Science.gov

Sample records for charcoal rot disease

  1. DISEASES OF SOYBEAN: CHARCOAL ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean yield losses due to charcoal rot occur regularly. Yield losses of 20-30% due to root and stem infections of soybean caused by the soil-inhabiting fungus Macrophomina phaseolina have been reported in some fields in years highly favorable for disease development. This bulletin summarizes the...

  2. Charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is reported occasionally on alfalfa in the U.S. and has also been found in Australia, Pakistan, Uganda, east Africa, and the former Soviet Union. The fungus causing the disease is widespread throughout tropical and subtropical countries. It causes disease on more than 500 crop and we...

  3. Charcoal Rot Disease Assessment of Soybean Genotypes and Prelimary Genetic Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot [Macrophomina phaseolina (Tassi) Goid] of soybean [Glycine max (L.) Merr.] is a disease of economic importance in the United States that causes significant yield losses. In 2002 (30), 2003 (30), 2004 (44) and 2005 (81) a total of 185 soybean genotypes in maturity groups III, IV and V we...

  4. Charcoal Rot Disease Assessment of Soybean Genotypes Using a Colony Forming Unit Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot [Macrophomina phaseolina (Tassi) Goid] of soybean [Glycine max (L.) Merr.] is a disease of economic significance in the United States and around the world. Yield losses will remain high until resistant genotypes are developed. Progress in developing resistant genotypes is hampered beca...

  5. Comparsion of Disease Assessment of Soybean Genotypes in the Presence of Charcoal Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot [Macrophomina phaseolina (Tassi) Goid] of soybean [Glycine max (L.) Merr.] is a disease of economic significance in the United States causing significant yield losses. Twenty four soybean genotypes in maturity groups 3, 4 and 5 were evaluated in 2002 and 2003 using five methods of disea...

  6. Potassium and Phosphorus effects on disease severity of charcoal rot of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium (K) and phosphorus (P) fertilizers on charcoal rot of soybean [Glycine max (L.) Merr.] are unknown. Therefore, the severity of charcoal rot was studied at five levels of K (0, 37, 75, 111 and 149 kg K ha-1) and a level that was equal to the recommended fertilizer applicatio...

  7. Production of (-)-Botryodiplodin, but not Phaseolinone, by the Soybean Charcoal Rot Disease Fungus Macrophomina phaseolina in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot disease, which causes significant losses in crops grown in hot, relatively dry areas, is caused by the fungus Macrophomina phaseolina. M. phaseolina produces a phytotoxin believed to play a role in helping establish infections. Siddiqui et al. [Experentia 35, 1222 (1979)] purified and...

  8. Resistance to charcoal rot identified in ancestral soybean germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot, caused by the fungal pathogen Macrophomina phaseolina, is an economically important disease on soybean and other crops including maize, sorghum, and sunflowers. Without effective cultural or chemical options to control charcoal rot in soybean, finding sources of genetic resistance is o...

  9. Evaluation of soybean genotypes for resistance to charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot caused by Macrophomina phaseolina causes more yield loss in soybean than most other diseases in the southern U.S.A. There are no commercial genotypes marketed as resistant to charcoal rot of soybean. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V gen...

  10. Soybean Seed Composition in Cultivars Differing in Resistance to Charcoal Rot (Macrophomina phaseolina)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L) Merr.] cultivars of maturity group (MG) IV were selected based on their susceptibility to charcoal rot disease caused by a soilborne fungus (Macrophomina phaseolina). Seed composition and nitrogen fixation in soybean has not been well investigated under charcoal rot infestat...

  11. Effects of directed fungicides sprays and potash form on charcoal rot of soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of fungicides to control charcoal rot of soybean was conducted in a field planted annually to soybean or snap bean since 2002 with moderate to high seedling disease losses to charcoal rot. Treatments were applied on 18 Jul at 60 psi and on 7 Aug at 80 psi using a high-pressure hydraulic ...

  12. Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars and boron in the mechanism of resistance to charcoal rot disease in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to investigate the combined effects of charcoal rot and drought on total seed phenol, isoflavones, sugars, and boron in susceptible (S) and moderately resistant (MR) soybean genotypes to charcoal rot pathogen. A field experiment was conducted for two years under ir...

  13. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    PubMed

    Sarkar, Tuhin Subhra; Biswas, Pranjal; Ghosh, Subrata Kumar; Ghosh, Sanjay

    2014-01-01

    M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction. PMID:25208092

  14. Nitric Oxide Production by Necrotrophic Pathogen Macrophomina phaseolina and the Host Plant in Charcoal Rot Disease of Jute: Complexity of the Interplay between NecrotrophHost Plant Interactions

    PubMed Central

    Sarkar, Tuhin Subhra; Biswas, Pranjal; Ghosh, Subrata Kumar; Ghosh, Sanjay

    2014-01-01

    M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2?,7?-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction. PMID:25208092

  15. Effects of Seed Treatment, In-Furrow Sprays, and Herbicides Treatments on Charcoal Rot of June-Planted Soybean, 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of chemical and biological fungicides to control charcoal rot of soybean was conducted in a field planted annually to soybean or snap bean since 2002 with moderate to high seedling disease losses to charcoal rot. Seed treatment slurries were created by adding distilled water to the test ...

  16. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  17. A GREENHOUSE METHOD FOR SCREENING FOR RESISTANCE TO CHARCOAL ROT IN SOYBEANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Macrophomina phaseolina (Tassi) Goid causes charcoal rot disease of soybean (Glycine max (L.) Merr.) and several other susceptible host species. The pathogen invades the roots, colonizes the vascular system, and interferes with water transport. Under conditions favorable for disease, such...

  18. Fungicide, herbicide, and genotype effects on charcoal rot and phomopsis seed decay in soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield limiting diseases such as charcoal rot and Phomopsis seed decay have significant impact on the economic potential for soybeans because there are few methods for management of these diseases. The objectives of this study were to evaluate application of the herbicide lactofen, the fungicide azo...

  19. Microsatellites from the charcoal rot fungus (Macrophomina phaseolina)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite loci were identified from the charcoal rot fungus Macrophomina phaseolina. Primer pairs for 46 loci were developed and of these 13 were optimized and screened using genomic DNA from 44 fungal isolates collected predominantly from two soybean fields in MS. All optimized loci were poly...

  20. Seasonal progress of charcoal rot and its impact on soybean productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of charcoal rot caused by Macrophomina phaseolina on yield of soybean were evaluated in the field using two genotypes each in maturity groups III and IV. Four separate experiments were established in an area of a field fumigated with methyl bromide. The experiments were: 1) artificiall...

  1. FIRST REPORT OF CHARCOAL ROT (MACROPHOMINA PHASEOLINA) ON SUNFLOWER IN NORTH AND SOUTH DAKOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September, 1998 symptoms suggestive of charcoal rot were observed on oilseed sunflower plants in western North Dakota (ND) and western South Dakota (SD). Symptoms, first observed on plants approaching physiological maturity, consisted of silver-gray lesions girdling the stem at the soil line, p...

  2. Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition.

    PubMed

    Khare, Ekta; Singh, Sachin; Maheshwari, D K; Arora, Naveen K

    2011-05-01

    The ability of fluorescent Pseudomonas strain EKi, in production of biocontrol and plant growth promotory (PGP) metabolites under saline stress was evaluated. Strain EKi could tolerate NaCl up to 1,550 mM and showed biocontrol of Macrophomina phaseolina (76.19%) in the presence of up to 400 mM NaCl. Strain EKi was able to produce IAA, siderophore and pyocyanin with gradual reduction of up to 76.31, 45.46, and 48.99%, respectively, as NaCl concentration increased from 0 to 500 mM. Reduced growth rate resulted in delayed induction of IAA, siderophore and pyocyanin by the PGPR. Thin layer chromatography of chloroform extract from non-stressed and salt stressed EKi, and inhibition of M. phaseolina by purified pyocyanin clearly indicated its role in biocontrol. In vitro and in vivo results showed the growth promotion and charcoal rot disease suppression of chickpea by strain EKi under both non-stressed and saline stress. There was 76.75 and 65.25% reduction of disease incidence in non-saline and saline conditions, respectively, in vitro conditions. In presence of M. phaseolina strain EKi brought about 67.65 and 58.45% reduction of disease incidence in non-saline and saline soil, respectively. PMID:21331555

  3. Control of charcoal rot fungus Macrophomina phaseolina by extracts of Datura metel.

    PubMed

    Javaid, Arshad; Saddique, Amna

    2012-01-01

    Methanolic leaf and fruit extracts of Datura metel were found highly effective in suppressing against Macrophomina phaseolina, the cause of charcoal rot disease. These extracts were further subjected to successive fractionation with n-hexane, chloroform, ethyl acetate and n-butanol. All the concentrations (3.125-200?mg?mL?) of chloroform, ethyl acetate and n-butanol fractions of leaf extract, and n-hexane fraction of fruit extract completely inhibited the target fungal growth. Two compounds A and B from the n-hexane fraction of fruit extract and compound C from n-butanol fraction of leaf extract were obtained by TLC. Compound B exhibited the best antifungal activity with an MIC value of 7.81?g?mL? that was at par with that of commercial fungicide mancozeb (80% w/w). This study concludes that M. phaseolina can be effectively controlled by natural antifungal compounds in n-hexane fraction of methanolic fruit extract of D. metel. PMID:22004473

  4. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid.

    PubMed

    Gopalakrishnan, Subramaniam; Humayun, Pagidi; Kiran, Bandru Keerthi; Kannan, Iyer Girish Kumar; Vidya, Meesala Sree; Deepthi, Kanala; Rupela, Om

    2011-06-01

    A total of 360 bacteria, isolated from the rhizospheres of a system of rice intensification (SRI) fields, were characterized for the production of siderophore, fluorescence, indole acetic acid (IAA), hydrocyanic acid (HCN) and solubilization of phosphorus. Of them, seven most promising isolates (SRI-156, -158, -178, -211, -229, -305 and -360) were screened for their antagonistic potential against Macrophomina phaseolina (causes charcoal rot in sorghum) by dual culture assay, blotter paper assay and in greenhouse. All the seven isolates inhibited M. phaseolina in dual culture assay, whereas six isolates solubilized phosphorous (except SRI-360), all seven produced siderophore, four produced fluorescence (except SRI-178, -229 and -305), six produced IAA (except SRI-305) and five produced HCN (except SRI-158 and -305). In the blotter paper assay, no charcoal rot infection was observed in SRI-156-treated sorghum roots, indicating complete inhibition of the pathogen, while the roots treated with the other isolates showed 49-76% lesser charcoal rot infection compared to the control. In the antifungal activity test (in green house on sorghum), all the isolates increased shoot dry mass by 15-23% and root dry mass by 15-20% (except SRI-158 and -360), over the control. In order to confirm the plant growth-promoting (PGP) traits of the isolates, the green house experiment was repeated but, in the absence of M. phaseolina. The results further confirmed the PGP traits of the isolates as evidenced by increases in shoot and root dry mass, 22-100% and 5-20%, respectively, over the control. The sequences of 16S rDNA gene of the isolates SRI-156, -158, -178, -211, -229, -305 and -360 were matched with Pseudomonas plecoglossicida, Brevibacterium antiquum, Bacillus altitudinis, Enterobacter ludwigii, E. ludwigii, Acinetobacter tandoii and P. monteilii, respectively in BLAST analysis. This study indicates that the selected bacterial isolates have the potential for PGP and control of charcoal rot disease in sorghum. PMID:25187130

  5. Greenhouse evaluation of commercial soybean cultivars adapted to the northern United States for resistance to charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty (30) and sixty-seven (67) commercially available soybean (Glycine max (L.) Merr) cultivars from Wisconsin (Maturity group (MG) I-II) and Indiana (MG II-III), respectively, were evaluated for charcoal rot (CR; Macrophomina phaseolina (Tassi) Goid) resistance using a cut-stem greenhouse assay. ...

  6. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  7. Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola.

    PubMed

    Senthilkumar, M; Swarnalakshmi, K; Govindasamy, V; Lee, Young Keun; Annapurna, K

    2009-04-01

    A total of 137 bacterial isolates from surface sterilized root, stem, and nodule tissues of soybean were screened for their antifungal activity against major phytopathogens like Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium udam, and Sclerotium rolfsii. Nine bacterial endophytes suppressed the pathogens under in vitro plate assay. These were characterized biochemically and identified at the genus level based on their partial sequence analysis of 16S rDNA. Eight of the isolates belonged to Bacillus and one to Paenibacillus. The phylogenetic relationship among the selected isolates was studied and phylogenetic trees were generated. The selected isolates were screened for biocontrol traits like production of hydrogen cyanide (HCN), siderophore, hydrolytic enzymes, antibiotics, and plant growth promoting traits like indole 3-acetic acid production, phosphate solubilization, and nitrogen fixation. A modified assessment scheme was used to select the most efficient biocontrol isolates Paenibacillus sp. HKA-15 (HKA-15) and Bacillus sp. HKA-121 (HKA-121) as potential candidates for charcoal rot biocontrol as well as soybean plant growth promotion. PMID:19067044

  8. DISEASES OF SOYBEAN: BROWN STEM ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean yield losses due to brown stem rot occur regularly. Yield losses of 16-30% due to root and stem infections of soybean caused by the soil-inhabiting fungus Phialophora gregata have been reported in some fields in years highly favorable for disease development. This bulletin summarizes the ...

  9. Rapid Diagnosis of Soybean Seedling Blight Caused by Rhizoctonia solani and Soybean Charcoal Rot Caused by Macrophomina phaseolina Using LAMP Assays.

    PubMed

    Lu, Chenchen; Song, Bi; Zhang, HaiFeng; Wang, YuanChao; Zheng, XiaoBo

    2015-12-01

    A new method of direct detection of pathogenic fungi in infected soybean tissues has been reported here. The method rapidly diagnoses soybean seedling blight caused by Rhizoctonia solani and soybean charcoal rot caused by Macrophomina phaseolina, and features loop-mediated isothermal amplification (LAMP). The primers were designed and screened using internal transcribed spacers (ITS) as target DNAs of both pathogens. An ITS-Rs-LAMP assay for R. solani and an ITS-Mp-LAMP assay for M. phaseolina that can detect the pathogen in diseased soybean tissues in the field have been developed. Both LAMP assays efficiently amplified the target genes over 60 min at 62C. A yellow-green color (visible to the naked eye) or intense green fluorescence (visible under ultraviolet light) was only observed in the presence of R. solani or M. phaseolina after addition of SYBR Green I. The detection limit of the ITS-Rs-LAMP assay was 10 pg ?l? of genomic DNA; and that of the ITS-Mp-LAMP assay was 100 pg ?l? of genomic DNA. Using the two assays described here, we successfully and rapidly diagnosed suspect diseased soybean samples collected in the field from Jiangsu and Anhui provinces. PMID:26606587

  10. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).

    PubMed

    Shweta, Bhatia; Maheshwari, Dinesh Kumar; Dubey, Ramesh Chand; Arora, Daljit Singh; Bajpai, Vivek K; Kang, Sun Chul

    2008-09-01

    Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at 28+/-1 degrees , both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71% and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was testeds 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut. PMID:18852515

  11. Physiologically stressed cells of fluorescent pseudomonas EKi as better option for bioformulation development for management of charcoal rot caused by Macrophomina phaseolina in field conditions.

    PubMed

    Khare, Ekta; Arora, Naveen K

    2011-06-01

    Bioformulation that supports the inoculant under storage condition and on application to field is of prime importance for agroindustry. Pseudomonas strain EKi having biocontrol activity against Macrophomina phaseolina was used in the study. EKi cells were pretreated by carbon starvation, osmotic stress (NaCl), and freeze drying conditions, and talc-based bioformulation was developed. Combined pretreatment with carbon starvation and osmotic stress was given to Pseudomonas cells. Bioformulation of untreated, freeze dried (FD), carbon starved, osmotic stressed, and combined pre-treated cells showed 50.36, 44.76, 45.95, 34.82, and 27.27% reduction in CFU counts after 6 months of storage. The osmotic stressed cells showed one over-expressed protein (11.5 kDa) in common with carbon starved cells responsible for its better shelf life. The plant growth promotory activity of bioformulations was determined taking Cicer arietinum as a test crop in M. phaseolina infested field. Carbon starved + osmotic stressed cells showed maximum enhancement of dry weight (272.56%) followed by osmotic stressed (230.74%), untreated (155.70%), FD (88.93%), and carbon starved (59.34%) cells over uninoculated control. Carbon starved + osmotic stressed, osmotic stressed, untreated, FD, and carbon starved cells showed 156.60, 100, 75, 40, and 16.67% reduction of charcoal rot disease over uninoculated control. The results clearly showed that combined pretreatment by carbon starvation and osmotic stress provides the bacteria potential of rapid adaptation to different environment conditions. PMID:21479797

  12. Non-fumigant approaches for controlling Fusarium wilt and charcoal rot of strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborne disease management without chemical fumigants is a major challenge for strawberry production in California. Current re-registrations and regulations are likely to intensify this obstacle by severely limiting availability of fumigants on a large percentage of strawberry acreage. Anaerobic s...

  13. Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a leading agronomic crop and it is contributing to food and agricultural security with expanding production in diverse regions around the world. Although soybean is attacked by several diseases and pests, and progress has been made in understanding and managing some of these pathogens and...

  14. Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean.

    PubMed

    Simonetti, Ester; Viso, Natalia Pin; Montecchia, Marcela; Zilli, Carla; Balestrasse, Karina; Carmona, Marcelo

    2015-11-01

    Plant growth promoting rhizobacteria (PGPR) are potential agents to control plant pathogens and their combined use with biopesticides such as phosphites may constitute a novel strategy to incorporate in disease management programs. In the present study, 11 bacterial isolates were selected on the basis of their antagonistic activity against Macrophomina phaseolina in dual-culture tests, and their plant growth promoting traits. Selected isolates were characterised on the basis of auxin and siderophore production, phosphate solubilisation and rep-PCR genomic fingerprinting. Two of these isolates, identified as Pseudomonas fluorescens 9 and Bacillus subtilis 54, were further evaluated for their inhibitory capacity against M. phaseolina using in vitro (on soybean seeds) and in vivo (greenhouse assay) tests. Both bacteria were applied individually as well as in combined treatment with manganese phosphite as seed treatments. Damage severity on soybean seeds was significantly reduced, compared with the untreated control, by both bacterial strains; however, the individual application of phosphite showed to be least effective in controlling M. phaseolina. Interestingly, the phosphite treatment improved its performance under greenhouse conditions compared to the results from the in vitro assays. In the greenhouse trials, the greatest reductions in disease severity were achieved when strain P. fluorescens 9 was applied singly or when strain B. subtilis 54 was combined with manganese phosphite, achieving 82% of control in both cases. This work is the first to report the control of M. phaseolina using combined treatment with PGPR and phosphite under greenhouse conditions. PMID:26505310

  15. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex.

    PubMed

    Bigirimana, Vincent de P; Hua, Gia K H; Nyamangyoku, Obedi I; Hfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  16. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex

    PubMed Central

    Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  17. Sorghum pathology and biotechnology - A fungal disease perspective: Part II. Anthracnose, stalk rot, and downy mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar diseases and stalk rots are among the most damaging diseases of sorghum in terms of lost production potential, thus commanding considerable research time and expenditure. This review will focus on anthracnose, a fungal disease that causes both foliar symptoms and stalk rots along with the st...

  18. Isolation and identification of allelochemicals produced by B. sonorensis for suppression of charcoal rot of Arachis hypogaea L.

    PubMed

    Pandya, Urja; Saraf, Meenu

    2015-05-01

    Bacillus sonorensis MBCU2 isolated from vermicompost-amended soil from Gujarat, India showed most antagonistic activity against Macrophomina phaseolina by dual culture screening. The culture supernatant of MBCU2 completely suppressed the mycelia growth of pathogen, indicating that suppression was due to the presence of allelochemicals in the culture filtrate. Results of scanning electron microscopy revealed that MBCU2 caused morphological alteration in mycelia of M. phaseolina as evident by hyphal lysis and perforation. Lipopeptides (iturin A and surfactin) produced by MBCU2 were detected and identified by MALDI-TOF-MS as well as liquid chromatography coupled with ESI-MS/MS. Pot trial studies conducted by seed bacterization with MBCU2 resulted in statistically significant increase in Arachis hypogaea L. vegetative growth parameters such as root length (91%), shoot length (252%), fresh weight (71%), dry weight (57%), number of pod (128%), and number of seed (290%) in M. phaseolina infested soil over control as well as decreased M. phaseolina disease severity. We suggest that allelochemicals production can be linked to the mechanism of protection of A. hypogaea L. from M. phaseolina by B. sonorensis MBCU2. PMID:25346523

  19. Management of Phytophthora cinnamomi root rot disease of blueberry with gypsum and compost

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rot disease of blueberry caused by Phytophthora cinnamomi is becoming more prevalent as a consequence of widespread adoption of drip irrigation. This creates higher moisture content in the root zone more conducive for the pathogen. Options for disease control under organic management are limi...

  20. Chapter 6.Diseases Which Challenge Global Wheat Production- Root, Crown, and Culm Rots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With few exceptions, root, crown, and culm rots are especially prevalent in cropping systems characterized by high residue retention, reduced tillage, or high frequency of host crops. Most of these diseases are not yet effectively managed by genetic resistance, fungicides, or biological agents. Opti...

  1. Foliar application of ?-D-glucan nanoparticles to control rhizome rot disease of turmeric.

    PubMed

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2015-01-01

    The soilborne Oomycete Pythium aphanidermatum is the causal agent of rhizome rot disease, one of the most serious threats to turmeric crops. At present, effective fungicides are not available. Researches on nanoparticles in a number of crops have evidenced the positive changes in gene expression indicating their potential use in crop improvement. Hence, experiments were carried out to determine the effect of ?-D-glucan nanoparticles (nanobiopolymer) in protection of turmeric plants against rot disease by the way of products that reinforce plant's own defense mechanism. Foliar spray of ?-D-glucan nanoparticles (0.1%, w/v) elicited marked increase in the activity of defense enzymes such as peroxidases (E.C.1.11.1.7), polyphenol oxidases (E.C.1.14.18.1), protease inhibitors (E.C.3.4.21.1) and ?-1,3-glucanases (E.C.3.2.1.39) at various age levels. Constitutive and induced isoforms of these enzymes were investigated during this time-course study. ?-D-glucan nanoparticles (GNPs) significantly reduced the rot incidence offering 77% protection. Increased activities of defense enzymes in GNPs-applied turmeric plants may play a role in restricting the development of disease symptoms. These results demonstrated that GNPs could be used as an effective resistance activator in turmeric for control of rhizome rot disease. PMID:25450542

  2. Identification and development of multiple disease resistant (fruit rot, powdery mildew) watermelon germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora fruit rot (PFR) and powdery mildew (PM) on watermelon can be devastating and significantly reduce fruit yield under favorable conditions. In recent years, these two diseases have become more common in the southeastern United States. Based on previous literature, we selected 35 waterme...

  3. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots.

    PubMed

    Pereira, G S; Camargos, R B; Balestre, M; Von Pinho, R G; C Melo, W M

    2015-01-01

    Leaf disease and ear rot have caused reductions in maize yield in Brazil and other producer countries. Therefore, the aims of this study were to analyze the association between husked ear yield and the severity of maize white spot, gray leaf spot, helminthosporium, and ear rot caused by Fusarium verticillioides and Diplodia maydis using biplots in a mixed-model approach. The responses of 238 lines introduced to Brazil and four controls were evaluated using an incomplete block design with three replicates in two locations: Lavras and Uberlndia, Minas Gerais, Brazil. Two experiments were conducted in each location, one with F. verticillioides and the other with D. maydis. The mixed models elucidated the relationship between yield, leaf disease, and ear disease. Significant genotype x environment and genotype x pathogen interactions were observed. In conclusion, husked ear yield is more associated with ear rot than with the leaf diseases evaluated, justifying the indirect selection for resistance to kernel rot in maize-F. verticillioides and maize-D. maydis pathosystems by yield evaluation. PMID:26400335

  4. Bacterial Antagonists, Zoospore Inoculum Retention Time, and Potato Cultivar Influence Pink Rot Disease Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pink rot of potato, primarily incited by Phytophthora erythroseptica, is a disease of importance in many potato growing regions of the world including North America. The principal mode of entry by the pathogen into tubers in storage is via wounds or eyes; surfaces that theoretically could be protec...

  5. Control of Root Rot and Wilt Diseases of Roselle under Field Conditions

    PubMed Central

    Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010

  6. The Genetic Structure of Phellinus noxius and Dissemination Pattern of Brown Root Rot Disease in Taiwan

    PubMed Central

    Chung, Chia-Lin; Huang, Shun-Yuan; Huang, Yu-Ching; Tzean, Shean-Shong; Ann, Pao-Jen; Tsai, Jyh-Nong; Yang, Chin-Cheng; Lee, Hsin-Han; Huang, Tzu-Wei; Huang, Hsin-Yu; Chang, Tun-Tschu; Lee, Hui-Lin; Liou, Ruey-Fen

    2015-01-01

    Since the 1990s, brown root rot caused by Phellinus noxius (Corner) Cunningham has become a major tree disease in Taiwan. This fungal pathogen can infect more than 200 hardwood and softwood tree species, causing gradual to fast decline of the trees. For effective control, we must determine how the pathogen is disseminated and how the new infection center of brown root rot is established. We performed Illumina sequencing and de novo assembly of a single basidiospore isolate Daxi42 and obtained a draft genome of ~40 Mb. By comparing the 12,217 simple sequence repeat (SSR) regions in Daxi42 with the low-coverage Illumina sequencing data for four additional P. noxius isolates, we identified 154 SSR regions with potential polymorphisms. A set of 13 polymorphic SSR markers were then developed and used to analyze 329 P. noxius isolates collected from 73 tree species from urban/agricultural areas in 14 cities/counties all around Taiwan from 1989 to 2012. The results revealed a high proportion (~98%) of distinct multilocus genotypes (MLGs) and that none of the 329 isolates were genome-wide homozygous, which supports a possible predominant outcrossing reproductive mode in P. noxius. The diverse MLGs exist as discrete patches, so brown root rot was most likely caused by multiple clones rather than a single predominant strain. The isolates collected from diseased trees near each other tend to have similar genotype(s), which indicates that P. noxius may spread to adjacent trees via root-to-root contact. Analyses based on Bayesian clustering, FST statistics, analysis of molecular variance, and isolation by distance all suggest a low degree of population differentiation and little to no barrier to gene flow throughout the P. noxius population in Taiwan. We discuss the involvement of basidiospore dispersal in disease dissemination. PMID:26485142

  7. Pythium Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium root rot is a disease that is found in agricultural and nursery soils throughout the United States and Canada. It is caused by several Pythium species, and the symptoms are typified by leaf or needle chlorosis, stunting, root rot, and plant death. The disease is favored by wet soils, overc...

  8. Charcoal burner

    SciTech Connect

    Bakic, M.C.

    1988-12-27

    A combustible fuel apparatus is described comprising: side walls formed contiguous with and extending upward from a base and converging to form a closed container, having stacked charcoal fuel particles therein. The base may be placed directly on a substantially horizontal surface and the container may be ignited and substantially burned to ash, and the charcoal fuel particles may be ignited and sufficiently burned for cooking, wherein the charcoal fuel particles are stacked on the base in a relatively stable position prior to the igniting of the container, and are maintained in a relatively stable position during and after the igniting and burning of the container, whereby a mound of ignited charcoal fuel particles remains on the substantially horizontal surface after the burning of the container, the mound having a configuration substantially similar to the shape of the container prior to the combustion thereof.

  9. Activated Charcoal

    MedlinePLUS

    ... is used to treat poisonings, reduce intestinal gas (flatulence), lower cholesterol levels, prevent hangover, and treat bile ... lower cholesterol levels in the blood. Decreasing gas (flatulence). Some studies show that activated charcoal is effective ...

  10. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia.

    PubMed

    Mukanga, Mweshi; Derera, John; Tongoona, Pangirayi; Laing, Mark D

    2010-07-15

    Maize ear rots reduce grain yield and quality with implication on food security and health. Some of the pathogenic fungi produce mycotoxins in maize grain posing a health risk to humans and livestock. Unfortunately, the levels of ear rot and mycotoxin infection in grain produced by subsistence farmers in sub-Saharan countries are not known. A survey was thus conducted to determine the prevalence of the ear rot problem and levels of mycotoxins in maize grain. A total of 114 farmsteads were randomly sampled from 11 districts in Lusaka and southern provinces in Zambia during 2006. Ten randomly picked cobs were examined per farmstead and the ear rot disease incidence and severity were estimated on site. This was followed by the standard seed health testing procedures for fungal isolation in the laboratory. Results indicated that the dominant ear rots were caused by Fusarium and Stenocarpella. Incidence of Fusarium verticillioides ranged from 2 to 21%, whereas that of Stenocarpella maydis reached 37% on ear rot diseased maize grain. In addition, 2-7% F. verticillioides, and 3-18% Aspergillus flavus, respectively, were recovered from seemingly healthy maize grain. The mean rank of fungal species, from highest to lowest, was F. verticillioides, S. maydis, A. flavus, Fusarium graminearum, Aspergillus niger, Penicillium spp., Botrydiplodia spp., and Cladosporium spp. The direct competitive ELISA-test indicated higher levels of fumonisins than aflatoxins in pre-harvest maize grain samples. The concentration of fumonisins from six districts, and aflatoxin from two districts, was 10-fold higher than 2 ppm and far higher than 2 ppb maximum daily intake recommended by the FAO/WHO. The study therefore suggested that subsistence farmers and consumers in this part of Zambia, and maybe also in similar environments in sub-Saharan Africa, might be exposed to dangerous levels of mycotoxins due to the high levels of ear rot infections in maize grain. PMID:20626099

  11. Analysis of Yeast Flora Associated with Grape Sour Rot and of the Chemical Disease Markers

    PubMed Central

    Guerzoni, Elisabetta; Marchetti, Rosa

    1987-01-01

    The frequency and the density of the species associated with grape sour rot in different cultivars were determined. The most frequent species in the rotten grapes, Candida krusei, Kloeckera apiculata, and Metschnikowia pulcherrima, and a less frequent species, Issatchenkia occidentalis, when inoculated with Saccharomycopsis crataegensis were able to induce in vitro the symptoms of the disease. The gas chromatographic determination of the volatile compounds in the headspace was used to evaluate the metabolic role of the different species associated with the disease. These analyses made it possible to presume that, whereas some species, such as Candida krusei and Hanseniaspora uvarum, can be considered responsible for these modifications and in particular for the ethyl acetate production, others, such as Saccharomycopsis crataegensis, can promote the development of the former species. PMID:16347305

  12. Adaptive expression of host cell wall degrading enzymes in fungal disease: an example from Fusarium root rot of medicinal Coleus.

    PubMed

    Bhattacharya, A

    2013-12-15

    Quantity of extracellular proteins and activities two cell wall degrading enzymes pectinase and cellulase were determined in the culture filtrate of Fusarium solani, the causal organism of root rot of Coleus forskohlii. Substitution of carbon source in the medium with either pectin or carboxymethyl cellulose led to the increased production of extracellular proteins by the fungus. Pectinase and cellulase activity in the culture filtrate was detected only when the growth medium contained substituted carbon source in the form of pectin and CMC, respectively. Pectinase activity was highest after 5 days incubation and then decreased gradually with time but cellulase activity showed a steady time dependent increase. In vitro virulence study showed the requirement of both the enzymes for complete expression of rot symptoms on Coleus plants. Thus the present study established the adaptive, substrate dependent expression of the two enzymes by the fungus and also their involvement in the root rot disease of Coleus forskohlii. PMID:24517025

  13. Management of Rhizoctonia Root Rot of Sugarbeet - Fungicide Efficacy and Identification of Environmental Parameters for Disease Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG 2-2 is the causal agent of Rhizoctonia root and crown rot in sugarbeet. This disease has recently been increasing in occurrence and severity in sugarbeet production areas in the Red River Valley of Minnesota and North Dakota. Since the intraspecific groups AG 2-2 IIIB and AG 2-...

  14. The effect of temperature on Rhizoctonia disease development and fungicide efficacy in controlling Rhizoctonia root rot on sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG 2-2 is the causal agent of Rhizoctonia root and crown rot in sugarbeet. This disease has recently been increasing in occurrence and severity in sugarbeet production areas in the Red River Valley of Minnesota and North Dakota. Since the intraspecific groups AG 2-2 IIIB and AG 2-...

  15. The effect of temperature on Rhizoctonia disease development and fungicide efficacy in controlling Rhizoctonia root rot on sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG 2-2 is the causal agent of Rhizoctonia root and crown rot in sugarbeet. Since the intraspecific group AG 2-2 IIIB is considered to be more virulent than AG 2-2 IV, our objectives were to monitor disease development of AG 2-2 IIIB infection at four different soil temperatures un...

  16. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum.

    PubMed

    Adeyanju, Adedayo; Little, Christopher; Yu, Jianming; Tesso, Tesfaye

    2015-06-01

    Stalk rots are important biotic constraints to sorghum production worldwide. Several pathogens may be associated with the disease, but Macrophomina phaseolina and Fusarium thapsinum are recognized as the major causal organisms. The diseases become more aggressive when drought and high-temperature stress occur during grain filling. Progress in genetic improvement efforts has been slow due to lack of effective phenotyping protocol and the strong environmental effect on disease incidence and severity. Deployment of modern molecular tools is expected to accelerate efforts to develop resistant hybrids. This study was aimed at identifying genomic regions associated with resistance to both causal organisms. A sorghum diversity panel consisting of 300 genotypes assembled from different parts of the world was evaluated for response to infection by both pathogens. Community resources of 79,132 single nucleotide polymorphic (SNP) markers developed on the panel were used in association studies using a multi-locus mixed model to map loci associated with stalk rot resistance. Adequate genetic variation was observed for resistance to both pathogens. Structure analysis grouped the genotypes into five subpopulations primarily based on the racial category of the genotypes. Fourteen loci and a set of candidate genes appear to be involved in connected functions controlling plant defense response. However, each associated SNP had relatively small effect on the traits, accounting for 19-30% of phenotypic variation. Linkage disequilibrium analyses suggest that significant SNPs are genetically independent. Estimation of frequencies of associated alleles revealed that durra and caudatum subpopulations were enriched for resistant alleles, but the results suggest complex molecular mechanisms underlying resistance to both pathogens. PMID:25882062

  17. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum

    PubMed Central

    Adeyanju, Adedayo; Little, Christopher; Yu, Jianming; Tesso, Tesfaye

    2015-01-01

    Stalk rots are important biotic constraints to sorghum production worldwide. Several pathogens may be associated with the disease, but Macrophomina phaseolina and Fusarium thapsinum are recognized as the major causal organisms. The diseases become more aggressive when drought and high-temperature stress occur during grain filling. Progress in genetic improvement efforts has been slow due to lack of effective phenotyping protocol and the strong environmental effect on disease incidence and severity. Deployment of modern molecular tools is expected to accelerate efforts to develop resistant hybrids. This study was aimed at identifying genomic regions associated with resistance to both causal organisms. A sorghum diversity panel consisting of 300 genotypes assembled from different parts of the world was evaluated for response to infection by both pathogens. Community resources of 79,132 single nucleotide polymorphic (SNP) markers developed on the panel were used in association studies using a multi-locus mixed model to map loci associated with stalk rot resistance. Adequate genetic variation was observed for resistance to both pathogens. Structure analysis grouped the genotypes into five subpopulations primarily based on the racial category of the genotypes. Fourteen loci and a set of candidate genes appear to be involved in connected functions controlling plant defense response. However, each associated SNP had relatively small effect on the traits, accounting for 19–30% of phenotypic variation. Linkage disequilibrium analyses suggest that significant SNPs are genetically independent. Estimation of frequencies of associated alleles revealed that durra and caudatum subpopulations were enriched for resistant alleles, but the results suggest complex molecular mechanisms underlying resistance to both pathogens. PMID:25882062

  18. Development of crown and root rot disease of tomato under irrigation with saline water.

    PubMed

    Triky-Dotan, Shachaf; Yermiyahu, Uri; Katan, Jaacov; Gamliel, Abraham

    2005-12-01

    ABSTRACT We studied the effect of water salinity on the incidence and severity of crown and root rot disease of tomato, as well as on the pathogen and on the plant's response to the pathogen. Irrigation with saline water significantly increased disease severity in tomato transplants inoculated with Fusarium oxysporum f. sp. radicis-lycopersici, and mineral fertilization further increased it. In one field experiment, disease incidence in plots irrigated with saline water (electrical conductivity [EC] = 3.2 +/- 0.1 dS m(-1)) and in those irrigated with fresh water (EC = 0.4 +/- 0.1 dS m(-1)) was 75 and 38%, respectively. Disease onset was earlier and yield was lower in plots irrigated with saline water. In a second field experiment, final disease incidence 250 days after planting, was 12% in plants which had been irrigated with saline water (EC = 4.6 +/- 0.1 dS m(-1)) and 4% in those irrigated with fresh water (EC = 1.2 +/- 0.1 dS m(-1)). Irrigation of tomato transplants with 20 mM NaCl did not inhibit plant development, but partial inhibition was observed at higher NaCl concentrations. Growth of the pathogen in culture or survival of conidia added to soil were not affected by saline water. Plants which were preirrigated with saline water were more severely diseased than those preirrigated with tap water. It was concluded that disease increases effected by saline water are associated with the latter's effect on plant response. PMID:18943555

  19. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents

    PubMed Central

    Xia, Pengguo; Guo, Hongbo; Zhao, Hongguang; Jiao, Jie; Deyholos, Michael K.; Yan, Xijun; Liu, Yan; Liang, Zongsuo

    2015-01-01

    Background Blind and excessive application of fertilizers was found during the cultivation of Panax notoginseng in fields, as well as increase in root rot disease incidence. Methods Both “3414” application and orthogonal test designs were performed at Shilin county, Yunnan province, China, for NPK (nitrogen, phosphorus, and potassium) and mineral fertilizers, respectively. The data were used to construct the one-, two-, and three-factor quadratic regression models. The effect of fertilizer deficiency on root yield loss was also analyzed to confirm the result predicted by these models. A pot culture experiment was performed to observe the incidence rate of root rot disease and to obtain the best range in which the highest yield of root and saponins could be realized. Results The best application strategy for NPK fertilizer was 0 kg/667 m2, 17.01 kg/667 m2, and 56.87 kg/667 m2, respectively, which can produce the highest root yield of 1,861.90 g (dried root of 100 plants). For mineral fertilizers, calcium and magnesium fertilizers had a significant and positive effect on root yield and the content of four active saponins, respectively. The severity of root rot disease increased with the increase in soil moisture. The best range of soil moisture varied from 0.56 FC (field capacity of water) to 0.59 FC, when the highest yield of root and saponins could be realized as well as the lower incidence rate of root disease. Conclusion These results indicate that the amount of nitrogen fertilizer used in these fields is excessive and that of potassium fertilizer is deficient. Higher soil moisture is an important factor that increases the severity of the root rot disease. PMID:26843820

  20. Molecular phylogeny of Rigidoporus microporus isolates associated with white rot disease of rubber trees (Hevea brasiliensis).

    PubMed

    Oghenekaro, Abbot O; Miettinen, Otto; Omorusi, Victor I; Evueh, Grace A; Farid, Mohd A; Gazis, Romina; Asiegbu, Fred O

    2014-01-01

    Rigidoporus microporus (Polyporales, Basidiomycota) syn. Rigidoporus lignosus is the most destructive root pathogen of rubber plantations distributed in tropical and sub-tropical regions. Our primary objective was to characterize Nigerian isolates from rubber tree and compare them with other West African, Southeast Asian and American isolates. To characterize the 20 isolates from Nigeria, we used sequence data of the nuclear ribosomal DNA ITS and LSU, ?-tubulin and translation elongation factor 1-? (tef1) gene sequences. Altogether, 40 isolates of R. microporus were included in the analyses. Isolates from Africa, Asia and South/Central America formed three distinctive clades corresponding to at least three species. No phylogeographic pattern was detected among R. microporus collected from West and Central African rubber plantations suggesting continuous gene flow among these populations. Our molecular phylogenetic analysis suggests the presence of two distinctive species associated with the white rot disease. Phylogenetic analyses placed R. microporus in the Hymenochaetales in the vicinity of Oxyporus. This is the first study to characterize R. microporus isolates from Nigeria through molecular phylogenetic techniques, and also the first to compare isolates from rubber plantations in Africa and Asia. PMID:24863478

  1. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola.

    PubMed

    Raoul des Essarts, Yannick; Cigna, Jrmy; Qutu-Laurent, Anglique; Caron, Aline; Munier, Euphrasie; Beury-Cirou, Amlie; Hlias, Valrie; Faure, Denis

    2015-01-01

    Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers. PMID:26497457

  2. Soybean (Glycine max L. Merr.) sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease.

    PubMed

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650-660), far red (720-730) and blue (440-450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes. PMID:25679808

  3. Soybean (Glycine max L. Merr.) Sprouts Germinated under Red Light Irradiation Induce Disease Resistance against Bacterial Rotting Disease

    PubMed Central

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650–660), far red (720–730) and blue (440–450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes. PMID:25679808

  4. Evaluation of soybean genotypes for resistance to three seed borne diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed-borne diseases of soybeans caused by Phomopsis longicolla (Phomopsis seed decay), Cercospora kukuchii (purple seed stain), and M. phaseolina (charcoal rot) are economically important seed-borne diseases that affect seed quality. Commercial cultivars marketed as resistant to all the three disea...

