Science.gov

Sample records for charge exchange losses

  1. The Roles of Charge Exchange and Flow-Out Losses in Ring Current Decay

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Liemohn, M. W.

    2001-12-01

    It is becoming clear that flow-out losses are an important ring current decay mechanism in addition to charge-exchange losses. Flow out losses result from an imbalance between the energy flux entering the inner magnetosphere from the nightside plasma sheet and that leaving through the dayside magnetopause before the ring current becomes trapped on closed drift paths. The Michigan ring current drift-loss model (RAM) which calculates ring current losses due to Coulomb drag, charge-exchange and flow-out using realistic geocoronal and dynamical plasmasphere models, has been used to model 8 magnetic storms ranging from moderate to superstorm status. In each case, plasma sheet ion distributions measured by the LANL geosynchronous satellites are used to specify the ring current source population and its dynamical variation. The McIlwain (1986) model is used to specify the inner magnetosphere electric potential pattern which is scaled by the observed polar cap potential values (derived from DMSP passes directly or from the AMIE model) and shielded based on the DMSP auroral boundary index (MBI). Model results indicate that flow-out losses can be driven by an abrupt decrease in plasma sheet density, change in plasma sheet temperature and/or weakening of magnetotail convection prior to northward turning of the IMF. When the IMF abruptly turns northward at the end of the main phase, the entire recovery phase can result from charge-exchange loss. Examples of each of these types of decay are given. RAM decay time scales for all modeled storms are plotted against the simultaneous value of solar wind Ey and compared to the results of statistical studies of this relationship in the literature.

  2. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Astrophysics Data System (ADS)

    Spjeldvik, W. N.

    1981-11-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  3. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  4. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    SciTech Connect

    Ji, Y.; Shen, C.

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  5. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  6. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  7. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  8. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  9. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOEpatents

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  10. Charge exchange in zinc-neon

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1975-01-01

    Excitation of the 4d and 5p levels of Zn+ by charge exchange bewteen Ne+ and Zn was investigated. From measured electron temperature and line intensity ratios it was concluded that charge exchange is the dominate mechanism for populating the 4d2D5/2 level of Zn+. Comparison of Zn-Ne and Zn-Ar results imply the same conclusion. No evidence for charge exchange as the dominant pumping mechanism for the 5p2Pl/2, 5p2P3/2, or 4d2D3/2 levels was obtained.

  11. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  12. Computation of intrabeam charge-exchange rate

    SciTech Connect

    Sacks, R.A.; Arnold, R.C.

    1981-01-01

    ANL's planned Accelerator Development Facility (ADF) for heavy-ion fusion will test and demonstrate virtually all of the beam manipulations thought to be necessary for a heavy-ion inertial-confinement-fusion driver. The relatively simple upgrade of adding synchrotron acceleration capability to the storage ring would also allow important energy-deposition and materials experiments. The feasibility of this upgrade depends critically on the beam loss rate from charge-exchange scattering. A computer program has been written for the purpose of obtaining a better estimate for this lifetime. The code assumes a K-V transverse distribution folded into a Neuffer longitudinal distribution. The emittance ellipse parameters, along with various estimates for the velocity-dependent ion-ion cross sections, are read in and a numerical integration is performed over the distribution, yielding a value for the loss rate -1/N/sup 2/ dN/dt. Preliminary estimates indicate that this mode of beam loss presents no obstacle to upgrading the ADF.

  13. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  14. Pion double charge exchange and hadron dynamics

    SciTech Connect

    Johnson, M.B.

    1991-01-01

    This paper will review theoretical results to show how pion double charge exchange is contributing to our understanding of hadron dynamics in nuclei. The exploitation of the nucleus as a filter is shown to be essential in facilitating the comparison between theory and experiment. 23 refs., 3 figs., 2 tabs.

  15. Charge exchange avalanche at the cometopause

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas I.

    1987-01-01

    A sharp transition from a solar wind proton dominated flow to a plasma population primarily consisting of relatively cold cometary heavy ions has been observed at a cometocentric distance of about 160,000 km by the VEGA and GIOTTO missions. This boundary (the cometopause) was thought to be related to charge transfer processes, but its location and thickness are inconsistent with conventionally estimated ion - neutral coupling boundaries. In this paper a two-fluid model is used to investigate the major physical processes at the cometopause. By adopting observed comet Halley parameters the model is able to reproduce the location and the thickness of this charge exchange boundary.

  16. Charge-exchange plasma environment for an ion drive spacecraft

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1981-01-01

    A model was reviewed which describes the propagation of the mercury charge-exchange plasma and extended to describe the flow of the molybdenum component of the charge-exchange plasma. The uncertainties in the models for various conditions are discussed. Such topics as current drain to the solar array, charge-exchange plasma material deposition, and the effects of space plasma on the charge-exchange plasma propagation are addressed.

  17. Charge symmetry breaking two-pion exchange

    SciTech Connect

    Niskanen, J.A. )

    1992-06-01

    Two-pion exchange (TPE) contribution to the charge symmetry breaking class IV neutron-proton interaction is examined in a potential and coupled channels approach. Based on nonrelativistic {pi}{ital NN} and {pi}{ital N}{Delta} vertices, a TPE interaction is treated in two ways, as a potential or as a part calculable by the coupled channels method plus a residual potential interaction. A practical parametrization of the TPE potentials is given, which can also be used in the case of class III charge symmetry breaking (CSB) forces as well as for charge symmetric interactions. The results show that below 300 MeV the TPE contribution to CSB in elastic {ital np} scattering is insignificant, whereas at higher energies it should not be neglected.

  18. Charge exchange lifetimes for ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.

    1977-01-01

    Latest and best measurements of physical quantities involved in complete calculation of the charge exchange lifetime of mirroring magnetospheric ions are coalesced and summarized. It is critical that the charge exchange lifetimes for ions be known as accurately as possible in order to apply the charge exchange mechanism to ion phenomena within the earth's magnetosphere.

  19. Charge exchange in solar wind-cometary interactions

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.

    1983-01-01

    A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.

  20. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  1. Solar Wind Charge Exchange During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  2. Charge exchange in the Io torus and exosphere

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Strobel, D. F.

    1982-01-01

    Charge-exchange cross sections and their velocity dependence have been estimated for the most important reactions in the Io torus and exosphere. The methods used for calculating the cross sections are given and discussed in some detail. For symmetric-resonant single and double charge exchange, the cross sections are slowly varying functions of velocity. For inelastic charge-exchange collisions, the transition probabilities into a given final state can depend critically on velocity. Models are described which can be used to estimate both the most rapid charge-exchange processes and those states which play an important role. Calculated cross sections are used to obtain reaction rates as a function of radial position, demonstrating the importance of charge exchange in the inner torus. Charge-exchange reactions of torus ions with molecular species in Io's exosphere may yield a net supply of neutrals and plasma to the torus.

  3. Systematics of pion double charge exchange

    SciTech Connect

    Gilman, R.A.

    1985-10-01

    Differential cross sections have been measured for pion-induced double-charge-exchange (DCX) reactions leading to double-isobaric-analog states (DIAS) and low-lying nonanalog states in the residual nuclei. A description of the experimental details and data analysis is presented. The experimentally observed systematics of reactions leading to DIAS, to nonanalog ground states, and to low-lying 2 states are described. Lowest-order optical-model calculations of DIAS DCX are compared to the data. Efforts to understand the anomalies by invoking additional reaction-mechanism amplitudes and a higher-order optical potential are described. Calculations of nonanalog DCX reactions leading to J/sup / = 0 states were performed within a distorted-wave impulse-approximation framework. The sensitivities of these calculations to input parameters are discussed. 58 refs., 41 figs., 16 tabs.

  4. Charge exchange recombination spectroscopy on fusion devices

    SciTech Connect

    Duval, B. P.

    2012-05-25

    For fusion, obtaining reliable measurements of basic plasma parameters like ion and electron densities and temperatures is a primary goal. For theory, measurements are needed as a function of time and space to understand plasma transport and confinement with the ultimate goal of achieving economic nuclear fusion power. Electron profile measurements and plasma spectroscopy for the plasma ions are introduced. With the advent of Neutral Beam auxiliary plasma heating, Charge Exchange Recombination Spectroscopy provides accurate and time resolved measurements of the ions in large volume fusion devices. In acknowledgement of Nicol Peacock's role in the development of these techniques, still at the forefront of plasma fusion research, this paper describes the evolution of this diagnostic method.

  5. Visible charge exchange recombination spectroscopy on TFTR

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Jaehnig, K.P.; Schechtman, N.; Synakowski, E.J.

    1991-03-01

    Visible charge exchange recombination spectroscopy is routinely used to measure the time evolution of the ion temperature (T{sub i}) and toroidal rotation velocity (v{sub {phi}}) profiles on TFTR. These measurements are made with the CHERS diagnostic, a fiber-optically coupled spectrometer equipped with a two-dimensional photodiode array detector which provides both spectral and spatial resolution. The instrumentation, data analysis techniques, and examples of T{sub i} and v{sub {phi}} measurements are described. Recently, CHERS has been used to perform impurity transport experiments: radial profiles of diffusivities and convective velocities for helium and iron have been deduced from measurements of the time evolutions of He{sup 2+} and Fe{sup 24+} profiles following impurity injection. Examples of these measurements are given. 12 refs., 8 figs.

  6. 75 FR 60674 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ...The U.S. Department of State (Department) is proposing to revise its Fees and Charges assessed for providing Exchange Visitor Program (EVP) services to recoup the Department's costs associated with operating all aspects of the Exchange Visitor...

  7. Dependence of the charge exchange lifetimes on mirror latitude

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.

    1976-01-01

    The dependence of the charge exchange lifetimes on the mirror latitude for ions mirroring off the geomagnetic equator was re-computed using the improved hydrogen distribution models. The Chamberlain model was used to define the spatial distribution of the neutral hydrogen environment through which the ring current ions traverse. The resultant dependence of the charge exchange lifetime on mirror latitude is best fitted by the approximation that contains the charge exchange lifetime for equatorial particles.

  8. Simulation of loss of uranium ions due to charge changing processes in the CSRm ring

    NASA Astrophysics Data System (ADS)

    Zheng, Wen-Heng; Yang, Jian-Cheng; Li, Peng; Li, Zhong-Shan; Shang, Peng; Qu, Guo-Feng; Ge, Wen-Wen; Tang, Mei-Tang; Sha, Xiao-Ping

    2015-04-01

    Significant beam loss caused by the charge exchange processes and ion impact-induced outgassing may restrict the maximum number of accelerated heavy ions during the high intensity operation of an accelerator. In order to control beam loss due to charge exchange processes and confine the generated desorption gas, tracking of the beam loss distribution and installation of absorber blocks with low-desorption rate material at appropriate locations in the main Cooler Storage Ring (CSRm) at the Institute of Modern Physics, Lanzhou, will be performed. The loss simulation of uranium ions with electron-loss is presented in this report and the conclusion is that most charge changed particles are lost in the second dipole of the super-period structure. The calculation of the collimation efficiency of the CSRm ring will be continued in the future. Supported by National Natural Science Foundation of China (11305227)

  9. Charge exchange reactions and applications to astrophysics

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja; Kajino, T.

    2012-11-01

    Neutrino-induced reactions have been known to play important roles as the neutrino process on the nucleosynthesis in core collapsing supernovae (SNe) explosions because expected neutrino flux and energy are sufficiently high enough to excite many relevant nuclei in spite of small cross sections of the weak interaction. However, we do not have enough data for the neutrino reaction to be exploited in the network calculation. Only a sparse data in the relevant energy range is known, in specific, for 12C. Therefore we have to rely on theoretical estimation of the reaction, which has two different modes, charge current (CC) and neutral current (NC). In particular, CC reactions are closely related to charge exchange reactions (CEXRs) which are feasible in the experiment, such as, (p,n) or (n,p) reactions. These CEXRs are usually dominated by the Gamow-Teller (GT) transition in the lower energy region. In this respect, any theoretical approaches for the neutrino reaction should be investigated for the CEXR because we have and expect more useful experimental data. After confirming our models to the GT strength deduced from the CEXR, we calculated neutrino-induced reactions in the energy range below the quasielastic region for nuclei of astrophysical importance. Our calculations are carried out with the Quasi-particle Random Phase Approximation (QRPA), which successfully described the nuclear beta decays of relevant nuclei. To describe neutrino-nucleus reactions, general multipole transitions by the weak interaction are considered for CC and NC reactions. Both reactions are described in a theoretical framework. Our results are shown to well reproduce the data from CEXRs and the sparse experimental data related to the neutrino-induced reaction, and further extended for neutrino reactions on various nuclear targets. Parts of the results are reported in this talk.

  10. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; Porter, F. S.; Brown, G. V.

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  11. Metal loss and charge heating in the melt in an electric arc furnace

    NASA Astrophysics Data System (ADS)

    Serikov, V. A.; Bikeev, R. A.; Cherednichenko, M. V.; Cherednichenko, V. S.

    2015-12-01

    The heat exchange between a metallic melt and a slag with a charge is simulated with allowance for possible formation of a skull on the charge surface. It is shown that the charge melting rate in the melt is determined by the coefficient of heat transfer between the metal and the charge and the ratio of the mass of a charge fragment to its surface area interacting with the melt. A skull is found to form on the charge surface at a low coefficient of heat transfer between the metal and the charge. The main heat parameters, the control of which by an automatic control system ensures an increase in the charge melting rate in the melt and a decrease in the metal loss, are formulated.

  12. Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions

    NASA Technical Reports Server (NTRS)

    Maher, L. J.; Tinsley, B. A.

    1977-01-01

    Data on ion and electron temperatures and concentrations to several thousand kilometers of altitude were obtained from the Atmosphere Explorer C satellite for 1974 and to 850 km from Arecibo incoherent scatter radar measurements. These data were used to normalize diffusive equilibrium profiles. From these profiles and by using the neutral atmospheric model of Jacchia (1971) and a new hydrogen model, the charge-exchange-induced neutral hydrogen escape fluxes for equatorial and middle latitudes were calculated. The data confirm earlier estimates that the charge exchange loss is more important than Jeans escape for the earth. It is also found that inside the plasmapause this charge exchange process with hot plasmapheric ions is the major production and loss process for the satellite population in the hydrogen geocorona.

  13. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  14. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  15. 78 FR 28137 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ..., 2013 (RIN 1400-AD28; 78 FR 6263), with a request for comments, to amend 22 CFR 62.17 (``Fees and... Part 62 RIN 1400-AD28 Exchange Visitor Program--Fees and Charges AGENCY: Department of State. ACTION... Application Fee for Sponsor Designation or Redesignation and the Administrative Fee for Exchange Visitor...

  16. 76 FR 10498 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... rule, Public Notice 7077 at 75 FR 60674-60679, October 1, 2010, with a request for comments, amending... Part 62 RIN 1400-AC67 Exchange Visitor Program--Fees and Charges AGENCY: Department of State. ACTION: Final rule. SUMMARY: The Department of State is amending its regulations regarding fees and charges...

  17. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  18. Charge Exchange Spectra of Hydrogenic and He-like Iron

    SciTech Connect

    Wargelin, B J; Beiersdorfer, P; Neill, P A; Olson, R E; Scofield, J H

    2005-04-27

    We present H-like Fe XXVI and He-like Fe XXV charge-exchange spectra resulting from collisions of highly charged iron with N{sub 2} gas at an energy of {approx}10 eV amu{sup -1} in an electron beam ion trap. Although high-n emission lines are not resolved in our measurements, we observe that the most likely level for Fe{sup 25+} {yields} Fe{sup 24+} electron capture is n{sub max} {approx} 9, in line with expectations, while the most likely value for Fe{sup 26+} {yields} Fe{sup 25+} charge exchange is significantly higher. In the Fe XXV spectrum, the K{alpha} emission feature dominates, whether produced via charge exchange or collisional excitation. The K{alpha} energy centroid is lower in the former case than the latter (6666 versus 6685 eV, respectively), as expected because of the strong enhancement of emission from the forbidden and intercombination lines, relative to the resonance line, in charge-exchange spectra. In contrast, the Fe XXVI high-n Lyman lines have a summed intensity greater than that of Ly{alpha}, and are substantially stronger than predicted from theoretical calculations of charge exchange with atomic H. A discussion is presented of the relevance of our results to studies of diffuse Fe emission in the Galactic Center and Galactic Ridge, particularly with ASTRO-E2.

  19. Charge exchange of a polar molecule at its cation

    SciTech Connect

    Buslov, E. Yu. Zon, B. A.

    2011-01-15

    The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a {sigma}-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.

  20. Charge exchange X-rays from the heliosheath

    NASA Astrophysics Data System (ADS)

    Medvedev, M. V.; Robertson, I. P.; Cravens, T. E.; Zank, G. P.; Florinski, V.

    2006-09-01

    X-rays are produced throughout the heliosphere as a consequence of charge transfer collisions between heavy solar wind ions and neutral atoms. After such a collision the solar wind ion is left in a highly excited state and emits extreme ultraviolet and soft X-ray photons. In the outer heliosphere, solar wind charge exchange X-ray emission is mainly due to charge exchange with neutral interstellar hydrogen. We have combined MHD simulations with a comprehensive charge exchange computation code. We trace the full evolution of solar wind ions along stream line in order to produce three-dimensional emissivities and, subsequently, two-dimensional X-ray brightness and spectral maps of the heliosphere as would be observed from the outside. The model treats both the collisionally thin and the collisionally thick regimes. This model can be a diagnostic tool for studying stellar wind properties of nearby Sun-like stars.

  1. Oscillating flow loss test results in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

    1990-01-01

    The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

  2. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  3. Evidence of charge exchange pumping in calcium-xenon system

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1973-01-01

    Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.

