PubMed

    Aleksandrov, A A; Riordan, J R

    1998-07-10

    Single channel currents of wild-type CFTR reconstituted in lipid bilayers were recorded to study the temperature dependence of channel gating between +20 degrees C and +40 degrees C. The opening of the channel was highly temperature dependent and required an activation energy of about 100 kJ/mol. Closing of the channel was only weakly temperature dependent with an activation energy close to that of diffusion in water. We found no significant difference in the free energy between the open and closed states. Most of the excess energy needed to activate channel opening is used to diminish the entropy of the open state. This structural reorganization is initiated by ATP binding followed by interconversion to the open channel structure as the CFTR-ATP-Mg complex passes to the transition state for hydrolysis. The energy of the CFTR-ATP-Mg interaction in the transition state is responsible for the CFTR ion channel opening rather than the energy of ATP hydrolysis. Channel closing is a diffusion limited process and does not require additional ATP binding. PMID:9684873

  9. Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels

    PubMed Central

    2013-01-01

    Potassium ion channels form pores in cell membranes, allowing potassium ions through while preventing the passage of sodium ions. Despite numerous high-resolution structures, it is not yet possible to relate their structure to their single molecule function other than at a qualitative level. Over the past decade, there has been a concerted effort using molecular dynamics to capture the thermodynamics and kinetics of conduction by calculating potentials of mean force (PMF). These can be used, in conjunction with the electro-diffusion theory, to predict the conductance of a specific ion channel. Here, we calculate seven independent PMFs, thereby studying the differences between two potassium ion channels, the effect of the CHARMM CMAP forcefield correction, and the sensitivity and reproducibility of the method. Thermodynamically stable ion–water configurations of the selectivity filter can be identified from all the free energy landscapes, but the heights of the kinetic barriers for potassium ions to move through the selectivity filter are, in nearly all cases, too high to predict conductances in line with experiment. This implies it is not currently feasible to predict the conductance of potassium ion channels, but other simpler channels may be more tractable. PMID:24353479

  10. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking

    PubMed Central

    McClintick, Jeanette N.; McBride, William J.; Bell, Richard L.; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J.

    2014-01-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5 – 3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system. PMID:25542586

  11. Pressure effects on stopping power of solids for channeled ions

    NASA Astrophysics Data System (ADS)

    Pathak, A. P.; Cruz, S. A.; Soullard, J.

    2005-01-01

    Pressure effects on the energy loss of swift channeled ions through silicon are considered. This is accomplished by estimating the changes in orbital charge densities and the corresponding mean ionization potentials, induced by increasing pressure. The bulk density for the compressed material is obtained from available experimental information on the corresponding equation of state for pressures up to 11.3 GPa, beyond which a structural phase transformation occurs. The high pressure is simulated by first caging the individual Si atom in a small spherical volume V and estimated as P=-partial derivative E/partial derivative V, where E is the total electronic energy for a particular confinement volume. The energy is selfconsistently calculated through a recently developed shell-wise version of the Thomas-Fermi-Dirac-Weizsacker density functional, which compares favorably with ab initio calculations on the basis of a cluster model where the Si atom is surrounded by neon (helium) atoms (in a molecular scheme). The resulting individual electronic shell charge densities are then averaged along planar channels to find the effective charge densities needed in the channeling energy loss calculations for channeled ions. The position dependence of the energy loss in the channels for the free and high-pressure case is calculated for 5 Me V protons and alpha particles along the (110) planar channels.

  12. Ion Channels in Regulation of Neuronal Regenerative Activities

    PubMed Central

    Chen, Dongdong; Yu, Shan Ping; Wei, Ling

    2014-01-01

    The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treating neurodegenerative diseases because of the regenerative capability of stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones and axon outgrowth after injury. PMID:24399572

  13. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels.

    PubMed

    Nemecz, Ákos; Prevost, Marie S; Menny, Anaïs; Corringer, Pierre-Jean

    2016-05-01

    Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors. PMID:27151638

  14. A gating mechanism of pentameric ligand-gated ion channels

    PubMed Central

    Calimet, Nicolas; Simoes, Manuel; Changeux, Jean-Pierre; Karplus, Martin; Taly, Antoine; Cecchini, Marco

    2013-01-01

    Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communication in the nervous system and are involved in fundamental processes such as attention, learning, and memory. They are oligomeric protein assemblies that convert a chemical signal into an ion flux through the postsynaptic membrane, but the molecular mechanism of gating ions has remained elusive. Here, we present atomistic molecular dynamics simulations of the prokaryotic channels from Gloeobacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC), whose crystal structures are thought to represent the active and the resting states of pLGICs, respectively, and of the eukaryotic glutamate-gated chloride channel from Caenorhabditis elegans (GluCl), whose open-channel structure was determined complexed with the positive allosteric modulator ivermectin. Structural observables extracted from the trajectories of GLIC and ELIC are used as progress variables to analyze the time evolution of GluCl, which was simulated in the absence of ivermectin starting from the structure with bound ivermectin. The trajectory of GluCl with ivermectin removed shows a sequence of structural events that couple agonist unbinding from the extracellular domain to ion-pore closing in the transmembrane domain. Based on these results, we propose a structural mechanism for the allosteric communication leading to deactivation/activation of the GluCl channel. This model of gating emphasizes the coupling between the quaternary twisting and the opening/closing of the ion pore and is likely to apply to other members of the pLGIC family. PMID:24043807

  15. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas

    PubMed Central

    Bomben, V. C.; Sontheimer, H. W.

