Science.gov

Sample records for characteristic diffusion length

  1. Effect of short wavelength illumination on the characteristic bulk diffusion length in ribbon silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ho, C. T.; Mathias, J. D.

    1981-01-01

    The influence of short wavelength light on the characteristic bulk minority carrier diffusion length of the ribbon silicon photovoltaic cell has been investigated. We have measured the intensity and wavelength dependence of the diffusion length in an EFG ribbon cell, and compared it with a standard Czochralski grown silicon cell. While the various short wavelength illuminations have shown no influence on the diffusion length in the CZ cell, the diffusion lengths in the ribbon cell exhibit a strong dependence on the volume generation rate as well as on the wavelength of the superimposed lights. We have concluded that the trap-filling phenomenon at various depths in the bulk neutral region of the cell is consistent with the experimental observation.

  2. Diffusion length and resistivity distribution characteristics of silicon wafer by photoluminescence

    SciTech Connect

    Baek, Dohyun; Lee, Jaehyeong; Choi, Byoungdeog

    2014-10-15

    Highlights: • Analytical photoluminescence efficiency calculation and PL intensity ratio method are developed. • Wafer resistivity and diffusion length characteristics are investigated by PL intensity ratio. • PL intensity is well correlated with resistivity, diffusion length or defect density on wafer measurement. - Abstract: Photoluminescence is a convenient, contactless method to characterize semiconductors. Its use for room-temperature silicon characterization has only recently been implemented. We have developed the PL efficiency theory as a function of substrate doping densities, bulk trap density, photon flux density, and reflectance and compared it with experimental data initially for bulk Si wafers. New developed PL intensity ratio method is able to predict the silicon wafer properties, such as doping densities, minority carrier diffusion length and bulk trap density.

  3. The Influence of Spatial Variations of Diffusion Length on Charge Collected by Diffusion from Ion Tracks

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.

    1996-01-01

    Charge collected by diffusion from ion tracks in a semiconductor substrate may be influenced by the substrate diffusion length, which is related to recombination losses. A theoretical analysis shows that, excluding some extreme cases, charge collection is insensitive to spatial variations in the diffusion length funciton, so it is possible to define an effective diffusion length having the property that collected charge can be approximated by assuming a uniform diffusion length equal to this effective value.

  4. Diffusion lengths in amphoteric GaAs heteroface solar cells

    NASA Technical Reports Server (NTRS)

    Ashley, K. L.; Beal, S. W.

    1978-01-01

    Minority-carrier diffusion lengths in amphoteric GaAs:Si were investigated. Electron and hole diffusion lengths in p- and n-type, respectively, were determined to be 13 microns and 7 microns. Preliminary efficiency measurements on heteroface structures based on amphoteric GaAs:Si p-n junctions indicated that these devices should make excellent solar cells.

  5. Characteristic length of the knotting probability revisited

    NASA Astrophysics Data System (ADS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-09-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(-N/NK), where the estimates of parameter NK are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius rex, i.e. the screening length of double-stranded DNA.

  6. A novel method to evaluate spin diffusion length of Pt

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-qing; Sun, Niu-yi; Che, Wen-ru; Shan, Rong; Zhu, Zhen-gang

    2016-05-01

    Spin diffusion length of Pt is evaluated via proximity effect of spin orbit coupling (SOC) and anomalous Hall effect (AHE) in Pt/Co2FeAl bilayers. By varying the thicknesses of Pt and Co2FeAl layer, the thickness dependences of AHE parameters can be obtained, which are theoretically predicted to be proportional to the square of the SOC strength. According to the physical image of the SOC proximity effect, the spin diffusion length of Pt can easily be identified from these thickness dependences. This work provides a novel method to evaluate spin diffusion length in a material with a small value.

  7. Diffusion lengths of silicon solar cells from luminescence images

    SciTech Connect

    Wuerfel, P.; Trupke, T.; Puzzer, T.; Schaeffer, E.; Warta, W.; Glunz, S. W.

    2007-06-15

    A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed here gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.

  8. Characteristic lengths affecting evaporative drying of porous media.

    PubMed

    Lehmann, Peter; Assouline, Shmuel; Or, Dani

    2008-05-01

    Evaporation from porous media involves mass and energy transport including phase change, vapor diffusion, and liquid flow, resulting in complex displacement patterns affecting drying rates. Force balance considering media properties yields characteristic lengths affecting the transition in the evaporation rate from a liquid-flow-based first stage limited only by vapor exchange with air to a second stage controlled by vapor diffusion through the medium. The characteristic lengths determine the extent of the hydraulically connected region between the receding drying front and evaporating surface (film region) and the onset of flow rate limitations through this film region. Water is displaced from large pores at the receding drying front to supply evaporation from hydraulically connected finer pores at the surface. Liquid flow is driven by a capillary pressure gradient spanned by the width of the pore size distribution and is sustained as long as the capillary gradient remains larger than gravitational forces and viscous dissipation. The maximum extent of the film region sustaining liquid flow is determined by a characteristic length L_{C} combining the gravity characteristic length L_{G} and viscous dissipation characteristic length L_{V} . We used two sands with particle sizes 0.1-0.5 mm ("fine") and 0.3-0.9 mm ("coarse") to measure the evaporation from columns of different lengths under various atmospheric evaporative demands. The value of L_{G} determined from capillary pressure-saturation relationships was 90 mm for the coarse sand and 140 mm for the fine sand. A significant decrease in drying rate occurred when the drying front reached the predicted L_{G} value (viscous dissipation was negligibly small in sand and L_{C} approximately L_{G} ). The approach enables a prediction of the duration of first-stage evaporation with the highest water losses from soil to the atmosphere. PMID:18643163

  9. Measurement of radon diffusion length in thin membranes.

    PubMed

    Malki, A; Lavi, N; Moinester, M; Nassar, H; Neeman, E; Piasetzky, E; Steiner, V

    2012-07-01

    Building regulations in Israel require the insulating of buildings against radon (222)Rn penetration from soil. In radon-prone areas membranes stretched between the soil and the building foundation are used, together with sealing other possible penetration routes. Designing the radon mitigation procedure requires checking that all sealing materials are practically, radon tight, having a thickness of at least three times the radon diffusion length. In this work, a very simple technique to evaluate the radon diffusion length in thin membranes, using a radon source of known activity and an activated charcoal canister as radon detector is presented. The theoretical formalism and measurement results for polyethylene membranes of different densities obtained in a recent comparison exercise are presented. PMID:22232779

  10. Thirty years since diffuse sound reflection by maximum length

    NASA Astrophysics Data System (ADS)

    Cox, Trevor J.; D'Antonio, Peter

    2005-09-01

    This year celebrates the 30th anniversary of Schroeder's seminal paper on sound scattering from maximum length sequences. This paper, along with Schroeder's subsequent publication on quadratic residue diffusers, broke new ground, because they contained simple recipes for designing diffusers with known acoustic performance. So, what has happened in the intervening years? As with most areas of engineering, the room acoustic diffuser has been greatly influenced by the rise of digital computing technologies. Numerical methods have become much more powerful, and this has enabled predictions of surface scattering to greater accuracy and for larger scale surfaces than previously possible. Architecture has also gone through a revolution where the forms of buildings have become more extreme and sculptural. Acoustic diffuser designs have had to keep pace with this to produce shapes and forms that are desirable to architects. To achieve this, design methodologies have moved away from Schroeder's simple equations to brute force optimization algorithms. This paper will look back at the past development of the modern diffuser, explaining how the principles of diffuser design have been devised and revised over the decades. The paper will also look at the present state-of-the art, and dreams for the future.

  11. The Reactive-Diffusive Length of OH Radical in Squalane

    NASA Astrophysics Data System (ADS)

    Lee, L.; Wilson, K. R.

    2015-12-01

    With the technique of core-shell particle configuration, we have measured the radical penetration length in a reactive matrix by observing the transmission efficiency of OH radical through squalane shell of various thickness ranging from 0 nm (without coating) to 16 nm. The result indicates a penetration depth of 2.2 nm. Our data suggest that the OH concentration profile in squalane as a function of the distance from the squalane/air interface can be satisfactorily described by the analytical solution to diffusion equation with an added chemical loss term experienced by the OH radical. This allowed an almost unambiguous determination of either OH diffusivity or OH reactivity given that one of the value is known in systems where radical chain propagation is not a significant factor and can shed new lights on the lifetime alteration of particulate matters in the atmosphere where possible coating processes are abundant.

  12. Diffusion length measurements of thin amorphous silicon layers

    NASA Astrophysics Data System (ADS)

    van den Heuvel, J. C.; van Oort, R. C.; Geerts, M. J.

    1989-02-01

    A new method for the analysis of diffusion length measurements by the Surface Photovoltage (SPV) method is presented. It takes into account the effect of the reflection of light from the back contact in thin layers and the effect of a finite bandwidth of the used interference filters. The model was found to agree with experiments on thin amorphous silicon (a-Si:H) layers. It is shown that in the region were these effects are negligible this method is equivalent to the standard method.

  13. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching

    NASA Astrophysics Data System (ADS)

    Lunt, Richard R.; Giebink, Noel C.; Belak, Anna A.; Benziger, Jay B.; Forrest, Stephen R.

    2009-03-01

    We demonstrate spectrally resolved photoluminescence quenching as a means to determine the exciton diffusion length of several archetype organic semiconductors used in thin film devices. We show that aggregation and crystal orientation influence the anisotropy of the diffusion length for vacuum-deposited polycrystalline films. The measurement of the singlet diffusion lengths is found to be in agreement with diffusion by Förster transfer, whereas triplet diffusion occurs primarily via Dexter transfer.

  14. Fossil rocks of slow earthquake detected by thermal diffusion length

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshitaka; Morita, Kiyohiko; Okubo, Makoto; Hamada, Yohei; Lin, Weiren; Hirose, Takehiro; Kitamura, Manami

    2016-04-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area per second (Q (J/m^2/s), the product of friction coefficient, normal stress and slip velocity) and slip duration (t(s)) to fit the diffusion pattern. Thermal diffusivity (0.98*10^8m^2/s) and thermal conductivity (2.0 w/mK) were measured. In the result, 2000-2500J/m^2/s of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~10^4-~10^5s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~10^8-~10^11J, which is consistent with rupture area of 10^5-10^8m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the

  15. Study of minority carrier diffusion lengths in photoactive layers of multijunction solar cells

    SciTech Connect

    Mintairov, S. A. Andreev, V. M.; Emelyanov, V. M.; Kalyuzhnyy, N. A.; Timoshina, N. K.; Shvarts, M. Z.; Lantratov, V. M.

    2010-08-15

    A technique for determining a minority carrier's diffusion length in photoactive III-V layers of solar cells by approximating their spectral characteristics is presented. Single-junction GaAs, Ge and multi-junction GaAs/Ge, GaInP/GaAs, and GaInP/GaInAs/Ge solar cells fabricated by hydride metal-organic vapor-phase epitaxy (H-MOVPE) have been studied. The dependences of the minority carrier diffusion length on the doping level of p-Ge and n-GaAs are determined. It is shown that the parameters of solid-state diffusion of phosphorus atoms to the p-Ge substrate from the n-GaInP nucleation layer are independent of the thickness of the latter within 35-300 nm. It is found that the diffusion length of subcells of multijunction structures in Ga(In)As layers is smaller in comparison with that of single-junction structures.

  16. Change of characteristic length with packaging for torsional MEMS switch

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Anuroop, Kumar, Prem; Kaur, Maninder; Gaur, Surender; Kothari, Prateek; Singh, Arvind K.; Rangra, Kamaljit

    2016-04-01

    Fluid continuity theory is used to describe the dynamic response of open Micro-Electro-Mechanical-System (MEMS) devices. For a packaged device, at low pressure, the fluid continuity theory is no longer valid and a rarefication theory based on a Knudsen number is used. In an open MEMS device, the characteristic length which determines the Knudsen number is represented by the gap between the MEMS bridge and underneath actuation electrodes. On the other hand, for a packaged device, effective characteristic length is modified with the packaging cavity height. In this paper, for a packaged MEMS device, effective characteristic length with reference to the packaging height is derived.

  17. Length of intact plasma membrane determines the diffusion properties of cellular water

    PubMed Central

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-01

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342

  18. Diffusion length in nanoporous TiO{sub 2} films under above-band-gap illumination

    SciTech Connect

    Park, J. D.; Son, B. H.; Park, J. K.; Kim, Sang Yong; Park, Ji-Yong; Lee, Soonil; Ahn, Y. H.

    2014-06-15

    We determined the carrier diffusion lengths in TiO{sub 2} nanoporous layers of dye-sensitized solar cells by using scanning photocurrent microscopy using an ultraviolet laser. Here, we excited the carrier directly in the nanoporous layers where the diffusion lengths were found to 140 μm as compared to that of visible illumination measured at 90 μm. The diffusion length decreased with increasing laser modulation frequency, in which we determined the electron lifetimes and the diffusion coefficients for both visible and UV illuminations. The diffusion lengths have been studied in terms of the sintering temperatures for both cells with and without binding molecules. We found a strong correlation between the diffusion length and the overall light-to-current conversion efficiency, proving that improving the diffusion length and hence the interparticle connections, is key to improving cell efficiency.

  19. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  20. Scale length of mantle heterogeneities: Constraints from helium diffusion

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Kurz, M. D.; Wang, Z.

    2008-05-01

    A model of coupled He production/diffusion is used to constrain the question of whether Earth's peridotitic mantle contains ubiquitous mesoscale veins or slabs of other lithologies. The high diffusion rates of helium preclude survival of He isotope heterogeneities on scales smaller than a few tens of meters, especially if they represent long term in-growth of 4He in the mantle. For 1.5 Gyr residence times, and a diffusion coefficient of 10 - 10 m 2/s, 0.5 km slabs or 2 km cylinders will lose > 90% of in-grown 4He. However, substantial 3He/ 4He variations may persist in slabs or be induced in adjacent mantle, depending on initial He, U and Th contents. We have modeled three cases of 3He/ 4He equilibration between mantle domains: an ocean crust (OC) slab in depleted upper mantle (DMM) or in enriched mantle (BSE), and a BSE slab in DMM. For a 1 km OC slab in DMM (8 Ra today), the slab today will have 3He/ 4He of only 3 Ra, and will have influenced the surrounding mantle with 4He for > 7 km on either side. The average 3He/ 4He of this mixed zone will be < 7 Ra, even when sampled by melts over a total width of 20-50 km. For the case of a 1 km BSE slab in DMM (8 Ra today), the slab will be 37 Ra today, and will have infected a mantle domain > 16 km wide. Even with a 60 km melt sampling width, the average 3He/ 4He will be > 15 Ra. Slabs may lose their He signature by diffusion, but their presence will be recorded in the surrounding mantle. We have evaluated 3 along-axis N-MORB ridge-crest data sets in this context (MAR 25.7-26.5°S; EPR 19-23°S; SWIR 16-24° E), with a view to defining scale-lengths of He isotope variability. The average 3He/ 4He variability for these 3 areas is very small, and independent of spreading rate: 0.13, 0.19 and 0.21 Ra (± 1 σ). Since these ridges range from ultra-slow to very fast-spreading, the variability in size of along-axis magma chambers will lead inevitably to various scales of melt averaging. We conclude that these ridge areas are

  1. The values of minority carrier diffusion lengths and lifetimes in GaN and their implications for bipolar devices

    NASA Astrophysics Data System (ADS)

    Bandić, Z. Z.; Bridger, P. M.; Piquette, E. C.; McGill, T. C.

    2000-02-01

    The wide bandgap semiconductors GaN and AlGaN show promise as the high voltage standoff layers in high power heterostructure bipolar transistors and thyristors due to their electric breakdown characteristics. Material properties which significantly influence the design and performance of these devices are electron and hole diffusion lengths and recombination lifetimes. We report direct measurements of minority carrier diffusion lengths for both holes and electrons by electron beam induced current. For planar Schottky diodes on unintentionally doped n-type and p-type GaN grown by metal organic vapor phase deposition (MOCVD), the diffusion lengths were found to be (0.28±0.03) μm for holes and (0.2±0.05) μm for electrons. Minority carrier lifetimes of approximately 7 ns for holes and 0.1 ns for electrons were estimated from these measured diffusion lengths and mobilities. In the case of GaN grown by halide vapor phase epitaxy (HVPE) diffusion lengths in the 1-2 μm range were found. We attempt to correlate the measured diffusion lengths and lifetimes with the structural properties of GaN and to explain why linear dislocations might act as a recombination centers. We calculate the performance of nitride based bipolar devices, in particular thyristor switches. The forward voltage drop across standoff layer of the nitride based thyristor switch is shown to significantly depend on the minority carrier (hole) lifetime.

  2. Changes in diffusion path length with old age in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric

    2012-05-01

    Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.

  3. Scale Length of Mantle Heterogeneities: Helium Diffusion Constraints

    NASA Astrophysics Data System (ADS)

    Hart, S.; Kurz, M.; Wang, Z.

    2007-12-01

    will be >20 Ra. In essence, slabs may lose their He signature by diffusion, but it will remain recorded in the surrounding mantle; i.e. veins may run but they can't hide! For both enriched and depleted upper mantle slabs, sampled along a spreading ridge, the 3/4He variability on 10-20 km scale lengths would be easily observed; even massive along-axis melt mixing (50-100 km) would not hide these signatures. We have evaluated 3 extant ridge-crest data sets in this context (MAR 0-47S; EPR 19-23S; SWIR 16- 24E), with a view to defining scale-lengths of He isotope variability. The average 3/4He variability for these 3 areas is 0.47, 0.19 and 0.21 Ra (±1 sigma); a well-sampled sub-area on the MAR (25.7-26.5S) is 0.13 Ra. There is a monotonic variation along the SWIR, from 6.6 to 7.3 Ra; variability about a best fit line is 0.09 Ra (maximum deviation is only 0.20 Ra). At the smallest scale, a single 20 km EPR flow field shows similar variability (0.29 Ra) to the above examples. Since these ridges range from slow to very fast-spreading, the variability in size of along- axis magma chambers will lead inevitably to various scales of melt averaging. We conclude that these ridge areas are not sampling mantle that contains enriched veins or recycled oceanic crust slabs of any significant size. This is especially clear for the 500 km domain on the SWIR, where very small He variability is observed, superimposed on a large scale He gradient. In particular, the view of the upper mantle as a ubiquitous mixture of veins and depleted matrix, with MORB always representing an averaging of this mixture, appears untenable.

  4. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  5. Studies of minority carrier diffusion length increase in p-type ZnO:Sb

    SciTech Connect

    Lopatiuk-Tirpak, O.; Chernyak, L.; Xiu, F. X.; Liu, J. L.; Jang, S.; Ren, F.; Pearton, S. J.; Gartsman, K.; Feldman, Y.; Osinsky, A.; Chow, P.

    2006-10-15

    Minority electron diffusion length was measured in p-type, Sb-doped ZnO as a function of temperature using the electron beam induced current technique. A thermally induced increase of electron diffusion length was determined to have an activation energy of 184{+-}10 meV. Irradiation with a low energy (5 kV) electron beam also resulted in an increase of diffusion length with a similar activation energy (219{+-}8 meV). Both phenomena are suggested to involve a Sb{sub Zn}-2V{sub Zn} acceptor complex. Saturation and relaxation dynamics of minority carrier diffusion length are explored. Details of a possible mechanism for diffusion length increase are presented.

  6. Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine.

    PubMed

    Sarmiento-Gomez, Erick; Lopez-Diaz, David; Castillo, Rolando

    2010-09-30

    We study the Brownian motion of probe particles embedded in a wormlike micellar fluid made of a zwitterionic surfactant N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (TDPS), sodium dodecyl sulfate (SDS), and salty water to get structural and dynamical information of the micellar network. The motion of the probe particles was tracked with diffusing wave spectroscopy, and the mean square displacement as a function of time for the particles was obtained. This allowed us to obtain the long-time diffusion coefficient for microspheres moving in the micellar network and the cage size where each particle is harmonically bound at short times in that network. The bulk mechanical susceptibility of the fluid determines the response of the probe particles excited by the thermal stochastic forces. As a consequence, the mean square displacement curves allowed us to calculate the elastic (storage) and the viscous (loss) moduli as a function of the frequency. From these curves, spanning a wide frequency range, we estimated the characteristic lengths as the mesh size, the entanglement length, the persistence length, and the contour length for micellar solutions of different zwitterionic surfactant concentration, surfactant ratio ([SDS]/[TDPS]), salt concentration, and temperature. Mesh size, entanglement length, and persistence length are almost insensitive to the change of these variables. In contrast, the contour length changes in an important way. The contour length becomes shorter as the temperature increases, and it presents a peak at a surfactant ratio of ∼0.50-0.55. When salt is added to the solution, the contour length presents a peak at a salt concentration of ∼0.225 M, and in some solutions, this length can reach values of ∼12 μm. Scission energies help us to understand why the contour length first increases and then decreases when salt is added. PMID:20825212

  7. Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique

    NASA Astrophysics Data System (ADS)

    Darbandi, A.; Watkins, S. P.

    2016-07-01

    Minority carrier diffusion lengths in both p-type and n-type GaAs nanowires were studied using electron beam induced current by means of a nanoprobe technique without lithographic processing. The diffusion lengths were determined for Au/GaAs rectifying junctions as well as axial p-n junctions. By incorporating a thin lattice-matched InGaP passivating shell, a 2-fold enhancement in the minority carrier diffusion lengths and one order of magnitude reduction in the surface recombination velocity were achieved.

  8. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods.

    PubMed

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  9. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    PubMed Central

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  10. Variable helium diffusion characteristics in fluorite

    NASA Astrophysics Data System (ADS)

    Wolff, R.; Dunkl, I.; Kempe, U.; Stockli, D.; Wiedenbeck, M.; von Eynatten, H.

    2016-09-01

    Precise analysis of the diffusion characteristics of helium in fluorite is crucial for establishing the new fluorite (U-Th-Sm)/He thermochronometer (FHe), which potentially provides a powerful tool for dating ore deposits unsuitable for the application of conventional geochronometers. Incremental helium outgassing experiments performed on fluorites derived from a spectrum of geological environments suggest a thermally activated volume diffusion mechanism. The diffusion behaviour is highly variable and the parameters range between log D0/a2 = 0.30 ± 0.27-7.27 ± 0.46 s-1 and Ea = 96 ± 3.5-182 ± 3.8 kJ/mol. Despite the fact that the CaF2 content of natural fluorites in most cases exceeds 99 weight percent, the closure temperature (Tc) of the fluorite (U-Th-Sm)/He thermochronometer as calculated from these diffusion parameters varies between 46 ± 14 °C and 169 ± 9 °C, considering a 125 μm fragment size. Here we establish that minor substitutions of calcium by rare earth elements and yttrium (REE + Y) and related charge compensation by sodium, fluorine, oxygen and/or vacancies in the fluorite crystal lattice have a significant impact on the diffusivity of helium in the mineral. With increasing REE + Y concentrations F vacancies are reduced and key diffusion pathways are narrowed. Consequently, a higher closure temperature is to be expected. An empirical case study confirms this variability: two fluorite samples from the same deposit (Horni Krupka, Czech Republic) with ca. 170 °C and ca. 43 °C Tc yield highly different (U-Th-Sm)/He ages of 290 ± 10 Ma and 79 ± 10 Ma, respectively. Accordingly, the fluorite sample with the high Tc could have quantitatively retained helium since the formation of the fluorite-bearing ores in the Permian, despite subsequent Mesozoic burial and associated regional hydrothermal heating. In contrast, the fluorite with the low Tc yields a Late Cretaceous age close to the apatite fission track (AFT) and apatite (U-Th)/He ages (AHe

  11. Diffusion characteristics of pediatric pineal tumors

    PubMed Central

    Whitehead, Matthew T; Siddiqui, Adeel; Klimo, Paul; Boop, Frederick A

    2015-01-01

    Background Diffusion weighted imaging (DWI) has been shown to be helpful in characterizing tumor cellularity, and predicting histology. Several works have evaluated this technique for pineal tumors; however studies to date have not focused on pediatric pineal tumors. Objective We evaluated the diffusion characteristics of pediatric pineal tumors to confirm if patterns seen in studies using mixed pediatric and adult populations remain valid. Materials and methods This retrospective study was performed after Institutional Review Board approval. We retrospectively evaluated all patients 18 years of age and younger with pineal tumors from a single institution where preoperative diffusion weighted imaging as well as histologic characterization was available. Results Twenty patients (13 male, 7 female) with pineal tumors were identified: seven with pineoblastoma, four with Primitive Neuroectodermal Tumor (PNET), two with other pineal tumors, and seven with germ cell tumors including two germinomas, three teratomas, and one mixed germinoma-teratoma. The mean apparent diffusion coefficient (ADC) values in pineoblastoma (544 ± 65 × 10–6 mm2/s) and pineoblastoma/PNET (595 ± 144 × 10–6 mm2/s) was lower than that of the germ cell tumors (1284 ± 334 × 10–6 mm2/s; p < 0.0001 vs pineoblastoma). One highly cellular germinoma had an ADC value of 694 × 10–6 mm2/s. Conclusion ADC values can aid in differentiation of pineoblastoma/PNET from germ cell tumors in a population of children with pineal masses. PMID:25963154

  12. Diffusion length damage coefficient and annealing studies in proton-irradiated InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell

    1993-01-01

    We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.