  5. Disease Lesion Mimics of Maize as a Potential Source of Resistance to Fusarium Ear Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium ear rot of maize is a major problem worldwide, often resulting in poor quality grain and contamination with a family of mycotoxins called fumonisins. Fumonisins are produced by Fusarium verticillioides and related species and are acutely toxic to certain livestock. They function by inhibi...

  6. Nitrogen Fertilizer Affects the Severity of Anthracnose Crown Rot Disease of Greenhouse Grown Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of nitrogen, phosphorus, and potassium on the severity of anthracnose crown rot was evaluated in three greenhouse studies. Strawberry plants were fertilized three times weekly with a modified Hoagland's Nutrient Solution containing the treatments and inoculated eight weeks after treat...

  7. Efficacy of Oryza sativa husk and Quercus phillyraeoides extracts for the in vitro and in vivo control of fungal rot disease of white yam (Dioscorea rotundata Poir).

    PubMed

    Dania, Victor Ohileobo; Fadina, Olubunmi Omowunmi; Ayodele, Maria; Kumar, P Lava

    2014-01-01

    Tuber rot disease is a major constraint to white yam (Dioscorea rotundata) production, accounting for 50-60% of annual yield losses in Nigeria. The main method of control using synthetic fungicides is being discouraged due to human and environmental health hazards. The potential of Oryza sativa husk (OSH) and Quercus phillyraeoides (QP) extracts for the in vitro and in vivo control of six virulent rot-causing fungal pathogens, Lasiodiplodia theobromae, Aspergillus niger, Rhizoctonia solani, Penicillium oxalicum, Sclerotium rolfsii, and Fusarium oxysporum was evaluated, using five different extract concentrations of 0.5%, 1.0%, 1.5%, 2.5%, and 3.5% w/v. These fungi were isolated from rotted tubers of D. rotundata, across three agroecological zones in Nigeria-the Humid rainforest, Derived savanna, and southern Guinea savanna. All treatments were subjected to three methods of inoculation 48hours before the application of both extracts and stored at 28??2C for 6months. Radial mycelial growth of the test pathogens was effectively inhibited at concentrations???3.5% w/v in vitro for both OSH and QP extracts. Rotting was significantly reduced (P???0.05) to between 0 to 18.8% and 0% to 20.9% for OSH and QP extracts respectively. The extracts significantly (P???0.05) inhibited percent rot of the test pathogens at 3.5% concentration w/v in vivo. Rot incidence was, however, lower in replicate tubers that were inoculated, treated with extracts and exposed than treatments that were covered. Phytochemical analysis of OSH and QP extracts revealed the presence of secondary metabolites such as alkaloids, flavonoids, saponins, tannins, ferulic acid, phlobatanins, Terpenoids, phenols, anthraquinone and pyroligneous acid. The efficacy of both extracts in reducing rot in this study recommends their development as prospective biopesticide formulation and use in the management of post-harvest rot of yam tubers. PMID:25674452

  8. Violet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus causing violet root rot, Helicobasidium brebissonii (anamorph Rhizoctonia crocorum), is widely distributed in Europe and North America but is rarely of much economic importance on alfalfa. The disease has also been reported in Australia, Argentina, and Iran. The disease is characterized b...

  9. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of Theobroma cacao, the source of chocolate and is one of the most destructive diseases of cacao in the Americas. This Basidiomycete only infects cacao pods and has an extended biotrophic phase lasting up to sixty ...

  10. Root rot in sugar beet piles at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  11. Irrigation management: effects of soybean diseases on seed composition in genotypes differing in their disease resistance under irrigated and nonirrigated conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed is a major source of protein and oil in the world. Nutritional qualities of soybean seed are determined by the quantity and quality of seed composition components (protein, oil, fatty acids, isoflavones, and minerals). Charcoal rot is a disease caused by the fungus Macrophomina phaseol...

  12. Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II.

    PubMed

    Cellier, G; Remenant, B; Chiroleu, F; Lefeuvre, P; Prior, P

    2012-04-01

    The ancient soilborne plant vascular pathogen Ralstonia solanacearum has evolved and adapted to cause severe damage in an unusually wide range of plants. In order to better describe and understand these adaptations, strains with very similar lifestyles and host specializations are grouped into ecotypes. We used comparative genomic hybridization (CGH) to investigate three particular ecotypes in the American phylotype II group: (i) brown rot strains from phylotypes IIB-1 and IIB-2, historically known as race 3 biovar 2 and clonal; (ii) new pathogenic variants from phylotype IIB-4NPB that lack pathogenicity for banana but can infect many other plant species; and (iii) Moko disease-causing strains from phylotypes IIB-3, IIB-4, and IIA-6, historically known as race 2, that cause wilt on banana, plantain, and Heliconia spp. We compared the genomes of 72 R. solanacearum strains, mainly from the three major ecotypes of phylotype II, using a newly developed pangenomic microarray to decipher their population structure and gain clues about the epidemiology of these ecotypes. Strain phylogeny and population structure were reconstructed. The results revealed a phylogeographic structure within brown rot strains, allowing us to distinguish European outbreak strains of Andean and African origins. The pangenomic CGH data also demonstrated that Moko ecotype IIB-4 is phylogenetically distinct from the emerging IIB-4NPB strains. These findings improved our understanding of the epidemiology of important ecotypes in phylotype II and will be useful for evolutionary analyses and the development of new DNA-based diagnostic tools. PMID:22286995

  13. Root Interactions in a Maize/Soybean Intercropping System Control Soybean Soil-Borne Disease, Red Crown Rot

    PubMed Central

    Gao, Xiang; Wu, Man; Xu, Ruineng; Wang, Xiurong; Pan, Ruqian; Kim, Hye-Ji; Liao, Hong

    2014-01-01

    Background Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. Principal Findings In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. Conclusions To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices. PMID:24810161

  14. The Effect of Potassium Nitrate on the Reduction of Phytophthora Stem Rot Disease of Soybeans, the Growth Rate and Zoospore Release of Phytophthora Sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and fungal growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4-...

  15. Effects of glyphosate on Macrophomina phaseolina in vitro and its effects on disease severity of soybean in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory and field studies were conducted to assess the effects of glyphosate on Macrophomina phaseolina culture growth in vitro and the disease severity of charcoal rot in soybean at Stoneville, MS and Jackson, TN. Glyphosate inhibited M. phaseolina growth in a linear dose dependent manner when ...

  16. FIELD AND GREENHOUSE EVALUATION OF BEAN GERMPLASM FOR ROOT ROT AND OTHER DISEASES IN NEW YORK, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rot is a significant production constraint in beans worldwide in both temperate and tropical soils leading to complete crop loss under severe conditions. Two trials were conducted on common bean lines under root rot conditions in the field at the Cornells Vegetable Research Farm near Geneva, N...

  17. Brown Root Rot of Alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This bulletin describes the disease of alfalfa called brown root rot (BRR) including: the disease symptoms, the fungal pathogen and its biology, its distribution, and disease management. Since the 1920s, BRR has been regarded as an important disease of forage legumes, including alfalfa, in northern ...

  18. Field application of safe chemical elicitors induced the expression of some resistance genes against grey mold and cottony rot diseases during snap bean pods storage.

    PubMed

    El-Garhy, Hoda A S; Rashid, Ismail A S; Abou-Ali, Rania M; Moustafa, Mahmoud M A

    2016-01-15

    Phaseolus vulgaris is subjected to serious post-harvest diseases such as grey mold and cottony rot diseases caused by Botrytis cinerea and Pythium aphanidermatum, respectively. In current study, potassium silicate (KSi), potassium thiosulfate (KTS) and potassium sulfate (KS) suppressed moderately the growth of B. cinerea and P. aphanidermatum in vitro. The applied treatments significantly suppressed grey mold and cottony rot of Xera and Valentino snap beans varieties' pods stored at 7±1°C and 90-95% RH for 20days. Ethylene responsive factor (ERF), polygalacturonase inhibitor protein (PGIP), phosphatase associated to defense (PA) and pathogenesis-related protein (PR1) defense genes were over-expressed in leaves tissue of both bean varieties responding positively to potassium salts field application. The expression of these genes was influenced by plant genotype and environment as it varied by snap bean varieties. Accumulation of ERF, GIP, PA and PR1 genes transcript under KTS at 4000ppm treatment were the highest in Xera tissues (3.5-, 4.8-, 4- and 4.8-fold, respectively). In conclusion, pre-harvest potassium salt in vivo application could be used as effective safe alternatives to fungicides against grey mold and cottony rot diseases of snap beans during storage for up to 20days at 7±1°C. PMID:26526133

  19. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.

    PubMed

    Khabbaz, Salah Eddin; Abbasi, Pervaiz A

    2014-01-01

    Antagonistic bacteria are common soil inhabitants with potential to be developed into biofungicides for the management of seedling damping-off, root rot, and other soil-borne diseases of various crops. In this study, antagonistic bacteria were isolated from a commercial potato field and screened for their growth inhibition of fungal and oomycete pathogens in laboratory tests. The biocontrol potential of the 3 most effective antagonistic bacteria from the in vitro tests was evaluated against seedling damping-off and root rot of cucumber caused by Pythium ultimum. Based on phenotypic characteristics, biochemical tests, and sequence analysis of 16S-23S rDNA gene, the 3 antagonistic bacteria were identified as Pseudomonas fluorescens (isolate 9A-14), Pseudomonas sp. (isolate 8D-45), and Bacillus subtilis (isolate 8B-1). All 3 bacteria promoted plant growth and suppressed Pythium damping-off and root rot of cucumber seedlings in growth-room assays. Both pre- and post-planting application of these bacteria to an infested peat mix significantly increased plant fresh masses by 113%-184% and percentage of healthy seedlings by 100%-290%, and decreased damping-off and root rot severity by 27%-50%. The peat and talc formulations of these antagonistic bacteria applied as seed or amendment treatments to the infested peat mix effectively controlled Pythium damping-off and root rot of cucumber seedlings and enhanced plant growth. The survival of all 3 antagonistic bacteria in peat and talc formulations decreased over time at room temperature, but the populations remained above 10(8) CFU/g during the 180-day storage period. The peat formulation of a mixture of 3 bacteria was the best seed treatment, significantly increasing the plant fresh masses by 245% as compared with the Pythium control, and by 61.4% as compared with the noninfested control. This study suggests that the indigenous bacteria from agricultural soils can be developed and formulated as biofungicides for minimizing the early crop losses caused by seedling damping-off and root rot diseases. PMID:24392923

  20. Spacelab Charcoal Analyses

    NASA Technical Reports Server (NTRS)

    Slivon, L. E.; Hernon-Kenny, L. A.; Katona, V. R.; Dejarme, L. E.

    1995-01-01

    This report describes analytical methods and results obtained from chemical analysis of 31 charcoal samples in five sets. Each set was obtained from a single scrubber used to filter ambient air on board a Spacelab mission. Analysis of the charcoal samples was conducted by thermal desorption followed by gas chromatography/mass spectrometry (GC/MS). All samples were analyzed using identical methods. The method used for these analyses was able to detect compounds independent of their polarity or volatility. In addition to the charcoal samples, analyses of three Environmental Control and Life Support System (ECLSS) water samples were conducted specifically for trimethylamine.

  1. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2015-07-01

    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment. PMID:25492807

  2. Genetic analysis of resistance gene analogues from a sugarcane cultivar resistant to red rot disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the important approaches for disease control in sugarcane is to develop a disease resistant variety; this may be accomplished through identification of resistance genes in sugarcane. In this study, PCR primers targeting the conserved motifs of the nucleotide-binding site (NBS) class and kinas...

  3. Sugarbeet Cultivar Evaluation for Bacterial Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugarbeet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, studies were conducted to establish an assa...

  4. VOST charcoal specification study

    SciTech Connect

    Foster, A.L.; Bursey, J.T.

    1995-07-01

    The volatile organic sampling train, SW-846 Method 0030, (VOST) is currently one of the leading methodology`s available for the sampling and analysis of volatile organic hazardous compounds from stationary sources at very low levels. The method does not identify a specific equivalent sorbent, nor the performance specifications which would allow determination of an equivalent. Lot 104 petroleum-based charcoal is no longer commercially available. Laboratories are presently using a wide range of substitutes with varying performance from batch to batch of charcoal. To provide performance specifications and identify a replacement for SKC Lot 104 charcoal, a VOST charcoal specification study was initiated. Performance, cost, ease of handling, and plentiful supply make Anasorb 747 a good choice for replacement of SKX Lot 104.

  5. Cultivar selection for bacterial root rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...

  6. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  7. BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice.

    PubMed

    Lee, Yong Hwan; Ko, Sug-Ju; Cha, Kwang-Hong; Park, Eun Woo

    2015-12-01

    A disease forecast model for bacterial grain rot (BGR) of rice, which is caused by Burkholderia glumae, was developed in this study. The model, which was named 'BGRcast', determined daily conduciveness of weather conditions to epidemic development of BGR and forecasted risk of BGR development. All data that were used to develop and validate the BGRcast model were collected from field observations on disease incidence at Naju, Korea during 1998-2004 and 2010. In this study, we have proposed the environmental conduciveness as a measure of conduciveness of weather conditions for population growth of B. glumae and panicle infection in the field. The BGRcast calculated daily environmental conduciveness, Ci , based on daily minimum temperature and daily average relative humidity. With regard to the developmental stages of rice plants, the epidemic development of BGR was divided into three phases, i.e., lag, inoculum build-up and infection phases. Daily average of Ci was calculated for the inoculum build-up phase (Cinf ) and the infection phase (Cinc ). The Cinc and Cinf were considered environmental conduciveness for the periods of inoculum build-up in association with rice plants and panicle infection during the heading stage, respectively. The BGRcast model was able to forecast actual occurrence of BGR at the probability of 71.4% and its false alarm ratio was 47.6%. With the thresholds of Cinc = 0.3 and Cinf = 0.5, the model was able to provide advisories that could be used to make decisions on whether to spray bactericide at the pre- and post-heading stage. PMID:26672893

  8. BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice

    PubMed Central

    Lee, Yong Hwan; Ko, Sug-Ju; Cha, Kwang-Hong; Park, Eun Woo

    2015-01-01

    A disease forecast model for bacterial grain rot (BGR) of rice, which is caused by Burkholderia glumae, was developed in this study. The model, which was named ‘BGRcast’, determined daily conduciveness of weather conditions to epidemic development of BGR and forecasted risk of BGR development. All data that were used to develop and validate the BGRcast model were collected from field observations on disease incidence at Naju, Korea during 1998–2004 and 2010. In this study, we have proposed the environmental conduciveness as a measure of conduciveness of weather conditions for population growth of B. glumae and panicle infection in the field. The BGRcast calculated daily environmental conduciveness, Ci, based on daily minimum temperature and daily average relative humidity. With regard to the developmental stages of rice plants, the epidemic development of BGR was divided into three phases, i.e., lag, inoculum build-up and infection phases. Daily average of Ci was calculated for the inoculum build-up phase (Cinf) and the infection phase (Cinc). The Cinc and Cinf were considered environmental conduciveness for the periods of inoculum build-up in association with rice plants and panicle infection during the heading stage, respectively. The BGRcast model was able to forecast actual occurrence of BGR at the probability of 71.4% and its false alarm ratio was 47.6%. With the thresholds of Cinc = 0.3 and Cinf = 0.5, the model was able to provide advisories that could be used to make decisions on whether to spray bactericide at the pre- and post-heading stage. PMID:26672893

  9. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  10. The influence of phosphorus concentration on the development of Pythium root rot disease of seedling geranium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In greenhouse production systems, growers may increase nutrient supply to meet production demands or decrease nutrient supply due to cost or environmental concerns. Only a few floriculture crops’ response in different nutrient environments to a handful of diseases are well known. Seeding geraniums...

  11. VOST charcoal specification study

    SciTech Connect

    Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

    1996-12-31

    The volatile organic sampling train (VOST) is currently one the leading methodologies available for the sampling and analysis of volatile principal organic hazardous constituents (POHCs) and products of incomplete combustion (PICs) from stationary sources at very low levels. However, revisions to the original method are necessary to maintain VOST as a viable regulatory tool. To provide performance specifications and identify a replacement for SKC Lot 104 charcoal, a VOST charcoal specification study was initiated. The following carbon-based candidate sorbents were considered: Tenax-GR (a graphitized Tenax); a Petroleum-based Charcoal; Ambersorbe XE-340 (hydrophobic carbonized resin bead); Anasorb 747 (beaded active carbon with very regular pore size); Carbosieve{reg_sign} S-III (carbon molecular sieve); and a Beaded Activated Charcoal (BAC) (with a very regular pore size). The results indicated that Tenax-GR showed significantly poorer performance than the other candidates in preliminary experimental results. Ambersorb did not retain the gaseous volatile organic compounds tested as well as the others and recovery of vinyl chloride was very low at all levels of spiking. Carbosieve was eliminated as a candidate replacement because of cost and handling problems. The petroleum-based charcoal was eliminated because of difficulties in handling a finely-divided powder. The availability of Anasorb 747 proved to be the deciding factor between it and the BAC. Performance, cost, ease of handling, and plentiful supply make Anasorb{reg_sign} 747 a good choice for replacement of SKC Lot 104. 1 tab.

  12. Melanosis ilei induced by prolonged charcoal ingestion

    PubMed Central

    Kim, Gun Min; Jun, Eun Jung; Kim, Yong Cheol; Park, Jin Min; Hong, Seok In; Cheung, Dae Young; Lee, Youn Soo

    2011-01-01

    Gastrointestinal melanosis is observed most frequently in the colon it also can develop in the ileum, duodenum and esophagus very rarely. Melanosis ilei was thought that causative materials such as aluminum, magnesium, silicate, titanium and other compounds entered the body through the ingestion of agents. We experienced a case of melanosis in the terminal ileum that a 65-year-old female patient ingested 10 g edible charcoal everyday for 3 years to address symptoms of chronic abdominal pain. In Korea, edible charcoal has been considered to be an effective folk remedy for patients with diarrhea or chronic abdominal pain. In our case, a follow up colonoscopy was performed 3.5 years after the termination of the ingestion of edible charcoal, at which point pigmentation was faded color intensity. In conclusion, it is thought that melanosis ilei is a rare disease by ingestion of causative materials and is discontinuous, local and reversible disease. PMID:22066103

  13. TOWARDS INTEGRATED CONTROL OF FROSTY POD ROT (MONILIOPHTHORA RORERI) OF CACAO: A MODEL PROGRAMME FOR PEST AND DISEASE CONTROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frosty pod rot (Moniliophthora roreri) of cocoa (Theobroma cacao) is a major biological constraint to cocoa production in Latin America. The pathogen is still in an invasive phase and poses a continuing threat to other cocoa growing areas of Latin America (Brazil and Bolivia), having recently invade...

  14. The influence of formulation on Trichoderma biological activity and frosty pod rot disease management in Theobroma cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frosty pod rot (FPR), caused by Moniliophthora roreri is responsible for significant losses in Theobroma cacao. Due to the limited options for FPR management, biological control methods using Trichoderma are being studied. Combinations of three formulations and two Trichoderma isolates were studied ...

  15. A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata.

    PubMed

    Hong, Chi Eun; Jeong, Haeyoung; Jo, Sung Hee; Jeong, Jae Cheol; Kwon, Suk Yoon; An, Donghwan; Park, Jeong Mee

    2016-03-28

    Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture. PMID:26767576

  16. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  17. Cylindrocladium root and crown rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of Cylindrocladium have been shown to cause damping-off, seedling blight, and a black crown and root rot of mature plants. In Hawaii, seedling disease was caused by Calonectria ilicicola (anamorph: Cylindrocladium parasiticum) and Cylindrocladium clavatum. A third species, C. scopari...

  18. Charcoal filter testing

    SciTech Connect

    Lyons, J.

    1997-08-01

    In this very brief, informal presentation, a representative of the US Nuclear Regulatory Commission outlines some problems with charcoal filter testing procedures and actions being taken to correct the problems. Two primary concerns are addressed: (1) the process to find the test method is confusing, and (2) the requirements of the reference test procedures result in condensation on the charcoal and causes the test to fail. To address these problems, emergency technical specifications were processed for three nuclear plants. A generic or an administrative letter is proposed as a more permanent solution. 1 fig.

  19. First Report of Charcoal Rot of Sunflower in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field of oilseed sunflower (Helianthus annuus L. hybrid 'Pioneer 63M82') was observed with uneven maturation in west central Minnesota near Aldrich (Todd County) in late September, 2009. The field's soil type was sandy loam and cropping history was oats in 2008 preceded by four years of alfalfa. M...

  20. Moisture insensitive charcoal canisters

    SciTech Connect

    Lucas, H.F.

    1987-01-01

    Continuous monitoring of /sup 222/Rn concentrations in the air in houses is the most appropriate approach for the real-time measurements, but this requires complex and expensive instruments and is not practical for large studies. Activated carbon canisters have been used extensively for determining the average concentration over a period of a few days. The ''open face'' charcoal detectors have an integration time constant of about 14 h so that they are sensitive to short-term transient changes in the radon concentration. In addition, water uptake at high relative humidities reduces the radon uptake by the charcoal. The addition of a diffusion barrier and a nylon screen results in a charcoal detector with an integration half-time ranging from 20 to 60 h and a reduced uptake of water at high humidities. Silicone rubber sheeting is relatively permeable to radon and impermeable to water vapor. It was the purpose of this study to evaluate the effect of a silicone barrier on the charcoal canister radon collective device. 3 refs

  1. Hydrous oxide activated charcoal

    SciTech Connect

    Weller, J.P.

    1987-09-08

    This patent describes a process for preparing of an ion exchanger, comprising: treating an ionically inert activated charcoal porous support with an aqueous solution of metal oxychloride selected from the group consisting of zirconium and titanium oxychlorides so as to impregnate the pores of the support with the solution; separating the treated support from excess metal oxychloride solution; converting the metal oxychloride to a hydrous metal oxide precipitate in the pores of the support at a pH above 8 and above the pH whereat the hydrous metal oxide and activated charcoal support have opposite zeta potentials and sufficient to hydrolyze the metal oxychloride. It also describes a process for preparing an ion exchanger comprising: treating granulated activated charcoal with a concentrated solution of a metal oxychloride from the group consisting of zirconium and titanium oxychlorides, degassing the mixture; and treating the resultant mixture with a base selected from the group consisting of ammonium hydroxide and alkali metal hydroxides so as to precipitate the oxychloride within the pores of the activated carbon granules as hydrous metal oxide at a pH above 8 and above the pH whereat the hydrous metal oxide and activated charcoal have opposite zeta potentials.

  2. ADVANCES IN THE DEVELOPMENT OF SUNFLOWER GERMPLASM WITH RESISTANCE TO BOTH SCLEROTINIA STALK ROT AND HEAD ROT, AND EVALUATION OF COMMERCIAL HYBRIDS FOR STALK ROT RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia diseases continue to be the major diseases affecting U.S. production in 2005, with head rot and stalk rot found in 20% and 27% of fields surveyed in seven states, respectively, and affecting 1.6% and 2.3% of the U.S. crop. Regarding germplasm development, two oilseed maintainer lines (HA...

  3. Development of variable number of tandem repeats typing schemes for Ralstonia solanacearum, the agent of bacterial wilt, banana Moko disease and potato brown rot.

    PubMed

    N'guessan, Carine Aya; Brisse, Sylvain; Le Roux-Nio, Anne-Claire; Poussier, Stphane; Kon, Daouda; Wicker, Emmanuel

    2013-03-01

    Ralstonia solanacearum is an important soil borne bacterial plant pathogen causing bacterial wilt on many important crops. To better monitor epidemics, efficient tools that can identify and discriminate populations are needed. In this study, we assessed variable number of tandem repeats (VNTR) genotyping as a new tool for epidemiological surveillance of R. solanacearum phylotypes, and more specifically for the monitoring of the monomorphic ecotypes "Moko" (banana-pathogenic) and "brown rot" (potato-pathogenic under cool conditions). Screening of six R. solanacearum genome sequences lead to select 36 VNTR loci that were preliminarily amplified on 24 strains. From this step, 26 single-locus primer pairs were multiplexed, and applied to a worldwide collection of 337 strains encompassing the whole phylogenetic diversity, with revelation on a capillary-electrophoresis genotype. Four loci were monomorphic within all phylotypes and were not retained; the other loci were highly polymorphic but displayed a clear phylotype-specificity. Phylotype-specific MLVA schemes were thus defined, based on 13 loci for phylotype I, 12 loci for phylotype II, 11 loci for phylotype III and 6 for phylotype IV. MLVA typing was significantly more discriminative than egl-based sequevar typing, particularly on monomorphic "brown rot" ecotype (phylotype IIB/sequevar 1) and "Moko disease" clade 4 (Phylotype IIB/sequevar 4). Our results raise promising prospects for studies of population genetic structures and epidemiological monitoring. PMID:23376194

  4. Pseudomonads associated with midrib rot and soft rot of butterhead lettuce and endive.

    PubMed

    Cottyn, B; Vanhouteghem, K; Heyrman, J; Bleyaert, P; Van Vaerenbergh, J; De Vos, P; Hfte, M; Maes, M

    2005-01-01

    During the past ten years, bacterial soft rot and midrib rot of glasshouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) and field-grown endive (Cichorium endivia L.) has become increasingly common in the region of Flanders, Belgium. Severe losses and reduced market quality caused by bacterial rot represent an important economical threat for the production sector. Symptoms of midrib rot are a brownish rot along the midrib of one or more inner leaves, often accompanied by soft rot of the leaf blade. Twenty-five symptomatic lettuce and endive samples were collected from commercial growers at different locations in Flanders. Isolations of dominant bacterial colony types on dilution plates from macerated diseased tissue extracts yielded 282 isolates. All isolates were characterized by colony morphology and fluorescence on pseudomonas agar F medium, oxidase reaction, and soft rot ability on detached chicory leaves. Whole-cell fatty acid methyl esters profile analyses identified the majority of isolates (85%) as belonging to the Gammaproteobacteria, which included members of the family Enterobacteriaceae (14%) and of the genera Pseudomonas (73%), Stenotrophomonas (9%), and Acinetobacter (3%). Predominant bacteria were a diverse group of fluorescent Pseudomonas species. They were further differentiated based on the non-host hypersensitive reaction on tobacco and the ability to rot potato slices into 4 phenotypic groups: HR-/P- (57 isolates), HR-/P+ (54 isolates), HR+/P (16 isolates) and HR+/P+ (35 isolates). Artificial inoculation of suspensions of HR-, pectolytic fluorescent pseudomonads in the leaf midrib of lettuce plants produced various symptoms of soft rot, but they did not readily cause symptoms upon spray inoculation. Fluorescent pseudomonads with phenotype HR+ were consistently isolated from typical dark midrib rot symptoms, and selected isolates reproduced the typical midrib rot symptoms when spray-inoculated onto healthy lettuce plants. PMID:16637164

  5. Identification of soil-borne pathogens in a common bean root rot nursery in Isabela, Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited research has been completed on the root rot complex of the common bean (Phaseolus vulgaris L.) in the Caribbean, while yield losses of over 50% due to root rot disease have been reported worldwide. In this study, the predominant root rot pathogens in a 40-year old common bean root rot nurser...

  6. Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance.

    PubMed

    Kapanigowda, Mohankumar H; Perumal, Ramasamy; Djanaguiraman, Maduraimuthu; Aiken, Robert M; Tesso, Tesfaye; Prasad, Pv Vara; Little, Christopher R

    2013-01-01

    Sorghum [Sorghum bicolor (L.) Moench] grain yield is severely affected by abiotic and biotic stresses during post-flowering stages, which has been aggravated by climate change. New parental lines having genes for various biotic and abiotic stress tolerances have the potential to mitigate this negative effect. Field studies were conducted under irrigated and dryland conditions with 128 exotic germplasm and 12 adapted lines to evaluate and identify potential sources for post-flowering drought tolerance and stalk and charcoal rot tolerances. The various physiological and disease related traits were recorded under irrigated and dryland conditions. Under dryland conditions, chlorophyll content (SPAD), grain yield and HI were decreased by 9, 44 and 16%, respectively, compared to irrigated conditions. Genotype RTx7000 and PI475432 had higher leaf temperature and grain yield, however, genotype PI570895 had lower leaf temperature and higher grain yield under dryland conditions. Increased grain yield and optimum leaf temperature was observed in PI510898, IS1212 and PI533946 compared to BTx642 (B35). However, IS14290, IS12945 and IS1219 had decreased grain yield and optimum leaf temperature under dryland conditions. Under irrigated conditions, stalk and charcoal rot disease severity was higher than under dryland conditions. Genotypes IS30562 and 1790E R had tolerance to both stalk rot and charcoal rot respectively and IS12706 was the most susceptible to both diseases. PI510898 showed combined tolerance to drought and Fusarium stalk rot under dryland conditions. The genotypes identified in this study are potential sources of drought and disease tolerance and will be used to develop better adaptable parental lines followed by high yielding hybrids. PMID:24349954

  7. Management of Rhizoctonia root and crown rot of subarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root and crown rot is caused by the fungus Rhizoctonia solani and is one of the most severe soil-borne diseases of sugarbeet in Minnesota and North Dakota. Rhizoctonia root and crown rot may reduce yield significantly, and diseased beets may cause problems in storage piles. Fields with...

  8. Fungitoxicity of some higher plants and synergistic activity of their essential oils against Sclerotium rolfsii sacc. causing foot-rot disease of barley.

    PubMed

    Singh, R K

    Twenty five plant species were screened for their volatile components against hyphal growth and sclerotia formation of Sclerotium rolfsii causing foot rot disease of barley (Hordeum vulgare). Leaves of Chenopodium ambrosioides (CA), Lippia alba (LA), Azadirachta indica (AI) and Eucalyptus globulus (EG) were found to be strongly toxic. Their volatile active factors were isolated in the form of essential oils which were tested for toxicity individually and in six combinations (1:1 v/v) viz. CA-LA, LA-AI, CA-AI, CA-EG, and EG-AI. The oil combinations were found to be more fungitoxic than the individual oils. The CA-LA, LA-AI, EG-AI, and CA-EG combinations exhibited a broad fnngitoxic spectrum while CA-AI, LA-EG combinations possessed a narrow range of toxicity. None of the six oil combinations showed phytotoxic behaviour on seed germination, seedling growth and general morphology of Hordeum vulgare. PMID:18697732

  9. Advances in the development of sunflower germplasm with resistance to both Sclerotinia stalk rot and head rot - 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia diseases remain the most significant of all diseases on both oilseed and confection sunflower production in the U.S. In 2007 Sclerotinia stalk rot and head rot affected 30% and 26%, respectively, of fields surveyed in North Dakota, South Dakota, Minnesota, Kansas, Colorado and Texas. S...

  10. Expression of the ?-1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth.

    PubMed

    Mercado, Jos A; Barcel, Marta; Pliego, Clara; Rey, Manuel; Caballero, Jos L; Muoz-Blanco, Juan; Ruano-Rosa, David; Lpez-Herrera, Carlos; de Los Santos, Berta; Romero-Muoz, Fernando; Pliego-Alfaro, Fernando

    2015-12-01

    The expression of antifungal genes from Trichoderma harzianum, mainly chitinases, has been used to confer plant resistance to fungal diseases. However, the biotechnological potential of glucanase genes from Trichoderma has been scarcely assessed. In this research, transgenic strawberry plants expressing the ?-1,3-glucanase gene bgn13.1 from T. harzianum, under the control of the CaMV35S promoter, have been generated. After acclimatization, five out of 12 independent lines analysed showed a stunted phenotype when growing in the greenhouse. Moreover, most of the lines displayed a reduced yield due to both a reduction in the number of fruit per plant and a lower fruit size. Several transgenic lines showing higher glucanase activity in leaves than control plants were selected for pathogenicity tests. When inoculated with Colletotrichum acutatum, one of the most important strawberry pathogens, transgenic lines showed lower anthracnose symptoms in leaf and crown than control. In the three lines selected, the percentage of plants showing anthracnose symptoms in crown decreased from 61 % to a mean value of 16.5 %, in control and transgenic lines, respectively. Some transgenic lines also showed an enhanced resistance to Rosellinia necatrix, a soil-borne pathogen causing root and crown rot in strawberry. These results indicate that bgn13.1 from T. harzianum can be used to increase strawberry tolerance to crown rot diseases, although its constitutive expression affects plant growth and fruit yield. Alternative strategies such as the use of tissue specific promoters might avoid the negative effects of bgn13.1 expression in plant performance. PMID:26178245

  11. Commercial charcoal manufacture in Brazil

    SciTech Connect

    Rezende, M.E.; Lessa, A.; Pasa, V.; Sampaio, R.; Macedo, P.

    1993-12-31

    Brazil is the only country where charcoal has a major industrial us. Almost 40% of the pig iron and all the ferroalloys produced in the country are based on it and were established near Minas Gerais iron ore deposits using non-sustainable farm charcoal. Since the 1980s charcoal production from large eucalyptus forests is gradually increasing, accounting for 40% of the 8 million tonnes produced in 1991. Farm charcoal is produced when native forests are slashed to give way to farm land. Adequate techniques, labor rights or environmental concerns are not common in this scenario. In large eucalyptus forests charcoal production has a different business approach. Several kinds of masonry ovens are used in both scenarios. Continuous carbonization kilns are not feasible yet because of their high capital cost. The search for a new cheapest design or for the upgrading of the carbonization byproducts is a must. Promising results are shown. Plastics and fine chemicals were already obtained from wood tar. The first Brazilian pilot plant for wood tar fractionation will be started by 9/93. Ironworks have different profiles. Some plants are up-to-date integrated mini-steelworks. Others are small producers of pig ingots. They have in common the need to face coke ironmaking route. Brazilian exports of charcoal based iron and steel products have attained the goal until now. Future charcoal competitiveness will not be so easy. Although expertises believe that coke prices can not stand low for long time it poses additional difficulty to the Brazilian charcoal ironmaker. Three scenarios projected for the future of charcoal ironmaking show that as long as charcoal production costs are properly managed, charcoal will be competitive with coke. The authors defend a common research program that looks for technologies suited to the Brazilian reality.

  12. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots.

    PubMed

    Muramoto, Nobuhiko; Tanaka, Tomoko; Shimamura, Takashi; Mitsukawa, Norihiro; Hori, Etsuko; Koda, Katsunori; Otani, Motoyasu; Hirai, Masana; Nakamura, Kenzo; Imaeda, Takao

    2012-06-01

    Black rot of sweet potato caused by pathogenic fungus Ceratocystis fimbriata severely deteriorates both growth of plants and post-harvest storage. Antimicrobial peptides from various organisms have broad range activities of killing bacteria, mycobacteria, and fungi. Plant thionin peptide exhibited anti-fungal activity against C. fimbriata. A gene for barley ?-hordothionin (?HT) was placed downstream of a strong constitutive promoter of E12? or the promoter of a sweet potato gene for ?-amylase of storage roots, and introduced into sweet potato commercial cultivar Kokei No. 14. Transgenic E12?:?HT plants showed high-level expression of ?HT mRNA in both leaves and storage roots. Transgenic ?-Amy:?HT plants showed sucrose-inducible expression of ?HT mRNA in leaves, in addition to expression in storage roots. Leaves of E12?:?HT plants exhibited reduced yellowing upon infection by C. fimbriata compared to leaves of non-transgenic Kokei No. 14, although the level of resistance was weaker than resistance cultivar Tamayutaka. Storage roots of both E12?:?HT and ?-Amy:?HT plants exhibited reduced lesion areas around the site inoculated with C. fimbriata spores compared to Kokei No. 14, and some of the transgenic lines showed resistance level similar to Tamayutaka. Growth of plants and production of storage roots of these transgenic plants were not significantly different from non-transgenic plants. These results highlight the usefulness of transgenic sweet potato expressing antimicrobial peptide to reduce damages of sweet potato from the black rot disease and to reduce the use of agricultural chemicals. PMID:22212462

  13. Agro-ecological variations of sheath rot disease of rice caused by Sarocladium oryzae and DNA fingerprinting of the pathogen's population structure.

    PubMed

    Tajul Islam Chowdhury, M; Salim Mian, M; Taher Mia, M A; Rafii, M Y; Latif, M A

    2015-01-01

    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings. PMID:26782461

  14. INHERITANCE OF RESISTANCE TO FUSARIUM TUBER ROT IN POTATOES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FUSARIUM TUBER ROT OF POTATO IS ONE OF THE MOST ECONOMICALLY IMPORTATNT DISEASES OF STORED POTATOES. THE OBJECTIVE OF THIS STUDY WAS TO DETERMINE THE INHERITANCE OF RESISTANCE TO FUSARIUM TUBER ROT. A HIGHLY RESISTANT (B0172-22) AND A HIGHLY SUSCEPTIBLE (B0178-34) POTATO CLONE WERE CROSSED AS FEMA...

  15. Tolerance to Phytophthora Fruit Rot in Watermelon Plant Introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora capsici is distributed worldwide, and is an aggressive pathogen with a broad host range infecting solanaceous, leguminaceous, and cucurbitaceous crops. Fruit rot, caused by P. capsici is an emerging disease in most watermelon producing regions of Southeast US. Resistance to fruit rot o...

  16. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease that can be caused by several Fusarium spp. A survey was conducted to establish the composition of Fusarium species causing dry rot of seed tubers in Michigan. A total of 370 dry rot symptomatic tubers were collected in 2009 ...

  17. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.

    PubMed

    Jogi, Ansuya; Kerry, John W; Brenneman, Timothy B; Leebens-Mack, James H; Gold, Scott E

    2016-03-01

    Sclerotium rolfsii, a destructive soil-borne fungal pathogen causes stem rot of the cultivated peanut, Arachis hypogaea. This study aimed to identify differentially expressed genes associated with peanut resistance and fungal virulence. Four peanut cultivars (A100-32, Georgia Green, GA-07W and York) with increasing resistance levels were inoculated with a virulent S. rolfsii strain to study the early plant-pathogen interaction. 454 sequencing was performed on RNAs from infected tissue collected at 4 days post inoculation, generating 225,793 high-quality reads. Normalized read counts and fold changes were calculated and statistical analysis used to identify differentially expressed genes. Several genes identified as differential in the RNA-seq experiment were selected based on functions of interest and real-time PCR employed to corroborate their differential expression. Expanding the analysis to include all four cultivars revealed a small but interesting set of genes showing colinearity between cultivar resistance and expression levels. This study identified a set of genes possibly related to pathogen response that may be useful marker assisted selection or transgenic disease control strategies. Additionally, a set of differentially expressed genes that have not been functionally characterized in peanut or other plants and warrant additional investigation were identified. PMID:26856448

  18. Sucrose as a sweetener for activated charcoal.

    PubMed

    Cooney, D O; Roach, M

    1979-06-01

    The efficacy of sucrose as a flavor for activated charcoal was studied. In vitro adsorption of sucrose (in Simulated Gastric Fluid, USP, without pepsin) to activated charcoal, and of a 1-g/liter sodium salicylate solution to a 1:1 mixture of sucrose and activated charcoal and to plain activated charcoal, was measured spectrophotometrically. In vitro adsorption of sucroses to activated charcoal was minimal. Sucrose reduced in vitro adsorption of sodium salicylate to activated charcoal by only small amounts. For example, at a ratio of 4 g activated charcoal to 1 g sodium salicylate, sucrose reduced salicylate adsorption to activated charcoal from 99% to 95%. A 1:1 sucrose-activated charcoal preparation provides sufficient flavor without substantial loss of adsorbance. PMID:463898

  19. Replacement of charcoal sorbent in the VOST

    SciTech Connect

    Johnson, L.D.; Fuerst, R.G.; Foster, A.L.; Bursey, J.T.

    1993-01-01

    EPA Method 0030, the Volatile Organic Sampling Train (VOST), for sampling volatile organics from stationary sources, specifies the use of petroleum-base charcoal in the second sorbent tube. Charcoal has proven to be a marginal performer as a sampling sorbent, partly due to inconsistency in analyte recovery. In addition, commercial availability of petroleum charcoal for VOST tubes has been variable. Lack of data on comparability and variability of charcoals for VOST application has created uncertainty when other charcoals are substituted. Five potential sorbent replacements for charcoal in Method 0030 were evaluated along with a reference charcoal. Two of the sorbents tested, Ambersorb XE-340 and Tenax GR, did not perform well enough to qualify as replacements. Three candidates, Anasorb 747, Carbosieve S-III and Kureha Beaded Activated Charcoal, performed adequately, and produced statistically equivalent results. Anasorb 747 appears to be an acceptable replacement for petroleum charcoal, based on a combination of performance, availability, and cost.

  20. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases

    PubMed Central

    2014-01-01

    Background The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp. Results We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase. Conclusions Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease. PMID:24571091

  1. Charcoal haemoperfusion for paracetamol overdose.

    PubMed

    Gazzard, B G; Willison, R A; Weston, M J; Thompson, R P; Williams, R

    1974-06-01

    1 A controlled trial of charcoal haemoperfusion as an early treatment for paracetamol overdose showed no benefit. 2 The plasma clearances of paracetamol by the charcoal column were variable and disappointingly small (range 4-119 ml/minute). The cumulative amounts removed were also low, mean 1.4 g (range 0.2-5.2 g). 3 No clinical problems were encountered with the technique of haemoperfusion and in particular the drop in blood platelet counts was small (mean fall 16%). PMID:22454960

  2. Development of charcoal sorbents for helium cryopumping

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.

    1984-01-01

    Testing of the cryogenically cooled charcoal using fusion-compatible binders for pumping helium has shown promising results. The program demonstrated comparable or improved performance with these binders compared to the charcoal (type and size) using an epoxy binder.