    2009-01-01

    Objectives Glial-derived primary brain tumours, gliomas, are among the fastest growing malignancies and present a huge clinical challenge. Research suggests an important, yet poorly understood, role of ion channels in growth control of normal and malignant cells. In this study, we sought to functionally characterize Transient Receptor Potential Canoncial (TRPC) channels in glioma cell proliferation. TRPC channels form non-selective cation channels that have been suggested to represent a Ca2+ influx pathway impacting cellular growth. Materials and Methods Employing a combination of molecular, biochemical and biophysical techniques, we characterized TRPC channels in glioma cells. Results We showed consistent expression of four channel family members (TRPC-1, -3, -5, -6) in glioma cell lines and acute patient-derived tissues. These channels gave rise to small, non-voltage-dependent cation currents that were blocked by the TRPC inhibitors GdCl3, 2-APB, or SKF96365. Importantly, TRPC channels contributed to the resting conductance of glioma cells and their acute pharmacological inhibition caused an ~10 mV hyperpolarization of the cells’ resting potential. Additionally, chronic application of the TRPC inhibitor SKF96365 caused near complete growth arrest. A detailed analysis, by fluorescence-activated cell sorting and time-lapse microscopy, showed that growth inhibition occurred at the G2 + M phase of the cell cycle with cytokinesis defects. Cells underwent incomplete cell divisions and became multinucleate, enlarged cells. Conclusions Nuclear atypia and enlarged cells are histopathological hallmarks for glioblastoma multiforme, the highest grade glioma, suggesting that a defect in TRPC channel function may contribute to cellular abnormalities in these tumours. PMID:18211288

  16. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.

    PubMed Central

    Bhat, M B; Zhao, J; Takeshima, H; Ma, J

    1997-01-01

    The ryanodine receptor (RyR) is one of the key proteins involved in excitation-contraction (E-C) coupling in skeletal muscle, where it functions as a Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. RyR consists of a single polypeptide of approximately 560 kDa normally arranged in a homotetrameric structure, which contains a carboxyl (C)-terminal transmembrane domain and a large amino (N)-terminal cytoplasmic domain. To test whether the carboxyl-terminal portion of RyR is sufficient to form a Ca2+ release channel, we expressed the full-length (RyR-wt) and C-terminal (RyR-C, approximately 130 kDa) RyR proteins in a Chinese hamster ovary (CHO) cell line, and measured their Ca2+ release channel functions in planar lipid bilayer membranes. The single-channel properties of RyR-wt were found to be similar to those of RyR from skeletal muscle SR. The RyR-C protein forms a cation-selective channel that shares some of the channel properties with RyR-wt, including activation by cytoplasmic Ca2+ and regulation by ryanodine. Unlike RyR-wt, which exhibits a linear current-voltage relationship and inactivates at millimolar Ca2+, the channels formed by RyR-C display significant inward rectification and fail to close at high cytoplasmic Ca2+. Our results show that the C-terminal portion of RyR contains structures sufficient to form a functional Ca2+ release channel, but the N-terminal portion of RyR also affects the ion-conduction and calcium-dependent regulation of the Ca2+ release channel. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:9284301

  17. Use of Label-free Optical Biosensors to Detect Modulation of Potassium Channels by G-protein Coupled Receptors

    PubMed Central

    Fleming, Matthew R.; Shamah, Steven M.; Kaczmarek, Leonard K.

    2014-01-01

    Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane1. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex2,3. Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein's behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs. PMID:24562095

  18. Function and regulation of endothelin type A receptor-operated transient receptor potential canonical channels.

    PubMed

    Horinouchi, Takahiro; Terada, Koji; Higa, Tsunaki; Aoyagi, Hiroyuki; Nishiya, Tadashi; Suzuki, Hiroyuki; Miwa, Soichi

    2011-01-01

    The purpose of this study is to identify transient receptor potential canonical (TRPC) channels responsible for receptor-operated Ca(2+) entry (ROCE) triggered by activation of endothelin type A receptor (ET(A)R) and to clarify the importance of calmodulin (CaM) / inositol 1,4,5-trisphosphate (IP(3)) receptor binding (CIRB) domain at the C terminus of TRPC channels in ET(A)R-activated channel regulation. In HEK293 cells coexpressing ET(A)R and one of seven TRPC isoforms, ET(A)R stimulation induced ROCE through TRPC3, TRPC5, TRPC6, and TRPC7. The TRPC3- and TRPC6-mediated ROCE was inhibited by selective inhibitors of G(q) protein, phospholipase C (PLC), and CaM. The CIRB domain deletion mutants of TRPC3 and TRPC6 failed to induce ET(A)R-mediated ROCE. Either deletion of the CIRB domain or pharmacological inhibition of CaM did not inhibit the targeting of these channels to the plasma membrane. These results suggest that 1) TRPC3, TRPC5, TRPC6, and TRPC7 can function as ET(A)R-operated Ca(2+) channels; 2) G(q) protein, PLC, and CaM are involved in TRPC3- and TRPC6-mediated ROCE; 3) ET(A)R-mediated activation of TRPC3 and TRPC6 requires the CIRB domain; and 4) abolition of ET(A)R-induced ROCE by CIRB domain deletion and CaM inhibition is due to loss of CaM binding to the channels but not loss of cell surface TRPC3 and TRPC6. PMID:22129540

  19. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy.

    PubMed

    Ramachandran, Srinivasan; Arce, Fernando Teran; Patel, Nirav R; Quist, Arjan P; Cohen, Daniel A; Lal, Ratnesh

    2014-01-01

    Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors. PMID:24651823

  20. Ion channel noise can explain firing correlation in auditory nerves.

    PubMed

    Moezzi, Bahar; Iannella, Nicolangelo; McDonnell, Mark D

    2016-10-01

    Neural spike trains are commonly characterized as a Poisson point process. However, the Poisson assumption is a poor model for spiking in auditory nerve fibres because it is known that interspike intervals display positive correlation over long time scales and negative correlation over shorter time scales. We have therefore developed a biophysical model based on the well-known Meddis model of the peripheral auditory system, to produce simulated auditory nerve fibre spiking statistics that more closely match the firing correlations observed in empirical data. We achieve this by introducing biophysically realistic ion channel noise to an inner hair cell membrane potential model that includes fractal fast potassium channels and deterministic slow potassium channels. We succeed in producing simulated spike train statistics that match empirically observed firing correlations. Our model thus replicates macro-scale stochastic spiking statistics in the auditory nerve fibres due to modeling stochasticity at the micro-scale of potassium channels. PMID:27480847