  4. Charge exchange cross sections for the Io plasma torus

    NASA Astrophysics Data System (ADS)

    McGrath, M. A.; Johnson, R. E.

    1989-03-01

    An impact parameter method for calculating cross sections as a function of incident ion energy is used in conjunction with an improved exchange energy formulation to update several of the charge exchange cross sections currently used in Io plasma torus modeling. New cross sections for S(+) + S(2+) yielding S(2+) + S(+) and Na(+) on neutral targets, useful in analyzing the fast Na jets observed at Io, are also calculated.

  5. Pion double charge exchange reactions leading to double pionic atoms

    SciTech Connect

    Nieves, J.; Oset, E.; Vincente-Vacas, M.J. ); Hirenzaki, S.; Toki, H. )

    1992-10-20

    In this paper, the authors study theoretically pion double charge exchange reactions leading to double pionic atoms. The reaction cross-sections with two pions in the deeper bound pionic orbits in [sup 208]Pb are calculated with realistic pionic atom wave functions and distortion effects. The cross-sections are found to be d[sup 2] [sigma]/dEd[Omega] [approx] 10[sup [minus] 3] [minus] 10[sup [minus] 4] [mu]b/srMeV, which are only a small fraction of the double charge exchange.

  6. Instability of the heliopause driven by charge exchange interactions

    SciTech Connect

    Avinash, K.; Zank, G. P.; Dasgupta, B.; Bhadoria, Shikha

    2014-08-20

    The stability of the heliopause that separates the tenuous hot magnetized heliosheath plasma from the dense cool local interstellar magnetized plasma is examined using a fully general model that includes all the essential physical processes. Charge exchange coupling between plasma protons and primary interstellar neutral atoms provides an effective gravity that drives Rayleigh-Taylor (RT)-like instabilities. The velocity difference or shear between the heliosheath and interstellar flows, when coupled to energetic neutral atoms (ENAs), drives a Kelvin-Helmholtz (KH)-like instability on the heliopause. The shoulder region of the heliopause is unstable to a new instability that has characteristics of a mixed RT-KH-like mode. The instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath (OHS). ENAs play an essential role in driving the KH-like instability, which is fully stabilized in their absence by magnetic fields. The nonlinear phase of these instabilities is briefly discussed. We also discuss the possibility that RT-like or mixed KH-RT-like instabilities drag outer heliosheath/very local interstellar medium (OHS/VLISM) magnetic field lines into the inner heliosheath (IHS) with the VLISM flow, and the possibility that IHS and VLISM magnetic field lines experience reconnection. Such reconnection may (1) greatly enhance the mixing of plasmas across the heliopause and (2) provide open magnetic field lines that allow easy ingress of galactic cosmic rays into the heliosphere and corresponding easy loss of anomalous cosmic rays from the heliosphere.

  7. Development of the charge exchange type beam scraper system at the J-PARC

    NASA Astrophysics Data System (ADS)

    Okabe, K.; Yamamoto, K.; Kinsho, M.

    2016-03-01

    Improvement in injection beam quality at the Japan Proton Accelerator Research Complex 3-GeV rapid cycle synchrotron is to mitigate beam loss at the injection section. We developed a charge-exchange type scraper system with a thin carbon foil to collimate the beam halo in the injection beam line of the synchrotron. The key issue to realize the scraper is a reduction of the beam loss induced by the multiple-scattering effect of charge-exchange foil placed at the scraper head. In order to determine the adequate foil thickness, a charge-exchange efficiency of a carbon foil and particle-tracking simulation study of the collimated beam have been performed assuming a realistic halo at the scraper section. Using the results of this study, we chose the thickness of a 520 μg /cm2 as the scraper foils to mitigate radiation dose around the L3BT scraper section. A charge-exchange scraper system that prevents the emission of radioactive fragments of the carbon foil was build. The system was put into operation to prove its effectiveness in eliminating the beam halo. From the result of a preliminary beam experiments, we confirmed that the installed scrapers eliminate a transverse beam tail or halo. After two days of operation with beam collimation, the radiation dose level around the scraper section was a tolerable one for the hands-on maintenance.

  8. Charge-exchange collisions in the low-velocity regime between multiply charged ions and atoms

    SciTech Connect

    Andersson, L.R. )

    1993-06-05

    Close-coupling calculations using a full quantum mechanical molecular-orbital model have been carried out for low-energy charge-exchange collisions with multiply charged ions. Trajectory effects at eV/amu energies are exemplified by the isotope-dependence of the charge-exchange cross sections and the polarization-induced enhancement of the capture probability in O[sup 5+]--H(D) collisions. An unfavorable comparison with experimental differential cross sections for Ar[sup 6+]--He collisions leads to a discussion of transfer-excitation caused by configuration mixing in the Ar[sup 5+] capture states.

  9. HIGH CURRENT D- PRODUCTION BY CHARGE EXCHANGE IN SODIUM

    SciTech Connect

    Hooper, E.B.; Poulsen, P.; Pincosy, P.A.

    1981-02-01

    A beam of D{sup -} ions has been produced at 7-13 keV, with currents up to 2.2 {angstrom}, using charge exchange in sodium vapor. The beam profile is bi-Gaussian with angular divergence 0.7{sup o} x 2.8{sup o} and peak current density 15 mA/cm{sup 2}. The characteristics of the beam are in excellent agreement with predictions based on atomic cross sections. The sodium vapor target is formed by a jet directed across the beam. The sodium density drops rapidly in the beamline downstream from the charge exchange region, decreasing three orders of magnitude in 15 cm. Measurement and analysis of the plasma accompanying the beam demonstrate that plasma densities nearly equal to the beam density are obtained 1 m from the charge exchange medium. The plasma produced in the sodium is thus well confined to the charge exchange region and does not propagate along the beam.

  10. 76 FR 17027 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE 22 CFR Part 62 RIN 1400-AC67 Exchange Visitor Program--Fees and Charges Correction In rule document 2011-4276, appearing on pages 10498-10500 in the issue of Friday, February 25, 2011, make the following correction:...

  11. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  12. Ion exchange and surface charge on montmorillonite clay

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1999-05-01

    An ion-exchange model originally developed for pure oxides prepared in the laboratory is extended to study of ion exchange and surface charge on a naturally occurring montmorillonite clay. The range of surface charges measured for montmorillonite with various electrolyte solutions and clay pretreatments is within the range of those measured for a wide variety of oxides prepared in the laboratory, including MnO{sub 2}-IC1, MnO{sub 2}-IC12, MnO{sub 2}-IC22, titanium dioxide, ferric oxide, and aluminum oxide. In addition, fitted parameter values for lateral interaction constants and equilibrium constants for the acid sites that characterize ion exchange on montmorillonite are on the same order of magnitude as those obtained for pure oxides. Surface charge of montmorillonite in sodium nitrate solution is measured to be approximately 15 to 25% greater than that measured between a pH of 4 and 9 in calcium chloride solution. This difference is attributed to the greater charge on the calcium (2{sup +}) ion; thus, its stronger electrostatic attraction to the acid hydroxyl site. An order of magnitude change in solids concentration (C{sub p}) can lead to a difference in measured net surface charge density of the same oxide sample of several orders of magnitude. This difference increases at higher pH, indicating the importance of reporting the corresponding C{sub p} at which experiments are conducted.

  13. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  14. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  15. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics.

    PubMed

    Yang, Po-Wei; Lin, Tsang-Lang; Hu, Yuan; Jeng, U-Ser

    2015-03-21

    Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode. PMID:25649711

  16. Neutral Collisions and Charge Exchange in Titan's Exosphere

    NASA Astrophysics Data System (ADS)

    Sillanpää, I.; Johnson, R. E.

    2012-12-01

    Results from new hybrid simulations for Titan are presented. These simulations take into account the elastic collisions between ions and neutral gas as well as the charge exchange reactions for protons and oxygen ions. We used SRIM [1] cross sections for hydrogen and oxygen ions in nitrogen gas to calculate cross sections for the five ions species used in the HYB-Titan hybrid model [2, see also 3] (H+, H2+, O+, CH4+, and N2+). The N2 density profile used was from INMS measurements over a dozen flybys. In addition, we are studying the effect the charge transfer (CT) reactions for H+ and O+ leading to simple CT, dissociative CT and CT with ionization. All reaction cross sections are energy dependent. Neutral particles are not created, but the total ENA energy is recorded as well as the resulting reaction rates. The results show that both of neutral collisions and CT processes have a significant role in the development and shape of Titan's ionotail and wake structure. Results will be described in detail as well as the implications of the ion-neutral collisions for the heating of Titan's neutral corona and atmospheric escape [4]. References [1] Stopping and Range of Ions in Matter (SRIM), Monte Carlo software by James F. Ziegler (online at http://www.srim.org/ ) [2] Sillanpää, I., Hybrid Modelling of Titan's Interaction with the Magnetosphere of Saturn, Ph.D. dissertation, Finnish Meteorological Contributions, 68, Yliopistopaino, Helsinki, 2008. (online at http://urn.fi/URN:ISBN:978-951-697-660-3) [3] Sillanpää, I., D. Young, F. Crary, M. Thomsen, D. Reisenfeld, J-E.Wahlund, C. Bertucci, E. Kallio, R. Jarvinen, and P. Janhunen, Cassini Plasma Spectro:meter and Hybrid Model Study on Titan's Interaction: Effect of Oxygen Ions, J. Geophys. Res., doi:10.1029/2011JA016443, 2011. [4] Johnson, R.E., O.J. Tucker, M. Michael, E.C. Sittler, H.T. Smith, D.T. Young, and J.H. Waite, Mass Loss Processes in Titan's Upper Atmosphere, Chap. 15 in "Titan from Cassini-Huygens" (eds

  17. Pion double charge exchange scattering above the delta resonance

    SciTech Connect

    Burleson, G.R.

    1989-01-01

    Data are presented on pion-nucleus double-charge-exchange scattering at energies between 300 and 500 MeV, the highest energies measured so far, together with a review of results at lower energies. The small-angle excitation functions disagree with predictions based on a sex-quark cluster model and on an optical model consistent with single-charge-exchange scattering at these energies, but they are consistent with a distorted-wave calculation. Data on f{sub 7/2}-shell nuclei are in partial agreement with a two-amplitude model which is successful at lower energies. In order to achieve good understanding of this process at these energies, more work; both experimental and theoretical, is needed. 16 refs., 6 figs.

  18. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Scully, Shawn Ryan

    the primary losses that puts stringent requirements on the charge carrier mobilities in these cells is the recombination losses due to space charge build up at the heterojunction. Because electrons are confined to the acceptor and holes to the donor, net charge density always exists even when mobilities are matched, in contrast to bulk heterojunctions wherein matched mobilities lead to zero net charge. This net charge creates an electric field which opposes the built-in field and limits the current that can be carried away from this heterojunction. Using simulations we show that for relevant current densities charge carrier mobilities must be higher than 10-4 cm2/V.s to avoid significant losses due to space charge formation. In the last part of this work, we will focus on the second class of architectures in which exciton harvesting is efficient. We will present a systematic analysis of one of the leading polymer:fullerene bulk heterojunction cells to show that losses in this architecture are due to charge recombination. Using optical measurements and simulations, exciton harvesting measurements, and device characteristics we will show that the dominant loss is likely due to field-dependent geminate recombination of the electron and hole pair created immediately following exciton dissociation. No losses in this system are seen due to bimolecular recombination or space charge which provides information on charge-carrier mobility targets necessary for the future design of high efficiency organic photovoltaics.

  19. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  20. Computer code for charge-exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1981-01-01

    The propagation of the charge-exchange plasma from an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ASNI Standard FORTRAN.

  1. PLASIM: A computer code for simulating charge exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Deininger, W. D.; Winder, D. R.; Kaufman, H. R.

    1982-01-01

    The propagation of the charge exchange plasma for an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ANSI Standard FORTRAN.

  2. Electronic excitations of slow ions in a free electron gas metal: evidence for charge exchange effects.

    PubMed

    Primetzhofer, D; Rund, S; Roth, D; Goebl, D; Bauer, P

    2011-10-14

    Electronic energy loss of light ions transmitted through nanometer films of Al has been studied at very low ion velocities. For hydrogen, the electronic stopping power S is found to be perfectly proportional to velocity, as expected for a free electron gas. For He, the same is anticipated, but S shows a transition between two distinct regimes, in both of which S is velocity proportional-however, with remarkably different slopes. This finding can be explained as a consequence of charge exchange in close encounters between He and Al atoms, which represents an additional energy loss channel. PMID:22107378

  3. A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior.

    PubMed

    Clary, R; Smirnov, A; Dettrick, S; Knapp, K; Korepanov, S; Ruskov, E; Heidbrink, W W; Zhu, Y

    2012-10-01

    A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses. PMID:23126887

  4. Solar System X-rays from Charge Exchange Processes

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Christian, D. J.; Bhardwaj, A.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Zurbuchen, T. H.; Lepri, S. T.

    2013-04-01

    The discovery of high energy x-ray emission in 1996 from comet C/1996 B2 (Hyakutake) uncovered a new class of x-ray emitting objects. Subsequent detections of the morphology, spectra, and time dependence of the x-rays from more than 20 comets have shown that the very soft (E < 1 keV) emission is due to a charge-exchange interaction between highly charged solar wind minor ions and the comet's extended neutral atmosphere. Many solar system objects are now known to shine in the X-ray, including Venus, Mars, the Moon, the Earth, Jupiter, and Saturn, with total power outputs on the MW - GW scale. Like comets, the X-ray emission from the Earth's geo-corona, the Jovian & Saturnian aurorae, and the Martian halo are thought to be driven by charge exchange between highly charged minor (heavy) ions in the solar wind and gaseous neutral species in the bodies' atmosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from disks of Mars, Venus, and the Moon are produced by scattering of solar X-rays. The first soft X-ray observations of Earth’s aurora by Chandra shows that it is highly variable, and the giant planet aurorae are fascinating puzzles that are just beginning to yield their secrets and may be the only x-ray sources not driven directly by the Sun in the whole system as well as properties of hot exo-solar Jupiters. Observations of local solar system charge exchange processes can also help inform us about x-rays produced at more distant hot ionized gas/cold neutral gas interfaces, like the heliopause, stellar astrospheres, galactic star forming regions, and starburst galaxies.

  5. Energy loss of charged particles colliding with an oscillator

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.

    2015-04-01

    Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state | m> = |0> is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

  6. Observations of solar wind ion charge exchange in the comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.

  7. Charge-Exchange Processes of Titanium-Doped Aluminate Crystals

    NASA Astrophysics Data System (ADS)

    Wong, Wing Cheong

    1995-01-01

    Titanium exists in more than one charge state in the aluminate crystals: it is stable as Ti^ {3+} and Ti^{4+}. Other than the intense Ti^{4+ } absorption, a ubiquitous absorption/luminescence excitation band in the UV region is identified as a titanium -bound exciton in Al_2rm O_3, Y_3Al_5rm O_{12}, {rm YAlO}_3, MgAl_2O _4, and LaMgAl_{11} {rm O}_{19}. One -step and two-step photoconductivities of Ti^ {3+} are measured and compared. While the selectivity of the two-step process is demonstrated, its use in locating the energy threshold is hampered by the small Franck-Condon factor for the transition between the Ti^{3+} ^2{ rm E} excited state and Ti^ {4+}. The titanium-bound exciton band, together with the one-step photocurrent signal, makes it possible to determine the photoionization energy threshold accurately. The charge-transfer transition energy thresholds of Ti^{4+} are obtained from the emission and the luminescence excitation spectra. Locally and non-locally charge compensated Ti^{4+ } are found in Al_2{rm O}_3. The luminescence kinetics for the two kinds of Ti^{4+} are well explained by a three-level system with a lower triplet excited state and a higher singlet excited state. These charge-exchange threshold energies can be deduced from the Born-Haber thermodynamical cycle. The electrostatic site potentials are calculated and from it, the calculated photoionization and charge-transfer energy thresholds are found to be consistent with the experimental results. The deficiency of this model is pointed out and possible improvement is discussed. Quantitatively, the sum of the two charge-exchange energy thresholds is close to the band-gap energy of the host crystal. This offers a convenient way for material characterization. Provided that any two of the three quantities (band-gap energy, photoionization energy threshold, and charge-transfer transition energy threshold) have been found, the third quantity can be calculated. In addition, the trapping of charge

  8. Experimental research on pressure loss of rotary pressure exchanger

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Shi, Y.; Liu, Z. C.; Li, L.; Feng, Z. M.; Zhao, C. F.; Wei, Y.

    2016-05-01

    In order to research the phenomenon ‘Pressure Loss’ of Rotary Pressure Exchanger when it worked in a certain working condition, such as pressure and flow, two different series of experiments were performed respectively in the same experimental apparatus. One is to set pressure as constant when flow is changeable, the other one is to set flow as constant when pressure is changeable. Then, the curves and tables depicting the relationship between the pressure loss rate and working conditions were illustrated. Results from the curves and tables show that flow and pressure has an impact on pressure loss, and the relationship present some of regularity. According to the regularity, an empirical formula which can be used to approximately predict the magnitude of pressure loss for subsequent engineering application was provided by regression analysis on the basis of experimental data. Meanwhile, a 3-Dimensional geometric model of passageway in rotary pressure exchanger were built to verify the accuracy, making a steady calculation on pressure field by Fluent. At last, the feasibility was verified in a field application in a desalination factory.

  9. Laser-assisted H- charge exchange injection in magnetic fields

    NASA Astrophysics Data System (ADS)

    Gorlov, T.; Danilov, V.; Shishlo, A.

    2010-05-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization, and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving the excitation point into a strong magnetic field.

  10. Charge exchange and chemical reactions with trapped Th{sup 3+}

    SciTech Connect

    Churchill, L. R.; DePalatis, M. V.; Chapman, M. S.