  3. Infection of apple fruit by Sphaeropsis pyriputrescens in the orchard in relation to Sphaeropsis rot in storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaeropsis rot, caused by Sphaeropsis pyriputrescens, is a recently recognized postharvest fruit rot disease of apple in the United States. The objectives of this study were to determine the timing of apple fruit infection in the orchard in relation to development of Sphaeropsis rot in storage and ...

  4. First report of in-vitro fludioxonil-resistant isolates of Fusarium spp. causing potato dry rot in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Measures for controlling dry rot in storage are limited. Dry rot has been managed primarily by reducing tuber bruising, providing conditions for rapid wound heal...

  5. Stachbotrys Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stachybotrys root rot is caused by Stachybotrys chartarum, a cellulytic saprophytic hyphomycete fungus. The pathogen produces mycotoxins including a host of immunosupressant compounds for human and is one of the causes of the "sick building syndrome." Although S. chartarum is rarely known as a plan...

  6. REPLACEMENT OF CHARCOAL IN VOST

    EPA Science Inventory

    EPA Method 0030, the Volatile rganic ampling rain VOST), or sampling volatile organics from has proven to be a original performer as a sampling sorbent, partly due to inconsistency in analyte recovery. n addition, commercial availability of petroleum charcoal for VOST tubes has b...

  7. Draft Genome Sequence for ICMP 5702, the Type Strain of Pectobacterium carotovorum subsp. carotovorum That Causes Soft Rot Disease on Potato

    PubMed Central

    Lu, Ashley; Armstrong, Karen F.

    2015-01-01

    Pectobacterium species are economically important bacteria that cause soft rotting of potato tubers in the field and in storage. Here, we report the draft genome sequence of the type strain for P.carotovorum subsp. carotovorum, ICMP 5702 (ATCC 15713). The genome sequence of ICMP 5702 will provide an important reference for future phylogenomic and taxonomic studies of the phytopathogenic Enterobacteriaceae. PMID:26251498

  8. Passivation of fluorinated activated charcoal

    SciTech Connect

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests, thermodynamic calculations, process description, and operational parameters, and addresses safety concerns.

  9. Using airborne multispectral imagery to monitor cotton root rot expansion within a growing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease that affects cotton production in the southwestern United States. Accurate delineation of cotton root rot infestations is important for cost-effective management of the disease. The objective of this study was to use airborne multispectral imagery...

  10. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus, Phymatotrichum omnivorum, is a major cotton disease affecting cotton production in the southwestern and south central U.S. Accurate delineation of root rot infestations is necessary for cost-effective management of the disease. The objective of this s...

  11. Monitoring cotton root rot progression within a growing season using airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the fungus Phymatotrichopsis omnivora, is a serious and destructive disease affecting cotton production in the southwestern United States. Accurate delineation of cotton root rot infections is important for cost-effective management of the disease. The objective of this st...

  12. Carcinogenic PAH in waterpipe charcoal products

    PubMed Central

    Sepetdjian, Elizabeth; Saliba, Najat; Shihadeh, Alan

    2010-01-01

    Because narghile waterpipe (shisha, hooka) smoking normally involves the use of burning charcoal, smoke inhaled by the user contains constituents originating from the charcoal in addition to those from the tobacco. We have previously found that charcoal accounts for most of the polyaromatic hydrocarbons (PAH) and carbon monoxide in the smoke of the waterpipe, both of which are present in alarming quantities. Because charcoal manufacturing conditions favor formation of PAH, it is reasonable to assume that charcoal sold off the shelf may be contaminated by PAH residues. These residues may constitute a significant fraction of the PAH inhaled by the waterpipe user and those in her/his vicinity. We measured PAH residues on three kinds of raw waterpipe charcoal sampled from Beirut stores and cafés. We found that PAH residues in raw charcoal can account for more than half of the total PAH emitted in the mainstream and sidestream smoke, and about one sixth of the carcinogenic 5- and 6-ring PAH compounds. Total PAH content of the three charcoal types varied systematically by a factor of six from the charcoal with the least to the greatest PAH residue. These findings indicate the possibility of regulating charcoal carcinogen content. PMID:20807559

  13. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-01-01

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised ?, ?, and ? classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region. PMID:26214435

  14. Charcoal/Nitrogen Adsorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1987-01-01

    Refrigerator with no wear-related moving parts produces 0.5 W of cooling at 118 K. When fully developed, refrigerator needs no electrical power, and life expectancy of more than 10 yr, operates unattended to cool sensitive infrared detectors for long periods. Only moving parts in adsorption cryocooler are check valves. As charcoal is cooled in canister, gas pressure drops, allowing inlet check valve to open and admit more nitrogen. When canister is heated, pressure rises, closing inlet valve and eventually opening outlet valve.

  15. Cultural Practices and Chemical Treatments Affect Phytophthora Root Rot Severity of Blueberries Grown in Southern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot is an important disease of commercial blueberries and is most severe when blueberries are grown in wet soils with poor drainage. Symptoms of Phytophthora root rot include small, yellow or red leaves, lack of new growth, root necrosis, and a smaller than normal root system. Inf...

  16. Preharvest applications of fungicides for control of Sphaeropsis rot in stored apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaeropsis rot caused by Sphaeropsis pyriputrescens is a recently reported postharvest fruit rot disease of apple in Washington State and causes significant economic losses. Infection of apple fruit by the fungus occurs in the orchard, but decay symptoms develop during storage or in the market. The...

  17. First report of brown rot on apple fruit caused by Monilinia fructicola in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown rot, caused by Monilinia fructicola (G. Wint.) Honey, is the most devastating disease of stone fruits in North America resulting in significant economic losses. The fungus has been recently reported to cause pre and postharvest brown rot on apple fruit in Germany, Italy, and Serbia. However, M...

  18. TESTING BIOLOGICAL CONTROL AND INDUCED SYSTEMIC RESISTANCE FOR THE CONTROL OF APHANOMYCES ROOT ROT OF SUGARBEET.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling damping off and chronic root rot of sugarbeet caused by Aphanomyces cochlioides has caused increasing losses to U.S. producers. Lack of effective control measures for Aphanomyces root rot prompted the initiation of a program aimed at the discovery of new, safe components for disease ...

  19. Survival of southern highbush blueberry cultivars in Phytophthora Root Rot Infested fields in South Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot is an important disease of commercial blueberries and is most severe when blueberries are grown in wet soils with poor drainage. Symptoms of Phytophthora root rot include small, yellow or red leaves, lack of new growth, root necrosis, and a smaller root system than healthy plan...

  20. Vine kill interval and temperature effects on Fusarium dry rot development in Russet Burbank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot disease development in potato storage is universal to all market sectors and regions. The objective of this 2-year study was to evaluate three possible management decisions that may impact Fusarium dry rot development in storage: a) vine kill to harvest time, b) harvested tuber pulp...

  1. Evaluation of Actigard and Fungicides for Managing Phytophthora Fruit Rot of Watermelon, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora fruit rot caused by Phytophthora capsici is an emerging disease in most watermelon producing regions of Southeast U.S., and has been considered as a top research priority by the National Watermelon Association (NWA). Managing Phytophthora fruit rot can be difficult because of the l...

  2. Experimental Sugar Beet Cultivars Evaluated for Resistance Bacterial Root Rot in Idaho, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  3. Commercial Sugar Beet Cultivars Evaluated for Resistance to Bacterial Root Rot in Idaho, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  4. Control of speck rot in apple fruit caused by Phacidiopycnis washingtonensis with pre- and postharvest fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Speck rot caused by Phacidiopycnis washingtonensis is a recently reported postharvest fruit rot disease of apple. Infection of apple fruit by the fungus occurs in the orchard, but symptoms develop during storage. In this study, selected pre- and postharvest fungicides were evaluated for control of s...

  5. The persistence of Gliocephalotrichum bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot of rambutan (Nephelium lappaceum L.) is a pre and post-harvest disease problem that affects fruit quality. Significant post-harvest losses have occurred worldwide and several pathogens have been identified in Malaysia, Costa Rica, Hawaii, Thailand, and Puerto Rico. In 2011, fruit rot was o...

  6. Effect of actigard and other new fungicides on phytophthora fruit rot of watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot, caused by Phytophthora capsici is an emerging disease in most watermelon producing regions of Southeast U.S. Between 2003 and 2008, we observed many watermelon farms in Georgia, South Carolina, and North Carolina, where growers did not harvest the crop due to severe fruit rot. The Natio...

  7. First report of Fusarium torulosum causing dry rot of seed potato tubers in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Thirteen species of Fusarium have been implicated in fungal dry rots of potatoes worldwide. Among them, eight species have been reported in the northern United S...

  8. The effect of long term storage on bacterial soft rot resistance in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial soft rot is a serious disease in potato (Solanum tuberosum L.), causing rapid tuber tissue maceration and, consequently, marketable yield loss. Soft rot bacteria, especially Pectobacterium carotovorum subsp. carotovorum (Pbc), are favored by moist conditions, which are prevalent in large p...

  9. New Fungicides for Managing Phytophthora Fruit Rot of Watermelon in South Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora fruit rot caused by Phytophthora capsici is an emerging disease in most watermelon producing regions of Southeast US. It has also been considered as an important problem and a top research priority by the National Watermelon Association (NWA). Managing Phytophthora fruit rot can be dif...

  10. First report of Calonectria hongkongensis causing fruit rot of rambutan (Nephelium lappaceum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot is a major pre- and post-harvest disease problem in rambutan orchards. In 2011, fruit rot was observed at the USDA-TARS orchards in Mayaguez, Puerto Rico. Infected fruit were collected and tissue sections (1 mm2) were superficially sterilized with 70% ethanol and 0.5% sodium hypochlorite. ...

  11. First Report of Fusarium redolens Causing Crown Rot of Wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  12. HERITABILITY OF RESISTANCE TO FUSARIUM DRY ROT IN A DIPLOID HYBRID POTATO POPULATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot, caused by several Fusarium species, is a major storage disease of potatoes for which there is no fungicidal control. Levels of resistance in commercial potato germplasm are inadequate. The purpose of this study was to determine the inheritance of resistance to Fusarium dry rot in...

  13. Effect of climate on the distribution of Fusarium species causing crown rot of wheat in the Pacific Northwest of the US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium crown rot is one of the most widespread root and crown diseases of wheat in the Pacific Northwest (PNW) of the U.S. Fusarium crown rot occurrence and distribution has been associated with temperature and precipitation. Our objectives were to characterize crown rot severity and distributio...

  14. Detecting cotton boll rot with an electronic nose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  15. Phytophthora root rot resistance in soybean E00003

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot (PRR), caused by the oomycete Phytophthora sojae, is a devastating disease in soybean production. Using resistant cultivars has been suggested as the best solution for disease management. Michigan elite soybean E00003 is resistant to P. sojae and has been used as a PRR resist...

  16. Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia crown rot, caused by Sclerotinia minor and S. sclerotiorum is a disease of pyrethrum in Australia that may cause substantial decline in plant density. The spatiotemporal characteristics of the disease were quantified in 14 fields spread across three growing seasons. Fitting the binary ...

  17. CONTROL OF STRAWBERRY BLACK ROOT ROT CONTROL WITH COMPOST SOCKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black root rot is a severe disease that can limit productivity in perennial matted row (hill) strawberry systems. In annual production systems, soil fumigation provides enough temporary disease control to achieve economic crops returns. Soilless hydroponic systems avoid the problem by eliminating s...

  18. Development of charcoal sorbents for helium cryopumping

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.

    1985-09-30

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. This study period evaluated charcoal particle size, bonding agent type and thickness, and substrate thickness. The optimum combination of charcoal, bond, and substrate was used to form a scaled-up panel for evaluation in the Tritium Systems Test Assembly (TSTA) at Los Alamos. The optimum combination is a 12 x 30 mesh coconut charcoal attached to a 0.48 cm thick copper substrate by a 0.015 cm thick silver phosphorus copper braze. A copper cement bond for attaching charcoal to a substrate was identified and tested. Helium pumping performance of this combination was comparable to that of the charcoal braze system. Environmental tests showed the charcoal's susceptibility to vacuum chamber contamination. Performance degradation followed exposure of ambient temperature charcoal to a vacuum for prolonged periods. Maintaining a liquid nitrogen-cooled shield between the charcoal and the source of contamination prevented this degradation. A combination of bake-out and LN shielding effected recovery of degraded performance.

  19. CHARCOAL-PRODUCING INDUSTRIES IN NORTHEASTERN BRAZIL

    EPA Science Inventory

    Charcoal workers in northeastern Brazil: Occupational risks and effects of exposure to wood smoke
    ABSTRACT
    Brazil has the largest production of charcoal in the world, which is used mostly in the iron and steel industries. In most of the production sites, the process is ba...

  20. The occurrence of root rot and crown rot of rice in Gilan and Zanjan provinces, Iran.

    PubMed

    Saremi, H; Okhovat, S M

    2004-01-01

    Root rot and crown rot of rice is one of the important fungal diseases of rice in Gilan and Zanjan provinces, Iran. During 1999--2002, samples of plant and soil around the roots of infected rice plants were collected and used to identify the causal agent. Root and crown parts were surface sterilized with sodium hypochlorite and then cultured on PDA (potato dextrose agar), PPA (pepton pentacholoritobenzene agar) and CLA (carnation leaf agar) media. Soil samples prepared in water agar were used to isolate the pathogen. The causal agent was identified as Fusarium moniliforme. Colonies were initially white but turned violet to grey late. Microconidia were arranged in chain and macroconidia were cylindrical and long with 3-5 septa. The disease was severe in Zanjan province particularly along Ghezel Ozan river where the infection ranged from 70-80%. Root and crown rot was more prevalent in areas where Champa and Gerdeh were being cultivated continuously. On the other hand, Sadri cultivars had relatively less infection. Persistent cultivation of rice and seed sowing method intensified disease development and caused significant economic losses. PMID:15756834

  1. Evaluation of Pseudomonas fluorescens for Suppression of Sheath Rot Disease and for Enhancement of Grain Yields in Rice (Oryza sativa L.)

    PubMed Central

    Sakthivel, N.; Gnanamanickam, S. S.

    1987-01-01

    Pseudomonas fluorescens strains antagonistic to Sarocladium oryzae, the sheath rot (Sh-R) pathogen of rice (Oryza sativa L.), were evaluated in greenhouse and field tests for suppression of Sh-R severity and enhancement of grain yields of rice. Imprints of rice seedlings and a direct-observation technique of staining roots with fluorochromes confirmed the association of P. fluorescens with roots and the ability of the strain to move along shoot tips. In greenhouse tests, P. fluorescens-treated rice plants (cv. IR 20) showed a 54% reduction in the length of Sh-R lesions. In three field tests, treatment with P. fluorescens reduced the severity of Sh-R by 20 to 42% in five rice cultivars. Bacterization of rice cultivars with P. fluorescens enhanced plant height, number of tillers, and grain yields from 3 to 160%. Images PMID:16347428

  2. Antidotal effectiveness of activated charcoal in rats

    SciTech Connect

    Curd-Sneed, C.D.

    1986-01-01

    This study was designed to investigate the relative adsorption of radiolabeled /sup 14/C-sodium pentobarbital by three types of activated charcoal. Factors affection adsorption of the drug by SuperChar, United States Pharmacopeia (USP), and Darco G-60 activated charcoals with surface areas of 2800-3500 m2/g, 1000 m/sup 2//g, and 650 m/sup 2//g, respectively, were studied both in vitro and in vivo. For in vitro experiments, the drug was dissolved in water of 70% sorbitol (w/v), and the maximum binding capacity and dissociation constants for each of the charcoals were calculated. Rank order of maximum binding capacity was directly proportional to charcoal surface area in both water and sorbitol, while the dissociation constants for the charcoals in water were not different. For in vivo experiments, absorption of orally administered sodium pentobarbital (40 mg/kg) was studied in rats with and without activated charcoal administration. The results of this research suggest that: (1) SuperChar given in water possesses the greatest antidotal efficacy, (2) sorbitol induced catharsis does not reduce oral absorption of sodium pentobarbital, and (3) sorbitol enhances the antidotal efficacy of USP charcoal.

  3. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N.

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  4. First report of Lasiodiplodia theobromae causing inflorescence blight and fruit rot of longan (Dimocarpus longan L.) in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan is a tropical fruit tree in the Sapindaceae family. During a disease survey from 2008 to 2010, fruit rot and inflorescence blight (rotting of the rachis, rachilla and flowers) were observed at the USDA-ARS Research Farm in Isabela, Puerto Rico. Tissue sections (1 mm2) of diseased inflorescenc...

  5. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  6. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  7. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  8. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  9. 49 CFR 176.405 - Stowage of charcoal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of charcoal. 176.405 Section 176.405... Materials 176.405 Stowage of charcoal. (a) Before stowing charcoal Division 4.2 (flammable solid), UN 1361... petroleum product, a vegetable or animal oil, nitrate, or sulfur, must be removed. (b) Charcoal packed...

  10. Development of an incineration system for pulverized spent charcoal

    SciTech Connect

    Furukawa, Osamu; Shibata, Minoru; Kani, Koichi

    1995-12-31

    In the existing charcoal treatment system granular charcoal is charged directly into an incinerator together with other combustible waste. Since the combustion rate of the charcoal is slow in this system, there is a problem that unburnt charcoal accumulates at the bottom of the incinerator, when incineration is performed for an extended period of time. To prevent this difficulty, the combustion rate of the charcoal must be limited to 6 kg/h. To increase the incineration rate of charcoal, the authors have developed a system in which the charcoal is pulverized and incinerated while it is mixed with propane gas. The operational performance of this system was tested using an actual equipment.

  11. Rhizoctonia-Bacterial Root Rot Complex in Sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Rhizoctonia-bacterial root rot complex is a disease problem of concern worldwide in sugarbeet. A series of studies have been conducted which indicate that the complex is initiated by the fungal pathogen, Rhizoctonia solani. However, only about 6% of the root mass is lost to the fungal infectio...

  12. Heritability of fruit rot resistance in American cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot is the primary threat to cranberry production in the northeastern U.S., and increasingly in other growing regions. Efficacy of chemical control is variable since the disease is caused by a complex of pathogenic fungi. In addition, cranberries are often grown in environmentally sensitive ar...

  13. INHERITANCE OF RESISTANCE TO SCLEROTINIA HEAD ROT IN SUNFLOWER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower head rot, incited by Sclerotinia sclerotiorum, is one of the major diseases affecting this crop. Devastating losses have occurred since 1992 when the major production area of sunflower has received above average moisture and humidity conditions during the growing season. The objective of t...

  14. Mapping the Legacies of Historic Charcoal Production

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Raab, A.; Raab, T. A.; Takla, M.; Nicolay, A.; Rsler, H.

    2014-12-01

    The historic production of charcoal is an important component of the late Holocene fire history for many landscapes. Charcoal production can have numerous effects on ecosystems, e.g., through changes in forest area and structure, or through the effects of pyrolysis, charcoal and ash addition to soils. To assess such effects, it is necessary to understand the spatial extent and patterns of historic charcoal production, which has so far hardly been approached for the Northern European Lowlands. In the forefield of the open-cast mine Jnschwalde (north of Cottbus, Germany), archaeological excavations have revealed one of the largest charcoal production fields described so far. For this area, we applied and evaluated different methods for mapping the spatial distribution of charcoal kiln remains. We present methods and results of our work in this exceptionally well-described charcoal production field and of additional studies on kiln site distribution in regions of the Northern European Lowlands. The large-scale excavations in the mine forefield provide exact information on kiln site geometry. Using airborne laser scanning elevation models, the mapping of kiln sites could be extended to areas beyond the mine forefield. To detect kiln sites for larger areas, an automated GIS based mapping routine, based on a combination of morphometric parameters, was developed and evaluated. By manual digitization from Shaded Relief Maps, more than 5000 kiln sites in an area of 32 km2 were detected in the Jnschwalde mine forefield, with 1355 kiln sites that are wider than 12 m. These relatively large kiln sites could be mapped with detection rates that are close to those of manual digitization using the automated routine. First results for different study areas indicate that charcoal production is a so far underestimated component of the land use history in many parts of the Northern European Lowlands.

  15. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  16. GRAM NEGATIVE BACTERIA FOR REDUCING PINK ROT, DRY ROT, LATE BLIGHT, AND SPROUTING ON POTATO TUBERS IN STORAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pink rot of potato, incited primarily by Phytophthora erythroseptica, is a disease of importance in many potato-growing regions of the world including North America. The primary mode of entry by the pathogen into tubers in storage is via wounds or eyes; surfaces that theoretically could be protecte...

  17. Characterization of Cichopeptins, New Phytotoxic Cyclic Lipodepsipeptides Produced by Pseudomonas cichorii SF1-54 and Their Role in Bacterial Midrib Rot Disease of Lettuce.

    PubMed

    Huang, Chien-Jui; Pauwelyn, Ellen; Ongena, Marc; Debois, Delphine; Leclre, Valerie; Jacques, Philippe; Bleyaert, Peter; Hfte, Monica

    2015-09-01

    The lettuce midrib rot pathogen Pseudomonas cichorii SF1-54 produces seven bioactive compounds with biosurfactant properties. Two compounds exhibited necrosis-inducing activity on chicory leaves. The structure of the two phytotoxic compounds, named cichopeptin A and B, was tentatively characterized. They are related cyclic lipopeptides composed of an unsaturated C12-fatty acid chain linked to the N-terminus of a 22-amino acid peptide moiety. Cichopeptin B differs from cichopeptin A only in the last C-terminal amino acid residue, which is probably Val instead of Leu/Ile. Based on peptide sequence similarity, cichopeptins are new cyclic lipopeptides related to corpeptin, produced by the tomato pathogen Pseudomonas corrugata. Production of cichopeptin is stimulated by glycine betaine but not by choline, an upstream precursor of glycine betaine. Furthermore, a gene cluster encoding cichopeptin synthethases, cipABCDEF, is responsible for cichopeptin biosynthesis. A cipA-deletion mutant exhibited significantly less virulence and rotten midribs than the parental strain upon spray inoculation on lettuce. However, the parental and mutant strains multiplied in lettuce leaves at a similar rate. These results demonstrate that cichopeptins contribute to virulence of P. cichorii SF1-54 on lettuce. PMID:25961750

  18. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast

    PubMed Central

    Jia, Lei-Jie; Yuan, Ting-Lu; Zhang, Dong; Guo, Yan; Wang, Yufeng; Tang, Wei-Hua

    2016-01-01

    The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen’s growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36–48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum’s ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk. PMID:26974960

  19. Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast.

    PubMed

    Zhang, Yan; He, Juan; Jia, Lei-Jie; Yuan, Ting-Lu; Zhang, Dong; Guo, Yan; Wang, Yufeng; Tang, Wei-Hua

    2016-03-01

    The ascomycete fungus Fusarium graminearum causes stalk rot in maize. We tracked this pathogen's growth in wound-inoculated maize stalks using a fluorescence-labeled fungal isolate and observed that invasive hyphae grew intercellularly up to 24 h post inoculation, grew intra- and inter-cellularly between 36-48 h, and fully occupied invaded cells after 72 h. Using laser microdissection and microarray analysis, we profiled changes in global gene expression during pathogen growth inside pith tissues of maize stalk from 12 h to six days after inoculation and documented transcriptomic patterns that provide further insights into the infection process. Expression changes in transcripts encoding various plant cell wall degrading enzymes appeared to correlate with inter- and intracellular hyphal growth. Genes associated with 36 secondary metabolite biosynthesis clusters were expressed. Expression of several F. graminearum genes potentially involved in mobilization of the storage lipid triacylglycerol and phosphorus-free lipid biosynthesis were induced during early infection time points, and deletion of these genes caused reduction of virulence in maize stalk. Furthermore, we demonstrated that the F. graminearum betaine lipid synthase 1 (BTA1) gene was necessary and sufficient for production of phosphorus-free membrane lipids, and that deletion of BTA1 interfered with F. graminearum's ability to advance intercellularly. We conclude that F. graminearum produces phosphorus-free membrane lipids to adapt to a phosphate-limited extracellular microenvironment during early stages of its invasion of maize stalk. PMID:26974960

  20. Sclerotinia stem and crown rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White mold of chickpea is caused by three soil borne fungi Sclerotinia sclerotiorum, S. minor and S. trifoliorum, causing either stem rot and crown rot. Stem infection, usually above ground and initiated by ascospores through carpogenic germination of scleroia produces stem rot, whereas crown infe...

  1. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  2. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  3. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  4. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  5. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  6. New emission controls for Missouri batch-type charcoal kilns

    SciTech Connect

    Yronwode, P.; Graf, W.J.

    1999-07-01

    Charcoal kilns have been exempted from air emission regulation in the state of Missouri. Today, 80% of US charcoal production takes place in Missouri. As a result of a petition filed by people in the area around an installation in southern Missouri, the US Environmental Protection Agency (EPA) set up air monitors and measured ambient air levels at that charcoal manufacturing installation. These monitors yielded the highest particulate matter less than 10 micron (PM{sub 10}) levels ever recorded in the state. Earlier stack testing at another charcoal manufacturing installation indicated that toxics and carcinogens are present in charcoal kiln air emissions. A Charcoal Kiln Workgroup was formed to determine the Best Available Control Technology (BACT) for charcoal kilns and to draft a charcoal kiln rule that requires BACT. The BACT report determined that afterburners were suitable for controlling emissions from batch-type charcoal kilns. In addition, the charcoal industry supported incorporating the BACT limits and requirements into an enforceable state rule and submitting this rule to the EPA for federal approval. A consent agreement between the EPA and three major charcoal companies was signed with provisions to install, operate, and maintain emission control devices on charcoal kilns. This agreement was to settle complaints alleging that the three major charcoal producers had failed to report toxic air emissions to federal and state regulators. The agreement provided that industry would install control devices on a set schedule with some charcoal kilns being shut down.

  7. Effect of activated charcoal on the pharmacokinetics of pholcodine, with special reference to delayed charcoal ingestion.

    PubMed

    Laine, K; Kivistö, K T; Ojala-Karlsson, P; Neuvonen, P J

    1997-02-01

    We conducted a randomized study with four parallel groups to investigate the effect of single and multiple doses of activated charcoal on the absorption and elimination of pholcodine administered in a cough syrup. The first group received 100 mg of pholcodine on an empty stomach with water only (control); the second group took 25 g of activated charcoal immediately after pholcodine; the third group received 25 g of activated charcoal 2 h and the fourth group 5 h after ingestion of the 100-mg dose of pholcodine. In addition, the fourth group received multiple doses (10 g each) of charcoal every 12 h for 84 h. Blood samples were collected for 96 h and urine for 72 h. Pholcodine concentrations were measured by high-performance liquid chromatography. A significant reduction in absorption was found when charcoal was administered immediately after pholcodine; the AUC0-96h was reduced by 91% (p < 0.0005), the Cmax by 77% (p < 0.0005), and the amount of pholcodine excreted into urine by 85% (p < 0.0005). When charcoal was administered 2 h after pholcodine, the AUC0-96h was reduced by 26% (p = 0.002), the Cmax by 23% (p = NS), and the urinary excretion by 28% (p = 0.004). When administered 5 h after pholcodine, charcoal produced only a 17% reduction in the AUC0-96h (p = 0.06), but reduced the further absorption of pholcodine still present in the gastrointestinal tract at the time of charcoal administration, as measured by AUC5-96h (p = 0.006). Repeated administration of charcoal failed to accelerate the elimination of pholcodine. We conclude that activated charcoal is effective in preventing the absorption of pholcodine, and its administration can be beneficial even several hours after pholcodine ingestion. PMID:9029746

  8. Handbook of charcoal making: the traditional and industrial methods

    SciTech Connect

    Emrich, W.

    1985-01-01

    The reviewer credits this handbook with expanding knowledge about the economic value of charcoal, particularly in the European area. The 10 chapters are: (1) history and fundamentals of the charcoal process, (2) traditional methods of the smallholder producer, (3) concepts and technology for the industrial producer, (4) recovering commercial products from pyrolysis oil, (5) raw materials supply, (6) end-use markets for by-products, (7) planning a charcoal venture, (8) charcoal briquettes and activated charcoal, (9) safety precautions and environmental considerations, and (10) charcoal laboratory work. Each chapter lists references. There are four appendices.

  9. Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean (Phaseolus vulgaris)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rot diseases of bean (Phaseolus vulgaris L.) are a constraint to dry and snap bean production. We developed the RR138 RIL mapping population from the cross of OSU5446, a susceptible line that meets current snap bean processing industry standards, and RR6950, a root rot resistant dry bean in th...

  10. PCR assays for diagnosis of postharvest fruit rots and early detection of Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens in apple fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Speck rot caused by Phacidiopycnis washingtonensis and Sphaeropsis rot caused by Sphaeropsis pyriputrescens are two recently reported postharvest diseases of apple. Infection of fruit by the pathogens occurs in the orchard, but symptoms develop after harvest and are similar to that of gray mold caus...

  11. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fun...

  12. Co-inoculation with rhizobia and arbuscular mycorrhizal fungi inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases. We investigated the disease incidence and index of soybean red crown rot under different pho...

  13. Antifungal mechanism of an anti-Pythium protein (SAP) from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp.

    PubMed

    Woo, J-H; Kamei, Y

    2003-09-01

    Previously we reported an antifungal protein specific to Pythium porphyrae, a causative agent of red rot disease afflicting seaweed Porphyra spp. This study was carried out to identify the antifungal mechanism of the antifungal protein to P. porphyrae. When we first examined the effect of an anti- Pythium protein (SAP) on the P. porphyrae cell walls, SAP did not decompose the six structural polysaccharides in Pythium cell walls. However, hyphal growth was significantly inhibited in Pythium cells treated with 50 microg/ml of SAP by MTT assay. Protoplasmic leakage was observed in P. porphyrae hyphae treated with SAP for 1 h, followed by hyphal swelling and disintegration, using SYTOX Green, and SAP permeabilized the membrane of P. porphyrae in a dose-dependent manner. Treating P. porphyrae cells with SAP in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a membrane-depolarizing agent, significantly reduced the membrane permeability to SYTOX Green. Moreover, a similar effect was observed when the P. porphyrae cells were treated with SAP in the presence of MgCl2. In contrast, identical treatment in the presence of KCl significantly increased the membrane permeability to SYTOX Green. These results suggested that anti- Pythium mechanism of SAP was related to alteration of the membrane permeability in P. porphyrae. PMID:12764553

  14. Holocene Charcoal Deposition From Brazilian Forest Fires

    NASA Astrophysics Data System (ADS)

    Turcq, B.; Cordeiro, R. C.; Albuquerque, A. S.; Simoes, F. L.; Sifeddine, A.

    2004-12-01

    Determination of charcoal accumulation rate in lacustrine sediments allows to reconstruct the fire history of the region surrounding the lake. Our studies have been achieved in three Amazonian sites and one site in Atlantic rainforest. Charcoal fragments are identified and counted under a microscope. Typical size of these charcoals is around ten micrometers and they probably have been subject to eolian transport. The highest charcoal accumulation rates were obtained in sediments from Middle Holocene in Carajs region, eastern Amazonia. These rates are on the same order than the present day charcoal accumulation rate in Alta Floresta, a region of Amazonia which is being submited to intense slash and burn. The lowest values were found in Lagoa da Pata in Sao Gabriel da Cachoeira, a very humid area in western Amazon. We observed from the D. Helvcio record, in the Atlantic rainforest, fire occurrences from 8,400 to 6,400 cal years BP. For Carajs lake, surrounded by tropical rain forest, we had identified fires during the period between 8,000 and 5,300 cal years BP. Finally, the lake Caracarana, which is surrounded by grass savanna, showed a record of main fire occurrence phase at 9,750 cal yrs BP and a second phase marked by charcoal peaks at 7,680, 6,990 and 6,460 cal yrs BP. The synchronism of the fire occurrence periods in different Brazilian regions is related to the Middle Holocene dry climate phase provoked by the low summer insolation. Differences in the accumulation rates can be attributed to differences in biomass availability and fire return time. The carbon released in the atmosphere by this fires must have contributed to the observed increase of CO2, poorer in 13C, during the middle Holocene.

  15. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  16. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot.

    PubMed

    Barata, Andr; Santos, Sara Correia; Malfeito-Ferreira, Manuel; Loureiro, Virglio

    2012-08-01

    In this work, we studied the ecological interactions between grape berry microorganisms and Drosophila sp. flies involved in sour rot disease during grape ripening. After verison the total microbial counts of grape berries affected by sour rot increased from about 2 log CFU/g of berries to more than 7 log CFU/g. Berry damage provoked a clear shift in yeast diversity from basidiomycetes to ascomycetous fermentative species. The latter were mostly Pichia terricola, Hanseniaspora uvarum, Candida zemplinina, and Zygoascus hellenicus. However, these species were not able to produce the metabolites characteristic of sour rot (gluconic and acetic acids) in inoculated berries. On the contrary, the acetic acid bacteria Gluconacetobacter saccharivorans produced high levels of these acids, mainly when berries were incubated in the presence of the insect Drosophila sp. Sour rot was not observed when grape bunches were physically separated from insects, even when berries were artificially injured. The wounds made in berry skin healed in the absence of insects, thus preventing the development of sour rot. Therefore, in the vineyard, the induction of sour rot depends on the contamination of wounded berries by a microbial consortium--yeasts and acetic acid bacteria--transported by drosophilid insects which disseminate sour rot among damaged berries. In the absence of these insects, plant defense mechanisms are effective and lead to skin healing, preventing disease spread. Thus, we showed that Drosophila sp. act as a vector for microorganisms associated with grape sour rot disease. PMID:22438040

  17. SOURCE ASSESSMENT: CHARCOAL MANUFACTURING, STATE-OF-THE-ART

    EPA Science Inventory

    This document reviews the state of the art of air emissions from charcoal manufacture. The composition, quality, and rate of emissions, and their environmental effects are described. Charcoal is the solid material remaining after the pyrolysis of carbonaceous materials, primarily...

  18. Effect of Environment and Sugar Beet Genotype on Root Rot Development and Pathogen Profile During Storage.

    PubMed

    Liebe, Sebastian; Varrelmann, Mark

    2016-01-01

    Storage rots represent an economically important factor impairing the storability of sugar beet by increasing sucrose losses and invert sugar content. Understanding the development of disease management strategies, knowledge about major storage pathogens, and factors influencing their occurrence is crucial. In comprehensive storage trials conducted under controlled conditions, the effects of environment and genotype on rot development and associated quality changes were investigated. Prevalent species involved in rot development were identified by a newly developed microarray. The strongest effect on rot development was assigned to environment factors followed by genotypic effects. Despite large variation in rot severity (sample range 0 to 84%), the spectrum of microorganisms colonizing sugar beet remained fairly constant across all treatments with dominant species belonging to the fungal genera Botrytis, Fusarium, and Penicillium. The intensity of microbial tissue necrotization was strongly correlated with sucrose losses (R = 0.79 to 0.91) and invert sugar accumulation (R = 0.91 to 0.95). A storage rot resistance bioassay was developed that could successfully reproduce the genotype ranking observed in storage trials. Quantification of fungal biomass indicates that genetic resistance is based on a quantitative mechanism. Further work is required to understand the large environmental influence on rot development in sugar beet. PMID:26474333

  19. Botanicals to control soft rot bacteria of potato.

    PubMed

    Rahman, M M; Khan, A A; Ali, M E; Mian, I H; Akanda, A M; Abd Hamid, S B

    2012-01-01

    Extracts from eleven different plant species such as jute (Corchorus capsularis L.), cheerota (Swertia chiraita Ham.), chatim (Alstonia scholaris L.), mander (Erythrina variegata), bael (Aegle marmelos L.), marigold (Tagetes erecta), onion (Allium cepa), garlic (Allium sativum L.), neem (Azadiracta indica), lime (Citrus aurantifolia), and turmeric (Curcuma longa L.) were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc) P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments. PMID:22701096

  20. Antifungal activity of n-tributyltin acetate against some common yam rot fungi.

    PubMed Central

    Olurinola, P F; Ehinmidu, J O; Bonire, J J

    1992-01-01

    The antifungal activity of n-tributyltin acetate (TBTA) was examined in relation to combating yam rot disease. TBTA exhibited a significant effect in vitro and in vivo on four yam rot fungal isolates tested. However, the in vitro toxicity of TBTA was drastically reduced when 2.5% Tween 80 was the solvent instead of 25% acetone, as indicated by the MICs of 156.0 and 5.0 micrograms/ml, respectively. PMID:1610202

  1. Emissions of air pollutants from indoor charcoal barbecue.

    PubMed

    Huang, Hsiao-Lin; Lee, Whei-May Grace; Wu, Feng-Shu

    2016-01-25

    Ten types of commercial charcoal commonly used in Taiwan were investigated to study the potential health effects of air pollutants generated during charcoal combustion in barbecue restaurants. The charcoal samples were combusted in a tubular high-temperature furnace to simulate the high-temperature charcoal combustion in barbecue restaurants. The results indicated that traditional charcoal has higher heating value than green synthetic charcoal. The amount of PM10 and PM2.5 emitted during the smoldering stage increased when the burning temperature was raised. The EF for CO and CO2 fell within the range of 68-300 and 644-1225 g/kg, respectively. Among the charcoals, the lowest EF for PM2.5 and PM10 were found in Binchōtan (B1). Sawdust briquette charcoal (I1S) emitted the smallest amount of carbonyl compounds. Charcoal briquettes (C2S) emitted the largest amount of air pollutants during burning, with the EF for HC, PM2.5, PM10, formaldehyde, and acetaldehyde being the highest among the charcoals studied. The emission of PM2.5, PM10, formaldehyde, and acetaldehyde were 5-10 times those of the second highest charcoal. The results suggest that the adverse effects of the large amounts of air pollutants generated during indoor charcoal combustion on health and indoor air quality must not be ignored. PMID:26476306

  2. Charcoal from the pyrolysis of rapeseed plant straw-stalk

    SciTech Connect

    Karaosmanoglu, F.; Tetik, E.

    1999-07-01

    Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.

  3. Sawdust and Charcoal: Fuel for Raku.

    ERIC Educational Resources Information Center

    Brisson, Harriet E.

    1980-01-01

    Raku is an ancient Japanese process of firing pottery in which the bisqued piece is glazed and placed in a preheated kiln. Described are the benefits of substituting sawdust and charcoal for firing pottery by those people who do not have access to a kiln. (KC)

  4. Infection courts and timing of infection of apple fruit by Phacidiopycnis washingtonensis in the orchard in relation to speck rot during storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phacidiopycnis washingtonensis is the cause of speck rot, a recently reported postharvest fruit rot disease of apple. The pathogen is believed to incite infections in the field, and disease symptoms become evident only during storage. To determine the timing of apple fruit infection in the orchard i...

  5. Soft Rot of Tomato Caused by Mucor racemosus in Korea.

    PubMed

    Kwon, Jin-Hyeuk; Hong, Seung-Beom

    2005-12-01

    A soft rot of fruits caused by Mucor racemosus occurred on cherry tomato collected in Agricultural Products Wholesale Market in Jinju, Korea. The disease infection usually occurred wounded areas after cracking of fruits. At first, the lesions started with water soaked and rapidly softened and diseased lesion gradually expanded. Colonies were white to brownish to gray in color. Sporangia were 32~54 m in size and globose in shape. Sporangiophores were 8~14 m in width. Sporangiospores were 5~12 4~8 m in size, ellipsoidal to subglobose in shape. Columella was 27~42 m in size, obovoid, ellipsoidal, cylindrical-ellipsoidal, slightly pyriform in shape. Chlamydospores were numerous in sporangiophores and barrelshaped when young, subglobose in old cultures. Optimum growth temperature was about 25?. The fungus was identified as M. racemosus Fres. This is the first report of soft rot on cherry tomato caused by M. racemosus in Korea. PMID:24049508

  6. Restricting the means of suicide by charcoal burning.

    PubMed

    Yip, Paul S F; Law, C K; Fu, King-Wa; Law, Y W; Wong, Paul W C; Xu, Ying

    2010-03-01

    We conducted an exploratory controlled trial to examine the efficacy of restricting access to charcoal in preventing suicides from carbon monoxide poisoning by charcoal burning in Hong Kong. All charcoal packs were removed from the open shelves of major retail outlets in the intervention region for 12 months; in the control region, charcoal packs were displayed as usual. The suicide rate from charcoal burning was reduced by a statistically significant margin in the intervention region (P<0.05) but not in the control region. We observed no significant change in the suicide rate using other methods in either location. PMID:20194548

  7. A postharvest fruit rot of apple caused by Lambertella sp. in Washington state

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for postharvest diseases of apples in 2003-05, a fruit rot disease was observed on stored apples collected from packinghouses. The disease appeared to originate from infections of wounds on the fruit, and lesions were brown and decayed tissues were spongy. Lambertella sp. was consiste...

  8. Using airborne imagery to monitor cotton root rot infection before and after fungicide treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a severe soilborne disease that has affected cotton production for over a century. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of this disease. To effectively and economically control this disease, it is necessary to identify in...

  9. First report of Phytophthora root rot, caused by Phytophthora cryptogea, on spinach in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006 and 2007, commercially grown spinach (Spinacia oleracea) in California’s coastal Salinas Valley (Monterey County) was affected by an unreported root rot disease. Disease was limited to patches along the edges of fields. Affected plants were stunted with chlorotic older leaves. As disease pro...

  10. Preparation of charcoal from cherry stones

    NASA Astrophysics Data System (ADS)

    Durn-Valle, Carlos J.; Gmez-Corzo, Manuel; Gmez-Serrano, Vicente; Pastor-Villegas, Jos; Rojas-Cervantes, Mara L.