  1. The CFTR ion channel: gating, regulation, and anion permeation.

    PubMed

    Hwang, Tzyh-Chang; Kirk, Kevin L

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated anion channel with two remarkable distinctions. First, it is the only ATP-binding cassette (ABC) transporter that is known to be an ion channel--almost all others function as transport ATPases. Second, CFTR is the only ligand-gated channel that consumes its ligand (ATP) during the gating cycle--a consequence of its enzymatic activity as an ABC transporter. We discuss these special properties of CFTR in the context of its evolutionary history as an ABC transporter. Other topics include the mechanisms by which CFTR gating is regulated by phosphorylation of its unique regulatory domain and our current view of the CFTR permeation pathway (or pore). Understanding these basic operating principles of the CFTR channel is central to defining the mechanisms of action of prospective cystic fibrosis drugs and to the development of new, rational treatment strategies. PMID:23284076

  2. Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels.

    PubMed

    Cranfield, Charles G; Bettler, Taren; Cornell, Bruce

    2015-01-01

    The nanoscale spacing between a tethered lipid bilayer membrane (tBLM) and its supporting gold electrode can be utilized to determine the polarity selectivity of the conduction of ion channels and ion carriers embedded in a membrane. The technique relies upon a bias voltage sequestering or eliminating ions, of a particular polarity, into or out of the aqueous electrolyte region between the gold electrode and the tethered membrane. A demonstration is given, using ac swept frequency impedance spectrometry, of the bias polarity dependence of the ionophore conductance of gramicidin A, a cationic selective channel, and valinomycin, a potassium ion selective carrier. We further use pulsed amperometry to show that the intrinsic voltage dependence of the ion conduction is actually selective of the polarity of the transported ion and not simply of the direction of the ionic current flow. PMID:25474616

  3. Thermal Responsive Ion Selectivity of Uranyl Peroxide Nanocages: An Inorganic Mimic of K(+) Ion Channels.

    PubMed

    Gao, Yunyi; Szymanowski, Jennifer E S; Sun, Xinyu; Burns, Peter C; Liu, Tianbo

    2016-06-01

    An actinyl peroxide cage cluster, Li48+m K12 (OH)m [UO2 (O2 )(OH)]60 (H2 O)n (m≈20 and n≈310; U60 ), discriminates precisely between Na(+) and K(+) ions when heated to certain temperatures, a most essential feature for K(+) selective filters. The U60 clusters demonstrate several other features in common with K(+) ion channels, including passive transport of K(+) ions, a high flux rate, and the dehydration of U60 and K(+) ions. These qualities make U60 (a pure inorganic cluster) a promising ion channel mimic in an aqueous environment. Laser light scattering (LLS) and isothermal titration calorimetry (ITC) studies revealed that the tailorable ion selectivity of U60 clusters is a result of the thermal responsiveness of the U60 hydration shells. PMID:27105921

  4. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  5. Atypical calcium regulation of the PKD2-L1 polycystin ion channel

    PubMed Central

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-01-01

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca2+) moving into the cell, but blocked by high internal Ca2+concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca2+-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca2+ ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca2+ flow, enabling Ca2+ to enter but not leave small compartments such as the cilium. DOI: http://dx.doi.org/10.7554/eLife.13413.001 PMID:27348301

  6. Atypical calcium regulation of the PKD2-L1 polycystin ion channel.

    PubMed

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-01-01

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca(2+)) moving into the cell, but blocked by high internal Ca(2+)concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca(2+)-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca(2+) ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca(2+) flow, enabling Ca(2+) to enter but not leave small compartments such as the cilium. PMID:27348301

  7. Epithelial P2X purinergic receptor channel expression and function

    PubMed Central

    Taylor, Amanda L.; Schwiebert, Lisa M.; Smith, Jeffrey J.; King, Chris; Jones, Julie R.; Sorscher, Eric J.; Schwiebert, Erik M.

    1999-01-01

    P2X purinergic receptor (P2XR) channels bind ATP and mediate Ca2+ influx — 2 signals that stimulate secretory Cl– transport across epithelia. We tested the hypotheses that P2XR channels are expressed by epithelia and that P2XRs transduce extracellular ATP signals into stimulation of Cl– transport across epithelia. Electrophysiological data and mRNA analysis of human and mouse pulmonary epithelia and other epithelial cells indicate that multiple P2XRs are broadly expressed in these tissues and that they are active on both apical and basolateral surfaces. Because P2X-selective agonists bind multiple P2XR subtypes, and because P2X agonists stimulate Cl– transport across nasal mucosa of cystic fibrosis (CF) patients as well as across non-CF nasal mucosa, P2XRs may provide novel targets for extracellular nucleotide therapy of CF. PMID:10510328