    2011-01-15

    We have measured the reaction rates of trapped, buffer gas cooled Th{sup 3+} and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th{sup 3+} make them more prone to loss. Our results show that reactions of Th{sup 3+} with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th{sup 3+} with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th{sup 3+} and carbon dioxide. Loss rates of Th{sup 3+} in helium are consistent with reaction with impurities in the gas. Reaction rates of Th{sup 3+} with nitrogen and argon depend on the internal electronic configuration of the Th{sup 3+}.

  11. Colliding Planetary and Stellar Winds: Charge Exchange and Metal Absorption in Hot Jupiter Exospheres

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene

    2012-10-01

    Hot Jupiters unleash photoevaporative winds that are powered by ionizing radiation from their parent stars. Spectral signatures of such winds have been observed with HST STIS and COS in various UV absorption lines from H I, O I, C II, Mg II, and Si III. Interpretation of these absorption signatures is still debated, and the metal line observations have seen little modeling. Absorption by H I Lyman-alpha occurs at velocities of +/- 100 km/s; such large velocities are difficult to explain because thermal outflows from hot Jupiters have speeds < 30 km/s. Holmstrom et al. {2009} proposed that the anomalously energetic H I arises from charge exchange between planetary H I and protons from the incident stellar wind. If true, then basic quantities-e.g., the planetary mass loss rate, which we hope to infer from the HST data-would need re-calculation to account for the influence of the stellar wind. Charge exchange has not yet been integrated into models of photoevaporative winds. We propose to carry out hydrodynamic simulations of colliding planetary and stellar winds, including charge exchange, that would explain the HST Ly-a observations, thereby clarifying how the inferred planetary mass loss rate depends on stellar wind parameters. We also propose to incorporate photoionization heating by metals, and radiative line cooling by metals, both of which have not been simultaneously treated. The goal will be to reproduce the many HST line spectra of neutral and ionized metals and determine their import for the metallicity and mass loss rate of the planetary wind.

  12. Negative-ion injection by charge exchange at 2.4 GeV

    SciTech Connect

    Ruggiero, A.G.

    1995-09-01

    The present technical note describes multi-turn injection by charge exchange of 2.4-GeV negative ions in a Accumulator Ring used as an intense Pulsed Spallation Neutron Source. The major concern of beam loss due to magnetic stripping of the negative ions is addressed. It is demonstrated that, despite the high energy of the ions and the limitation on the magnitude of the magnetic field, it is possible to control the amount of beam losses to a fractional value of better than 10{sup {minus}5}, as it is required to avoid latent activation of the accelerator components. The injection magnet system which accomplish this is described. The paper addresses also the concern of beam loss due to the same effect in the 2.4-GeV injector linear accelerator, and in the transport from the Linac to the Accumulator Ring.

  13. On the energy losses of fast charged particles

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2010-09-01

    The energy losses of fast charged particles colliding with atoms have been considered in the eikonal approximation. It has been shown that the nonperturbative contribution to the effective stopping from the region of the intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target) not only can be significant as compared to shell corrections to the Bethe-Bloch formula (usually considered in the first order of perturbation theory), but also can provide significant (up to 50%) corrections to this formula.

  14. Charge exchange of hydrogen atoms with multiply charged ions in a hot plasma

    NASA Astrophysics Data System (ADS)

    Abramov, V. A.; Baryshnikov, F. F.; Lisitsa, V. S.

    1980-08-01

    The symmetry properties of the hydrogen atom were used to calculate the charge exchange cross sections sigma of hydrogen with the nuclei of multiply charged ions, while allowance was made for the degeneration of final states. If the transitions between these states produced by rotation of the internuclear axis are taken into account, there is a qualitative change in the dependence of sigma on v for low values of v (a gradual decrease in the cross section instead of the exponential one in the Landau-Zener model) and also a considerable increase in the peak cross section. The cross sections are calculated for a wide range of velocities and charge values-Z. The distribution of final states over orbital angular momenta is found.

  15. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-01-01

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.

  16. Kinetic theory for charge-exchange spectroscopy: Effects of magnetic and electric fields on the distribution function after charge-exchange

    SciTech Connect

    Burrell, K. H.; Munoz Burgos, J. M.

    2012-07-15

    In plasmas equipped with neutral beam injection, excitation of atomic spectral lines via charge-exchange with neutral atoms is the basis of one of the standard plasma diagnostic techniques for ion density, temperature, and velocity. In order to properly interpret the spectroscopic results, one must consider the effects of the energy dependence of the charge-exchange cross-section as well as the motion of the ion after charge-exchange during the period when it is still in the excited state. This motion is affected by the electric and magnetic fields in the plasma. The present paper gives results for the velocity distribution function of the excited state ions and considers in detail the cross-section and ion motion effects on the post charge-exchange velocity. The expression for this velocity in terms of the charge-exchange cross-section and the pre charge-exchange velocity allows that latter velocity to be determined. The present paper is the first to consider the effect of the electric as well as the magnetic field and demonstrates that electric field and diamagnetic terms appear in the expression for the inferred velocity. The present formulation also leads to a novel technique for assessing the effect of the energy dependence of the charge-exchange cross-section on the inferred ion temperature.

  17. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  18. More Than Charged Base Loss — Revisiting the Fragmentation of Highly Charged Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Nyakas, Adrien; Eberle, Rahel P.; Stucki, Silvan R.; Schürch, Stefan

    2014-07-01

    Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO-), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the M-NCO- ion by MS3 revealed a so far unreported consecutive excision of a metaphosphate (PO3 -)-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3 - loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO- and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar-modified ONs.

  19. Vertical Charge Exchange Cell for Collinear Laser Spectroscopy at NSCL

    NASA Astrophysics Data System (ADS)

    Klose, Andrew; Minamisono, Kei; Froemmgen, Nadja; Geppert, Christopher; Hammen, Michael; Kraemer, Joerg; Krieger, Andreas; Levy, Phil; Mantica, Paul; Noertershaeuser, Wilfried; Vinnikova, Sophia

    2011-10-01

    A vertical charge exchange cell (CEC), originally developed at TRIUMF/ISAC, has been constructed at NSCL for the Beam Cooling and Laser Spectroscopy (BECOLA) system. The CEC was initially commissioned at the TRIGA-Laser facility at the University of Mainz by neutralizing a 10 keV Rb+ ion beam with K vapor. The neutralization efficiency was measured as a function of the CEC heater temperature. The line shape of the Rb D2 transition was also examined in relation to the neutral fraction of the Rb beam. Details of the CEC design and operation, as well as the results of the tests will be discussed. This work was supported in part by NSF Grant PHY 06-06007.

  20. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    SciTech Connect

    W.M. Solomon; K.H. Burrell; P. Gohil; R.J. Groebner; L.R. Baylor

    2004-07-16

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations.

  1. Charge-exchange reactions with a radioactive triton beam

    SciTech Connect

    Jaenecke, J.

    1998-12-21

    A high-resolution (t, {sup 3}He) test experiment has been performed recently by making use of a secondary triton beam produced by fragmentation of {alpha}-particles. The purpose of this charge-exchange experiment was to achieve good energy resolution in an (n,p)-type reaction at intermediate bombarding energies. The experiment was carried out with the K1200 cyclotron at the National Superconducting Cyclotron Laboratory using the A1200 beam-analysis system and the S800 magnetic spectrometer. The beam-analysis system was used to transport the energy-dispersed radioactive triton beam from the production target to the target position, and the magnetic spectrometer was used to focus the dispersion-matched {sup 3}He particles from the (t, {sup 3}He) reaction at 0 degree sign onto the focal plane of the spectrometer. An energy resolution of 200-250 keV was achieved.

  2. Improved edge charge exchange recombination spectroscopy in DIII-D

    DOE PAGESBeta

    Chrystal, Colin; Burrell, K. H.; Grierson, Brian A.; Haskey, Shaun R.; Groebner, R. J.; Kaplan, David H.; Briesemeister, Alexis R.

    2016-08-02

    The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16more » to 38.As a result, new fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.« less

  3. Resonance charge exchange between excited states in slow proton-hydrogen collisions

    SciTech Connect

    Tolstikhina, Inga Yu.; Kato, Daiji

    2010-09-15

    The theory of resonance charge exchange in slow collisions of a proton with a hydrogen atom in the excited state is developed. It extends the Firsov-Demkov theory of resonance charge exchange to the case of degenerate initial and final states. The theory is illustrated by semiclassical and quantum calculations of charge exchange cross sections between states with n=2 in parabolic and spherical coordinates. The results are compared with existing close-coupling calculations.

  4. Two-pion exchange contributions to nuclear charge asymmetry

    SciTech Connect

    Coon, S.A.; Niskanen, J.A.

    1995-04-01

    An explicit 2{pi} exchange (TPE) potential based on non-relativistic {pi}NN and {pi}{Delta}N vertices with the baryon mass differences taken into account in the vertices is extended to the study of mirror nuclear systems. For the latter study, one must also include baryon mass differences in the intermediate state energy denominators. The TPE potential includes box and crossed box diagrams with two nucleons and those with one nucleon and one {Delta}. Nuclear charge asymmetry is characterized, in part, by a positive value for the difference {Delta}a = {vert_bar}a{sub nn}{vert_bar} {minus} {vert_bar}a{sub pp}{vert_bar} {approx} O(1 fm) and a positive value for the {sup 3}H - {sup 3}He binding energy difference {Delta}E {approx} O(100 keV). The charge asymmetry from baryon mass differences in the vertices is small on this scale and in the wrong direction compared to the empirical values. The contribution from baryon mass differences in the intermediate state energy denominators is positive and is of the order of the empirical scales, in contrast to the previous estimate of {Delta}a {approx} +0.3 fm obtained from an SU(2) symmetric covariant field theoretical potential. This discrepancy between models of TPE is being investigated.

  5. High-throughput charge exchange recombination spectroscopy system on MAST

    SciTech Connect

    Conway, N. J.; Carolan, P. G.; McCone, J.; Walsh, M. J.; Wisse, M.

    2006-10-15

    A major upgrade to the charge exchange recombination spectroscopy system on MAST has recently been implemented. The new system consists of a high-throughput spectrometer coupled to a total of 224 spatial channels, including toroidal and poloidal views of both neutral heating beams on MAST. Radial resolution is {approx}1 cm, comparable to the ion Larmor radius. The toroidal views are configured with 64 channels per beam, while the poloidal views have 32 channels per beam. Background channels for both poloidal and toroidal views are also provided. A large transmission grating is at the heart of the new spectrometer, with high quality single lens reflex lenses providing excellent imaging performance and permitting the full exploitation of the available etendue of the camera sensor. The charge-coupled device camera chosen has four-tap readout at a maximum aggregate speed of 8.8 MHz, and it is capable of reading out the full set of 224 channels in less than 4 ms. The system normally operates at 529 nm, viewing the C{sup 5+} emission line, but can operate at any wavelength in the range of 400-700 nm. Results from operating the system on MAST are shown, including impurity ion temperature and velocity profiles. The system's excellent spatial resolution is ideal for the study of transport barrier phenomena on MAST, an activity which has already been advanced significantly by data from the new diagnostic.

  6. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  7. Cometary X-Rays: Line Emission Cross Sections for Multiply Charged Solar Wind Ion Charge Exchange

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2006-12-22

    Absolute line emission cross sections are presented for 1 keV/amu charge exchange collisions of multiply charged solar wind ions with H{sub 2}O, H, O, CO{sub 2}, and CO cometary targets. The present calculations are contrasted with available laboratory data. A parameter-free model is used to successfully predict the recently observed x-ray spectra of comet C/LINEAR 1999 S4. We show that the resulting spectrum is extremely sensitive to the time variations of the solar wind composition. Our results suggest that orbiting x-ray satellites may be a viable way to predict the solar wind intensities and composition on the Earth many hours before the ions reach the earth.

  8. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  9. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  10. Charge-exchange reaction by Reggeon exchange and W{sup +}W{sup −}-fusion

    SciTech Connect

    Schicker, R.

    2015-04-10

    Charge-exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp → n + Δ{sup ++} taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge-exchange reaction induced by W{sup ±}-fusion is presented, and the corresponding QCD-background is examined.

  11. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  12. Charge exchange of solar wind ions in the Comet Halley coma

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Ing-H. afgoldstein, B. E. AGGOLDSTEIN, R.; Ing-H. afgoldstein, B. E. AGGOLDSTEIN, R.

    1986-01-01

    The He(2+) and He(+) radial profiles measured by the Giotto mass spectrometer on the inbound trajectory to comet Halley are compared to a simple 1-dimensional charge exchange model. Results indicate that charge exchange alone cannot account for the observed radial profiles of He(2+) and He(+).

  13. Spin-Isospin responses via charge exchange reactions of RI beams at SHARAQ

    SciTech Connect

    Shimoura, Susumu

    2012-11-12

    Nuclear spectroscopy via direct reactions of RI beams is discussed focusing on characteristics of charge-exchange reactions of RI beams. Recent experiments using the SHARAQ spectrometer at the RIBF are presented, where isovector spin monopole and spin-non-flip monopole responses are studied by charge exchange reaction of RI beams. Some experimental plans and perspectives are also presented.

  14. Charge Exchange, from the Laboratory to Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Betancourt-Martinez, Gabriele; Beiersdorfer, Peter; Brown, Gregory; Hell, Natalie; Leutenegger, Maurice A.; Porter, Frederick S.; Reynolds, Christopher S.

    2016-04-01

    X-ray emission due to charge exchange (CX) between solar wind ions and neutrals in comets and planetary atmospheres is ubiquitous in the solar system, and is also a significant foreground in all observations from low-Earth orbit. It is also possible that CX is common astrophysically, in any environment where hot plasma and cold gas interact. A current challenge is that theoretical models of CX spectra do not always accurately describe observations, and require further experimental verification. This is especially important to focus on now, as the recent launch of Astro-H is providing us with the first high-resolution spectra of extended x-ray sources. In order to improve our understanding and modeling of CX spectra, we take advantage of the laboratory astrophysics program at the Lawrence Livermore National Laboratory and use an Electron Beam Ion Trap (EBIT) to perform CX experiments, using the EBIT Calorimeter Spectrometer. We present experimental benchmarks that can be used to develop a more comprehensive and accurate CX theory. On the observational side, we also investigate the possibility of CX occurring in the filaments around the central galaxy of the Perseus cluster, NGC 1275. We use Chandra ACIS data, combined with what we know about laboratory CX spectra, to investigate the possibility of CX being a significant contributor to the x-ray emission.

  15. Charge exchange recombination spectroscopy on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Eisner, E. C.; Rowan, William L.

    2001-01-01

    The optical systems for charge-exchange recombination spectroscopy (CXRS) on Alcator C-Mod have been developed and installed. They will provide measurements of Ti, νθ, and νφ. With the addition of the motional Stark effect diagnostic to determine Bp, Er can be inferred from the ion pressure balance equation, Er=(Zenz)-1∇rpz+νφzBθ-νθzBφ. The optical systems are simple and have high throughput. In particular, the toroidally viewing systems must be designed for invessel installation close to the plasma where they are subject to large forces and are inaccessible between vacuum vents. Two optical systems, located invessel, provide 20 channels of Ti and νφ data from 67.3 cm

  16. Charge exchange recombination spectroscopy on the T-10 tokamak.

    PubMed

    Klyuchnikov, L A; Krupin, V A; Nurgaliev, M R; Korobov, K V; Nemets, A R; Dnestrovskij, A Yu; Tugarinov, S N; Serov, S V; Naumenko, N N

    2016-05-01

    The charge exchange recombination spectroscopy (CXRS) diagnostics on the T-10 tokamak is described. The system is based on a diagnostic neutral beam and includes three high etendue spectrometers designed for the ITER edge CXRS system. A combined two-channel spectrometer is developed for simultaneous measurements of two beam-induced spectral lines using the same lines of sight. A basic element of the combined spectrometer is a transmitting holographic grating designed for the narrow spectral region 5291 ± 100 Å. The whole CXRS system provides simultaneous measurements of two CXRS impurity spectra and Hα beam line. Ion temperature measurements are routinely provided using the C(6+) CXRS spectral line 5291 Å. Simultaneous measurements of carbon densities and one more impurity (oxygen, helium, lithium etc.) are carried out. Two light collecting systems with 9 lines of sight in each system are used in the diagnostics. Spatial resolution is up to 2.5 cm and temporal resolution of 1 ms is defined by the diagnostic neutral beam diameter and pulse duration, respectively. Experimental results are shown to demonstrate a wide range of the CXRS diagnostic capabilities on T-10 for investigation of impurity transport processes in tokamak plasma. Developed diagnostics provides necessary experimental data for studying of plasma electric fields, heat and particle transport processes, and for investigation of geodesic acoustic modes. PMID:27250422

  17. The Atmospheric Escape of Europa: The Role of Symmetrical O2 Charge Exchanges.

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Dols, V. J.; Cassidy, T. A.; Crary, F. J.; Delamere, P. A.

    2015-12-01

    We model the interaction of magnetospheric plasma with the atmosphere of Europa using a multi-species chemistry model where the atmospheric distributions of H2 and O2 are prescribed. The plasma flow is idealized as an incompressible flow around a conducting obstacle. We compute changes in plasma composition resulting from this interaction as well as the reaction rates integrated over the simulation domain for several upstream plasma conditions (ion density, ion temperature and flow velocity). We show that for all cases, the main atmospheric loss process is the symmetrical charge exchange of O2, which results in the production of fast neutrals. This neutral production rate is about an order of magnitude larger than the production of ions. This conclusion is relevant to future missions to Europa that aim to detect fast neutrals. The neutral ejection resulting from this charge exchange creates an oxygen cloud around the orbit of the moon that is very extended radially but also very tenuous, and has not yet been directly detected.