  13. Characteristic lengths for three-carrier transport with spin-flip and electron-hole recombination

    NASA Astrophysics Data System (ADS)

    Krcmar, Maja; Saslow, Wayne M.

    2016-05-01

    The exact solution of the linearized, steady-state transport equation for three-carrier systems, such as can occur for semiconductors and ionic conductors, is constructed starting from the near-equilibrium entropy-production requirements of irreversible thermodynamics. Three characteristic modes are found, one associated with electrostatic screening (which is often neglected), and two modes associated with diffusion and "reactions." For a spintronics model with up and down electrons and unpolarized holes, the "reactions" are spin-flip and electron-hole recombination. We discuss how the variations in carrier density, diffusivity, recombination rate, and spin relaxation time affect the characteristic lengths. We apply these modes to study spin-polarized surface photoabsorption.

  14. Study on surface photovoltage measurement of long diffusion length silicon: Simulation results

    NASA Astrophysics Data System (ADS)

    Anttila, O. J.; Hahn, S. K.

    1993-07-01

    The limitations of surface photovoltage method (SPV), using the analytical solution for the minority-carrier distribution, are studied in detail. The principal source of error in thin wafers of long diffusion length material is the back surface recombination. The possibility of measuring large diffusion lengths in a reliable manner is discussed. With proper back surface passivation, diffusion lengths as long as several times the sample thickness can be measured. Evaluation of minor amounts of iron contamination in p-type material is possible even if the back surface recombination velocity is high, but a correction factor is required for the traditionally used relationship to convert the observed diffusion length change to iron concentration. The value of the correction factor varies between 1 and 1.5 for high back surface recombination velocity; the magnitude depends on the ratio between wafer thickness and the diffusion length of the minority carriers. The detection limit for iron is in the 109-1011 at/cm3 range, depending on the quality of the instrumentation and on the sample preparation; low back surface recombination gives better sensitivity. The use of SPV to measure the denuded zone width in precipitated material is briefly analyzed. It is shown that in heavily precipitated material an SPV measurement underestimates the denuded zone width, and the result will be very sensitive to the diffusion length in the bulk of the sample. Finally, the sensitivity of the measured diffusion length to different sources of errors and requirements for the sample preparation are discussed. The use of constant-flux method introduces some potential errors, which can be avoided through the use of constant bias illumination during the measurement.

  15. Estimation and calibration of the water isotope differential diffusion length in ice core records

    NASA Astrophysics Data System (ADS)

    van der Wel, G.; Fischer, H.; Oerter, H.; Meyer, H.; Meijer, H. A. J.

    2015-08-01

    Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using power spectral densities (PSDs) of the record of a single isotope species can be biased by uncertainties in spectral properties of the isotope signal prior to diffusion. By using a second water isotope and calculating the difference in diffusion lengths between the two isotopes, this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation-based method proves to be a good alternative for the PSD method as it yields precision equal to or somewhat higher than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. In addition to application to synthetic data the two methods are tested on stable-isotope records from the EPICA (European Project for Ice Coring in Antarctica) ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.

  16. Estimation of minority carrier diffusion lengths in InP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.

    1990-01-01

    Minority carrier diffusion length is one of the most important parameters affecting the solar cell performance. An attempt is made to estimate the minority carrier diffusion lengths is the emitter and base of InP/GaAs heteroepitaxial solar cells. The PC-1D computer model was used to simulate the experimental cell results measured at NASA Lewis under AMO (air mass zero) spectrum at 25 C. A 16 nm hole diffusion length in the emitter and a 0.42 micron electron diffusion length in the base gave very good agreement with the I-V curve. The effect of varying minority carrier diffusion lengths on cell short current, open circuit voltage, and efficiency was studied. It is also observed that the front surface recombination velocity has very little influence on the cell performance. The poor output of heteroepitaxial cells is caused primarily by the large number of dislocations generated at the interfaces that propagate through the bulk indium phosphide layers. Cell efficiency as a function of dislocation density was calculated and the effect of improved emitter bulk properties on cell efficiency is presented. It is found that cells with over 16 percent efficiencies should be possible, provided the dislocation density is below 10(exp 6)/sq cm.

  17. The Reactive-Diffusive Length of OH and Ozone in Model Organic Aerosols.

    PubMed

    Lee, Lance; Wilson, Kevin

    2016-09-01

    A key step in the heterogeneous oxidation of atmospheric aerosols is the reaction of ozone (O3) and hydroxyl radicals (OH) at the gas-particle interface. The formation of reaction products and free radical intermediates and their spatial distribution inside the particle is a sensitive function of the length over which these oxidants diffuse prior to reaction. The reactive-diffusive length of OH and ozone at organic aerosol interfaces is determined by observing the change in the effective uptake coefficient for size-selected model aerosols comprising a reactive core and a thin nanometer-sized (0-12 nm) organic shell. The core and shell materials are selected so that they are immiscible and adopt an assumed core-shell configuration. The results indicate a reactive-diffusive length of 1.4 nm for hydroxyl (OH) radicals in squalane and 1.0 nm for ozone in squalene. Measurements for a purely diffusive system allow for an estimate for diffusion constant (1.6 × 10(-6) cm(2)/s) of ozone in squalane to be determined. The reactive-diffusive length offers a simple first order estimate of how shielding of aerosols by immiscible layers can alter estimates of oxidative lifetimes of aerosols in the atmosphere. PMID:27509443

  18. Electron beam induced current measurements of minority carrier diffusion length in gallium nitride

    NASA Astrophysics Data System (ADS)

    Chernyak, Leonid; Osinsky, Andrei; Temkin, Henryk; Yang, J. W.; Chen, Q.; Asif Khan, M.

    1996-10-01

    Minority carrier diffusion length in epitaxial GaN layers was measured as a function of majority carrier concentration and temperature. The diffusion length of holes in n-type GaN is found to decrease from 3.4 to 1.2 μm in the doping range of 5×1015-2×1018 cm-3. The experimental results can be fitted by assuming the Einstein relation and by the experimental dependence of hole mobilities on carrier concentration. The low injection carrier lifetime of ˜15 ns, used in the fit, is largely independent of the doping level. The diffusion length, measured for ˜5×1015 and 2×1018 cm-3 dopant concentrations, shows an increase with increasing temperature, characterized by an activation energy Ea of ˜90 meV, independent of the impurity concentration.

  19. Laser interferometric method for determining the carrier diffusion length in semiconductors

    SciTech Connect

    Manukhov, V. V.; Fedortsov, A. B.; Ivanov, A. S.

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  20. Lifetime and diffusion length measurements on silicon material and solar cells

    NASA Technical Reports Server (NTRS)

    Othmer, S.; Chen, S. C.

    1978-01-01

    Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

  1. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    SciTech Connect

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel; Vlaminck, Vincent; Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito ; Divan, Ralu; Bader, Samuel D.; Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439

    2013-12-09

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.

  2. Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR

    NASA Astrophysics Data System (ADS)

    Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon

    2009-05-01

    Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.

  3. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel; Eperon, Giles; Grancini, Giulia; Menelaou, Christopher; Alcocer, Marcelo; Leijtens, Tomas; Herz, Laura; Petrozza, Annamaria; Snaith, Henry

    2014-03-01

    Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI3-xClx) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of order 100 nanometers. Finally, we fabricated solution-processed thin-film planar heterojunction devices, achieving power conversion efficiencies of over 12% using the mixed halide absorber but only 4% with the triiodide perovskite. Our results show that the long diffusion lengths justify the high efficiency of planar heterojunction perovskite solar cells, and identify a critical parameter to optimize for future perovskite absorber development.

  4. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length.

    PubMed

    Zhu, Tong; Wan, Yan; Guo, Zhi; Johnson, Justin; Huang, Libai

    2016-09-01

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells. PMID:27348847

  5. Diffusion length measurements in solar cells: An analysis and comparison of techniques

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Khan, A. A.; Soukup, R. J.; Hermann, A. M.

    1982-01-01

    A brief review of the major techniques for measuring minority carrier diffusion lengths in solar cells is given. Emphasis is placed on comparing limits of applicability for each method, especially as applied to silicon cells or to gallium arsenide cells, including the effects of radiation damage.

  6. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE PAGESBeta

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; Kucheyev, S. O.

    2016-04-14

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  7. Experimental determination of diffusion length in SWIR HgCdTe photodiodes

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Chen, Guibin; Li, Xiangyang; Gong, Haimei

    2005-01-01

    Minority carrier diffusion length is a key parameter of material quality and gives an indication of diode performance. It is also one important parameter when considering the increase of the effective optical sensitive area caused by the lateral diffusion and the crosstalk between individual detectors on a focal plane array (FPA). In this paper, we perform diffusion length measurements with two methods on short wavelength infrared (SWIR) HgCdTe photovoltaic devices. One method is based on the different behaviors of electrons and holes in a variation magnetic field B and their effects on the saturation current density J0. The other method is an optical characterization technique called Laser Beam Induced Current (LBIC). The results were in good agreement with each other.

  8. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    NASA Astrophysics Data System (ADS)

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; Kucheyev, S. O.

    2016-05-01

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of  ∼10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. These results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  9. Diffusion length measurements of thin GaAs solar cells by means of energetic electrons

    NASA Technical Reports Server (NTRS)

    Vonross, O.

    1980-01-01

    A calculation of the short circuit current density (j sub sc) of a thin GaAs solar cell induced by fast electrons is presented. It is shown that in spite of the disparity in thickness between the N-type portion of the junction and the P-type portion of the junction, the measurement of the bulk diffusion length L sub p of the N-type part of the junction is seriously hampered due to the presence of a sizable contribution to the j sub sc from the P-type region of the junction. Corrections of up to 50% had to be made in order to interpret the data correctly. Since these corrections were not amenable to direct measurements it is concluded that the electron beam method for the determination of the bulk minority carrier diffusion length, which works so well for Si solar cells, is a poor method when applied to thin GaAs cells.

  10. Minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Bailey, Sheila G.

    1993-01-01

    A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.

  11. Study of the spatial distribution of minority carrier diffusion length in epiplanar detector structures

    NASA Astrophysics Data System (ADS)

    Piotrowski, T.; Węgrzecki, M.; Stolarski, M.; Krajewski, T.

    2015-12-01

    One of the key parameters determining detection properties of silicon PIN detector structures (p+-ν-n+ or n+-ν-p+) is minority carrier diffusion length in p-n junction regions p-n (p+-ν or n+-ν). The parameter concerned strongly depends on quality of the starting material and technological processes conducted and has a significant impact on detector parameters, in particular dark current intensity. Thus, the parameter must be determined in order to optimise the design and technology of detectors. The paper presents a method for measuring the spatial distribution of effective carrier diffusion length in silicon detector structures, based on the measurement of photoelectric current of a non-polarised structure illuminated (spot diameter of 250 μm) with monochromatic radiation of two wavelengths λ1 = 500 nm (silicon penetration depth of around 0.9 μm) and λ2 = 900 nm (silicon penetration depth of around 33 μm). The value of diffusion length was determined by analysing the spatial distribution of optical carrier generation and values of photoelectric currents.

  12. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  13. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  14. Taylor-Couette Flow with Hourglass Geometry of Varying Lengths Simulated by Reaction-Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2008-11-01

    Previously, we have observed chaotic formation of Taylor-Vortex pairs in Modified Taylor- Couette Flow with Hourglass Geometry. In the experiment, the chaotic formation in a shorter system has been restricted to a narrow band about the waist of the hourglass. Such behavior has been modeled by The Reaction-Diffusion equation, which has been previously studied, by Riecke and Paap. Their calculation suggested that quadrupling length of the system would lead to spatial chaos in the vortex formation. We present a careful recreation of this result and consider an intermediate length. We demonstrate that doubling the length should be sufficient to observe spatially chaotic behavior. Richard J. Wiener et al, Phys. Rev. E 55, 5489 (1997). H. Riecke and H.-G. Paap, Europhys. Lett. 14, 1235 (1991).

  15. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGESBeta

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  16. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    SciTech Connect

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  17. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  18. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  19. Diffusion length measurements in bulk and epitaxially grown 3-5 semiconductors using charge collection microscopy

    NASA Technical Reports Server (NTRS)

    Leon, R. P.

    1987-01-01

    Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.

  20. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  1. Enhancement of minority carrier diffusion length in grains of cast Si by hydrogen heat treatments

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Duenas-Santos, F.; del Valle, J. L.

    Minority carrier diffusion length (mcdl) enhancement in the bulk of grains of cast poly-silicon for solar cells has been produced by hydrogen heat treatments. Measurements made by LBIC method, showed an increase of mcdl in the bulk of grains from a mean value of 53 microns to a mean value of 69 microns, before and after the hydrogen heat treatments, respectively, under white light illumination. A mean increase ratio of 33% in the mcdl was obtained in a reproducible way and it was verified that hydrogen was effectively responsible. This result clearly establishes the hydrogen passivating role in this material

  2. On the determination of diffusion lengths by means of angle-lapped p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1979-01-01

    A standard procedure for determining the minority carrier diffusion length by means of SEM consists of scanning an angle-lapped surface of a p-n junction and measuring the resulting short circuit current as a function of beam position. The present paper points out that the usual expression linking the short circuit current induced by the electron beam to the angle between the semiconductor surface and the junction plane is incorrect. The correct expression is discussed and it is noted that, for angles less than 10 deg, the new and the old expression are practically indistinguishable.

  3. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  4. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1996-01-01

    Indium phosphide (InP) solar cells were made on silicon (Si) wafers (InP/Si) by to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. Spire has made N/P InP/Si cells of sizes up to 2 cm by 4 cm with beginning-of-life (BOL) AM0 efficiencies over 13% (one-sun, 28C). These InP/Si cells have higher absolute efficiency and power density after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells after a fluence of about 2e15 1 MeV electrons/sq. cm. In this work, we investigate the minority carrier (electron) base diffusion lengths in the N/P InP/Si cells. A quantum efficiency model was constructed for a 12% BOL AM0 N/P InP/Si cell which agreed well with the absolutely measured quantum efficiency and the sun-simulator measured AM0 photocurrent (30.1 mA/sq. cm). This model was then used to generate a table of AM0 photocurrents for a range of base diffusion lengths. AM0 photocurrents were then measured for irradiations up to 7.7e16 1 MeV electrons/sq. cm (the 12% BOL cell was 8% after the final irradiation). By comparing the measured photocurrents with the predicted photocurrents, base diffusion lengths were assigned at each fluence level. A damage coefficient K of 4e-8 and a starting (unirradiated) base electron diffusion length of 0.8 microns fits the data well. The quantum efficiency was measured again at the end of the experiment to verify that the photocurrent predicted by the model (25.5 mA/sq. cm) agreed with the simulator-measured photocurrent after irradiation (25.7 mA/sq. cm).

  5. Multiwavelength analyzer for the determination of diffusion lengths. [in solar cell base region

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.; Davis, G. E.; Jansen, M.

    1983-01-01

    The minority carrier diffusion length Ln in the base or substrate region is an important parameter which governs a solar cell's performance. The present investigation is concerned with the development of a multiwavelength analyzer (MWA) technique for the nondestructive spatial testing of polycrystalline solar cells. The MWA method is based on the utilization of the short-circuit current generated by two or more light-emitting diodes (LEDs) operating at different wavelengths and modulated 180 deg out-of-phase. For a determination of Ln by the MWA technique, it is necessary to know the value of the absorption coefficient.

  6. Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus

    PubMed Central

    Özarslan, Evren; Shepherd, Timothy M.; Koay, Cheng Guan; Blackband, Stephen J.; Basser, Peter J.

    2012-01-01

    Features of the diffusion-time dependence of the diffusion-weighted magnetic resonance imaging (MRI) signal provide a new contrast that could be altered by numerous biological processes and pathologies in tissue at microscopic length scales. An anomalous diffusion model, based on the theory of Brownian motion in fractal and disordered media, is used to characterize the temporal scaling (TS) characteristics of diffusion-related quantities, such as moments of the displacement and zero-displacement probabilities, in excised rat hippocampus specimens. To reduce the effect of noise in magnitude-valued MRI data, a novel numerical procedure was employed to yield accurate estimation of these quantities even when the signal falls below the noise floor. The power-law dependencies characterize the TS behavior in all regions of the rat hippocampus, providing unique information about its microscopic architecture. The relationship between the TS characteristics and diffusion anisotropy is investigated by examining the anisotropy of TS, and conversely, the TS of anisotropy. The findings suggest the robustness of the technique as well as the reproducibility of estimates. TS characteristics of the diffusion-weighted signals could be used as a new and useful marker of tissue microstructure. PMID:22306798

  7. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1995-01-01

    Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.

  8. Mapping of minority carrier diffusion length and heavy metal contamination with ultimate surface photovoltage method

    NASA Astrophysics Data System (ADS)

    Lagowski, J.; Aleynikov, A.; Savtchouk, A.; Edelman, P.

    2004-07-01

    The Ultimate surface photovoltage method of minority carrier diffusion length measurements reffered to as Ultimate SPV, replaces a sequential “one wavelength at a time” approach with simultaneous illumination with the entire set of wavelengths. In this multiwavelength beam, each monochromatic component is chopped with slightly different frequency. This enables simultaneous monitoring of all component SPV signals corresponding to different wavelengths using multi-frequency signal processing. The amplitude and phase of each component signals are then analyzed and used to calculate the diffusion length and surface lifetime. In-flight Ultimate SPV measurement, whereby the wafer continuously moves under SPV probe, is used for fast whole wafer mapping. In addition to speed advantages, Ultimate SPV offers a fundemental accuracy advantage due to elimination of differences in wafer condition during sequential illumination with individual wavelengths. High-speed measurements make it possible to add additional wafer treatments and perform multi-mapping required for separation of Fe and Cu in the silicon bulk. Wafer mapping in time of 2 minutes realized with Ultimate SPV is critical for monitoring of cobalt in silicon.

  9. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  10. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  11. Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1998-01-01

    The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.

  12. Effect of grain boundaries in silicon on minority-carrier diffusion length and solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.; Allen, F. G.

    1978-01-01

    The spatial variation of minority-carrier diffusion length in the vicinity of a grain boundary for a polycrystalline silicon sheet has been measured by the use of the EBIC technique. The effect of such a variation on solar-cell output has then been computed as a function of grain size. Calculations show that the cell output drops considerably for grain size smaller than three times the bulk diffusion length.

  13. Determination of the diffusion length and the optical self absorption coefficient using EBIC model

    NASA Astrophysics Data System (ADS)

    Guermazi, S.; Guermazi, H.; Mlik, Y.; El Jani, B.; Grill, C.; Toureille, A.

    2001-10-01

    We have developed a model of calculation of the induced current due to an electron beam. The expression for the electron beam induced current (EBIC) with an extended generation profile is obtained via the resolution of a steady state continuity equation by the Green function method, satisfying appropriated boundary conditions to the physical model. The generation profile takes into account the lateral diffusion, the effect of defects, dislocations and recombination surfaces besides the number of absorbed electrons and that of diffuse electrons as a function of the depth. In the case of a Schottky diode Au/GaAs obtained by metalorganic vapour phase epitaxy (MOVPE) method, the theoretical induced current profile is compared to the experimental one and to theoretical profiles whose analytical expressions are given by van Roosbroeck and Bresse. The minority carriers diffusion length L_n = 2 μm and the optical self-absorption coefficient a=0.034 μm^{-1} can be deduced from the experimental current profile, measured by scanning electron microscopy. The theoretical curve, obtained from the proposed model is in a good agreement with the experimental one for surface recombination velocity 10^6 cm s^{-1} except for distances far from the depletion layer (x_0 > 2.3 μm) where the photocurrent produced by the multiple process of the reabsorbed recombination radiation is preponderant. Our results are in agreement with those obtained by other experimental techniques on the same samples.

  14. Performance characteristics according to the channel length and magnetic fields of cylindrical Hall thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Jongsub; Seo, Mihui; Seon, Jongho; June Lee, Hae; Choe, Wonho

    2011-09-01

    Performance characteristics of low power cylindrical Hall thrusters are investigated in terms of the length of the discharge channel. Thrust, efficiency, discharge current, and propellant utilization are evaluated for different channel lengths of 19, 22, and 25 mm. It is found that the propellant utilization and ion energy distribution function are strongly associated with the channel length. Increase of thrust and efficiency are also found with increasing channel lengths. These characteristics of the thruster are interpreted with possible generation of multi-charged ions due to increased residing time within the extended space inside the channel.

  15. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    NASA Astrophysics Data System (ADS)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic

  16. Transition to Spatio-Temporal Chaos with Increasing Length in the Reaction-Diffusion System

    NASA Astrophysics Data System (ADS)

    Trail, Collin; Tomlin, Brett; Olsen, Thomas; Wiener, Richard J.

    2003-11-01

    Calculations based up the Reaction-Diffusion model (H. Riecke and H.-G. Paap, Europhys. Lett. 14), 1235 (1991).have proven to be suggestive for a wide variety of pattern forming systems, including Taylor-Couette flow with hourglass geometry(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997).. Seeking insight to guide experimental investigations, we extend these calculations. Previous calculations indicated that in smaller systems, only temporal chaos, located in a small region, would be observed, while in longer systems instabilities would form over a wide region. Our simulations explore this transition from purely temporal chaos to spatio-temporal chaos as the length of the system is increased.

  17. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  18. Temperature dependence of diffusion length, lifetime and minority electron mobility in GaInP

    SciTech Connect

    Schultes, F. J.; Haegel, N. M.; Christian, T.; Alberi, K.; Fluegel, B.; Jones-Albertus, R.; Pickett, E.; Liu, T.; Misra, P.; Sukiasyan, A.; Yuen, H.

    2013-12-09

    The mobility of electrons in double heterostructures of p-type Ga{sub 0.50}In{sub 0.50}P has been determined by measuring minority carrier diffusion length and lifetime. The minority electron mobility increases monotonically from 300 K to 5 K, limited primarily by optical phonon and alloy scattering. Comparison to majority electron mobility over the same temperature range in comparably doped samples shows a significant reduction in ionized impurity scattering at lower temperatures, due to differences in interaction of repulsive versus attractive carriers with ionized dopant sites. These results should be useful in modeling and optimization for multi-junction solar cells and other optoelectronic devices.

  19. Unambiguous distinction between diffusion length and surface recombination velocity of solar cells at different excitation levels

    NASA Astrophysics Data System (ADS)

    Wawer, P.; Rochel, M.; Wagemann, H.-G.

    1999-06-01

    In this work we present a conclusive separation of bulk and surface recombination properties of solar cells. For this purpose, bifacial silicon solar cells were fabricated. The backside differential spectral response of the cells has been measured in the presence of bias light, both with and without backside passivation by means of corona charging on top of a thermal oxide. Employing the common one-dimensional Shockley model, the measurement curves have been simulated. This enables the base diffusion length to be distinguished from the backside surface recombination velocity. As such, their values have been determined individually. Repeating this procedure for different intensities of bias light has yielded the nonlinear behavior of the recombination mechanisms. By applying the Schockley-Read-Hall recombination theory, it was deduced that Fe interstitials presumably are the predominant bulk recombination centers.

  20. Patient versus Provider Characteristics Impacting Hospital Lengths of Stay Following Total Knee or Hip Arthroplasty

    PubMed Central

    Styron, Joseph F.; Koroukian, Siran; Klika, Alison; Barsoum, Wael K.