  8. Peptides inhibitors of acid-sensing ion channels.

    PubMed

    Diochot, S; Salinas, M; Baron, A; Escoubas, P; Lazdunski, M

    2007-02-01

    Acid-sensing ion channels (ASICs) channels are proton-gated cationic channels mainly expressed in central and peripheric nervous system and related to the epithelial amiloride-sensitive Na(+) channels and to the degenerin family of ion channels. ASICs comprise four proteins forming functional channel subunits (ASIC1a, ASIC1b, ASIC2a, and ASIC3) and two proteins (ASIC2b and ASIC4) without yet known activators. Functional channels are activated by external pH variations ranging from pH(0.5) 6.8 to 4.0 and currents are characterized by either rapid kinetics of inactivation (ASIC1a, ASIC1b, ASIC3) or slow kinetics of inactivation (ASIC2a) and sometimes the presence of a plateau phase (ASIC3). ASIC1a and ASIC3, which are expressed in nociceptive neurons, have been implicated in inflammation and knockout mice studies support the role of ASIC3 in various pain processes. ASIC1a seems more related to synaptic plasticity, memory, learning and fear conditioning in the CNS. ASIC2a contributes to hearing in the cochlea, sour taste sensation, and visual transduction in the retina. The pharmacology of ASICs is limited to rather nonselective drugs such as amiloride, nonsteroid anti-inflammatory drugs, and neuropeptides. Recently, two peptides, PcTx1 and APETx2, isolated from a spider and a sea anemone, have been characterized as selective and high-affinity inhibitors for ASIC1a and ASIC3 channels, respectively. PcTx1 inhibits ASIC1a homomers with an affinity of 0.7 nM (IC(50)) without any effect on ASIC1a containing heteromers and thus helped to characterize ASIC1a homomeric channels in peripheric and central neurons. PcTx1 acts as a gating modifier since it shifts the channel from the resting to an inactivated state by increasing its affinity for H(+). APETx2 is less selective since it inhibits several ASIC3-containing channels (IC(50) from 63 nM to 2 microM) and to date its mode of action is unknown. Nevertheless, APETx2 structure is related to other sea anemone peptides, which

  9. The role of transient receptor potential channels in metabolic syndrome.

    PubMed

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-11-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP) canonical (TRPC), vanilloid (TRPV), and melastatin (TRPM) channels, have been associated with the development of cardiovascular diseases. Thus, disruption of TRP channel expression or function may account for the observed increased cardiovascular risk in metabolic syndrome patients. TRPV1 regulates adipogenesis and inflammation in adipose tissues, whereas TRPC3, TRPC5, TRPC6, TRPV1, and TRPM7 are involved in vasoconstriction and regulation of blood pressure. Other members of the TRP family are involved in regulation of insulin secretion, lipid composition, and atherosclerosis. Although there is no evidence that a single TRP channelopathy may be the cause of all metabolic syndrome characteristics, further studies will help to clarify the role of specific TRP channels involved in the metabolic syndrome. (Hypertens Res 2008; 31: 1989-1995). PMID:19098369

  10. Ion channels in mesenchymal stem cells from rat bone marrow.

    PubMed

    Li, Gui-Rong; Deng, Xiu-Ling; Sun, Haiying; Chung, Stephen S M; Tse, Hung-Fat; Lau, Chu-Pak

    2006-06-01

    Mesenchymal stem cells (MSCs) from bone marrow are believed to be an ideal cell source for cardiomyoplasty; however, cellular electrophysiology is not understood. The present study was designed to investigate ion channels in undifferentiated rat MSCs. It was found that three types of outward currents were present in rat MSCs, including a small portion of Ca(2+)-activated K(+) channel (I(KCa)) sensitive to inhibition by iberiotoxin and/or clotromazole, a delayed rectifier K(+) current (IK(DR)), and a transient outward K(+) current (I(to)). In addition, tetrodotoxin (TTX)-sensitive sodium current (I(Na.TTX)) and nifedipine-sensitive L-type Ca(2+) current (I(Ca.L)) were found in a small population of rat MSCs. Moreover, reverse transcription-polymerase chain reaction revealed the molecular evidence of mRNA for the functional ionic currents, including Slo and KCNN4 for I(KCa); Kv1.4 for I(to); Kv1.2 and Kv2.1 for IK(DR); SCN2a1 for I(Na.TTX); and CCHL2a for I(Ca.L). These results demonstrate for the first time that multiple functional ion channel currents (i.e., I(KCa), I(to), IK(DR), I(Na.TTX), and I(Ca.L)) are present in rat MSCs from bone marrow; however, physiological roles of these ion channels remain to be studied. PMID:16484345

  11. Convergence of ion channel genome content in early animal evolution.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H

    2015-02-24

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  12. Convergence of ion channel genome content in early animal evolution

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2015-01-01

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  13. Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels

    NASA Astrophysics Data System (ADS)

    Liu, Shian; Lockless, Steve W.

    2013-11-01

    Potassium (K+) channels are selective for K+ over Na+ ions during their transport across membranes. We and others have previously shown that tetrameric K+ channels are primarily occupied by K+ ions in their selectivity filters under physiological conditions, demonstrating the channel’s intrinsic equilibrium preference for K+ ions. Based on this observation, we hypothesize that the preference for K+ ions over Na+ ions in the filter determines its selectivity during ion conduction. Here, we ask whether non-selective cation channels, which share an overall structure and similar individual ion-binding sites with K+ channels, have an ion preference at equilibrium. The variants of the non-selective Bacillus cereus NaK cation channel we examine are all selective for K+ over Na+ ions at equilibrium. Thus, the detailed architecture of the K+ channel selectivity filter, and not only its equilibrium ion preference, is fundamental to the generation of selectivity during ion conduction.

  14. [Acid-Sensing Ion Channels (ASICs) in pain].

    PubMed

    Lingueglia, Eric

    2014-01-01

    The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels. PMID:24948015

  15. Redox Regulation of Ion Channels in the Pulmonary Circulation

    PubMed Central

    Weir, Edward Kenneth

    2015-01-01

    Abstract Significance: The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. Recent Advances: Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. Critical Issues: Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. Future Directions: Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies. Antioxid. Redox Signal. 22, 465–485. PMID:24702125

  16. 50 years of ion channeling in materials science

    NASA Astrophysics Data System (ADS)

    Vantomme, André

    2016-03-01

    In the early days of ion beam analysis, i.e. the early 60s, channeling was discovered and brought to maturity via a combined effort in experimental, computational and theoretical research. It was soon realized that the probability for nuclear interaction (such as nuclear scattering, nuclear reactions, ionization followed by X-ray emission…) would significantly decrease when steering the ion beam along a crystallographic direction of a single crystal. Hence, this effect would be optimally suited to investigate a wide range of materials properties related to their crystal structure, such as defects, elastic strain, the lattice site of impurities, as well as phonon-related properties. In this paper, I will briefly review some of the pioneering work, which led to the discovery and theoretical understanding of ion channeling. Subsequently, a number of applications will be discussed where the strength of the ion beam analysis technique allows deducing information which is often hardly (or not) attainable by other techniques. Throughout the paper, I will reflect on the future of channeling in materials research, and pay special attention to potential pitfalls, challenges and opportunities.