    2006-06-01

    Cherry stones (CS) are carbonised at 400-1000 C for 0-4 h in N 2 and the charcoals obtained are characterised to gain information about their chemical composition and porous texture, with a view to their use in the preparation of activated carbon. Depending on the heating conditions, the products obtained may possess a low ash content and a high fixed carbon content and are essentially microporous and macroporous solids.

  11. Sugarbeet root rot in the Intermountain West

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rot in sugarbeets caused by fungi and bacteria is a considerable problem in the western United States. In October 2004 and 2005, a survey was conducted on recently harvested sugarbeet roots throughout southern Idaho and eastern Oregon to identify the fungi and bacteria associated with root rot...

  12. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.

    PubMed

    Song, Feng-Jing; Xiao, Ming-Gang; Duan, Can-Xing; Li, Hong-Jie; Zhu, Zhen-Dong; Liu, Bao-Tao; Sun, Su-Li; Wu, Xiao-Fei; Wang, Xiao-Ming

    2015-08-01

    Stalk rots are destructive diseases in maize around the world, and are most often caused by the pathogen Pythium, Fusarium and other fungi. The most efficient management for controlling stalk rots is to breed resistant cultivars. Pythium stalk rot can cause serious yield loss on maize, and to find the resistance genes from the existing germplasm is the basis to develop Pythium-resistance hybrid lines. In this study, we investigated the genetic resistance to Pythium stalk rot in inbred line Qi319 using F2 and F2:3 population, and found that the resistance to Pythium inflatum in Qi319 was conferred by two independently inherited dominant genes, RpiQI319-1 and RpiQI319-2. Linkage analysis uncovered that the RpiQI319-1 co-segregated with markers bnlg1203, and bnlg2057 on chromosome 1, and that the RpiQI319-2 locus co-segregated with markers umc2069 and bnlg1716 on chromosome 10. The RpiQI319-1 locus was further mapped into a ~500-kb interval flanked by markers SSRZ33 and SSRZ47. These results will facilitate marker-assisted selection of Pythium stalk rot-resistant cultivars in maize breeding. To our knowledge, this is the first report on the resistance to P. inflatum in the inbred line Qi319, and is also the first description of two independently inherited dominant genes conferring the resistance of Pythium stalk rot in maize. PMID:25724693

  13. Emissions of air toxics from the production of charcoal in a simulated Missouri charcoal kiln

    SciTech Connect

    Lemieux, P.M.; Kariher, P.H.; Fairless, B.J.; Tapp, J.A.

    1998-11-01

    The paper gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutant from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In addition, other pollutants, including methanol, volatile organic compounds, semivolatile organic compounds, and particle emission rates and size distributions were measured using various techniques. Emissions of all pollutants are reported in grams emitted per unit mass of initial wood converted to charcoal. Two burn conditions--slow and fast burn--were examined. High levels of methanol, benzene, and fine particulate were emitted from all tests. The estimated emissions from the fast burn conditions were significantly higher than those from the slow burn conditions.

  14. Charcoal deposition and redeposition in Elk Lake, Minnesota, USA

    USGS Publications Warehouse

    Platt, Bradbury J.

    1996-01-01

    Sedimentary charcoal, diatom and phytolith records of the past 1500 years at Elk Lake, Minnesota, in combination with sediment trap studies and a transect of surface sediment samples, document the mechanisms by which previously deposited charcoal is redeposited and finally buried in this lake. The frequent correspondence of high diatom concentrations and peaks of phytolith and charcoal fragments suggest that currents and turbulence related to lake circulation are responsible for winnowing charcoal and phytoliths from shallow water depositional sites to deeper areas of the lake. High diatom concentrations in the record relate to increased nutrient fluxes also supplied by circulation. Despite the fact that the watershed and area around Elk Lake has not been burned since AD 1922, charcoal continues to reach the profundal zone from littoral source areas in Elk Lake. The variable redeposition of within-lake charcoal requires evaluation before fire-history records can be related to global, regional or even local fire events.

  15. Charcoal in the soil and the Earth System

    NASA Astrophysics Data System (ADS)

    Scott, A. C.

    2012-04-01

    Charcoal occurs in the natural environment as either a result of wildfire or volcanic processes. Charcoal is one of a range of pyrolysis products that may be included in the term black carbon. This paper outlines aspects of charcoal formation (both natural and experimental) and briefly considers the taphonomic processes leading to a final assemblage. This is done using examples from recent fires and through experimentation. In particular, it is shown that the temperature of charcoal formation may influence the rate of subsequent decay. This has significance for biochar studies. While charcoal may remain near the place of it's formation and be buried in soils it still may be affected by physical and chemical changes that result in fragmentation and subsequent loss to the soil. Charcoal may also be washed out of the fire site by overland flow particularly if the rain occurs soon after the fire. Charcoal is abundant in many sedimentary rocks deposited in a wide range of environments, from terrestrial to marine. Charcoal has a long fossil record and is found in rock sequences from the late Silurian onwards. Charcoal provides evidence of the deep time history of wildfire. There is an intimate relationship between the history of oxygen in the atmosphere and periods of extensive wildfires. High atmospheric oxygen levels (around 30%) in the late Palaeozoic and Cretaceous had a profound effect on the Earth System. The use of charcoal for plant evolution studies, fire history studies, vegetation studies, anatomical studies, climate and atmospheric studies and the wider importance of charcoal for the Earth and Biological Sciences will be considered (Scott 2010, Glasspool and Scott in press). Charcoal is information-rich but yet is an under-utilized resource.

  16. A new postharvest fruit rot in apple and pear caused by Phacidium lacerum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for postharvest diseases of apples and pears, an unknown postharvest fruit rot was observed in Washington State. The disease appeared to originate from infection of the stem and calyx tissue of the fruit or wounds on the fruit. An unknown pycnidial fungus was consistently isolated fro...

  17. Fungicide rotation schemes for managing Phytophthora fruit rot of watermelon in southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot, caused by Phytophthora capsici is a prevalent disease in most watermelon producing regions of the world. The disease was first reported in 1940 in Florida. It is particularly severe in the southeastern United States, where about 50% of the watermelon fruit are produced (FL, GA, AL, SC, N...

  18. Evaluating spectral measures derived from airborne multispectral imagery for detecting cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for more than 100 years, but effective practices for its control are still lacki...

  19. The Mitochondrial Genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moniliophthora roreri and Moniliophthora perniciosa are closely related basidiomycetes that cause two important diseases in cacao (Theobroma cacao L.): frosty pod rot and the witches' broom disease, respectively. A comparison of the complete mitochondrial genomes of these pathogens shows a high degr...

  20. Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

  1. First report of frosty pod rot caused by Moniliophthora roreri on cacao in Bolivia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frosty pod rot (FPR) is a devastating cacao disease caused by the basidiomycete Moniliophthora roreri (Aime and Phillips-Mora, 2005). The disease is confined to 13 countries in Central and South America and constitutes a permanent threat for cacao cultivation worldwide. In July 2012, FPR was detect...

  2. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivora, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for over a century, but effective practices for its control are still lacking. R...

  3. Factors affecting incidence, severity, and yield loss caused by the top rot form of red stripe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past 25 years in Louisiana, symptoms of red stripe caused by Acidovirax avenae subsp. avenae on sugarcane were limited to the red stripe form of the disease with no apparent yield loss. However, the more severe top rot symptom of the disease was observed in commercial sugarcane fields in ...

  4. Using mosaicked airborne imagery to assess cotton root rot infection on a regional basis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease in many of the cotton production areas in Texas. Since 2012, many cotton growers in Texas have used the Topguard fungicide to control this disease in their fields under Section 18 emergency exemptions. Airborne images have been used to monitor the...

  5. A postharvest fruit rot of apple caused by Lambertella corni-maris in Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for postharvest diseases of apples conducted in Washington State from 2003 to 2005, an unknown fruit rot was observed on stored apples collected from commercial fruit packinghouses. This disease was present in 66 of the 179 grower lots sampled, accounting for an average 1 to 3% of the...

  6. Stem rots of oil palm caused by Ganoderma boninense: pathogen biology and epidemiology.

    PubMed

    Pilotti, C A

    2005-01-01

    Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected. PMID:15750745

  7. Report of postharvest rot of kiwifruit in Korea caused by Sclerotinia sclerotiorum.

    PubMed

    Lee, Jung Han; Kwon, Young Ho; Kwack, Yong-Bum; Kwak, Youn-Sig

    2015-08-01

    In May 2014, sclerotinia rot symptoms caused by Sclerotinia sclerotiorum were observed on stored kiwifruit in Jinju, South Korea. The symptoms appeared as soft, water-soaked lesions on fruit covered with a white mycelium. The morphological characteristics and the internal transcribed spacer sequences of rRNA of the pathogen isolated from the sclerotinia rot showed it to be S. sclerotiorum. This was confirmed by performing a pathogenicity test with pure cultures of S. sclerotiorum and by reisolating S. sclerotiorum from artificially inoculated kiwifruits. Our results should help promote a better understanding of the diseases that affect kiwifruit and improve practices for postharvest disease control in the kiwifruit industry. PMID:25996522

  8. Charcoal as an alternative energy source. sub-project: briquetting of charcoal

    SciTech Connect

    Enstad, G.G.

    1982-02-02

    Charcoal briquettes have been studied both theoretically and experimentally. It appears most realistic to use binders in solution. Binders of this kind have been examined and the briquettes' mechanical properties measured. Most promising are borresperse, gum arabic, dynolex, and wood tar.

  9. Assessing the mineralisation of charcoal carbon in temperate soils

    NASA Astrophysics Data System (ADS)

    Ascough, P. L.; Tilston, E.; Garnett, M.

    2012-04-01

    Charcoal is pyrolized biomass characterized by its high C content and environmental recalcitrance. Recently 'biochar' has emerged as a concept as a means of long-term C sequestration with a sequestration potential that is comparable with current global anthropogenic fossil fuel emissions (5.5-9.5 Pg C yr-1 and 5.4 Pg C yr-1, respectively). However, charcoal is not a permanent C sink and estimates of charcoal degradation rates vary from the decadal or centennial timescales, with soil residence times in the order of thousands of years. Possible mechanisms of charcoal degradation include biotically and abiotically-mediated transformation and mineralization processes, resulting in a range of products of varying recalcitrance, including CO2. In soil science the decomposition of organic matter is routinely estimated by measuring CO2 efflux, but a key obstacle for the quantification of charcoal-derived CO2 is the accurate and precise apportionment of C sources arising from slow decomposition rates. Moreover, the addition of charcoal to soil can promote decomposition of indigenous soil organic matter and the concomitant increase in CO2 production does not therefore necessarily demonstrate mineralization of the charcoal C. Radiocarbon (14C) offers significant benefits in this regard as a sensitive technique for C source apportionment. We used the 14C content of CO2 respired by a surface soil to quantify the rate of charcoal mineralization, thus demonstrating the efficacy and sensitivity of our 14C approach for estimating charcoal degradation. During incubation the variations in charcoal-derived C mineralization are consistent with the loss of more labile components in the charcoal with a maximum of 2.1% of the evolved CO2-C being attributable to mineralisation of charcoal C. Extrapolation to an annual basis suggests that the loss rate of charcoal C is <1%, supporting the view that rates of charcoal C respiration are slow in temperate woodland soil. Implications for biogeochemical cycling of charcoal C are discussed in context of previous and ongoing work in this field.

  10. Evaluating effects of charcoal properties on phenanthrene sorption

    NASA Astrophysics Data System (ADS)

    James, G.; Sabatini, D. A.; Chiou, C. T.; Karapanagioti, H. K.

    2003-04-01

    To provide a better interpretation of the sorption behavior of soils and sediments with heterogeneous carbonaceous content, the adsorptive capacities of natural fire-produced charcoal particles were evaluated. Due to the charcoals heterogeneous nature, as observed in previous studies, it is not possible to delineate the charcoals sorption capacity by a single value. Both laboratory-produced and natural charcoal samples were tested for their surface properties and their adsorptive behavior. For laboratory-produced charcoal samples, there appears to be an optimum activation temperature that produces the highest surface area. At this temperature, there is a clear jump of not only the surface area values but also in the related contaminant adsorption capacity (Kfr). The optimal activation temperature was observed to vary between source materials (700oC for samples of Betula pendula versus 480oC for samples of Pinus sylvestris). Natural charcoals did not exhibit as high surface area, sorption capacity or nonlinearity as the laboratory-produced samples, suggesting that the natural samples studied were activated at temperatures either much higher or much lower than their optimal temperature. At equilibrium concentration of 1 ?g/L in water, phenanthrene log Koc values observed for laboratory-produced charcoal samples (5.3 to 7.4) are consistent with previous literature values (5.6 to 7.1). Thus, our hypothesis is corroborated: i.e., that heterogeneous charcoal properties, which can be attributed to different activation temperatures and starting materials, can highly impact their sorptive properties. Based on these findings, and assuming that the charcoal fraction relative to the soil organic matter fraction is usually low (< 0.1), the apparent phenanthrene Koc values with many natural solids can be significantly greater than predicted by a linear partitioning model at low phenanthrene concentrations, but will not deviate significantly at higher concentrations or when multiple solutes are present.

  11. Metal content of charcoal in mining-impacted wetland sediments.

    PubMed

    Baker, Leslie L; Strawn, Daniel G; Rember, William C; Sprenke, Kenneth F

    2011-01-01

    Charcoal is well known to accumulate contaminants, but its association with metals and other toxic elements in natural settings has not been well studied. Association of contaminants with charcoal in soil and sediment may affect their mobility, bioavailability, and fate in the environment. In this paper, natural wildfire charcoal samples collected from a wetland site that has been heavily contaminated by mine waste were analyzed for elemental contents and compared to the surrounding soil. Results showed that the charcoal particles were enriched over the host soils by factors of two to 40 times in all contaminant elements analyzed. Principal component analysis was carried out on the data to determine whether element enrichment patterns in the soil profile charcoal are related to those in the soils. The results suggest that manganese and zinc concentrations in charcoal are controlled by geochemical processes in the surrounding soil, whereas the concentrations of arsenic, lead, zinc, iron, phosphorus, and sulfur in charcoal are unrelated to those in the surrounding soil. This study shows evidence that charcoal in soils can have a distinct and important role in controlling contaminant speciation and fate in the environment. PMID:21093017

  12. Characterization of charcoals for helium cryopumping in fusion devices

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.; Batzer, T.H.; Call, W.R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals' pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  13. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow. PMID:26964338

  14. Characterization of charcoals for helium cryopumping in fusion devices

    NASA Astrophysics Data System (ADS)

    Sedgley, D. W.; Tobin, A. G.; Batzer, T. H.; Call, W. R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals- pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  15. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN

    EPA Science Inventory

    The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In Addition, other pollu...

  16. Effects of historic charcoal burning on soil properties

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Buras, Allan; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Wilmking, Martin

    2015-04-01

    In Northeastern Germany the production of ironware between the 16th and 19th century left behind a remarkable amount of charcoal kiln remains. At the study site in the forests north of Cottbus, Rubic Brunic Arenosols are developed on Weichselian glaciofluvial deposits. Remote sensing surveys, underpinned by archaeological studies, show that charcoal was gained from several thousand kilns. The round charcoal kiln remains with inner diameters up to 20 m are smooth platforms elevated a few decimeters higher than the surrounding area. The remaining mounds consist of an about 40 cm thick sheet containing residuals of the charcoal production process such as charcoal fragments, ash but also organic material covering the Rubic Brunic Arenosols. The charcoal kiln remains are distanced only up to 100 m from each other. For the 32 square kilometers large study site, the ground area covered by such charcoal production residuals is about 0.5 square kilometer, i.e. 1.5% of the study area. The charcoal kiln sites are a remarkable carbon accumulator on the sandy parent material. Against this background, we aim to characterize the effects of pyrolysis and the enrichment of carbon, induced by the charcoal production, on soil properties. Field work was done during archaeological rescue excavations on three charcoal kiln relicts having diameters of about 15 m. We applied 150 l of Brilliant Blue solution on six 1 square meter plots (three inside, three outside of the charcoal kiln mound) and afterwards trenched horizontal and vertical profiles for recording the staining patterns. Undisturbed soil samples to study soil micromorphology and further undisturbed samples for characterizing soil physical and hydraulic properties were taken. Outside of the charcoal kiln remain the Brilliant Blue solution drained within less than 10 minutes, whereas on the charcoal kiln remains the draining took between 20 and 40 minutes. Preliminary laboratory analyses underline the findings from the field and indicate that the carbon rich kiln residuals have a higher field capacity than the surrounding Arenosols. The matrix potential of the carbon rich kiln substrate is high and water drop penetration time tests show high water repellency. Our findings suggest that although the charcoal production led to an enrichment of carbon in the landscape, the hydraulic properties of the remaining ash layers can have negative effects on the water supply for plants.

  17. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi

    PubMed Central

    Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S.; Johnson-Cicalese, Jennifer; Polashock, James J.; White, James F.

    2015-01-01

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase. PMID:26322038

  18. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi.

    PubMed

    Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S; Johnson-Cicalese, Jennifer; Polashock, James J; White, James F

    2015-01-01

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase. PMID:26322038

  19. Fusion reactor high vacuum pumping: Charcoal cryosorber tritium exposure results

    SciTech Connect

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M. )

    1991-01-01

    Recent experiments, have shown the practically of using activated charcoal (coconut charcoal) at 4{degrees}K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were shown to be satisfactory. The long term effects of tritium on the charcoal/cement system developed by Grumman and LLNL were not known and a program was undertaken to see what, if any, effect long term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77{degrees}K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately half way through and after the exposure. Modest effects were noted which would not seriously restrict charcoal's use as a cryosorber for fusion reactor high vacuum pumping applications. 4 refs., 8 figs.

  20. Charcoal bed operation for optimal organic carbon removal

    SciTech Connect

    Merritt, C.M.; Scala, F.R.

    1995-05-01

    Historically, evaporation, reverse osmosis or charcoal-demineralizer systems have been used to remove impurities in liquid radwaste processing systems. At Nine Mile point, we recently replaced our evaporators with charcoal-demineralizer systems to purify floor drain water. A comparison of the evaporator to the charcoal-demineralizer system has shown that the charcoal-demineralizer system is more effective in organic carbon removal. We also show the performance data of the Granulated Activated Charcoal (GAC) vessel as a mechanical filter. Actual data showing that frequent backflushing and controlled flow rates through the GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. Recommendations are provided for operating the GAC vessel to ensure optimal performance.

  1. Influence of charcoal burning induced pyrolysis on soils

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Nicolay, Alexander; Ptzsch, Bastian; Fritzsche, Marie; Raab, Alexandra; Raab, Thomas

    2014-05-01

    In Lusatia, Northeastern Germany, the production of ironware between the 16th and 19th century left behind a remarkable amount of charcoal kilns in the forests north of Cottbus. Remote sensing surveys, underpinned by archaeological studies, show that charcoal was gained around Cottbus from several thousand charcoal kilns which had internal diameters up to 20 m. For the study site with 35 km2 area, the until now prospected total ground area below the charcoal kilns which was potentially affected by the pyrolysis is about 0,5 km2. Historic data indicates that the pyrolysis in the charcoal kiln took up to several weeks, for the kilns with a diameter of 20 m about 20 days. To characterize the depth of thermal alteration of soils below the kiln our current focus is on the differentiation of the iron hydroxides by small-scale vertical analysis of soil profiles. The study site is situated 16 km northeast of Cottbus at the opencast mine Jnschwalde. Field work was done during the archaeological rescue excavation of a charcoal kiln in a 50 m long trench crossing an about 15 m wide charcoal kiln. One vertical profile outside the charcoal kiln and two vertical profiles below the charcoal kiln were chosen for analysis. The magnetic susceptibility was measured in situ on the undisturbed profile and ex situ on stepwise heated samples (105, 350, 550, 750 and 950C). The total iron content was quantified ex situ by x-ray fluorescence. Our first results indicate a change in the magnetic susceptibility in the contact area of the mineral soil and the charcoal kiln. The influence of the pyrolysis on the soil is restricted to areas where the soil was not shielded against the heat by ash or organic material.

  2. Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach

    PubMed Central

    Martnez-Garca, Pedro J.; Parfitt, Dan E.; Bostock, Richard M.; Fresnedo-Ramrez, Jonathan; Vazquez-Lobo, Alejandra; Ogundiwin, Ebenezer A.; Gradziel, Thomas M.; Crisosto, Carlos H.

    2013-01-01

    The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL) approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some cultivars and advanced selections developed in the UC Davis and USDA breeding programs. Whole genome sequencing of the Pop-DF parents lead to discovery of high-quality SNP markers for QTL genome scanning in this experimental population. Pop-DF created by crossing a brown rot moderately resistant cultivar Dr. Davis and a brown rot resistant introgression line, F8,142, derived from an initial almond peach interspecific hybrid, was evaluated for brown rot resistance in fruit of harvest maturity over three seasons. Using the SNP linkage map of Pop-DF and phenotypic data collected with inoculated fruit, a genome scan for QTL identified several SNP markers associated with brown rot resistance. Two of these QTLs were placed on linkage group 1, covering a large (physical) region on chromosome 1. The genome scan for QTL and SNP effects predicted several candidate genes associated with disease resistance responses in other host-pathogen systems. Two potential candidate genes, ppa011763m and ppa026453m, may be the genes primarily responsible for M. fructicola recognition in peach, activating both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. Our results provide a foundation for further genetic dissection, marker assisted breeding for brown rot resistance, and development of peach cultivars resistant to brown rot. PMID:24244329

  3. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity.

    PubMed

    Charkowski, Amy; Blanco, Carlos; Condemine, Guy; Expert, Dominique; Franza, Thierry; Hayes, Christopher; Hugouvieux-Cotte-Pattat, Nicole; Lpez Solanilla, Emilia; Low, David; Moleleki, Lucy; Pirhonen, Minna; Pitman, Andrew; Perna, Nicole; Reverchon, Sylvie; Rodrguez Palenzuela, Pablo; San Francisco, Michael; Toth, Ian; Tsuyumu, Shinji; van der Waals, Jacquie; van der Wolf, Jan; Van Gijsegem, Frdrique; Yang, Ching-Hong; Yedidia, Iris

    2012-01-01

    Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity. PMID:22702350

  4. Crop damage from Sclerotinia crown rot and risk factors in pyrethrum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia crown rot, caused by Sclerotinia sclerotiorum and S. minor, is a prevalent disease in pyrethrum fields in Australia. Management involves the application of fungicides during the rosette stage of plant development during autumn to early spring in fields approaching first-harvest, althoug...

  5. Species Identification and Variation in the North American Cranberry Fruit Rot Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex mixtures of pathogenic fungi cause cranberry fruit rot, with the contribution by any given fungus to the disease varying from bed to bed, cultivar to cultivar, season to season, and across regions. Furthermore, population variability within the individual fungal species across growing region...

  6. Species Identification and Variation in the North American Cranberry Fruit Rot complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex mixtures of pathogenic fungi cause cranberry fruit rot, with the contribution by any given fungus to the disease varying from bed to bed, cultivar to cultivar, season to season, and across regions. Furthermore, population variability within the individual fungal species across growing region...

  7. LIMITED FUNGICIDE APPLICATIONS AFFECT BERRY ROT SEVERITY AND RESVERATROL CONTENT OF MUSCADINE GRAPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Berry rot diseases reduce yield and quality of muscadine grapes, but those losses may be minimized by fungicide applications. The fungicides, myclobutanil, azoxystrobin, and tebuconazole, were applied sequentially to two muscadine cultivars every ten days beginning at early bloom and stopping at pr...

  8. Pre-breeding for root rot resistance using root morphology and shoot length.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal is to identify new wheat varieties that display field resistance/tolerance to root rot diseases, such as those caused by Rhizoctonia and Pythium. We are tapping into the genetic diversity of synthetic hexaploid wheats (genome composition AABBDD), which were generated at CIMMYT by artifici...

  9. Monitoring cotton root rot infection in fungicide-treated cotton fields using airborne imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the authorization for use of Topguard fungicide (Section 18 exemption) on cotton in Texas to control cotton root rot in 2012 and 2013, many cotton growers used this product to treat their fields historically infected with the disease. The objectives of this study were to use airborne multispect...

  10. Field Testing of Alfalfa Cultivars for resistance to Sclerotinia Crown and Stem Rot: Problems and Progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia crown and stem rot (SCSR), caused by Sclerotinia trifoliorum, often causes severe losses in late-summer seeded alfalfa. The disease may be especially destructive when no-till methods are used. Most alfalfa cultivars presently available may be severely damaged when inoculcum concentrat...

  11. Draft Genome Sequence of a Virulent Pectobacterium carotovorum subsp. brasiliense Isolate Causing Soft Rot of Cucumber

    PubMed Central

    Onkendi, Edward M.; Ramesh, Aadi Moolam; Kwenda, Stanford; Naidoo, Sanushka

    2016-01-01

    Pectobacterium carotovorum subsp. brasiliense causes soft rot and blackleg diseases on potatoes, ornamentals, and other crops of economic importance. Here, we report a draft genome sequence of a highly virulent P.carotovorum subsp. brasiliense strain, PcbHPI01, isolated from a cucumber in South Africa. PMID:26744374

  12. First report of Gliocephalotrichum bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worldwide, significant post-harvest disease losses of rambutan (Nephelium lappaceum L.) have been reported and several pathogens have been associated with fruit rot. Even though rambutan was introduced to Puerto Rico in 1927, it was not until 1998 that commercial farms were established in the wester...

  13. Rhizoctonia root rot of lentil caused by Rhizoctonia solani AG 2-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil root rot symptoms were observed in commercial fields in the US Pacific Northwest during the unusually cool and moist spring weather of 2010. Symptoms included sunken lesions on root and stem with brown discoloration, resembling diseases caused by Rhizoctonia solani. Rhizoctonia solani was i...

  14. Management of bulls-eye rot of apple using pre- and postharvest fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulls-eye rot caused by Cryptosporiopsis kienholzii, Neofabraea alba, N. malicorticis and N. perennans is a common postharvest disease of apple and pear in the US Pacific Northwest. Fruit infection by these causal fungi occurs in the orchard and is latent at harvest. A primary practice for control ...

  15. Association of Verde plant bug, Creontiades signatus (Hemiptera: Miridae), with cotton boll rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton along the Gulf Coast of south Texas has experienced loss from cotton boll rot especially during the last 10 to 15 years, and stink bugs and plant bugs (Hemiptera: Pentatomidae and Miridae) that feed on cotton bolls have been suspected in introducing the disease. A replicated grower field surv...

  16. Identification and characterization of peanut oxalate genes and development of peanut cultivars resistant to stem rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern U.S., stem rot (Sclerotium rolfsii) is a common and destructive disease of peanut. Research has suggested the enhancement of resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Oxalate oxidase belongs to the germin family of proteins and acts ...

  17. Rhizoctonia root rot resistance in experimental sugar beet cultivars in Twin Falls County, ID, 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot continues to be a concerning problem in sugar beet production areas. To investigate resistance to this disease in 26 experimental sugar beet cultivars, field studies were conducted with three Rhizoctonia solani AG-2-2 IIIB strains. Based on means for the 26 cultivars, surface ...

  18. Identification of QTL for Resistance to Sclerotinia Stem Rot (Sclerotinia sclerotiorum) in Soybean Plant Introduction 194639

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia stem rot of soybean [Glycine max (L.) Merr.], caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a difficult disease to manage, although some gains have been made through breeding for quantitative resistance. The objective was to map quantitative trait loci (QTL) controlling partial ...

  19. Ground-based technologies for cotton root rot control: Results from a three-year experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall goal of this research is to develop ground-based technologies for disease detection and mapping which can maximize the effectiveness and efficiency of CRR (cotton root rot) treatments. Accurately mapping CRR could facilitate a much more economical solution than treating entire fields. Th...

  20. Effect of phytophthora capsici crown rot on watermelon rootstocks and grafts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crown and fruit rot caused by Phytophthora capsici is becoming an important and emerging disease of watermelon in the southeastern United States. In recent years, the practice of grafting seedless watermelons onto rootstocks belonging to other Cucurbitaceae genera is also gaining acceptance in our l...

  1. APHANOMYCES EUTEICHES ROOT ROT MYCELIA, ZOOSPORE, OR OOSPORE RESPONSE TO OAT EXTRACT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rot (Aphanomyces euteiches Drechs.) is a serious econimic threat to pea (Pisum sativum L.) production in the North Central and Pacific Northwest U.S. regions. The disease is responsible for an estimated 10% annual crop loss. A late summer seeded oat (Avena sativa L.) crop prior to spring pea pl...

  2. Rhizoctonia root rot resistance in commercial sugar beet cultivars in Twin Falls County, ID, 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot continues to be a concerning problem in sugar beet production areas. To investigate resistance to this disease in 26 commercial sugar beet cultivars, field studies were conducted with three Rhizoctonia solani AG-2-2 IIIB strains. Based on means for the 26 cultivars, surface ro...

  3. Evaluation of sugar beet germplasm for rhizomania and storage rot resistance in Idaho, 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomania in the field and fungal root rot in storage can both lead to significant sucrose losses in sugar beet roots. In an effort to reduce these losses, sugarbeet germplasm developed by the USDA-ARS Kimberly sugarbeet program was evaluated for resistance to both these disease problems. Nine suga...

  4. Plant growth promotion may compensate for losses due to moderate Aphanomyces root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year study was conducted to investigate the use of chemically-induced resistance and biocontrol bacteria for reducing sugar beet root rot disease caused by the oomycete organism Aphanomyces cochlioides. Stand establishment, yield, and quality analysis of sugarbeets from replicated field plots...

  5. Mechanisms of qualitative and quantitative resistance to Aphanomyces root rot in alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphanomyces root rot (ARR), caused by Aphanomyces euteiches, is one of the most important diseases of alfalfa (Medicago sativa) in the United States. Two races of the pathogen are currently recognized. Most modern alfalfa cultivars have high levels of resistance to race 1 but few cultivars have resi...

  6. SPATIAL DISTRIBUTION OF RHIZOCTONIA ORYZAE AND RHIZOCTONIA ROOT ROT IN DIRECT-SEEDED CEREALS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia oryzae causes root rot and stunting of wheat, barley, and other small grains, and is widely distributed in eastern Washington. The spatial distribution of both the pathogen and disease were studied over two seasons in a 36-ha field north of Pullman, WA. The field was direct-seeded with s...

  7. TEMPORAL AND SPATIAL EPIDEMIOLOGY OF PHYTOPHTHORA ROOT ROT IN FRASER FIR PLANTATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1999, 19 plots of Fraser fir (Abies fraseri) with a disease focus were established in commercial plantings grown for Christmas tree production in the mountains of five western North Carolina counties. Progress of Phytophthora root rot caused by Phytophthora cinnamomi as estimated by mortality wa...

  8. Postharvet losses associated with Rhizoctonia crown and root rot of sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the prevalence of Rhizoctonia crown and root rot (RCRR) increases, more diseased sugarbeet (Beta vulgaris L.) roots are destined for storage piles. To investigate the effect of RCRR on storage properties, roots with similar symptoms were grouped and extractable sucrose, invert sugar, and respirat...

  9. Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco.

    PubMed

    Almario, Juliana; Muller, Daniel; Dfago, Genevive; Monne-Loccoz, Yvan

    2014-07-01

    Soil suppressiveness to disease is an intriguing emerging property in agroecosystems, with important implications because it enables significant protection of susceptible plants from soil-borne pathogens. Unlike many soils where disease suppressiveness requires crop monoculture to establish, certain soils are naturally suppressive to disease, and this type of specific disease suppressiveness is maintained despite crop rotation. Soils naturally suppressive to Thielaviopsis basicola-mediated black root rot of tobacco and other crops occur in Morens region (Switzerland) and have been studied for over 30 years. In Morens, vermiculite-rich suppressive soils formed on morainic deposits while illite-rich conducive soils developed on sandstone, but suppressiveness is of microbial origin. Antagonistic pseudomonads play a role in black root rot suppressiveness, including Pseudomonas protegens (formerly P.?fluorescens) CHA0, a major model strain for research. However, other types of rhizobacterial taxa may differ in prevalence between suppressive and conducive soils, suggesting that the microbial basis of black root rot suppressiveness could be far more complex than solely a Pseudomonas property. This first review on black root rot suppressive soils covers early findings on these soils, the significance of recent results, and compares them with other types of suppressive soils in terms of rhizosphere ecology and plant protection mechanisms. PMID:24650207

  10. Resistance in watermelon rootstocks to crown rot caused by Phytophthora capsici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora crown and fruit rot caused by Phytophthora capsici is becoming an important and emerging disease of watermelon (Citrullus lanatus) in south eastern United States. In recent years, the practice of grafting seedless watermelons (triploids) onto rootstocks belonging to other Cucurbitaceae...

  11. Tubular bamboo charcoal for anode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Jun; Ye, Dingding; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2014-12-01

    The anode material plays a significant role in determining the performance of microbial fuel cells (MFCs). In this study, the bamboo charcoal tube is proposed as a novel anode substrate by carbonizing the natural bamboo. Its surface functional groups, biocompatibility and internal resistance are thoroughly investigated. Performance of the MFCs with a conventional graphite tube anode and a bamboo charcoal tube anode is also compared. The results indicate that the tubular bamboo charcoal anode exhibits advantages over the graphite tube anode in terms of rougher surface, superior biocompatibility and smaller total internal resistance. Moreover, the X-ray photoelectron spectroscopy (XPS) analysis for the bamboo charcoal reveals that the introduced C-N bonds facilitate the electron transfer between the biofilm and electrodes. As a result, the MFC with a bamboo charcoal tube anode achieves a 50% improvement in the maximum power density over the graphite tube case. Furthermore, scale-up of the bamboo charcoal tube anode is demonstrated by employing a bundle of tubular bamboo charcoal to reach higher power output.

  12. Production of charcoal and activated carbon at elevated pressure

    SciTech Connect

    Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr.

    1995-12-31

    With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

  13. Recovery of datable charcoal beneath young lavas: lessons from Hawaii.

    USGS Publications Warehouse

    Lockwood, J.P.; Lipman, P.W.

    1980-01-01

    Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at a lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Practical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. -Authors

  14. Detection of potato brown rot and ring rot by electronic nose: from laboratory to real scale.

    PubMed

    Biondi, E; Blasioli, S; Galeone, A; Spinelli, F; Cellini, A; Lucchese, C; Braschi, I

    2014-11-01

    A commercial electronic nose (e-nose) equipped with a metal oxide sensor array was trained to recognize volatile compounds emitted by potatoes experimentally infected with Ralstonia solanacearum or Clavibacter michiganensis subsp. sepedonicus, which are bacterial agents of potato brown and ring rot, respectively. Two sampling procedures for volatile compounds were tested on pooled tubers sealed in 0.5-1 L jars at room temperature (laboratory conditions): an enrichment unit containing different adsorbent materials (namely, Tenax() TA, Carbotrap, Tenax() GR, and Carboxen 569) directly coupled with the e-nose (active sampling) and a Radiello() cartridge (passive sampling) containing a generic Carbograph fiber. Tenax() TA resulted the most suitable adsorbent material for active sampling. Linear discriminant analysis (LDA) correctly classified 57.4 and 81.3% total samples as healthy or diseased, when using active and passive sampling, respectively. These results suggested the use of passive sampling to discriminate healthy from diseased tubers under intermediate and real scale conditions. 80 and 90% total samples were correctly classified by LDA under intermediate (100 tubers stored at 4C in net bag passively sampled) and real scale conditions (tubers stored at 4C in 1.25 t bags passively sampled). Principal component analysis (PCA) of sensorial analysis data under laboratory conditions highlighted a strict relationship between the disease severity and the responses of the e-nose sensors, whose sensitivity threshold was linked to the presence of at least one tuber per sample showing medium disease symptoms. At intermediate and real scale conditions, data distribution agreed with disease incidence (percentage of diseased tubers), owing to the low storage temperature and volatile compounds unconfinement conditions adopted. PMID:25127615

  15. Development of Codominant simple sequence repeat, single nucleotide polymorphism and sequence characterized amplified region markers for the pea root rot pathogen, Aphanomyces euteiches.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphanomyces root rot, caused by Aphanomyces euteiches, is a major disease affecting peas worldwide. Here we report three kinds of codominant genetic markers for the pathogen including simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs) and sequence characterized amplified regions ...

  16. Sorption of SF/sub 6/ by activated charcoal

    SciTech Connect

    Fuller, E.L. Jr.; Clinton, S.D.; Fallon, K.J.; Jones, C.M.; Perona, J.J.; Watson, J.S.; Senkan, S.M.

    1981-01-01

    Sorption isotherms for SF/sub 6/ on activated charcoal were obtained between -83 and 100/sup 0/C in the pressure range of 0.13 mPa to 100 kPa (1 ..mu..torr to 750 torr) by microgravimetric techniques. Charcoal uptakes as high as 0.80 g of SF/sub 6/ per gram of charcoal were observed with isosteric heats of sorption values ranging from -6.0 to -7.5 kcal/(g-mol). 5 figures.

  17. Rhizoctonia damping-off stem canker and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani has been reported to cause damping-off and root rot of rhododendrons and azaleas. Damping-off often includes groups of dying and dead seedlings. Decline of rooted plants in containers results from both root rot and stem necrosis below or above the soil line. Root rot is usually no...

  18. Identification of sources of resistance to sugarcane red rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rot, caused by Colletotrichum falcatum, adversely affects sugarcane stand establishment in Louisiana by rotting planted stalks. Since cultivar resistance is the most effective control method, a study was conducted to identify sources of resistance to red rot and evaluate variability within Sacc...

  19. Reduction of the polycyclic aromatic hydrocarbon (PAH) content of charcoal smoke during grilling by charcoal preparation using high carbonisation and a preheating step.

    PubMed

    Chaemsai, Suriyapong; Kunanopparat, Thiranan; Srichumpuang, Jidapa; Nopharatana, Montira; Tangduangdee, Chairath; Siriwattanayotin, Suwit

    2016-03-01

    Charcoal-grilling may lead to contamination of food with carcinogenic polycyclic aromatic hydrocarbons (PAHs) during the grilling process. The objective of this work was to determine the effect of charcoal preparation on 16 USEPA priority PAHs in the smoke produced during the grilling process. Firstly, mangrove charcoal was prepared at carbonisation temperatures of 500, 750 and 1000°C. The charcoal were then preheated by burning at 650°C. This preheating step is usually used to prepare hot charcoal for the grilling process in the food industry. In this study, charcoal was preheated at different burning times at 5, 20 min and 5 h, at which time partial and whole charcoal glowed, and charcoal was completely burnt, respectively. Finally, PAHs in the smoke were collected and determined by GC/MS. The result showed that charcoal prepared at a carbonisation temperature of 500°C had higher levels of PAHs released into the smoke. In contrast, charcoal produced at 750 and 1000°C had lower PAHs released for all burning times. In addition, PAHs released for 5, 20 min and 5 h of burning time were about 19.9, 1.2 and 0.7 µg g(-1) dry charcoal for charcoal produced at 500°C, and about 0.9-1.4, 0.8-1.2 and 0.15-0.3 µg g(-1) dry charcoal for charcoal produced at 750 and 1000°C, respectively. Therefore, this research suggests that food grilled using charcoal carbonised at a high temperature of about 750°C presents a lower risk of PAH contamination. In addition, in the preheating step, whole charcoal should fully glow in order to reduce the PAH content in charcoal before grilling. PMID:26785749

  20. Systems approach-based mitigation of postharvest diseases to overcome trade barriers for Washington apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Speck rot caused by Phacidiopycnis washingtonensis and Sphaeropsis rot caused by S. pyriputrescens were reported as new postharvest fruit rot diseases in Washington State in the mid-2000s. Both diseases can cause significant postharvest losses of fruit if left uncontrolled, and the two fungi have be...

  1. 24. Photocopy of photograph. VIEW OF CHARCOAL KILNS AND IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph. VIEW OF CHARCOAL KILNS AND IRON PLANT FROM SOUTH END OF BEACH, probably 1901. (From the Robert Teagle Private Collection, Port Townsend, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  2. Formation of charcoal from biomass in a sealed reactor

    SciTech Connect

    Mok, W.S.L.; Antal, M.J. Jr. ); Szabo, P.; Varhegyi, G.; Zelei, B. )

    1992-04-01

    In this paper, samples o cellulose, hemicellulose, lignin, and nine species of whole biomass are pyrolyzed in sealed reactors. Very high charcoal yields (e.g., 40% from cellulose, 48% from Eucalyptus gummifera) were obtained. Higher sample loading (sample mass per unit reactor volume) increased charcoal yield and the associated exothermic heat release and lowered the reaction onset temperature. These effects were induced by the vapor-phase concentrations of the volatile products, and not the system pressure. Addition of water catalyzed the reaction and increased the char yield. These observations suggest that charcoal formation is autocatalyzed by water, an initial pyrolysis product. When whole biomass was used as a feedstock, higher charcoal yields were obtained from species with high lignin and/or low hemicellulose content.

  3. INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE DEPRESSIONS, WHICH WERE COVERED WITH IRON GRATES TO SUSPEND POTS OVER THE HEAT SOURCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  4. Prevalence of Erwinia soft rot affecting cut foliage, Dracaena sanderiana ornamental industry and solution towards its management.