  18. Europa's atmospheric neutral escape: Importance of symmetrical O2 charge exchange

    NASA Astrophysics Data System (ADS)

    Dols, Vincent J.; Bagenal, Fran; Cassidy, Timothy A.; Crary, Frank J.; Delamere, Peter A.

    2016-01-01

    We model the interaction of the jovian magnetospheric plasma with the atmosphere of Europa using a multi-species chemistry model where the atmospheric distributions of H2 and O2 are prescribed. The plasma flow is idealized as an incompressible flow around a conducting obstacle. We compute changes in plasma composition resulting from this interaction as well as the reaction rates integrated over the simulation domain for several upstream plasma conditions (ion density, ion temperature and flow velocity). We show that for all cases, the main atmospheric loss process is a cascade of symmetrical charge exchanges on O2, which results in the ejection of neutrals. The production rate of ejected neutrals is about an order of magnitude larger than the production of ions. This conclusion is relevant to future missions to Europa that aim to detect fast neutrals. The neutral ejection resulting from this charge exchange creates an oxygen cloud around the orbit of the moon that is very extended radially but also very tenuous, and has not yet been directly detected.

  19. Observations of solar wind ion charge exchange in the Comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of Comet Halley. As the comet was approached, the He(2+) to proton density ratio increased from 2.5 percent in the solar wind to about 4 percent about 1 hr before closest approach after which time it decreased to about 1 percent. Abrupt increases in this ratio from 2.5 to 4.5 percent were also observed in the beginning and near the end of the so-called Mystery Region. These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(2+) to proton density ratio is quantitatively consistent with a combination of the addition of protons of Cometary origin to the plasma and loss of plasma through charge exchange of protons and He(2+).

  20. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  1. Excitation and Charge Exchange Phenomena in Astronomical Objects: Measurement of Cross Sections and Lifetimes

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Smith, S.; Lozano, J.; Cadez, I.; Greewnood, J.; Mawhovter, R.; Williams, I.; Niimura, M.

    2003-01-01

    This document addresses extreme ultraviolet radiation and X-ray emissions from comets, planets and heliospheric gases focusing on the measurement of charge-exchange cross sections and radiative lifetimes. Highly-charged heavy ions present in the solar wind, and their abundance relative to the total oxygen-ion abundance are detailed. The plan for the Jet Propulsion Laboratory high-charge ion facility is outlined detailing its ability to measure absolute collisional excitation cross sections, absolute charge-exchange cross sections, lifetimes of metastable ion levels, and X-ray emission spectra following charge changes.

  2. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  3. The Solar Wind Charge-exchange Production Factor for Hydrogen

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Koutroumpa, D.; Porter, F. S.; Robertson, I. P.; Sibeck, D. G.; Snowden, S. L.; Thomas, N. E.; Walsh, B. M.

    2015-08-01

    The mean production factor, or broadband averaged cross-section, for solar wind charge-exchange (SWCX) with hydrogen producing emission in the ROSAT \\frac{1}{4} keV (R12) band is (3.8+/- 0.2)× {10}-20 count degree-2 cm4. The production factor is expected to be temporally variable, and that variation is roughly 15%. These values are derived from a comparison of the long-term (background) enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8-4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of \\frac{1}{4} keV band flux that is due to the Local Hot Bubble, for planning future observations in the \\frac{1}{4} keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the \\frac{3}{4} keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally, that recent efforts to correlate XMM-Newton observing geometry with magnetosheath SWCX emission in the oxygen lines have been, quite literally, misguided. Simulations of the inner heliosphere show that broader efforts to correlate heliospheric SWCX with local solar wind parameters are unlikely to produce useful results.

  4. High Performance Non-Dispersive X-Ray Spectrometers for Charge Exchange Measurements

    NASA Technical Reports Server (NTRS)

    Porter Frederick; Adams, J.; Beiersdorfer, P.; Brown, G. V.; Karkatoua, D.; Kelley, R. L.; Kilbourne, C. A.; Lautenagger, M.

    2010-01-01

    Currently, the only measurements of cosmological charge exchange have been made using low resolution, non-dispersive spectrometers like the PSPC on ROSAT and the CCD instruments on Chandra and XMM/Newton. However, upcoming cryogenic spectrometers on Astro-H and IXO will add vast new capabilities to investigate charge exchange in local objects such as comets and planetary atmospheres. They may also allow us to observe charge exchange in extra-solar objects such as galactic supernova remnants. With low spectral resolution instruments such as CCDs, x-ray emission due to charge exchange recombination really only provides information on the acceptor species, such as the solar wind. With the new breed of x-ray calorimeter instruments, emission from charge exchange becomes highly diagnostic allowing one to uniquely determine the acceptor species, ionization state, donor species and ionization state, and the relative velocity of the interaction. We will describe x-ray calorimeter instrumentation and its potential for charge exchange measurements in the near term. We will also touch on the instrumentation behind a decade of high resolution measurements of charge exchange using an x-ray calorimeter at the Lawrence Livermore National Laboratory.

  5. Neoclassical Simulations of Fusion Alpha Particles in Pellet Charge Exchange Experiments on the Tokamak Fusion Test Reactor

    SciTech Connect

    Batha, S.H.; Budny, R.V.; Darrow, D.S.; Levinton, F.M.; Redi, M.H.; et al

    1999-02-01

    Neoclassical simulations of alpha particle density profiles in high fusion power plasmas on the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas 5 (1998) 1577] are found to be in good agreement with measurements of the alpha distribution function made with a sensitive active neutral particle diagnostic. The calculations are carried out in Hamiltonian magnetic coordinates with a fast, particle-following Monte Carlo code which includes the neoclassical transport processes, a recent first-principles model for stochastic ripple loss and collisional effects. New global loss and confinement domain calculations allow an estimate of the actual alpha particle densities measured with the pellet charge exchange diagnostic.

  6. Influence of plasma diffusion losses on dust charge relaxation in discharge afterglow

    SciTech Connect

    Coueedel, L.; Mikikian, M.; Boufendi, L.

    2008-09-07

    The influence of diffusive losses on residual dust charge in a complex plasma afterglow has been investigated. The dust residual charges were simulated based on a model developed to describe complex plasma decay. The experimental and simulated data show that the transition from ambipolar to free diffusion in the decaying plasma plays a significant role in determining the residual dust particle charges. The presence of positively charged dust particles is explained by a broadening of the charge distribution function in the afterglow plasma.

  7. Invited Parallel Talk: Forward pion-nucleon charge exchange reaction and Regge constraints

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-12-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude.

  8. Production of intense beams of polarized negative hydrogen ions by double charge exchange in alkali vapour

    NASA Astrophysics Data System (ADS)

    Gruëbler, W.; Schmelzbach, P. A.

    1983-07-01

    The intensity of the polarized negative hydrogen ion beam of the ETHZ atomic beam polarized ion source has been substantially improved by a new double charge exchange device. Increasing the diameter of the charge exchange canal to 1.4 cm results in a beam output of the source of 6 μA of polarized negative hydrogen ions. Further improvements of the charge exchanger are proposed and discussed. With an updated design of the atomic beam apparatus, beams of 0.5 mA polarized negative hydrogen ions may be obtained from such a source.

  9. Carbon charge exchange analysis in the ITER-like wall environment

    SciTech Connect

    Menmuir, S.; Giroud, C.; Hawkes, N. C.; Biewer, T. M.; Coffey, I. H.; Delabie, E.; Sertoli, M.

    2014-11-15

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  10. A Method for Estimating the Probability of Floating Gate Prompt Charge Loss in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.

    2016-01-01

    Since advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.

  11. A Method for Estimating the Probability of Floating Gate Prompt Charge Loss in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.

    2016-01-01

    Because advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.

  12. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  13. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  14. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  15. Inclusive pion double charge exchange in light p-shell nuclei

    SciTech Connect

    Fong, W.; Matthews, J. L.; Dowell, M. L.; Kinney, E. R.; Soos, T.; Wang, M. Y.; Wood, S. A.; Gram, P. A. M.; Rebka, G. A. Jr.; Roberts, D. A.

    2007-06-15

    We report the results of a series of measurements of the differential cross sections for inclusive pion double charge exchange in {sup 6,7}Li, {sup 9}Be, and {sup 12}C for positive and negative incident pions of energies 120, 180, and 240 MeV. The data are compared with the predictions of an intranuclear cascade model and a model based on two sequential single charge exchange processes.

  16. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  17. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  18. Study of multi-electron ionization and charge exchange in HIBF

    NASA Astrophysics Data System (ADS)

    Wu, Linchun

    Beam ion stripping on background gases or plasma in a Heavy Ion Beam Fusion (HIBF) chamber increases the charge state of the beam and the diameter of the focus, complicating the final focusing on the focusing target. To model beam transport in the chamber, it is necessary to know the beam charge-state evolution, including both ionization and charge exchange dynamics. The main objective of this research is to explore theoretical approaches including scaling law. Improved models are developed to calculate multi-electron loss, especially ion stripping and charge exchange cross sections, for both near-term experiments and future power plant scale HIBF research. First, a new space-charge neutralization approach that uses electron injection is proposed for the ion beam transport in HIBF chamber. An analytical study was performed to illustrate the plasma dynamics and final neutralization effects with this technique. The results examine the effect of different injected electron profiles. Next, to improve the accuracy of such simulations, methods to improve cross sections of ionization and charge exchange are studied. Both classical and quantum mechanical approaches are examined. Attention is focused on the interaction by low-charge-state heavy ions. Multi-electron processes for dressed ions, including screening and anti-screening effects, internuclear forces, are given special attention, This analysis is complex and requires a combining several different theoretical approaches. Finally, a Classic Trajectory Monte Carlo (CTMC) model based on an improvement of Olson's n-body CTMC method is presented. This model solves the n-body ion-atom ionization problem in a regime of intent to HIBF. In the paper, a new and complete computational module for these interactions has been developed. The cross section data for Xe, Cs, and Bi ions colliding with various background gases (Xe, N2, Ar and Flibe) is presented. After the calculation of the cross section data, the predicted energy

  19. Charged fusion product and fast ion loss in TFTR

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M.; Boivin, R.; Machuzak, J.S.; Woskov, P.; Fisher, R.; McChesney, J.; Fonck, R.; McKee, G.; Tuszewski, M.

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip < 1.4 MA, except near the outer midplane where stochastic TF ripple loss dominates when Ip > I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P {ge} 25 MW. The MHD induced loss of 100 KeV neutron beam ions and {approximately}0.5 MeV ICRF minority tail tons has also been measured {le} 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described.

  20. Charged fusion product and fast ion loss in TFTR

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M. (Princeton Univ., NJ (United Sta

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip < 1.4 MA, except near the outer midplane where stochastic TF ripple loss dominates when Ip > I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P [ge] 25 MW. The MHD induced loss of 100 KeV neutron beam ions and [approximately]0.5 MeV ICRF minority tail tons has also been measured [le] 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described.

  1. 26 CFR 1.988-2 - Recognition and computation of exchange gain or loss.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 10 2014-04-01 2013-04-01 true Recognition and computation of exchange gain or loss. 1.988-2 Section 1.988-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Export Trade Corporations § 1.988-2 Recognition and computation of exchange gain or...

  2. 26 CFR 1.988-2 - Recognition and computation of exchange gain or loss.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 10 2012-04-01 2012-04-01 false Recognition and computation of exchange gain or loss. 1.988-2 Section 1.988-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Export Trade Corporations § 1.988-2 Recognition and computation of exchange gain or...

  3. 26 CFR 1.988-2 - Recognition and computation of exchange gain or loss.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Recognition and computation of exchange gain or loss. 1.988-2 Section 1.988-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Export Trade Corporations § 1.988-2 Recognition and computation of exchange gain or...

  4. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.

    PubMed

    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C

    2003-01-01

    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides. PMID:12809297

  5. N(+)-N long-range interaction energies and resonance charge exchange

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.; Partridge, H.

    1985-01-01

    The aerothermodynamic studies of proposed space missions require atmospheric charge-transfer data. N2(+) eigenstate energies are calculated with use of the complete-active-space self-consistent-field method with an extended Gaussian basis set. The N(+)-N charge-exchange cross section, determined from these energies, agrees with merged-beam measurements. This contradicts the previous theoretical conclusion. A simple physical description of the long-range interaction is presented and should expedite future charge-transfer studies.

  6. X-ray Signature of Charge Exchange in the Spectra of L-shell Iron Ions

    SciTech Connect

    Beiersdorfer, P; Schweikhard, L; Liebisch, P; Brown, G V

    2007-01-05

    The X-ray signature of charge exchange between highly charged L-shell iron ions and neutral gas atoms was studied in the laboratory in order to assess its diagnostic utility. Significant differences with spectra formed by electron-impact excitation were observed. In particular, a strong enhancement was found of the emission corresponding to n {le} 4 {yields} n = 2 transitions relative to the n = 3 {yields} n = 2 emission. This enhancement was detectable even with relatively low-resolution X-ray instrumentation (E/{Delta}E {approx} 10) and may enable future identification of charge exchange as a line-formation mechanism in astrophysical spectra.

  7. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory. PMID:12791989

  8. Band bending effect induced by gate voltage on the charge loss behavior of charge trap flash memory devices

    NASA Astrophysics Data System (ADS)

    Chang, M.; Hwang, H.; Jeon, S.

    2010-02-01

    We found that the polarity of the gate voltage (Vg) during the retention characteristics for a SiO2/Si3N4/Al2O3 (ONA) stack can affect the charge loss direction, due to band bending. Positive Vg could induce electron de-trapping through Al2O3, while a negative Vg could induce the same through SiO2. Consequently, the charge loss rates exhibited a hairpin curve with Vg. We clearly observed that increases of the SiO2 thickness of the ONA stack induced negative shifts of hairpin curve. This result suggests that the dominant charge loss path could be changed from SiO2 to Al2O3 by increasing the SiO2 thickness without Vg.

  9. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  10. Influence of hearing loss and cognitive abilities on language development in CHARGE Syndrome.

    PubMed

    Vesseur, Annemarie; Langereis, Margreet; Free, Rolien; Snik, Ad; van Ravenswaaij-Arts, Conny; Mylanus, Emmanuel

    2016-08-01

    Hearing loss and cognitive delay are frequently occurring features in CHARGE syndrome that may contribute to impaired language development. However, not much is known about language development in patients with CHARGE syndrome. In this retrospective study, hearing loss, cognitive abilities, and language development are described in 50 patients with CHARGE syndrome. After informed consent was given, data were collected from local medical files. Most patients (38.3%; 18/47 patients) had moderate hearing loss (41-70 dB) and 58.5% (24/41 patients) had an IQ below 70. The mean language quotients of the receptive and expressive language were more than one standard deviation below the norm. Both hearing loss and cognitive delay had an influence on language development. Language and cognitive data were not available for all patients, which may have resulted in a pre-selection of patients with a delay. In conclusion, while hearing thresholds, cognitive abilities and language development vary widely in CHARGE syndrome, they are mostly below average. Hearing loss and cognitive delay have a significant influence on language development in children with CHARGE syndrome. To improve our knowledge about and the quality of care we can provide to CHARGE patients, hearing and developmental tests should be performed regularly in order to differentiate between the contributions of hearing loss and cognitive delay to delays in language development, and to provide adequate hearing amplification in the case of hearing loss. © 2016 Wiley Periodicals, Inc. PMID:27145116

  11. 78 FR 6263 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Department used an ``activity-based costing'' (ABC) approach to develop a sustainable model to align the... ``activity-based costing'' (ABC) approach to develop a sustainable model to align the associated costs of the.... According to legislative and regulatory guidance, user charges should be based on the full cost to...

  12. Initial Assessment of Electron and X-Ray Production and Charge Exchange in the NDCX-II Accelerator

    SciTech Connect

    COHEN, R.H.

    2010-02-18

    The purpose of this note is to provide initial assessments of some atomic physics effects for the accelerator section of NDCX-II. There are several effects we address: the production of electrons associated with loss of beam ions to the walls, the production of electrons associated with ionization of background gas, the possibly resultant production of X-rays when these electrons hit bounding surfaces, and charge exchange of beam ions on background gas. The results presented here are based on a number of caveats that will be stated below, which we will attempt to remove in the near future.

  13. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  14. Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).

    PubMed

    Matthews, Philip G D; White, Craig R

    2012-01-01

    Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpiration to the atmosphere. When resting, many species exchange respiratory gases discontinuously, and an early hypothesis for the origin of these discontinuous gas exchange cycles (DGCs) is that they serve to reduce respiratory water loss. In this study, we test this "hygric" hypothesis by comparing rates of CO(2) exchange and water loss among flower beetles Protaetia cretica (Cetoniinae, Scarabaeidae) breathing either continuously or discontinuously. We show that, consistent with the expectations of the hygric hypothesis, rates of total water loss are higher during continuous gas exchange than during discontinuous gas exchange and that the ratio of respiratory water loss to CO(2) exchange is lower during discontinuous gas exchange. This conclusion is in agreement with other studies of beetles and cockroaches that also support the hygric hypothesis. However, this result does not exclude other adaptive hypotheses supported by work on ants and moth pupae. This ambiguity may arise because there are multiple independent evolutionary origins of DGCs and no single adaptive function underlying their genesis. Alternatively, the observed reduction in water loss during DGCs may be a side effect of a nonadaptive gas exchange pattern that is elicited during periods of inactivity. PMID:22418709

  15. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  16. The diurnal and solar cycle variation of the charge exchange induced hydrogen escape flux

    NASA Technical Reports Server (NTRS)

    Maher, L. J.; Tinsley, B. A.