  17. TRP ion channels in thermosensation, thermoregulation and metabolism

    PubMed Central

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022

  18. TRP ion channels in thermosensation, thermoregulation and metabolism.

    PubMed

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022

  19. Organization of Ion Channels in the Myelinated Nerve Fiber

    NASA Astrophysics Data System (ADS)

    Waxman, Stephen G.; Murdoch Ritchie, J.

    1985-06-01

    The functional organization of the mammalian myelinated nerve fiber is complex and elegant. In contrast to nonmyelinated axons, whose membranes have a relatively uniform structure, the mammalian myelinated axon exhibits a high degree of regional specialization that extends to the location of voltage-dependent ion channels within the axon membrane. Sodium and potassium channels are segregated into complementary membrane domains, with a distribution reflecting that of the overlying Schwann or glial cells. This complexity of organization has important implications for physiology and pathophysiology, particularly with respect to the development of myelinated fibers.

  20. Lipid bilayer array for simultaneous recording of ion channel activities

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  1. Acid-sensing ion channels in pain and disease

    PubMed Central

    Wemmie, John A.; Taugher, Rebecca J.; Kreple, Collin J.

    2015-01-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered. PMID:23783197

  2. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons

    PubMed Central

    Kim, Sang Hoon; Lee, Youngseok; Akitake, Bradley; Woodward, Owen M.; Guggino, William B.; Montell, Craig

    2010-01-01

    Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)β and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation channels required in insect GRNs are unknown. Here, we set out to explore additional sensory roles for the Drosophila TRPA1 channel, which was known to function in thermosensation. We found that TRPA1 was expressed in GRNs that respond to aversive compounds. Elimination of TRPA1 had no impact on the responses to nearly all bitter compounds tested, including caffeine, quinine, and strychnine. Rather, we found that TRPA1 was required in a subset of avoidance GRNs for the behavioral and electrophysiological responses to aristolochic acid. TRPA1 did not appear to be activated or inhibited directly by aristolochic acid. We found that elimination of the same PLC that leads to activation of TRPA1 in thermosensory neurons was also required in the TRPA1-expressing GRNs for avoiding aristolochic acid. Given that mammalian TRPA1 is required for responding to noxious chemicals, many of which cause pain and injury, our analysis underscores the evolutionarily conserved role for TRPA1 channels in chemical avoidance. PMID:20404155

  3. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  4. Transient receptor potential cation channels in visceral sensory pathways

    PubMed Central

    Blackshaw, L Ashley

    2014-01-01

    The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano-and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24641218

  5. Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels.

    PubMed

    Kawasaki, Brian T; Liao, Yanhong; Birnbaumer, Lutz

    2006-01-10

    Receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) are known to be inhibited by tyrosine kinase inhibitors and activation of C-type transient receptor potential channel (TRPC) isoform 3 (TRPC3), a cation channel thought to be involved in SOCE and/or ROCE, was recently shown to depend on src tyrosine kinase activity. What is not known is the step at which src acts on TRPC3 and whether the role for tyrosine kinases in ROCE or SOCE is a general phenomenon. Using in vitro and in cell protein-protein interaction assays we now report that src phosphorylates TRPC3 at Y226 and that formation of phospho-Y226 is essential for TRPC3 activation. This requirement is unique for TRPC3 because (i) mutation of the cognate tyrosines of the closely related TRPC6 and TRPC7 had no effect; (ii) TRPC6 and TRPC7 were activated in src-, yes-, and fyn-deficient cells; and (iii) src, but not yes or fyn, rescued TRPC3 activation in src-, yes-, and fyn-deficient cells. The Src homology 2 domain of src was found to interact with either the N or the C termini of all TRPCs, suggesting that other tyrosine kinases may play a role in ion fluxes mediated by TRPCs other than TRPC3. A side-by-side comparison of the effects of genistein (a general tyrosine kinase inhibitor) on endogenous ROCE and SOCE in mouse fibroblasts, HEK and COS-7 cells, and ROCE in HEK cells mediated by TRPC3, TRPC6, TRPC7, and TRPC5 showed differences that argue for ROCE and SOCE channels to be heterogeneous. PMID:16407161

  6. Automatable lipid bilayer formation for ion channel studies

    NASA Astrophysics Data System (ADS)

    Poulos, Jason L.; Bang, Hyunwoo; Jeon, Tae-Joon; Schmidt, Jacob J.

    2008-08-01

    Transmembrane proteins and ion channels are important drug targets and have been explored as single molecule sensors. For these proteins to function normally they must be integrated within lipid bilayers; however, the labor and skill required to create artificial lipid bilayers have the limited the possible applications utilizing these proteins. In order to reduce the complexity and cost of lipid bilayer formation and measurement, we have modified a previously published lipid bilayer formation technique using mechanically contacted monolayers so that the process is automatable, requiring minimal operator input. Measurement electronics are integrated with the fluid handling system, greatly reducing the time and operator feedback characteristically required of traditional bilayer experiments. To demonstrate the biological functionality of the resultant bilayers and the system's capabilities as a membrane platform, the ion channel gramicidin A was incorporated and measured with this system.

  7. Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.