    2010-01-01

    Introduction This study aims to identify whether patient-level or provider-level characteristics are most influential on a patient’s length of stay in the acute care hospital. Materials and Methods A dataset containing a nationally representative sample of inpatient discharge abstracts was used. Multi-level linear regression models were used to evaluate the associations between patient- and provider-level characteristics on patients’ lengths of stay. Results The target population included 322,894 discharges with a primary procedure code for primary total knee arthroplasty and 193,553 discharges for total hip arthroplasty. The variables associated with the greatest increases in length of stay were a higher co-morbidity level among patient level attributes (+17.4%) and low surgeon volume among provider-level characteristics (+18.8%). Discussion Provider-level characteristics, particularly provider volume, had a greater impact on length of stay. PMID:21277159

  1. Patient vs provider characteristics impacting hospital lengths of stay after total knee or hip arthroplasty.

    PubMed

    Styron, Joseph F; Koroukian, Siran M; Klika, Alison K; Barsoum, Wael K

    2011-12-01

    This study aims to identify whether patient-level or provider-level characteristics are most influential on a patient's length of stay in the acute care hospital. A data set containing a nationally representative sample of inpatient discharge abstracts was used. Multilevel linear regression models were used to evaluate the associations between patient-level and provider-level characteristics on patients' lengths of stay. The target population included 322,894 discharges with a primary procedure code for primary total knee arthroplasty and 193,553 discharges for total hip arthroplasty. The variables associated with the greatest increases in length of stay were a higher comorbidity level among patient level attributes (+17.4%) and low surgeon volume among provider-level characteristics (+18.8%). Provider-level characteristics, particularly provider volume, had a greater impact on length of stay. PMID:21277159

  2. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Hao, Qing; Xiao, Yue; Zhao, Hongbo

    2016-08-01

    In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.

  3. Role of impurities in determining the exciton diffusion length in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Curtin, Ian J.; Blaylock, D. Wayne; Holmes, Russell J.

    2016-04-01

    The design and performance of organic photovoltaic cells is dictated, in part, by the magnitude of the exciton diffusion length (LD). Despite the importance of this parameter, there have been few investigations connecting LD and materials purity. Here, we investigate LD for the organic small molecule N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine as native impurities are systematically removed from the material. Thin films deposited from the as-synthesized material yield a value for LD, as measured by photoluminescence quenching, of (3.9 ± 0.5) nm with a corresponding photoluminescence efficiency (ηPL) of (25 ± 1)% and thin film purity of (97.1 ± 1.2)%, measured by high performance liquid chromatography. After purification by thermal gradient sublimation, the value of LD is increased to (4.7 ± 0.5) nm with a corresponding ηPL of (33 ± 1)% and purity of (98.3 ± 0.8)%. Interestingly, a similar behavior is also observed as a function of the deposition boat temperature. Films deposited from the purified material at a high temperature give LD = (5.3 ± 0.8) nm with ηPL = (37 ± 1)% for films with a purity of (99.0 ± 0.3)% purity. Using a model of diffusion by Förster energy transfer, the variation of LD with purity is predicted as a function of ηPL and is in good agreement with measurements. The removal of impurities acts to decrease the non-radiative exciton decay rate and increase the radiative decay rate, leading to increases in both the diffusivity and exciton lifetime. The results of this work highlight the role of impurities in determining LD, while also providing insight into the degree of materials purification necessary to achieve optimized exciton transport.

  4. How fatty acids of different chain length enter and leave cells by free diffusion.

    PubMed

    Kamp, Frits; Hamilton, James A

    2006-09-01

    Opposing views exist as to how unesterified fatty acids (FA) enter and leave cells. It is commonly believed that for short- and medium-chain FA free diffusion suffices whereas it is questioned whether proteins are required to facilitate transport of long-chain fatty acid (LCFA). Furthermore, it is unclear whether these proteins facilitate binding to the plasma membrane, trans-membrane movement, dissociation into the cytosol and/or transport in the cytosol. In this mini-review we approach the controversy from a different point of view by focusing on the membrane permeability constant (P) of FA with different chain length. We compare experimentally derived values of the P of short and medium-chain FA with values of apparent permeability coefficients for LCFA calculated from their dissociation rate constant (k(off)), flip-flop rate constant (k(flip)) and partition coefficient (Kp) in phospholipid bilayers. It was found that Overton's rule is valid as long as k(flip)length, the permeability increases according to increasing Kp and reaches a maximum for LCFA with chain length of 18 carbons or longer. For fast flip-flop (e.g. k(flip)=15s(-1)), the apparent permeability constant for palmitic acid is very high (P(app)=1.61 cm/s). Even for a slow flip-flop rate constant (e.g. k(flip)=0.3s(-1)), the permeability constant of LCFA is still several orders of magnitude larger than the P of water and other small non-electrolytes. Since polyunsaturated FA have basically the same physico-chemical properties as LCFA, they have similar membrane permeabilities. The implications for theories involving proteins to facilitate uptake of FA are discussed. PMID:16829065

  5. Diffusion characteristics of ethylene glycol in skeletal muscle.

    PubMed

    Oliveira, Luís M; Carvalho, Maria Inês; Nogueira, Elisabete M; Tuchin, Valery V

    2015-05-01

    Part of the optical clearing study in biological tissues concerns the determination of the diffusion characteristics of water and optical clearing agents in the subject tissue. Such information is sufficient to characterize the time dependence of the optical clearing mechanisms—tissue dehydration and refractive index (RI) matching. We have used a simple method based on collimated optical transmittance measurements made from muscle samples under treatment with aqueous solutions containing different concentrations of ethylene glycol (EG), to determine the diffusion time values of water and EG in skeletal muscle. By representing the estimated mean diffusion time values from each treatment as a function of agent concentration in solution, we could identify the real diffusion times for water and agent. These values allowed for the calculation of the correspondent diffusion coefficients for those fluids. With these results, we have demonstrated that the dehydration mechanism is the one that dominates optical clearing in the first minute of treatment, while the RI matching takes over the optical clearing operations after that and remains for a longer time of treatment up to about 10 min, as we could see for EG and thin tissue samples of 0.5 mm. PMID:25525766

  6. Diffusion characteristics of copper in novel metallic films

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    The goal of this work was to synthesize refractory materials like TiN, Ta and alloys of TiN-TaN in the form of thin films which are used as diffusion barriers in integrated circuits to prevent diffusion of Cu into the Si substrate. The primary emphasis of this research was to synthesize different microstructures of these films like amorphous, nanocrystalline, textured polycrystalline and single crystalline films, and to study the effect of these microstructures on their mechanical and electrical properties and on diffusion characteristics of Cu. Microstructures ranging from nanocrystalline to single crystalline TiN films on Si(100) substrates were synthesized by Pulsed Laser Deposition technique by varying the substrate temperature from 25°C to 650°C. Experimental techniques like XRD, TEM, HRTEM, STEM-Z, EELS, SIMS and four-point probe resistivity measurement were used for in-depth analysis. Effect of microstructures of these films on their mechanical and electrical properties, and on diffusion behavior of Cu was analyzed. An important finding of this research was that polycrystalline TiN films showed significantly more diffusion of Cu along the columnar grain boundaries, whereas nanocrystalline films exhibited significantly less diffusion of Cu comparable to that in single crystalline TiN films. Impurity induced amorphous Ta films stable up to high temperatures (˜650°C) were synthesized by the Pulsed Laser Deposition and polycrystalline Ta films were processed by magnetron sputtering technique. Effects of different microstructures of these films on their electrical properties and on the diffusion characteristics of Cu were analyzed. Using the above experimental techniques along with RBS, stable amorphous Ta films showed insignificant diffusion of Cu. Polycrystalline Ta films showed significant diffusion of Cu along the grain boundaries. Recrystallization of amorphous Ta films and diffusion along the grain boundaries were observed at higher temperatures. The

  7. Determination of the positron diffusion length in Kapton by analysing the positronium emission

    NASA Astrophysics Data System (ADS)

    Palacio, C. A.; De Baerdemaeker, J.; Dauwe, C.

    2008-10-01

    Doppler profile spectroscopy and Compton-to-peak ratio analysis have been used to study the positronium (Ps) emission from the Kapton surface as a function of the positron implantation energy E. Two different positions for the sample have been performed in the experiment. In the first case the sample and the Ge-detector are perpendicular to the positron beam. With this geometry the emission of para-positronium (p-Ps) is detected as a narrow central peak. In the second case, by rotating the sample 45° with respect to the beam axis, the emission of p-Ps is detected as a blue-shifted fly away peak. The implantation of the positrons is described by the Makhov profile, where we used the modified median implantation for polymers as given by Algers et al. [J. Algers, P. Sperr, W. Egger, G. Kögel, F.H.J. Maurer, Phys. Rev. B 67 (2003) 125404]. Thermalised positrons can diffuse to the surface and may pick up an electron to be emitted as Ps. We found a thermal and or epithermal positron diffusion length L+ = 5.43 ± 0.71 nm and L+ = 5.51 ± 0.28 nm correspondingly for both cases, which is much more than the one found by Brusa et al. [R.S. Brusa, A. Dupasquier, E. Galvanetto, A. Zecca, Appl. Phys. A 54 (1992) 233]. The respective efficiency for the emission of Ps by picking up an electron from the surface is found to be fpu = 0.247 ± 0.012 and fpu = 0.156 ± 0.003.

  8. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  9. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media.

    PubMed

    Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L

    2002-06-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. PMID:12165255

  10. Exciton diffusion length and concentration of holes in MEH-PPV polymer using the surface voltage and surface photovoltage methods

    NASA Astrophysics Data System (ADS)

    Toušek, J.; Toušková, J.; Remeš, Z.; Čermák, J.; Kousal, J.; Kindl, D.; Kuřitka, I.

    2012-11-01

    Novelized method of the surface photovoltage (SPV) measurement convenient for evaluation of exciton diffusion length and thickness of the space charge region (SCR) in organic semiconductors is applied to poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) polymer. Exciton diffusion length and thickness of the SCR was found. The experiment is complemented by measurements of surface potential by the Kelvin probe force microscopy yielding the work function and concentration of free holes. The latter value is much lower than the concentration of ionized states determined from the thickness of the space charge region, which can be ascribed to the presence of traps.

  11. Studies of deep level centers determining the diffusion length in epitaxial layers and crystals of undoped n-GaN

    NASA Astrophysics Data System (ADS)

    Lee, In-Hwan; Polyakov, A. Y.; Smirnov, N. B.; Yakimov, E. B.; Tarelkin, S. A.; Turutin, A. V.; Shemerov, I. V.; Pearton, S. J.

    2016-05-01

    A wide variety of parameters were measured for undoped n-GaN grown by hydride vapor phase epitaxy and compared to n-GaN films grown by conventional and lateral overgrowth metalorganic chemical vapor deposition. The parameters included deep level electron and hole trap spectra, microcathodoluminescence, electron beam induced current, diffusion length, and electron capture cross section from the dependence of the low temperature persistent photocapacitance on forward bias injection pulse duration. The results show a prominent role of electron traps with levels near Ec-0.56 eV in limiting the lifetime and diffusion length values in all these materials.

  12. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals

    PubMed Central

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass)b. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  13. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals.

    PubMed

    Frasier, Charles C

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass) (b) . Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal's characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal's means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals' skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  14. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge.

    PubMed

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes. PMID:27294552

  15. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  16. Method and apparatus for measuring minority carrier lifetimes and bulk diffusion length in P-N junction solar cells

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H. (Inventor)

    1978-01-01

    Carrier lifetimes and bulk diffusion length are qualitatively measured as a means for qualification of a P-N junction photovoltaic solar cell. High frequency (blue) monochromatic light pulses and low-frequency (red) monochromatic light pulses were alternately applied to the cell while it was irradiated by light from a solar simulator, and synchronously displaying the derivative of the output voltage of the cell on an oscilloscope. The output voltage is a measure of the lifetimes of the minority carriers (holes) in the diffused N layer and majority carriers (electrons) in the bulk P material, and of the diffusion length of the bulk silicon. By connecting a reference cell in this manner with a test cell to be tested in reverse parallel, the display of a test cell that matches the reference cell will be a substantially zero output.

  17. Characteristic length scales of the secondary relaxations in glass-forming glycerol.

    PubMed

    Gupta, S; Mamontov, E; Jalarvo, N; Stingaciu, L; Ohl, M

    2016-03-01

    We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics. PMID:27021657

  18. CHARACTERISTIC LENGTH OF ENERGY-CONTAINING STRUCTURES AT THE BASE OF A CORONAL HOLE

    SciTech Connect

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.; Ahn, K.; Cao, W.; Zank, G. P.; Dosch, A.

    2013-08-20

    An essential parameter for models of coronal heating and fast solar wind acceleration that rely on the dissipation of MHD turbulence is the characteristic energy-containing length {lambda} of the squared velocity and magnetic field fluctuations (u{sup 2} and b{sup 2}) transverse to the mean magnetic field inside a coronal hole (CH) at the base of the corona. The characteristic length scale directly defines the heating rate. We use a time series analysis of solar granulation and magnetic field measurements inside two CHs obtained with the New Solar Telescope at Big Bear Solar Observatory. A data set for transverse magnetic fields obtained with the Solar Optical Telescope/Spectro-Polarimeter on board the Hinode spacecraft was utilized to analyze the squared transverse magnetic field fluctuations b{sub t}{sup 2}. Local correlation tracking was applied to derive the squared transverse velocity fluctuations u {sup 2}. We find that for u {sup 2} structures, the Batchelor integral scale {lambda} varies in a range of 1800-2100 km, whereas the correlation length sigmav and the e-folding length L vary between 660 and 1460 km. Structures for b{sub t}{sup 2} yield {lambda} Almost-Equal-To 1600 km, sigmav Almost-Equal-To 640 km, and L Almost-Equal-To 620 km. An averaged (over {lambda}, sigmav, and L) value of the characteristic length of u {sup 2} fluctuations is 1260 {+-} 500 km, and that of b{sub t}{sup 2} is 950 {+-} 560 km. The characteristic length scale in the photosphere is approximately 1.5-50 times smaller than that adopted in previous models (3-30 Multiplication-Sign 10{sup 3} km). Our results provide a critical input parameter for current models of coronal heating and should yield an improved understanding of fast solar wind acceleration.

  19. Energetic, crystallographic and diffusion characteristics of hydrogen isotopes in iron

    NASA Astrophysics Data System (ADS)

    Sivak, A. B.; Sivak, P. A.; Romanov, V. A.; Chernov, V. M.

    2015-06-01

    Energetic, crystallographic and diffusion characteristics of various interstitial configurations of H atoms and their complexes with self-point defects (SIA - self-interstitial atom, V - vacancy) in bcc iron have been calculated by molecular statics and molecular dynamics using Fe-H interatomic interaction potential developed by Ramasubramaniam et al. (2009) and modified by the authors of the present work and Fe-Fe matrix potential M07 developed by Malerba et al. (2010). The most energetically favorable configuration of an interstitial H atom is tetrahedral configuration. The energy barrier for H atom migration is 0.04 eV. The highest binding energy of all the considered complexes "vacancy - H atom" and "SIA - H atom" is 0.54 and 0.15 eV, respectively. The binding energy of H atom with edge dislocations in slip systems <1 1 1>{1 1 0}, <1 1 1>{1 1 2}, <1 0 0>{1 0 0}, <1 0 0>{1 1 0} is 0.32, 0.30, 0.45, 0.54 eV, respectively. The binding energy of H atom in VHn complexes (n = 1 … 15) decreases from 0.54 to 0.35 eV with increasing of n from 1 to 6. At n > 6, it decreases to ∼0.1 eV. The temperature dependences of hydrogen isotopes (P, D, T) diffusivities have been calculated for the temperature range 70-1800 K. Arrhenius-type dependencies describe the calculated data at temperatures T < 100 K. At T > 250 K, the temperature dependencies of the diffusivities DP, DD, DT have a parabolic form. The diffusivities of H isotopes are within 10% at room temperature. The isotope effect becomes stronger at higher temperatures, e.g., ratios DP/DD and DP/DT at 1800 K equal 1.23 and 1.40, respectively.

  20. Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy

    PubMed Central

    Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.

    2011-01-01

    The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell

  1. Determination of carrier diffusion length in MOCVD-grown GaN epilayers on sapphire by optical techniques

    NASA Astrophysics Data System (ADS)

    Lutsenko, E. V.; Gurskii, A. L.; Pavlovskii, V. N.; Yablonskii, G. P.; Malinauskas, T.; Jarainas, K.; Schineller, B.; Heuken, M.

    2006-06-01

    Two optical techniques for the determination of a bipolar diffusion length LD of optically excited carriers in GaN epitaxial layers, namely a time-resolved picosecond four-wave mixing (FWM) on free carrier grating and time-integrated photoluminescence (PL) are presented and examined. The PL technique is based on time-integrated photoluminescence (PL) spectra measurements from the front and back sides of the sample under cw and nanosecond pulsed laser excitation. The another method utilizes time-resolved picosecond four-wave mixing (FWM) at various light-induced grating periods to extract diffusion coefficient and carrier recombination lifetime. The value of the diffusion length derived by means of FWM decreases with GaN layer thickness from LD = 260 nm (for 1.7 m-thick layer) to LD = 100 nm (for 0.3 m-thick layer). The integral PL measurements give the value of LD = 120-130 nm for the 620 nm layer under pulsed excitation intensities up to 200 kW/cm2. It increases to 150-170 nm at the excitation intensity enhancement to 1 MW/cm2. These values are close to the value of the diffusion length equal to 160 nm obtained using FWM for this layer thickness evidencing the compatibility of both methods. The changes in the value of LD are discussed in terms of the defect distribution in the epitaxial GaN layer.

  2. Increasing polymer diffusivity by increasing the contour length: The surprising effect of YOYO-1 on DNA dynamics

    NASA Astrophysics Data System (ADS)

    Shin, Seunghwan; Dorfman, Kevin; Cheng, Xiang

    2015-03-01

    Double-stranded DNA (dsDNA) labeled with cyanine dyes such as YOYO-1 has been extensively used as a model to study equilibrium and dynamic properties of semiflexible polyelectrolytes. The ability to directly visualize the polymer dynamics is an attractive feature of these experiments, but positively charged cyanine dyes affect the physical properties of dsDNA, distorting the double helix and counterbalancing the intrinsic negative charge of the backbone. A variety of studies have been conducted to reveal the effect of the dye on the contour length and the persistence length of dsDNA. However, fewer efforts have been made to directly quantify the effect of dye on the diffusion behavior of dsDNA. In order to resolve this issue, we measured the in-plane diffusion coefficient of unconfined dsDNA using confocal microscopy. Although there is widespread consensus that intercalation increases the contour length of dsDNA, we find that increasing the dye:base pair ratio for YOYO-1 actually enhances the diffusion of dsDNA. This enhancement is more significant at lower ionic strengths, which implies that the increase in the diffusion coefficient by dye-DNA intercalation is mainly due to a reduction of excluded volume effect resulting from charge neutralization on the backbone.

  3. Neighborhood Characteristics and Leukocyte Telomere Length: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Needham, Belinda L.; Carroll, Judith E.; Diez Roux, Ana V.; Fitzpatrick, Annette L.; Moore, Kari; Seeman, Teresa E.

    2014-01-01

    Telomeres are the protective caps at the ends of eukaryotic chromosomes. Telomeres get shorter each time a cell divides, and critically shortened telomeres trigger cellular senescence. Thus, telomere length is hypothesized to be a biological marker of aging. The purpose of this study was to examine the association between neighborhood characteristics and leukocyte telomere length. Using data from a subsample (n=978) of the Multi-Ethnic Study of Atherosclerosis, a population-based study of women and men aged 45–84, we found that neighborhood social environment (but not neighborhood socioeconomic disadvantage) was associated with telomere length. Respondents who lived in neighborhoods characterized by lower aesthetic quality, safety, and social cohesion had shorter telomeres than those who lived in neighborhoods with a more salutary social environment, even after adjusting for individual-level socioeconomic status and biomedical and lifestyle factors related to telomere length. Telomere length may be one biological mechanism by which neighborhood characteristics influence an individual’s risk of disease and death. PMID:24859373

  4. An Imaging System for Automated Characteristic Length Measurement of Debrisat Fragments

    NASA Technical Reports Server (NTRS)

    Moraguez, Mathew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Sorge, Marlon; Cowardin, Heather; Opiela, John; Krisko, Paula H.

    2015-01-01

    The debris fragments generated by DebriSat's hypervelocity impact test are currently being processed and characterized through an effort of NASA and USAF. The debris characteristics will be used to update satellite breakup models. In particular, the physical dimensions of the debris fragments must be measured to provide characteristic lengths for use in these models. Calipers and commercial 3D scanners were considered as measurement options, but an automated imaging system was ultimately developed to measure debris fragments. By automating the entire process, the measurement results are made repeatable and the human factor associated with calipers and 3D scanning is eliminated. Unlike using calipers to measure, the imaging system obtains non-contact measurements to avoid damaging delicate fragments. Furthermore, this fully automated measurement system minimizes fragment handling, which reduces the potential for fragment damage during the characterization process. In addition, the imaging system reduces the time required to determine the characteristic length of the debris fragment. In this way, the imaging system can measure the tens of thousands of DebriSat fragments at a rate of about six minutes per fragment, compared to hours per fragment in NASA's current 3D scanning measurement approach. The imaging system utilizes a space carving algorithm to generate a 3D point cloud of the article being measured and a custom developed algorithm then extracts the characteristic length from the point cloud. This paper describes the measurement process, results, challenges, and future work of the imaging system used for automated characteristic length measurement of DebriSat fragments.

  5. The spin Hall angle and spin diffusion length of Pd measured by spin pumping and microwave photoresistance

    SciTech Connect

    Tao, X. D.; Feng, Z.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Du, J.; Zhang, W.; Ding, H. F.

    2014-05-07

    We present the experimental study of the spin Hall angle (SHA) and spin diffusion length of Pd with the spin pumping and microwave photoresistance effects. The Py/Pd bilayer stripes are excited with an out-of-plane microwave magnetic field. The pure spin current is thus pumped and transforms into charge current via the inverse spin Hall effect (ISHE) in Pd layer, yielding an ISHE voltage. The ISHE voltage can be distinguished from the unwanted signal caused by the anisotropic magnetoresistance according to their different symmetries. Together with Pd thickness dependent measurements of in and out-of-plane precessing angles and effective spin mixing conductance, the SHA and spin-diffusion length of Pd are quantified as 0.0056 ± 0.0007 and 7.3 ± 0.7 nm, respectively.

  6. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    NASA Astrophysics Data System (ADS)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  7. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  8. Factors affecting gestation length and estrus cycle characteristics in Spanish donkey breeds reared in southern Spain.

    PubMed

    Galisteo, J; Perez-Marin, C C

    2010-08-01

    This paper investigated gestation length and estrus cycle characteristics in three different Spanish donkey breeds (Andalusian, Zamorano-Leones, and Catalonian) kept on farm conditions in southern Spain, using data for ten consecutive breeding seasons. Gestation length was measured in 58 pregnancies. Ovarian ultrasonography was used to detect the ovulation, in order to ascertain true gestation length (ovulation-parturition). Pregnancy was diagnosed approximately 14-18 d after ovulation and confirmed on approximately day 60. Average gestation length was 362 +/-15.3 (SD) d, and no significant differences were observed between the three different breeds. Breeding season had a significant effect (P < 0.01), with longer gestation lengths when jennies were covered during the early period. Breed, age of jenny, year of birth, foal gender, month of breeding, and type of gestation had no significant effect on gestation length. After parturition, foal-heat was detected in 53.8% of the postpartum cycles studied (n = 78), and ovulation occurred on day 13.2 +/- 2.7. The duration of foal-heat was 4.7 +/-1.7 d, with a pregnancy rate of 40.5%. When subsequent estrus cycles were analyzed, the interovulatory interval (n = 68) and estrus duration (n = 258) were extended to a mean 23.8 +/- 3.5 and 5.7 +/- 2.2 d, respectively. Both variables were influenced by the year of study (P < 0.03 and P < 0.001), whereas month and season of ovulation (P < 0.005 and P < 0.009, respectively) affected only interovulatory intervals. Estrus duration was significantly longer than that observed at the foal-heat (P < 0.006), and the pregnancy rate was 65.8%. This study provides reference values for true gestation length and estrus cycle characteristics in Spanish jennies. Breeding season affected gestation length in farm conditions. Also, seasonal influence was observed on the length of the estrus cycle (i.e., interovulatory interval), although foal-heat was not affected by environmental factors. PMID

  9. Factorial Moments Analyses Show a Characteristic Length Scale in DNA Sequences

    NASA Astrophysics Data System (ADS)

    Mohanty, A. K.; Narayana Rao, A. V. S. S.

    2000-02-01

    A unique feature of most of the DNA sequences, found through the factorial moments analysis, is the existence of a characteristic length scale around which the density distribution is nearly Poissonian. Above this point, the DNA sequences, irrespective of their intron contents, show long range correlations with a significant deviation from the Gaussian statistics, while, below this point, the DNA statistics are essentially Gaussian. The famous DNA walk representation is also shown to be a special case of the present analysis.

  10. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths

    NASA Astrophysics Data System (ADS)

    Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui

    2015-08-01

    How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.