    1978-01-01

    On the basis of ion temperature and density data at specific points and times in June 1969 provided by the OGO 6 satellite, and altitude profiles of the ion and electron temperature and concentration provided by the Arecibo radar facility over the period February 1972-April 1974, the diurnal and solar cycle variation of the charge-exchange-induced hydrogen escape flux was investigated. It was calculated that for low to moderate solar activity at Arecibo, the diurnal ratio of the maximum-to-minimum charge-exchange-induced hydrogen escape flux was approximately 6 with a peak around noon and a minimum somewhere between 0100 and 0300 h LT. This study of a limited amount of OGO 6 and Arecibo data seems to indicate that the charge-exchange-induced hydrogen escape flux increases as the F(10.7) flux increases for low to moderate solar activity.

  17. The influence of charge exchange on the velocity distribution of hydrogen in the Venus exosphere

    NASA Technical Reports Server (NTRS)

    Hodges, Richard R., Jr.; Tinsley, Brian A.

    1986-01-01

    The simulation of the exosphere of Venus by a Monte Carlo technique has been extended to provide velocity distribution profiles that can be used with radiative transfer simulation to model the Lyman-alpha emission seen by spacecraft. The line profiles show a narrow core due to the exobase thermal source of hydrogen superimposed on the broad profile of hot hydrogen from charge exchange with hot ions in the nighttime ionosphere. Nightside radial profiles show long tails of upward flowing, escaping atoms. There are some downward and lateral superescape signatures, because the charge exchange source extends well above the exobase. At higher altitudes, flattening and even shallow central valleys appear in the transverse profiles. The planetary average escape rate due to charge exchange was found to be 2.8 x 10 to the 7th/sq cm per s, which is several times larger than escape rates for other candidate mechanisms.

  18. Pion single charge exchange in three body nuclei at intermediate energies

    SciTech Connect

    Dowell, M.L.

    1994-01-01

    The purpose of this thesis is to present new experimental information about modifications to the pion-nucleon single charge exchange interaction, {pi}{sup +}n {yields}{pi}{sup 0} p or {pi}{sup {minus}} p {yields} {pi}{sup 0}n, due to the presence of other nucleons. The results of two experimental studies of pion single charge exchange in the three nucleon system near the {triangle}-resonance are presented. Both of these experiments were performed at the Clinton P. Anderson Meson Physics Facility (LAMPF), a division of the Los Alamos National Laboratory. Each explored different aspects of pion single charge exchange in three body nuclei--{sup 3}He and {sup 3}H. Since the nuclear wavefunctions of the three nucleon systems are believed to be well understood, it should be possible to perform theoretical calculations of pion interactions with this system and compare their predictions with the experimental results.

  19. Experimental discovery of charge-exchange-caused dips in spectral lines from laser-produced plasmas.

    PubMed

    Leboucher-Dalimier, E; Oks, E; Dufour, E; Sauvan, P; Angelo, P; Schott, R; Poquerusse, A

    2001-12-01

    We report the first experimental observation of charge-exchange-caused dips (also called x dips) in spectral lines of multicharged ions in laser-produced plasmas. Specifically, in the process of a laser irradiation of targets made out of aluminum carbide, we observed two x dips in the Ly(gamma) line of Al XIII perturbed by fully stripped carbon. From the practical point of view, this opens up a way to experimentally produce not-yet-available fundamental data on charge exchange between multicharged ions, virtually inaccessible by other experimental methods. From the theoretical viewpoint, the results are important because the x dips are the only one signature of charge exchange in profiles of spectral lines emitted by plasmas and they are the only one quasimolecular phenomenon that could be observed at relatively "low" densities of laser-produced plasmas. PMID:11736229

  20. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-04-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  1. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ. PMID:27126470

  2. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  3. 26 CFR 1.741-1 - Recognition and character of gain or loss on sale or exchange.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Recognition and character of gain or loss on sale or exchange. 1.741-1 Section 1.741-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Recognition and character of gain or loss on sale or exchange. (a) The sale or exchange of an interest in...

  4. Charge exchange and ionization in hydrogen atom-fully stripped ion collisions in Debye plasmas

    SciTech Connect

    Zhang, H.; Wang, J. G.; He, B.; Qiu, Y. B.; Janev, R. K.

    2007-05-15

    The processes of charge exchange and ionization in collisions of ground state hydrogen atom with fully stripped ions in a weakly coupled plasma are studied by the classical trajectory Monte Carlo method in the collision energy range 10-900 keV/amu. The interparticle interactions are described by the Debye-Hueckel model with inclusion of dynamical effects associated with the projectile velocity. The microcanonical distribution of initial state electronic coordinates and momenta has been determined by inclusion of plasma screening effects. The cross section dependencies on plasma parameters and ion charge and velocity are investigated. It is shown that plasma effects on charge exchange and ionization cross sections are significant and particularly pronounced at low collision velocities. The results of systematic cross section calculations for different values of Debye screening length (in the range 1-50a{sub 0}) and ion charges (in the range 1-14) are presented.

  5. Interaction of a solar array with an ion thruster due to the charge-exchange plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    The generation of a charge exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma is described accurately from thruster geometry and operating conditions. The transport of the charge exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  6. Fast ion charge exchange spectroscopy adapted for tangential viewing geometry in LHD

    SciTech Connect

    Ito, T.; Osakabe, M.; Ida, K.; Yoshinuma, M.; Kobayashi, M.; Goto, M.; Isobe, M.; Toi, K.; Takeiri, Y.; Okamura, S.; Murakami, S.; Kobayashi, S.; Ogawa, K.

    2010-10-15

    A tangential Fast Ion Charge eXchange Spectroscopy is newly applied on a Large Helical Device (LHD) for co/countercirculating fast ions, which are produced by high energy tangential negative-ion based neutral beam injection. With this new observation geometry, both the tangential-neutral beam (NB) and a low-energy radial-NB based on positive ions can be utilized as probe beams of the measurement. We have successfully observed Doppler-shifted H-alpha lights due to the charge exchange process between the probing NB and circulating hydrogen ions of around 100 keV in LHD plasmas.

  7. Charge exchange of laser-produced ions in a pulsed gas jet

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Ponomarenko, A. G.; Antonov, V. M.; Boyarintsev, E. L.; Posukh, V. G.; Melekhov, A. V.

    2007-10-01

    Results of an experiment on the interaction of laser-produced plasma with a pulsed gas jet are reported. A resonant charge-exchange pumping of the n=3 level of the C3+ ion was observed. A spatial structure of the region of intensive interaction was obtained by a short time imaging of filtered plasma radiation. According to independent probe measurements, the interaction was realized at densities of ions and gas particles in excess of 1016 cm-3. The obtained data provide a prospect for future experiments on laser gain in the EUV spectral range based on charge-exchange pumping of the C5+ ion.

  8. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  9. Heliospheric x-rays due to solar wind charge exchange

    NASA Astrophysics Data System (ADS)

    Robertson, Ina Piket

    X-ray emission due to charge transfer between heavy solar wind ions and interstellar and geocoronal neutrals has been predicted to exist in both the heliosphere and in the geocorona. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft x-ray photons. Models have been created to simulate this type of x-ray emission with interstellar and geocoronal neutrals. Time variations in the x-ray emissions were studied by using measured solar wind proton fluxes. The Fahr hot model was used to determine interstellar neutral densities. It was found that x-rays from interstellar hydrogen showed little variation in their intensities. The greatest variation was in geocoronal x-rays, although x-rays from interstellar helium can show considerable variation when the look direction is through the helium cone. Simulated images of Earth's geocorona as seen from an observation point outside the geocorona were created. The locations of the bow shock and magnetopause are evident in these images. Time independent maps were created that showed steady-state x-ray intensities due to the interaction between the solar wind and both interstellar neutrals and the geocoronal neutrals as a function of look direction and time of year. In all cases, the x-ray intensity is highest when the view direction is towards the Sun, but the intensity is also relatively high for view directions intersecting the gravitational focusing cone of interstellar helium. Measured solar wind proton fluxes are also directly compared with the LTE (long term enhancements) part of the soft x-ray background measured by the Rontgen satellite ROSAT. A significant positive correlation exists. We also show a heliospheric/geocoronal x-ray intensity map for the conditions used by Snowden in producing the 1/4 keV channel soft x-ray background map in galactic coordinates. Our preliminary conclusion is that very roughly 50% of the total background

  10. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2003-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.

  11. Stopping power in insulators and metals without charge exchange.

    PubMed

    Møller, S P; Csete, A; Ichioka, T; Knudsen, H; Uggerhøj, U I; Andersen, H H

    2004-07-23

    The slowing-down process of pointlike charged particles in matter has been investigated by measuring the stopping power for antiprotons in materials of qualitatively very different nature. Whereas the velocity-proportional stopping power observed for metal-like targets such as aluminum over a wide energy range of 1-50 keV is in agreement with expectations, it is surprising that the same velocity dependence is seen for a large band-gap insulator such as LiF. The validity of these observations is supported by several measurements with protons and several checks of the target properties. The observations call for both a qualitative explanation and a quantitative theoretical model. PMID:15323754

  12. Charged fusion product loss measurements using nuclear activation.

    PubMed

    Bonheure, G; Hult, M; González de Orduña, R; Arnold, D; Dombrowski, H; Laubenstein, M; Wieslander, E; Vermaercke, P; Murari, A; Popovichev, S; Mlynar, J

    2010-10-01

    In ITER, α particle loss measurements will be required in order to understand the alpha particle physics. Techniques capable of operating in a fusion reactor environment need further development. Recent experimental studies on JET demonstrated the potential of nuclear activation to measure the flux of escaping MeV ions. New results from MeV ion induced activation of metallic, ceramic, and crystal samples placed near the plasma edge are reported. Activation products were measured as function of orientation with respect to the magnetic field as well as function of the distance to the plasma. Sample activity was measured using ultralow-level gamma-ray spectrometry. Distribution of 14.68 MeV fusion proton induced activation products is strongly anisotropic in agreement with simulations and falls off sharply with increasing distance to the plasma. Prospects for using the technique in ITER are discussed. PMID:21058458

  13. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    PubMed

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach. PMID:23821716

  14. Short-range NN and N. Delta. correlations in pion double charge exchange (DCX)

    SciTech Connect

    Johnson, M.B.

    1990-01-01

    I will review several important results related to the short-range nucleon-nucleon and delta-nucleon interaction that have been obtained from recent studies of pion double charge exchange in selected nuclei. 32 refs., 5 figs., 3 tabs.

  15. Pion-nucleon charge exchange amplitudes above 2 GeV

    NASA Astrophysics Data System (ADS)

    Huang, F.; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-04-01

    The amplitudes for the pion-nucleon charge exchange reaction of the Karlsruhe-Helsinki and the George-Washington-University partial-wave analyses are compared with those of a Regge-cut model with the aim to explore the possibility to provide high-energy constraints for theoretical baryon resonance analyses in the energy region above 2GeV.

  16. Population inversion calculations using near resonant charge exchange as a pumping mechanism

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Rose, J. R.

    1972-01-01

    Near resonance charge exchange between ions of a large ionization potential gas such as helium or neon and vapors of metals such as zinc, cadmium, selenium, or tellurium has produced laser action in the metal ion gas. The possibility of obtaining population inversions in near resonant charge exchange systems (Xe-Ca, Xe-Mg, Xe-Sr, Xe-Ba, Ar-Mg, N-Ca) was investigated. The analysis is an initial value problem that utilizes rate equations for the densities of relevant levels of the laser gas (Ca, Ba, Mg, or Sr) and an electron energy equation. Electron excitation rates are calculated using the Bohr-Thomson approximation for the cross section. Approximations to experimental values of the electron ionization cross section and the ion-atom charge exchange cross section are used. Preliminary results have been obtained for the Ca-Xe system and show that it is possible to obtain gains greater than 10 to the 14th power/m with inversion times up to 8x10 to the minus 7th power second. A possible charge exchange laser system using a MPD arc plasma accelerator is also described.

  17. Heavy ion charge-state distribution effects on energy loss in plasmas

    NASA Astrophysics Data System (ADS)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  18. Pipkin Award Talk: Rydberg Charge Exchange: A Method for Producing Rydberg Positronium and Antihydrogen Atoms

    NASA Astrophysics Data System (ADS)

    Hessels, E. A.

    2003-05-01

    Antihydrogen production via two-stage charge exchange(E.A.Hessels, D.M. Homan and M.J. Cavagnero, Phys. Rev. A. 57), (1998) 1668. may provide extremely cold antimatter atoms that can be trapped for spectroscopic studies. Positrons(J. Estrada, T. Roach, J.N. Tan, P. Yesley, and G. Gabrielse, Phys. Rev. Lett. 84), (2000) 859. and antiprotons(G. Gabrielse, N. S. Bowden, P. Oxley, A. Speck, C. H. Storry, J. N. Tan, M. Wessels, D. Grozonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T. W. Hansch, E. A. Hessels, Phys. Lett. B 548), (2002) 140-145., both cooled to 4 K and loaded into adjacent wells of a Penning trap, provide the basic components. Laser-excited Rydberg cesium atoms are passed through the cloud of trapped positrons and charge exchange with the positrons to form Rydberg states of positronium. These positronium atoms have been observed and are studied by ionizing them and counting the resulting positrons. State analysis of the positronium is obtained by varying the electric field used to ionize the atoms. Large numbers of positronium atoms are produced and their binding energies are found to be similar to that of the incoming Rydberg cesium atoms. A second charge exchange is proposed, in which the neutral positronium travels a short distance to an adjacent antiproton cloud. The result of this second charge exchange would be antihydrogen atoms. The apparatus to test this second charge exchange has already been constructed and preliminary studies have already been made.

  19. 26 CFR 1.988-3 - Character of exchange gain or loss.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... on certain identified forward contracts, futures contracts and option contracts as capital gain or... option with respect to which an election under section 988(c)(1)(D)(ii) is in effect. If a valid election... manner as interest expense. (2) Exchange loss realized by the holder on nonfunctional currency tax...

  20. Anion Exchange Capacity As a Mechanism for Deep Soil Carbon Storage in Variable Charge Soils

    NASA Astrophysics Data System (ADS)

    Dietzen, C.; James, J. N.; Ciol, M.; Harrison, R. B.

    2014-12-01

    Soil is the most important long-term sink for carbon (C) in terrestrial ecosystems, containing more C than plant biomass and the atmosphere combined. However, soil has historically been under-represented in C cycling literature, especially in regards to information about subsurface (>1.0 m) layers and processes. Previous research has indicated that Andisols with large quantities of noncrystalline, variable-charge minerals, including allophane, imogolite, and ferrihydrite, contain more C both in total and at depth than other soil types in the Pacific Northwest. The electrostatic charge of variable-charge soils depends on pH and is sometimes net positive, particularly in acid conditions, such as those commonly developed under the coniferous forests of the Pacific Northwest. However, even soils with a net negative charge may contain a mixture of negative and positive exchange sites and can hold some nutrient anions through the anion exchange capacity. To increase our understanding of the effects of variable-charge on soil organic matter stabilization, deep sampling is under way at the Fall River Long-Term Soil Productivity Site in western Washington. This site has a deep, well-drained soil with few rocks, which developed from weathered basalt and is classified as an Andisol of the Boistfort Series. Samples have been taken to a depth of 3 m at eight depth intervals. In addition to analyzing total soil C, these soils will be analyzed to determine functional groups present, cation exchange capacity, anion exchange capacity, and non-crystalline mineral content. These data will be analyzed to determine any correlations that may exist between these mineralogical characteristics, total soil C, and types of functional groups stored at depth. The most abundant organic functional groups, including carboxylic and phenolic groups, are anionic in nature, and soil positive charge may play an important role in binding and stabilizing soil organic matter and sequestering C.

  1. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-01

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.

  2. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations.

    PubMed

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions. PMID

  3. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    SciTech Connect

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  4. Poynting flux in the neighbourhood of a point charge in arbitrary motion and radiative power losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-07-01

    We examine the electromagnetic fields in the neighbourhood of a ‘point charge’ in arbitrary motion and thereby determine the Poynting flux across a spherical surface of vanishingly small radius surrounding the charge. We show that the radiative power losses from a point charge turn out to be proportional to the scalar product of the instantaneous velocity and the first time-derivative of the acceleration of the charge. This may seem to be discordant with the familiar Larmor formula where the instantaneous power radiated from a charge is proportional to the square of acceleration. However, it seems that the root cause of the discrepancy actually lies in Larmor’s formula, which is derived using the acceleration fields but without due consideration for the Poynting flux associated with the velocity-dependent self-fields ‘co-moving’ with the charge. Further, while deriving Larmor’s formula, one equates the Poynting flux through a surface at some later time to the radiation loss by the enclosed charge at the retarded time. Poynting’s theorem, on the other hand, relates the outgoing radiation flux from a closed surface to the rate of energy decrease within the enclosed volume, all calculated for the same given instant only. Here we explicitly show the absence of any Poynting flux in the neighbourhood of an instantly stationary point charge, implying no radiative losses from such a charge, which is in complete conformity with energy conservation. We further show how Larmor’s formula is still able to serve our purpose in the vast majority of cases. It is further shown that Larmor’s formula in general violates momentum conservation and, in the case of synchrotron radiation, leads to a potentially incorrect conclusion about the pitch angle changes of the radiating charges, and that only the radiation reaction formula yields a correct result, consistent with special relativity.

  5. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  6. Cometary X-ray emission: theoretical cross sections following charge exchange by multiply charged ions of astrophysical interest

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2007-02-13

    The CTMC method is used to calculate emission cross sections following charge exchange collisions involving highly charged ions of astrophysical interest and typical cometary targets. Comparison is made to experimental data obtained on the EBIT machine at Lawrence Livermore National Laboratory (LLNL) for O{sup 8+} projectiles impinging on different targets at a collision energy of 10 eV/amu. The theoretical cross sections are used together with ion abundances measured by the Advanced Composition Explorer as well as those obtained by a fitting procedure using laboratory emission cross sections in order to reproduce the x-ray spectrum of comet C/LINEAR S4 measured on July 14th 2001.