    PubMed

    Mamad-Hemouch, Hajar; Ramoul, Hassen; Abou Taha, Mohammad; Bacri, Laurent; Huin, Cécile; Przybylski, Cédric; Oukhaled, Abdelghani; Thiébot, Bénédicte; Patriarche, Gilles; Jarroux, Nathalie; Pelta, Juan

    2015-11-11

    Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered. PMID:26471761

  8. Laser induced electron acceleration in an ion-channel guiding

    SciTech Connect

    Esmaeilzadeh, Mahdi; Taghavi, Amin; Hanifpour, Maryam

    2011-09-15

    Direct electron acceleration by a propagating laser pulse of circular polarization in an ion-channel guiding is studied by developing a relativistic three-dimensional single particle code. The electron chaotic dynamic is also studied using time series, power spectrum, and Liapunov exponent. It is found that the electron motion is regular (non-chaotic) for laser pulse with short time duration, while for long enough time duration, the electron motion may be chaotic. In the case of non-chaotic motion, the electron can gain and retain very high energy in the presence of ion-channel before reaching the steady-state, whereas in the case of chaotic motion, the electron gains energy and then loses it very rapidly in an unpredictable manner.

  9. Ion channel recordings on an injection-molded polymer chip.

    PubMed

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system. PMID:24154831

  10. Inherent Dynamics of the Acid-Sensing Ion Channel 1 Correlates with the Gating Mechanism

    PubMed Central

    Li, Wei-Guang; Yu, Fang; Cao, Hui; Xu, Tian-Le; Jiang, Hualiang

    2009-01-01

    The acid-sensing ion channel 1 (ASIC1) is a key receptor for extracellular protons. Although numerous structural and functional studies have been performed on this channel, the structural dynamics underlying the gating mechanism remains unknown. We used normal mode analysis, mutagenesis, and electrophysiological methods to explore the relationship between the inherent dynamics of ASIC1 and its gating mechanism. Here we show that a series of collective motions among the domains and subdomains of ASIC1 correlate with its acid-sensing function. The normal mode analysis result reveals that the intrinsic rotation of the extracellular domain and the collective motions between the thumb and finger induced by proton binding drive the receptor to experience a deformation from the extracellular domain to the transmembrane domain, triggering the channel pore to undergo “twist-to-open” motions. The movements in the transmembrane domain indicate that the likely position of the channel gate is around Leu440. These motion modes are compatible with a wide body of our complementary mutations and electrophysiological data. This study provides the dynamic fundamentals of ASIC1 gating. PMID:19597538

  11. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation

    PubMed Central

    Kweon, Hae-Jin; Suh, Byung-Chang

    2013-01-01

    Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304] PMID:23790972

  12. Ion channels go to Stockholm--this time as proteins.

    PubMed

    Miller, Christopher

    2003-12-18

    The 2003 Nobel Prize in Chemistry was awarded to two structural biologists, Roderick Mackinnon of Rockefeller University and Peter Agre of Johns Hopkins University, for their groundbreaking work on the structure and function of ion channels. In recognition of the outstanding impact that MacKinnon's work has had for neuroscience, Chris Miller traces MacKinnon's scientific path to the Nobel Prize. PMID:14687537

  13. Melatonin receptor and KATP channel modulation in experimental vascular dementia.

    PubMed

    Singh, Prabhat; Gupta, Surbhi; Sharma, Bhupesh

    2015-04-01

    Cerebrovascular and cardiovascular diseases are stated as important risk factors of vascular dementia (VaD) and other cognitive disorders. In the central nervous system, melatonin (MT1/MT2) as well as serotonin subtype 2C (5-HT2C) receptors is pharmacologically associated with various neurological disorders. Brain mitochondrial potassium channels have been reported for their role in neuroprotection. This study has been structured to investigate the role of agomelatine, a melatonergic MT1/MT2 agonist and nicorandil, a selective ATP sensitive potassium (KATP) channel opener in renal artery ligation (two-kidney-one-clip: 2K1C) hypertension induced endothelial dysfunction, brain damage and VaD. 2K1C-renovascular hypertension has increased mean arterial blood pressure (MABP), impaired memory (elevated plus maze and Morris water maze), endothelial function, reduced serum nitrite/nitrate and increased brain damage (TTC staining of brain sections). Furthermore, 2K1C animals have shown high levels of oxidative stress in serum (increased thiobarbituric acid reactive species-TBARS with decreased levels of glutathione-GSH, superoxide dismutase-SOD and catalase-CAT), in the aorta (increased aortic superoxide anion) and in the brain (increased TBARS with decreased GSH, SOD and CAT). 2K1C has also induced a significant increase in brain inflammation (myeloperoxidase-MPO levels), acetylcholinesterase activity (AChE) and calcium levels. Impairment in mitochondrial complexes like NADH dehydrogenase (complex-I), succinate dehydrogenase (complex-II) and cytochrome oxidase (complex-IV) was also noted in 2K1C animals. Administration of agomelatine, nicorandil and donepezil significantly attenuated 2K1C-hypertension induced impairments in memory, endothelial function, nitrosative stress, mitochondrial dysfunction, inflammation and brain damage. Therefore, modulators of MT1/MT2 receptors and KATP channels may be considered as potential agents for the management of renovascular

  14. The CFTR Ion Channel: Gating, Regulation, and Anion Permeation

    PubMed Central

    Hwang, Tzyh-Chang; Kirk, Kevin L.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated anion channel with two remarkable distinctions. First, it is the only ATP-binding cassette (ABC) transporter that is known to be an ion channel—almost all others function as transport ATPases. Second, CFTR is the only ligand-gated channel that consumes its ligand (ATP) during the gating cycle—a consequence of its enzymatic activity as an ABC transporter. We discuss these special properties of CFTR in the context of its evolutionary history as an ABC transporter. Other topics include the mechanisms by which CFTR gating is regulated by phosphorylation of its unique regulatory domain and our current view of the CFTR permeation pathway (or pore). Understanding these basic operating principles of the CFTR channel is central to defining the mechanisms of action of prospective cystic fibrosis drugs and to the development of new, rational treatment strategies. PMID:23284076

  15. Transient Receptor Potential Channels and Corneal Stromal Inflammation.

    PubMed

    Okada, Yuka; Reinach, Peter S; Shirai, Kumi; Kitano-Izutani, Ai; Miyajima, Masayasu; Yamanaka, Osamu; Sumioka, Takayoshi; Saika, Shizuya