  11. Increase in the diffusion length of minority carriers in Al{sub x}Ga{sub 1–x}N alloys ({sub x} = 0–0.1) fabricated by ammonia molecular beam epitaxy

    SciTech Connect

    Malin, T. V. Gilinsky, A. M.; Mansurov, V. G.; Protasov, D. Yu.; Kozhuhov, A. S.; Yakimov, E. B.; Zhuravlev, K. S.

    2015-10-15

    The room-temperature diffusion length of minority carriers in n-Al{sub 0.1}Ga{sub 0.9}N layers grown by ammonia molecular beam epitaxy on sapphire (0001) substrates used in structures for ultraviolet photodetectors is studied. Measurements were performed using the spectral dependence of the photocurrent recorded in a built-in p–n junction for thin samples and using the induced electron-current procedure for films up to 2 µm thick. The results show that the hole diffusion length in n-AlGaN films is 120–150 nm, which is larger than in GaN films grown under similar growth conditions by a factor of 3–4. This result can be associated with the larger lateral sizes characteristic of hexagonal columns in AlGaN layers grown by molecular beam epitaxy. No increase in the hole diffusion length is observed for thicker films.

  12. Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique

    PubMed Central

    Hiwatashi, Akio; Keupp, Jochen; Yamashita, Koji; Kikuchi, Kazufumi; Yoshiura, Takashi; Yoneyama, Masami; Kruiskamp, Marijn J.; Sagiyama, Koji; Takahashi, Masaya; Honda, Hiroshi

    2016-01-01

    In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs) were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s). The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTRasym) and ΔMTRasym (contrast between tumor and normal white matter) at 3.5 ppm were compared among different saturation lengths. A significant increase in MTRasym (3.5 ppm) of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s), but MTRasym (3.5 ppm) was not different among the saturation lengths in LGG. ΔMTRasym (3.5 ppm) increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s). In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses. PMID:27227746

  13. Characteristics of liquid ethanol diffusion flames from mini tube nozzles

    SciTech Connect

    Chen, J.; Peng, X.F.; Yang, Z.L.; Cheng, J.

    2009-02-15

    A series of experiments was conducted to explore the combustion characteristics of a diffusion flames from mini tubes fueled by liquid ethanol with visual observations of the flame shape, the dynamic liquid-vapor interface during phase change inside the capillary tubes and the tube outer surface temperature using CCD and IR cameras. As the fuel supply rate increased, the interface location rose to the tube exit and the temperature gradient on the outer tube surface increased, consequently the evaporating became much stronger and the interface tended to be unstable. The combustion characteristics are closely related to the rapid phase change and violent evaporation and interfacial dynamics, with the violent evaporation, actually explosive boiling, inducing an explosive flame. The intensity of the explosive flame became stronger as the flowrate increased with the maximum flame height, interface location movement, and sound intensity all significantly increasing. The periodicity of the explosive flame was directly proportional to the interface moving distance and inversely proportional to the fuel flow rate. (author)

  14. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    PubMed

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature. PMID:25372279

  15. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    SciTech Connect

    Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang; Perriot, Romain Thibault; Tonks, Michael; Stanek, Christopher Richard

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  16. Improvement of oxygen diffusion characteristic in gas diffusion layer with planar-distributed wettability for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Koresawa, Ryo; Utaka, Yoshio

    2014-12-01

    Mass transfer characteristics of gas diffusion layer (GDL) are closely related to performance of polymer electrolyte fuel cells. Therefore, it is necessary to clarify the characteristics of water distribution relating to the microscopic conformation and oxygen diffusivity of GDL. A hybrid type carbon paper GDL with planar-distributed wettability is investigated for control of liquid water movement and distribution due to hydrophobic to hydrophilic areas that provide wettability differences in GDL and to achieve enhancement of both oxygen diffusion and moisture retention. Hybrid GDLs with different PTFE content were fabricated in an attempt to improve the oxygen diffusion characteristics. The effects of different PTFE contents on the oxygen diffusivity and water distribution were simultaneously measured and observed using galvanic cell oxygen absorber and X-ray radiography. The PTFE distribution was observed using scanning electron microscopy. The formation of oxygen diffusion paths was confirmed by X-ray radiography, where voids in the hybrid GDL were first formed in the hydrophobic regions and then spread to the untreated wetting region. Thus, the formation of oxygen diffusion paths enhanced the oxygen diffusion. In addition, the effects of local PTFE content in the hydrophobic region and the optimal amount of PTFE for hybrid GDL were elucidated.

  17. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  18. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  19. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  20. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    SciTech Connect

    Nogues, Gilles Den Hertog, Martien; Auzelle, Thomas; Gayral, Bruno; Daudin, Bruno

    2014-03-10

    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.

  1. Measurement of the minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Hakimzadeh, Roshanak

    1993-01-01

    A scanning electron microscope (SEM) was used to measure the electron (minority carrier) diffusion length (L(sub n)) and the edge surface-recombination velocity (V(sub s)) in zinc-doped Czochralski-grown InP wafers. Electron-beam-induced current (EBIC) profiles were obtained in specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure V(sub s), and these values were used in a theoretical expression for normalized EBIC. A fit of the experimental data with this expression enabled us to determine L(sub n).

  2. Reaction-Diffusion Model Simulations relevant to Modified Taylor-Couette Flow in Systems of Varying Length

    NASA Astrophysics Data System (ADS)

    Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-11-01

    Previously, we have observed a period-doubling cascade to chaos in Modified Taylor-Couette Flow with Hourglass Geometry. Such behavior had been predicted by The Reaction-Diffusion model simulations. The chaotic formation of Taylor-Vortex pair formation was restricted to a very narrow band about the waist of the hourglass. It was suggested that with increasing lengths of systems, the chaotic region would expand. We present a battery of simulations to determine the variation of the size of the chaotic region with length, seeking the transition to spatio- temporal chaos. Richard J. Wiener et al, Phys. Rev. E 55, 5489 (1997). H. Riecke and H.-G. Paap, Europhys. Lett. 14, 1235 (1991).

  3. Ignition delay and characteristic reaction length in shock induced supersonic combustion

    SciTech Connect

    Yip, T.G.

    1989-01-01

    An analytical study of the supersonic combustion of H2-air behind an oblique was performed to determine the effects of the shock angle and Mach number on the induction time and a characteristic reaction length. The governing equations for the chemical nonequilibrium flow in a constant cross-sectional streamtube were solved numerically. The induction time and reaction length were det6ermined from the numerical results. An expression for estimating the induction time of hydrogen-air was obtained by curve fitting the results to an equation proposed in earlier theoretical studies. Based on comparisons with the results of previous experimental and analytical studies, the expression provides acceptable estimations of the induction time for post-shock temperatures between 1000 K and 2500 K, and pressures below 2 atm. For oblique shock angles between 20 and 40 degrees in a hypersonic stream at Mach numbers between 6 and 14, and 40 degree-Mach 10 combination was predicted to yield the shortest reaction length. 25 refs.

  4. Characteristic length scale of input data in distributed models: implications for modeling grain size

    USGS Publications Warehouse

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  5. Moisture Diffusivity Characteristics of Rough Rice Under Infrared Radiation Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To design an efficient infrared (IR) dryer for rough rice, it is important to understand the drying behavior of rice grains under infrared heating. The objective of this study was to determine the moisture diffusivity and moisture diffusivity coefficient of rough rice under IR heating and cooling. ...

  6. Comparison of Three E-Beam Techniques for Electric Field Imaging and Carrier Diffusion Length Measurement on the Same Nanowires.

    PubMed

    Donatini, F; de Luna Bugallo, Andres; Tchoulfian, Pierre; Chicot, Gauthier; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2016-05-11

    Whereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.5 to 175 nm. The dominant impact of the surface on the NW properties is revealed through the comparison of three different physical quantities recorded on the same NW: electron-beam induced current, cathodoluminescence, and secondary electron signal. Indeed, the space charge region near the Schottky contact exhibits an unusual linear variation with reverse bias whatever the NW radius. On the contrary, the exciton diffusion length is shown to be controlled by the NW radius through surface recombination. This systematic comparison performed on a single ZnO NW demonstrates the power of these complementary techniques in understanding NW properties. PMID:27105083

  7. Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths.

    PubMed

    Yettapu, Gurivi Reddy; Talukdar, Debnath; Sarkar, Sohini; Swarnkar, Abhishek; Nag, Angshuman; Ghosh, Prasenjit; Mandal, Pankaj

    2016-08-10

    Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron-hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm(2) V(-1) s(-1)), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal quantum dot system. PMID:27367476

  8. Determination of minority-carrier diffusion length by integral properties of electron-beam-induced current profiles

    NASA Astrophysics Data System (ADS)

    Cavalcoli, D.; Cavallini, A.; Castaldini, A.

    1991-08-01

    The diffusion length of minority carriers in n-type floating-zone Si samples is obtained with the electron-beam-induced current technique in planar configuration. The charge collection current data as a function of the beam-junction distance are analyzed on the basis of the ``moment method'' developed by Donolato [C. Donolato, Solid-State Electron. 28, 1143 (1985)], which is based on the calculation of the variance of the derivative of the current profile. With respect to other methods reported in literature, this has the advantage that it requires no assumptions on the surface recombination velocity and thus provides a diffusion length value free from its influence. The data are also analyzed with the asymptotic method, which requires conventional assumptions on the surface recombination velocity. The comparison between the results has allowed us to test the capabilities of the above-mentioned method. Particular attention is paid to the injection level and its influence on bulk and surface properties.

  9. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    SciTech Connect

    Placidi, E. Arciprete, F.; Latini, V.; Latini, S.; Patella, F.; Magri, R.

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.

  10. Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering

    PubMed Central

    Turzhitsky, Vladimir; Rogers, Jeremy D.; Mutyal, Nikhil N.; Roy, Hemant K.; Backman, Vadim

    2009-01-01

    Low-coherence enhanced backscattering (LEBS) is a technique that has recently shown promise for tissue characterization and the detection of early pre-cancer. Although several Monte Carlo models of LEBS have been described, these models have not been accurate enough to predict all of the experimentally observed LEBS features. We present an appropriate Monte Carlo model to simulate LEBS peak properties from polystyrene microsphere suspensions in water. Results show that the choice of the phase function greatly impacts the accuracy of the simulation when the transport mean free path (ls*) is much greater than the spatial coherence length (LSC). When ls* < LSC, a diffusion approximation based model of LEBS is sufficiently accurate. We also use the Monte Carlo model to validate that LEBS can be used to measure the radial scattering probability distribution (radial point spread function), p(r), at small length scales and demonstrate LEBS measurements of p(r) from biological tissue. In particular, we show that pre-cancerous and benign mucosal tissues have different small length scale light transport properties. PMID:21037980

  11. Characteristics of Li diffusion on silicene and zigzag nanoribbon

    NASA Astrophysics Data System (ADS)

    Yan-Hua, Guo; Jue-Xian, Cao; Bo, Xu

    2016-01-01

    We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from 0.1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074212 and 11204123) and the Natural Science Foundation of Jiangsu province, China (Grant No. BK20130945).

  12. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Yoshida, Satoru; Akiyama, Yasuhiro; Stock, Michael; Ushio, Tomoo; Kawasaki, Zen

    2015-09-01

    Using a low-frequency lightning location system comprising 11 sites, we located preliminary breakdown (PB) processes in 662 intracloud (IC) lightning flashes during the summer of 2013 in Osaka area of Japan. On the basis of three-dimensional location results, we studied initiation altitude and upward propagation speed of PB processes. PB in most IC flashes has an initiation altitude that ranges from 5 to 10 km with an average of 7.8 km. Vertical speed ranges from 0.5 to 17.8 × 105 m/s with an average of 4.0 × 105 m/s. Vertical speed is closely related with initiation altitude, with IC flashes initiated at higher altitude having lower vertical speed during PB stage. Characteristics of PB pulse trains including pulse rate, pulse amplitude, and pulse width are also analyzed. The relationship between pulse rate and vertical speed has the strongest correlation, suggesting that each PB pulse corresponds to one step of the initial leader during the PB stage. Pulse rate, pulse amplitude, and pulse width all show decreasing trends with increasing initiation altitude and increasing trends with increasing vertical speed. Using a simple model, the step length of the initial leader during the PB stage is estimated. Most of initial leaders have step lengths that range from 40 to 140 m with an average of 113 m. Estimated step length has a strong correlation with initiation altitude, indicating that leaders initiated at higher altitude have longer steps. Based on the results of this study, we speculate that above certain altitude (~12 km), initial leaders in PB stages of IC flashes may only have horizontal propagations. PB processes at very high altitude may also have very weak radiation, so detecting and locating them would be relatively difficult.

  13. On the characteristic length scales associated with plastic deformation in metallic glasses

    SciTech Connect

    Murali, P.; Zhang, Y. W.; Gao, H. J.

    2012-05-14

    Atomistic simulations revealed that the spatial correlations of plastic displacements in three metallic glasses, FeP, MgAl, and CuZr, follow an exponential law with a characteristic length scale l{sub c} that governs Poisson's ratio {nu}, shear band thickness t{sub SB}, and fracture mode in these materials. Among the three glasses, FeP exhibits smallest l{sub c}, thinnest t{sub SB}, lowest {nu}, and brittle fracture; CuZr exhibits largest l{sub c}, thickest t{sub SB}, highest {nu}, and ductile fracture, while properties of MgAl lie in between those of FeP and CuZr. These findings corroborate well with existing experimental observations and suggest l{sub c} as a fundamental measure of the shear transformation zone size in metallic glasses.

  14. On the characteristic length scales associated with plastic deformation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Murali, P.; Zhang, Y. W.; Gao, H. J.

    2012-05-01

    Atomistic simulations revealed that the spatial correlations of plastic displacements in three metallic glasses, FeP, MgAl, and CuZr, follow an exponential law with a characteristic length scale ℓc that governs Poisson's ratio ν, shear band thickness tSB, and fracture mode in these materials. Among the three glasses, FeP exhibits smallest ℓc, thinnest tSB, lowest ν, and brittle fracture; CuZr exhibits largest ℓc, thickest tSB, highest ν, and ductile fracture, while properties of MgAl lie in between those of FeP and CuZr. These findings corroborate well with existing experimental observations and suggest ℓc as a fundamental measure of the shear transformation zone size in metallic glasses.

  15. Cow characteristics and their association with production performance with different dry period lengths.

    PubMed

    Steeneveld, W; van Knegsel, A T M; Remmelink, G J; Kemp, B; Vernooij, J C M; Hogeveen, H

    2014-01-01

    Shortening or omitting the dry period (DP) has been proposed as a management strategy to improve energy balance of dairy cows in early lactation. Both shortening and complete omission of the DP reduces milk production in the subsequent lactation compared with a conventional DP length of 60d. Some cows have less milk production loss than other cows after applying no DP or a short DP. The aim of this study is to evaluate which cow characteristics are associated with the amount of milk production losses following no DP or a short DP (30d). Daily production information from the lactation before and after the DP was available from 161 dairy cows (54 cows with a 0-d DP, 51 cows with a 30-d DP, and 56 cows with a 60-d DP) from a research herd. Daily production (milk, fat, and protein) until 305d in milk was estimated for all cows. Subsequently, total fat- and protein-corrected milk yield from 60d before the expected calving date until 305d in the following lactation (FPCMtotal) was estimated. A statistical analysis was performed to evaluate which cow characteristics were associated with limited or no production losses following no DP or a short DP, compared with a conventional DP length of 60d. Average FPCMtotal was 9,341, 10,499, and 10,795kg for cows with no DP, a 30-d DP, and a 60-d DP, respectively. The cow characteristics parity, daily milk production at 12wk before the expected calving date, and reduction in daily milk production between 16 and 12wk before the expected calving date were associated with production loss due to a short (30d) or no DP. Compared with 60d DP, multiparous cows had less production loss (987kg) following no DP than primiparous cows (2,132kg). The difference in FPCMtotal between the 3DP groups was largest for cows with a low milk production (e.g., 10kg/d) at 12wk before the expected calving date. The greater the reduction in milk production between 16 and 12wk before the expected calving date, the larger the difference in FPCMtotal between

  16. PREDICTION OF CHARACTERISTIC LENGTH AND FRACTURE TOUGHNESS IN DUCTILE-BRITTLE TRANSITION

    SciTech Connect

    Lam, P

    2008-04-15

    Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to -45 C within the ductile-brittle transition regime. As many researchers have shown, the failure stress ({sigma}{sub f}) of the material could be approximated as a constant. The characteristic length, or the critical distance (r{sub c}) from the crack tip, at which {sigma}{sub f} is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A{sub 2} two-parameter constraint theory in fracture mechanics, the fracture toughness (J{sub C} or K{sub JC}) can be expressed as a function of the constraint level (A{sub 2}) and the critical distance r{sub c}. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant {sigma}{sub f} and a set of temperature-dependent r{sub c}. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the crack length and W is the specimen width.

  17. The impact of network characteristics on the diffusion of innovations

    NASA Astrophysics Data System (ADS)

    Peres, Renana

    2014-05-01

    This paper studies the influence of network topology on the speed and reach of new product diffusion. While previous research has focused on comparing network types, this paper explores explicitly the relationship between topology and measurements of diffusion effectiveness. We study simultaneously the effect of three network metrics: the average degree, the relative degree of social hubs (i.e., the ratio of the average degree of highly-connected individuals to the average degree of the entire population), and the clustering coefficient. A novel network-generation procedure based on random graphs with a planted partition is used to generate 160 networks with a wide range of values for these topological metrics. Using an agent-based model, we simulate diffusion on these networks and check the dependence of the net present value (NPV) of the number of adopters over time on the network metrics. We find that the average degree and the relative degree of social hubs have a positive influence on diffusion. This result emphasizes the importance of high network connectivity and strong hubs. The clustering coefficient has a negative impact on diffusion, a finding that contributes to the ongoing controversy on the benefits and disadvantages of transitivity. These results hold for both monopolistic and duopolistic markets, and were also tested on a sample of 12 real networks.

  18. Determination of minority carrier diffusion length of sprayed-Cu2ZnSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Courel, Maykel; Valencia-Resendiz, E.; Pulgarín-Agudelo, F. A.; Vigil-Galán, O.

    2016-04-01

    Despite Cu2ZnSnS4(CZTS) is a potential candidate for solar cell applications, so far, low efficiency values have been reported. In particular, for spray-deposited CZTS, efficiencies lower than 2% are commonly achieved. It is well known that one of the most important parameters governing solar cell performance is minority carrier diffusion length (Ln). In this work, CZTS thin film solar cells with different compositional ratios are fabricated in order to study its impact on Ln values. The Ln parameter is calculated for sprayed-CZTS layers using external quantum efficiency measurements in conjunction with optical absorption coefficient versus wavelength measurements - for the first time. Values in the range of 0.11-0.17 μm are obtained emphasizing the need for improving sprayed-CZTS crystalline quality.

  19. Spin Torque Study of the Spin Hall Conductivity and Spin Diffusion Length in Platinum Thin Films with Varying Resistivity

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Ralph, D. C.; Buhrman, R. A.

    2016-03-01

    We report measurements of the spin torque efficiencies in perpendicularly magnetized Pt /Co bilayers where the Pt resistivity ρPt is strongly dependent on thickness tPt . The dampinglike spin Hall torque efficiency per unit current density ξDLj varies significantly with tPt , exhibiting a peak value ξDLj=0.12 at tPt=2.8 - 3.9 nm . In contrast, ξDLj/ρPt increases monotonically with tPt and saturates for tPt>5 nm , consistent with an intrinsic spin Hall effect mechanism, in which ξDLj is enhanced by an increase in ρPt . Assuming the Elliott-Yafet spin scattering mechanism dominates, we estimate that the spin diffusion length λs=(0.77 ±0.08 )×10-15 Ω .m2/ρPt .

  20. Maternal and infant characteristics influencing the anogenital distance and penile length in newborns.

    PubMed

    Singal, Arbinder Kumar; Jain, Viral G

    2016-08-01

    Recent studies have suggested that maternal characteristics can affect reproductive health of offspring, possibly through pre-natal hormonal influence. Anogenital distance (AGD) is an anthropometric measure which is a sensitive reproductive endpoint of masculinisation. It provides a read-out of pre-natal androgen exposure and has been associated with several reproductive health outcomes in humans. We studied AGD and stretched penile length (SPL) in a large, racially homogenous sample of consecutive newborns to understand their association with maternal and infant characteristics. A prospective cross-sectional study involving measurement of AGD and SPL at birth was performed by a single trained observer. A total of 1077 newborns (553 males and 524 females) were included in final anthropometric analysis. The mean AGD of males was 2.56 ± 0.31 cm, and the mean AGD of females was 1.54 ± 0.17 cm. The mean SPL of males was 3.31 ± 0.38 cm. On multiple regression analysis, for both males and females, birthweight (β = 0.229, P < 0.001 and β = 0.135, P < 0.001, respectively) was modest but significant predictor for AGD. For SPL, only gestational age (β = 0.054, P < 0.001) was found to be statistically significant predictor. There was no significant association observed for gravidity, parity and maternal age with both AGD and SPL. Thus, no maternal characteristics (age, gravidity, parity) influence AGD or SPL in human infants. PMID:26666590

  1. Flow Characteristics in Compact Thermal Spray Coating Systems with Minimum Length Nozzle

    NASA Astrophysics Data System (ADS)

    Seung-Hyun, Kim; Youn-Jea, Kim

    2009-10-01

    In this study, numerical analysis is performed to adopt the equivalence ratio on the high velocity oxygen fuel (HVOF) thermal spray coating systems equipped with a minimum length nozzle. The analysis is applied to investigate the axisymmetric, steady-state, turbulent, and chemically combusting flow both within the torch and in a free jet region between the torch and the substrate to be coated. The combustion is modeled using a single-step and eddy-dissipation model which assumes that the reaction rate is limited by the turbulent mixing rate of the fuel and oxidant. As the diameter of the nozzle throat is increased, the location of the Mach shock disc moves backward from the nozzle exit. As the throat diameter and the divergent portion are 6 mm and 8 mm, respectively, the pressure in the HVOF system is the lowest at the chamber and the expanding gas is steadily maintained with both high velocity and high temperature for different equivalence ratios. Thus, relatively minor amendments of the equivalence ratio and the geometry of HVOF can lead to improved control over coating characteristics.

  2. Improvement of mechanical characteristics and performances with Ni diffusion mechanism throughout Bi-2223 superconducting matrix

    NASA Astrophysics Data System (ADS)

    Sarıtekin, N. K.; Bilge, H.; Kahraman, M. F.; Zalaoǧlu, Y.; Pakdil, M.; Doǧruer, M.; Yıldırım, G.; Oz, M.

    2016-03-01

    This study is interested in the role of diffusion annealing temperature (650-850°C) on the mechanical characteristics and performance of pure and Ni diffused Bi-2223 superconducting materials by means of standard compression tests and Vickers hardness measurements at performed different applied loads in the range of 0.245-2.940N and theoretical calculations. Based on the experimental findings, the mechanical performances improve with increasing annealing temperature up to 700 °C beyond which they degrade drastically due to the increased artificial disorders, cracks and irregular grain orientation distribution. In other words, the penetration of excess Ni inclusions accelerates both the dislocation movement and especially the cracks and voids propagation as a result of the decrement in the Griffith critical crack length. Further, it is to be mentioned here that all the sample exhibit typical indentation size effect (ISE) behavior. In this respect, both the plastic (irreversible) and elastic (reversible) deformations have dominant role on the superconducting structures as a result of the enhancement in the elastic recovery. At the same time elastic modulus, yield strength and fracture toughness parameters are theoretically extracted from the microhardness values. Moreover, the elastic modulus parameters are compared with the experimental values. It is found that the differentiation between the comparison results enhances hastily with the increment in the applied indentation test loads due to the existence of the increased permanent disorders, lattice defects and strains in the stacked layers. Namely, the error level increases away from the actual crystal structure. Additionally, the microhardness values are theoretically analyzed for the change of the mechanical behaviors with the aid of Meyer's law, elastic/plastic deformation and Hays-Kendall approaches for the first time.

  3. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    SciTech Connect

    Vishnyakov, A. V.; Stuchinsky, V. A. Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  4. Carrier diffusion length measured by optical method in GaN epilayers grown by MOCVD on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yablonskii, G. P.; Gurskii, A. L.; Pavlovskii, V. N.; Lutsenko, E. V.; Zubialevich, V. Z.; Shulga, T. S.; Stognij, A. I.; Kalisch, H.; Szymakowski, A.; Jansen, R. H.; Alam, A.; Schineller, B.; Heuken, M.