    PubMed

    Kayalvily, Thio Desiya; Jegathambigai, V; Karunarathne, M D S D; Svinningen, Arne; Mikunthan, G

    2012-01-01

    The study was carried out under net house conditions at Green Farms Ltd, Marawila to determine the occurrence and severity of Erwinia soft rot disease in Dracaena sanderiana plants and to formulate the possible control measures. Field experiment was carried out to manage the soft rot disease in D. sanderiana plants. Three different soil treatments with vermicompost, cow dung and poultry manure were tested to manage the disease and plots without application were kept as control. Percent disease incidence, disease reduction and growth parameters were recorded and data were statistically analyzed. Higher percentage of disease reduction was observed in vermicompost (80%) treated plots than those with cow dung (60%) and poultry manure treated. Sprinkler application of water was found favorable to spread soft rot disease and watering through horse pope had lessened the disease incidence significantly. Moreover plant height, shoot and root biomass, number of leaves per plant, leaf length and leaf width were significantly high in vermicompost media. Weeding, removal of diseased leaves and plants, and avoiding sprinkler irrigation were helpful to reduce the disease spread from plant to plant. Vermicompost is the best substrate for suppression of the disease and promoting the growth of plant. Among the different water management practices tested to reduce the disease severity of Erwinia soft rot disease in D. sanderiana plants, water irrigated through the horse pipe was effective compare to sprinkler application. In-vitro experiment conducted to manage the Erwinia soft rot disease by using bio-agent, Pseudomonas fluorescens was found effective to reduce the growth of Erwinia under in-vitro conditions. PMID:23878983

  5. Pyramiding Sclerotinia head rot and stalk rot resistances into elite sunflower breeding lines with the aid of DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Work was conducted in 2008 to determine the stalk rot resistance of RILs from the RHA 280 x RHA 801 population, as well as to begin introgression of previously identified QTL for head rot resistance into elite sunflower germplasm lines. The stalk rot RILs and their testcrosses with cms HA 89 were t...

  6. Fluorine gettering by activated charcoal in a radiation environment

    SciTech Connect

    Felker, L.K.; Toth, L.M.

    1988-10-01

    Activated charcoal has been shown to be an effective gettering agent for the fluorine gas that is liberated in a radiation environment. Even though activated charcoal is a commonly used getter, little is known about the radiation stability of the fluorine-charcoal product. This work has shown that not only is the product stable in high gamma radiation fields, but also that radiation enhances the capacity of the charcoal for the fluorine. The most useful application of this work is with the Molten Salt Reactor Experiment (MSRE) fuel salt because the radioactive components (fission products and actinides) cause radiolytic damage to the solid LiF-BeF/sub 2/-ZrF/sub 4/-UF/sub 4/ (64.5, 30.3, 5.0, 0.13 mol %, respectively) resulting in the liberation of fluorine gas. This work has also demonstrated that the maximum damage to the fuel salt by approx.3 /times/ 10/sup 7/ R/h gamma radiation is approximately 2%, at which point the rate of recombination of fluorine with active metal sites within the salt lattice equals the rate of fluorine generation. The enhanced reactivity of the activated charcoal and radiation stability of the product ensures that the gettered fluorine will stay sequestered in the charcoal.

  7. Charcoal versus LPG grilling: A carbon-footprint comparison

    SciTech Connect

    Johnson, Eric

    2009-11-15

    Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case, the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.

  8. Fluorine gettering by activated charcoal in a radiation environment

    SciTech Connect

    Felker, L.K.; Toth, L.M.

    1987-01-01

    Activated charcoal is an effective gettering agent for the fluorine gas that is liberated in a radiation environment. Even though activated charcoal is a commonly used getter, little is known about the radiation stability of the fluorine-charcoal product. The product is stable in high gamma radiation fields and radiation enhances the capacity of the charcoal for the fluorine. The most useful application of this work is with the Molten Salt Reactor Experiment (MSRE) fuel salt because the radioactive components (fission products and actinides) cause radiolytic damage to the solid LiF-BeF/sub 2/-ZrF/sub 4/-UF/sub 4/ (64.5, 30.3, 5.0, 0.13 mol %, respectively) resulting in the liberation of fluorine gas. The maximum damage to the fuel salt by approx.3 x 10/sup 7/ R/h gamma radiation is approximately 2%, at which point the rate of recombination of fluorine with active metal sites within the salt lattice equals the rate of fluorine generation. The enhanced reactivity of the activated charcoal and radiation stability of the product ensures that the gettered fluorine will stay sequestered in the charcoal. 9 refs., 3 figs.

  9. Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193

    PubMed Central

    Koskinen, Patrik; Nokso-Koivisto, Jussi; Pasanen, Miia; Broberg, Martin; Plyusnin, Ilja; Trnen, Petri; Holm, Liisa; Pirhonen, Minna; Palva, E. Tapio

    2012-01-01

    Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well. PMID:23133391

  10. Activated charcoal for acute overdose: a reappraisal.

    PubMed

    Juurlink, David N

    2016-03-01

    Sometimes mistakenly characterized as a 'universal antidote,' activated charcoal (AC) is the most frequently employed method of gastrointestinal decontamination in the developed world. Typically administered as a single dose (SDAC), its tremendous surface area permits the binding of many drugs and toxins in the gastrointestinal lumen, reducing their systemic absorption. Like other decontamination procedures, the utility of SDAC attenuates with time, and, although generally safe, it is not free of risk. A large body of evidence demonstrates that SDAC can reduce the absorption of drugs and xenobiotics but most such studies involve volunteers and have little generalizability to clinical practice. Few rigorous clinical trials of SDAC have been conducted, and none validate or refute its utility in those patients who are intuitively most likely to benefit. Over the past decade, a growing body of observational data have demonstrated that SDAC can elicit substantial reductions in drug absorption in acutely poisoned patients. The challenge for clinicians rests in differentiating those patients most likely to benefit from SDAC from those in whom meaningful improvement is doubtful. This is often a difficult determination not well suited to an algorithmic approach. The present narrative review summarizes the data supporting the benefits and harms of SDAC, and offers pragmatic suggestions for clinical practice. PMID:26409027

  11. Influence of iron on cylindrocarpon root rot development on ginseng.

    PubMed

    Rahman, Mahfuzur; Punja, Zamir K

    2006-11-01

    ABSTRACT Cylindrocarpon root rot, caused by Cylindrocarpon destructans, is an important disease on ginseng (Panax quinquefolius) in Canada. We studied the effects of iron (Fe) on disease severity and pathogen growth. When Hoagland's solution was amended with Fe at 56 and 112 mug/ml compared with 0 mug/ml, disease initiation and final severity on hydroponically maintained ginseng roots was significantly (P<0.0001) enhanced. Under field conditions, wounding of roots with a fine needle followed by application of 0.05% FeNaEDTA to the rhizosphere of treated plants significantly enhanced Cylindrocarpon root rot in 2003 and 2004 compared with unwounded roots with Fe or wounded roots without Fe. Foliar applications of Fe (as FeNaEDTA) to ginseng plants three times during the 2002 and 2003 growing seasons significantly increased Fe levels in root tissues. These roots developed larger lesions following inoculation with C. destructans in vitro. When radioactive Fe ((59)Fe) was applied to the foliage of ginseng plants, it was detected in the secondary phloem and in cortical and epidermal tissues within 1 week. Artificially wounded areas on the roots accumulated more (59)Fe than healthy areas. Diseased tissue also had threefold higher levels of phenolic compounds and Fe compared with adjoining healthy tissues. High-performance liquid chromatography analysis revealed enhanced levels of protocatechuic acid, chlorogenic acid, caffeic acid, ferulic acid, cinnamic acid, phloridizin, and quercetin. Phenolic compounds produced in diseased and wounded tissues sequestered Fe in vitro. The effects of Fe on mycelial growth, conidial germ tube length, and secondary branching of germ tubes of C. destructans were examined in vitro. When grown on Chrome-azurol S medium, Fe also was sequestered by C. destructans through siderophore production, which was visualized as a clearing pigmented zone at the margin of colonies. Mycelial dry weight was significantly increased in glucose/ yeast broth containing Fe at 56 or 112 mug/ml. Conidial germ tube length and secondary branching of hyphae also were enhanced after 8 and 16 h by Fe. Colony growth of C. destructans was not enhanced by Fe, but significantly greater spore production was observed with Fe at 56 and 112 mug/ml compared with no Fe in the medium. Although these levels of Fe had no effect on fungal pectinase enzyme activity, polyphenoloxidase (PPO) activity was significantly (P <0.0001) enhanced. We conclude that Fe enhances Cylindrocarpon root rot through enhanced pathogen growth, sporulation, and PPO enzyme activity. Fe sequestered by phenolic compounds produced in wounded tissues can enhance Fe levels at the site of infection. The pathogen also has the ability to sequester Fe at these sites. PMID:18943954

  12. Determining Tolerance in Commercial Watermelon Rootstocks to Crown Rot caused by Phytophthora Capsici using Real-Time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora crown and fruit rot caused by Phytophthora capsici is becoming an important and emerging disease of watermelon (Citrullus lanatus) in southeastern United States. Various rootstocks have been used for grafting watermelon in Asia and Europe to manage soil-borne diseases such as Fusarium ...

  13. Development of a ROT22 - DATAMAP interface

    NASA Technical Reports Server (NTRS)

    Shenoy, K. R.; Waak, T.; Brieger, J. T.

    1986-01-01

    This report (Contract NAS2-10331- Mod 10), outlines the development and validation of an interface between the three-dimensional transonic analysis program ROT22 and the Data from Aeromechanics Test and Analytics-Management and Analysis Package (DATAMAP). After development of the interface, the validation is carried out as follows. First, the DATAMAP program is used to analyze a portion of the Tip Aerodynamics and Acoustics Test (TAAT) data. Specifically, records 2872 and 2873 are analyzed at an azimuth of 90 deg, and record 2806 is analyzed at 60 deg. Trim conditions for these flight conditions are then calculated using the Bell performance prediction program ARAM45. Equivalent shaft, pitch, and twist angles are calculated from ARAM45 results and used as input to the ROT22 program. The interface uses the ROT22 results and creates DATAMAP information files from which the surface pressure contours and sectional pressure coefficients are plotted. Twist angles input to ROT22 program are then iteratively modified in the tip region until the computed pressure coefficients closely match the measurements. In all cases studied, the location of the shock is well predicted. However, the negative pressure coefficients were underpredicted. This could be accounted for by blade vortex interaction effects.

  14. Postharvest Rhizopus rot on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus species have been reported as a minor post-harvest rot on sugar beet, particularly under temperatures above 5 deg C. In 2010, Rhizopus was isolated from beets collected from Michigan storage piles in February at a low frequency. However, recent evidence from Michigan has found a high incide...

  15. DEVELOPING SCLEROTINIA HEAD ROT RESISTANT SUNFLOWER GERMPLASM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early, medium and advanced generation oilseed sunflower breeding lines were evaluated for Sclerotinia head rot resistance under artificial inoculation using an automated mist irrigation system at Carrington, North Dakota, approximately 180 miles northwest of Fargo. Sources of resistance for the adva...

  16. Trichoderma rot on Fallglo Tangerine Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2009, brown rot symptoms were observed on Fallglo fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreened with 5 ppm et...

  17. Agreement to market white rot fungi technology

    SciTech Connect

    Not Available

    1988-11-01

    Remediation Technologies, Inc. (ReTeC) has signed a licensing agreement with Utah State University (USU) for the joint commercialization of application of white rot fungi to bioremediate sludges and contaminated soils. The initial effort will focus on the use of composting technology for bioremediation of soils contaminated with coal tar residuals resulting from wood preserving operations and former gas manufacturing sites.

  18. Hands-On Whole Science. What Rots?

    ERIC Educational Resources Information Center

    Markle, Sandra

    1991-01-01

    Presents activities on the science of garbage to help elementary students learn to save the earth. A rotting experiment teaches students what happens to apple slices sealed in plastic or buried in damp soil. Other activities include reading stories on the subject and conducting classroom composting or toxic materials projects. (SM)

  19. Adsorption effects of activated charcoal on metaldehyde toxicity in rats.

    PubMed

    Shintani, S; Goto, K; Endo, Y; Iwamoto, C; Ohata, K

    1999-02-01

    Metaldehyde has been widely used as a main ingredient of solid fuel for making fire and slug baits in Japan. It is also marketed as a color flame tablet for party goods (ENGELFIRE). Consequently, children have been poisoned by eating such tablets which they mistook for candy. As a result, poison information center calls are increasing. According to POISINDEX, the treatment for metaldehyde poisoning consists in prevention of adsorption by activated charcoal, seizure control and airway protection. However, the optimum dose of charcoal is not established. We studied the quantitative adsorption capacity of activated charcoal for acute oral toxicity of metaldehyde in rats. In vivo toxicity and absorption tests for metaldehyde in Wister rats were done. The detoxifying effect of activated charcoal on metaldehyde toxicity and inhibition of metaldehyde absorption were investigated. Ratios used of po activated charcoal given 30 min after dosing to 400 mg metaldehyde/kg po were 5:1, 2:1, 1:1, 0.5:1. Serum metaldehyde was determined by gas chromatography in the control group (no charcoal) and the various experimental groups. Metaldehyde mortality was completely prevented at the ratio of 5:1. Gastrointestinal absorption of metaldehyde was reduced significantly by 45.3% in comparison to the control rats. There was no acetaldehyde detected in the serum of the metaldehyde-dosed rats. Metaldehyde poisoning may be prevented by early po administration of activated charcoal in a ratio of > 5:1 compared to metaldehyde. The theory that acetaldehyde is the primary toxic agent in metaldehyde poisoning should be re-evaluated. PMID:9949477

  20. Trace metal contents in barbeque (BBQ) charcoal products.

    PubMed

    Kabir, Ehsanul; Kim, Ki-Hyun; Yoon, H O

    2011-01-30

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 ?g kg(-1) (As) to 118 mg kg(-1) (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use. PMID:21074316

  1. Radon Adsorption on and Desorption from Activated Charcoal.

    NASA Astrophysics Data System (ADS)

    Wang, Ding

    1990-01-01

    The use of an active charcoal sampler for radon monitoring has become popular in recent years because of its passiveness and low price. The practical application of a passive radon sampler includes: (1) exposure of the charcoal sampler over some fixed period of time at a location to be monitored, (2) determination of the radon present in the sampler by detection of gamma radiation emitted by its progeny, and (3) interpretation of the amount of radon measured in terms of the average concentration of radon at the monitoring location during the sampling period. Various theories that describe the dynamics for the adsorption and desorption of radon on a passive charcoal sampler have been discussed in terms of practical applications for the monitoring of radon. However, extrapolation of the measured results of radon on charcoal to the time course of the ambient radon concentration is often difficult and even misleading because of the oversimplification of the theoretical models (Cohen 1983). A more generalized approach was undertaken by treating the diurnal variations in radon concentrations as poly-exponential functions and solving for explicit particular solutions of Fick's equation. The application of these solutions to various practical situations is explored. An experimental evaluation of diffusion coefficient D and adsorption coefficient k of charcoal beds in a closed system is carried out successfully by using this theoretical model.

  2. Breeding maize for resistance to ear rot caused by Fusarium moniliforme.

    PubMed

    Hefny, M; Attaa, S; Bayoumi, T; Ammar, S; El-Bramawy, M

    2012-01-15

    Maize ear rots are among the most important impediments to increased maize production in Egypt. The present research was conducted to estimate combining abilities, heterosis and correlation coefficients for resistance to ear rot disease in seven corn inbred lines and their 21 crosses under field conditions. Results demonstrated that both additive and non-additive gene actions were responsible for the genetic expression of all characters with the preponderance of non-additive actions for days to 50% silking. The parental line L51 was the best combiner for earliness, low infection severity %, high phenols content, short plants and reasonable grain yield, while L101 was good combiner for low ear rot infection only. The cross: L122 x L84, L122 x L101, L51 x L101, L76 x L36, L76 x L84, L36 x L84, L36 x L81 and L36 x L101 which involved one or both parents with good General Combining Ability (GCA) effects expressed useful significant heterosis and Specific Combining Ability (SCA) effects for low infection severity %, high phenol contents, early silking, tall plants and high grain yield. Phenotypic and genotypic correlation coefficients suggest that selection for resistance to ear rot should identify lines with high yielding ability, early silking, tall plants, high phenols content and chitinase activity. PMID:22545360

  3. Binding Potency of Heparin Immobilized on Activated Charcoal for DNA Antibodies.

    PubMed

    Snezhkova, E A; Tridon, A; Evrard, B; Nikolaev, V G; Uvarov, V Yu; Tsimbalyuk, R S; Ivanuk, A A; Komov, V V; Sakhno, L A

    2016-02-01

    In vitro experiments showed that heparin adsorbed on activated charcoal can bind antibodies raised against native and single-stranded DNA in a diluted sera pool with a high level of these DNA. Thus, heparin used as anticoagulant during hemosorption procedure can demonstrate supplementary therapeutic activity resulting from its interaction with various agents involved in acute and chronic inflammatory reactions such as DNA- and RNA-binding substances, proinflammatory cytokines, complement components, growth factors, etc. Research and development of heparin-containing carbonic adsorbents for the therapy of numerous inflammatory and autoimmune diseases seems to be a promising avenue in hematology. PMID:26902353

  4. Pore structure of the activated coconut shell charcoal carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  5. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    SciTech Connect

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A.

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  6. Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001

    PubMed Central

    Li, Yan; Han, Li-Rong; Zhang, Yuanyuan; Fu, Xuechi; Chen, Xinyi; Zhang, Lixia; Mei, Ruhong; Wang, Qi

    2013-01-01

    Apple ring rot disease, caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., is one of the most important diseases on apple fruits. In this study, strain 9001 isolated from healthy apple fruits from an infested orchard was evaluated for its biocontrol activity against apple ring rot in vitro and in vivo. Strain 9001 showed obvious antagonistic activity to B. dothidea YL-1 when plated on potato dextrose agar. Soaking healthy apples in the bacterial suspensions of strain 9001 prior to artificial inoculation of fungal pathogen resulted in a dramatic decrease in disease incidence when compared to the control. Moreover, either field application in the growth season or postharvest treatment of apples from infected orchards with bacterial suspensions of strain 9001 resulted in significantly reduced disease incidence within the storage period for 4 months at room temperature. Based on the phylogenetic analysis of 16S rRNA and the gyrA gene, strain 9001 was identified as Bacillus amyloliquefaciens. These results indicated that B. amyloliquefaciens 9001 could be a promising agent in biocontrol of apple ring rot on fruit, which might help to minimize the yield loss of apple fruit during the long postharvest period. PMID:25288943

  7. Synthetic dye decolourization by white rot fungi.

    PubMed

    Murugesan, K; Kalaichelvan, P T

    2003-09-01

    Synthetic dyes are integral part of many industrial products. The effluents generated from textile dyeing units create major environmental problems and issues both in public and textile units. Industrial wastewater treatment is one of the major problems in the present scenario. Though, the physical and chemical methods offer some solutions to the problems, it is not affordable by the unit operators. Biological degradation is recognized as the most effective method for degrading the dye present in the waste. Research over a period of two decades had provided insight into the various aspects of biological degradation of dyes. It is observed that the white rot fungi have a non-specific enzyme system, which oxidizes the recalcitrant dyes. Detailed and extensive studies have been made and process developed for treatment of dye containing wastewaters by white rot fungi and their enzyme systems. An attempt is made to summarize the detailed research contributions on these lines. PMID:15242299

  8. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora.

    PubMed

    Marek, S M; Hansen, K; Romanish, M; Thorn, R G

    2009-06-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia resembling those of Botrytis. Although the corticoid basidiomycetes Phanerochaete omnivora (Polyporales) and Sistotrema brinkmannii (Cantharellales; both Agaricomycetes) have been suggested as teleomorphs of Phymatotrichopsis omnivora, phylogenetic analyses of nuclear small- and large-subunit ribosomal DNA and subunit 2 of RNA polymerase II from multiple isolates indicate that it is neither a basidiomycete nor closely related to other species of Botrytis (Sclerotiniaceae, Leotiomycetes). Phymatotrichopsis omnivora is a member of the family Rhizinaceae, Pezizales (Ascomycota: Pezizomycetes) allied to Psilopezia and Rhizina. PMID:20198139

  9. Charcoal kiln relicts - a favorable site for tree growth?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Hirsch, Florian; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Wilmking, Martin

    2015-04-01

    Soils with incompletely combusted organic material (aka 'black carbon') are considered fertile for plant growth. Considerable enrichment of soils with black carbon is known from Chernozems, from anthropogenic induced altering of soils like the 'Terra Preta' in South America (e.g. Glaser, 2001), and from charcoal kiln relicts. Recent studies have reported a high spatial frequency of charcoal kiln relicts in the Northeastern German lowlands (Raab et al., 2015), which today are often overgrown by forest plantations. In this context the question arises whether these sites are favorable for tree growth. Here we compare the performance of 22 Pinus sylvestris individuals - a commonly used tree species in forestry - growing on charcoal kiln relicts with 22 control trees. Growth performance (height growth and diameter growth) of the trees was determined using dendrochronological techniques, i.e. standard ring-width measurements were undertaken on each two cores per tree and tree height was measured in the field. Several other wood properties such as annual wood density, average resin content, as well as wood chemistry were analyzed. Our results indicate that trees growing on charcoal kiln relicts grow significantly less and have a significantly lower wood density in comparison with control trees. Specific chemical components such as Manganese as well as resin contents were significantly higher in kiln trees. These results highlight that tree growth on charcoal kiln relicts is actually hampered instead of enhanced. Possibly this is a combined effect of differing physical soil properties which alter soil water accessibility for plants and differing chemical soil properties which may negatively affect tree growth either if toxic limits are surpassed or if soil nutrient availability is decreased. Additional soil analyses with respect to soil texture and soil chemistry shall reveal further insight into this hypothesis. Given the frequent distribution of charcoal kiln relicts in the German lowlands (e.g. Raab et al., 2015) and their potentially adverse effects on tree growth, these findings elucidate a yet unknown impact of past human activities on recent biological processes. Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W., 2001: The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37-41. Raab, A., Takla, M., Raab, T., Nicolay, A., Schneider, A., Rösler, H., Heußner, K.U., Bönisch, E., 2015. Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination. Quaternary International, doi: 10.1016/j.quaint.2014.09.041.

  10. Evaluation of charcoal sorbents for helium cryopumping in fusion reactors

    SciTech Connect

    Tobin, A.G.; Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1987-01-01

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. In this study, small coconut charcoal granules were utilized as the sorbent, and braze alloys and low temperature curing cements were used as the bonding agents for attachment to a copper support structure. Problems of scale-up of the bonding agent to a 40 cm diam panel were also investigated. Our results indicate that acceptable helium pumping performance of braze bonded and cement bonded charcoals can be achieved over the range of operating conditions expected in fusion reactors.

  11. Adsorption of radon gas in humid air on charcoal canisters

    SciTech Connect

    Blue, T.E.; Holcomb, D.E.

    1989-01-01

    Measurements of the concentration of radon in the environment using charcoal canisters were first described by George, and these canisters have become the Environmental Protection Agency standard. A calibration factor (CF), relating the detected activity A of the radon daughter {sup 214}Bi within the canister to the radon concentration in air C{sub R}, has been defined by Watson et al. The purpose of this paper is to examine a kinetic model for the adsorption of radon on a charcoal canister in humid air and to compare its predictions for the dependence of the CF on water mass gain and exposure time with the dependence measured by Watson.

  12. Predicting the efficiency of activated charcoal for filtering radon

    SciTech Connect

    Jarzemba, M.S.; Fentiman, A.W.; Blue, T.E.; Christensen, R.N. )

    1993-01-01

    In order to accurately assess the effectiveness of activated charcoal for the removal of radon from flowing air, a literature survey was performed to identify the models and relevant data that were available. It was found that by modifying the mathematical model of equilibrium stage theory used by Strong and Levins, the output rate of an activated charcoal filter exposed to a step function input in the radon rate at time zero with a given carrier gas flow velocity could be predicted. This paper outlines the modifications made to Strong and Levins's model and presents predictions for the filter output from the modified model.

  13. Charcoal's physical properties are key to understanding its environmental behavior

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Brewer, Catherine; Dugan, Brandon; Liu, Zuolin; Gonnermann, Helge; Zygourakis, Kyriacos; Davies, Christian; Panzacchi, Pietro; Gao, Xiaodong; Pyle, Lacey

    2014-05-01

    Charcoal is a highly porous, low density material whose physical properties play a key role in its soil behavior and its environmental fate. In considering biochar, some of its most sought-after environmental effects are a result of its physical characteristics, not its chemical or biological properties. For example, the ability of biochar to retain soil water is widely attributed to its porosity. However, charcoal physical properties are so poorly understood that they are sometimes not characterized at all in the current literature. Here we outline a suite of basic physical properties of charcoal and the likely environmental effects of their variations, with a focus on the interactions between charcoal and water. The most basic physical property of charcoal, its particle size, likely plays a role in its ability to alter the rate of drainage in soils. Particle morphology is also relevant, affecting how particles of soil and char can pack together. Bulk densities of charcoal and soil mixtures can be used to generate a simple estimate of the efficiency of char-soil packing. Charcoal density is an additionally important property and can be measured in a number of ways. Density almost certainly controls the tendency of chars to sink or float, and to erode or remain on the land surface. However, charcoal density can vary by almost a factor of 10 depending on the measurement technique used. We discuss two simple techniques available for measuring char density and the value of information provided by each approach. Finally, we report a simple, fast technique to measure total char porosity, including all pores from nanometers to 10s of micrometers in size. Porosity is at least one of the key controls on the ability of biochar to improve plant-available water, and techniques to measure it have previously been limited to the smallest fraction of pores (N2 sorption) or have required expensive, hazardous procedures (Hg porosimetry). We show that char porosity varies primarily as a function of feedstock and secondarily as a function of pyrolysis conditions.

  14. Wood-rotting fungi of North America

    SciTech Connect

    Gilbertson, R.L.

    1980-01-01

    The biology of wood-rotting fungi is reviewed. Discussions are presented in taxonomy, species diversity, North American distribution, developmental response to environmental factors, edibility and toxicity, medical uses, relationships of fungi with insects and birds, the role of fungi as mycorrhiza, pathological relationships with trees, role in wood decay, and ecology. Threats to the continuing existence of these fungi as a result of increased utilization of wood as fuel are also discussed. (ACR)

  15. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.

    PubMed

    Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

    2014-05-01

    Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper. PMID:24168044

  16. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  17. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    PubMed Central

    Riley, Robert; Salamov, Asaf A.; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitrios; Held, Benjamin W.; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio G.; Walton, Jonathan D.; Blanchette, Robert A.; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S.; Grigoriev, Igor V.

    2014-01-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869

  18. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.

    PubMed

    Riley, Robert; Salamov, Asaf A; Brown, Daren W; Nagy, Laszlo G; Floudas, Dimitrios; Held, Benjamin W; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A; Sun, Hui; LaButti, Kurt M; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E; Pisabarro, Antonio G; Walton, Jonathan D; Blanchette, Robert A; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S; Grigoriev, Igor V

    2014-07-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869

  19. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review

    PubMed Central

    Czajkowski, R; Prombelon, MCM; Jafra, S; Lojkowska, E; Potrykus, M; van der Wolf, JM; Sledz, W

    2015-01-01

    The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in storage thereby reducing yield and quality. Efficient and cost-effective detection and identification methods are essential to investigate the ecology and pathogenesis of the SRE as well as in seed certification programmes. The aim of this review was to collect all existing information on methods available for SRE detection. The review reports on the sampling and preparation of plant material for testing and on over thirty methods to detect, identify and differentiate the soft rot and blackleg causing bacteria to species and subspecies level. These include methods based on biochemical characters, serology, molecular techniques which rely on DNA sequence amplification as well as several less-investigated ones. PMID:25684775

  20. Postharvest jasmonic acid treatment of sugarbeet roots reduces rot due to Botrytis cinerea, Penicillium claviforme, and Phoma betae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although jasmonic acid (JA) and JA derivatives are known to activate plant defense mechanisms and provide protection against postharvest fungal diseases for several horticultural crops, JA’s ability to protect sugarbeet (Beta vulgaris L.) roots against common causal organisms of storage rot is unkno...

  1. The Salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh vegetables have been recurrently associated with salmonellosis outbreaks and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that Salmonella enterica Typhimurium SL1344 grows to 50-fold greater populations in the pres...

  2. First report of Lasmenia sp. causing rachis necrosis, flower abortion, fruit rot and leaf spots on rambutan in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rambutan is an exotic tropical fruit that has increased in commercial importance for growers in Puerto Rico. In 2008 and 2009, fruit rot and lesions on both leaves and inflorescences were observed. A total of 276 diseased samples from these plant parts were collected at commercial orchards, Agricult...

  3. PCR/RFLP BASED METHOD FOR DETECTION OF RALSTONIA SOLANACEARUM RACE 3/BIOVAR2 CAUSING BROWN ROT OF POTATO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    R. solanacearum has a broad host range and can be subdivided into 4 races and 5 biovars according to the plant host and biochemical properties. R. solanacearum race 3/biovar 2 primarily infects potato and is the phenotype responsible for recent outbreaks of potato brown rot disease in several count...

  4. Verde plant bug associatioin with boll damage including cotton boll rot and potential in-season indicators of damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton along the Gulf Coast of south Texas has experienced loss from cotton boll rot especially during the last 10 to 15 years, and stink bugs and plant bugs (Hemiptera: Pentatomidae and Miridae) that feed on cotton bolls have been suspected in introducing the disease. A replicated grower field surv...

  5. Pre- and post-harvest development of Phytophthora fruit rot on watermelons treated with fungicides in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot, caused by Phytophthora capsici, is a serious disease in most watermelon producing regions in southeastern U.S., and has caused devastating loss over the past few years. In many instances, severe losses occurred after harvest during transportation. Experiments were conducted in 2010, 201...

  6. Effects of Cultural Practices and Chemical Treatments on Phytophthora Root Rot Severity of Blueberries Grown in Southern Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot, caused by Phytophthora cinnamomi Rands, is an important disease of highbush, southern highbush and rabbiteye blueberry. Southern highbush cultivars are being grown in the southeastern U.S. for their early fruit production and reduced chilling requirement; however, as the acre...

  7. The prevalence of different strains of Rhizoctonia solani associated with Rhizoctonia crown and root rot symptoms in Ontario sugarbeet fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia crown and root rot (RCRR) [Rhizoctonia solani Khn] is an important disease of sugarbeets in southwestern Ontario, Canada. A survey of commercial sugarbeet fields was completed in 2010 and 2011 to determine the range of R. solani anastomosis groups (AGs) and inter-specific groups (ISGs) ...

  8. Screening of a dry bean Andean diversity panel for potential sources of resistance to Rhizoctonia crown and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani, is a major problem in most sugar beet production areas and can cause substantial losses in both yield and quality. Over the last decade, it has become the most prevalent root disease of sugar beet in Michigan and several other regi...

  9. First evidence of a binucleate Rhizoctonia as the causal agent of dry rot canker of sugar beet in Nebraska, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) is the primary source of domestic sucrose in the United States. In 2011, a sugar beet field in Morrill County NE was noted with wilting and yellowing symptoms suggestive of Rhizoctonia root and crown rot (RCRR), an important disease of sugar beet caused by Rhizoctonia s...

  10. Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitosan (CS) and oligochitosan (OCS), as natural antifungal agents, have been primarily used as alternatives to synthetic chemical fungicides to control postharvest diseases of fruits. The effectiveness of these two agents on the growth of Monilinia fructicola to control brown rot has not yet been...

  11. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...

  12. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to the charcoal that is produced in Missouri-type charcoal kilns. An afterburner was added later to study conditions for oxidizing the volatile organic co...

  13. Research report: Charcoal type used for hookah smoking influences CO production.

    PubMed

    Medford, Marlon A; Gasier, Heath G; Hexdall, Eric; Moffat, Andrew D; Freiberger, John J; Moon, Richard E

    2015-01-01

    A hookah smoker who was treated for severe carbon monoxide poisoning with hyperbaric oxygen reported using a different type of charcoal prior to hospital admission, i.e., quick-light charcoal. This finding led to a study aimed at determining whether CO production differs between charcoals commonly used for hookah smoking, natural and quick-light. Our hypothesis was that quick-light charcoal produces significantly more CO than natural charcoal. A medium-sized hookah, activated charcoal filter, calibrated syringe, CO gas analyzer and infrared thermometer were assembled in series. A single 9-10 g briquette of either natural or quick-light charcoal was placed atop the hookah bowl and ignited. CO output (ppm) and temperature (degrees C) were measured in three-minute intervals over 90 minutes. The mean CO levels produced by quick-light charcoal over 90 minutes was significantly higher (3728 ± 2028) compared to natural charcoal (1730 ± 501 ppm, p = 0.016). However, the temperature was significantly greater when burning natural charcoal (292 ± 87) compared to quick-light charcoal (247 ± 92 degrees C, p = 0.013). The high levels of CO produced when using quick-light charcoals may be contributing to the increase in reported hospital admissions for severe CO poisoning. PMID:26403022

  14. URINARY BIOMARKERS IN CHARCOAL WORKERS EXPOSED TO WOOD SMOKE IN BAHIA STATE, BRAZIL

    EPA Science Inventory

    Charcoal is an important source of energy for domestic and industrial use in many countries. In Brazil, the largest producer of charcoal in the world, approximately 350,000 workers are linked to the production and transportation of charcoal. In order to evaluate the occupationa...

  15. RECYCLE AND REUSE OF CHARCOAL MADE FROM EXCESS SLUDGE IN MEMBRANE BIOREACTOR

    NASA Astrophysics Data System (ADS)

    Tran, Tuyet Thi; Shafiquzzaman, Md.; Nakajima, Jun

    Charcoal produced from excess sludge appeared to be useful for removing SMP (soluble microbial products) in MBR (membrane bioreactors) and therefore for reducing membrane fouling. Batch experiments and long-term MBR experiments were performed by using charcoal made of actual excess sludge. In the batch experiments, SMP was removed effectively through charcoal addition. This approach proved especially effective for the removal of carbohydrate. Charcoal would serve as an absorbent and coagulant in SMP removal. High BOD (biochemical oxygen demand) removal efficiencies produced no negative effects on biological activity in the reactors during the long-term MBR experiments involving charcoal addition. The decrease of humic substances and COD (chemical oxygen demand) through charcoal addition suggested that this approach effectively enhanced the performance of activated sludge treatment. A charcoal addition of more than 0.1% in long-term MBR experiments effectively decreased the membrane fouling frequency. The use of charcoal therefore served to mitigate membrane fouling. A decrease in carbohydrate, corresponding to the increase in the mean fouling period, suggested that a charcoal addition of more than 0.1% effectively removed SMP, especially carbohydrate. A charcoal cyclic reuse system is also proposed. This system would involve charcoal production and charcoal addition to MBR.

  16. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  17. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  18. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment... MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory 454.10 Applicability; description of the manufacture of char and charcoal briquets subcategory. The provisions of this subpart...

  19. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER (PROJECT SUMMARY)

    EPA Science Inventory

    A laboratory-scale charcoal kiln simu-lator was constructed and tested to de-termine if it could be used to produce charcoal that was similar to that pro-duced in Missouri-type charcoal kilns. An afterburner was added later to study conditions for oxidizing the volatile or-ganic ...

  20. Small Scale Charcoal Making: A Manual for Trainers.

    ERIC Educational Resources Information Center

    Karch, Ed; And Others

    This training program offers skills training in all stages of the development of technologies related to small-scale charcoal production, including the design, construction, operation, maintenance, repair, and evaluation of prototype kilns. The kiln designs are selected to be as consistent as possible with the realities of rural areas in…

  1. EMISSIONS FROM STREET VENDOR COOKING DEVICES (CHARCOAL GRILLING)

    EPA Science Inventory

    The report discusses a joint U.S./Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in t...

  2. Evaluating Waste Charcoal as Potential Rubber Composite Filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, charcoal in the form of pyrolyzed agricultural products was evaluated as potential carbon-based filler for rubber composites made with carboxylated styrene-butadiene lat...

  3. Charcoal byproducts as potential styrene-butadiene rubber composte filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, various renewable charcoals in the form of pyrolyzed agricultural byproducts were evaluted as potential carbon-based filler for rubber composites made with carboxylated s...

  4. EMISSIONS FROM STREET VENDOR COOKING DEVICES (CHARCOAL GRILLING) - PROJECT SUMMARY

    EPA Science Inventory

    The report discusses a joint U.S./Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in t...

  5. Activated charcoal. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning theoretical aspects and industrial applications of activated charcoal. Topics include adsorption capacity and mechanism studies, kinetic and thermodynamic aspects, and description and evaluation of adsorptive abilities. Applications include use in water analyses and waste treatment, air pollution control and measurement, and in nuclear facilities. (Contains a minimum of 151 citations and includes a subject term index and title list.)

  6. Comparing modelled fire dynamics with charcoal records for the Holocene

    NASA Astrophysics Data System (ADS)

    Brücher, T.; Brovkin, V.; Kloster, S.; Marlon, J. R.; Power, M. J.

    2013-11-01

    An Earth System model of intermediate complexity, CLIMBER-2, and a land surface model JSBACH that represents vegetation dynamically are used to simulate natural fire dynamics through the last 8000 yr. Output variables of the fire model (burned area and fire carbon emissions) are used to compare model results with sediment-based charcoal reconstructions and several approaches of model output processing are tested. Charcoal data are reported in Z-scores and have been used for the period 8000 to 200 BP to exclude the post-Industrial period of strong anthropogenic forcing during the last two centuries. The model-data comparison reveals a robust correspondence in fire trends for most regions considered, while few regions, such as Europe, display different trends between simulated and observed trends. The difference between the modelled and observed fire activity could be linked to an absence of the anthropogenic forcing (e.g., human ignitions and suppression) in the model simulations, but also related to limitations of model assumptions for modelling fire dynamics. For the model trends, the usage of spatial averaging or Z-score processing of model output resulted in similar directions of trend. However, modelled Z-scores resulted in higher rank correlations with the charcoal Z-scores in most of the regions. Therefore, while both metrics are useful, the Z-score processing is more preferable for the modelled fire comparison with the charcoal records than the areal averaging.

  7. Comparing modelled fire dynamics with charcoal records for the Holocene

    NASA Astrophysics Data System (ADS)

    Brücher, T.; Brovkin, V.; Kloster, S.; Marlon, J. R.; Power, M. J.

    2014-04-01

    An earth system model of intermediate complexity (CLIMate and BiosphERe - CLIMBER-2) and a land surface model (JSBACH), which dynamically represent vegetation, are used to simulate natural fire dynamics through the last 8000 yr. Output variables of the fire model (burned area and fire carbon emissions) are used to compare model results with sediment-based charcoal reconstructions. Several approaches for processing model output are also tested. Charcoal data are reported in Z-scores with a base period of 8000-200 BP in order to exclude the strong anthropogenic forcing of fire during the last two centuries. The model-data comparison reveals a robust correspondence in fire activity for most regions considered, while for a few regions, such as Europe, simulated and observed fire histories show different trends. The difference between modelled and observed fire activity may be due to the absence of anthropogenic forcing (e.g. human ignitions and suppression) in the model simulations, and also due to limitations inherent to modelling fire dynamics. The use of spatial averaging (or Z-score processing) of model output did not change the directions of the trends. However, Z-score-transformed model output resulted in higher rank correlations with the charcoal Z-scores in most regions. Therefore, while both metrics are useful, processing model output as Z-scores is preferable to areal averaging when comparing model results to transformed charcoal records.

  8. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  9. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.).

    PubMed

    Gajera, H P; Savaliya, Disha D; Patel, S V; Golakiya, B A

    2015-08-01

    The study examine induction of defense enzymes involved in phenylpropanoid pathway and accumulation of pathogenesis related proteins in rot pathogen (Aspergillus niger Van Tieghem) challenged groundnut seedlings in response to Trichoderma viride JAU60. Seeds of five groundnut varieties differing in collar rot susceptibility were sown under non-infested, pathogen infested and pathogen+T. viride JAU60 seed treatment. Collar rot disease evident between 31.0% (J-11, GG-2) and 67.4% (GG-20) in different groundnut varieties under pathogen infested which was significantly reduced from 58.1% (J-11, GG-2) to 51.6% (GG-20) by Trichoderma treatment. The specific activities of polyphenol oxidase (EC 1.14.18.1) and ?-1,3 glucanase (EC 3.2.1.6) elevated 3.5 and 2.3-fold, respectively, at 3 days; phenylalanine ammonia lyase (EC 4.3.1.5) evident 1.6-fold higher at 6 days; and chitinase (EC 3.2.1.14) sustained 2.3-2.8 folds up to 9 days in Trichoderma treated+pathogen infested seedlings of tolerant varieties (J-11, GG-2) compared with moderate and susceptible (GAUG-10, GG-13, GG-20). T. viride JAU60 induces defense enzymes in a different way for tolerant and susceptible varieties to combat the disease. This study indicates the synergism activation of defense enzymes under the pathogenic conditions or induced resistance by T. viride JAU60 in a different groundnut varieties susceptible to collar rot disease. PMID:26160540

  10. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.

    2015-11-01

    Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125–250 μm) and large (250 μm–1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125–250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.

  11. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.

    PubMed

    Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark

    2016-01-01

    Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present. PMID:26524545

  12. New Fungicides for Managing Phytophthora Fruit Rot of Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the past several years, Phytophthora fruit rot of watermelon (causal agent: Phytophthora capsici) has been considered an important problem and a top research priority by the National Watermelon Association. Management of Phytophthora fruit rot is particularly difficult because of the long durati...

  13. Cultivar Selection for Sugar Beet Root Rot Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  14. Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica.

    PubMed

    Gidoin, Cynthia; Avelino, Jacques; Deheuvels, Olivier; Cilas, Christian; Bieng, Marie Ange Ngo

    2014-03-01

    Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests. PMID:24168046

  15. Discovery of novel sources of resistance to head rot and stalk rot in cultivated sunflower and wild Helianthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2010 growing season had abnormally high rainfall in the Red River Valley area of North Dakota and Minnesota, where many of our Sclerotinia nurseries were located. While we have successfully done field evaluations of sunflower for both Sclerotinia head rot and stalk rot for nine years, we lost vi...