  7. Signatures of the electron saddle swaps mechanism in the photon spectra following charge-exchange collisions

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian

    2014-10-01

    During the last few years, several experimental and theoretical studies have focused on state selective charge exchange processes between charged ions and alkali metals. These data are of particular importance for the tokamak nuclear fusion reactor program, since diagnostics on the plasma usually rely on charge-exchange spectroscopy. In this sense, alkali metals, have been proposed as potential alternatives to excited hydrogen/deuterium for which laboratory experiments are not feasible at present. In this talk, we present our recent work involving ion collisions with alkali metals. Oscillatory structures in the angular differential charge-exchange cross sections obtained using the MOTRIMS technique are correctly described by classical trajectory Monte Carlo simulations. These oscillations are found to originate from the number of swaps the electron undergoes around the projectile-target potential saddle before capture takes place and are very prominent at impact energies below 10 keV/amu. Moreover, cross sections of higher order of differentiability also indicate that the swaps leave distinctive signatures in the (n,l)-state selective cross sections and in the photon line emission cross sections. Oscillatory structures for the x-ray hardness ratio parameter are also predicted. In collaboration with Ronnie Hoekstra, Zernike Institute for Advanced Materials, University of Groningen and Ronald Olson, Department of Physics, Missouri University of Science and Technology.

  8. Calculations and analysis of cross sections required for argon charge exchange recombination spectroscopy

    SciTech Connect

    Schultz, David Robert; Lee, Teck; Loch, Stuart D

    2010-01-01

    A large set of calculations has been carried out providing a basis for diagnostics of fusion plasmas through emission resulting from radiative deexcitation following charge transfer between hydrogen and highly charged argon ions, so-called argon charge exchange recombination spectroscopy. These results have been obtained using the classical trajectory Monte Carlo (CTMC) method to treat charge transfer to states with principal quantum numbers up to 30 or more. Nine collision energies between 13.3333 and 250 keV/u pertinent to neutral beam injection have been considered for Arq+ (q=15-18) colliding with atomic hydrogen in both the ground and metastable states. Atomic orbital close coupling calculations have also been undertaken in order to provide a fully quantum mechanical test of the CTMC results for Ar18+ + H(1s) collisions. The results of the calculations are discussed here and the full set of data is made available through a web posting.

  9. Parameters of heat exchange and compression in the combustion of powder charges under a water layer

    NASA Astrophysics Data System (ADS)

    Melik-Gaikazov, G. V.

    2013-03-01

    The mechanisms of change in the pressure in an oil well in the process of combustion of a powder charge positioned at its bottom were investigated. A model of calculating the working process in a well by the heat exchange of it with the environment and the compressibility of the liquid in the well is proposed. It is shown that about one third of the energy of the powder is expended for the displacement of the liquid from the well. It has been established that the dependence of the maximum pressure in an oil well on the mass of a powder charge is common in character for charges of different types. The dynamic heads of a liquid in a well in the liquid-compression phase and in the phase of reciprocating movement of the liquid after the termination of the combustion of a powder charge were calculated.

  10. Fokker-Planck Modelling of Delayed Loss of Charged Fusion Products in TFTR.

    SciTech Connect

    Edenstrasser, J.W.; Goloborod'ko, V.Ya.; Reznik, S.N.; Yavorskij, V.A.; Zweben, S.

    1998-08-01

    The results of a Fokker-Planck simulation of the ripple-induced loss of charged fusion products in the Tokamak Fusion Test Reactor (TFTR) are presented. It is shown that the main features of the measured "delayed loss" of partially thermalized fusion products, such as the differences between deuterium-deuterium and deuterium-tritium discharges, the plasma current and major radius dependencies, etc., are in satisfactory agreement with the classical collisional ripple transport mechanism. The inclusion of the inward shift of the vacuum flux surfaces turns out to be necessary for an adequate and consistent explanation of the origin of the partially thermalized fusion product loss to the bottom of TFTR.

  11. Polarization correction in the theory of energy losses by charged particles

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2015-05-15

    A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.

  12. Power loss of a single electron charge distribution confined in a quantum plasma

    SciTech Connect

    Mehramiz, A.; Mahmoodi, J.; Sobhanian, S.

    2011-05-15

    The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.

  13. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  14. Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species.

    PubMed

    Schilman, Pablo E; Lighton, John R B; Holway, David A

    2005-12-01

    Respiratory water loss (RWL) in insects showing continuous emission of CO(2) is poorly studied because few methodologies can measure it. Comparisons of RWL between insects showing continuous and discontinuous gas exchange cycles (DGC) are therefore difficult. We used two recently developed methodologies (the hyperoxic switch and correlation between water-loss and CO(2) emission rates) to compare cuticular permeabilities and rates of RWL in five species of ants, the Argentine ant (Linepithema humile) and four common native ant competitors. Our results showed that RWL in groups of ants with moderate levels of activity and continuous gas exchange were similar across the two measurement methods, and were similar to published values on insects showing the DGC. Furthermore, ants exposed to anoxia increased their total water loss rates by 50-150%. These results suggest that spiracular control under continuous gas exchange can be as effective as the DGC in reducing RWL. Finally, the mesic-adapted Argentine ant showed significantly higher rates of water loss and cuticular permeability compared to four ant species native to dry environments. Physiological limitations may therefore be responsible for restricting the distribution of this invasive species in seasonally dry environments. PMID:16154585

  15. ({sup 18}O,{sup 18}Ne) double charge-exchange with MAGNEX

    SciTech Connect

    Bondí, M.; Cappuzzello, F.; Nicolosi, D.; Tropea, S.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Foti, A.

    2014-05-09

    An experimental study concerning Double Gamow-Teller (DGT) modes in ({sup 18}O,{sup 18}Ne) Double Charge-Exchange reactions has been very recently performed at INFN-LNS laboratory in Catania. The experiment was performed using a {sup 40}Ca solid target and a {sup 18}O Cyclotron beam at 270 MeV incident energy. Charged ejectiles produced in the reaction were momentum analyzed and identified by MAGNEX spectrometer at very forward angles. Preliminary results are presented in the present paper.

  16. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  17. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  18. Influence of resonant charge exchange on the viscosity of partially ionized plasma in a magnetic field

    SciTech Connect

    Zhdanov, V. M. Stepanenko, A. A.

    2013-12-15

    The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.

  19. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    NASA Astrophysics Data System (ADS)

    Dymov, S.; Azaryan, T.; Bagdasarian, Z.; Barsov, S.; Carbonell, J.; Chiladze, D.; Engels, R.; Gebel, R.; Grigoryev, K.; Hartmann, M.; Kacharava, A.; Khoukaz, A.; Komarov, V.; Kulessa, P.; Kulikov, A.; Kurbatov, V.; Lomidze, N.; Lorentz, B.; Macharashvili, G.; Mchedlishvili, D.; Merzliakov, S.; Mielke, M.; Mikirtychyants, M.; Mikirtychyants, S.; Nioradze, M.; Ohm, H.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Seyfarth, H.; Shmakova, V.; Ströher, H.; Tabidze, M.; Trusov, S.; Tsirkov, D.; Uzikov, Yu.; Valdau, Yu.; Weidemann, C.; Wilkin, C.

    2015-05-01

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy Epp, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ≈1/2Td = 363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both Epp and the momentum transfer. This lends broad support to the current neutron-proton partial wave solution that was used in the estimation.

  20. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    SciTech Connect

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  1. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    NASA Technical Reports Server (NTRS)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  2. Solar Wind Charge Exchange X-ray Emission from Earth's Magnetosheath

    NASA Astrophysics Data System (ADS)

    Snowden, Steve L.; Kuntz, K. D.

    2016-04-01

    The magnetospheric component of solar wind charge-exchange (SWCX) emission is primarily due to interaction between the high-state ions in the solar wind and the hydrogen in the outermost part of the Earth’s atmosphere. This emission was the primary source of the ROSAT long-term enhancements (LTEs). Using the correlation between the LTEs and the solar wind flux as well as a dynamic models of the magnetosheath, we have derived the 1/4 keV broad-band charge-exchange cross-section, and can show that this method can not be directly applied to the 3/4 keV band. I will discuss the uncertainties in this method and the prospects for improvement.

  3. ROSAT Observations of Solar Wind Charge Exchange with the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Benna, M.; Carter, J. A.; Cravens, T. E.; Hills, H. Kent; Hodges, R. R.; Kuntz, K. D.; Porter, F. Scott; Read, A.; Robertson, I. P.; Sembay, S. F.; Sibeck, D. G.; Stubbs, Timothy J.; Travnicek, P.

    2012-01-01

    We analyze the ROSAT PSPC soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the count rate in three wedges, two wedges (one north and one south) 13-32 degrees off (19 degrees wide) the terminator towards the dark side and one wedge 38 degrees wide centered on the anti-solar direction. The radial profiles of both the north and the south wedges show substantial limb brightening that is absent in the 38 degree wide antisolar wedge. An analysis of the count rate increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere. Along with Mars, Venus, and Earth, the Moon represents another solar system body at which solar wind charge exchange has been observed. This technique can be used to explore the solar wind-lunar interaction.

  4. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  5. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  6. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    SciTech Connect

    Seidl, P.A.

    1985-02-01

    Cross sections for the /sup 13,14/C,/sup 26/Mg,/sup 56/Fe(..pi../sup +/,..pi../sup -/)/sup 13,14/O,/sup 26/Si,/sup 56/Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub ..pi../ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to /sup 14/O(0/sup +/, 5.92 MeV), /sup 14/O(2/sup +/, 7.77 MeV), /sup 56/Ni(gs), /sup 13/O(gs), and /sup 13/O(4.21 MeV) are presented. The /sup 13/O(4.21 MeV) state is postulated to have J/sup ..pi../ = 1/2/sup -/. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the ..delta../sub 33/ resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub ..pi../ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references.

  7. Charge Exchange and Ablation Rates of a Titanium Wire Plasma Corona

    SciTech Connect

    Terry, Robert E.

    2009-01-21

    Wire ablation rates are important features in any examination of precursors or transparent mode implosions of wire arrays. When ion temperatures in a Ti wire plasma corona exceed a few eV, the process of resonant charge exchange competes with elastic scattering. Ions pushed into the corona from an anode bias wire array can be expected to drive a fast neutral wind into the surrounding volume, while a cathode bias wire array would not show the strong neutral wind.

  8. Reynolds number effects on pressure loss and turbulence characteristics of four tube-bundle heat exchangers

    NASA Technical Reports Server (NTRS)

    Gentry, L., Jr.; Gentry, C. L., Jr.

    1983-01-01

    The aerodynamic characteristics of pressure loss and turbulence on four tube-bundle configurations representing heat-exchanger geometries with nominally the same heat capacity were measured as a function of Reynolds numbers from about 4000 to 400,000 based on tube hydraulic diameter. Two configurations had elliptical tubes, the other two had round tubes, and all four had plate fins. The elliptical-tube configurations had lower pressure loss and turbulence characteristics than the round-tube configurations over the entire Reynolds number range.

  9. Oscillating-flow loss test results in rectangular heat exchanger passages

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  10. Neoclassical simulations of fusion alpha particles in pellet charge exchange experiments on the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; Batha, S.H.; Budny, R.V.; Darrow, D.S.; Levinton, F.M.; McCune, D.C.; Medley, S.S.; Petrov, M.P.; von Goeler, S.; White, R.B.; Zarnstorff, M.C.; Zweben, S.J.; TFTR Team

    1999-07-01

    Neoclassical simulations of alpha particle density profiles in high fusion power plasmas on the Tokamak Fusion Test Reactor [Phys. Plasmas {bold 5}, 1577 (1998)] are found to be in good agreement with measurements of the alpha distribution function made with a sensitive active neutral particle diagnostic. The calculations are carried out in Hamiltonian magnetic coordinates with a fast, particle-following Monte Carlo code which includes the neoclassical transport processes, a recent first-principles model for stochastic ripple loss and collisional effects. New calculations show that monotonic shear alpha particles are virtually unaffected by toroidal field ripple. The calculations show that in reversed shear the confinement domain is not empty for trapped alphas at birth and allow an estimate of the actual alpha particle densities measured with the pellet charge exchange diagnostic. {copyright} {ital 1999 American Institute of Physics.}

  11. Wavelength calibration of the charge exchange recombination spectroscopy system on the DIII-D tokamak

    SciTech Connect

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Holtrop, K.; Kaplan, K.H.; Monier-Garbet, P.

    1998-06-01

    A wavelength calibration of all the detectors on the charge exchange recombination spectroscopy (CER) system is performed after every plasma discharge on the DIII-D tokamak. This is done to insure that the rest wavelength position of the C VI 5290.5 {angstrom} charge exchange line on the detector is accurately known so that the Doppler shift of the spectral line emitted during the discharge can be used for measurements of plasma rotation. In addition, this calibration provides a check on the spectral dispersion needed to determine the ion temperature. The reference spectra for the calibration are Ne I lines created by neon capillary discharge lamps contained within specially designed, diffuse reflectors. The Ne I lines at 3520.4720 {angstrom}, 5274.0393 {angstrom}, 5280.0853 {angstrom}, 5298.1891 {angstrom}, and 5304.7580 {angstrom} are used in this work. The location of these lines on the linear detectors can be determined to an accuracy of 0.1 pixel, which corresponds to a plasma rotation accuracy of 1.2 km/s and 0.7 km/s for the central and edge rotation measurements, respectively. Use of oppositely directed views of the plasma at the same major radius have been used to verify that the nominal 5290.5 {angstrom} wavelength of the C VI (n = 8 {r_arrow} 7) multiplet is the correct wavelength for the line emitted owing to charge exchange excitation.

  12. Charge exchange in a planetary corona - Its effect on the distribution and escape of hydrogen

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1977-01-01

    The theory for a spherical collisionless planetary corona is extended to include charge-exchange collisions between H(+) and H, which are assumed to constitute intermingled gases with different kinetic temperatures. The treatment is based on the conventional concept of a critical level (or exobase) above which the only collisions considered in the Boltzmann equation are those that resonantly exchange charge. Although the geometry treated is an oversimplification for a real planet, numerical examples are given for an idealized earth and Venus. For earth, an ion temperature of 4 times the neutral temperature, an ion density at the exobase of 14,000 per cu cm, and a plasmapause at 1.5 earth radii will raise the escape flux of H by a factor of 6. The total H above the exobase is changed by less than 1%. For Venus, conditions are examined that would account for the peculiar H distribution observed from Mariner 5. The plasma conditions required are not obviously outrageous by terrestrial standards, but the Mariner 5 ionosphere measurements did not show a high plasmapause at, say, 1.25 or 1.5 planetary radii, a fact that might argue against a charge-exchange model.

  13. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  14. Coherent control of charge exchange in strong-field dissociation of LiF

    NASA Astrophysics Data System (ADS)

    Armstrong, Greg; Esry, Brett

    2016-05-01

    The alkali-metal-halides family of molecules are useful prototypes in the study of laser-assisted charge exchange. Typically these molecules possess a field-free crossing between the ionic and covalent diabatic Born-Oppenheimer potential curves, leading to Li+ + F- and Li + F in LiF. These channels are energetically well-separated from higher-lying potentials, and may be easily distinguished experimentally. Moreover, charge exchange involves non-adiabatic transitions between the ionic and covalent channels, thereby allowing the investigation of physics beyond the Born-Oppenheimer approximation. The focus of this work is to control the preference between ionic and covalent dissociative products. We solve the time-dependent Schrödinger equation for the nuclear motion in full dimensionality, and investigate a pump-probe scheme for charge-exchange control. The degree of control is investigated by calculating the kinetic-energy release spectrum as a function of pump-probe delay for the ionic and covalent fragments. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  15. Modeling the Hydrogen-Proton Charge-Exchange Process in Global Heliospheric Simulations

    NASA Astrophysics Data System (ADS)

    DeStefano, A.; Heerikhuisen, J.

    2015-12-01

    The environment surrounding our Solar System has a vast and dynamic structure. As the Sun rounds the Milky Way galaxy, interstellar dust and gas interact with the Sun's outflow of solar wind. A bubble of hot plasma forms around the Sun due to this interaction, called the heliosphere. In order to understand the structure of the heliosphere, observations and simulations must work in tandem. Within the past decade or so, 3D models of the heliosphere have been developed exhibiting non- symmmetric as well as predicting structures such as the hydrogen wall and the IBEX ribbon. In this poster we explore new ways to compute charge-exchange source terms. The charge-exchange process is the coupling mechanism between the MHD and kinetic theories. The understanding of this process is crucial in order to make valuable predictions. Energy dependant cross section terms will aid in settling non-linear affects coupling the intestellar and solar particles. Through these new ways of computing source terms, resolving fine structures in the plasma in the heliopause may be possible. In addition, other non-trivial situations, such as charge-exchange mediated shocks, may be addressed.

  16. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  17. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  18. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes.

    PubMed

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  19. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGESBeta

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  20. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans.