    2005-02-01

    The carrier ambipolar diffusion length L of optically excited carriers in GaN epitaxial layers grown on sapphire substrate was estimated by an optical method using fitting of the experimental photoluminescence spectra recorded from the front and back sides of the samples by the theoretical equation describing light reflection, light absorption and carrier profile in the medium. The estimations were carried out in the range of excitation intensities from 5 W/cm 2 CW up to 1 MW/cm 2 (pulsed), using excitation at the wavelengths of 325, and 337.1 nm in order to vary the excited layer depth. It has been found that in the samples under study the value of L is about 120-130 nm and does not depend significantly on the excitation intensity up to 200 kW/cm 2. Further increase of excitation level leads to higher values of L about 150-170 nm, probably because of the electron-hole plasma expansion.

  5. Effect of Length-Beam Ratio on the Aerodynamic Characteristics of Flying-Boat Hulls without Wing Interference

    NASA Technical Reports Server (NTRS)

    Lowry, John G.; Riebe, John M.

    1948-01-01

    Contains experimental results of an investigation of the aerodynamic characteristics of a family of flying boat hulls of length beam ratios 6, 9, 12, and 15 without wing interference. The results are compared with those taken on the same family of hulls in the presence of a wing.

  6. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals

    DOE PAGESBeta

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm–2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals thanmore » in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  7. Effective spin Hall properties of a mixture of materials with and without spin-orbit coupling: Tailoring the effective spin diffusion length

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Prestgard, M. C.; Tiwari, A.; Raikh, M. E.

    2016-01-01

    We study theoretically the effective spin Hall properties of a composite consisting of two materials with and without spin-orbit (SO) coupling. In particular, we assume that SO material represents a system of grains in a matrix with no SO. We calculate the effective spin Hall angle and the effective spin diffusion length of the mixture. Our main qualitative finding is that, when the bare spin diffusion length is much smaller than the radius of the grain, the effective spin diffusion length is strongly enhanced, well beyond the "geometrical" factor. The physical origin of this additional enhancement is that, with small diffusion length, the spin current mostly flows around the grain without suffering much loss. We also demonstrate that the voltage, created by a spin current, is sensitive to a very weak magnetic field directed along the spin current, and even reverses sign in a certain domain of fields. The origin of this sensitivity is that the spin precession, caused by magnetic field, takes place outside the grains where SO is absent.

  8. Characteristics of methane diffusion flame in a reacting vortex ring

    NASA Astrophysics Data System (ADS)

    Safta, C.; Madnia, C. K.

    2004-09-01

    Direct numerical simulations of non-premixed methane flame vortex ring interactions are performed. The methane combustion was modelled using a detailed kinetic mechanism which consists of 36 species and 217 elementary reactions and involves C1, C2, and a small set of C3 kinetics. The vortex ring is generated by a brief discharge of cold fuel into a quiescent oxidizer ambient. The much higher oxidizer temperature leads to the auto-ignition of the vortex ring. The effects of fuel and oxidizer dilution and vortex ring strength on the dynamics of the interaction are studied. Three flame regions, front, top, and wake, are identified. Several combustion regimes are defined in the reacting vortex ring configuration. For the range of parameters accessible, unsteady, curvature and thickening effects on the flame structure are observed. Flame structure comparisons with steady counterflow diffusion flame (CFDF) results show that for a Damköhler number greater than 25, the unsteady effects on the flame become small. The contributions of time varying straining, fuel temperature and concentration to the unsteady effects on the front flame structure are separated through comparisons with unsteady CFDF simulations. For high initial Damköhler number simulations, none of these contributions are important since the flame becomes quasi-steady shortly after ignition. For intermediate initial Damköhler number simulations the unsteady effects are important at early times. At later times, a decrease in the straining and an increase in the fuel temperature reduce these effects. However, a decrease in the fuel concentration extends the duration for which the unsteady effects are important. If the initial Damköhler number is sufficiently low, the decrease in the fuel concentration overcomes the effects of straining and fuel temperature, and the flame remains unsteady for the entire simulation. Thickening and curvature effects on the flame structure are observed for the intermediate and

  9. Effect of the length of ligands passivating quantum dots on the electrooptical characteristics of organic light-emitting diodes

    SciTech Connect

    Kurochkin, N. S.; Vashchenko, A. A. Vitukhnovsky, A. G.; Tananaev, P. N.

    2015-07-15

    The electrooptical characteristics of organic light-emitting diodes with quantum dots passivated with organic ligands of different lengths as emitting centers are investigated. It is established that the thickness of the ligand coating covering the quantum dots has little effect on the Förster energy transfer in the diodes, but significantly affects the direct injection of charge carriers into the quantum-dot layer. It is shown that the thickness of the passivation coating covering the quantum dots in a close-packed nanoparticle layer is deter- mined both by the length of passivating ligands and the degree of quantum-dot coverage with ligands.

  10. Cognitive activity, cognitive function, and brain diffusion characteristics in old age.

    PubMed

    Arfanakis, Konstantinos; Wilson, Robert S; Barth, Christopher M; Capuano, Ana W; Vasireddi, Anil; Zhang, Shengwei; Fleischman, Debra A; Bennett, David A

    2016-06-01

    The objective of this work was to test the hypotheses that a) more frequent cognitive activity in late life is associated with higher brain diffusion anisotropy and lower trace of the diffusion tensor, and b) brain diffusion characteristics partially mediate the association of late life cognitive activity with cognition. As part of a longitudinal cohort study, 379 older people without dementia rated their frequency of participation in cognitive activities, completed a battery of cognitive function tests, and underwent diffusion tensor imaging. We used tract-based spatial statistics to test the association between late life cognitive activity and brain diffusion characteristics. Clusters with statistically significant findings defined regions of interest in which we tested the hypothesis that diffusion characteristics partially mediate the association of late life cognitive activity with cognition. More frequent cognitive activity in late life was associated with higher level of global cognition after adjustment for age, sex, education, and indicators of early life cognitive enrichment (p = 0.001). More frequent cognitive activity was also related to higher fractional anisotropy in the left superior and inferior longitudinal fasciculi, left fornix, and corpus callosum, and lower trace in the thalamus (p < 0.05, FWE-corrected). After controlling for fractional anisotropy or trace from these regions, the regression coefficient for the association of late life cognitive activity with cognition was reduced by as much as 26 %. These findings suggest that the association of late life cognitive activity with cognition may be partially mediated by brain diffusion characteristics. PMID:25982658

  11. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Bomela, Christian Loangola

    --o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427°C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5° at the last turbine stage will ensure a better exhaust diffuser performance.

  12. Performance characteristics of two annular dump diffusers using suction-stabilized vortex flow control

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Smith, J. M.

    1978-01-01

    The two diffusers employed in the investigation had the same overall area ratio but different prediffuser area ratios and suction slot geometries. Velocity profile and diffuser pressure recovery performance data were obtained at ambient pressure and temperature, with inlet Mach numbers ranging from 0.18 to 0.41 and suction rate varying from zero to 18% of total inlet mass flow rate. On the basis of the reported investigation it is concluded that suction stabilized vortex flow diffusers show promise for application in combustors because of relatively high static pressure recovery and low total pressure loss obtained in a short length. Performance obtained using a narrow angle (7 degree) prediffuser was superior to that obtained with a prediffuser having a 14 degree included angle.

  13. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  14. A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential

    NASA Astrophysics Data System (ADS)

    Shodja, H. M.; Tehranchi, A.

    2010-05-01

    The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach based on the Sutton-Chen interatomic potential function is proposed. For the validity of the computed characteristic lengths, the phenomenon of the size effect pertinent to a nano-sized circular void within an fcc (111) plane is examined via both first strain gradient theory and lattice statics. Comparison of the results explains the physical ramifications of the characteristic lengths in improving the usual continuum results. Moreover, by reconsideration of the Kelvin problem it is shown that a commonly employed variant of the first strain gradient theory is only valid for a few fcc metals.

  15. Characteristic length scale of the intermediate structure in zero-pressure-gradient boundary layer flow

    PubMed Central

    Barenblatt, G. I.; Chorin, A. J.; Prostokishin, V. M.

    2000-01-01

    In a turbulent boundary layer over a smooth flat plate with zero pressure gradient, the intermediate structure between the viscous sublayer and the free stream consists of two layers: one adjacent to the viscous sublayer and one adjacent to the free stream. When the level of turbulence in the free stream is low, the boundary between the two layers is sharp, and both have a self-similar structure described by Reynolds-number-dependent scaling (power) laws. This structure introduces two length scales: one—the wall-region thickness—determined by the sharp boundary between the two intermediate layers and the second determined by the condition that the velocity distribution in the first intermediate layer be the one common to all wall-bounded flows and in particular coincide with the scaling law previously determined for pipe flows. Using recent experimental data, we determine both these length scales and show that they are close. Our results disagree with the classical model of the “wake region.” PMID:10760253

  16. Ceruminal diffusion activities and ceruminolytic characteristics of otic preparations – an in-vitro study

    PubMed Central

    2013-01-01

    Background An in-vitro setup was established in order to determine a) the diffusion activities of eight otic preparations (Aurizon®, Eas Otic®, Epi Otic®, Otifree®, Otomax®, Panolog®, Posatex®, Surolan®) through synthetic cerumen, and b) the ceruminolytic capacity and impregnation effects of these products. The main lipid classes of canine cerumen produced with moderate, non-purulent otitis externa were determined by thin layer chromatography and were subsequently used to produce a standardised synthetic cerumen (SCC). SCC was filled into capillary tubes, all of which were loaded with six commercially available multipurpose otic medications and two ear cleaners, each mixed with two markers in two experimental setups. These two marker compounds (Oil red O and marbofloxacin) were chosen, since they exhibit different physicochemical drug characteristics by which it is possible to determine and verify the diffusion activity of different types of liquids (i.e. the otic preparations). A synthetic cerumen described in the literature (JSL) was also used for comparison as its lipid composition was different to SCC. The diffusion activities of the otic preparations through both types of synthetic cerumen were studied over 24 hours. A second in-vitro experiment determined both the ceruminolytic activity and impregnation effect of the otic preparations by comparing the weight loss or weight gain after repeated incubation of JSL. Results Canine cerumen is mainly composed of triglycerides, sterol esters, fatty acid esters and squalene. The diffusion experiments showed a high diffusion efficacy along with a high impregnation effect for one test product. All the other products exhibited a lower diffusion activity with a mild to moderate impregnation effect. A mild ceruminolytic activity was observed for the two ear cleaners but not for any of the otic medications. Conclusions The present study demonstrates that there are significant differences in the diffusion

  17. Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy

    PubMed Central

    Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.

    2016-01-01

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated. PMID:26876009

  18. Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.

    2016-02-01

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated.

  19. Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system.

    PubMed

    Lehnert, A; Machann, J; Helms, G; Claussen, C D; Schick, F

    2004-01-01

    Methods for examinations of diffusion of large molecules of the size of fatty acids or triglycerides were developed for whole body MR units. Samples of aliphatic molecules were examined to study the influence of chain length. Feasibility under in vivo conditions was tested on lard samples at 37 degrees C and on human subjects Three stimulated echo sequences with maximum b-values of 2000 s/mm(2), 20000 s/mm(2), and 80000 s/mm(2) were used to assess a wide range of mobility. Sequence timing was optimized to minimize relaxation losses of fatty tissue. Apparent diffusion coefficients (ADC) were determined from five spectra with different diffusion weighting. In-vitro experiments were performed on butanol, decanol, and oleic acid to study the influence of chain length. In vivo conditions were mimicked using lard at 37 degrees C representing a composition of substances of various chain lengths. Subcutaneous fat and tibial bone marrow were studied in three healthy volunteers. ADC of muscular lipids of the lower leg was determined in two subjects. ADC values of pure aliphatic substances were in the range between 3.2 x 10(-5) mm(2)/s for oleic acid and 37.8 x 10(-5) mm(2)/s for butanol. In vivo investigations revealed ADC values of 1.11-1.24 x 10(-5) mm(2)/s for tibial bone marrow and 1.21-2.05 x 10(-5) mm(2)/s for subcutaneous fat. Diffusion coefficients of extra- and intramyocellular lipids were 1.83-3.65 x 10(-5) mm(2)/s and 2.22-3.60 x 10(-5) mm(2)/s, respectively. The proposed technique enables determination of ADC values of relatively large molecules and of lipid tissue compartments under in vivo conditions. Diffusion properties in several human lipid compartments are reported for the first time. Incoherent voxel motion influences the in vivo results to an unknown degree because of high motion sensitivity. In vitro experiments revealed ADC values depending on the chain length of the substances, indicating a residual dependence of measured ADC's on sequence timing

  20. Low-subsonic aerodynamic characteristics of a shuttle-orbiter configuration designed for reduced length

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Spencer, B., Jr.

    1973-01-01

    An investigation has been made in a low-turbulence pressure tunnel to determine the low-subsonic aerodynamic characteristics of a 0.01875-scale model of a potential shuttle orbiter. The design has the rocket engines mounted in fairings on either side of the body on top of the wing. The wing had a leading-edge sweep of 50 and a trailing-edge sweep of minus 4. configurations investigated included engine-mounted twin dorsal tails at various rollout angles, a body-mounted center-line vertical tail, cylindrical and boattailed afterbody, and elevon and rudder at several deflections.

  1. Multiscaling for systems with a broad continuum of characteristic lengths and times: Structural transitions in nanocomposites

    NASA Astrophysics Data System (ADS)

    Pankavich, S.; Ortoleva, P.

    2010-06-01

    The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.

  2. Time Evolution and Characteristic Quantities of Squeezed Chaotic Field in Diffusion Channel

    NASA Astrophysics Data System (ADS)

    Da, Cheng; Fan, Hong-Yi

    2016-06-01

    In exploring the time evolution law of squeezed chaotic state, described by the density operator, ρ 0=(1-ek) S^{dagger }(r) e^{ka^{dagger }a}S(r) , in a diffusion channel, we find two physical quantities characteristic of this physical process, they are τ=1/( 2bar{n+1) e^{-2r}+1}, θ={1}/{( 2bar{n}+1) e^{2r}+1}, where bar {n} is average photon number of the chaotic field, r is the squeezing parameter and ρ 0 in normal ordering is ρ0=2√{τ θ}\\colon exp [ 1/2( τ -θ ) ( a^{dagger2}+a2) -( τ +θ ) a^{dag}a] \\colon. We find in the diffusion process, τ and 𝜃 evolves into τ → τ^'=τ/1+2κ tτ, θ → θ^'=θ/1+2κ tθ, where κ represent diffusion coefficient, thus ρ ( t) =2√{τ^'θ^'\\colon exp [ 1/2( τ^'-θ^') ( a^{dagger 2}+a2) -( τ^'+θ^') a^{dagger }a] \\colon, this is the evolution law of squeezed chaotic state in diffusion channel. The photon number of the final state slightly increases by an amount κ t. This diffusion process can be considered a quantum controlling scheme in the way of photon addition by adjusting κ.

  3. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  4. Evaluation of pipeline defect's characteristic axial length via model-based parameter estimation in ultrasonic guided wave-based inspection

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojuan; Tse, Peter W.; Dordjevich, Alexandar

    2011-02-01

    The reflection signal from a defect in the process of guided wave-based pipeline inspection usually includes sufficient information to detect and define the defect. In previous research, it has been found that the reflection of guided waves from even a complex defect primarily results from the interference between reflection components generated at the front and the back edges of the defect. The respective contribution of different parameters of a defect to the overall reflection can be affected by the features of the two primary reflection components. The identification of these components embedded in the reflection signal is therefore useful in characterizing the concerned defect. In this research, we propose a method of model-based parameter estimation with the aid of the Hilbert-Huang transform technique for the purpose of decomposition of a reflection signal to enable characterization of the pipeline defect. Once two primary edge reflection components are decomposed and identified, the distance between the reflection positions, which closely relates to the axial length of the defect, could be easily and accurately determined. Considering the irregular profiles of complex pipeline defects at their two edges, which is often the case in real situations, the average of varied axial lengths of such a defect along the circumference of the pipeline is used in this paper as the characteristic value of actual axial length for comparison purpose. The experimental results of artificial defects and real corrosion in sample pipes were considered in this paper to demonstrate the effectiveness of the proposed method.

  5. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.

    PubMed

    Taffetani, M; Gottardi, R; Gastaldi, D; Raiteri, R; Vena, P

    2014-07-01

    Nanoindentation is an experimental technique which is attracting increasing interests for the mechanical characterization of articular cartilage. In particular, time dependent mechanical responses due to fluid flow through the porous matrix can be quantitatively investigated by nanoindentation experiments at different penetration depths and/or by using different probe sizes. The aim of this paper is to provide a framework for the quantitative interpretation of the poroelastic response of articular cartilage subjected to creep nanoindentation tests. To this purpose, multiload creep tests using spherical indenters have been carried out on saturated samples of mature bovine articular cartilage achieving two main quantitative results. First, the dependence of indentation modulus in the drained state (at equilibrium) on the tip radius: a value of 500 kPa has been found using the large tip (400 μm radius) and of 1.7 MPa using the smaller one (25 μm). Secon, the permeability at microscopic scale was estimated at values ranging from 4.5×10(-16) m(4)/N s to 0.1×10(-16) m(4)/N s, from low to high equivalent deformation. Consistently with a poroelastic behavior, the size-dependent response of the indenter displacement disappears when characteristic size and permeability are accounted for. For comparison purposes, the same protocol was applied to intrinsically viscoelastic homogeneous samples of polydimethylsiloxane (PDMS): both indentation modulus and time response have been found size-independent. PMID:24814573

  6. Porous material characterization--ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber.

    PubMed

    Moussatov, A; Ayrault, C; Castagnède, B

    2001-04-01

    An ultrasonic method of acoustic parameter evaluation for porous materials saturated by air (or any other gas) is discussed. The method is based on the evolution of speed of sound and the attenuation inside the material when the static pressure of the gas saturating the material is changed. Asymptotic development of the equivalent fluid model of Johnson-Allard is used for analytical description. The method allows an estimation of three essential parameters of the model: the tortuosity, and the viscous and thermal characteristic lengths. Both characteristic lengths are estimated individually by assuming a given ratio between them. Tests are performed with industrial plastic foams and granular substances (glass beads, sea sand) over a gas pressure range from 0.2 to 6 bars at the frequencies 30-600 kHz. The present technique has a number of distinct advantages over the conventional ultrasonic approach: operation at a single frequency, improved signal-to-noise ratio, possibility of saturation the porous media by different gases. In the case when scattering phenomena occur, the present method permits a separate analysis of scattering losses and viscothermal losses. An analytical description of the method is followed by a presentation of the set-up and the measurement procedure. Experimental results and perspectives are discussed. PMID:11350000

  7. Evaluation of the minority carrier diffusion length and surface-recombination velocity in GaAs p/n solar cells

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Moeller, Hans J.; Bailey, Sheila

    1991-01-01

    The minority carrier diffusion length (Lp) and the surface recombination velocity (Vs) were measured as a function of distance (x) from the p-n junction in GaAs p/n concentrator solar cells. The measured Vs values were used in a theoretical expression for the normalized electron-beam-induced current. A fitting procedure was then used to fit this expression with experimental values to obtain Lp. The results show that both Vs and Lp vary with x. Lp measured in irradiated cells showed a marked reduction. These values were compared to those measured previously which did not account for Vs.

  8. Experimental Investigation of the Effect of Vertical-tail Size and Length and of Fuselage Shape and Length on the Static Lateral Stability Characteristics of a Model with 45 Degree Sweptback Wing and Tail Surfaces

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Wolhart, Walter D

    1951-01-01

    An investigation was made to determine the effects of vertical-tail size and length and of fuselage shape and length on the static lateral stability characteristics of a model with wing and vertical tails having the quarter-chord lines swept back 45 degrees. The results indicate that the directional instability of the various isolated fuselages was about two-thirds as large as that predicted by classical theory.

  9. Characteristic length scales and time-averaged transport velocities of suspended sediment in the mid-Atlantic Region, USA

    NASA Astrophysics Data System (ADS)

    Pizzuto, James; Schenk, Edward R.; Hupp, Cliff R.; Gellis, Allen; Noe, Greg; Williamson, Elyse; Karwan, Diana L.; O'Neal, Michael; Marquard, Julia; Aalto, Rolf; Newbold, Denis

    2014-02-01

    Watershed Best Management Practices (BMPs) are often designed to reduce loading from particle-borne contaminants, but the temporal lag between BMP implementation and improvement in receiving water quality is difficult to assess because particles are only moved downstream episodically, resting for long periods in storage between transport events. A theory is developed that describes the downstream movement of suspended sediment particles accounting for the time particles spend in storage given sediment budget data (by grain size fraction) and information on particle transit times through storage reservoirs. The theory is used to define a suspended sediment transport length scale that describes how far particles are carried during transport events, and to estimate a downstream particle velocity that includes time spent in storage. At 5 upland watersheds of the mid-Atlantic region, transport length scales for silt-clay range from 4 to 60 km, while those for sand range from 0.4 to 113 km. Mean sediment velocities for silt-clay range from 0.0072 km/yr to 0.12 km/yr, while those for sand range from 0.0008 km/yr to 0.20 km/yr, 4-6 orders of magnitude slower than the velocity of water in the channel. These results suggest lag times of 100-1000 years between BMP implementation and effectiveness in receiving waters such as the Chesapeake Bay (where BMPs are located upstream of the characteristic transport length scale). Many particles likely travel much faster than these average values, so further research is needed to determine the complete distribution of suspended sediment velocities in real watersheds.

  10. [Effects of field border length for irrigation on photosynthetic characteristics, dry matter accumulation and water use efficiency of wheat].

    PubMed

    Ma, Shang-Yu; Yu, Zhen-Wen; Shi, Yu; Zhao, Jun-Ye; Zhang, Yong-Li

    2014-04-01

    With the high-yielding winter wheat cultivar Jimai 22 as test material, a three-year field experiment was conducted to examine the effects of border length for irrigation on flag leaf water potential, photosynthetic characteristics, dry matter accumulation and distribution of wheat. In the 2010-2011 growing season, six treatments were installed, i. e., the field border length was designed as 10 m (L10), 20 m (L20), 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). In the 2011-2012 and 2012-2013 growing seasons, the field border length was designed as 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). The results showed that the average relative soil water content of the 0-200 cm soil layer was presented as L80, L60>L100>L40>L20>L10 at anthesis in the 2010-2011 growing season and as L80, L60>L100>L40 in the 2011-2012 and 2012-2013 growing seasons. At 11 d and 21 d after anthesis, the water potential, net photosynthetic rate and transpiration rate of flag leaf were presented as L80, L100>L60>L40>L20, L10, and as L80>L60, L100>L40, L20, L10 at 31 d after anthesis. The coefficients of variability both of the dry matter accumulation at anthesis and maturity and of grain yield in different regions of L80 field were lower than those of L100. The average dry matter accumulation, dry matter accumulation after anthesis and the contribution to grain of L80 were dramatically higher than those of L100, L40, L20 and L10. L80 had the highest average grain yield and water use efficiency, being the best treatment for irrigation in our study. PMID:25011291

  11. Characteristic length scales and time-averaged transport velocities of suspended sediment in the mid-Atlantic Region, USA

    USGS Publications Warehouse

    Pizzuto, James; Schenk, Edward R.; Hupp, Cliff R.; Gellis, Allen; Noe, Greg; Williamson, Elyse; Karwan, Diana L.; O'Neal, Michael; Marquard, Julia; Aalto, Rolf; Newbold, Denis

    2014-01-01

    Watershed Best Management Practices (BMPs) are often designed to reduce loading from particle-borne contaminants, but the temporal lag between BMP implementation and improvement in receiving water quality is difficult to assess because particles are only moved downstream episodically, resting for long periods in storage between transport events. A theory is developed that describes the downstream movement of suspended sediment particles accounting for the time particles spend in storage given sediment budget data (by grain size fraction) and information on particle transit times through storage reservoirs. The theory is used to define a suspended sediment transport length scale that describes how far particles are carried during transport events, and to estimate a downstream particle velocity that includes time spent in storage. At 5 upland watersheds of the mid-Atlantic region, transport length scales for silt-clay range from 4 to 60 km, while those for sand range from 0.4 to 113 km. Mean sediment velocities for silt-clay range from 0.0072 km/yr to 0.12 km/yr, while those for sand range from 0.0008 km/yr to 0.20 km/yr, 4–6 orders of magnitude slower than the velocity of water in the channel. These results suggest lag times of 100–1000 years between BMP implementation and effectiveness in receiving waters such as the Chesapeake Bay (where BMPs are located upstream of the characteristic transport length scale). Many particles likely travel much faster than these average values, so further research is needed to determine the complete distribution of suspended sediment velocities in real watersheds.

  12. Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN

    SciTech Connect

    Xie, S.Y.; Yoon, S.F.; Wang, S.Z.