  16. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

    PubMed Central

    Song, Minjae; Yun, Hye Young; Kim, Young Ho

    2013-01-01

    Background This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to 25C, produced no pectinase (related to root rotting) and no critical rot symptoms at low [106 colony-forming units (CFU)/mL] and high (108CFU/mL) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of 106 CFU/mL than at 108CFU/mL. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum. PMID:24748838

  17. The effect on blood lipids of eating charcoal-grilled meat.

    PubMed

    Heller, R F; Hartley, R M; Lewis, B

    1983-08-01

    For 9 days, 12 volunteers ate each day 8 oz of hamburgers and 6 oz of steak barbecued over charcoal. This was followed by a mean rise in high density lipoprotein (HDL) cholesterol of 25%. In addition there was a reduction in total cholesterol (the fall in total less the HDL fraction, which reflects mainly low density lipoprotein cholesterol was 20%). These changes were not seen when 6 of the subjects later ate the same quantity of meat under the same conditions except that it had been cooked in an electric oven. Benzo(a)pyrene and other polycyclic aromatic hydrocarbons have previously been shown to be produced in meat cooked over charcoal, and it is suggested that the resulting induction of the polycyclic hydrocarbon-dependent type of cytochrome P450 is responsible for inducing enzyme activity involved in lipid metabolism. Despite the beneficial effect that such changes in lipids might have on the risk of coronary heart disease, these findings should not be seen as a guide to long-term changes in cooking practice in view of the possible carcinogenic effects of benzo(a)pyrene produced in this way. PMID:6311228

  18. Suicide by burning barbecue charcoal: three case reports.

    PubMed

    Brooks-Lim, E W L; Sadler, D W

    2009-10-01

    We report three cases of suicide in Scotland where barbecue charcoal was purposely burned in confined areas (an outbuilding, a car and a bedroom). External examination of the three cases revealed a distinctive 'cherry red' discolouration to the post-mortem lividity and blood and there were no marks or injuries to the bodies to give any cause for concern. Toxicological analysis of femoral blood samples revealed fatal levels of carbon monoxide (70%, 85% and 80% respectively). Considering the history, circumstances and external findings, a 'View and Grant' examination was conducted in all three cases and the cause of death was attributed to carbon monoxide poisoning due to inhalation of burning charcoal fumes. This particular method of suicide is not common in Europe and is more widely reported in the Far East. PMID:20025107

  19. Radon removal from gaseous xenon with activated charcoal

    NASA Astrophysics Data System (ADS)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J.; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.; Suzuki, Y.; Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D.; Yamashita, M.; Hosokawa, K.; Murata, A.; Otsuka, K.; Takeuchi, Y.; Kusaba, F.; Motoki, D.; Nishijima, K.; Tasaka, S.; Fujii, K.; Murayama, I.; Nakamura, S.; Fukuda, Y.; Itow, Y.; Masuda, K.; Nishitani, Y.; Takiya, H.; Uchida, H.; Kim, Y. D.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Lee, J. S.; Xmass Collaboration

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with vRn/vXe=(0.960.10)10-3 at -85 C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  20. Modelling the combustion of charcoal in a model blast furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Shiozawa, Tomo; Yu, Aibing; Austin, Peter

    2013-07-01

    The pulverized charcoal (PCH) combustion in ironmaking blast furnaces is abstracting remarkable attention due to various benefits such as lowering CO2 emission. In this study, a three-dimensional CFD model is used to simulate the flow and thermo-chemical behaviours in this process. The model is validated against the experimental results from a pilot-scale combustion test rig for a range of conditions. The typical flow and thermo-chemical phenomena is simulated. The effect of charcoal type, i.e. VM content is examined, showing that the burnout increases with VM content in a linear relationship. This model provides an effective way for designing and optimizing PCH operation in blast furnace practice.

  1. Hypernatremia due to repeated doses of charcoal-sorbitol.

    PubMed

    Allerton, J P; Strom, J A

    1991-05-01

    Hypernatremic dehydration due to unreplaced stool water losses often complicates the use of the osmotic cathartic lactulose in the treatment of hepatic encephalopathy. Sorbitol, another osmotic cathartic commonly used in the treatment of drug intoxications, has been reported in the pediatric literature to induce severe hypernatremia, but there is only a rare case report in an adult. We report a dramatic case of severe hypernatremia secondary to repetitive administration of activated charcoal-sorbitol suspension for the treatment of phenobarbital intoxication in an adult. Based on our experience with this case, several recommendations are provided regarding management of drug intoxications with charcoal-sorbitol suspension, including meticulous attention to fluid-electrolyte balance, type of replacement fluid, and dosing of the suspension. PMID:2024660

  2. Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia stalk rot is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers based on the Sclerotinia disease resistance gene will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologus to Arabidopsis thaliana defense ge...

  3. Molecular Characterization of Resistant Accessions of Cocoa (Theobroma cocoa L.) to Phytophthora Pod Rot Selected on-Farm in Cte-dIvoire.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cocoa is (Theobroma cacao L.) is a significant agricultural commodity in CtedIvoire which ranks 1st in the world cocoa export. Phytophthora pod rot (Ppr)also call Black pod is the most widespread disease of cocoa. Lost due to this disease depends on the species of the pathogen and vary globally fr...

  4. Comparing modelled fire dynamics with charcoal records for the Holocene

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer; Power, Mitch

    2014-05-01

    An Earth System model of intermediate complexity, CLIMBER-2, and land surface model JSBACH that includes dynamic vegetation, carbon cycle, and fire regime are used for simulation of natural fire dynamics through the last 8,000 years. To compare the fire model results with the charcoal reconstructions, several output variables of the fire model (burned area, carbon emissions) and several approaches of model output processing are tested. The z-scores out of charcoal dataset have been calculated for the period 8,000 to 200 BP to exclude a period of strong anthropogenic forcing during the last two centuries. The model analysis points mainly to an increasing fire activity during the Holocene for most of the investigated areas, which is in good correspondence to reconstructed fire trends out of charcoal data for most of the tested regions, while for few regions such as Europe the simulated trend and the reconstructed trends are different. The difference between the modeled and reconstructed fire activity could be due to absence of the anthropogenic forcing in the model simulations, but also due to limitations of model assumptions for modeling fire dynamics. For the model trends, the usage of averaging or z-score processing of model output resulted in similar directions of trend. Therefore, the approach of fire model output processing does not effect results of the model-data comparison. Global fire modeling is still in its infancy; improving our representations of fire through validation exercises such as what we present here is thus essential before testing hypotheses about the effects of extreme climate changes on fire behavior and potential feedbacks that result from those changes. Brücher, T., Brovkin, V., Kloster, S., Marlon, J. R., and Power, M. J.: Comparing modelled fire dynamics with charcoal records for the Holocene, Clim. Past Discuss., 9, 6429-6458, doi:10.5194/cpd-9-6429-2013, 2013.

  5. Salmonella enterica Suppresses Pectobacterium carotovorum subsp. carotovorum Population and Soft Rot Progression by Acidifying the Microaerophilic Environment

    PubMed Central

    Kwan, Grace; Charkowski, Amy O.; Barak, Jeri D.

    2013-01-01

    ABSTRACT Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. PMID:23404399

  6. Fine-Scale Genetic Structure of Monilinia fructicola During Brown Rot Epidemics Within Individual Peach Tree Canopies.

    PubMed

    Everhart, S E; Scherm, H

    2015-04-01

    The purpose of this study was to determine the fine-scale genetic structure of populations of the brown rot pathogen Monilinia fructicola within individual peach tree canopies to better understand within-tree plant pathogen diversity and to complement previous work on spatiotemporal development of brown rot disease at the canopy level. Across 3 years in a total of six trees, we monitored disease development, collected isolates from every M. fructicola symptom during the course of the season, and created high-resolution three-dimensional maps of all symptom and isolate locations within individual canopies using an electromagnetic digitizer. Each canopy population (65 to 173 isolates per tree) was characterized using a set of 13 microsatellite markers and analyzed for evidence of spatial genetic autocorrelation among isolates during the epidemic phase of the disease. Results showed high genetic diversity (average uh=0.529) and high genotypic diversity (average D=0.928) within canopies. The percentage of unique multilocus genotypes within trees was greater for blossom blight isolates (78.2%) than for fruit rot isolates (51.3%), indicating a greater contribution of clonal reproduction during the preharvest epidemic. For fruit rot isolates, between 54.2 and 81.7% of isolates were contained in one to four dominant clonal genotypes per tree having at least 10 members. All six fruit rot populations showed positive and significant spatial genetic autocorrelation for distance classes between 0.37 and 1.48 m. Despite high levels of within-tree pathogen diversity, the contribution of locally available inoculum combined with short-distance dispersal is likely the main factor generating clonal population foci and associated spatial genetic clustering within trees. PMID:25317843

  7. Apparatus for converting paper mill waste sludge into charcoal

    SciTech Connect

    Williams, R.M.

    1993-08-31

    In apparatus for the production of charcoal from a mixture of wood and waste sludge from a paper mill, the apparatus is described comprising: (a) a furnace having an inlet for the reception of wood; a chimney for the release of hot gases from the furnace, and an outlet for charcoal; (b) a grinding mill having an inlet for the reception of the waste sludge and an outlet for ground sludge; (c) a cyclone separator having an inlet, a gaseous outlet and an outlet for solids; (d) a system of conduits inter-connecting said furnace, said cyclone separator, and said grinding mill in which hot gases from said furnace chimney are conducted to said grinding mill for initiating the drying of the waste sludge, the gases and ground waste sludge are conducted to said cyclone separator inlet for the separation of the gases from the ground waste sludge; and said system further including (e) blower means having an inlet connected to said cyclone separator gaseous outlet for effecting the movement of the hot furnace gases through said grinding mill, and said blower having an outlet for returning the gases to said furnace; (f) ground waste sludge conveying means connected between said cyclone separator and said furnace for depositing the ground waste sludge in said furnace; and (g) conveying means connected to said furnace outlet for removing the charcoal generated in said furnace.

  8. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans.

    PubMed

    Jaff, Rudolf; Ding, Yan; Niggemann, Jutta; Vhtalo, Anssi V; Stubbins, Aron; Spencer, Robert G M; Campbell, John; Dittmar, Thorsten

    2013-04-19

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering. PMID:23599492

  9. Palatability of sucrose-, sorbitol-, and saccharin-sweetened activated charcoal formulations.

    PubMed

    Cooney, D O

    1980-02-01

    The palatabilities of thickened activated charcoal formulations flavored with sucrose, sorbitol or saccharin sodium were compared. Three flavored activated charcoal formulations were prepared from a base of 25 g of activated charcoal, 1.5 g of carboxymethylcellulose, and 75 g of distilled water. The ratios of sweetener to activated charcoal were 1:1 for sucrose and sorbitol, and 1:20 for saccharin sodium. The palatabilities of the three flavored and one unflavored formulation were rated by 16 adults for taste, texture, ease of swallowing, and overall impression. No significant palatability differences were noted among the flavored mixtures, but all three flavored formulations were significantly more acceptable than the unflavored mixture (p less than 0.005). Saccharin sodium, sucrose, and sorbitol are suitable flavoring agents for activated charcoal slurries. Because saccharin sodium requires the smallest total volume to deliver a given quantity of activated charcoal, it has a distinct advantage over sucrose and sorbitol. PMID:7361798

  10. Removal of NOx or its conversion into harmless gases by charcoals and composites of metal oxides

    SciTech Connect

    Ishihara, Shigehisa; Furutsuka, Takeshi

    1996-12-31

    In recent years, much attention has been devoted to environmental problems such as acid rain, photochemical smog and water pollution. In particular, NOx emissions from factories, auto mobiles, etc. in urban areas have become worse. To solve these problems on environmental pollution on a global scale, the use of activated charcoal to reduce air pollutants is increasing. However, the capability of wood-based charcoal materials is not yet fully known. The removal of NOx or its conversion into harmless gases such as N{sub 2} should be described. In this study, the adsorption of NO over wood charcoal or metal oxide-dispersed wood charcoal was investigated. In particular, carbonized wood powder of Sugi (Cryptomeria japonica D. Don) was used to study the effectivity of using these materials in adsorbing NOx. Since wood charcoal is chemically stable, metal oxide with the ability of photocatalysis was dispersed into wood charcoal to improve its adsorption and capability to use the light energy effectively.

  11. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2... tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  12. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2... the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  13. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    SciTech Connect

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  14. Charcoal morphometry for paleoecological analysis: The effects of fuel type and transportation on morphological parameters1

    PubMed Central

    Crawford, Alastair J.; Belcher, Claire M.

    2014-01-01

    • Premise of the study: Charcoal particles preserved in sediments are used as indicators of paleowildfire. Most research focuses on abundance as an indicator of fire frequency, but charcoals also convey information about the vegetation from which they are derived. One potential source of information is their morphology, which is influenced by the parent material, the nature of the fire, and subsequent transportation and burial. • Methods: We charcoalified 26 materials from a range of plant taxa, and subjected them to simulated fluvial transport by tumbling them with water and gravel. We photographed the resulting particles, and used image analysis software to measure morphological parameters. • Results: Leaf charcoal displayed a logarithmic decrease in area, and a logarithmic increase in circularity, with transportation time. Trends were less clear for stem or wood charcoal. Grass charcoal displayed significantly higher aspect ratios than other charcoal types. • Conclusions: Leaf charcoal displays more easily definable relationships between morphological parameters and degree of breakdown than stem or wood charcoal. The aspect ratios of fossil mesocharcoal can indicate the broad botanical source of an assemblage. Coupled to estimates of charcoal abundance, this will improve understanding of the variation in flammability of ancient ecosystems. PMID:25202644

  15. Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples

    SciTech Connect

    Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.; Ballou, Nathan E.

    2008-03-01

    Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at the pg g-1 level.

  16. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  17. The effect of weathering on charcoal filter performance. 2; The effect of contaminants on the CH sub 3 I removal efficiency of TEDA charcoal

    SciTech Connect

    Wren, J.C.; Moore, C.J. )

    1991-05-01

    The effect of various contaminants, namely NO{sub 2} SO{sub 2}, 2-butanone (methyl-ethyl-ketone (MEK)), and NH{sub 3}, on the radioiodine removal efficiency of triethylenediamine (TEDA)-impregnated charcoal filters has been studied, and an attempt was made to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The effects of the contaminants on the CH{sub 3}I removal efficiency of TEDA charcoal under dry and humid conditions are described. Based on our results, the efficiency of TEDA charcoal is degraded most by NO{sub 2} and SO{sub 2}, NH{sub 3} has a negligible effect, and MEK produces a mild degradation. The degree of degradation parallels the contaminant's ability to be chemisorbed on the TEDA impregnant. The combined effect of water vapor and a contaminant of the charcoal efficiency is different for each contaminant. Nitrogen dioxide absorbed under dry conditions is more effective in degrading the CH{sub 2}I removal efficiency of the charcoal that when absorbed under humid conditions. On the other hand, a completely opposite result is observed for SO{sub 2}. The MEK contaminant behaves similarly to SO{sub 2} but the effect of humidity was less significant than for SO{sub 2}. Ammonia has no effect on the efficiency of the charcoal regardless of humidity.

  18. Genomic regions associated with incidence of disease in cattle using DNA pooling and a high density single nucleotide polymorphism array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic regions associated with general disease (respiratory disease, foot rot, and pinkeye) in beef cattle were identified using treatment records on 2,849 animals. General disease cases included animals treated for bovine respiratory disease, foot rot, or pinkeye. Untreated cohorts, matched on b...

  19. Association mapping in sunflower for sclerotinia head rot resistance

    PubMed Central

    2012-01-01

    Background Sclerotinia Head Rot (SHR) is one of the most damaging diseases of sunflower in Europe, Argentina, and USA, causing average yield reductions of 10 to 20 %, but leading to total production loss under favorable environmental conditions for the pathogen. Association Mapping (AM) is a promising choice for Quantitative Trait Locus (QTL) mapping, as it detects relationships between phenotypic variation and gene polymorphisms in existing germplasm without development of mapping populations. This article reports the identification of QTL for resistance to SHR based on candidate gene AM. Results A collection of 94 sunflower inbred lines were tested for SHR under field conditions using assisted inoculation with the fungal pathogen Sclerotinia sclerotiorum. Given that no biological mechanisms or biochemical pathways have been clearly identified for SHR, 43 candidate genes were selected based on previous transcript profiling studies in sunflower and Brassica napus infected with S. sclerotiorum. Associations among SHR incidence and haplotype polymorphisms in 16 candidate genes were tested using Mixed Linear Models (MLM) that account for population structure and kinship relationships. This approach allowed detection of a significant association between the candidate gene HaRIC_B and SHR incidence (P < 0.01), accounting for a SHR incidence reduction of about 20 %. Conclusions These results suggest that AM will be useful in dissecting other complex traits in sunflower, thus providing a valuable tool to assist in crop breeding. PMID:22708963

  20. Effectiveness of commercially available aqueous activated charcoal products.

    PubMed

    Krenzelok, E P; Heller, M B

    1987-12-01

    A human research project was conducted to compare the relative effectiveness of five commercially available aqueous activated charcoal products in 25-g amounts--Acta-Char, Actidose-Aqua, Insta-Char, Liqui-Char, and Super-Char. Seven healthy adult human fasting volunteers participated. The study was double-blinded and subjects served as their own controls. Aspirin 2,592 mg was administered to each subject in the control phase to establish baseline aspirin absorption as measured by serial serum salicylate levels. During each of the five study phases 2,592 mg aspirin and a specific brand of activated charcoal were administered to the subjects and serial serum salicylate levels were drawn. Aspirin absorption was calculated using the trapezoidal rule for measuring the area under the concentration-time curve. Total aspirin absorption was reduced as follows: Super-Char, 57.76%; Actidose-Aqua, 50.42%; Insta-Char, 39.55%; Liqui-Char, 33.40%; and Acta-Char, 27.46%. Although there were large apparent differences in the adsorptive capacities of the products, the only statistically significant difference was between Super-Char and Acta-Char. The failure to show statistical differences in the face of large apparent differences may have been a reflection of type II beta error due to the small sample size. The most common factor responsible for the apparent differences in the adsorptive capacities of the products was most likely the surface area of the activated charcoals that were used. The higher surface area products, Super-Char (3,150 m2/g) and Actidose-Aqua (1,500 m2/g) prevented the absorption of aspirin more effectively than the other three products that had surface areas of 950 m2/g. PMID:3688595

  1. Comparing modeled fire dynamics with charcoal records for the Holocene

    NASA Astrophysics Data System (ADS)

    Bruecher, T.; Brovkin, V.; Kloster, S.; Marlon, J. R.; Power, M. J.

    2013-12-01

    An Earth System model of intermediate complexity, CLIMBER-2, and land surface model JSBACH that includes dynamic vegetation, carbon cycle, and fire regime are used for simulation of natural fire dynamics through the last 8,000 years. To compare the fire model results with the charcoal reconstructions, several output variables of the fire model (burned area, carbon emissions) and several approaches of model output processing are tested. The z-scores out of charcoal dataset have been calculated for the period 8,000 to 200 BP to exclude a period of strong anthropogenic forcing during the last two centuries. The model analysis points mainly to an increasing fire activity during the Holocene for most of the investigated areas, which is in good correspondence to reconstructed fire trends out of charcoal data for most of the tested regions, while for few regions such as Europe the simulated trend and the reconstructed trends are different. The difference between the modeled and reconstructed fire activity could be due to absence of the anthropogenic forcing in the model simulations, but also due to limitations of model assumptions for modeling fire dynamics. For the model trends, the usage of averaging or z-score processing of model output resulted in similar directions of trend. Therefore, the approach of fire model output processing does not effect results of the model-data comparison. Global fire modeling is still in its infancy; improving our representations of fire through validation exercises such as what we present here is thus essential before testing hypotheses about the effects of extreme climate changes on fire behavior and potential feedbacks that result from those changes.

  2. Insights Into Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum.

    PubMed

    Wang, Qing; Vera Buxa, Stefanie; Furch, Alexandra; Friedt, Wolfgang; Gottwald, Sven

    2015-12-01

    Fusarium graminearum is one of the most common and potent fungal pathogens of wheat (Triticum aestivum), known for causing devastating spike infections and grain yield damage. F. graminearum is a typical soil-borne pathogen that builds up during consecutive cereal cropping. Speculation on systemic colonization of cereals by F. graminearum root infection have long existed but have not been proven. We have assessed the Fusarium root rot disease macroscopically in a diverse set of 12 wheat genotypes and microscopically in a comparative study of two genotypes with diverging responses. Here, we show a 'new' aspect of the F. graminearum life cycle, i.e., the head blight fungus uses a unique root-infection strategy with an initial stage typical for root pathogens and a later stage typical for spike infection. Root colonization negatively affects seedling development and leads to systemic plant invasion by tissue-adapted fungal strategies. Another major outcome is the identification of partial resistance to root rot. Disease severity assessments and histological examinations both demonstrated three distinct disease phases that, however, proceeded differently in resistant and susceptible genotypes. Soil-borne inoculum and root infection are considered significant components of the F. graminearum life cycle with important implications for the development of new strategies of resistance breeding and disease control. PMID:26325125

  3. Uncertainty evaluation in radon concentration measurement using charcoal canister.

    PubMed

    Panteli?, G; Savkovi?, M Eremi?; Zivanovi?, M; Nikoli?, J; Raja?i?, M; Todorovi?, D

    2014-05-01

    Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. The contributions to the final measurement uncertainty are identi?ed, based on the equation for radon activity concentration calculation. Different methods for setting the region of interest for gamma spectrometry of canisters were discussed and evaluated. The obtained radon activity concentration and uncertainties do not depend on peak area determination method. PMID:24444699

  4. The adsorption of argon, krypton and xenon on activated charcoal

    SciTech Connect

    Underhill, D.W.

    1996-08-01

    Charcoal adsorption beds are commonly used to remove radioactive noble gases from contaminated gas streams. The design of such beds requires the adsorption coefficient for the noble gas. Here an extension of the Dubinin-Radushkevich theory of adsorption is developed to correlate the effects of temperature, pressure, concentration, and carrier gas on the adsorption coefficients of krypton, xenon, and argon on activated carbon. This model is validated with previously published adsorption measurements. It accurately predicts the equilibrium adsorption coefficient at any temperature and pressure if the potential energies of adsorption, the micropore volume, and the van der Waals constants of the gases are known. 18 refs., 4 figs.

  5. Monitoring radioactive xenon gas in room air using activated charcoal

    SciTech Connect

    Langford, J.; Thompson, G. Sir Charles Gairdner Hospital, Perth )

    1990-03-01

    A method for monitoring room air for radioactive xenon gas is described. It uses activated charcoal vials, a vacuum source and a well-type scintillation counter. The method may be adapted for detection and identification of any radioactive gas excluding those with ultra-short half-lives. Sampling room air during xenon-133 ({sup 133}Xe) ventilation lung studies was performed using this technique. The results show that low concentrations of {sup 133}Xe in room air can be reliably detected and that staff exposure to {sup 133}Xe at this institution was within ICRP recommendations.

  6. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  7. Detection of hidden pre-industrial charcoal kilns by high-resolution LIDAR

    NASA Astrophysics Data System (ADS)

    Raab, Thomas; Raab, Alexandra; Nicolay, Alexander; Takla, Melanie; Rsler, Horst; Bnisch, Eberhard

    2013-04-01

    Over the last decade, systematic archaeological excavations in the open-cast mine Jnschwalde (Brandenburg, Germany) have revealed one of the largest, archaeologically excavated pre-industrial charcoal production area in Central Europe. Many of the charcoal kiln relics are easy to detect by survey as they lie close to the surface and charcoal pieces hint on their existence. In the excavations the remains of the charcoal kilns are distinct, black circles in the light-coloured sands. To date, in the former Kniglich-Taubendorfer Forst c. 800 remains of charcoal hearths have been excavated and documented by archaeologists in an area of about 20 km2. Further c. 300 charcoal hearths are prospected by survey. Unfortunately, the spatial information about the charcoal kiln sites in Lower Lusatia (and elsewhere) is incomplete since we only have data from the archaeological excavation and prospection in the directly affected mining district. To fill this gap, we decided to test the applicability of Airborne Laser Scanning (ALS) data for charcoal kiln prospection. The particularly improved quality of the recent high-resolution light detection and ranging (LIDAR) data enabled the computer-aided detection of charcoal kilns and their evaluation using a geographical information system (GIS). Following data processing, the charcoal kilns are visible as buttons-like shapes in the shaded-relief maps (SRM). The characteristic shapes arise because the kiln plates are some centimetres to decimetres higher than the ditches around them. Numerous ground checks confirmed the applicability of the prospection by ALS data. But, we also assume that c. 10% of the charcoal kilns remain unidentified. A 26.6 km2 study area in the Tauerscher Forst, a forest about 10 km northwest of the open-cast mine Jnschwalde, was selected for prospection using a 1 m resolution ALS data set from the year 2011. Today, the area is forested with pine, and no archaeological excavation has been carried out so far. In the study area 2300 charcoal kiln sites can be clearly identified and 261 more features are ambiguous. Together with the excavated and prospected sites in the Kniglich-Taubendorfer Forst we now have proof of at least 3400 circular charcoal kilns with diameters up to 18 metres. However, the study area represents only a very small part of Lower Lusatia and an even smaller portion of the North German Lowland - both areas of potential charcoal kiln findings. We thus conclude that historical charcoal production sites are underestimated components of modern landscapes and that most of these sites are hidden legacies which are not detected so far due to destruction and/or the lack of high-resolution Digital Elevation Models (DEM).

  8. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.

    PubMed

    Asad-Uz-Zaman, Md; Bhuiyan, Mohammad Rejwan; Khan, Mohammad Ashik Iqbal; Alam Bhuiyan, Md Khurshed; Latif, Mohammad Abdul

    2015-02-01

    An investigation was made to manage strawberry black root rot caused by Rhizoctonia solani (R. solani) through the integration of Trichoderma harzianum (T. harzianum) isolate STA7, mustard oil cake and Provax 200. A series of preliminary experiments were conducted to select a virulent isolate of R. solani, an effective isolate of T. harzianum, a suitable organic amendment, and a suitable fungicide before setting the experiment for integration. The pathogenicity of the selected four isolates of R. solani was evaluated against strawberry and isolate SR1 was selected as the test pathogen due to its highest virulent (95.47% mortality) characteristics. Among the 20 isolates of T. harzianum, isolate STA7 showed maximum inhibition (71.97%) against the test pathogen (R. solani). Among the fungicides, Provax-200 was found to be more effective at lowest concentration (100 ppm) and highly compatible with Trichoderma isolates STA7. In the case of organic amendments, maximum inhibition (59.66%) of R. solani was obtained through mustard oil cake at the highest concentration (3%), which was significantly superior to other amendments. Minimum percentages of diseased roots were obtained with pathogen (R. solani)+Trichoderma+mustard oil cake+Provax-200 treatment, while the highest was observed with healthy seedlings with a pathogen-inoculated soil. In the case of leaf and fruit rot diseases, significantly lowest infected leaves as well as fruit rot were observed with a pathogen+Trichoderma+mustard oil cake+Provax-200 treatment in comparison with the control. A similar trend of high effectiveness was observed by the integration of Trichoderma, fungicide and organic amendments in controlling root rot and fruit diseases of strawberry. Single application of Trichoderma isolate STA7, Provax 200 or mustard oil cake did not show satisfactory performance in terms of disease-free plants, but when they were applied in combination, the number of healthy plants increased significantly. The result of the current study suggests the superiority of our integrated approach to control the sclerotia forming pathogen R. solani compared to the individual treatment either by an antagonist or by a fungicide or by mustard oil cake. PMID:25595298

  9. Candida pruni sp. nov. is a new yeast species with antagonistic potential against brown rot of peaches.

    PubMed

    Zhang, Dian-peng; Lu, Cai-ge; Zhang, Tao-tao; Spadaro, Davide; Liu, De-wen; Liu, Wei-cheng

    2014-07-01

    Brown rot caused by Monilinia spp. is among the most important postharvest diseases of commercially grown stone fruits, and application of antagonistic yeasts to control brown rot is one promising strategy alternative to chemical fungicides. In this research, new yeast strains were isolated and tested for their activity against peach brown rot caused by Monilinia fructicola. Three yeast strains were originally isolated from the surface of plums (cv Chinese Angelino) collected in the north of China. In artificially wounded inoculation tests, the yeast reduced the brown rot incidence to 20 %. The population of the yeast within inoculated wounds on peaches significantly increased at 25 C from an initial level of 5.010(6) to 4.4510(7) CFU per wound after 1 day. The antagonistic strains were belonging to a new species of the genus Candida by sequence comparisons of 26 S rDNA D1/D2 domain and internal transcribed spacer region. The strains are most closely related to C. asparagi, C. musae and C. fructus on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA. However, the strains are notably different from C. asparagi, C. musae and C. fructus, in morphological and physiological characteristics. Therefore, the name Candida pruni is proposed for the novel species, with sp-Quan (=CBS12814T=KCTC 27526T=GCMC 6582T) as the type strain. Our study showed that Candida pruni is a novel yeast species with potential biocontrol against brown rot caused by M. fructicola on peaches. PMID:24908073

  10. Experimental Research of Pyrolysis Gases Cracking on Surface of Charcoal

    NASA Astrophysics Data System (ADS)

    Kosov, Valentin; Kosov, Vladimir; Zaichenko, Victor

    For several years, in the Joint Institute for High Temperatures of Russian Academy of Sciences, two-stage technology of biomass processing has been developing [1]. The technology is based on pyrolysis of biomass as the first stage. The second stage is high-temperature conversion of liquid fraction of the pyrolysis on the surface of porous charcoal matrix. Synthesis gas consisted of carbon monoxide and hydrogen is the main products of the technology. This gas is proposed to be used as fuel for gas-engine power plant. For practical implementation of the technology it is important to know the size of hot char filter for full cracking of the pyrolysis gases on the surface of charcoal. Theoretical determination of the cracking parameters of the pyrolysis gases on the surface of coal is extremely difficult because the pyrolysis gases include tars, whose composition and structure is complicated and depends on the type of initial biomass. It is also necessary to know the surface area of the char used in the filter, which is also a difficult task. Experimental determination of the hot char filter parameters is presented. It is shown that proposed experimental method can be used for different types of biomass.

  11. The Oil of Matico (Piper aduncum L.) an Alternative for the Control of Cacao Frosty Pod Rot (Moniliophthora roreri) in Peru

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cacao production in many Latin American countries is significantly reduced by frosty pod rot disease (Moniliophthora roreri) and yield reductions are to the extent of over 90% in many cases. The strategies of control includes: phytosanitation, genetic resistance, chemical and biological control....

  12. ANTIFUNGAL AND SPROUT REGULATORY BIOACTIVITIES OF PHENYLACETIC ACID, INDOLE-3-ACETIC ACID, AND TYROSOL ISOLATED FROM THE POTATO DRY ROT SUPPRESSIVE BACTERIUM ENTEROBACTER CLOACAE S11:T:07

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae S11:T:07 (NRRL B-21050) is a promising biological control agent which has significantly reduced both fungal dry rot disease and sprouting in lab and pilot potato storages. The metabolites phenylacetic acid (PAA), indole-3-acetic acid (IAA), and tyrosol (TSL) were isolated from ...

  13. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid.

    PubMed

    Egamberdieva, Dilfuza; Jabborova, Dilfuza; Hashem, Abeer

    2015-11-01

    Abiotic stresses cause changes in the balance of phytohormones in plants and result in inhibited root growth and an increase in the susceptibility of plants to root rot disease. The aim of this work was to ascertain whether microbial indole-3-acetic acid (IAA) plays a role in the regulation of root growth and microbially mediated control of root rot of cotton caused by Fusarium solani. Seed germination and seedling growth were improved by both NaCl and Mg2SO4 (100mM) solutions when treated with root-associated bacterial strains Pseudomonas putida R4 and Pseudomonas chlororaphis R5, which are able to produce IAA. These bacterial strains were also able to reduce the infection rate of cotton root rot (from 70 to 39%) caused by F. solani under gnotobiotic conditions. The application of a low concentration of IAA (0.01 and 0.001?g/ml) stimulated plant growth and reduced disease incidence caused by F. solani (from 70 to 41-56%, respectively). Shoot and root growth and dry matter increased significantly and disease incidence was reduced by bacterial inoculants in natural saline soil. These results suggest that bacterial IAA plays a major role in salt stress tolerance and may be involved in induced resistance against root rot disease of cotton. PMID:26587006

  14. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid

    PubMed Central

    Egamberdieva, Dilfuza; Jabborova, Dilfuza; Hashem, Abeer

    2015-01-01

    Abiotic stresses cause changes in the balance of phytohormones in plants and result in inhibited root growth and an increase in the susceptibility of plants to root rot disease. The aim of this work was to ascertain whether microbial indole-3-acetic acid (IAA) plays a role in the regulation of root growth and microbially mediated control of root rot of cotton caused by Fusarium solani. Seed germination and seedling growth were improved by both NaCl and Mg2SO4 (100 mM) solutions when treated with root-associated bacterial strains Pseudomonas putida R4 and Pseudomonas chlororaphis R5, which are able to produce IAA. These bacterial strains were also able to reduce the infection rate of cotton root rot (from 70 to 39%) caused by F. solani under gnotobiotic conditions. The application of a low concentration of IAA (0.01 and 0.001 μg/ml) stimulated plant growth and reduced disease incidence caused by F. solani (from 70 to 41–56%, respectively). Shoot and root growth and dry matter increased significantly and disease incidence was reduced by bacterial inoculants in natural saline soil. These results suggest that bacterial IAA plays a major role in salt stress tolerance and may be involved in induced resistance against root rot disease of cotton. PMID:26587006

  15. Identification of Crucifer Accessions from the NC-7 and NE-9 Plant Introduction Collections that are Resistant to Black Rot (Xanthomonas campestris pv. campestris) Races 1 and 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black rot, caused by Xanthomonas campestris pv. campestris (Pam.) Dawson (Xcc), is a serious disease of vegetable crucifers worldwide. The USDA NC-7 and NE-9 regional plant introduction stations maintain vegetable, mustard and oilseed crucifers, of which 4084 accessions were available for testing, ...

  16. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils

    NASA Astrophysics Data System (ADS)

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r = 0.957 **, P < 0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation ( DT50) in soils greatly extended when the rate of added charcoal inceased from 0 to 50 g kg - 1 (for Paddy soil, DT50 values increased from 54.6 to 71.4 days; for Alfisol, DT50 from 16.0 to 136 days; and for Vertisol, DT50 from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  17. 40 CFR 454.10 - Applicability; description of the manufacture of char and charcoal briquets subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture of char and charcoal briquets subcategory. 454.10 Section 454.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Char and Charcoal Briquets Subcategory § 454.10 Applicability;...

  18. Digital image processing applications in the ignition and combustion of char/coal particles

    SciTech Connect

    Annamalai, K.; Kharbat, E.; Goplakrishnan, C.

    1992-12-01

    Digital image processing, is employed in this remarch study in order to visually investigate the ignition and combustion characteristics of isolated char/coal particles as well as the effect of interactivecombustion in two-particle char/coal arrays. Preliminary experiments are conducted on miniature isolated candles as well as two-candle arrays.

  19. URINARY MUTAGENICITY IN CHARCOAL WORKERS: A CROSS-SECTIONAL STUDY IN NORTHEASTERN BRAZIL

    EPA Science Inventory

    Urinary Mutagenicity in charcoal workers: a cross-sectional study in northeastern Brazil

    Charcoal production by wood carbonization is an ancient process that has changed little since the Bronze Age. Its production in large scale is necessary to sustain some steel and pig...

  20. Commercial charcoal production in the Ibarapa district of southwestern Nigeria: forestry dividends and welfare implications.

    PubMed

    Salami, Kabiru K; Brieger, William R

    2010-01-01

    Logging activities have long provided both wood fuel and charcoal for household and commercial use in rural and urban communities in developing countries. However, logging problems range from deforestation to threatened household air quality from burning wood and charcoal. This exploratory case study triangulated 15 in-depth interviews among charcoal bulk buyers and the workers, observations of workers at two d (charcoal) commercial depots in Igbo-Ora and of workers in the forest, and review of studies in academic database. Three categories of people are working in the business ranging from the producers in the forests (alaake) to the bulk buyers (olowo) in the middle and the wholesalers (ajagunta) in the city. A small team of 4-8 people can produce three pickup truck loads of charcoal in 2 weeks, and a large team between 7-8 loads. The olowo and the alaake have associations, membership cards, and meet to discuss business progress and regulate members' economic behavior. Close to 35,000 bags of charcoal of 450 pickup trucks may make the journey weekly from Ibarapa. Overall, the charcoal business is informal, and the local people also frown at cutting any useful indigenous trees ascertaining that an individual's actions may affect the whole community. The role of community health educators is important in the dissemination of effects of deforestation through charcoal production. PMID:22192943

  1. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  2. ESTIMATION OF EMISSIONS FROM CHARCOAL LIGHTER FLUID AND REVIEW OF ALTERNATIVES

    EPA Science Inventory

    The report gives results of an evaluation of emissions of volatile organic compounds (VOCs) from charcoal lighter fluid, a consumer product consisting entirely of volatile constituents. An estimated 46,250 tons (42,000 Mg) of charcoal lighter fluid is used in the U.S. each year. ...

  3. The effect of weathering on charcoal filter performance. 1; The adsorption and desorption behavior of contaminants

    SciTech Connect

    Wren, J.C.; Moore, C.J. )

    1991-05-01

    This paper reports on triethylenediamine (TEDA) impregnated charcoals, used in nuclear reactors to safeguard against the release of airborne radioiodine, which show high efficiency under various reactor operation and accident conditions when the are new. However, during normal operation, charcoal filters are continuously degraded (or weathered) due to the adsorption of moisture and other air contaminants. The effect of weathering on the efficiency of charcoal for removing radioiodine is of great interest. The results of a study on the adsorption behavior of various contaminants NO{sub 2}, SO{sub 2} 2-butanone (methyl-ethyl ketone (MEK)) and NH{sub 3} on TEDA charcoal are presented. This study is an attempt to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The adsorption and desorption of characteristics of these contaminants range from completely irreversible (NO{sub 2}) to completely reversible (NH{sub 3}). The effect of absorbed water (or humidity) on absorption is different for each contaminant. Absorbed water increases the absorption rate and capacity of TEDA charcoal for NO{sub 2}. However, it appears that SO{sub 2} is absorbed as H{sub 2}SO{sub 4} on the wet charcoal. Absorbed water slightly reduces the adsorption capacity of the charcoal for MEK, but does not affect the absorption of NH{sub 3}.

  4. Water adsorption on charcoal: New approach in experimental studies and data representation

    SciTech Connect

    Geynisman, M.; Walker, R.

    1991-08-01

    The experimental apparatus was built to study the H{sub 2}O adsorption on charcoal at very low concentrations and collect the data in the form of isosteres. Experimental method is discussed and the global three-dimensional fit is constructed to predict the post-regeneration conditions of charcoal absorbers. 11 refs.

  5. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    PubMed Central

    Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639

  6. Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil

    PubMed Central

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m−2) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m−2). After taking into account uncertainty associated with parameters’ estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study. PMID:24614647

  7. Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants

    PubMed Central

    Koutb, Mostafa

    2010-01-01

    Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition. PMID:23956668

  8. Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants.