    PubMed

    Elbert, Donald L; Patterson, Bruce W; Bateman, Randall J

    2015-03-01

    Amyloid beta (Aβ) peptides, and in particular Aβ42, are found in senile plaques associated with Alzheimer's disease. A compartmental model of Aβ production, exchange and irreversible loss was recently developed to explain the kinetics of isotope-labeling of Aβ peptides collected in cerebrospinal fluid (CSF) following infusion of stable isotope-labeled leucine in humans. The compartmental model allowed calculation of the rates of production, irreversible loss (or turnover) and short-term exchange of Aβ peptides. Exchange of Aβ42 was particularly pronounced in amyloid plaque-bearing participants. In the current work, we describe in much greater detail the characteristics of the compartmental model to two distinct audiences: physician-scientists and biokineticists. For physician-scientists, we describe through examples the types of questions the model can and cannot answer, as well as correct some misunderstandings of previous kinetic analyses applied to this type of isotope labeling data. For biokineticists, we perform a system identifiability analysis and a sensitivity analysis of the kinetic model to explore the global and local properties of the model. Combined, these analyses motivate simplifications from a more comprehensive physiological model to the final model that was previously presented. The analyses clearly demonstrate that the current dataset and compartmental model allow determination with confidence a single 'turnover' parameter, a single 'exchange' parameter and a single 'delay' parameter. When combined with CSF concentration data for the Aβ peptides, production rates may also be obtained. PMID:25497960

  1. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    SciTech Connect

    Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Kilbourne, C. A.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S.; Schweikhard, L.

    2013-04-19

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  2. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  3. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; Rocks, L.; Szymkowiak, A. E.; Teplin, I. M.

    2012-01-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for an approximately 1 sr region of the sky centered at l = 90 degrees b = +60 degrees using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum s observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568 (sup +2 (sub -3) eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 x 10(exp 6) K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3 plus or minus 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 10(sup 6) K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only greater than 32% thermal emission for O VII and greater than 20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  4. Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries

    NASA Astrophysics Data System (ADS)

    Keerthisinghe, D.; Dassanayake, B. S.; Wickramarachchi, S. J.; Stolterfoht, N.; Tanis, J. A.

    2013-12-01

    The charge deposition dependence and energy loss in the transmission of electrons through insulating polyethylene terephthalate (PET) were studied for incident energies of 500 and 800 eV. Charge evolution at the sample tilt angles ψ = 0.0° and -1.7° was investigated. After an initial quiescent period transmission was observed and found to reach equilibrium rather quickly. Inelastic behavior of the transmitted electrons was observed during the initial transmission as well as after reaching equilibrium for ψ = -1.7° for both incident energies.

  5. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  6. Photochemically induced charge separation occurring in bacteriorhodopsin. Detection by time-resolved dielectric loss.

    PubMed Central

    McIntosh, A R; Boucher, F

    1991-01-01

    Time-resolved dielectric loss (TRDL) measurements are reported for the photochemical excitation of bacteriorhodopsin (bR) in solid films of Halobacterium halobium purple membranes. These measurements provide an independent confirmation for the existence of an important component of charge separation in these membranes after photochemical excitation. The separation of charge is detected by the absorption of microwave energy by the multilayer films of purple membranes in a microwave cavity during flash photolysis experiments. The TRDL method has the advantage of being sensitive to charge separation occurring in both oriented and unoriented films of purple membranes. One disadvantage is that the water content of the samples must be minimized, however, there is some absorbed water present in our electrodeposited solid film samples. To the best of our knowledge, TRDL measurements have not been reported previously for photochemical charge separation in biological membranes. It is significant that an early decay component of TRDL in the 20-microseconds time domain corresponds to the relaxation of the negative charge displacement photocurrent in oriented samples of purple membranes. In addition, a component of charge separation persists during the first several hundred microseconds of the bR photocycle. PMID:1883930

  7. Non-equilibrium energy loss for very highly charged ions in insulators

    SciTech Connect

    Briere, M.A.; Schenkel, T.; Bauer, P.; Amau, A.

    1996-12-31

    The energy loss of 144 keV Ar{sup +16} ions on a bilayer structure of C-CaF{sub 2} has been measured. An asymmetry in the results is found depending on which layer is passed by the ion first: the energy loss is about four times larger when the CaF{sub 2} layer is traversed by the ion first. We interpret this as an indication of the existence of a nonequilibrium charge state of the Ar ions inside the solid in the case of the insulator.

  8. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.

    2003-06-01

    Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma - gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.

  9. A test protocol to screen capacitors for radiation-induced charge loss.

    SciTech Connect

    Zarick, Thomas Andrew; Hartman, E. Frederick

    2008-09-01

    This report presents a test protocol for screening capacitors dielectrics for charge loss due to ionizing radiation. The test protocol minimizes experimental error and provides a test method that allows comparisons of different dielectric types if exposed to the same environment and if the same experimental technique is used. The test acceptance or screening method is fully described in this report. A discussion of technical issues and possible errors and uncertainties is included in this report also.

  10. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans

    PubMed Central

    Elbert, Donald L.; Patterson, Bruce W.; Bateman, Randall J.

    2014-01-01

    Amyloid beta (Aβ) peptides, and in particular Aβ42, are found in senile plaques associated with Alzheimer's disease. A compartmental model of Aβ production, exchange and irreversible loss was recently developed to explain the kinetics of isotope-labeling of Aβ peptides collected in cerebrospinal fluid (CSF) following infusion of stable isotope-labeled leucine in humans. The compartmental model allowed calculation of the rates of production, irreversible loss (or turnover) and short-term exchange of Aβ peptides. Exchange of Aβ42 was particularly pronounced in amyloid plaque-bearing participants. In the current work, we describe in much greater detail the characteristics of the compartmental model to two distinct audiences: physician-scientists and biokineticists. For physician-scientists, we describe through examples the types of questions the model can and cannot answer, as well as correct some misunderstandings of previous kinetic analyses applied to this type of isotope labeling data. For biokineticists, we perform a system identifiability analysis and a sensitivity analysis of the kinetic model to explore the global and local properties of the model. Combined, these analyses motivate simplifications from a more comprehensive physiological model to the final model that was previously presented. The analyses clearly demonstrate that the current dataset and compartmental model allow determination with confidence a single ‘turnover’ parameter, a single ‘exchange’ parameter and a single ‘delay’ parameter. When combined with CSF concentration data for the Aβ peptides, production rates may also be obtained. PMID:25497960

  11. Charge exchange collisions of slow C6 + with atomic and molecular H

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve

    2016-04-01

    Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.

  12. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  13. Development of Laboratory Experimental System to Clarify Solar Wind Charge Exchange Mechanism with TES Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Enoki, T.; Ishisaki, Y.; Akamatsu, H.; Ezoe, Y.; Ohashi, T.; Kanda, T.; Ishida, T.; Tanuma, H.; Ohashi, H.; Shinozaki, K.; Mitsuda, K.

    2012-06-01

    Significant fraction of the cosmic diffuse soft X-ray emission (0.1-1 keV) is caused by the Solar Wind Charge eXchange (SWCX) process between the solar wind ion (C q+, N q+, O q+ etc.) and the interplanetary neutral matter. It is difficult to identify spectral features of SWCX with the spectral resolution of existing X-ray astronomy satellites. We are developing a laboratory experimental system with transition edge sensor (TES) X-ray microcalorimeters, in order to clarify the SWCX mechanism. This experiment is designed to measure Charge eXchange (CX) X-rays using Electron Cyclotron Resonance Ion Source (ECRIS) that generates multi-charged ions. Emission lines (OVIII: 2p→1s; 654 eV) by CX between O8+ and neutral He atom is aimed to be measured with energy resolution better than 10 eV. The TES microcalorimeter is cooled by a double-stage adiabatic demagnetization refrigerator (DADR), however, our TES microcalorimeter are not working potentially due to magnetic field contamination. This paper reports our experimental system, present results, and future prospects.

  14. Charge-exchange plasma environment for an ion drive spacecraft. [a model for describing mercury ion engines and its effect on spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1979-01-01

    The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.

  15. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  16. Protein losses in ion-exchange and hydrophobic interaction high-performance liquid chromatography

    SciTech Connect

    Goheen, Steven C.; Gibbins, Betty M.

    2000-01-01

    Protein losses in ion-exchange and hydrophobic interaction HPLC were examined. The supports were allnon-porous, packed in columns of identical dimensions. Two ion-exchange chromatography (IEC), anion and cation, as well as a hydrophobic interaction chromatography (HIC) columns were tested. Proteins included cytochrome c, bovine serum albumin (BSA), immunoglobulin G and fibrinogen. Temperature effects on HIC supports were studied for cytochrome c and BSA. Both retention times and recoveries of the proteins were measured. The influence of column residence time on the recovery of proteins were also investigated. We found a linear relationship between the amount of protein recovered and the log of the molecular mass. Retention times also generally increased with temperature for both HIC and IEC. Other trends in retention behavior and recoveries are discussed.

  17. Excitation of Δ and N* resonances in isobaric charge-exchange reactions of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Vidaña, I.; Benlliure, J.; Geissel, H.; Lenske, H.; Scheidenberger, C.; Vargas, J.

    2016-01-01

    We present a model for the study of the excitation of Δ(1232) and N*(1440) resonances in isobaric charge-exchange (AZ, A(Z ± 1)) reactions of heavy nuclei. Quasi-elastic and inelastic elementary processes contributing to the double differential cross sections of the reactions are described in terms of the exchange of virtual pions. The inelastic channel includes processes where the resonances are excited both in the target and in the projectile nucleus. We present results for reactions of 112Sn and 124Sn on different targets. Our results confirm that the position of the Δ peak is insensitive to targets with mass number A ≥ 12, and show that the origin of the Δ peak shift towards low excitation energies, with respect to its position in reactions with a proton target, can be easily explained in terms of the superposition of the different excitation mechanisms contributing to the reaction.

  18. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    SciTech Connect

    Nguyen, Anh Tuan; Nguyen, Van Thanh; Nguyen, Huy Sinh; Pham, Thi Tuan Anh; Do, Viet Thang; Dam, Hieu Chi

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  19. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  20. Charge exchange as a recombination mechanism in high-temperature plasmas

    SciTech Connect

    Hulse, R.A.; Post, D.E.; Mikkelsen, D.R.

    1980-03-01

    Charge exchange with neutral hydrogen is examined as a recombination mechanism for multi-charged impurity ions present in high-temperature fusion plasmas. At sufficiently low electron densities, fluxes of atomic hydrogen produced by either the injection of neutral heating beams or the background of thermal neutrals can yield an important or even dominant recombination process for such ions. Equilibrium results are given for selected impurity elements showing the altered ionization balance and radiative cooling rate produced by the presence of various neutral populations. A notable result is that the stripping of impurities to relatively non-radiative ionization states with increasing electron temperature can be postponed or entirely prevented by the application of intense neutral beam heating power. A time dependent calculation modelling the behavior of iron in recent PLT tokamak high power neutral beam heating experiments is also presented.

  1. Observation of large enhancements of charge exchange cross sections with neutron-rich carbon isotopes

    NASA Astrophysics Data System (ADS)

    Tanihata, I.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Toki, H.; Vargas, J.; Winfield, J. S.; Weick, H.

    2016-04-01

    Production cross sections of nitrogen isotopes from high-energy (˜ 950 MeV per nucleon) carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes (A = 12 to 19). The fragment separator FRS at GSI was used to deliver C-isotope beams. The cross sections of the production of N-isotopes were determined by charge measurements of forward-going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge-exchange (Cex) reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and/or Fermi transition strength at low excitation energies for neutron-rich carbon isotopes. It was also observed that the Cex cross sections were enhanced much more strongly for neutron-rich isotopes in the C-target data.

  2. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  3. Missing derivative discontinuity of the exchange-correlation energy for attractive interactions: The charge Kondo effect

    NASA Astrophysics Data System (ADS)

    Perfetto, E.; Stefanucci, G.

    2012-08-01

    We show that the energy functional of ensemble density functional theory (DFT) [Perdew , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.49.1691 49, 1691 (1982)] in systems with attractive interactions is a convex function of the fractional particle number N and is given by a series of straight lines joining a subset of ground-state energies. As a consequence the exchange-correlation (XC) potential is not discontinuous for all N. We highlight the importance of this exact result in the ensemble-DFT description of the negative-U Anderson model. In the atomic limit the discontinuity of the XC potential is missing for odd N while for finite hybridizations the discontinuity at even N is broadened. We demonstrate that the inclusion of these properties in any approximate XC potential is crucial to reproduce the characteristic signatures of the charge-Kondo effect in the conductance and charge susceptibility.

  4. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  5. Alpha diagnostics using pellet charge exchange: Results on TFTR and prospects for ITER

    SciTech Connect

    Fisher, R.K.; Duong, H.H.; McChesney, J.M.

    1996-05-01

    Confinement of alpha particles is essential for fusion ignition and alpha physics studies are a major goal of the TFTR, JET, and ITER DT experiments, but alpha measurements remain one of the most challenging plasma diagnostic tasks. The Pellet Charge Exchange (PCX) diagnostic has successfully measured the radial density profile and energy distribution of fast (0.5 to 3.5 MeV) confined alpha particles in TFTR. This paper describes the diagnostic capabilities of PCX demonstrated on TFTR and discusses the prospects for applying this technique to ITER. Major issues on ITER include the pellet`s perturbation to the plasma and obtaining satisfactory pellet penetration into the plasma.

  6. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  7. Calculation of low-Z impurity pellet induced fluxes of charge exchange neutral particles escaping from magnetically confined toroidal plasmas.

    PubMed

    Goncharov, P R; Ozaki, T; Sudo, S; Tamura, N; Tolstikhina, I Yu; Sergeev, V Yu

    2008-10-01

    Measurements of energy- and time-resolved neutral hydrogen and helium fluxes from an impurity pellet ablation cloud, referred to as pellet charge exchange or PCX experiments, can be used to study local fast ion energy distributions in fusion plasmas. The estimation of the local distribution function f(i)(E) of fast ions entering the cloud requires knowledge of both the fraction F(0)(E) of incident ions exiting the cloud as neutral atoms and the attenuation factor A(E,rho) describing the loss of fast atoms in the plasma. Determination of A(E,rho), in turn, requires the total stopping cross section sigma(loss) of neutral atoms in the plasma and the Jacobian reflecting the measurement geometry and the magnetic surface shape. The obtained functions F(0)(E) and A(E,rho) enter multiplicatively into the probability density for escaping neutral particle kinetic energy. A general calculation scheme has been developed and realized as a FORTRAN code, which is to be applied for the calculation of f(i)(E) from PCX experimental results obtained with low-Z impurity pellets. PMID:19044625

  8. CHARGE STATE EVOLUTION IN THE SOLAR WIND. RADIATIVE LOSSES IN FAST SOLAR WIND PLASMAS

    SciTech Connect

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.

    2012-10-10

    We study the effects of departures from equilibrium on the radiative losses of the accelerating fast, coronal hole-associated solar wind plasma. We calculate the evolution of the ionic charge states in the solar wind with the Michigan Ionization Code and use them to determine the radiative losses along the wind trajectory. We use the velocity, electron temperature, and electron density predicted by Cranmer et al. as a benchmark case even though our approach and conclusions are more broadly valid. We compare non-equilibrium radiative losses to values calculated assuming ionization equilibrium at the local temperature, and we find that differences are smaller than 20% in the corona but reach a factor of three in the upper chromosphere and transition region. Non-equilibrium radiative losses are systematically larger than the equilibrium values, so that non-equilibrium wind plasma radiates more efficiently in the transition region. Comparing the magnitude of the dominant energy terms in the Cranmer et al. model, we find that wind-induced departures from equilibrium are of the same magnitude as the differences between radiative losses and conduction in the energy equation. We investigate which ions are most responsible for such effects, finding that carbon and oxygen are the main source of departures from equilibrium. We conclude that non-equilibrium effects on the wind energy equation are significant and recommend that they are included in theoretical models of the solar wind, at least for carbon and oxygen.

  9. Ne X X-ray emission due to charge exchange in M82

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Liu, L.; Lyons, D.; Schultz, D. R.; Stancil, P. C.; Wang, J. G.; Ali, R.

    2016-06-01

    Recent X-ray observations of star-forming galaxies such as M82 have shown the Ly β/Ly α line ratio of Ne X to be in excess of predictions for thermal electron impact excitation. Here, we demonstrate that the observed line ratio may be due to charge exchange and can be used to constrain the ion kinetic energy to be ≲ 500 eV/u. This is accomplished by computing spectra and line ratios via a range of theoretical methods and comparing these to experiments with He over astrophysically relevant collision energies. The charge exchange emission spectra calculations were performed for Ne10++ H and Ne10++ He using widely applied approaches including the atomic orbital close coupling, classical trajectory Monte Carlo, and multichannel Landau-Zener (MCLZ) methods. A comparison of the results from these methods indicates that for the considered energy range and neutrals (H, He) the so-called low-energy ℓ-distribution MCLZ method provides the most likely reliable predictions.

  10. Ionosphere-exosphere coupling through charge exchange and momentum transfer in hydrogen-proton collisions

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Breig, E. L.

    1991-01-01

    The implications of a traditional assumption of exospheric physics, that collisions of hydrogen atoms and protons preferentially result in charge exchange with negligible momentum transfer are examined. Initially adopted as a necessary convenience to accommodate limited computer resources in exosphere model calculations, this approximation results in a direct transformation of the proton velocity distribution into a hot component of neutral hydrogen. With expanding computational facilities, the need for the approximation has passed. As the first step toward its replacement with a realistic, quantum mechanical model of the H - H(+) collision process, differential and cumulative cross sections were calculated for quantum elastic scattering of indistinguishable nuclei for a fine grid of encounter energies and scattering angles. These data are used to study the nature of ionosphere-exosphere coupling through H - H(+) collisions, and to demonstrate that the distribution of velocities of scattered H produced in the traditional exospheric charge exchange approximation, as well as that arising from an alternative, fluid dynamic approach, leads to unacceptable abundances of coronal atoms in long-term, highly elliptic trajectories.