    2005-04-01

    We report the effects of ex situ thermal annealing on the deep-level defects and the minority-carrier electron diffusion length in Be-doped, p-type In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} grown by solid source molecular-beam epitaxy. Deep-level transient spectroscopy measurements reveal two majority-carrier hole traps, HT1 (0.18 eV) and HT4 (0.59 eV), and two minority-carrier electron traps, ET1 (0.09 eV) and ET3 (0.41 eV), in the as-grown sample. For the sample with postgrowth thermal annealing, the overall deep-level defect-concentration is decreased. Two hole traps, HT2 (0.39 eV) and HT3 (0.41 eV), and one electron trap, ET2 (0.19 eV), are observed. We found that the minority-carrier electron diffusion length increases by {approx}30% and the leakage current of the InGaAsN/GaAs p-n junction decreases by 2-3 orders after thermal annealing. An increase of the net acceptor concentration after annealing is also observed and can be explained by a recently proposed three-center-complex model.

  13. Measurement of a long diffusion length in a GaAs film improved by metalorganic-chemical-vapor-deposition source purifications

    SciTech Connect

    Partain, L.D.; Cohen, M.J.; Cape, J.A.; Fraas, L.M.; McLeod, P.S.; Dean, C.S.; Ransom, R.A.

    1985-11-15

    The vacuum metalorganic-chemical-vapor-deposition (Vacuum MOCVD) process was combined with two source purifications to grow p-GaAs epitaxial films of high quality. Theoretical modeling of quantum yield spectra measured on a specially configured n/sup +/-p sample determined the minority-carrier electron diffusion length to be 10 ..mu..m to within a factor of 2 in the p layer. The p doping was reduced to the 5 x 10/sup 17/ cm/sup -3/ level to avoid suppression of the diffusion length by Auger recombination. Multiple vacuum sublimations of dicyclopentadienyl magnesium (CP/sub 2/Mg), the source of Mg for p doping, reduced the contamination by air and by cyclopentadiene (CP) by an order of magnitude. A dry ice/acetone cold trap was operated at slightly below 180-Torr pressure to reduce the water vapor content of arsine, used as the As source, from the hundreds of ppm down level down to the 2 ppm range. The vacuum growth process reduced residual gas contamination. These techniques were combined to grow a p on n GaAs solar cell with an efficiency of 24% at air mass 1.5 (AM1.5).

  14. Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell.

    PubMed

    Kedem, Nir; Brenner, Thomas M; Kulbak, Michael; Schaefer, Norbert; Levcenko, Sergiu; Levine, Igal; Abou-Ras, Daniel; Hodes, Gary; Cahen, David

    2015-07-01

    High band gap, high open-circuit voltage solar cells with methylammonium lead tribromide (MAPbBr3) perovskite absorbers are of interest for spectral splitting and photoelectrochemical applications, because of their good performance and ease of processing. The physical origin of high performance in these and similar perovskite-based devices remains only partially understood. Using cross-sectional electron-beam-induced current (EBIC) measurements, we find an increase in carrier diffusion length in MAPbBr3(Cl)-based solar cells upon low intensity (a few percent of 1 sun intensity) blue laser illumination. Comparing dark and illuminated conditions, the minority carrier (electron) diffusion length increases about 3.5 times from Ln = 100 ± 50 nm to 360 ± 22 nm. The EBIC cross section profile indicates a p-n structure between the n-FTO/TiO2 and p-perovskite, rather than the p-i-n structure, reported for the iodide derivative. On the basis of the variation in space-charge region width with varying bias, measured by EBIC and capacitance-voltage measurements, we estimate the net-doping concentration in MAPbBr3(Cl) to be 3-6 × 10(17) cm(-3). PMID:26266721

  15. Thermal Characteristics and Structure of Fully-Modulated, Turbulent Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Stocker, D. P.; Hegde, U. G.

    2003-01-01

    Turbulent jet diffusion flames are studied in microgravity and normal gravity under fully-modulated conditions for a range of injection times and a 50% duty cycle. Diluted ethylene was injected through a 2-mm nozzle at a Reynolds number of 5,000 into an open duct, with a slow oxidizer co-flow. Microgravity tests are conducted in NASA's 2.2 Second Drop Tower. Flames with short injection times and high duty cycle exhibit a marked increase in the ensemble-averaged flame length due to the removal of buoyancy. The cycle-averaged centerline temperature profile reveals higher temperatures in the microgravity flames, especially at the flame tip where the difference is about 200 K. In addition, the cycle-averaged measurements of flame radiation were about 30% to 60% greater in microgravity than in normal gravity.

  16. Statistical investigation of the length-dependent deviations in the electrical characteristics of molecular electronic junctions fabricated using the direct metal transfer method.

    PubMed

    Jeong, Hyunhak; Kim, Dongku; Kwon, Hyukwoo; Hwang, Wang-Taek; Jang, Yeonsik; Min, Misook; Char, Kookrin; Xiang, Dong; Jeong, Heejun; Lee, Takhee

    2016-03-01

    We fabricated and analyzed the electrical transport characteristics of vertical type alkanethiolate molecular junctions using the high-yield fabrication method that we previously reported. The electrical characteristics of the molecular electronic junctions were statistically collected and investigated in terms of current density and transport parameters based on the Simmons tunneling model, and we determined representative current-voltage characteristics of the molecular junctions. In particular, we examined the statistical variations in the length-dependent electrical characteristics, especially the Gaussian standard deviation σ of the current density histogram. From the results, we found that the magnitude of the σ value can be dependent on the individual molecular length due to specific microscopic structures in the molecular junctions. The probable origin of the molecular length-dependent deviation of the electrical characteristics is discussed. PMID:26871992

  17. Statistical investigation of the length-dependent deviations in the electrical characteristics of molecular electronic junctions fabricated using the direct metal transfer method

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunhak; Kim, Dongku; Kwon, Hyukwoo; Hwang, Wang-Taek; Jang, Yeonsik; Min, Misook; Char, Kookrin; Xiang, Dong; Jeong, Heejun; Lee, Takhee

    2016-03-01

    We fabricated and analyzed the electrical transport characteristics of vertical type alkanethiolate molecular junctions using the high-yield fabrication method that we previously reported. The electrical characteristics of the molecular electronic junctions were statistically collected and investigated in terms of current density and transport parameters based on the Simmons tunneling model, and we determined representative current-voltage characteristics of the molecular junctions. In particular, we examined the statistical variations in the length-dependent electrical characteristics, especially the Gaussian standard deviation σ of the current density histogram. From the results, we found that the magnitude of the σ value can be dependent on the individual molecular length due to specific microscopic structures in the molecular junctions. The probable origin of the molecular length-dependent deviation of the electrical characteristics is discussed.

  18. Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths.

    PubMed

    Horoshenkov, Kirill V; Groby, Jean-Philippe; Dazel, Olivier

    2016-05-01

    Modeling of sound propagation in porous media requires the knowledge of several intrinsic material parameters, some of which are difficult or impossible to measure directly, particularly in the case of a porous medium which is composed of pores with a wide range of scales and random interconnections. Four particular parameters which are rarely measured non-acoustically, but used extensively in a number of acoustical models, are the viscous and thermal characteristic lengths, thermal permeability, and Pride parameter. The main purpose of this work is to show how these parameters relate to the pore size distribution which is a routine characteristic measured non-acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical models which have been developed previously to predict the dynamic density and/or compressibility of the equivalent fluid in a porous medium. In this work the models proposed by Johnson, Koplik, and Dashn [J. Fluid Mech. 176, 379-402 (1987)], Champoux and Allard [J. Appl. Phys. 70(4), 1975-1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964-4978 (1993)], and Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198-1209 (1998)] are compared. The findings are then used to compare the behavior of the complex dynamic density and compressibility of the fluid in a material pore with uniform and variable cross-sections. PMID:27250142

  19. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.

    2015-07-01

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (˜12 and 18 Å, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. This suppression is accompanied by a systematic dependence of the average translational diffusion coefficient Dr and relaxation time <τ0> of the restricted water on pore size and temperature. The observed Dr values are tested against a proposed scaling law, in which the translational diffusion coefficient Dr of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient Dc associated with the water bound to the pore walls and the ratio θ of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  20. Electrochemical characterization of binderless, recompressed exfoliated graphite electrodes: electron-transfer kinetics and diffusion characteristics.

    PubMed

    Ramesh, P; Sampath, S

    2003-12-15

    Exfoliated graphite (EG) is prepared by the thermal exfoliation of graphite intercalation compounds at different temperatures. Surface and bulk physicochemical properties of EG are followed by spectroscopic and analytical methods and are observed to be a function of exfoliation temperature. EG particles can be recompressed without any binder and used as surface-renewable electrodes. Surface preparation is accomplished by either polishing or roughening the electrode surface using emery sheets. Effects of exfoliation temperature and the surface preparation on the electron-transfer kinetics and on the diffusion characteristics have been followed by electrochemical methods using several benchmark redox systems. It is found that the electron-transfer kinetics and the diffusion of K(4)[Fe(CN)(6)] are affected by the nature of the EG surface while that of iron(II)(1,10-phenanthroline)(3) and cobalt(II)(1,10-phenanthroline)(3) are not affected by the surface preparation. The redox systems are classified into different groups according to their kinetic sensitivity. Diffusion of electroactive species toward the EG electrodes is found to nonlinear. Current-time plots suggest that the recompressed EG electrodes can be modeled as fractals. PMID:14670057

  1. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    SciTech Connect

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation time [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  2. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGESBeta

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  3. Motor skill learning is associated with diffusion characteristics of white matter in individuals with chronic stroke

    PubMed Central

    Borich, Michael R.; Brown, Katlyn E.; Boyd, Lara A.

    2013-01-01

    Background and Purpose Imaging advances allow investigation of white matter following stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between post-training white matter microstructural status, as indexed by diffusion tensor imaging (DTI) within the ipsilesional posterior limb of the internal capsule (PLIC) and learning of a novel motor task in individuals with chronic stroke. Methods Thirteen participants with chronic stroke and nine healthy controls practiced a visuomotor pursuit task across five sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary DTI-derived outcome measure. Results In individuals with chronic stroke, we discovered an association between post-training ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time post stroke and ipsilesional PLIC FA post-training was associated with motor learning related change (R2=0.649, p=0.02). Baseline motor performance was not related to post-training ipsilesional PLIC FA. Discussion and Conclusions Diffusion characteristics of post-training ipsilesional PLIC were linked to magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. Video Abstract available (See Video, Supplemental Digital Content 1.) for more insights from the authors. PMID:23934017

  4. Large amplitude undulations of evening site diffuse aurorae. Optical characteristics and conditions of generation

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Roldugin, V. C.; Yagodkina, O. I.

    2015-01-01

    Optical characteristics of large amplitude undulations (LAU) of diffuse aurorae observed by all-sky cameras at Kola Peninsula on December 28, 2010 were examined. Both interplanetary medium conditions and characteristics of magnetic activity before and during LAU were analyzed. It was shown that the development of undulations could be activated by sharp short-living of ˜20 minutes solar wind dynamic pressure impulse and existence of the undulations during about two hours was supported by electric field of stationary magnetospheric convection originated from large smoothly changed southward IMF Bz component of about -12nT. The altitude of undulation luminosity determined by triangulation method was 120 ± 10 km. The undulations amplitude changed from about 100 to 300 km and the average wavelength was ˜250 km. The undulations were observed moving westward with the average phase velocity of ˜0.7 km/s. The pass of DMSP F16 spacecraft just along "the tongue" of undulations showed that the wave of luminosity was located in the region of the predominantly ion (proton) precipitation with the average energy of particles of ˜18 keV. Rayed auroral structures were observed continuously in the region of diffuse aurorae during time interval of LAU existence. These structures were observed moving westward with the velocity of about 2 km/s that corresponds to the northward electric field of ˜100 mV/m.

  5. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    PubMed

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB. PMID:27433737

  6. Characteristics of the probability function for three random-walk models of reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Musho, Matthew K.; Kozak, John J.

    1984-10-01

    A method is presented for calculating exactly the relative width (σ2)1/2/, the skewness γ1, and the kurtosis γ2 characterizing the probability distribution function for three random-walk models of diffusion-controlled processes. For processes in which a diffusing coreactant A reacts irreversibly with a target molecule B situated at a reaction center, three models are considered. The first is the traditional one of an unbiased, nearest-neighbor random walk on a d-dimensional periodic/confining lattice with traps; the second involves the consideration of unbiased, non-nearest-neigh bor (i.e., variable-step length) walks on the same d-dimensional lattice; and, the third deals with the case of a biased, nearest-neighbor walk on a d-dimensional lattice (wherein a walker experiences a potential centered at the deep trap site of the lattice). Our method, which has been described in detail elsewhere [P.A. Politowicz and J. J. Kozak, Phys. Rev. B 28, 5549 (1983)] is based on the use of group theoretic arguments within the framework of the theory of finite Markov processes. The approach allows the separate effects of geometry (system size N, dimensionality d, and valency ν), of the governing potential and of the medium temperature to be assessed and their respective influence on (σ2)1/2/, γ1, and γ2 to be studied quantitatively. We determine the classes of potential functions and the regimes of temperature for which allowing variable-length jumps or admitting a bias in the site-to-site trajectory of the walker produces results which are significantly different (both quantitatively and qualitatively) from those calculated assuming only unbiased, nearest-neighbor random walks. Finally, we demonstrate that the approach provides a method for determining a continuous probability (density) distribution function consistent with the numerical data on (σ2)1/2/, γ1, and γ2 for the processes described above. In particular we show that the first of the above reaction-diffusion

  7. Experimental study and analytical modeling of the channel length influence on the electrical characteristics of small-molecule thin-film transistors

    NASA Astrophysics Data System (ADS)

    Boukhili, W.; Mahdouani, M.; Bourguiga, R.; Puigdollers, J.

    2015-07-01

    Bottom-contact p-type small-molecule copper phthalocyanine (CuPc) thin film transistors (TFTs) with different channel lengths have been fabricated by thermal evaporation. The influence of the channel length on the current-voltage characteristics of the fabricated transistors were investigated in the linear and saturation regimes. The devices exhibit excellent p-type operation characteristics. Results show that devices with smaller channel length (L = 2.5 μm and 5 μm) present the best electrical performance, in terms of drain current value, field effect mobility and subthreshold slope. Saturation field-effect mobilities of 1.7 × 10-3 cm2 V-1 s-1 and 1 × 10-3 cm2 V-1 s-1 were obtained for TFTs with channel lengths of L = 2.5 μm and L = 5 μm, respectively. Transmission line method was used to study the dependence of the contact resistance with the channel length. Contact resistance becomes dominant with respect to the channel resistance only in the case of short channel devices (L = 2.5 μm and 5 μm). It was also found that the field effect mobility is extremely dependent on the channel length dimension. Finally, an analytical model has been developed to reproduce the dependence of the transfer characteristics with the channel length and the obtained data are in good agreement with the experimental results for all fabricated devices.

  8. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  9. Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-05-01

    The paper presents a model development to derive a semi-analytical solution to describe reactive solute transport through a single channel in a fracture with cylindrical geometry. The model accounts for advection through the channel, radial diffusion into the adjacent heterogeneous rock matrix comprising different geological layers, adsorption on both the channel surface, and the geological layers of the rock matrix and radioactive decay chain. Not only an arbitrary-length decay chain, but also as many number of the rock matrix layers with different properties as observed in the field can be handled. The solution, which is analytical in the Laplace domain, is transformed back to the time domain numerically e.g. by use of de Hoog algorithm. The solution is verified against experimental data and analytical solutions of limiting cases of solute transport through porous media. More importantly, the relative importance and contribution of different processes on solute transport retardation in fractured rocks are investigated by simulating several cases of varying complexity. The simulation results are compared with those obtained from rectangular model with linear matrix diffusion. It is found that the impact of channel geometry on breakthrough curves increases markedly as the transport distance along the flow channel and away into the rock matrix increase. The effect of geometry is more pronounced for transport of a decay chain when the rock matrix consists of a porous altered layer.

  10. Relationship between characteristic length and average grain size in nanosize MgO added Bi-2212 superconductor ceramics

    NASA Astrophysics Data System (ADS)

    Hamid, N. A.; Asbullah, M. S. N.; Yahya, S. Y. S.; Hashim, A.

    2012-09-01

    In the present work, Bi2Sr2CaCu2O8 (Bi-2212)/MgO compound was prepared using the conventional solid-state reaction method. The powder of nanosize MgO particles was added to Bi-2212 superconductor with weight percentage of 3%, 5%, and 8%, respectively. The compound was sintered for 48 hours at 855°C in air. Besides the existence of a small amount of impurity phases, all the samples showed the Bi-2212 phase as the dominant phase. The temperature dependence of transport current density (Jc) in zero magnetic fields for each sample was measured from 40 K to transition temperature (Tc). It was found that the Jc value decreased with increasing temperature and this showed the consequence of thermal activated flux creep. Using the self-field approximation together with Jc dependence on temperature, we estimated that the characteristic length (Lc) associated with the pinning force is approximately the same as the average grain size (Rg) for the non-added sample and for sample with 8% nanosize MgO addition. In contrast, for samples with 3% and 5% addition, the results showed that Lc < Rg. This indicates that addition of 3% to 5% of nanosize MgO particles provides the optimum flux pinning centers for Bi-2212 superconductor ceramics.

  11. [Cloning of full-length coding sequence of tree shrew CD4 and prediction of its molecular characteristics].

    PubMed

    Tian, Wei-Wei; Gao, Yue-Dong; Guo, Yan; Huang, Jing-Fei; Xiao, Chang; Li, Zuo-Sheng; Zhang, Hua-Tang

    2012-02-01

    The tree shrews, as an ideal animal model receiving extensive attentions to human disease research, demands essential research tools, in particular cellular markers and monoclonal antibodies for immunological studies. In this paper, a 1 365 bp of the full-length CD4 cDNA encoding sequence was cloned from total RNA in peripheral blood of tree shrews, the sequence completes two unknown fragment gaps of tree shrews predicted CD4 cDNA in the GenBank database, and its molecular characteristics were analyzed compared with other mammals by using biology software such as Clustal W2.0 and so forth. The results showed that the extracellular and intracellular domains of tree shrews CD4 amino acid sequence are conserved. The tree shrews CD4 amino acid sequence showed a close genetic relationship with Homo sapiens and Macaca mulatta. Most regions of the tree shrews CD4 molecule surface showed positive charges as humans. However, compared with CD4 extracellular domain D1 of human, CD4 D1 surface of tree shrews showed more negative charges, and more two N-glycosylation sites, which may affect antibody binding. This study provides a theoretical basis for the preparation and functional studies of CD4 monoclonal antibody. PMID:22345010

  12. Time-domain diffuse optical tomography using analytic statistical characteristics of photon trajectories

    SciTech Connect

    Konovalov, Aleksandr B; Vlasov, V V; Kalintsev, A G; Lyubimov, Vladimir V; Kravtsenyuk, Olga V

    2006-11-30

    The inverse problem of diffuse optical tomography (DOT) is reduced by the method of photon average trajectories (PAT) to the solution of the integral equation integrated along the conditional mean statistical photon trajectory. The PAT bending near the flat boundary of a scattering medium is estimated analytically. These estimates are used to determine the analytic statistical characteristics of photon trajectories for the flat layer geometry. The inverse DOT problem is solved by using the multiplicative algebraic algorithm modified to improve the convergence of the iteration reconstruction process. The numerical experiment shows that the modified PAT method permits the reconstruction of near-surface optical inhomogeneities virtually without distortions. (special issue devoted to multiple radiation scattering in random media)

  13. Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers

    SciTech Connect

    Lv, Xiao-Meng; Huang, Yong-Zhen Yang, Yue-De; Zou, Ling-Xiu; Long, Heng; Liu, Bo-Wen; Xiao, Jin-Long; Du, Yun

    2014-04-21

    High-speed directly modulated microlasers are potential light sources for on-chip optical interconnection and photonic integrated circuits. In this Letter, dynamic characteristics are studied for microring lasers by rate equation analysis considering radial carrier hole burning and diffusion and experimentally. The coupled modes with a wide radial field pattern and the injection current focused in the edge area of microring resonator can greatly improve the high speed response curve due to the less carrier hole burning. The small-signal response curves of a microring laser connected with an output waveguide exhibit a larger 3 dB bandwidth and smaller roll-off at low frequency than that of the microdisk laser with the same radius of 15 μm, which accords with the simulation results.

  14. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: diffusion barrier with a thickness of 25 μm. A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7-13 wt.%. Decomposed areas containing plate-shaped low-Mo phase. A typical Zr/cladding interaction layer with a thickness of 1-2 μm. A visible UZr2 bearing layer with a thickness of 1-2 μm. Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U-Mo matrix. No excessive interaction between cladding and the uncoated fuel edge. Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be

  15. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    SciTech Connect

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge; Glenn A. Moore; Mitchell K. Meyer

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Mo fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to the

  16. Diffusion length history over the last 16 ka based on a high resolution δ18O record from NGRIP. Implications for glaciological and paleoclimatic studies.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Simonsen, Sebastian B.; Buchardt, Susanne L.; Vinther, Bo M.; White, James W. C.

    2013-04-01

    The Holocene epoch as seen in the water isotopic records of polar ice cores is described by a relatively stable climate characterized by minimal fluctuations in temperature. Arguably, the most commonly used proxy in ice core studies, the ratios of water's stable isotopes, provide an insight in past temperatures via a linear relationship with temperature, commonly referred to as the isotope slope. However, the validity of this slope has been extensively debated. Based on borehole thermometry and gas isotope fractionation studies, it has been shown that temperature changes over the Bølling - Allerød and Younger Dryas transitions as well as several interstadial events have been underestimated by the water isotope slope. Additionally, isotopic artifacts related to ice sheet elevation changes, apparent between 6 and 10 ka b2k, result in a poor or even absent representation of the Holocene climatic optimum in the δ18O record from Greenland ice cores, contrary to what other paleoclimatic records from Northern latitudes indicate. In this study we present ongoing work on the use of the firn isotopic diffusion lengths as a high resolution proxy of the snow and firn temperature. Our reconstruction is based on the high resolution δ18O dataset from NGRIP. Water isotope diffusion is a process that occurs after deposition of the precipitation and takes place in the porous space of the firn until the close off depth. Assuming a diffusivity parameterization and based on a densification and strain rate history, it is possible to investigate the effects of temperature and accumulation on the diffusion length. By inverting the model we produce a temperature reconstruction for the last 15 ka. This temperature signal is independent of factors like the water vapor source location and temperature, the intensity of the atmospheric inversion over the deposition site and the presence or not of clear sky precipitation. In order for the reconstruction to reproduce the long term climate

  17. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    NASA Astrophysics Data System (ADS)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-08-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids' nanostructure. It is observed that as the cationic alkyl

  18. LABORATORY ASSESSMENT OF THE PERMEABILITY AND DIFFUSION CHARACTERISTICS OF FLORIDA CONCRETES - PHASE I - METHODS DEVELOPMENT AND TESTING

    EPA Science Inventory

    The report gives results of Phase I of a laboratory assessment of the permeability and diffusion characteristics of Florida concretes. (NOTE: The ability of concrete to permit air flow under pressure (permeability) and the passage of radon gas without any pressure difference (dif...

  19. LABORATORY ASSESSMENT OF THE PERMEABILITY AND DIFFUSION CHARACTERISTICS OF FLORIDA CONCRETES - PHASE I. METHODS DEVELOPMENT AND TESTING

    EPA Science Inventory

    The report gives results of Phase I of a laboratory assessment of the permeability and diffusion characteristics of Florida concretes. (NOTE: The ability of concrete to permit air flow under pressure (permeability) and the passage of radon gas without any pressure difference (dif...

  20. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    NASA Astrophysics Data System (ADS)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  1. Spectral characteristics of the aerodynamic field of a turbulent diffusion flame at a low Froude number

    NASA Astrophysics Data System (ADS)

    Gengembre, E.; Cambray, P.; Bellet, J.-C.

    1982-09-01

    Turbulent diffusion flames, like those found in a propulsive system, are examined in the case of a low Froude number (no more than 1/100,000). The gaseous products initially have a low velocity, with an inertia which is weak compared to that of gravity. Experimental results are presented from trials run with a specially designed burner emitting fine refractory particles, i.e., propane gas laced with zirconium dioxide particles averaging 2 microns across. Laser anemometry was employed for counting the particles, in conjunction with a computer. Vertical profiles were developed of the flame, covering the velocity fluctuations and their frequency, and with three different energy inputs (15.8, 23, and 38 kW) into the flame. A characteristic low frequency peak was observed, as well as a transition zone to the turbulence. The fuel burning was confined to periodic or quasi-periodic regions of the flow. Turbulence is concluded to be confined to the final combustion phase in flames with a low Froude number.

  2. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals

    SciTech Connect

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm–2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.