    PubMed

    Koutb, Mostafa; Ali, Esam H

    2010-12-01

    Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition. PMID:23956668

  9. Identification, characterization and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece.

    PubMed

    Ntasiou, Panagiota; Myresiotis, Charalampos; Konstantinou, Sotiris; Papadopoulou-Mourkidou, Euphemia; Karaoglanidis, George S

    2015-03-16

    Alternaria core rot is a major postharvest disease of apple fruit in several countries of the world, including Greece. The study was conducted aiming to identify the disease causal agents at species level, investigate the aggressiveness of Alternaria spp. isolates and the susceptibility of different apple varieties and determine the mycotoxigenic potential of Alternaria spp. isolates from apple fruit. Seventy-five Alternaria spp. isolates obtained from apple fruit showing core rot symptoms were identified as either Alternaria tenuissima or Alternaria arborescens at frequencies of 89.3 and 11.7%, respectively, based on the sequence of endopolygalacturonase (EndoPG) gene. Artificial inoculations of fruit of 4 different varieties (Fuji, Golden Delicious, Granny Smith and Red Delicious) and incubation at two different temperatures (2 and 25C) showed that fruit of Fuji variety were the most susceptible and fruit of Golden Delicious the most resistant to both pathogens. In addition, the production of 3 mycotoxins, alternariol (AOH), alternariol monomethyl ether (AME) and tentoxin (TEN) was investigated in 30 isolates of both species. Mycotoxin determination was conducted both in vitro, on artificial nutrient medium and in vivo on artificially inoculated apple fruit, using a high performance liquid chromatography with diode array detector (HPLC-DAD). The results showed that most of the isolates of both species were able to produce all the 3 metabolites both in vivo and in vitro. On apple fruit A. tenuissima isolates produced more AOH than A. arborescens isolates, whereas the latter produced more TEN than the former. Such results indicate that Alternaria core rot represents a major threat of apple fruit production not only due to quantitative yield losses but also for qualitative deterioration of apple by-products. PMID:25560914

  10. Activated charcoal alone or after gastric lavage: a simulated large paracetamol intoxication

    PubMed Central

    Christophersen, A B; Levin, D; Hoegberg, L C G; Angelo, H R; Kampmann, J P

    2002-01-01

    Aims Activated charcoal is now being recommended for patients who have ingested potentially toxic amounts of a poison, where the ingested substance adsorbs to charcoal. Combination therapy with gastric lavage and activated charcoal is widely used, although clinical studies to date have not provided evidence of additional efficacy compared with the use of activated charcoal alone. There are also doubts regarding the efficacy of activated charcoal, when administered more than 1 h after the overdose. The aim of this study was to examine if there was a difference in the effect of the two interventions 1 h post ingestion, and to determine if activated charcoal was effective in reducing the systemic absorption of a drug, when administered 2 h post ingestion. Methods We performed a four-limbed randomized cross-over study in 12 volunteers, who 1 h after a standard meal ingested paracetamol 50 mg kg?1 in 125 mg tablets to mimic real-life, where several factors, such as food, interfere with gastric emptying and thus treatment. The interventions were activated charcoal after 1 h, combination therapy of gastric lavage followed by activated charcoal after 1 h, or activated charcoal after 2 h. Serum paracetamol concentrations were determined by h.p.l.c. Percentage reductions in the area under the curve (AUC) were used to estimate the efficacy of each intervention (paired observations). Results There was a significant (P < 0.005) reduction in the paracetamol AUC with activated charcoal at 1 h (median reduction 66%, 95% confidence intervals 49, 76) compared with controls, and a significant (P < 0.01) reduction for gastric lavage followed by activated charcoal at 1 h (median reduction 48.2%, 95% confidence interval 32.4, 63.7) compared with controls. There was no significant difference between the two interventions (95% confidence interval for the difference ?3.8, 34.0). Furthermore, we found a significant (P < 0.01) reduction in the paracetamol AUC when activated charcoal was administered 2 h after tablet ingestion when compared with controls (median 22.7%, 95% confidence intervals 13.634.4). Conclusions These results suggest that combination treatment may be no better than activated charcoal alone in patients presenting early after large overdoses. The effect of activated charcoal given 2 h post ingestion is substantially less than at 1 h, emphasizing the importance of early intervention. PMID:11874395

  11. Charcoal produced by prescribed fire increases dissolved organic carbon and soil microbial activity

    NASA Astrophysics Data System (ADS)

    Poon, Cheryl; Jenkins, Meaghan; Bell, Tina; Adams, Mark

    2014-05-01

    In Australian forests fire is an important driver of carbon (C) storage. When biomass C is combusted it is transformed into vegetation residue (charcoal) and deposited in varying amounts and forms onto soil surfaces. The C content of charcoal is high but is largely in a chemically stable form of C, which is highly resistance to microbial decomposition. We conducted two laboratory incubations to examine the influence of charcoal on soil microbial activity as indicated by microbial respiration. Seven sites were chosen in mixed species eucalypt forest in Victoria, Australia. Soil was sampled prior to burning to minimise the effects of heating or addition of charcoal during the prescribed burn. Charcoal samples were collected from each site after the burn, homogenised and divided into two size fractions. Prior to incubation, soils were amended with the two size fractions (<1 and 1-4.75 mm) and at two rates of amount (2.5 and 5% by soil dry weight). Charcoal-amended soils were incubated in the laboratory for 86 d, microbial respiration was measured nine times at day 1, 3, 8, 15, 23, 30, 45, 59 and 86 d. We found that addition of charcoal resulted in faster rates of microbial respiration compared to unamended soil. Fastest rates of microbial respiration in all four treatments were measured 1 d after addition of charcoal (up to 12 times greater than unamended soil). From 3 to 8 d, respiration rates in all four treatments decreased and only treatments with greater charcoal addition (5%) remained significantly faster than unamended soil. From 15 d to 86 d, all treatments had respiration rates similar to unamended soil. Overall, adding greater amount of charcoal (5%) resulted in a larger cumulative amount of CO2 released over the incubation period when compared to unamended soil. The second laboratory incubation focused on the initial changes in soil nutrient and microbial respiration after addition of charcoal over a 72 h period. Charcoal (<2 mm) was added at rate of 5% to soil with differing moisture content (55 and 70% water holding capacity). Microbial respiration was measured continuously and dissolved organic C (DOC), nitrogen (DON), extractable phosphorus (P), and microbial C, N and P were measured at four time points during the 72 h incubation. Our data showed that the initial spike in microbial respiration was highly correlated to the amount of DOC in the soil. Soil moisture did not significantly change the microbial response or soil nutrient availability after addition of charcoal. This study outlines one of the processes of carbon cycling that occurs immediately after fire. Charcoal deposition resulting from prescribed burning provides a transitory yet important source of C for soil microbes and stimulates microbial activity.

  12. Molecular Marker Approach on Characterizing and Quantifying Charcoal in Environmental Media

    NASA Astrophysics Data System (ADS)

    Kuo, L.; Herbert, B. E.; Louchouarn, P.

    2006-12-01

    Black carbon (BC) is widely distributed in natural environments including soils, sediments, freshwater, seawater and the atmosphere. It is produced mostly from the incomplete combustion of fossil fuels and vegetation. In recent years, increasing attention has been given to BC due to its potential influence in many biogeochemical processes. In the environment, BC exists as a continuum ranging from partly charred plant materials, charcoal residues to highly condensed soot and graphite particles. The heterogeneous nature of black carbon means that BC is always operationally-defined, highlighting the need for standard methods that support data comparisons. Unlike soot and graphite that can be quantified with well-established methods, it is difficult to directly quantify charcoal in geologic media due to its chemical and physical heterogeneity. Most of the available charcoal quantification methods detect unknown fractions of the BC continuum. To specifically identify and quantify charcoal in soils and sediments, we adopted and validated an innovative molecular marker approach that quantifies levoglucosan, a pyrogenic derivative of cellulose, as a proxy of charcoal. Levoglucosan is source-specific, stable and is able to be detected at low concentrations using gas chromatograph-mass spectrometer (GC-MS). In the present study, two different plant species, honey mesquite and cordgrass, were selected as the raw materials to synthesize charcoals. The lab-synthesize charcoals were made under control conditions to eliminate the high heterogeneity often found in natural charcoals. The effects of two major combustion factors, temperature and duration, on the yield of levoglucosan were characterized in the lab-synthesize charcoals. Our results showed that significant levoglucosan production in the two types of charcoal was restricted to relatively low combustion temperatures (150-350 degree C). The combustion duration did not cause significant differences in the yield of levoglucosan in the two charcoals. Interestingly, the low temperature charcoals are undetectable by the acid dichromate oxidation method, a popular soot/charcoal analytical approach. Our study demonstrates that levoglucosan can serve as a proxy of low temperature charcoals that are undetectable using other BC methods. Moreover, our study highlights the limitations of the common BC quantification methods to characterize the entire BC continuum.

  13. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal

    PubMed Central

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material – though anisotropically contracted – and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: • Place SFH in an airtight aluminum envelope. • Thermally treat SFH within the envelope in a common laboratory oven. • Open the envelope to obtain the carbonized sunflower hulls. PMID:26150989

  14. Structure and capillary properties of carbon materials. Influence of various types of treatment of charcoal

    SciTech Connect

    Dribinskii, A.V.; Kukushina, I.A.; Shteinberg, G.V.

    1986-03-01

    Activated charcoal KM-2 with a large volume of micropores served as the object of investiations to find the adsorption properties and the porous structure of the activated charcoals. The sorption isotherms of benzene vapor were measured at 20 C. On the basis of the experimental data obtained, the authors calculated the volumes of the principle types of pores, the surface ofthe mesopores, and the parameters of the microporous structure of the charcoals. Results show that decalcification results in an appreciable decrease in the ash content of the charcoal, and some increase in the total volume of the pores, mainly in the volume of the mesopores. The surface of the mesopores increases accordingly. The sorption isotherms of water vapor and benzene vapor on activated charcoal samples are compared.

  15. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.

    PubMed

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: Place SFH in an airtight aluminum envelope.Thermally treat SFH within the envelope in a common laboratory oven.Open the envelope to obtain the carbonized sunflower hulls. PMID:26150989

  16. Quantitative relationships between different injury factors and development of brown rot caused by Monilinia fructigena in integrated and organic apple orchards.

    PubMed

    Holb, I J; Scherm, H

    2008-01-01

    In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C. pomonella. At the harvest assessment, two additional significant correlations were between brown rot and bird injury and between brown rot and growth cracks. In every case, correlation coefficients were larger in organic than in integrated blocks. Although it is well established that brown rot in pome fruits is closely associated with fruit injuries, this is the first study to provide season-long progress data on different injury types and quantitative analyses of their relative importance at different times in the growing season and across two distinct management systems. PMID:18943241

  17. Control of storage rot by induction of plant defense mechanisms using jasmonic acid and salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage rots contribute to sugarbeet postharvest losses by consuming sucrose and producing carbohydrate impurities that increase sugar loss to molasses. Presently, storage rots are controlled by cooling storage piles. This method of control, however, requires favorable weather conditions for stora...

  18. Jasmonic acid and salicylic acid inhibit growth of three sugarbeet storage rot pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage rots contribute to postharvest losses by consuming sucrose and increasing carbohydrate impurities that increase sugar loss to molasses during processing. They also increase root respiration rate, which causes additional sucrose loss and contributes to pile warming. Currently, storage rots ...

  19. Towards an improvement of carbon accounting for wildfires: incorporation of charcoal production into carbon emission models

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Santin, Cristina; de Groot, Bill

    2015-04-01

    Every year fires release to the atmosphere the equivalent to 20-30% of the carbon (C) emissions from fossil fuel consumption, with future emissions from wildfires expected to increase under a warming climate. Critically, however, part of the biomass C affected by fire is not emitted during burning, but converted into charcoal, which is very resistant to environmental degradation and, thus, contributes to long-term C sequestration. The magnitude of charcoal production from wildfires as a long-term C sink remains essentially unknown and, to the date, charcoal production has not been included in wildfire emission and C budget models. Here we present complete inventories of charcoal production in two fuel-rich, but otherwise very different ecosystems: i) a boreal conifer forest (experimental stand-replacing crown fire; Canada, 2012) and a dry eucalyptus forest (high-intensity fuel reduction burn; Australia 2014). Our data show that, when considering all the fuel components and quantifying all the charcoal produced from each (i.e. bark, dead wood debris, fine fuels), the overall amount of charcoal produced is significant: up to a third of the biomass C affected by fire. These findings indicate that charcoal production from wildfires could represent a major and currently unaccounted error in the estimation of the effects of wildfires in the global C balance. We suggest an initial approach to include charcoal production in C emission models, by using our case study of a boreal forest fire and the Canadian Fire Effects Model (CanFIRE). We also provide recommendations of how a 'conversion factor' for charcoal production could be relatively easily estimated when emission factors for different types of fuels and fire conditions are experimentally obtained. Ultimately, this presentation is a call for integrative collaboration between the fire emission modelling community and the charcoal community to work together towards the improvement of C accounting for wildfires.

  20. Towards an inventory of historic charcoal production fields in Brandenburg, Germany

    NASA Astrophysics Data System (ADS)

    Schneider, Anna; Takla, Melanie; Raab, Alexandra; Raab, Thomas; Bonhage, Alexander; Hirsch, Florian; Rsler, Horst

    2015-04-01

    The historic production of charcoal is an important component of the late Holocene fire history for many landscapes. Charcoal production can have numerous effects on ecosystems, e.g., through changes in forest area and structure, or through the effects of pyrolysis, charcoal and ash addition to soils. To assess such effects, it is necessary to understand the spatial extent and patterns of historic charcoal production, which has so far hardly been approached for the Northern European Lowlands. In the forefield of the open-cast mine Jnschwalde (north of Cottbus, Germany), archaeological excavations have revealed one of the largest charcoal production fields described so far. For this area, we applied and evaluated different methods for mapping the spatial distribution of charcoal kiln remains. Based on our results from this exceptionally well-described charcoal production field, we attempted to detect and map other large occurrences of charcoal kiln remains in the state of Brandenburg. For the mine forefield, archaeological excavations provide certain and exact information on kiln site location and geometry. Using airborne laser scanning elevation models, the mapping of kiln sites could be extended to areas beyond the mine forefield, using a manual digitization for thorough mapping in forest areas north of Cottbus, and an automated mapping approach for detection of kiln sites for additional areas in Brandenburg. Potential areas of large-scale production were identified in a GIS-based analysis of environmental and historic data. By manual digitization from Shaded Relief Maps, more than 5000 kiln sites in an area of 32 km2 were detected in the Jnschwalde mine forefield. First results of mapping for larger areas indicate similar densities, but smaller diameters of kiln sites in other charcoal production fields; and show that charcoal production is a so far underestimated component of the land use history in many parts of the Northern European Lowlands.

  1. Influence of dietary charcoal on ochratoxin A toxicity in Leghorn chicks.

    PubMed Central

    Rotter, R G; Frohlich, A A; Marquardt, R R

    1989-01-01

    The ability of activated charcoal to adsorb ochratoxin A (OA) in vitro and to reduce the toxic effects of OA in vivo when added to the diet of growing Leghorn chicks was studied. Activated charcoal (50 mg) was able to adsorb 90% of the OA (150 micrograms) contained in 10 mL of citrate-phosphate buffer (pH 7.0). When 2 g of a complete chick diet were mixed with OA in buffer, it adsorbed 66% of the OA, while addition of 50 mg of charcoal to this mixture further reduced the concentration of OA to 11.8% of the control, an additional 65% compared to the diet alone. In the first of two feeding studies, charcoal addition of up to 10,000 parts per million (ppm) to diets (6.7% tallow) containing 9.93 mumol (4 ppm) OA kg-1 diet had no effect on OA toxicity. Feed consumption and weight gain, however, were reduced 10 and 20%, respectively, in chicks fed diets which contained 10,000 ppm of charcoal compared to those fed no charcoal. In the second study, reducing dietary tallow to 2% did not alter the effects of OA or charcoal on weight gain and feed to gain ratio, but birds fed OA with 10,000 ppm charcoal had an 8.5% increase in feed consumption. An additional management problem was associated with the propensity of charcoal to blacken the feed, the birds and their environment. Addition of charcoal to OA contaminated diets appeared to be an ineffective method for reducing the toxic effects of OA in growing chicks. PMID:2590872

  2. Reaction of Cauliflower Genotypes to Black Rot of Crucifers

    PubMed Central

    da Silva, Lincon Rafael; da Silva, Renan César Dias; Cardoso, Atalita Francis; de Mello Pelá, Gláucia; Carvalho, Daniel Diego Costa

    2015-01-01

    This study aimed to evaluate six cauliflower genotypes regarding their resistance to black rot and their production performance. To do so, it was conducted two field experiments in Ipameri, Goiás, Brazil, in 2012 and 2013. It was used a randomized block design, with four replications (total of 24 plots). Each plot consisted of three planting lines 2.5 m long (six plants/line), spaced 1.0 m apart, for a total area of 7.5 m2. Evaluations of black rot severity were performed at 45 days after transplanting, this is, 75 days after sowing (DAS), and yield evaluations at 90 to 105 DAS. The Verona 184 genotype was the most resistant to black rot, showing 1.87 and 2.25% of leaf area covered by black rot symptom (LACBRS) in 2012 and 2013. However, it was not among the most productive materials. The yield of the genotypes varied between 15.14 and 25.83 t/ha in both years, Lisvera F1 (21.78 and 24.60 t/ha) and Cindy (19.95 and 23.56 t/ha) being the most productive. However, Lisvera F1 showed 6.37 and 9.37% of LACBRS and Cindy showed 14.25 and 14.87% of LACBRS in 2012 and 2013, being both considered as tolerant to black rot. PMID:26060437

  3. Reaction of Cauliflower Genotypes to Black Rot of Crucifers.

    PubMed

    da Silva, Lincon Rafael; da Silva, Renan César Dias; Cardoso, Atalita Francis; de Mello Pelá, Gláucia; Carvalho, Daniel Diego Costa

    2015-06-01

    This study aimed to evaluate six cauliflower genotypes regarding their resistance to black rot and their production performance. To do so, it was conducted two field experiments in Ipameri, Goiás, Brazil, in 2012 and 2013. It was used a randomized block design, with four replications (total of 24 plots). Each plot consisted of three planting lines 2.5 m long (six plants/line), spaced 1.0 m apart, for a total area of 7.5 m(2). Evaluations of black rot severity were performed at 45 days after transplanting, this is, 75 days after sowing (DAS), and yield evaluations at 90 to 105 DAS. The Verona 184 genotype was the most resistant to black rot, showing 1.87 and 2.25% of leaf area covered by black rot symptom (LACBRS) in 2012 and 2013. However, it was not among the most productive materials. The yield of the genotypes varied between 15.14 and 25.83 t/ha in both years, Lisvera F1 (21.78 and 24.60 t/ha) and Cindy (19.95 and 23.56 t/ha) being the most productive. However, Lisvera F1 showed 6.37 and 9.37% of LACBRS and Cindy showed 14.25 and 14.87% of LACBRS in 2012 and 2013, being both considered as tolerant to black rot. PMID:26060437

  4. IMPACT OF ROOT DISEASES ON POST-HARVEST STORAGE.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, sugarbeet (Beta vulgaris L.) root diseases have become more prevalent throughout Minnesota and eastern North Dakota. Any increase in root rots in the field will be accompanied by an increase in the proportion of roots with rot that are placed in storage piles. Information on the e...

  5. Species Identification and Variation in the North American Cranberry Fruit Rot Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many different species of pathogenic fungi cause cranberry fruit rot. The contribution of any given species can be quite variable depending on a host of cultural and environmental factors. Control of fruit rot can be problematic in the Northeast and in other growing regions losses due to fruit rot ...

  6. Persistence of Gliocephalotrichum spp. causing fruit rot of rambutan (Nephelium lappaceum L.) in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worldwide, fruit rot of rambutan is an important problem that limits the storage, marketing and long-distance transportation of the fruit. A complex of pathogens has been reported to cause fruit rot of rambutan and significant post-harvest economic losses. During 2009 and 2011 rambutan fruit rot was...

  7. Sugar beet root rot at harvest in the U.S. Intermountain West

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rot in sugar beet causes significant losses worldwide. To assess the distribution of root rot fungi and their relationship to bacterial root rot, commercial sugar beet roots were collected at harvest time in the Intermountain West. Isolations for both fungi and bacteria were conducted using ...

  8. The use of white-rot fungi as active biofilters

    SciTech Connect

    Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.; Huettermann, A.

    1995-12-31

    White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound that was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.

  9. Screening bactericidal effect of Pectobacterium carotovorum subsp. carotovorum strains against causal agent of potato soft rot.

    PubMed

    Kazemi-Zaromi, Samaneh; Baghaee-Ravari, Sareh; Khodaygan, Pejman; Falahati-Rastegar, Mahrokh

    2016-02-01

    This study focuses on the potential of Pectobacterium carotovorum subsp. carotovorum (Pcc) strains producing bacteriocin as a tool to control potato soft rot disease. Thirty out of 48 purified bacterial strains were characterized as Pcc using specific PCR and phenotypic tests. The pathogenicity and pectate degrading assays were recorded positive for 13 strains. Bacteriocin typing clustered producers into three groups according to their antimicrobial spectra. Majority of the producers except strains of group II showed antibacterial activity toward relative genus and the role of UV or mitomycin C was inductive. In addition, none of the distant genus was sensitive to Pcc bacteriocins except Rhizobium vitis. Molecular detection of four bacteriocins including carotovoricin, carosin S1, S2 and carosin D was performed. Overall, 54.5% of group I, 47.3 and 70% of groups II and III strains carried carotovoricin and four strains harbored gene corresponding to carosin S1. According to our data divers antimicrobial patterns obtained by Pcc strains and existence of new bateriocines could be possible. Moreover, our findings recommended that direct application of P29 or expression of corresponding genes of Pog22 or P21 in a nonpathogenic strain as a biocontrol agent may improve soft rot disease control. PMID:26523939

  10. Inhibitory effect and enzymatic analysis of E-cinnamaldehyde against sclerotinia carrot rot.

    PubMed

    Ojaghian, Mohammad Reza; Wang, Qi; Li, Xiaolin; Sun, Xiaoting; Xie, Guan-Lin; Zhang, Jingze; Hai-Wei, Fan; Wang, Li

    2016-02-01

    This study was conducted to determine the inhibitory effect of E-cinnamaldehyde (EC) against causal agent of storage carrot rot, Sclerotinia sclerotiorum, under in vivo and in vitro conditions. Based on the results, EC was able to completely inhibit mycelial growth of three isolates (P>0.05) in both volatile and contact phases after 6days at the concentrations 200μl and 1μl/ml, respectively. In addition, EC at concentrations 1 and 10μl/ml completely inhibited carpogenic germination of three isolates. The results of in vivo trials showed that EC at the concentration of 10μl/ml was able to control the disease caused by isolates 1 and 3. However the disease caused by isolate 2 was inhibited with the concentration of 20μl/ml. In enzyme analyses, the activity of polyphenoloxidase and peroxidase did not change in the inoculated carrots after application of EC. Furthermore, the level of phenylalanine ammonia lyase decreased. These results indicated that EC does not have any potential to be considered as resistance inducers against sclerotinia carrot rot. PMID:26821652

  11. Achievements and challenges in legume breeding for pest and disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield stability of legume crops is constrained by a number of pest and diseases. Major diseases are rusts, powdery and downy mildews, ascochyta blight, botrytis gray molds, anthracnoses, damping-off, root rots, collar rot, vascular wilts and white mold. Parasitic weeds, viruses, bacteria, nematodes ...

  12. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit.

    PubMed

    Wang, Xiaoli; Xu, Feng; Wang, Jing; Jin, Peng; Zheng, Yonghua

    2013-01-15

    The biocontrol effects of Bacillus cereus AR156 on Rhizopus rot caused by Rhizopus stolonifer in postharvest peach fruit and the possible mechanisms were investigated. The results showed that fruit treated with B. cereus AR156 had significantly lower disease incidence and smaller lesion diameter than the control fruit did. B. cereus AR156 treatment remarkably enhanced activities of chitinase and ?-1,3-glucanase, promoted accumulation of H(2)O(2), and improved total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity. Transcripts of four defense related genes were only significantly enhanced in fruit both treated with B. cereus AR156 and inoculated with R. stolonifer compared with those that were only treated with B. cereus AR156 or inoculated with R. stolonifer. These results suggest that B. cereus AR156 can effectively inhibit Rhizopus rot caused by R. stolonifer and enhance antioxidant activity in peach fruit through the priming of defense responses. PMID:23122077

  13. Mechanisms of charcoal degradation during its initial stages of decomposition

    NASA Astrophysics Data System (ADS)

    Singh, Nimisha; Abiven, Samuel; Schmidt, Michael W. I.

    2010-05-01

    Future climatic changes might result in an increased potential for wildfires, whereby incorporation of charred biomass into soil would increase. The incomplete combustion of biomass results in the production of a chemically heterogeneous class of highly condensed compounds known as pyrogenic C (PyC), which is generally considered resistant to microbial degradation. Recently, studies based on short-term laboratory incubations with soil have indicated that PyC can also eventually degrade (Baldock and Smernik, 2002; Hamer et al., 2004) and it is now widely accepted that a significant quantity of these resistant fraction of soil must have undergone degradation in terrestrial environments. Charcoal has been shown to decompose faster in the initial stages (first 2-3 months) and stabilize later (Kuzyakov et al., 2009). However, studies describing charcoal transformation processes remain scarce. The different potential degradation mechanisms have not yet been studied in combination, and therefore the relative importance for PyC degradation has not been evaluated. We are conducting an incubation experiment to study the biological, chemical and physical degradation/stabilization processes of PyC in soil under controlled conditions. We use Pinus ponderosa 13C/15N labeled (13C: 800 per mil, 15N: 4.2 atom %) wood and charcoal (pyrolysed at 450 °C under N2 atmosphere). We incubate soil from Lägeren forest (Wettingen, Switzerland) with three kind of organic inputs, labeled wood, char and no littler control. The decomposition rates would be estimated based on 13C of CO2 entrapped in NaOH. Time course destructive sampling would be done during the study. Lyophilized soil subsamples will be used for analysis of the amount of 13C incorporation in the microbial biomass using fumigation extraction method and phospholipids fatty acid analysis (PLFA). The remaining PyC in the soil would be characterized for the changes in its chemistry at the molecular level using Benzenepolycarboxlic acid (BPCA) molecular marker method and 13C 15N NMR. This communication aims to report the first four months results of this study at a higher time resolution. The outcome of this study would facilitate in elucidating the potential decomposition rate of charcoal and consequent changes in its physical, chemical and biological properties in the soil during the initial stages of decomposition. In addition, application of highly labeled 13C PyC would enable us in this study to trace the transformation products. References Baldock, J.A., and Smernik, R.J. (2002). Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood. Organic Geochemistry 33, 1093-1109. Hamer, U., Marschner, B., Brodowski, S., and Amelung, W. (2004). Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry 35, 823-830. Kuzyakov, Y., Subbotina, I., Chen, H.Q., Bogomolova, I., and Xu, X.L. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biology and Biochemistry 41, 210-219.

  14. Chromatographic evaluation of perfusion on charcoal in uraemia.

    PubMed

    Laganà, A; Liberti, A; Politi, L; Scandurra, R; Cerulli, N

    1985-12-13

    Chromatography on Bio-Gel P-2 and high-performance liquid chromatography on RP-18 columns monitored with UV, fluorescence and electrochemical detectors have been used to evaluate the efficiency of granular, uncoated, active charcoal to remove from the ultrafiltrates of uraemic patients those organic substances accumulated in the blood that are not easily removed by dialysis. Chromatography on Bio-Gel P-2 and high-performance liquid chromatography on RP-18 columns carried out isocratically and monitored with an electrochemical detector seem very useful for clinical investigation as they increase the information obtained from routine haematochemical analyses such as blood urea nitrogen, creatinine, uric acid and electrolytes (calcium, phosphorus, sodium and potassium). PMID:4086596

  15. Criticality safety study of the MSRE auxiliary charcoal bed

    SciTech Connect

    Hollenbach, D.F.; Hopper, C.M.

    1996-09-01

    The Molten Salt Reactor Experiment (MSRE) was operated from June 1965 to December 1969. The objective of the experiment was to investigate the practicality of developing a power reactor consisting of a graphite lattice with circulating molten uranium salt as fuel for application in central power stations. When the experiment was terminated in 1969, approximately 4710 kg of salt containing approximately 36.3 kg of uranium, 675 g of plutonium, and various fission products were transferred to two fuel drain tanks (FDTs). The almost 30.5 kg of Uranium 233 in the salt is the primary fissile constituent, but about 0.93 kg of Uranium 235 is also present. In April 1994, a gas sample from the MSRE off-gas system (OGS) indicated that uranium had migrated from the FDTs into the OGS. Further investigation revealed a likely accumulation of approximately 2.6 kg of uranium in the auxiliary charcoal bed (ACB), which is located in the concrete-lined charcoal bed cell (CBC) below ground level outside the MSRE building. The nuclear criticality safety (NCS) situation was further complicated by the CBC being filled with water up to the overflow pipe, which completely submerged the ACB. Thus there was not only an increased risk of criticality because of water reflection in the ACB, but also because of potential moderation in the ACB in case of water inleakage. Leakage into the ACB would result in a direct path for water between the CBC and the OGS or FDTs, thus increasing the risk of criticality in these areas. When uranium was discovered in the ACB, a number of steps, detailed in this report, were immediately taken to try to understand and ameliorate the situation. After all the actions were completed, a validation of the results obtained for the ACB was performed.

  16. Diaporthaceae associated with root and crown rot of maize.

    PubMed

    Lamprecht, Sandra C; Crous, Pedro W; Groenewald, Johannes Z; Tewoldemedhin, Yared T; Marasas, Walter F O

    2011-06-01

    Several isolates of coelomycetous fungi with pigmented conidia were consistently isolated from diseased roots of Zea mays in irrigated plots monitored in the KwaZulu-Natal Province of South Africa. Based on their morphology, these isolates could be identified as representative of Stenocarpella macrospora, S. maydis, and Phaeocytostroma ambiguum. Although species of Stenocarpella are well-known as causal agents of cob and stalk rot and leaf blight of maize in South Africa, the occurrence and importance of P. ambiguum is less well documented and understood. To determine the role of P. ambiguum as a root pathogen of maize, pathogenicity tests were conducted under glasshouse conditions at 18 °C night and 28 °C day temperatures using a pasteurised soil, river sand and perlite medium and a 0.5 % sand-bran inoculum. Based on these results, P. ambiguum was shown to be a primary pathogen of maize, but to be less virulent than the positive control, S. maydis. Furthermore, to clarify the higher-level phylogeny of these fungal genera, isolates were subjected to DNA sequencing of the nuclear ribosomal DNA (ITS & LSU). Partial gene sequences of the translation elongation factor 1-alpha gene were added to confirm the species monophyly. To resolve the generic placement of Phaeocytostroma, additional species such as P. sacchari, P. plurivorum and P. megalosporum were also added to the analysis. Based on these results, Stenocarpella and Phaeocytostroma were shown to be two well defined genera, belonging to Diaporthales, Diaporthaceae, being closely allied to Phomopsis (Diaporthe). All three genera were also observed to form alpha as well as beta conidia, and although this phenomenon is well documented for Phomopsis and Phaeocytostroma, it is a new observation for Stenocarpella. In spite of the differences in conidial pigmentation, no support could be obtained for polyphyly in Diaporthaceae, suggesting that as observed in Botryosphaeriaceae (Botryosphaeriales), conidial pigmentation is not informative at the family level in Diaporthales. PMID:22679583

  17. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi.

    PubMed Central

    Martens, R; Wetzstein, H G; Zadrazil, F; Capelari, M; Hoffmann, P; Schmeer, N

    1996-01-01

    The veterinary fluoroquinolone enrofloxacin was degraded in vitro by four species of wood-rotting fungi growing on wetted wheat straw containing carbonyl-14C-labeled drug. A maximum 14CO2 production of 17% per week was observed with the brown rot fungus Gloeophyllum striatum, resulting in up to 53% after 8 weeks. However, rates reached at most 0.2 and 0.9% per week, if enrofloxacin was preadsorbed to native or gamma ray-sterilized soil, respectively. PMID:8900012

  18. The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine.

    PubMed

    Goudeau, Danielle M; Parker, Craig T; Zhou, Yaguang; Sela, Shlomo; Kroupitski, Yulia; Brandl, Maria T

    2013-01-01

    Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease. PMID:23104408

  19. The Salmonella Transcriptome in Lettuce and Cilantro Soft Rot Reveals a Niche Overlap with the Animal Host Intestine

    PubMed Central

    Goudeau, Danielle M.; Parker, Craig T.; Zhou, Yaguang; Sela, Shlomo; Kroupitski, Yulia

    2013-01-01

    Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease. PMID:23104408

  20. Charcoal as evidence of fire regimes in the Pleistocene of the California Islands

    NASA Astrophysics Data System (ADS)

    Scott, A. C.; Hardiman, M.; Pinter, N.; Anderson, R. S.

    2012-04-01

    Charcoal has been recovered from a range of late Pleistocene sites both in Santa Cruz Island and Santa Rosa Island, belonging to the California Channel Islands. Sediments have been dated using radiocarbon measurements based on wood charcoal, fungal sclerotia, glassy carbon and fecal pellets and are given as calendar years bp. Charcoal assemblages from samples dating from 24,694 to 12,900 years are dominated by coniferous wood charcoal. Little angiosperm charcoal was recovered in any of the samples. Fungal sclerotia are frequent in a number of samples from a range of ages both on Santa Cruz and Santa Rosa. Fecal pellets are common in most samples and abundant in others. Some of the fecal pellets have hexagonal sides and are likely to represent termite frass. The sediments are fluvial in origin and the distribution of charcoal is irregular. The charcoal records a significant record of fire before the earliest documented human arrival on the islands and there is no evidence for a catstrophic fire triggered by a cometary impact at the onset of the younger Dryas, 12,900 cal years bp.

  1. What can we tell from particle morphology in Mesozoic charcoal assemblages?

    NASA Astrophysics Data System (ADS)

    Crawford, Alastair; Belcher, Claire

    2015-04-01

    Sedimentary charcoal particles provide a valuable record of palaeofire activity on both human and geological timescales. Charcoal is both an unambiguous indicator of wildfire, and a means of preservation of plant material in an inert form; thus it records not only the occurrence and extent of wildfire, but also the species affected. While scanning electron microscopy can be usefully employed for precise taxonomic identification of charcoals, the time and cost associated with this limit the extent to which the technique is employed. Morphometric analysis of mesocharcoal particles (c. 125-1000 µm) potentially provides a simple method for obtaining useful information from optical microscopy images. Grass fires have been shown to produce mesocharcoal particles with a higher length-to-width ratio than woodland fuel sources. In Holocene archives, aspect ratio measurements are thus used to infer the broad taxonomic affinity of the burned vegetation. Since Mesozoic charcoals display similarly heterogeneous morphologies, we investigate whether there is a similar potential to infer the broad botanical affinities of Mesozoic charcoal assemblages from simple morphological metrics. We have used image analysis to analyse a range of Jurassic and Cretaceous sedimentary rocks representing different vegetation communities and depositional environments, and also to determine the range of charcoal particle morphologies which can be produced from different modern taxa under laboratory conditions. We find that modern charcoals break down into mesocharcoal particles of very variable aspect ratio, and this appears to be dependent on taxonomic position. Our analysis of fragmented laboratory-produced charcoals indicates that pteridophytes produce much more elongate particles than either conifers or non-grass angiosperms. We suggest that for charcoal assemblages that predate the evolution of grasses, high average aspect ratios may be a useful indicator of the burning of a pteridophyte-dominated flora.

  2. Black carbon quantification in charcoal-enriched soils by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Leifeld, Jens

    2015-04-01

    Black carbon (BC), the solid residue of the incomplete combustion of biomass and fossil fuels, is ubiquitous in soil and sediments, fulfilling several environmental services such as long-term carbon storage. BC is a particularly important terrestrial carbon pool due to its large residence time compared to thermally unaltered organic matter, which is largely attributed to its aromatic structure. However, BC refers to a wide range of pyrogenic products from partly charred biomass to highly condensed soot, with a degree of aromaticity and aromatic condensation varying to a large extend across the BC continuum. As a result, BC quantification largely depends on operational definitions, with the extraction efficiency of each method varying across the entire BC range. In our study, we investigated the adequacy of differential scanning calorimetry (DSC) for the quantification of BC in charcoal-enriched soils collected in the topsoil of pre-industrial charcoal kilns in forest and cropland of Wallonia, Belgium, where charcoal residues are mixed to uncharred soil organic matter (SOM). We compared the results to the fraction of the total organic carbon (TOC) resisting to K2Cr2O7 oxidation, another simple method often used for BC measurement. In our soils, DSC clearly discriminates SOM from chars. SOM is less thermally stable than charcoal and shows a peak maximum around 295C. In forest and agricultural charcoal-enriched soils, three peaks were attributed to the thermal degradation of BC at 395, 458 and 523C and 367, 420 and 502 C, respectively. In cropland, the amount of BC calculated from the DSC peaks is closely related (slope of the linear regression = 0.985, R=0.914) to the extra organic carbon content measured at charcoal kiln sites relative to the charcoal-unaffected adjacent soils, which is a positive indicator of the suitability of DSC for charcoal quantification in soil. The first BC peak, which may correspond to highly degraded charcoal, contributes to a larger part of the total BC amount in agricultural soils compared to forest soils, suggesting that cultivation might accelerate charcoal degradation. Regarding the K2Cr2O7 oxidation, 65 % of the TOC is oxidized in forest soils while 100 % is oxidized in agricultural soils, discrediting the method for old charcoal quantification in soil. In conclusion, DSC is a rapid and cost-effective technique for BC quantification in soil, covering the entire range of the BC continuum while giving information on the thermal stability of different BC pools. Oppositely, K2Cr2O7 oxidation in not a suitable method for old charcoal quantification in soil.

  3. Ozone removal capability of a welding fume respirator containing activated charcoal

    SciTech Connect

    Johnston, A.R.; Dyrud, J.F.; Shih, Y.T. )

    1989-09-01

    Development of air purifying respirators for protection against ozone has been slowed by concerns about oxidation of charcoal and other available sorbents. The suitability of a charcoal sorbent for low concentrations of ozone was evaluated as a part of the development of a half-mask air purifying respirator designed for welding fumes and ozone. Testing of the respirator confirmed that charcoal can be a suitable sorbent for low levels of ozone. Where the respirator is properly selected, fit tested, and worn, respirator use against welding fumes and ozone at concentrations not exceeding 10 times the permissible exposure limit had been recommended.

  4. PROFITABLE SOYBEAN DISEASE MANAGEMENT IN OHIO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A summary of disease management strategies for Ohio soybean growers is presented including current information on identification of disease problems, disease resistant soybeans, and agronomic practices for controlling disease. The major diseases of soybeans seed rot and root pathogens include Phytop...

  5. Regional Changes in Charcoal-Burning Suicide Rates in East/Southeast Asia from 1995 to 2011: A Time Trend Analysis

    PubMed Central

    Chang, Shu-Sen; Chen, Ying-Yeh; Yip, Paul S. F.; Lee, Won Jin; Hagihara, Akihito; Gunnell, David

    2014-01-01

    Background Suicides by carbon monoxide poisoning resulting from burning barbecue charcoal reached epidemic levels in Hong Kong and Taiwan within 5 y of the first reported cases in the early 2000s. The objectives of this analysis were to investigate (i) time trends and regional patterns of charcoal-burning suicide throughout East/Southeast Asia during the time period 1995–2011 and (ii) whether any rises in use of this method were associated with increases in overall suicide rates. Sex- and age-specific trends over time were also examined to identify the demographic groups showing the greatest increases in charcoal-burning suicide rates across different countries. Methods and Findings We used data on suicides by gases other than domestic gas for Hong Kong, Japan, the Republic of Korea, Taiwan, and Singapore in the years 1995/1996–2011. Similar data for Malaysia, the Philippines, and Thailand were also extracted but were incomplete. Graphical and joinpoint regression analyses were used to examine time trends in suicide, and negative binomial regression analysis to study sex- and age-specific patterns. In 1995/1996, charcoal-burning suicides accounted for <1% of all suicides in all study countries, except in Japan (5%), but they increased to account for 13%, 24%, 10%, 7%, and 5% of all suicides in Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore, respectively, in 2011. Rises were first seen in Hong Kong after 1998 (95% CI 1997–1999), followed by Singapore in 1999 (95% CI 1998–2001), Taiwan in 2000 (95% CI 1999–2001), Japan in 2002 (95% CI 1999–2003), and the Republic of Korea in 2007 (95% CI 2006–2008). No marked increases were seen in Malaysia, the Philippines, or Thailand. There was some evidence that charcoal-burning suicides were associated with an increase in overall suicide rates in Hong Kong, Taiwan, and Japan (for females), but not in Japan (for males), the Republic of Korea, and Singapore. Rates of change in charcoal-burning suicide rate did not differ by sex/age group in Taiwan and Hong Kong but appeared to be greatest in people aged 15–24 y in Japan and people aged 25–64 y in the Republic of Korea. The lack of specific codes for charcoal-burning suicide in the International Classification of Diseases and variations in coding practice in different countries are potential limitations of this study. Conclusions Charcoal-burning suicides increased markedly in some East/Southeast Asian countries (Hong Kong, Taiwan, Japan, the Republic of Korea, and Singapore) in the first decade of the 21st century, but such rises were not experienced by all countries in the region. In countries with a rise in charcoal-burning suicide rates, the timing, scale, and sex/age pattern of increases varied by country. Factors underlying these variations require further investigation, but may include differences in culture or in media portrayals of the method. Please see later in the article for the Editors' Summary PMID:24691071

  6. Effects of bagasse-charcoal addition to soil on nitrate leaching in calcaric soils

    NASA Astrophysics Data System (ADS)

    Kameyama, K.; Miyamoto, T.; Shinogi, Y.

    2009-12-01

    Nitrate leaching in soils is often an important aspect in agriculture. Nitrate is leached from the root zone, where plants can utilize them, by surplus rainfall because little nitrate is absorbed by soil colloids. Miyako Island (target area) is located in the subtropical zone and comprised of coral limestone with high permeability. Land surface is covered with calcaric dark red soil that is called Shimajiri-Maji. Since the soil has low water- and fertilizer-retaining capacity, fertilizer-derived nitrogen easily leaches from the root zone during surplus rainfall and the nitrogen utilization efficiency of crops is relatively low. Biochars, charcoal produced from pyrolysis of biomass, are known to adsorb dissolved nitrate. Sugarcane bagasse is the main biomass resource on the island because agriculture is the main industry on the island and sugarcane is cultivated in approximately 70% of the farmland. However, the adsorption characteristics of bagasse-charcoals for nitrate have not yet been clarified. The objective of this study was to evaluate the dependency of carbonization temperatures on the nitrate adsorption properties of bagasse-charcoals and the effects of bagasse-charcoal addition to the soil on NO3-N transport in the soil for optimal use of bagasse-charcoal as a soil amendment in Miyako Island. Sugarcane bagasse were air-dried and heated in a batch-type carbonization furnace at five different carbonization temperatures (400, 500, 600, 700 and 800C) with a holding time of 2 h. Nitrate adsorption by soil and bagasse-charcoals at each carbonization temperature was measured by the batch equilibrium technique. NO3-N transport behavior in charcoal-amended soils (rates of charcoal addition: 0, 5 and 10 wt %) was evaluated in the column experiments. The breakthrough curves of NO3-N concentrations in the effluents from the bottom of the columns were analyzed with a convective-dispersion model. The model described one-dimensional transport of a sorbing solute thorough a homogeneous saturated soil. Linear adsorption equation that considered rates of charcoal addition was used to describe NO3-N adsorption of charcoal-amended soils (S=Kd C R, where C is solution concentration [mg cm-3], S is sorbed concentration [mg -1], Kd is the sorption distribution coefficient [cm-3 kg-1] and R is rates of charcoal addition [wt %]). The experimental and analytical results were as follows: (1) Batch experiments using five different bagasse-charcoals revealed that nitrate was adsorbed at 700C and 800C and was scarcely adsorbed at less than 700C. (2) Column experiments using charcoal-amended soils revealed that NO3-N transport in soils was delayed by adsorption effects of bagasse-charcoal. (3) Analysis with the convective-dispersion model showed that the experimental and simulated results were in good agreement at all charcoal-amended soils. Therefore, the adsorption equation that considers the rates of charcoal addition is effective to describe NO3-N transport behavior in charcoal-amended soils.