    2015-11-01

    Corneal transparency is dependent on the maintenance of the structural integrity and functional activity of its epithelial and endothelial limiting layers and the stroma. Different transient receptor potential (TRP) channel subtypes are expressed in cells and on corneal sensory nerve endings. They serve as sensors and transducers of environmental stimuli that can reduce tissue transparency. These nonselective cation channels are members of a superfamily sharing TRP box protein sequence homology having 6 membrane spanning domains with a pore between the fifth and sixth segments. TRP channels are composed of 4 monomeric subunits that oligomerize in homomeric or heteromeric configurations derived from different TRP subtypes belonging to the same or any of 6 different subfamilies. TRP subfamily members identified in the cornea include those belonging to the canonical, vanilloid, ankyrin, or melastatin subfamilies. In this review, we specifically focus on the functional roles of TRPV1 and TRPA1 expression in the cornea as their activation provides adaptive nociceptive and immune responses to noxious environmental stresses such as irritating ligands, temperature fluctuations, rises in ambient osmolarity, mechanical stretch, decline in pH, and tissue injury. Our previous studies have indicated that TRPV1 and TRPA1 subtypes are potential drug targets for improving corneal wound healing after alkali burns, because injury-induced fibrosis, neovascularization, and inflammation in either TRPV1 or TRPA1 gene-silenced mice were all significantly reduced. PMID:26448171

  16. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  17. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease. PMID:27430889

  18. Modeling negative ion defect migration through the gramicidin A channel.

    PubMed

    Nemukhin, Alexander V; Kaliman, Ilya A; Moskovsky, Alexander A

    2009-08-01

    The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol(-1) which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol(-1). Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. PMID:19198898

  19. Peptidomimetic Star Polymers for Targeting Biological Ion Channels.

    PubMed

    Chen, Rong; Lu, Derong; Xie, Zili; Feng, Jing; Jia, Zhongfan; Ho, Junming; Coote, Michelle L; Wu, Yingliang; Monteiro, Michael J; Chung, Shin-Ho

    2016-01-01

    Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery. PMID:27007701

  20. Peptidomimetic Star Polymers for Targeting Biological Ion Channels

    PubMed Central

    Chen, Rong; Lu, Derong; Xie, Zili; Feng, Jing; Jia, Zhongfan; Ho, Junming; Coote, Michelle L.; Wu, Yingliang; Monteiro, Michael J.; Chung, Shin-Ho

    2016-01-01

    Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery. PMID:27007701

  1. Synthetic ion channels: from pores to biological applications.

    PubMed

    Gokel, George W; Negin, Saeedeh

    2013-12-17

    In this Account, we describe the development of several diverse families of synthetic, membrane-active amphiphiles that form pores and facilitate transport within membrane bilayers. For the most part, the compounds are amphiphiles that insert into the bilayer and form pores either on their own or by self-assembly. The first family of synthetic ion channels prepared in our lab, the hydraphiles, used crown ethers as head groups and as a polar central element. In a range of biophysical studies, we showed that the hydraphiles formed unimolecular pores that spanned the bilayer. They mediated the transport of Na(+) and K(+) but were blocked by Ag(+). The hydraphiles are nonrectifying and disrupt ion homeostasis. As a result, these synthetic ion channels are toxic to various bacteria and yeast, a feature that has been used therapeutically in direct injection chemotherapy. We also developed a family of amphiphilic heptapeptide ion transporters that selected Cl(-) >10-fold over K(+) and showed voltage dependent gating. The formed pores were approximately dimeric, and variations in the N- and C-terminal anchor chains and the acids affected transport rates. Surprisingly, the longer N-terminal anchor chains led to less transport but greater Cl(-) selectivity. A proline residue, which is present in the ClC protein channel's conductance pore, proved to be critical for Cl(-) transport selectivity. Pyrogallol[4]arenes are macrocycles formed by acid-catalyzed condensation of four 1,2,3- trihydroxybenzenes with four aldehydes. The combination of 12 hydroxyl groups on one face of the macrocycle and four pendant alkyl chains conferred considerable amphiphilicity to these compounds. The pyrogallol[4]arenes inserted into bilayer membranes and conducted ions. Based on our experimental evidence, the ions passed through a self-assembled pore comprising four or five amphiphiles rather than passing through the central opening of a single macrocycle. Pyrogallol[4]arenes constructed with

  2. TRPM7 and TRPM8 Ion Channels in Pancreatic Adenocarcinoma: Potential Roles as Cancer Biomarkers and Targets

    PubMed Central

    Yee, Nelson S.; Chan, Ada S.; Yee, Julian D.; Yee, Rosemary K.

    2012-01-01

    Transient receptor potential (TRP) ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer. PMID:24278689

  3. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist. PMID:23659057

  4. Systems biology of ion channels and transporters in tumor angiogenesis: An omics view.

    PubMed

    Munaron, L

    2015-10-01

    Solid tumors require the formation of new blood vessels to support their growth, invasiveness and metastatic potential. Tumor neovascularization is achieved by vasculogenesis from endothelial precursors and by sprouting angiogenesis from preexisting vessels. The complex sequence of events driving these processes, including endothelial activation, proliferation, migration and differentiation, is associated with fluxes of ions, water and other small molecules mediated by a great pool of ion channels and transporters (ICT). This 'transportome' is regulated by environmental factors as well as intracellular signaling molecules. In turn, ICT play a prominent role in the response to angiogenesis-related stimuli through canonical and 'unconventional' activities: indeed, there is an increasing recognition of the multifunctionality of several ion channels that could also be annotated as receptors, enzymes, scaffolding proteins, mechanical and chemical sensors. The investigation of ICT structure and function has been far from the experimental oncology for long time and these two domains converged only very recently. Furthermore, the systems biology viewpoint has not received much attention in the biology of cancer transportome. Modulating angiogenesis by interference with membrane transport has a great potential in cancer treatment and the application of an 'omics' logic will hopefully contribute to the overall advancement in the field. This review is an attempt to apply the systems biology approach to the analysis of ICT involved in tumor angiogenesis, with a particular focus on endothelial transportome diversity. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25450338

  5. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    PubMed Central

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  6. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-11-24

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  7. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-01-01

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  8. Investigation of the alpha(1)-glycine receptor channel-opening kinetics in the submillisecond time domain.