  3. The effect of personal characteristics on the relationship between diffusion and adoption of telecentre with value creation

    NASA Astrophysics Data System (ADS)

    Dahalin, Zulkhairi Md.

    2016-08-01

    This paper examines personal characteristics of respondents in the rural areas and the extent of its effect on the diffusion and adoption of the telecentre. Understanding the personal characteristics of the participants is needed in order to encourage better participation. A survey was conducted among participants of telecentres situated in rural areas in the northern states of Malaysia. Results showed that whilst family size had a significant effect on the relationships between diffusion and adoption with value creation, other personal characteristics were found not to affect the relationships. The results have important implications to sustainability of the telecentre, in which focus should be placed in small-sized families rather than based on background and other demographic profile of participants.

  4. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study.

    PubMed

    Ueda, Ryo; Yamada, Naoki; Kakuda, Wataru; Abo, Masahiro; Senoo, Atsushi

    2016-03-15

    Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (P<0.05), the white matter of the lesioned side was severely affected by stroke. A weak negative correlation between GFA and time since stroke onset was found in Brodmann area 5 of the non-lesioned hemisphere. Age correlated negatively with GFA in Brodmann areas 5 and 7 of the lesioned hemisphere. Though these results may be due to a decrease in the frequency of use of the paralyzed limb over time, GFA overall was significantly and negatively affected by the subject's age. The GFA values of patients with paralysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (P<0.05). The stroke size and location were not associated with GFA differences. Differences between the GFA of the lesioned and non-lesioned hemispheres varied depending on the affected brain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand. PMID:26783693

  5. Effects of MRTI sampling characteristics on estimation of HIFU SAR and tissue thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Dillon, C. R.; Todd, N.; Payne, A.; Parker, D. L.; Christensen, D. A.; Roemer, R. B.

    2013-10-01

    While the non-invasive and three-dimensional nature of magnetic-resonance temperature imaging (MRTI) makes it a valuable tool for high-intensity focused ultrasound (HIFU) treatments, random and systematic errors in MRTI measurements may propagate into temperature-based parameter estimates used for pretreatment planning. This study assesses the MRTI effects of zero-mean Gaussian noise (SD = 0.0-2.0 °C), temporal sampling (tacq = 1.0-8.0 s), and spatial averaging (Res = 0.5-2.0 mm isotropic) on HIFU temperature measurements and temperature-based estimates of the amplitude and full width half maximum (FWHM) of the HIFU specific absorption rate and of tissue thermal diffusivity. The ultrasound beam used in simulations and ex vivo pork loin experiments has lateral and axial FWHM dimensions of 1.4 mm and 7.9 mm respectively. For spatial averaging simulations, beams with lateral FWHM varying from 1.2-2.2 mm are also assessed. Under noisy conditions, parameter estimates are improved by fitting to data from larger voxel regions. Varying the temporal sampling results in minimal changes in measured temperatures (<2% change) and parameter estimates (<5% change). For the HIFU beams studied, a spatial resolution of 1 × 1 × 3 mm3 or smaller is required to keep errors in temperature and all estimated parameters less than 10%. By quantifying the errors associated with these sampling characteristics, this work provides researchers with appropriate MRTI conditions for obtaining estimates of parameters essential to pretreatment modeling of HIFU thermal therapies.

  6. Effects of Maternal and Infant Characteristics on Birth Weight and Gestation Length in a Colony of Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Hopper, Kelly J; Capozzi, Denise K; Newsome, Joseph T

    2008-01-01

    A retrospective study using maternal and birth statistics from an open, captive rhesus macaque colony was done to determine the effects of parity, exposure to simian retrovirus (SRV), housing, maternal parity, and maternal birth weight on infant birth weight, viability and gestation length. Retrospective colony statistics for a 23-y period indicated that birth weight, but not gestation length, differed between genders. Adjusted mean birth weights were higher in nonviable infants. Mothers positive for SRV had shorter gestations, but SRV exposure did not affect neonatal birth weights or viability. Infants born in cages had longer gestations than did those born in pens, but neither birth weight nor viability differed between these groups. Maternal birth weight did not correlate with infant birth weight but positively correlated with gestation length. Parity was correlated with birth weight and decreased viability. Increased parity of the mother was associated with higher birth weight of the infant. A transgenerational trend toward increasing birth weight was noted. The birth statistics of this colony were consistent with those of other macaque colonies. Unlike findings for humans, maternal birth weight had little predictive value for infant outcomes in rhesus macaques. Nonviable rhesus infants had higher birth weights, unlike their human counterparts, perhaps due to gestational diabetes occurring in a sedentary caged population. Similar to the situation for humans, multiparity had a protective effect on infant viability in rhesus macaques. PMID:19149417

  7. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics

    PubMed Central

    2014-01-01

    Background Spasticity is an important complication after stroke, especially in the anti-gravity muscles, i.e. lower limb extensors. However the contribution of hyperexcitable muscle spindle reflex loops to gait impairments after stroke is often disputed. In this study a neuro-musculoskeletal model was developed to investigate the contribution of an increased length and velocity feedback and altered reflex modulation patterns to hemiparetic gait deficits. Methods A musculoskeletal model was extended with a muscle spindle model providing real-time length and velocity feedback of gastrocnemius, soleus, vasti and rectus femoris during a forward dynamic simulation (neural control model). By using a healthy subject’s base muscle excitations, in combination with increased feedback gains and altered reflex modulation patterns, the effect on kinematics was simulated. A foot-ground contact model was added to account for the interaction effect between the changed kinematics and the ground. The qualitative effect i.e. the directional effect and the specific gait phases where the effect is present, on the joint kinematics was then compared with hemiparetic gait deviations reported in the literature. Results Our results show that increased feedback in combination with altered reflex modulation patterns of soleus, vasti and rectus femoris muscle can contribute to excessive ankle plantarflexion/inadequate dorsiflexion, knee hyperextension/inadequate flexion and increased hip extension/inadequate flexion during dedicated gait cycle phases. Increased feedback of gastrocnemius can also contribute to excessive plantarflexion/inadequate dorsiflexion, however in combination with excessive knee and hip flexion. Increased length/velocity feedback can therefore contribute to two types of gait deviations, which are both in accordance with previously reported gait deviations in hemiparetic patients. Furthermore altered modulation patterns, in particular the reduced suppression of the

  8. Effect of crystal length on the thermal characteristic in Nd: YLF laser with 20W diode pumped

    NASA Astrophysics Data System (ADS)

    Yahya, K. A.; Hussein, O. A.; Mustafa, O. H.

    2016-03-01

    Theoretical results are reported on thermal effects along the π- 1047nm and σ- 1053nm polarizations in a cut Nd: YLF rod crystal by using 20W Diode -End-pumped. The crystal length effects on the fraction of absorbed pump radiation converted into heat, radial temperature distribution, and the change in a radial refractive index. The result from this study has shown that a maximum fraction converted into heat is calculated to be around 24% and thermal effects of π-polarized 1047 nm stronger than σ-polarized 1053 nm.

  9. Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Han, Han; Ren, Cui-Lan; Wang, Chang-Ying; Shao, Kuan; Huai, Ping

    2016-08-01

    The first principles density-functional theoretical calculations of U adatom adsorption and diffusion on a planar graphene and quasi-one-dimensional graphene nanoribbons (GNRs) are performed. An energetic preference is found for U adatom diffusing to the hollow sites of both graphene and GNRs surface. A number of U distinctive diffusion paths either perpendicular or parallel to the ribbon growth direction are examined. The edge effects are evidenced by the calculated energy barriers of U adatom diffusion on armchair and zigzag nanoribbons surfaces. The calculation results indicate that the diffusion of U adatom from the inner site toward the edge site is a feasible process, particularly in zigzag GNR. It is viable to control the initial morphology of nuclear carbon material to retard the diffusion and concentration of nuclides. Project supported by the International S & T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant Nos. 91326105, 21306220, and 21501189), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  10. Characteristic length scale of the magnon accumulation in Fe3O4/Pt bilayer structures by incoherent thermal excitation

    NASA Astrophysics Data System (ADS)

    Anadón, A.; Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Ibarra, M. R.; Aguirre, M. H.

    2016-07-01

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe3O4/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  11. A study of the characteristics of scintillation detectors with a diffuse reflector

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Filchenkov, V. V.; Konin, A. D.; Zhuk, V. V.

    1996-02-01

    The process of light collection in a scintillation counter with a diffuse reflector is studied using the Monte-Carlo codes "PHOTON" and "LIGHT". The results obtained are compared with the simple model estimations and employed to describe the time shape of the signal for several different detectors including the full absorption neutron spectrometer, and reanalyze the previous NE-213 transparency measurements.

  12. Heidenhain variant of Creutzfeldt-Jakob disease: diffusion-weighted MRI and PET characteristics.

    PubMed

    Tsuji, Yoshihisa; Kanamori, Hiroshi; Murakami, Gaku; Yokode, Masayuki; Mezaki, Takahiro; Doh-ura, Katsumi; Taniguchi, Ken; Matsubayashi, Kozo; Fukuyama, Hidenao; Kita, Toru; Tanaka, Makoto

    2004-01-01

    Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressive dementia with a variety of neurological disorders and a fatal outcome. The authors present a case with visual disturbance as a leading symptom and rapid deterioration in global cognitive functions. The cerebrospinal fluid was positive for 14-3-3 protein, and diffusion-weighted magnetic resonance imaging (MRI) showed marked hyperintensity in the parieto-occipital cortices, where hypometabolism was clearly detected on positron emission tomography (PET). Pattern-reversal visual evoked potentials showed prolonged P100 latencies and increased N/5/P100 amplitudes. All these findings supported a diagnosis of the Heidenhain variant of CJD, whereas a long clinical course, a lack of myoclonus, and an absence of periodic synchronous discharges on electroencephalography were atypical. Diffusion-weighted MRI and PE1 in combination with visual evoked potential recording and 14-3-3 protein detection may be useful for the early diagnosis of CJD. PMID:14748211

  13. Determination of characteristic constants for some basic processes in plasma—diffusion, Penning ionization, asymmetric charge transfer

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Vuchkov, N. K.; Ekov, R. P.; Sabotinov, N. V.

    2008-05-01

    The diffusion coefficients of ten chemical element atoms in the binary system with helium and neon are calculated on the basis of 12-6 Lennard-Jones and rigid sphere inter-atomic interaction approximations. Cross-sections and rate constants for thermal energy charge transfer and Penning collisions are calculated for all Tl+ and I+ excited states possibly populated via these reactions. For the case of the charge transfer process the theoretical results are compared with the experimentally obtained ones. Since the characteristic constants considered depend on the gas temperature, the gas temperature distribution is also calculated by solving the heat conduction equation for the gas discharges studied.

  14. Diffusion barrier characteristics of co monolayer prepared by Langmuir Blodgett technique

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Kumar, Mukesh; Rani, Sumita; Kumar, Dinesh

    2016-04-01

    Monolayers of Co over SiO2/Si substrate were deposited using Langmuir Blodgett (LB) technique. The diffusion barrier capability of Co layer was evaluated against copper diffusion. The structure of the deposited Co layer was analyzed using X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-ray Spectroscopy (EDS) and Atomic force microscopy (AFM) techniques. Thermal stability of Cu/SiO2/Si and Cu/Co/SiO2/Si test structures was studied and compared using X-ray diffraction (XRD), scanning electron microscope (SEM) and four probe techniques. The samples were annealed at different temperatures starting from 200 °C up to 700 °C in vacuum for 30 min. XRD results indicated that combination of Co/SiO2 worked as diffusion barrier up to 550 °C whereas SiO2 alone could work as barrier only up to 300 °C. Sheet resistance of these samples was measured as a function of annealing temperature which also supports XRD results. C-V curves of these structures under the influence of Biased Thermal Stress (BTS) were analyzed. BTS was applied at 2.5 MV cm-1 at 150 °C. Results showed that in the presence of Co barrier layer there was no shift in the C-V curve even after 90 min of BTS while in the absence of barrier there was a significant shift in the C-V curve even after 30 min of BTS. Further these test structures were examined for leakage current density (jL) at same BTS conditions and leakage current density (jL) was plotted against the BTS duration. It was found that the Cu/Co/SiO2/Si test structure could survive about one and half time more than the Cu/SiO2/Si test structure.

  15. Application of continuum percolation theory for modeling single- and two-phase characteristics of anisotropic carbon paper gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Cheng, Ping

    2016-03-01

    Percolation theory is used to model intrinsic and relative permeabilities as well as tortuosity in anisotropic carbon paper gas diffusion layers (GDL) and compared with existing results from lattice-Boltzmann (LB) simulations and experimental measurements. Although single- and two-phase characteristics of the carbon paper GDL are mainly affected by medium geometrical and topological properties, e.g., pore-size distribution, connectivity, and pore geometry, analyzing capillary pressure curves implies that the pore-size distribution of the carbon paper GDL is very narrow. This suggests that its effect on tortuosity and wetting- and nonwetting-phase relative permeabilities is trivial. However, integrated effects of pore geometry, surface area, connectivity, and tortuosity on intrinsic permeability might be substantial. Universal power laws from percolation theory predict the tortuosity-porosity and relative permeability-saturation curves accurately, indicating both characteristics not affected by the pore-size distribution. The permeability-porosity relationship, however, conforms to nonuniversality.

  16. Content Characteristics Driving the Diffusion of Antismoking Messages: Implications for Cancer Prevention in the Emerging Public Communication Environment

    PubMed Central

    2013-01-01

    This study examined how content characteristics of antitobacco messages affect smokers’ selective exposure to and social sharing of those messages. Results from an experiment revealed that content features predicting smokers’ selection of antismoking messages are different from those predicting whether those messages are shared. Antismoking messages smokers tend to select are characterized by strong arguments (odds ratio = 2.02, P = .02) and positive sentiments (odds ratio = 3.08, P = .03). Once selected, the messages more likely to be retransmitted by smokers were those with novel arguments (B = .83, P = .002) and positive sentiments (B = 1.65, P = .005). This research adds to the literature about the content characteristics driving the social diffusion of antitobacco messages and contributes to our understanding of the role of persuasive messages about smoking cessation in the emerging public communication environment. PMID:24395989

  17. Probing surface characteristics of diffusion-limited-aggregation clusters with particles of variable size

    NASA Astrophysics Data System (ADS)

    Menshutin, A. Yu.; Shchur, L. N.; Vinokur, V. M.

    2007-01-01

    We develop a technique for probing the harmonic measure of a diffusion-limited-aggregation (DLA) cluster surface with variable-size particles and generate 1000 clusters with 50×106 particles using an original off-lattice killing-free algorithm. Taking, in sequence, the limit of the vanishing size of the probing particles and then sending the growing cluster size to infinity, we achieve unprecedented accuracy in determining the fractal dimension D=1.7100(2) crucial to the characterization of the geometric properties of DLA clusters.

  18. High-Performance Simulations of the Diffusion Characteristics of a Pentacene Derivative on Gold Surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan; Larson, Amanda; Pohl, Karsten

    Pentacene serves as a backbone for several molecules that provide attractive qualities for organic photovoltaic devices. One of these pentacene derivatives is 5 6,7-trithiapentacene-13-one (TTPO), which is unique in that it achieves its lowest energy configuration on Au(1 1 1) surfaces with the thiol group angled down towards the surface, allowing many molecules to pack closely together and form molecular nanowires. However, TTPO diffuses on flat surfaces, making it difficult for the self-assembly process to be initiated. With the help of the low-energy sites in surface defects and Au(7 8 8) step edges, TTPO molecules can be anchored in place on surfaces, allowing for chain formation to begin. By using high-performance Density Functional Theory based molecular dynamics calculations, the molecules can be shown to stay localized to these bonding sites and serve as a basis for chain formation. In addition, by simulating various temperatures with a Nose-Hoover thermostat, we can analyze how temperature affects anchoring ability and diffusion properties.

  19. Characteristics of diffusion-tensor imaging for healthy adult rhesus monkey brains

    PubMed Central

    Zhao, Xinxiang; Pu, Jun; Fan, Yaodong; Niu, Xiaoqun; Yu, Danping; Zhang, Yanglin

    2013-01-01

    Diffusion-tensor imaging can be used to observe the microstructure of brain tissue. Fractional sotropy reflects the integrity of white matter fibers. Fractional anisotropy of a young adult brain is low in gray matter, high in white matter, and highest in the splenium of the corpus callosum. Thus, we selected the anterior and posterior limbs of the internal capsule, head of the caudate nucleus, semioval center, thalamus, and corpus callosum (splenium and genu) as regions of interest when using diffusion-tensor imaging to observe fractional anisotropy of major white matter fiber tracts and the deep gray matter of healthy rhesus monkeys aged 4–8 years. Results showed no laterality ferences in fractional anisotropy values. Fractional anisotropy values were low in the head of date nucleus and thalamus in gray matter. Fractional anisotropy values were highest in the splenium of corpus callosum in the white matter, followed by genu of the corpus callosum and the posterior limb of the internal capsule. Fractional anisotropy values were lowest in the semioval center and posterior limb of internal capsule. These results suggest that fractional anisotropy values in major white matter fibers and the deep gray matter of 4–8-year-old rhesus monkeys are similar to those of healthy young people. PMID:25206616

  20. Characteristics of red-emitting broad area stripe laser diodes with zinc diffused window structures

    NASA Astrophysics Data System (ADS)

    Ohno, Tomoki; Takiguchi, Mikio; Wakabayashi, Kazuya; Uchida, Hiroyuki; Naganuma, Kaori; Ohara, Maho; Ito, Satoshi; Hirata, Shoji

    2010-02-01

    We have applied zinc diffused window structures to 640 nm broad area stripe laser diodes (BALDs) for the first time. A solid-phase zinc diffusion technique was used for a thick single quantum well (SQW) in GaInP employing the short wavelength and disordered active layer possessed a blue shift of 58 nm in photoluminescence spectrum. We fabricated 10 mm arrays including twenty-five BALDs and each BALD consists of a 60 μm ridge stripe and a 1000 μm cavity. An initial catastrophic optical damage (COD) level of the window laser was increased by four times of a conventional none-window laser. A long-term reliability under automatic current control was investigated for initial output powers of 13W and 15W which overcome a previous demonstration of 7.2 W. Measured degradations within a period of 1000-hours were 5 % or less, in contrast a half-life period of our conventional none-window laser with an initial output power of 10 W was only 120-hours. Therefore the window structure improved the BALD in terms of the COD level and the long-term reliability.

  1. The relative diffusive transport rate of SrI2 in water changes over the nanometer length scale as measured by coherent quasielastic neutron scattering.

    PubMed

    Rubinson, Kenneth A; Faraone, Antonio

    2016-05-14

    X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century, but the probes have covered distances shorter than 8 Å. For the non-hydrolyzing salt SrI2 in aqueous solution, a locally ordered lattice of ions exists that scatters slow neutrons coherently down to at least 0.1 mol L(-1) concentration, where the measured average distance between scatterers is over 18 Å. To investigate the motions of these scatterers, coherent quasielastic neutron scattering (CQENS) data on D2O solutions with SrI2 at 1, 0.8, 0.6, and 0.4 mol L(-1) concentrations was obtained to provide an experimental measure of the diffusive transport rate for the motion between pairs of ions relative to each other. Because CQENS measures the motion of one ion relative to another, the frame of reference is centered on an ion, which is unique among all diffusion measurement methods. We call the measured quantity the pairwise diffusive transport rate Dp. In addition to this ion centered frame of reference, the diffusive transport rate can be measured as a function of the momentum transfer q, where q = (4π/λ)sin θ with a scattering angle of 2θ. Since q is related to the interion distance (d = 2π/q), for the experimental range 0.2 Å(-1)≤q≤ 1.0 Å(-1), Dp is, then, measured over interion distances from 40 Å to ≈6 Å. We find the measured diffusional transport rates increase with increasing distance between scatterers over the entire range covered and interpret this behavior to be caused by dynamic coupling among the ions. Within the model of Fickian diffusion, at the longer interionic distances Dp is greater than the Nernst-Hartley value for an infinitely dilute solution. For these nm-distance diffusional transport rates to conform with the lower, macroscopically measured diffusion coefficients, we propose that local, coordinated counter motion of at least pairs of ions is part of the transport process. PMID:27096293

  2. Efficient computation of PDF-based characteristics from diffusion MR signal.

    PubMed

    Assemlal, Haz-Edine; Tschumperlé, David; Brun, Luc

    2008-01-01

    We present a general method for the computation of PDF-based characteristics of the tissue micro-architecture in MR imaging. The approach relies on the approximation of the MR signal by a series expansion based on Spherical Harmonics and Laguerre-Gaussian functions, followed by a simple projection step that is efficiently done in a finite dimensional space. The resulting algorithm is generic, flexible and is able to compute a large set of useful characteristics of the local tissues structure. We illustrate the effectiveness of this approach by showing results on synthetic and real MR datasets acquired in a clinical time-frame. PMID:18982591

  3. Brillouin Lasing with a Reduced Self-Pulsing Characteristic Using a Short-Length Erbium-Doped Fiber as the Nonlinear Gain Medium

    NASA Astrophysics Data System (ADS)

    Zarei, A.; Z. R. R. Rosdin, R.; M. Ali, N.; H., Ahmad; W. Harun, S.

    2014-05-01

    A single-wavelength Brillouin laser is demonstrated by using a 3-m-long erbium doped fiber (EDF) in a ring cavity. The EDF is used to provide both nonlinear and linear gains to generate a stimulated Brillouin scattering (SBS) and to amplify the generated SBS, respectively. The Brillouin erbium fiber laser (BEFL) operates at 1561.5 nm, where the operating wavelength is up-shifted by 0.08nm from the Brillouin pump. The operation wavelength is also tunable within 1560.6-1562.6 nm. The BEFL also shows a self-pulsing characteristic with repetition of 66.7 kHz when the BP is set around the threshold pump power of 13mW. Compared to the conventional Brillouin fiber laser with a long cavity length, the proposed BEFL exhibits a significantly lower amplitude of pulse. This laser has many potential applications, such as in optical communication and sensors.

  4. Investigation of Diffusion Characteristics through Microfluidic Channels for Passive Drug Delivery Applications.

    PubMed

    Goudie, Marcus J; Ghuman, Alyssa P; Collins, Stephanie B; Pidaparti, Ramana M; Handa, Hitesh

    2016-01-01

    Microfluidics has many drug delivery applications due to the ability to easily create complex device designs with feature sizes reaching down to the 10s of microns. In this work, three different microchannel designs for an implantable device are investigated for treatment of ocular diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. Devices were fabricated using polydimethylsiloxane (PDMS) and soft lithography techniques, where surface chemistry of the channels was altered using 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane (PEG-silane). An estimated delivery rate for a number of common drugs was approximated for each device through the ratio of the diffusion coefficients for the dye and the respective drug. The delivery rate of the model drugs was maintained at a physiological condition and the effects of channel design and surface chemistry on the delivery rate of the model drugs were recorded over a two-week period. Results showed that the surface chemistry of the device had no significant effect on the delivery rate of the model drugs. All designs were successful in delivering a constant daily dose for each model drug. PMID:27313895

  5. Investigation of Diffusion Characteristics through Microfluidic Channels for Passive Drug Delivery Applications

    PubMed Central

    Ghuman, Alyssa P.; Collins, Stephanie B.; Handa, Hitesh

    2016-01-01

    Microfluidics has many drug delivery applications due to the ability to easily create complex device designs with feature sizes reaching down to the 10s of microns. In this work, three different microchannel designs for an implantable device are investigated for treatment of ocular diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. Devices were fabricated using polydimethylsiloxane (PDMS) and soft lithography techniques, where surface chemistry of the channels was altered using 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane (PEG-silane). An estimated delivery rate for a number of common drugs was approximated for each device through the ratio of the diffusion coefficients for the dye and the respective drug. The delivery rate of the model drugs was maintained at a physiological condition and the effects of channel design and surface chemistry on the delivery rate of the model drugs were recorded over a two-week period. Results showed that the surface chemistry of the device had no significant effect on the delivery rate of the model drugs. All designs were successful in delivering a constant daily dose for each model drug. PMID:27313895

  6. Clinical characteristics and prognostic analysis of Chinese patients with diffuse large B-cell lymphoma.

    PubMed

    Ke, Xiaoyan; Wang, Jing; Gao, Zifen; Zhao, Lingzhi; Li, Min; Jing, Hongmei; Wang, Jijun; Zhao, Wei; Gilbert, Heather; Yang, Xiao-Feng

    2010-01-15

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults. As it is a highly heterogenous disease, many studies have focused on finding useful prognostic factors to help guide therapy. In this report, we examine several biological markers in 83 patients with DLBCL enrolled in our hospital, including cell origin, serum lactate dehydrogenase (LDH) levels, and international prognostic index (IPI), in order to find the best combination of prognostic factors. We also examined whether DLBCL has a significant geographic difference, since several studies have suggested that the prevalence and potential etiological factors of lymphomas in China may be different from those in other countries. Our results demonstrate that: (1) patients in China have higher extranodal tissue involvement and different extranodal organ distribution than patients reported from other countries; (2) Chinese patients have higher rates of germinal center (GC) cell origin; and (3) among nine prognostic variables, lower IPI scores, GC cell origin determined by immunohistochemical staining, and no more than 1.5 times of normal levels of LDH are statistically significant good prognostic factors in Chinese patients with DLBCL, whereas age at the time of diagnosis, clinical stage, beta(2)-microglobulin levels, extranodal tissue involvement, and expression levels of Bcl-6 protein were not useful in determining prognosis. PMID:19819170

  7. Characteristics of Diffusion Annealing Between Martensitic Stainless Steel and Nickel in the Form of Coating and Foil

    NASA Astrophysics Data System (ADS)

    Araee, A.; Sabetghadam, H.