  7. Soybean fungal soil-borne diseases: a parameter for measuring the effect of agricultural intensification on soil health.

    PubMed

    Prez-Brandn, C; Huidobro, J; Grmberg, B; Scandiani, M M; Luque, A G; Meriles, J M; Vargas-Gil, S

    2014-02-01

    The aim of this study was to investigate the influence of agricultural intensification on soil microbial diversity, chemical and physical parameters, and the decrease of the incidence of sudden death syndrome (Fusarium crassistipitatum) and charcoal rot (Macrophomina phaseolina) in soybean. Soils under different management systems were evaluated during 2 crop cycles: soybean monoculture for 24 and 11 years, soybean-maize rotation for 15 and 4 years, 1 year of soybean, and native vegetation. The incidence of both soil-borne diseases was higher under monoculture than under rotation. Increased populations of potential biocontrol agents (Trichoderma spp., Gliocladium spp., fluorescent pseudomonads) were associated with rotation treatments, especially in 2010-2011. The comparison of agricultural vs. native vegetation soil and the average of agricultural cycles showed that microbial biomass carbon and glomalin-related soil protein were higher in the rotation system than in monoculture (50% and 77%, respectively). Furthermore, from the community-level functional diversity (Biolog Eco plates), McIntosh index showed lower functional diversity in monoculture than in rotation and native vegetation plots. Agricultural intensification reduced microbial biomass carbon, glomalin-related soil protein, organic matter, total nitrogen, aggregate stability, and yield, and increased bulk density. Soil quality degradation was associated with the establishment of soil-borne pathogens and increased soybean plant susceptibility to disease. PMID:24498984

  8. Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis

    PubMed Central

    Gao, Xiang; Lu, Xing; Wu, Man; Zhang, Haiyan; Pan, Ruqian; Tian, Jiang; Li, Shuxian; Liao, Hong

    2012-01-01

    Background Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases. Principal Findings We firstly investigated the disease incidence and index of soybean red crown rot under different phosphorus (P) additions in field and found that the natural inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF) could affect soybean red crown rot, particularly without P addition. Further studies in sand culture experiments showed that inoculation with rhizobia or AMF significantly decreased severity and incidence of soybean red crown rot, especially for co-inoculation with rhizobia and AMF at low P. The root colony forming unit (CFU) decreased over 50% when inoculated by rhizobia and/or AMF at low P. However, P addition only enhanced CFU when inoculated with AMF. Furthermore, root exudates of soybean inoculated with rhizobia and/or AMF significantly inhibited pathogen growth and reproduction. Quantitative RT-PCR results indicated that the transcripts of the most tested pathogen defense-related (PR) genes in roots were significantly increased by rhizobium and/or AMF inoculation. Among them, PR2, PR3, PR4 and PR10 reached the highest level with co-inoculation of rhizobium and AMF. Conclusions Our results indicated that inoculation with rhizobia and AMF could directly inhibit pathogen growth and reproduction, and activate the plant overall defense system through increasing PR gene expressions. Combined with optimal P fertilization, inoculation with rhizobia and AMF could be considered as an efficient method to control soybean red crown rot in acid soils. PMID:22442737

  9. MINERALIZATION OF RECALCITRANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    EPA Science Inventory

    The white rot fungus Phanerochaete chrysosporium is able to degrade lignin, a structurally complex, naturally occurring and environmentally persistent, non-repeating heteropolyrner. revious studies have shown that this fungus is also able-to degrade a wide variety of synthetic or...

  10. BIODEGRADATION OF PENTACHLOROPHENOL BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble met...

  11. Reducing Alfalfa Brown Root Rot with Crop Rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stand injury resulting from brown root rot (BRR) of alfalfa, caused by Phoma sclerotioides, may be noted this spring as warmer temperatures promote stand emergence. BRR development occurs primarily over the winter and is favored when stands are covered with snow for an extended period of time. It is...

  12. Calibrating echelle spectrographs with Fabry-Pérot etalons

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Zechmeister, M.; Reiners, A.

    2015-09-01

    Context. Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and fewer dynamic range problems. Fabry-Pérot interferometers provide a regular and dense grid of lines and homogeneous amplitudes, which makes them good candidates for next-generation calibrators. Aims: We investigate the usefulness of Fabry-Pérot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution, and examine potential problems. Methods: The quasi-periodic pattern of Fabry-Pérot lines was used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We tested our method with the HARPS spectrograph and compared our wavelength solution to the one derived from a laser frequency comb. Results: The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelength solution of the HARPS data reduction software. The direct comparison to the laser frequency comb shows differences of only 10 m/s at most. Conclusions: Combining hollow-cathode lamps with Fabry-Pérot interferometers can lead to substantial improvements in the wavelength calibration of echelle spectrographs. Etalons can provide economical alternatives to the laser frequency comb, especially for smaller projects.

  13. EVIDENCE FOR CLEAVAGE OF LIGNIN BY A BROWN ROT FUNGUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these fungi do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications....

  14. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG...

  15. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG...

  16. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2009, Trichoderma rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreening with 5...

  17. CONTROL OF PHYTOPHTHORA ROT IN PUMPKIN AND ZUCCHINI WITH PHOSPHONATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments in the greenhouse were conducted to determine the efficacy of two products containing potassium phosphate/dipotassium phosphonate (FNX-100 and FNX-2500) against Phytophthora root and stem rot in pumpkin and zucchini. Experiments were designed to determine the effects of crop variety, ap...

  18. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    EPA Science Inventory

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  19. Aphanomyces root rot of alfalfa: widespread distribution of race 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early spring of 2012 with prolonged wet soil conditions in many parts of the country resulted in reports of poor performance of alfalfa due to Aphanomyces root rot (ARR). Varieties with resistance to ARR are available, although fewer varieties have resistance to both race 1 and race 2 of the pat...

  20. CROP AND WEED HOSTS OF THE PINK ROT PATHOGEN.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora erythroseptica (Pe), cause of pink rot of potato, is known to infect at least 31 different host plants. Wheat and barley are two of these reported hosts that are grown almost exclusively in rotation with potato in eastern Idaho. Additionally, wheat,barley, and seed of other crops foun...

  1. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  2. Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia.

    PubMed

    Lombard, L; Polizzi, G; Guarnaccia, V; Vitale, A; Crous, P W

    2011-12-01

    Calonectria spp. are important pathogens of ornamental plants in nurseries, especially in the Northern Hemisphere. They are commonly associated with a wide range of disease symptoms of roots, leaves and shoots. During a recent survey in Tunisia, a number of Calonectria spp. were isolated from tissues of ornamental plants showing symptoms of leaf spot, crown and root rot. The aim of this study was to identify these Calonectria spp. using morphological and DNA sequence comparisons. Two previously undescribed Calonectria spp., C. pseudomexicana sp. nov. and C. tunisiana sp. nov., were recognised. Calonectria mexicana and C. polizzii are newly reported for the African continent. Pathogenicity tests with all four Calonectria spp. showed that they are able to cause disease on seedlings of Callistemon spp., Dodonaea viscosa, Metrosideros spp. and Myrtus communis. PMID:22403477

  3. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus

    PubMed Central

    Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-01-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen. PMID:26539045

  4. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus.

    PubMed

    Hung, Phung Manh; Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-09-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 g/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen. PMID:26539045

  5. Morphological and Molecular Characterization of Pomegranate Fruit Rot Pathogen, Chaetomella raphigera, and its Virulence Factors.

    PubMed

    Gajbhiye, Milind; Sathe, Shivaji; Shinde, Vikas; Kapadnis, Balu

    2016-03-01

    A new fungal pathogen was isolated from rotten pomegranates collected from the orchards of different parts of Maharashtra. The pathogen was morphologically identified as Chaetomella raphigera followed by sequencing of ITS and D1/D2 hypervariable region of LSU (28S) of rRNA gene. The pathogen produced pectinase, cellulase, xylanase and protease in liquid medium at a concentration of 71, 13.8, 54.3 and 7 U/ml respectively. Enzyme activity was also determined during pathogenesis in the tissues artificially infected by C. raphigera. Xylanase activity was maximum (25.1U/g) followed by pectinase (19.2U/g) and cellulase (1.5U/g), whereas, protease activity was unnoticed. There was significant correlation (P<0.05) between disease rating scale and pectinase, xylanase and cellulase activity in infected tissues. This indicates the simultaneous production of hydrolytic enzymes that aids in necrosis of fruit tissues. The elevated levels of these enzymes in infected tissues as compared with control suggest their possible role in pathogenesis. Thus, pectinase, cellulase and xylanase produced by C. raphigera acts as major virulence factors in the development of fruit rot in pomegranates. This is a first report of fungal fruit rot caused by C. raphigera in pomegranate. PMID:26843702

  6. Rice-Infecting Pseudomonas Genomes Are Highly Accessorized and Harbor Multiple Putative Virulence Mechanisms to Cause Sheath Brown Rot

    PubMed Central

    Quibod, Ian Lorenzo; Grande, Genelou; Oreiro, Eula Gems; Borja, Frances Nikki; Dossa, Gerbert Sylvestre; Mauleon, Ramil; Cruz, Casiana Vera; Oliva, Ricardo

    2015-01-01

    Sheath rot complex and seed discoloration in rice involve a number of pathogenic bacteria that cannot be associated with distinctive symptoms. These pathogens can easily travel on asymptomatic seeds and therefore represent a threat to rice cropping systems. Among the rice-infecting Pseudomonas, P. fuscovaginae has been associated with sheath brown rot disease in several rice growing areas around the world. The appearance of a similar Pseudomonas population, which here we named P. fuscovaginae-like, represents a perfect opportunity to understand common genomic features that can explain the infection mechanism in rice. We showed that the novel population is indeed closely related to P. fuscovaginae. A comparative genomics approach on eight rice-infecting Pseudomonas revealed heterogeneous genomes and a high number of strain-specific genes. The genomes of P. fuscovaginae-like harbor four secretion systems (Type I, II, III, and VI) and other important pathogenicity machinery that could probably facilitate rice colonization. We identified 123 core secreted proteins, most of which have strong signatures of positive selection suggesting functional adaptation. Transcript accumulation of putative pathogenicity-related genes during rice colonization revealed a concerted virulence mechanism. The study suggests that rice-infecting Pseudomonas causing sheath brown rot are intrinsically diverse and maintain a variable set of metabolic capabilities as a potential strategy to occupy a range of environments. PMID:26422147

  7. The development of a sensor system for the early detection of soft rot in stored potato tubers

    NASA Astrophysics Data System (ADS)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H. E.; Ratcliffe, N. M.; de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H. E.; Spencer-Phillips, P. T. N.

    2000-12-01

    A number of sensor types were fabricated and tested for their electrical resistance changes to compounds known to be evolved by potato tubers with soft rot caused by the bacterium Erwinia carotovora. On the basis of these tests, three sensors were selected for incorporation into a prototype device. The device was portable and could be used without computer control after threshold values and sensor settling criteria had been downloaded. The prototype was assessed for its discriminating power under simulated storage conditions. The device was capable of detecting one tuber with soft rot in 100 kg of sound tubers in a simulated storage crate. The device was also able to detect a tuber inoculated with E. carotovora, but without visible signs of soft rot, within 10 kg of sound tubers. The same system was able to follow the progression of the disease in a tuber stored amongst 10 kg of sound tubers when operated at 4 C and 85% relative humidity (conditions typical of a refrigerated storage facility).

  8. The ‘Dr Jekyll and Mr Hyde fungus’: noble rot versus gray mold symptoms of Botrytis cinerea on grapes

    PubMed Central

    Fournier, Elisabeth; Gladieux, Pierre; Giraud, Tatiana

    2013-01-01

    Many cryptic species have recently been discovered in fungi, especially in fungal plant pathogens. Cryptic fungal species co-occurring in sympatry may occupy slightly different ecological niches, for example infecting the same crop plant but specialized on different organs or having different phenologies. Identifying cryptic species in fungal pathogens of crops and determining their ecological specialization are therefore crucial for disease management. Here, we addressed this question in the ascomycete Botrytis cinerea, the agent of gray mold on a wide range of plants. On grape, B. cinerea causes severe damage but is also responsible for noble rot used for processing sweet wines. We used microsatellite genotyping and clustering methods to elucidate whether isolates sampled on gray mold versus noble rot symptoms in three French regions belong to genetically differentiated populations. The inferred population structure matched geography rather than the type of symptom. Noble rot symptoms therefore do not seem to be caused by a specific B. cinerea population but instead seem to depend essentially on microclimatic conditions, which has applied consequences for the production of sweet wines. PMID:24062804

  9. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize.

    PubMed

    Zhang, Dongfeng; Liu, Yongjie; Guo, Yanling; Yang, Qin; Ye, Jianrong; Chen, Shaojiang; Xu, Mingliang

    2012-02-01

    Stalk rot is one of the most devastating diseases in maize worldwide. In our previous study, two QTLs, a major qRfg1 and a minor qRfg2, were identified in the resistant inbred line '1145' to confer resistance to Gibberella stalk rot. In the present study, we report on fine-mapping of the minor qRfg2 that is located on chromosome 1 and account for ~8.9% of the total phenotypic variation. A total of 22 markers were developed in the qRfg2 region to resolve recombinants. The progeny-test mapping strategy was developed to accurately determine the phenotypes of all recombinants for fine-mapping of the qRfg2 locus. This fine-mapping process was performed from BC(4)F(1) to BC(8)F(1) generations to narrow down the qRfg2 locus into ~300 kb, flanked by the markers SSRZ319 and CAPSZ459. A predicted gene in the mapped region, coding for an auxin-regulated protein, is believed to be a candidate for qRfg2. The qRfg2 locus could steadily increase the resistance percentage by ~12% across different backcross generations, suggesting its usefulness in enhancing maize resistance against Gibberella stalk rot. PMID:22048640

  10. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  11. Research of morphology structure and properties of bamboo charcoal acrylic fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjiu; Feng, Aifen

    2015-07-01

    In order to understand the properties of bamboo charcoal acrylic fiber, the tensile properties, friction properties and hygroscopicity of it, the bamboo charcoal acrylic fiber and the ordinary acrylic fiber were tested, compared and analyzed. The burning behaviors of the two kinds of fibers were observed by burning test, and their cross-sectional and longitudinal morphology was observed with scanning electron microscope (SEM). The SEM pictures showed that there are the uneven sizes of microspores on the surface of bamboo charcoal acrylic fiber and in it. It was found that the friction coefficients of the bamboo charcoal acrylic fiber are smaller and its tensile and moisture absorption are better than those of the ordinary acrylic fiber. However, there are no obvious differences of the burning behaviors between the two fibers.

  12. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis.

    PubMed

    Labbé, Nicole; Harper, David; Rials, Timothy; Elder, Thomas

    2006-05-17

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The multivariate models of charcoal were able to distinguish between species and wood thermal treatments, revealing that the characteristics of the wood charcoal depend not only on the wood species, but also on the carbonization temperature. This work demonstrates the potential of mid infrared spectroscopy in the whiskey industry, from the identification and classification of the wood species for the mellowing process to the chemical characterization of the barrels after the toasting and charring process. PMID:19127715

  13. Model for adsorption capacities of charcoal beds. II. Challenge concentrations effects

    SciTech Connect

    Wood, G.O.

    1987-08-01

    Equilibrium and kinetic capacities of charcoal beds for adsorbed toxic gases and vapors depend on the concentrations of those gases and vapors. Water vapor also affects these capacities. The assumption of competitive (vapor vs. water vapor) equilibria for adsorption led to a mathematical model that quite successfully described relative humidity effects on adsorption capacities of water immiscible vapors. This same model now has been demonstrated to describe published and new data on vapor concentration effects equally well. Parameters obtained from fits of experimental data with the model can be used for comparisons of charcoal characteristics, adsorbate-charcoal interactions and water-charcoal interactions. Correlations by this model are useful for extrapolating data to untested vapor concentrations and relative humidity conditions.

  14. Combustion efficiency and hydrocarbon emissions from charcoal production kilns in the tropics

    SciTech Connect

    Ward, D.E.; Hao, W.M.; Babbitt, R.E.

    1995-12-01

    Charcoal is one of the major energy resources in tropical countries. We investigate the combustion processes in charcoal production kilns in Zambia and Brazil. The Zambian kilns were made of earth and there was sufficient air for combustion inside the kilns. The Brazilian kilns were made of bricks which limited the available oxygen. The combustion efficiency and the concentrations of CO{sub 2}, CO, CH{sub 4}, C{sub 2}-C{sub 6} alkanes and alkenes, and aromatic compounds produced were monitored throughout the combustion processes. The contributions of charcoal production processes to the atmospheric sources of these gases were estimated. The strategies for improving charcoal yield and reducing emissions of carbon-containing compounds are discussed.

  15. Oxidation of phosphine by iron(III) chloride complexes supported on activated charcoal

    SciTech Connect

    Rakitskaya, T.L.; Kostyukova, I.S.; Red'ko, T.D.

    1988-06-01

    It has been discovered that iron(III) chloride complexes supported on activated charcoal oxidize phosphine under normal conditions. The process accelerates as the concentration of the chloride ions and the proton acid increases.

  16. Charcoal burning as a source of polyaromatic hydrocarbons in waterpipe smoking.

    PubMed

    Nguyen, Thao; Hlangothi, Duma; Martinez, Raul A; Jacob, Durelle; Anthony, Kevin; Nance, Herb; Saleh, Mahmoud A

    2013-01-01

    Polyaromatic hydrocarbons (PAH) content from seven commercial waterpipe charcoals were determined during the smoking process to estimate how much PAHs would not be trapped by the water trap and could reach the lungs of the smokers. Naphthalene, 2-methylnaphthalene, acenaphthylene, acenaphthene, phenanthrene and fluoranthene were the most abundant PAH compounds produced during smoking. Naphthalene was the highest in all of the smoke contents and levels of 5 to 405 ?g/15 minutes could be inhaled by the smoker. The amounts of PAHs produced during the smoking events in absence of tobacco varied greatly among different brands of charcoal. The amount and composition of the emitted PAH were not related to the amount and composition of the original chemicals in the charcoal prior to burning. Our findings suggest that public health agencies should regulate smoked charcoal products alongside tobacco. PMID:24007487

  17. A synthesis of parameters related to the binding of neutral organic compounds to charcoal.

    PubMed

    Hale, Sarah E; Arp, Hans Peter H; Kupryianchyk, Darya; Cornelissen, Gerard

    2016-02-01

    The sorption strength of neutral organic compounds to charcoal, also called biochar was reviewed and related to charcoal and compound properties. From 29 studies, 507 individual Freundlich sorption coefficients were compiled that covered the sorption strength of 107 organic contaminants. These sorption coefficients were converted into charcoal-water distribution coefficients (KD) at aqueous concentrations of 1 ng/L, 1 µg/L and 1 mg/L. Reported log KD values at 1 µg/L varied from 0.38 to 8.25 across all data. Variation was also observed within the compound classes; pesticides, herbicides and insecticides, PAHs, phthalates, halogenated organics, small organics, alcohols and PCBs. Five commonly reported variables; charcoal production temperature T, surface area SA, H/C and O/C ratios and organic compound octanol-water partitioning coefficient, were correlated with KD values using single and multiple-parameter linear regressions. The sorption strength of organic compounds to charcoals increased with increasing charcoal production temperature T, charcoal SA and organic pollutant octanol-water partitioning coefficient and decreased with increasing charcoal O/C ratio and charcoal H/C ratio. T was found to be correlated with SA (r(2) = 0.66) and O/C (r(2) = 0.50), particularly for charcoals produced from wood feedstocks (r(2) = 0.73 and 0.80, respectively). The resulting regression: log KD=(0.18 ± 0.06) log Kow + (5.74 ± 1.40) log T + (0.85 ± 0.15) log SA + (1.60 ± 0.29) log OC + (-0.89 ± 0.20) log HC + (-13.20 ± 3.69), r(2) = 0.60, root mean squared error = 0.95, n = 151 was obtained for all variables. This information can be used as an initial screening to identify charcoals for contaminated soil and sediment remediation. PMID:26347927

  18. Soil charcoal to assess the impacts of past human disturbances on tropical forests.

    PubMed

    Vleminckx, Jason; Morin-Rivat, Julie; Biwol, Achille B; Danou, Kasso; Gillet, Jean-Franois; Doucet, Jean-Louis; Drouet, Thomas; Hardy, Olivier J

    2014-01-01

    The canopy of many central African forests is dominated by light-demanding tree species that do not regenerate well under themselves. The prevalence of these species might result from ancient slash-and-burn agricultural activities that created large openings, while a decline of these activities since the colonial period could explain their deficit of regeneration. To verify this hypothesis, we compared soil charcoal abundance, used as a proxy for past slash-and-burn agriculture, and tree species composition assessed on 208 rainforest 0.2 ha plots located in three areas from Southern Cameroon. Species were classified in regeneration guilds (pioneer, non-pioneer light-demanding, shade-bearer) and characterized by their wood-specific gravity, assumed to reflect light requirement. We tested the correlation between soil charcoal abundance and: (i) the relative abundance of each guild, (ii) each species and family abundance and (iii) mean wood-specific gravity. Charcoal was found in 83% of the plots, indicating frequent past forest fires. Radiocarbon dating revealed two periods of fires: "recent" charcoal were on average 300 years old (up to 860 BP, n?=?16) and occurred in the uppermost 20 cm soil layer, while "ancient" charcoal were on average 1900 years old (range: 1500 to 2800 BP, n?=?43, excluding one sample dated 9400 BP), and found in all soil layers. While we expected a positive correlation between the relative abundance of light-demanding species and charcoal abundance in the upper soil layer, overall there was no evidence that the current heterogeneity in tree species composition can be explained by charcoal abundance in any soil layer. The absence of signal supporting our hypothesis might result from (i) a relatively uniform impact of past slash-and-burn activities, (ii) pedoturbation processes bringing ancient charcoal to the upper soil layer, blurring the signal of centuries-old Human disturbances, or (iii) the prevalence of other environmental factors on species composition. PMID:25391134

  19. Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide

    DOEpatents

    Deitz, Victor R.; Blachly, Charles H.

    1977-04-05

    Radioactive iodine and radioactive methyliodide can be more than 99.7 per cent removed from the air stream of a nuclear reactor by passing the air stream through a 2-inch thick filter which is made up of impregnated charcoal prepared by contacting the charcoal with a solution containing KOH, iodine or an iodide, and an oxyacid, followed by contacting with a solution containing a tertiary amine.

  20. DEVELOPMENT OF WATER AND SOIL TREATMENT TECHNOLOGY BASED ON THE UTILIZATION OF A WHITE-ROT, WOOD ROTTING FUNGUS

    EPA Science Inventory

    The wood rotting fungus, Phanerochaete chrysosporium has been selected as a candidate species to be used as a degrader of hazardous waste organic constituents found in liquids and soils. The selection of the species is attributable to its rapid growth, its ability to degrade lign...

  1. Effectiveness of preharvest applications of fungicides on preharvest bunch rot and postharvest sour rot of ‘Redglobe’ grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest sour rot of ‘Redglobe’ grapes, also called “non-Botrytis slip skin”, “breakdown disorder”, “soft tissue breakdown”, or “melting decay” has affected this cultivar worldwide. The disorder causes berries to discolor, split, lose internal structure, and decay from veraison to harvest (Camero...

  2. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    PubMed

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%. PMID:21851098

  3. Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cole, H. E.; Cramblitt, E. L.; El-Lessy, H. N.; Manuel, S.; Tucker, C. D.

    2003-01-01

    Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station s U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBAs service life. A history of in-flight TCCS operations is presented as well as a discussion of the charcoal sampling procedures and chemical analysis results. A projected service life derived from the observed charcoal loading is provided. Recommendations for better managing TCCS resources are presented.

  4. Applied Technology of Bamboo Charcoal to Improvement and Purification of Air Quality

    NASA Astrophysics Data System (ADS)

    Takimoto, Akira; Tada, Yukio; Onishi, Hajime; Fukazawa, Tomohiro

    The use of bamboo charcoal, which is one of the carbon from wood, attracts attention from the viewpoint of the environmental protection. Bamboo charcoal has high adsorption removal ability to various substances. In addition Bamboo charcoal is effective also for the filtration of the suspended solid and the bacterium by the macro pore that originates in the plant frame structure. In present paper, a new concept of gas clean technology by bamboo charcoal and TiO2 with UV light irradiation was proposed. Its system is composed of TiO2-coated bamboo charcoal, TiO2-coated silica gel and UV lamp. Water vapor is adsorbed by bamboo charcoal and fine particles and airborne bacterium are trapped on the surface of it. Trapped contaminant is degraded by TiO2 and UV light. In addition, the degradation is promoted by OH produced by adsorbed water vapor. The air purification sanitization possibility in high efficiency for this system was clarified.

  5. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data.

    PubMed

    Pyle, Lacey A; Hockaday, William C; Boutton, Thomas; Zygourakis, Kyriacos; Kinney, Timothy J; Masiello, Caroline A

    2015-12-15

    Charcoal plays a significant role in the long-term carbon cycle, and its use as a soil amendment is promoted as a C sequestration strategy (biochar). One challenge in this research area is understanding the heterogeneity of charcoal properties. Although the maximum reaction temperature is often used as a gauge of pyrolysis conditions, pyrolysis duration also changes charcoal physicochemical qualities. Here, we introduce a formal definition of charring intensity (CI) to more accurately characterize pyrolysis, and we document variation in charcoal chemical properties with variation in CI. We find two types of responses to CI: either linear or threshold relationships. Mass yield decreases linearly with CI, while a threshold exists across which % C, % N, and δ(15)N exhibit large changes. This CI threshold co-occurs with an increase in charcoal aromaticity. C isotopes do not change from original biomass values, supporting the use of charcoal δ(13)C signatures to infer paleoecological conditions. Fractionation of N isotopes indicates that fire may be enriching soils in (15)N through pyrolytic N isotope fractionation. This influx of "black N" could have a significant impact on soil N isotopes, which we show theoretically using a simple mass-balance model. PMID:26523420

  6. Estimation of emissions from charcoal lighter fluid and review of alternatives. Final report

    SciTech Connect

    Campbell, D.L.; Stockton, M.B.

    1990-01-01

    The report gives results of an evaluation of emissions of volatile organic compounds (VOCs) from charcoal lighter fluid, a consumer product consisting entirely of volatile constituents. An estimated 46,250 tons (42,000 Mg) of charcoal lighter fluid is used in the U.S. each year. VOCs contribute to the formation of ozone; therefore, the ozone nonattainment issue has focused attention on VOCs emitted from many sources. VOCs are emitted when charcoal lighter fluid is used, but these emissions are difficult to quantify. Evaporative VOC losses occur from the lighter fluid prior to ignition, and combustion VOC losses occur from burning lighter-fluid-soaked charcoal briquettes. This study evaluates tests conducted to date on charcoal lighter fluid emissions. The information is most complete for evaporative VOC losses. The estimates vary greatly, however, based on the length of time between application of the lighter fluid and ignition. The limited tests conducted to date have not distinguished lighter fluid from charcoal-briquette combustion emissions.

  7. Experience with improved charcoal and wood stoves for households and institutions in Kenya

    SciTech Connect

    Hyman, E.L.

    1985-01-01

    Efforts at promoting more fuel-efficient charcoal stoves to replace traditional charcoal stoves in Kenya offer some lessons for the dissemination of appropriate technologies. This paper looks at the market-based approach which has made the Kenyan charcoal stoves project a success. Trends in woodfuels (wood and charcoal) consumption in Kenya are identified; the traditional technology for charcoal combustion and the upgraded traditional technologies are described; production achievement and the dissemination and promotion strategy used are examined; and a financial and economic analysis is performed with social, health and environmental effects assessed. Other ways to achieve a more favourable balance between woodfuels consumption and supply are then discussed looking at more efficient charcoal kilns and household woodstoves, improved institutional stoves and increased wood production. The replication potential of the Kenya experiment in other countries is also explored. The lessons learnt from the the Kenya experience concern the relationship between technology, choice and delivery systems as they interact with, economic, institutional, and policy factors. In this case, the design work accepted the traditional technology as a starting point which helped ensure widespread acceptance by households. The potential desirability of relying on local artisans to manufacture consumer durables using existing private sector channels to market these goods is also shown. It also highlights the importance of going beyond a laissez-faire approach and supporting training, demonstration, and publicity to faciliate the workings of the private sector. In the Kenyan case, technology choice was relatively unsubsidized and left ot the preferences of consumers.

  8. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal

    NASA Astrophysics Data System (ADS)

    Glasspool, Ian J.; Scott, Andrew C.

    2010-09-01

    Variations of the Earth's atmospheric oxygen concentration (pO2) are thought to be closely tied to the evolution of life, with strong feedbacks between uni- and multicellular life and oxygen. On the geologic timescale, pO2 is regulated by the burial of organic carbon and sulphur, as well as by weathering. Reconstructions of atmospheric O2 for the past 400million years have therefore been based on geochemical models of carbon and sulphur cycling. However, these reconstructions vary widely, particularly for the Mesozoic and early Cenozoic eras. Here we show that the abundance of charcoal in mire settings is controlled by pO2, and use this proxy to reconstruct the concentration of atmospheric oxygen for the past 400million years. We estimate that pO2 was continuously above 26% during the Carboniferous and Permian periods, and that it declined abruptly around the time of the Permian-Triassic mass extinction. During the Triassic and Jurassic periods, pO2 fluctuated cyclically, with amplitudes up to 10% and a frequency of 20-30million years. Atmospheric oxygen concentrations have declined steadily from the middle of the Cretaceous period to present-day values of about 21%. We conclude, however, that variation in pO2 was not the main driver of the loss of faunal diversity during the Permo-Triassic and Triassic-Jurassic mass extinction events.

  9. Indicators of climate change effects: Relationships between crown transparency and butt rot in silver fir (Abies alba Mill.) in Middle Italy

    NASA Astrophysics Data System (ADS)

    D'Aprile, Fabrizio; Tapper, Nigel

    2014-05-01

    Climatic analysis conducted on the trends and changes in temperature and rainfall during the 20th century in the Tuscan Apennine Alps (Middle Italy) have highlighted the possibility that these changes have a significant impact on the growth and/or health conditions or stress in silver fir (Abies alba Mill.). In this framework, identification of appropriate indicators to verify relationships between stress symptoms, which are frequently caused by climate adverse conditions, and pathological phenomena is a necessary step functional to the identification of climatic-environmental impacts on forests. The presence of butt rot pathology - a complex disease that causes rotting of the trunk internally - in silver fir is known the time as well as its severity. Nonetheless, very little research on the potential effects of changing climate conditions on the diffusion and intensity of butt rot seems available; thus, effects of climate change seem to be not excluded nor verified. No research or studies that quantify distribution and incidence or, especially, relationships of butt rot with adverse climatic and/or environmental factors were found. However, climatic alterations can have an impact on the intensity and spread of serious disease complexes and therefore it is of great importance to investigate the relationships between climate changing conditions, diffusion and incidence of butt rot in silver fir forests for their conservation and the management of species and biodiversity associated. As butt rot unlikely could be directly related to climate variables, crown transparency has been used as a proxy for tree growth, where climate variability is assumed to be the main driver of silver fir growth and stress. Actually, crown transparency is considered to be a main factor associated to tree growth, and healthier trees are assumed to grow faster than less-healthy trees. Thus, theoretically denser crowns would correspond to faster growing and healthier trees and indicate better climatic-environmental conditions, and vice versa. If so, crown transparency may be expected to be an indicator of butt rot diffusion and incidence. Our research shows that it may not be necessarily so.

  10. Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442

    PubMed Central

    Weller-Stuart, Tania; Chan, Wai Yin; Venter, Stephanus N.; Smits, Theo H. M.; Duffy, Brion; Goszczynska, Teresa; Cowan, Don A.; de Maayer, Pieter

    2014-01-01

    Pantoea ananatis is an emerging phytopathogen that infects a broad spectrum of plant hosts. Here, we present the genomes of two South African isolates, P. ananatis PA4, which causes center rot of onion, and BD442, isolated from brown stalk rot of maize. PMID:25103759

  11. Effect of Charcoal Volatile Matter Content and Feedstock on Soil Microbe-Carbon-Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    McClellan, T.; Deenik, J. L.; Hockaday, W. C.; Campbell, S.; Antal, M. J., Jr.

    2010-12-01

    Charcoal has important biogeochemical implications in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of charcoal which describes its degree of thermal alteration, or carbonization. Results from greenhouse experiments have shown that plant growth can be negatively affected by charcoals with high VM content (20-35%), with and without fertilizer supplements, whereas low VM charcoal (6-9%) increased plant growth when combined with fertilizer. We conducted two laboratory studies to characterize the VM content of charcoals derived from two feedstocks (corncob and kiawe) and relate observed differences to key aspects of soil fertility. Using Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (NMR), total phenol content (using a Prussian blue colorimetric assay), and gas chromatography-mass spectrometry (GC-MS), we found that the VM content of charcoal primarily consisted of alkanes, oxygen-substituted alkanes, and phenolic compounds. However, the GC-MS data indicated that charcoals can differ vastly in their extractable fraction, depending upon both VM content and feedstock. In a second set of experiments, we examined the effect of VM content and feedstock on soil microbial activity, available nitrogen (N), and soluble carbon (C). High VM corncob charcoals significantly enhanced microbial activity, coupled with net reduction in available N and soluble C. For a given feedstock, the extent of this effect was dependent upon VM content. However, the overall effect of VM content on microbial dynamics was apparently related to the composition of the acetone-extractable fraction, which was particularly important when comparing two charcoals derived from different feedstocks but with the equivalent VM contents. Removing the acetone-extractable fraction from the 23% VM corncob charcoal significantly reduced the enhancement of microbial activity in soil, whereas the addition of this fraction to fungal inoculum stimulated the growth and activity of cultured fungi (as measured by serial dilution and plating). Our results suggest that high VM charcoals can contain a bioavailable C source which may increase microbial activity and inhibit inorganic N availability, whereas a comparatively lower VM content charcoal does not appear to be readily available for microbial consumption. We conclude that VM is an important charcoal property which can cause various effects on soil biological properties and warrants further investigation. Our findings also provide insight into charcoal’s effect on N cycling since the immobilization of N observed under laboratory conditions serves as a possible explanation for the adverse effect of high VM charcoal on plant growth, as reported here and in previous short-term studies across a range of ecosystems. Further investigation is needed to evaluate whether the observed effects persist in the long-term.

  12. A mineral seed coating for control of seedling diseases of alfalfa suitable for organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most alfalfa seed is treated with the systemic fungicide mefenoxam (Apron XL) for control of soilborne seedling diseases. However, Apron XL does not have activity against Aphanomyces euteiches, the causal agent of Aphanomyces root rot (ARR), which is an important component of the alfalfa root rot co...

  13. Phoma species on beet: more cause disease than just Phoma betae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phoma can cause damage to sugar beet (Beta vulgaris) at multiple growth stages. It has historically been an important seedling disease, but this is largely managed by ensuring clean seed for planting. The pathogen also can cause a root rot, a leaf spot, and rotting of beets during storage. In the Un...

  14. Health assessment for Wrigley Charcoal, Wrigley, Hickman County, Tennessee, Region 4. CERCLIS No. TND980844781. Preliminary report

    SciTech Connect

    Not Available

    1990-05-09

    The Wrigley Charcoal Site (WCS) has been proposed for the National Priorities List (NPL) by the U.S. Environmental Protection Agency (EPA). WCS is located in Wrigley, Hickman County, Tennessee, about 50 miles southwest of Nashville. Approximately 300 persons reside within a 1-mile radius of the site. About 4,250 persons are supplied with potable water from Mill Creek, located about 1 mile downstream of the site. From information reviewed, the Agency for Toxic Substances and Disease Registry (ATSDR) has concluded that the site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that could result in adverse health effects. Human exposure to phenol, 2,4-dimethylphenol (2,4-DMP), benzene, toluene, ethylbenzene, and naphthalene could occur via ingestion of, inhalation of, and dermal contact with surface water, sediments, soils, ground water, air, and food chain entities.

  15. Charcoal Morphology, a Useful Indicator of Fire Signature in Prosser Lake, British Columbia, Canada.

    NASA Astrophysics Data System (ADS)

    Enache, M. D.; Cumming, B. F.

    2004-12-01

    Observations of charcoal particle size and morphology were used along with quantitative analysis to extract indications on fire events over the last century from Prosser Lake (49\\deg45.05 N, 120\\deg37.30 W), a mesotrophic and slightly meromictic lake from British Columbia, Canada. Charcoal particles >150? m were visually identified at a 0.5-3 years resolution in a laminated sedimentary sequence. According to their shape and structural features, charcoal particles were classified in seven morphologically distinct types and their abundances were assessed using Image Analysis techniques. Distributions of charcoal types were assessed as a proxy to fire events recorded between 1919-2000 and subsequent mechanisms of transportation-sedimentation to lake sediments. Frequent fires taking place before 1944, produced high amounts of charred particles, but strong fires that took place in 1939, 1940, 1958 and 1960 were poorly recorded by most of the charcoal types, whereas post-1944 periods of high precipitation levels without fire events increased their abundance. However, fragile-type fragments displaying high porosity walls showed a strong and significant correlation (R2 = 0.7; p = 0.02) with historically recorded forest fire in the proximity of Prosser Lake. Those fragments, according to their shape and structure might originate from high fragmentation of wood burning at high temperatures or by burning of small branches and leaves. Being very fragile, particles of this type would be destroyed by eventual secondary transportation processes and would not occur in levels not related to fire events. The remaining types of charcoal from Prosser Lake sediments displayed distributions biased by secondary transportation-sedimentation processes. We propose that charcoal morphology can be a useful indicator of fire occurrence, proximity of source-area and transportation-sedimentation mechanisms.

  16. Prevalence of sclerotinia stem rot of soybeans in the north-central United States in relation to tillage, climate, and latitudinal positions.

    PubMed

    Workneh, F; Yang, X B

    2000-12-01

    ABSTRACT Since the early 1990s, Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, has caused considerable damage to soybean production in the north-central United States. To determine the extent of its distribution and associated factors, investigations were conducted in 1995 and 1996 in Illinois, Iowa, Minnesota, Missouri, and Ohio. Investigations also were conducted in 1997 and 1998 in Iowa, Minnesota, and Missouri. In each state, soybean fields were randomly selected in collaboration with the National Agricultural Statistics Service. From each field, 20 soybean stems 20 cm long (from the base) in 1995 and 1996 and full-length stems in 1997 and 1998 were sampled in a zigzag pattern. During the 4-year period, stem samples were collected from 1,983 fields and assessed for the presence or absence of the disease. Of the five states, Sclerotinia stem rot was most prevalent in north-central Iowa and southern Minnesota. Sclerotinia stem rot was not detected in Missouri during the 4-year investigation period. The disease was most prevalent in 1996 and least prevalent in 1995. The prevalence of the disease was strongly related to cumulative departures from normal maximum and minimum temperatures in July and August. The disease was more prevalent when yearly temperatures were below normal than when they were above normal. In 1996, a year with a cooler-than-normal summer, the disease was detected farther south than in 1995. In both years, the prevalence of the disease was exponentially related to latitudinal positions of the fields (R(2) = 0.93 and 0.83 for 1995 and 1996, respectively) reflecting the effect of the north-south variations in temperature. During the 4-year period, there was no relationship between precipitation and the prevalence of the disease. The lack of relationship may suggest that there was no shortage of moisture since it is one of the primary factors for disease development. The prevalence of Sclerotinia stem rot was less in no-till than in minimum-till or conventional-till fields (P = 0.001 and 0.007, respectively) and greater in minimum-till than in conventional-till fields (P = 0.07). Fields that had Sclerotinia stem rot, however, did not differ in incidence of the disease regardless of the tillage system. PMID:18943379

  17. Environmental factors and bioremediation of xenobiotics using white rot fungi.

    PubMed

    Magan, Naresh; Fragoeiro, Silvia; Bastos, Catarina

    2010-12-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  18. Waste treatment of kraft effluents by white-rot fungi

    SciTech Connect

    Kondo, R.

    1996-10-01

    The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular, Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.

  19. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    PubMed Central

    Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  20. Large-scale soil bioremediation using white-rot fungi

    SciTech Connect

    Holroyd, M.L.; Caunt, P.

    1995-12-31

    Some organic pollutant compounds are considered resistant to conventional bioremediation because of their structure or behavior in soil. This phenomenon, together with the increasing need to reach lower target levels in shorter time periods, has shown the need for improved or alternative biological processes. It has been known for some time that the white-rot fungi, particularly the species Phanerochaete chrysosporium, have potentially useful abilities to rapidly degrade pollutant molecules. The use of white-rot fungi at the field scale presents a number of challenges, and this paper outlines the use of a process incorporating Phanerochaete to successfully bioremediate over 6,000 m{sup 3} of chlorophenol-contaminated soil at a site in Finland. Moreover, the method developed is very cost-effective and proved capable of reaching the very low target levels within the contracted time span.