    PubMed

    Grewer, C

    1999-08-01

    The activation and desensitization kinetics of the human alpha(1)-homooligomeric glycine receptor, which was transiently expressed in HEK 293 cells, were studied with a 100-microseconds time resolution to determine the rate and equilibrium constants of individual receptor reaction steps. Concentration jumps of the activating ligands glycine and beta-alanine were initiated by photolysis of caged, inactive precursors and were followed by neurotransmitter binding, receptor-channel opening, and receptor desensitization steps that were separated along the time axis. Analysis of the ligand concentration-dependence of these processes allows the determination of 1) the rate constants of glycine binding, k(+1) approximately 10(7) M(-1) s(-1), and dissociation, k(-1) = 1900 s(-1); 2) the rates of receptor-channel opening, k(op) = 2200 s(-1), and closing, k(cl) = 38 s(-1); 3) the receptor desensitization rate, alpha = 0.45 s(-1); 4) the number of occupied ligand binding sites necessary for receptor-channel activation and desensitization, n >/= 3; and 5) the maximum receptor-channel open probability, p(0) > 0.95. The kinetics of receptor-channel activation are insensitive to the transmembrane potential. A general model for glycine receptor activation explaining the experimental data consists of a sequential mechanism based on rapid ligand-binding steps preceding a rate-limiting receptor-channel opening reaction and slow receptor desensitization. PMID:10423421

  9. Structural and Single-Channel Results Indicate that the Rates of Ligand Binding Domain Closing and Opening Directly Impact AMPA Receptor Gating

    SciTech Connect

    Zhang,W.; Cho, Y.; Lolis, E.; Howe, J.

    2008-01-01

    At most excitatory central synapses, glutamate is released from presynaptic terminals and binds to postsynaptic AMPA receptors, initiating a series of conformational changes that result in ion channel opening. Efficient transmission at these synapses requires that glutamate binding to AMPA receptors results in rapid and near-synchronous opening of postsynaptic receptor channels. In addition, if the information encoded in the frequency of action potential discharge is to be transmitted faithfully, glutamate must dissociate from the receptor quickly, enabling the synapse to discriminate presynaptic action potentials that are spaced closely in time. The current view is that the efficacy of agonists is directly related to the extent to which ligand binding results in closure of the binding domain. For glutamate to dissociate from the receptor, however, the binding domain must open. Previously, we showed that mutations in glutamate receptor subunit 2 that should destabilize the closed conformation not only sped deactivation but also altered the relative efficacy of glutamate and quisqualate. Here we present x-ray crystallographic and single-channel data that support the conclusions that binding domain closing necessarily precedes channel opening and that the kinetics of conformational changes at the level of the binding domain importantly influence ion channel gating. Our findings suggest that the stability of the closed-cleft conformation has been tuned during evolution so that glutamate dissociates from the receptor as rapidly as possible but remains an efficacious agonist.

  10. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    PubMed

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  11. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    PubMed

    Diaz-Sylvester, Paula L; Porta, Maura; Copello, Julio A

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  12. Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations

    PubMed Central

    Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  13. Progress in Development of Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  14. Ion channels and transporters in tumour cell migration and invasion

    PubMed Central

    Schwab, Albrecht; Stock, Christian

    2014-01-01

    Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca2+ and H+ signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated. PMID:24493750

  15. Allosteric regulation of pentameric ligand-gated ion channels

    PubMed Central

    Taly, Antoine; Hénin, Jérôme; Changeux, Jean-Pierre; Cecchini, Marco

    2014-01-01

    Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies. PMID:25478624

  16. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization.

    PubMed

    Krauson, Aram J; Carattino, Marcelo D

    2016-05-20

    Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization. PMID:27015804

  17. Acid-sensing ion channels in pathological conditions

    PubMed Central

    Chu, Xiang-Ping; Xiong, Zhi-Gang

    2013-01-01

    Acid-sensing ion channels (ASICs), a novel family of proton-gated amiloride-sensitive cation channels, are expressed primarily in neurons of peripheral sensory and central nervous systems. Recent studies have shown that activation of ASICs, particularly the ASIC1a channels, plays a critical role in neuronal injury associated with neurological disorders such as brain ischemia, multiple sclerosis, and spinal cord injury, etc. In normal conditions in vitro, ASIC1a channels desensitize rapidly in the presence of a continuous acidosis or following a pre-exposure to minor pH drop, raising doubt for their contributions to the acidosis-mediated neuronal injury. It is now known that the properties of ASICs can be dramatically modulated by signaling molecules or biochemical changes associated with pathological conditions. Modulation of ASICs by these molecules can lead to dramatically enhanced and/or prolonged activities of these channels thus promoting their pathological functions. Understanding of how ASICs behave in pathological conditions may help define new strategies for the treatment and/or prevention of neuronal injury associated with various neurological disorders. PMID:23224900

  18. Mn ions pass through calcium channels. A possible explanation

    PubMed Central

    1983-01-01

    The divalent transition-metal cations Fe, Co, and Ni were used to test the hypothesis that Mn ions pass through calcium channels because Mn ions have a relatively low energy of hydration. The test ions were applied to the bath and comparisons were made of their effects on Ca or Mn spikes elicited from myoepithelial cells of the proventriculus of the polychaete worm Syllis spongiphila. Control experiments showed that (a) results obtained using deoxygenated solutions (required to stabilize Fe2+ ions) could be compared with those using solutions containing oxygen, and (b) the test cations did not measurably affect the electrical coupling between cells. Ca