    2010-10-01

    Characteristics of interaction between martensitic stainless steel type AISI 410 with nickel in the form of coating layer and foil were investigated. Nickel was coated on AISI 410 substrate by electroplating in various thicknesses (6-16 μm). The 300-μm-nickel with purity of 99.9% was employed as a foil layer. All specimens were annealed in the temperature range of 700-900 °C for 5, 10, 15, and 60 min. Optical microscopy, SEM and EPMA analyzer were carried out in order to characterize the interdiffusion behavior differences between nickel and AISI 410 while using nickel layer in different form. It was observed that the thickness of nickel coating had a minor effect during annealing on the interaction between Ni and substrate at faying surface. However, the results show that the interaction of nickel coating layer with base material is much faster than foil layer during annealing process. This study suggests that the coating layer diffused faster to the substrate than foil layer; moreover, in the former case, heavy outer load was omitted. The concentration profiles were plotted for two cases. Although in case of using layer in the form of coating the annealing time was relatively short (5-15 min), it was observed that the concentration profiles for main elements had shapes close to the theoretical curve. For various thicknesses (6-16 μm) of Ni coating, the experimental results show that the interaction at faying surface caused the thickness of nickel coating growth. The diffusion zone width was plotted against the annealing temperature and time for both cases and the growth of the diffusion zones was compared.

  8. Head Rotational Acceleration Characteristics Influence Behavioral and Diffusion Tensor Imaging Outcomes Following Concussion

    PubMed Central

    Stemper, Brian D.; Shah, Alok S.; Pintar, Frank A.; McCrea, Michael; Kurpad, Shekar N.; Glavaski-Joksimovic, Aleksandra; Olsen, Christopher; Budde, Matthew D.

    2015-01-01

    A majority of traumatic brain injuries (TBI) in motor vehicle crashes and sporting environments are mild and caused by high-rate acceleration of the head. For injuries caused by rotational acceleration, both magnitude and duration of the acceleration pulse were shown to influence injury outcomes. This study incorporated a unique rodent model of rotational acceleration-induced mild TBI (mTBI) to quantify independent effects of magnitude and duration on behavioral and neuroimaging outcomes. Ninety-two Sprague– Dawley rats were exposed to head rotational acceleration at peak magnitudes of 214 or 350 krad/s2 and acceleration pulse durations of 1.6 or 3.4 ms in a full factorial design. Rats underwent a series of behavioral tests including the Composite Neuroscore (CN), Elevated Plus Maze (EPM), and Morris Water Maze (MWM). Ex vivo diffusion tensor imaging (DTI) of the fixed brains was conducted to assess the effects of rotational injury on brain microstructure as revealed by the parameter fractional anisotropy (FA). While the injury did not cause significant locomotor or cognitive deficits measured with the CN and MWM, respectively, a main effect of duration was consistently observed for the EPM. Increased duration caused significantly greater activity and exploratory behaviors measured as open arm time and number of arm changes. DTI demonstrated significant effects of both magnitude and duration, with the FA of the amygdala related to both the magnitude and duration. Increased duration also caused FA changes at the interface of gray and white matter. Collectively, the findings demonstrate that the consequences of rotational acceleration mTBI were more closely associated with duration of the rotational acceleration impulse, which is often neglected as an independent factor, and highlight the need for animal models of TBI with strong biomechanical foundations to associate behavioral outcomes with brain microstructure. PMID:25344352

  9. Head rotational acceleration characteristics influence behavioral and diffusion tensor imaging outcomes following concussion.

    PubMed

    Stemper, Brian D; Shah, Alok S; Pintar, Frank A; McCrea, Michael; Kurpad, Shekar N; Glavaski-Joksimovic, Aleksandra; Olsen, Christopher; Budde, Matthew D

    2015-05-01

    A majority of traumatic brain injuries (TBI) in motor vehicle crashes and sporting environments are mild and caused by high-rate acceleration of the head. For injuries caused by rotational acceleration, both magnitude and duration of the acceleration pulse were shown to influence injury outcomes. This study incorporated a unique rodent model of rotational acceleration-induced mild TBI (mTBI) to quantify independent effects of magnitude and duration on behavioral and neuroimaging outcomes. Ninety-two Sprague-Dawley rats were exposed to head rotational acceleration at peak magnitudes of 214 or 350 krad/s(2) and acceleration pulse durations of 1.6 or 3.4 ms in a full factorial design. Rats underwent a series of behavioral tests including the Composite Neuroscore (CN), Elevated Plus Maze (EPM), and Morris Water Maze (MWM). Ex vivo diffusion tensor imaging (DTI) of the fixed brains was conducted to assess the effects of rotational injury on brain microstructure as revealed by the parameter fractional anisotropy (FA). While the injury did not cause significant locomotor or cognitive deficits measured with the CN and MWM, respectively, a main effect of duration was consistently observed for the EPM. Increased duration caused significantly greater activity and exploratory behaviors measured as open arm time and number of arm changes. DTI demonstrated significant effects of both magnitude and duration, with the FA of the amygdala related to both the magnitude and duration. Increased duration also caused FA changes at the interface of gray and white matter. Collectively, the findings demonstrate that the consequences of rotational acceleration mTBI were more closely associated with duration of the rotational acceleration impulse, which is often neglected as an independent factor, and highlight the need for animal models of TBI with strong biomechanical foundations to associate behavioral outcomes with brain microstructure. PMID:25344352

  10. Drain Current Characteristics of Ferroelectric Gate-All-Around Si Nanowire Transistors Based on Drift/Diffusion Transport Theory

    NASA Astrophysics Data System (ADS)

    Ibata, Masakazu; Ohmi, Shun-ichiro; Ishiwara, Hiroshi

    2012-03-01

    The drain current vs gate voltage (ID-VG) and drain current vs drain voltage (ID-VD) characteristics of ferroelectric gate-all-around Si nanowire transistors are derived using the drift/diffusion transport theory. It is pointed out that the nonsaturated polarization in the ferroelectric film, which occurs near the drain region in the channel owing to the influence of the applied drain voltage, plays an important role in the calculation of the drain current as well as the polarization near the source region, and a graphical method using analytical expressions for the minor polarization hysteresis loops is presented to calculate the mobile charge density in the nanowire. By numerical analysis, the gate voltage range suitable for memory operation is determined in Si nanowire transistors with ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate films.

  11. Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1979-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  12. Elevated-temperature flow strength, creep resistance and diffusion welding characteristics of Ti-gAl-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1977-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  13. Analysis of the electron-beam-induced current of a polycrystalline p-n junction when the diffusion lengths of the material on either side of a grain boundary differ

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1984-01-01

    The short circuit current generated by the electron beam of a scanning electron microscope in p-n junctions is reduced by enhanced recombination at grain boundaries in polycrystalline material. Frequently, grain boundaries separate the semiconductor into regions possessing different minority carrier life times. This markedly affects the short circuit current I(sc) as a function of scanning distance from the grain boundary. It will be shown theoretically that (1) the minimum of the I(sc) in crossing the grain boundary with the scanning electron beam is shifted away from the grain boundary toward the region with smaller life time (shorter diffusion length), (2) the magnitude of the minimum differs markedly from those calculated under the assumption of equal diffusion lengths on either side of the grain boundary, and (3) the minimum disappears altogether for small surface recombination velocities (s less than 10,000 cm/s). These effects become negligible, however, for large recombination velocities s at grain boundaries. For p-type silicon this happens for s not less than 100,000 cm/s.

  14. In vitro growth characteristics of asbestos-induced diffused malignant mesotheliomas

    SciTech Connect

    Akley, N.; Mackay, A.; Craighead, J.

    1986-03-05

    After long latency periods, DMM develop in rat inoculated into the pleural or peritoneal cavity with either chrysotile or crocidolite asbestos. Histologically, the tumors resemble the human lesion being either fibrosarcomatous or epithelial (or mixtures of the two cell types). Tumor tissue from most, but not all, lesions grow in serum containing medium in vitro. These tumor cells consistently are tetroploid or aneuploid; occasionally marker chromosomes are found. After a series of passages chemically defined serum-free medium maintains the growth of cells from many tumors in vitro. Cells in culture usually grow in monolayers but nodular masses of proliferating tumor cells develop from the cell sheet and readily float free in the medium. These seemingly spherical balls of cells can be used to establish fresh cultures, allowing the initial monolayers to grow indefinitely. The fine structural features of the nodular tumor masses have now been studied in detail. They consist of vacuolated epithelial cells which are replete with vellumentous villi. Experimentally-induced DMM in animals have characteristics similar to their human counterparts; implantation of metastases may develop from foci similar to those observed to form in cultures.

  15. PS-b-PEO/Silica Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales Prepared by Solvent Evaporation-Induced Self-Assembly

    SciTech Connect

    YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.; EISENBERG,ADI

    2000-11-22

    Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore, templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through

  16. Restricted Diffusion in Biophysical Systems

    PubMed Central

    Cooper, Robert L.; Chang, David B.; Young, Allan C.; Martin, Carroll J.; Ancker-Johnson, Betsy

    1974-01-01

    The pulsed-gradient spin echo nuclear magnetic resonance (PGSENMR) technique was used to measure restricted diffusion of water in three types of animal tissue: human blood plasma and red cells; rat and rabbit heart; rat and rabbit liver. Characteristic lengths (L) for restriction of diffusion are estimated from dependence on the measuring time. Limitations on the range of observable restrictive lengths (1.5-15 μm) are discussed. The decrease in diffusivity due to 1 μm alumina powder (volume fraction = 0.18) in glycerin/water mixtures agrees with the Wang theory assuming spherical particles and no hydration. The characteristic length (L ≃ 4 μm) is larger than the particle size (1 μm) or separation (1.8 μm). Comparison of the diffusivities in tissues at short diffusion times with the Wang theory indicates some bound or trapped water. For packed red blood cells, a restriction (L ≃ 2.3 μm) was attributed tothe red cell membrane. A permeability p ≃ 0.014 cm/s may be estimated from the decrease in diffusivity. Average values of diffusivity ratio in heart were: 0.36 ± 0.02 for rat; and 0.26 ± 0.03 for rabbit; and in liver: 0.25 ± 0.01 for rat; 0.25 ± .04 for 10-day old rabbit; and 0.195 ± 0.03 for 2-yr old rabbit. A restriction (L ≃ 2.7 μm) in rat liver probably results from the mitochondria. PMID:4823458

  17. Noise characteristics of jet flap type exhaust flows. [effects of Mach number, slot nozzle aspect ratio, and flap length on radiated sound power

    NASA Technical Reports Server (NTRS)

    Schrecker, G. O.; Maus, J. R.

    1974-01-01

    An experimental investigation of the aerodynamic noise and flow field characteristics of internal-flow jet-augmented flap configurations (abbreviated by the term jet flap throughout the study) is presented. The first part is a parametric study of the influence of the Mach number (subsonic range only), the slot nozzle aspect ratio and the flap length on the overall radiated sound power and the spectral composition of the jet noise, as measured in a reverberation chamber. In the second part, mean and fluctuating velocity profiles, spectra of the fluctuating velocity and space correlograms were measured in the flow field of jet flaps by means of hot-wire anemometry. Using an expression derived by Lilley, an attempt was made to estimate the overall sound power radiated by the free mixing region that originates at the orifice of the slot nozzle (primary mixing region) relative to the overall sound power generated by the free mixing region that originates at the trailing edge of the flap (secondary mixing region). It is concluded that at least as much noise is generated in the secondary mixing region as in the primary mixing region. Furthermore, the noise generation of the primary mixing region appears to be unaffected by the presence of a flap.

  18. Analysis of the impact of surface layer properties on evaporation from porous systems using column experiments and modified definition of characteristic length

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Narkis, Kfir; Gherabli, Rivka; Lefort, Philippe; Prat, Marc

    2014-05-01

    The hydraulic properties of the layer at the vicinity of the soil surface have significant impact on evaporation and could be harnessed to reduce water losses. The effect of the properties of the upper layer on the evolution of phase distribution during the evaporation process is first illustrated from three-dimensional pore network simulations. This effect is then studied from experiments carried out on soil columns under laboratory conditions. Comparisons between homogeneous columns packed with coarse (sand) and fine (sandy loam) materials and heterogeneous columns packed with layers of fine overlying coarse material and coarse overlying fine material of different thicknesses are performed to assess the impact of upper layer properties on evaporation. Experiments are analyzed using the classical approach based on the numerical solution of Richards equation and semianalytical theoretical predictions. The theoretical analysis is based on the clear distinction between two drying regimes, namely, the capillary regime and the gravity-capillary regime, which are the prevailing regimes in our experiments. Simple relationships enabling to estimate the duration of stage 1 evaporation (S1) for both regimes are proposed. In particular, this led to defining the characteristic length for the gravity-capillary regime from the consideration of viscous effects at low water content differently from available expressions. The duration of S1, during which most of the water losses occur, for both the homogeneous and two-layer columns is presented and discussed. Finally, the impact of liquid films and its consequences on the soil hydraulic conductivity function are briefly discussed.

  19. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  20. Diffusion length determination in n/+/-p-p/+/ structure based silicon solar cells from the intensity dependence of the short-circuit current for illumination from the p/+/ side

    NASA Astrophysics Data System (ADS)

    Jain, G. C.; Singh, S. N.; Kotnala, R. K.

    1983-04-01

    A technique for measuring the diffusion length (L) of minority carriers in Si solar cells with base regions that feature a high-low junction at one end and a p-n junction at the other is presented. The p(+)-p-n(+) or n(+)-p-p(+) cell is illuminated by monochromatic light from the p(+) side and the short circuit current is measured as a function of the light intensity. The slope of the current in relation to the intensity is proportional to the ratio of the thickness of the cell (d) to L. The relationship is quantified and applied to the results of tests with Si cells with bifacial symmetry, cut from Czochralski-grown crystals. L is obtained directly, and the method is concluded to be applicable in cases where d/L is at least 0.6.

  1. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications. PMID:27243107

  2. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS-I. WIND-TUNNEL EVALUATION OF DIFFUSIVE CHARACTERISTICS OF A SIMULATED SUBURBAN NEUTRAL ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...

  3. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    SciTech Connect

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng; Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu

    2014-04-14

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic.

  4. Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Konabe, Satoru; Shiomi, Junichiro; Maruyama, Shigeo

    2009-09-01

    We present a theoretical scheme that seamlessly handles the crossover from fully ballistic to diffusive thermal transport regimes and apply it to carbon nanotubes. At room temperature, micrometer-length nanotubes belong to the intermediate regime in which ballistic and diffusive phonons coexist. According to our scheme, the thermal conductance of these nanotubes exhibit anomalous nonlinear dependence of tube length due to this coexistence. This result is in excellent agreement with molecular-dynamics simulation results showing the nonlinear thermal conductance. Additionally, we clarify the mechanism of crossover in terms of the length-dependent characteristic frequency.

  5. Variable ranking based on the estimated degree of separation for two distributions of data by the length of the receiver operating characteristic curve.

    PubMed

    Maswadeh, Waleed M; Snyder, A Peter

    2015-05-30

    Variable responses are fundamental for all experiments, and they can consist of information-rich, redundant, and low signal intensities. A dataset can consist of a collection of variable responses over multiple classes or groups. Usually some of the variables are removed in a dataset that contain very little information. Sometimes all the variables are used in the data analysis phase. It is common practice to discriminate between two distributions of data; however, there is no formal algorithm to arrive at a degree of separation (DS) between two distributions of data. The DS is defined herein as the average of the sum of the areas from the probability density functions (PDFs) of A and B that contain a≥percentage of A and/or B. Thus, DS90 is the average of the sum of the PDF areas of A and B that contain ≥90% of A and/or B. To arrive at a DS value, two synthesized PDFs or very large experimental datasets are required. Experimentally it is common practice to generate relatively small datasets. Therefore, the challenge was to find a statistical parameter that can be used on small datasets to estimate and highly correlate with the DS90 parameter. Established statistical methods include the overlap area of the two data distribution profiles, Welch's t-test, Kolmogorov-Smirnov (K-S) test, Mann-Whitney-Wilcoxon test, and the area under the receiver operating characteristics (ROC) curve (AUC). The area between the ROC curve and diagonal (ACD) and the length of the ROC curve (LROC) are introduced. The established, ACD, and LROC methods were correlated to the DS90 when applied on many pairs of synthesized PDFs. The LROC method provided the best linear correlation with, and estimation of, the DS90. The estimated DS90 from the LROC (DS90-LROC) is applied to a database, as an example, of three Italian wines consisting of thirteen variable responses for variable ranking consideration. An important highlight of the DS90-LROC method is utilizing the LROC curve methodology to

  6. Macro-meso two-scale model for predicting the VOC diffusion coefficients and emission characteristics of porous building materials

    NASA Astrophysics Data System (ADS)

    Xiong, Jianyin; Zhang, Yinping; Wang, Xinke; Chang, Dongwu

    Through the observation of the pore structure and mercury intruding porosimetry (MIP) experiments of some typical porous building materials, we found that the diffusion coefficient of the material can be expressed by that of a representative elementary volume (REV) in which the pore structure can be simplified as a connection in series of macro and meso pores. Based upon that, a macro-meso two-scale model for predicting the diffusion coefficient of porous building materials is proposed. In contrast to the traditional porous mass transfer model for determining the diffusion coefficient described in the literature [Blondeau, P., Tiffonnet, A.L., Damian, A., Amiri, O., Molina, J.L., 2003. Assessment of contaminant diffusivities in building materials from porosimetry tests. Indoor Air 13, 302-310; Seo, J., Kato, S., Ataka, Y., Zhu, Q., 2005. Evaluation of effective diffusion coefficient in various building materials and absorbents by mercury intrusion porosimetry. In Proceedings of the Indoor Air, Beijing, China, pp. 1854-1859], the proposed model relates the volatile organic compound (VOC) diffusion coefficient of building material not only to the porosity of the building material, but also to the pore size distribution and pore connection modes. To verify the model, a series of experiments of VOC emissions of three types of medium-density board were conducted. The comparison of the model and experimental results shows that the proposed model agrees much better with the experimental results than the traditional models in the literature. More validation for other building materials is needed. The proposed model is useful for predicting the VOC diffusion coefficient of porous building materials and for developing low VOC emission building materials.

  7. Spatial Characteristics of Newly Diagnosed Grade 3 Glioma Assessed by Magnetic Resonance Metabolic and Diffusion Tensor Imaging1

    PubMed Central

    Ozturk-Isik, Esin; Pirzkall, Andrea; Lamborn, Kathleen R; Cha, Soonmee; Chang, Susan M; Nelson, Sarah J

    2012-01-01

    The spatial heterogeneity in magnetic resonance (MR) metabolic and diffusion parameters and their relationship were studied for patients with treatment-naive grade 3 gliomas. MR data were evaluated from 51 patients with newly diagnosed grade 3 gliomas. Anatomic, diffusion, and metabolic imaging data were considered. Variations in metabolite levels, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were evaluated in regions of gadolinium enhancement and T2 hyperintensity as well as regions with abnormal metabolic signatures. Contrast enhancement was present in only 21 of the 51 patients. When present, the enhancing component of the lesion had higher choline-to-N-acetylaspartate index (CNI), higher choline, lower N-acetylaspartate, similar creatine, similar ADC and FA, and higher lactate/lipid than the nonenhancing lesion. Regions with CNI ≥ 4 had higher choline, lower N-acetylaspartate, higher lactate/lipid, higher ADC, and lower FA than normal-appearing white matter and regions with intermediate CNI values. For lesions that exhibited gadolinium enhancement, the metabolite levels and diffusion parameters in the region of enhancement were consistent with it corresponding to the most abnormal portion of the tumor. For nonenhancing lesions, areas with CNI ≥ 4 were the most abnormal in metabolic and diffusion parameters. This suggests that the region with the highest CNI might provide a good target for biopsies for nonenhancing lesions to obtain a representative histologic diagnosis of its degree of malignancy. Metabolic and diffusion parameter levels may be of interest not only for directing tissue sampling but also for defining the targets for focal therapy and assessing response to therapy. PMID:22348171

  8. Spatial characteristics of newly diagnosed grade 3 glioma assessed by magnetic resonance metabolic and diffusion tensor imaging.

    PubMed

    Ozturk-Isik, Esin; Pirzkall, Andrea; Lamborn, Kathleen R; Cha, Soonmee; Chang, Susan M; Nelson, Sarah J

    2012-02-01

    The spatial heterogeneity in magnetic resonance (MR) metabolic and diffusion parameters and their relationship were studied for patients with treatment-naive grade 3 gliomas. MR data were evaluated from 51 patients with newly diagnosed grade 3 gliomas. Anatomic, diffusion, and metabolic imaging data were considered. Variations in metabolite levels, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were evaluated in regions of gadolinium enhancement and T2 hyperintensity as well as regions with abnormal metabolic signatures. Contrast enhancement was present in only 21 of the 51 patients. When present, the enhancing component of the lesion had higher choline-to-N-acetylaspartate index (CNI), higher choline, lower N-acetylaspartate, similar creatine, similar ADC and FA, and higher lactate/lipid than the nonenhancing lesion. Regions with CNI ≥ 4 had higher choline, lower N-acetylaspartate, higher lactate/lipid, higher ADC, and lower FA than normal-appearing white matter and regions with intermediate CNI values. For lesions that exhibited gadolinium enhancement, the metabolite levels and diffusion parameters in the region of enhancement were consistent with it corresponding to the most abnormal portion of the tumor. For nonenhancing lesions, areas with CNI ≥ 4 were the most abnormal in metabolic and diffusion parameters. This suggests that the region with the highest CNI might provide a good target for biopsies for nonenhancing lesions to obtain a representative histologic diagnosis of its degree of malignancy. Metabolic and diffusion parameter levels may be of interest not only for directing tissue sampling but also for defining the targets for focal therapy and assessing response to therapy. PMID:22348171

  9. Effects of airplane characteristics and takeoff noise and field length constraints on engine cycle selection for a Mach 2.32 cruise application

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.

    1976-01-01

    Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.

  10. Intravoxel Incoherent Motion MR Imaging: Comparison of Diffusion and Perfusion Characteristics for Differential Diagnosis of Soft Tissue Tumors

    PubMed Central

    Du, Jun; Li, Kun; Zhang, Weisheng; Wang, Shaowu; Song, Qingwei; Liu, Ailian; Miao, Yanwei; Lang, Zhijin; Zhang, Lina; Zheng, Minting

    2015-01-01

    Abstract We used intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) to explore the possibility of preoperative diagnosis of soft tissue tumors (STTs). This prospective study enrolled 23 patients. Conventional MRI and IVIM examinations were performed on a 3.0T MR imager. Eight (35%) hemangiomas, 11 (47%) benign soft tissue tumors excluding hemangiomas (BSTTEHs) and 4 soft tissue sarcomas (STSs) were assessed. The mean tumor size was about 1652.36 ± 233.66 mm2. Ten b values (0–800 s/mm2) were used to evaluate diffusion and perfusion characteristics of IVIM. IVIM parameters (ADCstandard, ADCslow, ADCfast, and f) of STTs were measured and evaluated for differentiating hemangiomas, BSTTEHs, and STSs. ADCslow and ADCfast value were different for hemangiomas, BSTTEHs, and STSs separately (P < 0.001, P < 0.001, and P = 0.001). ADCslow, cut-off value smaller than 0.93 × 10–3 mm2/s, was the best parameter to differ STSs (0.689 ± 0.173 × 10−3 mm2/s) from hemangiomas (0.933 ± 0.237 × 10−3 mm2/s) and BSTTEHs (1.156 ± 0.120 × 10−3 mm2/s) (P = 0.001). ADCslow (0.93 × 10−3 mm2/s