  11. The neutron-proton charge-exchange amplitudes measured in the dp → ppn reaction

    NASA Astrophysics Data System (ADS)

    Mchedlishvili, D.; Barsov, S.; Carbonell, J.; Chiladze, D.; Dymov, S.; Dzyuba, A.; Engels, R.; Gebel, R.; Glagolev, V.; Grigoryev, K.; Goslawski, P.; Hartmann, M.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Khoukaz, A.; Komarov, V.; Kulessa, P.; Kulikov, A.; Lehrach, A.; Lomidze, N.; Lorentz, B.; Macharashvili, G.; Maier, R.; Merzliakov, S.; Mielke, M.; Mikirtychyants, M.; Mikirtychyants, S.; Nioradze, M.; Ohm, H.; Papenbrock, M.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Seyfarth, H.; Stein, H. J.; Steffens, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Trusov, S.; Uzikov, Yu.; Valdau, Yu.; Wilkin, C.

    2013-04-01

    The unpolarised differential cross section and the two deuteron tensor analysing powers A xx and A yy of the ěc dp to \\{ pp\\} _s n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using deuteron beams with energies 1.2, 1.6, 1.8, and 2.27GeV, data were obtained for small momentum transfers to a { pp} s system with low excitation energy. The results at the three lower energies are consistent with impulse approximation predictions based upon the current knowledge of the neutron-proton amplitudes. However, at 2.27GeV, where these amplitudes are far more uncertain, agreement requires a reduction in the overall double-spin-flip contribution, with an especially significant effect in the longitudinal direction. These conclusions are supported by measurements of the deuteron-proton spin-correlation parameters C x,x and C y,y that were carried out in the ěc děc p to \\{ pp\\} _s n reaction at 1.2 and 2.27GeV. The values obtained for the proton analysing power A {/y p } also suggest the need for a radical re-evaluation of the neutron-proton elastic scattering amplitudes at the higher energy. It is therefore clear that such measurements can provide a valuable addition to the neutron-proton database in the charge-exchange region.

  12. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Wei, Y. L.; Yu, D. L.; Liu, L.; Ida, K.; von Hellermann, M.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ˜1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8-7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode).

  13. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    SciTech Connect

    Wei, Y. L.; Yu, D. L. Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong; Ida, K.; Hellermann, M. von

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  14. DXL: A sounding rocket mission measuring Solar Wind Charge eXchange properties

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    2016-04-01

    Solar Wind interacts with the interstellar neutrals via charge exchange mechanism to produce spatially and temporally varying x-rays making it difficult to separate from other diffuse sources. The Diffuse X-rays from the Local Galaxy (DXL) mission measured the spatial signature of Solar Wind Charge eXchange (SWCX) emission due to the helium focusing cone. The mission used 2 large area proportional counters and was able to separate the SWCX contribution from Local Hot Bubble emission. The data from the mission provide a robust estimate of the SWCX contribution to the ROSAT maps, measuring the compound SWCX cross section with He in all ROSAT bands. The results showed that the total SWCX contribution in the ¼ keV band is, on average, ~27%. A new mission, DXL-2, was launched on December 4, 2015 with two new counters for a better understanding of the energy distribution of heliospheric SWCX photons, by using a multi-band approach. A dedicated scan to accurately measure the cone position and solve the IBEX controversy was also performed. The talk will discuss the DXL mission, the results from the first flight, and the preliminary results from the latest flight.Submitted for the DXL Collaboration

  15. The charge exchange recombination diagnostic system on the DIII-D tokamak

    SciTech Connect

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Kim, J.; Martin, W.C.; McKee, E.L.; Seraydarian, R.P.

    1991-11-01

    The charge exchange recombination (CER) diagnostic system on the DIII-D tokamak is used to make spatially and temporally resolved measurements of the ion temperature and toroidal and poloidal rotation velocities. This is performed through visible spectroscopic measurements of the Doppler broadened and Doppler shifted HE II 468.6 nm, the CVI 529.1 nm, and the BV 494.5 nm spectral lines which have been excited by charge exchange recombination interactions between the fully stripped ions and the neutral atoms from the heating beams. The plasma viewing optics comprises 32 viewing chords spanning a typical plasma minor radius of 63 cm across the midplane, of which 15 spatial chords span 4.2 cm at the plasma edge just within the separatrix and provide a chord-to-chord spatial resolution of 0.3 cm. Fast camera readout electronics can provide a temporal resolution of 260 {mu}s per time slice, but the effective minimum integration time, at present, is 1 ms which is limited by the detected photon flux from the plasma and the decay times of the phosphors used on the multichannel plate image intensifiers. Significant changes in the edge plasma radial electric field at the L-H transition have been observed, as determined from the CER measurements, and these results are being extensively compared to theories which consider the effects of sheared electric fields on plasma turbulence. 13 refs., 10 figs.

  16. Upgrade of the Edge Charge Exchange Diagnostic on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    McDermott, Rachael; Lipschultz, Bruce; Marr, Kenneth

    2006-10-01

    The current edge Charge Exchange Spectroscopy system is being upgraded to include both a beam viewing and a background viewing toroidal periscope. The beam viewing periscope will be focused on the center of the DNB and will cover a 4cm radial region at the edge of the plasma starting a few centimeters in from and extending up to 1centimeter outside of the last closed flux surface. The background periscope will view the same radial region but will be displaced toroidally by 36 degrees. Each periscope has 20 chordal views with a radial resolution of 2.5-3mm. The presence of a background periscope obviates the need for a chopped DNB by providing time synchronized background B^+4 spectral data that can be subtracted directly from the active beam-derived B^+4 line-shapes. This system has been designed to work in conjunction with the current poloidal Charge Exchange periscope which has 25 fibers focused in the same region with equivalent radial resolution. The new toroidal system will enable concurrent measurements of the poloidal and toroidal velocity as well as the temperature and density of the B^+5 ions in the edge pedestal region; a measurement that currently does not exist on C-Mod. This information will then be used to calculate radial electric field profiles and study edge physics phenomena.

  17. Determination of plasma ion velocity distribution via charge-exchange recombination spectroscopy

    SciTech Connect

    Fonck, R.J.; Darrow, D.S.; Jaehnig, K.P.

    1983-12-01

    Spectroscopy of line radiation from plasma impurity ions excited by charge-exchange recombination reactions with energetic neutral beam atoms is rapidly becoming recognized as a powerful technique for measuring ion temperature, bulk plasma motion, impurity transport, and more exotic phenomena such as fast alpha particle distributions. In particular, this diagnostic offers the capability of obtaining space- and time-resolved ion temperature and toroidal plasma rotation profiles with relatively simple optical systems. Cascade-corrected excitation rate coefficients for use in both fully stripped impurity density studies and ion temperature measurements have been calculated to the principal ..delta..n = 1 transitions of He+, C/sup 5 +/, and O/sup 7 +/ with neutral beam energies of 5 to 100 keV/amu. A fiber optically coupled spectrometer system has been used on PDX to measure visible He/sup +/ radiation excited by charge exchange. Central ion temperatures up to 2.4 keV and toroidal rotation speeds up to 1.5 x 10/sup 7/ cm/s were observed in diverted discharges with P/sub INJ/ less than or equal to 3.0 MW.

  18. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    SciTech Connect

    Hudson, H. S.; Fletcher, L.; MacKinnon, A. L.; Woods, T. N.

    2012-06-20

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  19. Electron Terms and Resonant Charge Exchange Involving Oxygen Atoms and Ions

    SciTech Connect

    Kosarim, A.V.; Smirnov, B.M.

    2005-10-01

    The electron terms are constructed for oxygen dimer ions at large ion-atom distances taking into account a certain scheme of summation of electron momenta on the basis of a hierarchy of various ion-atom interactions. Because the number of interaction types exceeds that in the Hund scheme, a realistic hierarchy of interactions and corresponding quantum numbers of the diatomic ion are outside the Hund coupling scheme. Electron terms are evaluated for the oxygen dimer ion in the case where the ground and first excited states of an atom and an ion belong to the respective valence electron shells p{sup 4} and p{sup 3} and correspond to the range of separations that determine the cross sections of resonant charge exchange in plasma. These electron terms allow us to calculate the partial and average cross sections for resonant charge exchange involving an oxygen ion and atom in the ground and first excited states in the range of collision energies of interest for oxygen plasmas. The specific features of electron terms of the oxygen ion dimer and the cross section of electron transfer are analyzed.

  20. Recent Advances in Computational Studies of Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2016-06-01

    Interest in astrophysical sources of charge exchange (CX) has grown since X-ray emission from comet Hyakutake was first observed, the origin of which is primarily due to CX processes between neutral species in the comet’s atmosphere and highly charged ions from the solar wind. More recent observations have shown that CX may have a significant contribution to the X-ray emission spectra of a wide variety of environments within our solar system including solar wind charge exchange (SWCX) with neutral gases in the heliosphere and in planetary atmospheres, as well as beyond the solar system in galaxy clusters, supernova remnants, and star forming galaxies.While the basic process of CX has been studied for many decades, the reliability of the existing data is not uniform, and the coverage of the astrophysically important projectile and target combinations and collisional velocities is insufficient. The need for reliable and robust CX X-ray emission models will only be amplified with the with the high resolution X-ray spectra expected from the soft X-ray imaging calorimeter spectrometer (SXS) onboard the Hitomi X-ray observatory. In this talk, I will discuss recent advances in theoretical CX cross sections and X-ray modeling with a focus on CX diagnostics. The need for experimental X-ray spectra and cross sections for benchmarking current theory will also be highlighted. This work was performed in collaboration with David Lyons, Patrick Mullen, David Schultz, Phillip Stancil, and Robin Shelton. Work at UGA was partially supported by NASA grant NNX09AC46G.

  1. Solar wind charge exchange emission in the Chandra deep field north

    SciTech Connect

    Slavin, Jonathan D.; Wargelin, Bradford J.; Koutroumpa, Dimitra

    2013-12-10

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s{sup –1} cm{sup –2} sr{sup –1} (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  2. Inclusive Pion Double Charge Exchange in Light P - Nuclei at Intermediate Energies.

    NASA Astrophysics Data System (ADS)

    Fong, Wilson

    Inclusive measurements of the doubly differential cross section for the reaction pion double charge exchange (DCX) reaction were made on ^6Li, ^7Li, ^9Be and ^{12}C. The experiments were performed at the Los Alamos Physics Facility (LAMPF) using the "Little Yellow Spectrometer", LYS. The measurements were made for both pi^+ and pi^- at T_ pi = 120, 180, and 240 MeV for three to five angles between 25^circ and 130^circ. The outgoing pion kinetic energy range was observed. These are the only known measurements of inclusive DCX cross sections on the ^6Li, ^7Li and ^9Be nuclei. The DCX reaction requires at least two nucleons to be involved in order to conserve charge. The simplest reaction model for DCX is the sequential single charge exchange model, SSCX. The measurements aimed to examine the evolution of the double peaked structure seen at high incident pion energy at forward angles as the nuclear mass, A, increases. The double peaked structure is believed to be a direct consequence of the dominant p-wave nature of the SCX reaction in the Delta -region and the two step process of SSCX. Furthermore, an examination of the effects of introducing an additional neutron into an N = Z system is made. When the additional neutron is not involved in the DCX process, it functions to draw flux away from the DCX channel, thereby reducing the DCX cross section. Calculations based on theoretical models of Oset and Kinney have been performed and a comparison made with the measured DCX cross sections. The comparison between experiment and theory shows the need for further theoretical work in inclusive DCX reactions. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  3. Production of high brightness H- beam by charge exchange of hydrogen atom beam in sodium jet

    SciTech Connect

    Davydenko, V.; Zelenski, A.; Ivanov, A.; Kolmogorov, A.

    2010-11-16

    Production of H{sup -} beam for accelerators applications by charge exchange of high brightness hydrogen neutral beam in a sodium jet cell is experimentally studied in joint BNL-BINP experiment. In the experiment, a hydrogen-neutral beam with 3-6 keV energy, equivalent current up to 5 A and 200 microsecond pulse duration is used. The atomic beam is produced by charge exchange of a proton beam in a pulsed hydrogen target. Formation of the proton beam is performed in an ion source by four-electrode multiaperture ion-optical system. To achieve small beam emittance, the apertures in the ion-optical system have small enough size, and the extraction of ions is carried out from the surface of plasma emitter with a low transverse ion temperature of {approx}0.2 eV formed as a result of plasma jet expansion from the arc plasma generator. Developed for the BNL optically pumped polarized ion source, the sodium jet target with recirculation and aperture diameter of 2 cm is used in the experiment. At the first stage of the experiment H{sup -} beam with 36 mA current, 5 keV energy and {approx}0.15 cm {center_dot} mrad normalized emittance was obtained. To increase H{sup -} beam current ballistically focused hydrogen neutral beam will be applied. The effects of H{sup -} beam space-charge and sodium-jet stability will be studied to determine the basic limitations of this approach.

  4. Energy losses of fast heavy multiply charged structural ions in collisions with complex atoms

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Sidorov, D. B.

    2007-07-01

    A nonperturbatve theory of energy losses of fast heavy multiply charged structural ions in collisions with neutral complex atoms is elaborated with allowance for simultaneous excitations of ionic and atomic electron shells. Formulas for the effective deceleration that are similar to the well-known Bethe-Bloch formulas are derived. By way of example, the energy lost by partially stripped U q+ ions (10 ≤ q ≤ 70) colliding with argon atoms and also the energy lost by Au, Pb, and Bi ions colliding with various targets are calculated. The results of calculation are compared with experimental data.

  5. Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-05-01

    In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.

  6. The velocity dependence of X-ray emission due to Charge Exchange in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Lyons, David; Mullen, Patrick Dean; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-01-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics for collisions of bare and H-like C to Al ions with H, He, and H2. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31This work was partially supported by NASA grant NNX09AC46G.

  7. Weak interaction processes in supernovae: New probes using charge exchange reaction at intermediate energies

    NASA Astrophysics Data System (ADS)

    Frekers, Dieter

    2005-04-01

    Spin-isospin-flip excitations in nuclei at vanishing momentum transfer are generally referred to as Gamov-Teller (GT) transitions. They are being studied because the simplicity of the excitation makes them an ideal probe for testing nuclear structure models. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. GT transitions in the β- direction (also referred to as isospin lowering T< transitions) have extensively been studied through (p,n) and (3He,t) charge-exchange reactions [B.D. Anderson et al., Phys. Rev. C 36 (1987) 2195, B.D. Anderson et al., Phys. Rev. C 43 (1991) 50, J. Rapaport et al., Phys. Rev. C 24 (1981) 335, H. Akimune et al., Nucl. Phys. A 569 (1994) 245c, Y. Fujita et al., Phys. Lett. B 365 (1996) 29]. The generally good resolution allows easy extraction of the GT distribution and the total B(GT-) strength in the final nucleus. On the other hand, determination of B(GT+) strength through a charge-exchange reaction in the T> direction were mostly done with secondary neutron beams, and as such, they come with significant experimental difficulties. TRIUMF has pioneered this field in the late 80's and early 90's with a rich and highly successful (n,p) program using a several hundred MeV neutron beam from a 7Li(p,n)7Be reaction [R. Helmer, Can. J. Phys. 65 (1987) 588]. In this paper we present the (d,2He) reaction at intermediate energies as another and potentially even more powerful tool for charge-exchange reactions in the T>, resp. β+ direction. The key issue here will be the high resolution of order 100 keV, which provides new and sometimes unexpected insight into nuclear structure phenomena. This program has been launched at the AGOR Superconducting Cyclotron Facility at the KVI Groningen. By now, it covers a wide field of physics questions ranging from few-body physics, the structure of halo-nuclei, to questions pertaining

  8. The role of spin exchange in charge transfer in low-bandgap polymer: Fullerene bulk heterojunctions

    SciTech Connect

    Krinichnyi, V. I. Yudanova, E. I.; Denisov, N. N.

    2014-07-28

    Formation, relaxation and dynamics of polarons and methanofullerene anion radicals photoinitiated in poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]:-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCDTBT:PC{sub 61}BM) bulk heterojunctions were studied mainly by light-induced EPR (LEPR) spectroscopy in wide photon energy and temperature ranges. Some polarons are pinned by spin traps whose number and depth are governed by the composite morphology and photon energy. The proximity of the photon energy and the polymer bandgap reduces the number of such traps, inhibits recombination of mobile charge carriers, and facilitates their mobility in polymer network. Spin relaxation and charge carrier dynamics were studied by the steady-state saturation method at wide range of temperature and photon energy. These processes were shown to be governed by spin exchange as well as by the photon energy. Charge transfer in the composite is governed by the polaron scattering on the lattice phonons of crystalline domains embedded into amorphous polymer matrix and its activation hopping between polymer layers. The energy barrier required for polaron interchain hopping exceeds that of its intrachain diffusion. Anisotropy of polaron dynamics in the PCDTBT:PC61BM composite is less than that of poly(3-alkylthiophenes)-based systems that evidences for better ordering of the former. Lorentzian shape of LEPR lines of both charge carriers, lower concentration of spin traps as well as behaviours of the main magnetic resonance parameters were explained by layer ordered morphology of polymer matrix.

  9. The influence of inner-shell electron promotion on charge exchange processes in low energy ion scattering from surfaces

    NASA Astrophysics Data System (ADS)

    Ting Li; MacDonald, R. J.

    1997-11-01

    The influence of inner-shell electron promotion on charge exchange in low energy (1-7 keV) Ne + ions scattered from the Cu (1 0 0), Ni (1 0 0) and Fe (1 1 0) surfaces has been studied systematically. The yield of Ne + ion scattered from these surfaces has been measured as a function of incident ion energy under various scattering geometries. The relative Ne + ion fraction, which is proportional to the normalised ion yield divided by the differential scattering cross section, is studied and an empirical formula for relative ion fraction has been extracted. The formula combines the charge exchanges along the incoming trajectory, during the close encounter, and along the outgoing trajectory into one simple expression. It can be concluded that inner-shell electron excitations during close encounters contribute significantly to the charge exchange in the scattering systems studied in this work.

  10. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.